WorldWideScience

Sample records for hot cells area

  1. Technical specifications of variable speed motors for negative pressure control in hot cell area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Duk; Bang, H. S.; Cho, W. K

    2002-01-01

    Hot cells are the facilities for handling the high radioactive materials and various R and D activities are performed using hot cells. Therefore the control of air flow in hot cell area is very important technology and it is started with the variable speed motor(VSM) controlling the air handling system in that area. This report describes various technical aspects of VS motors and will be useful for understanding the practical technologies of VS motors and also for optimization of the negative pressure controls in hot cell area.

  2. Dose levels in the hot cells area ININ

    International Nuclear Information System (INIS)

    Torre, J. De la; Ramirez, J.M.; Solis, M.L.

    2004-01-01

    The Laboratory of Hot Cells (LCC) located in the National Institute of Nuclear Research (ININ) is an institution, it is an area where radioactive material is managed with different activity values, in function of its original design for 10,000 curies of Co-60. Managing this materials in the installation, it implies to measure and to analyze the dose levels that the POE will receive as well as the implementation of appropriate measures of radiological protection and radiological safety, so that that is completed settled down by the concept ALARA. In this work they are carried out mensurations of the levels of the dose to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of the obtained results is made comparing them with the effective international norms as well as the application of the program of surveillance and radiological protection implemented for the development of the works that are carry out in the installation. (Author)

  3. Development of Radioactive Substance Contamination Diffusion Preventive Equipment for a Hot cell

    International Nuclear Information System (INIS)

    Choo, Yong Sun; Kim, Do Sik; Baik, Seung Je; Yoo, Byung Ok; Kim, Ki Ha; Lee, Eun Pyo; Ahn, Sang Bok; Ryu, Woo Seok

    2009-01-01

    The hot cell of irradiated materials examination facility (IMEF), which has been operating since 1996, is generally contaminated by the radioactive nuclides of irradiated nuclear fuels and structural steels like Cs-137, Co-60, Co-134 and Ru-106. Especially Cs-137 is a main contaminated radioactive isotope which is easily moved here and there due to air flow in the hot cell, water-soluble, extremely toxic, and has a half-life of 30.23 years. To repair or fix the abnormal function of test apparatus installed in the hot cell, the maintenance door, so called a rear door and located at an intervention area, is opened to enter the hot cell inside. In a moment of opening the maintenance door, dirty air diffusion from the hot cell to an intervention area could be occurred in spite of increasing the rpm of exhaust fan to maintain much low under pressure, but an adjacent area to a maintenance door, i.e. intervention area, is very severely contaminated due to the unpredictable air flow. In this paper, the development of the radioactive substance contamination diffusion preventive equipment for a hot cell is studied to prevent dirty and toxic gaseous radioactive nuclides diffusion from a hot cell and installed at an intervention area of IMEF

  4. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    Walterskirchen, K.M.

    1997-01-01

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  5. Hot cell design in the vitrification plant China

    International Nuclear Information System (INIS)

    Jiang Yubo; Wang Guangkai; Zhang Wei; Liang Runan; Dou Yuan

    2015-01-01

    In the area of reprocessing and radioactive waste management, gloveboxes and cells are a kind of non-standard equipments providing an isolated room to operate radioactive material inside, while the operator outside with essential biological shield and protection. The hot cell is a typical one, which could handle high radioactive material with various operating means and tight enclosure. The dissertation is based on Vitrification Plant China, a cooperation project between China and Germany. For the sino-western difference in design philosophy, it was presented how to draft an acceptable design proposal of applicable huge hot cells by analysing the design requirements, such as radioprotection, observation, illumination, remote handling, transportation, maintenance and decontamination. The construction feasibility of hot cells was also approved. Thanks to 3D software Autodesk Inventor, digital hot cell was built to integrate all the interfaces inside, which validated the design by checking the mechanical interference. (author)

  6. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  7. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-02-01

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  8. Hot spots and heavily dislocated regions in multicrystalling silicon cells

    International Nuclear Information System (INIS)

    Simo, A.; Martinuzzi, S.

    1990-01-01

    The formation mechanism and the electrical consequences of hot spots have been investigated in multicrystalline solar cells. The hot spots were revealed by means of an infrared camera when the cells are reverse biassed in the dark. The minority carrier diffusion length (L n ), the photovoltage (V oc ) and the photocurrent (J sc ) were measured in the hot spot area and far from this zone thanks to mesa diodes. Dark forward I-V curves lead to values of ideality factor (M) and reverse saturation current (J o ). It is found that J o and M are higher in the hot spot area, while J sc , V oc and at a less extent L n are smaller. Large densities of dislocations and lineages structures are revealed in the abnormally heated regions

  9. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  10. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  11. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.

  12. Estimation of radiation exposure for hot cell workers during DUPIC fuel fabrication process in IMEF M6 cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yong Bum; Baek, Sang Yeol; Park, Dae Kyu

    1997-06-01

    DUPIC(Direct Use of spent PWR fuel In CANDU) fuel cycle to utilize the PWR spent fuel in fabricating CANDU fuel, which is expected to reduce not only the total amount of high level radwastes but the energy sources is underway. IMEF M6 cell to be used as DUPIC fuel fabrication facility is refurbished and retrofitted. Radiation exposure for the hot cell worker by dispersion of the radioactive materials during the DUPIC process were estimated on the basis of the hot cell design information. According to the estimation results, DUPIC fuel fabrication process could be run without any severe impacts to the hot cell workers when the ventilation system to maintain the sufficient pressure difference between hotcell and working area and radiation monitoring system is supports the hot cell operation properly. (author). 4 tabs., 6 figs.

  13. Dose levels in the hot cells area ININ; Niveles de dosis en el area de celdas calientes-ININ

    Energy Technology Data Exchange (ETDEWEB)

    Torre, J. De la; Ramirez, J.M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico); Solis, M.L. [UAEM, Toluca, Estado de Mexico (Mexico)]. E-mail: jto@nuclear.inin.mx

    2004-07-01

    The Laboratory of Hot Cells (LCC) located in the National Institute of Nuclear Research (ININ) is an institution, it is an area where radioactive material is managed with different activity values, in function of its original design for 10,000 curies of Co-60. Managing this materials in the installation, it implies to measure and to analyze the dose levels that the POE will receive as well as the implementation of appropriate measures of radiological protection and radiological safety, so that that is completed settled down by the concept ALARA. In this work they are carried out mensurations of the levels of the dose to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of the obtained results is made comparing them with the effective international norms as well as the application of the program of surveillance and radiological protection implemented for the development of the works that are carry out in the installation. (Author)

  14. Identification of the hot-spot areas for sickle cell disease using cord blood screening at a district hospital: an Indian perspective.

    Science.gov (United States)

    Dixit, Sujata; Sahu, Pushpansu; Kar, Shantanu Kumar; Negi, Sapna

    2015-10-01

    Sickle cell disease (SCD), a genetic disorder often reported late, can be identified early in life, and hot-spot areas may be identified to conduct genetic epidemiology studies. This study was undertaken to estimate prevalence and to identify hot spot area for SCD in Kalahandi district, by screening cord blood of neonates delivered at the district hospital as first-hand information. Kalahandi District Hospital selected for the study is predominated by tribal population with higher prevalence of SCD as compared to other parts of Odisha. Cord blood screening of SCD was carried out on 761 newborn samples of which 13 were screened to be homozygous for SCD. Information on area of parent's residence was also collected. Madanpur Rampur area was found to be with the highest prevalence of SCD (10.52 %) and the gene distribution did not follow Hardy-Weinberg Equation indicating un-natural selection. The approach of conducting neonatal screening in a district hospital for identification of SCD is feasible and appropriate for prioritizing area for the implementation of large-scale screening and planning control measures thereof.

  15. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  16. Hot-cell verification facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.A.

    1981-01-01

    The Hot Cell Verification Facility (HCVF) was established as the test facility for the Fuels and Materials Examination Facility (FMEF) examination equipment. HCVF provides a prototypic hot cell environment to check the equipment for functional and remote operation. It also provides actual hands-on training for future FMEF Operators. In its two years of operation, HCVF has already provided data to make significant changes in items prior to final fabrication. It will also shorten the startup time in FMEF since the examination equipment will have been debugged and operated in HCVF

  17. Implementation of a cabin X-rays in hot cell

    International Nuclear Information System (INIS)

    Berduola, F.; Caral, L.

    2001-01-01

    The Fabrice process for the reconstituted short length irradiated rods in a hot cell was developed by the CEA especially for power ramp testing. This technique requires intricate operations in a hot cell with specially adapted equipment and great skill people. And end plug is inserted under pressure and fitted to the opening end of a cladding tube. The meeting surfaces of the en plug and the opening end are welded by a TIG (tunsten inert gas) process. Nevertheless, somo predominate defects may occur in the end plug weld joints, such as lack of penetration and cavity. So, particular attention must be paid to non-destructive examination in particular X-ray control of welding areas. A radioscopy technique has been applied to the control of TIG welds of the end plugs to rod assemblies in a hot cell mock-up to be tested under realistic geometric conditions. This X-rays method enables immediate monitoring of any welding defaults on a TV screen. A remote positioning system for the Fabrice rod is being developed to position fuel rods below a X-ray source. Radioscopy pictures will be recorded during remote positioning of the rod movement. This document presents the modifications achieved by the constructor in cooperation with our laboratory staff, concerning the nuclearization of the apparatus as well as its implementation in the shielded hot cell n paragraph 2 of the CEA-DEC/SLS/LECA Laboratory in Cadarache. Hot operation of the rod positioner is planned for september 2022 because of recent refurbishing works in the plant. (Author)

  18. Characterisation study of radionuclides in Hot Cell Facility

    International Nuclear Information System (INIS)

    Ghare, P.T.; Rath, D.P.; Govalkar, Atul; Mukherjee, Govinda; AniIKumar, S.; Yadav, R.K.B.; Mallik, G.K.

    2016-01-01

    Examination of different types of experimental as well as power reactor irradiated fuels and validation of fuel modeling codes is carried out in general Hot cell facility. The Hot cell facility has six concrete shielded hot cells, capable of handling radioactivity varying from 3.7 TBQ to 3700 TBq gamma activity. The facility was augmented with two hot cells having designed capacity to handle radioactivity of 9250 TBQ of equivalent activity of 60 Co. The study of characterization of various radionuclides present inside the hot cell of PIE facility was taken up. This study will help in providing valuable inputs for various radiological safety parameters to keep personnel exposure to ALARA level as per the mandate of radiation safety program

  19. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  20. Cooling Grapple System for FMEF hot cell

    International Nuclear Information System (INIS)

    Semmens, L.S.; Frandsen, G.B.; Tome, R.

    1983-01-01

    A Cooling Grapple System was designed and built to handle fuel assemblies within the FMEF hot cell. The variety of functions for which it is designed makes it unique from grapples presently in use. The Cooling Grapple can positively grip and transport assemblies vertically, retrieve assemblies from molten sodium where six inches of grapple tip is submerged, cool 7 kw assemblies in argon, and service an in-cell area of 372 m 2 (4000 ft 2 ). Novel and improved operating and maintenance features were incorporated in the design including a shear pin and mechanical catcher system to prevent overloading the grapple while allowing additional reaction time for crane shutdown

  1. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  2. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  3. Strategic Planning for Hot Cell Closure

    International Nuclear Information System (INIS)

    LANGSTAFF, D.C.

    2001-01-01

    The United States Department of Energy (DOE) and its contractor were remediating a large hot cell complex to mitigate the radiological hazard. A Resource Conservation and Recovery Act (RCRA) closure unit was determined to be located within the complex. The regulator established a challenge to develop an acceptable closure plan on a short schedule (four months). The scope of the plan was to remove all excess equipment and mixed waste from the closure unit, establish the requirements of the legally binding Closure Plan and develop an acceptable schedule. The complex has several highly radioactive tanks, tank vaults, piping, and large hot cells containing complex chemical processing equipment. Driven by a strong need to develop an effective strategy to meet cleanup commitments, three principles were followed to develop an acceptable plan: (1) Use a team approach, (2) Establish a buffer zone to support closure, and (3) Use good practice when planning the work sequence. The team was composed of DOE, contractor, and Washington State Department of Ecology (Regulator) staff. The team approach utilized member expertise and fostered member involvement and communication. The buffer zone established an area between the unregulated parts of the building and the areas that were allegedly not in compliance with environmental standards. Introduction of the buffer zone provided simplicity, clarity, and flexibility into the process. Using good practice means using the DOE Integrated Safety Management Core Functions for planning and implementing work safely. Paying adequate attention to detail when the situation required contributed to the process credibility and a successful plan

  4. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Directory of Open Access Journals (Sweden)

    Seung Nam Yu

    2015-10-01

    Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  5. The development of synthetic test procedure for hot cell equipment systems in IMEF

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Lee, Key Soon; Park, Dae Kyu; Hong, Kwon Pyo; Choo, Yong Sun

    1998-04-01

    Hot cell facility should be confirmed to operation safety through pre-commissioning test after construction. In this report, the detailed procedure of hot cell equipment are described. The contents are as follows: 1. Entrance equipment of hot cell 2. Specimen transportation equipment between hot cells 3. Waste discharge equipment in hot cell 4. Specimen loading equipment to hot cell 5. Interlinking equipment in hot cell. (author). 4 tabs

  6. Reversible electron–hole separation in a hot carrier solar cell

    International Nuclear Information System (INIS)

    Limpert, S; Bremner, S; Linke, H

    2015-01-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron–hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron–hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices. (paper)

  7. Conceptual layout design of CFETR Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zheng, E-mail: gongz@mail.ustc.edu.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Qi, Minzhong, E-mail: qiminzhong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Cheng, Yong, E-mail: chengyong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • This article proposed a conceptual layout design for CFETR. • The design principles are to support efficient maintenance to ensure the realization of high duty time. • The preliminary maintenance process and logistics are described in detail. • Life cycle management, maneuverability, risk and safety are in the consideration of design. - Abstract: CFETR (China Fusion Engineering Test Reactor) is new generation of Tokomak device beyond EAST in China. An overview of hot cell layout design for CFETR has been proposed by ASIPP&USTC. Hot Cell, as major auxiliary facility, not only plays a pivotal role in supporting maintenance to meet the requirements of high duty time 0.3–0.5 but also supports installation and decommissioning. Almost all of the Tokomak devices are lateral handling internal components like ITER and JET, but CFETR maintain the blanket module from 4 vertical ports, which is quite a big challenge for the hot cell layout design. The activated in-vessel components and several diagnosis instruments will be repaired and refurbished in the Hot Cell Facility, so the appropriate layout is very important to the Hot Cell Facility to ensure the high duty time, it is divided into different parts equipped with a variety of RH equipment and diagnosis devices based on the functional requirements. The layout of the Hot Cell Facility should make maintenance process more efficient and reliable, and easy to service and rescue when a sudden events taking place, that is the capital importance issue considered in design.

  8. Decommissioning of a hot cell with high levels of contamination. Experience during the Undressed of Workers

    International Nuclear Information System (INIS)

    Martinez, A.; Sancho, C.

    1998-01-01

    The object of this work is to show the radiological controls in decommissioning of the inner of the Base Cell of the Nuclear Facility of CIEMAT, IN-04 (Metallurgy Hot Cells) and the experience during the undressed of workers in decommissioning of this cell. The workers were equipped with one cotton overalls and one or two paper overalls of one-use. Also, when the radiation levels are high, the workers were equipped with leaded glasses and aprons. The protection equipment for internal contamination were autonomous and semi-autonomous respiratory equipment. Due to a high superficial contamination levels, two areas were established in order to proceed to the undressed of the workers when these concluded their work. The first area was a confined enclosure by joined to the hot cell, where an expert of the Radiation Protection Service (RPS), trained for it, take off the first paper overall and the first pair of gloves to the worker that come out the hot cells. The second area was at the exist of the Load Zone, where another expert of PRS, take off the second paper overall, the second pair of gloves and dislocated the pipe of air of the semi-autonomous respiratory equipment, to the worker that come out this zone. (Author)

  9. Hot cells of the Osiris reactor

    International Nuclear Information System (INIS)

    Jourdain, Jean

    1969-10-01

    Hot cells of the Osiris reactor are β and γ type cells. Their main functions are: the extraction of irradiated samples from experimental assemblies (irradiation loops, experimental devices) used to irradiate them, the reinstallation of experimental setups with irradiated samples, the fractioning of unrecoverable experimental devices, and the removal of irradiated samples and active wastes. Each cell is therefore equipped with means for remote handling, for observation and for removal, and a venting. Each cell may also receive additional equipment, notably for the dismantling of experimental setups. This report presents the cell implantation in the reactor, elements to be handled in cells, the path followed by elements to be handled (arrival, departure, conveyors). It describes the cells (capacity and protection, design and construction, external and internal arrangements) and the cell equipment (remote handling devices, windows, lighting, lifting unit, sound system), and the installed electric power. A realisation planning is provided. An appendix indicates the cost of these hot cells

  10. Action Memorandum for Decommissioning of TAN-607 Hot Shop Area

    Energy Technology Data Exchange (ETDEWEB)

    M. A. Pinzel

    2007-05-01

    The Department of Energy is documenting the selection of an alternative for the TAN-607 Hot Shop Area using a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA). The scope of the removal action is limited to TAN-607 Hot Shop Area. An engineering evaluation/cost analysis (EE/CA) has assisted the Department of Energy Idaho Operations Office in identifuomg the most effective method for performing the decommissioning of this structure whose mission has ended. TAN-607 Hot Shop Area is located at Test Area North Technical Support Facility within the Idaho National Laboratory Site. The selected alternative consists of demolishing the TAN-607 aboveground structures and components, removing belowground noninert components (e.g. wood products), and removing the radiologically contaminated debris that does not meet remedial action objectives (RAOs), as defined in the Record of Decision Amendment for the V-Tanks and Explanation of Significant Differences for the PM-2A Tanks at Test Area North, Operable Unit 1-10.

  11. Design Report for ACP Hot Cell Rear Door

    Energy Technology Data Exchange (ETDEWEB)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W

    2005-12-15

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation.

  12. Design Report for ACP Hot Cell Rear Door

    International Nuclear Information System (INIS)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W.

    2005-12-01

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation

  13. Seismic evaluation of a hot cell structure

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.

    1995-01-01

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake

  14. Linear thermal expansion coefficient measurement technology in hot cell

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Choo, Yong Sun; Ahn, Sang Bok; Hong, Kwon Pyo; Lee, K. S.

    1998-06-01

    To establish linear thermal expansion coefficient measurement technology in hot cell, we reviewed and evaluated various measuring technology by paper and these were compared with the data produced with pre-installed dilatometer in hot cell. Detailed contents are as follows; - The theory of test. - Review of characteristics for various measurement technology and compatibility with hot cell. - Review of standard testing regulations(ASTM). - System calibration of pre-installed dilatometer. - Performance test of pre-installed dilatometer. (author). 12 refs., 15 tabs., 8 figs

  15. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Fabio E.; Araujo, Elaine B., E-mail: fecampos@ipen.b, E-mail: ebaraujo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  16. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    International Nuclear Information System (INIS)

    Campos, Fabio E.; Araujo, Elaine B.

    2009-01-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  17. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  18. Features of geology in Anyuan hot spot area of southern Jiangxi Province

    International Nuclear Information System (INIS)

    Lin Jinrong; Li Ziying; Pang Yaqing; Hu Zhihua; Gao Fei; Wang Yongjian; Zhong Qilong

    2013-01-01

    Based on the synthetical research on the characteristics of regional geology and structure, magmatic activity and metamorphism, it is considered that Anyuan area in southern Jiangxi Province has features of continent hot spot, and Anyuan hot spot area is an integrated geology body effected by the metamorphism. magmatism, tectonism and hydrothermal metallogenesis originated by the mantle upheaving. Anyuan hot spot area is a mineralization cluster area of uranium and poly-metal, which has the feature of ring structure, negative abnormity of gravity and high field of radioactivity. It is considered that metallogenesis of uranium and poly-metal is close to crust-mantle mixing and fluid of deep source. (authors)

  19. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  20. Design and rescue scenario of common repair equipment for in-vessel components in ITER hot cell

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Takeda, Nobukazu; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-06-01

    Transportation of the in-vessel components to be repaired in the ITER hot cell is carried by two kinds of transporters, i.e., overhead cranes and floor vehicles. The access area for repair operations in the hot cell is duplicated by these transporters. Clear sharing of the respective roles of these transporters with the minimum duplication is therefore useful for rationalization. The overhead cranes, which are independently installed in the respective cells in the hot sell, cannot pass through the components to be repaired between cells, i.e., receiving cell and refurbishment cell as an example. If the floor vehicle with simple mechanisms can cover the inaccessible area for the overhead cranes, a global transporter system in the hot cell will be simplified and the reliability will be increased. Based on this strategy, the overhead crane and floor vehicle concepts are newly proposed. The overhead crane has an adapter for change of the end-effectors, which can be easily changed, to grasp many kinds of components to be repaired. The floor vehicle, which is equipped with wheel mechanisms for transportation, is just to pass through the components between cells with only straight (linear) motion on the floor. The simple wheel mechanism can solve the spread of the dust, which is the critical issue of the original air bearing mechanism for traveling in the 2001 FDR design. Rescue scenarios and procedures in the hot cell are also studied in this report. The proposed rescue crane has major two functions for rescue operations of the hot cell facility, i.e., one for the overhead crane and the other for refurbishment equipment such as workstation for divertor repair. The rescue of the faulty overhead crane is carried out using the rescue tool installed on the rescue crane or directly traveled by pushing/pulling by the rescue crane after docking on the faulty overhead crane. For the rescue of the workstation, the rescue crane consists of a telescopic manipulator (maximum length

  1. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-06-01

    Nuclear fuels have been handled and examined after irradiation by physical and chemical techniques, and radiotherapy sources, mainly 60 Co, have been produced at Risoe National Laboratory since 1964. The aims of decommissioning (during 1990-94, at IAEA Stage 2 level for reactors) were to obtain safe conditions for the remaining parts of the facility and to produce clean space areas for new projects. The facility comprises 6 concrete cells, several lead-shielded steel cells, glove boxes, shielded storage for waste, a remotely operated optical microscope, a frogman area for personnel access to the concrete cells, a decontamination facility, workshops and safety installations. All steel cells, glove boxes and the microscope were emptied and removed. The concrete cells were emptied of fissile material, scientific equipment, general tools and scrap. Decontamination should facilitate waste packing and reduce amount of waste to be stored temporarily at the Risoe waste treatment facility together with highly active waste. The concrete cells were cleaned remotely by wiping, hot spot removal, by mechanical means and vacuum cleaning. The interiors of 2 cells were decontaminated by high pressure water jetting. All master-slave manipulators and part of the contaminated ventilation system at the cells were removed. The cells are left in a non-ventilated state, connected to the atmosphere by an absolute filter. The main contaminants measured before cell closure were 60 Co, 137 Cs and alpha-emitters. Dismantling, decontamination waste disposal and received doses are described. Simple techniques involving low doses were found to be very effective. (AB)

  2. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing.

    Science.gov (United States)

    Kang, Junmo; Hwang, Soonhwi; Kim, Jae Hwan; Kim, Min Hyeok; Ryu, Jaechul; Seo, Sang Jae; Hong, Byung Hee; Kim, Moon Ki; Choi, Jae-Boong

    2012-06-26

    Graphene films grown on metal substrates by chemical vapor deposition (CVD) method have to be safely transferred onto desired substrates for further applications. Recently, a roll-to-roll (R2R) method has been developed for large-area transfer, which is particularly efficient for flexible target substrates. However, in the case of rigid substrates such as glass or wafers, the roll-based method is found to induce considerable mechanical damages on graphene films during the transfer process, resulting in the degradation of electrical property. Here we introduce an improved dry transfer technique based on a hot-pressing method that can minimize damage on graphene by neutralizing mechanical stress. Thus, we enhanced the transfer efficiency of the large-area graphene films on a substrate with arbitrary thickness and rigidity, evidenced by scanning electron microscope (SEM) and atomic force microscope (AFM) images, Raman spectra, and various electrical characterizations. We also performed a theoretical multiscale simulation from continuum to atomic level to compare the mechanical stresses caused by the R2R and the hot-pressing methods, which also supports our conclusion. Consequently, we believe that the proposed hot-pressing method will be immediately useful for display and solar cell applications that currently require rigid and large substrates.

  3. Application of Cyclone to Removal of Hot Particulate in Hot Cell

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin

    2005-01-01

    The size and main ingredient of hot particulate generated during the nuclide experiment in hot cells of nuclear facilities were 0.5300 μm and UO 2 . A cyclone filter equipment which consists of a cyclone and Bag/HEPA filter was devised to remove hot particulate generated during the nuclide experiment in hot cells of nuclear facilities. The experimental conditions to maximize the collection efficiency of hot particulate were suggested through experiments done with the cyclone filter equipment. With the large size of simulated particulate, the collection efficiency of the particulate was high. When the size of simulated particulate was more than 5 μm, the collection efficiency of the particulate was more than 80% and when the size of simulated particulate was less than 1.0 μm, the collection efficiency decreased by less than. If the inflow velocity of simulated particulate was increased, the collection efficiency of the particulate was also increased. When the inflow velocity of simulated particulate was more than 12 m/sec, the collection efficiency was higher than , but after 17 m/sec inflow velocity, no change observed. The collection efficiency of the simulated particulate can be enhanced with the length of vortex finder inside the chamber. With the length of vortex finder, 7.2 cm, the observed collection efficiency of the particulate was the maximum. Moreover, when the sub-cone was attached under the cyclone, the collection efficiency of cyclone increased 2%. It was found that effect by attachment of sub-cone was not serious.

  4. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  5. Development of a hot cell for post-irradiation analysis of nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Selma S.C.; Silva Junior, Silverio Ferreira da; Loureiro, Joao Roberto M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: selmasallam@yahoo.com.br, e-mail: silvasf@cdtn.br, e-mail: jrmattos@cdtn.br

    2009-07-01

    Post irradiation examinations of nuclear fuels are performed in order to verify their in-service behavior. Examinations are conducted in compact structures called hot cells, designed to attend the different types of tests and analysis for fuel's characterization. The characterization of fuel microstructure is an activity performed in hot cells. Usually, hot cells for microstructural fuel analysis are designed to allow the metallographic and ceramographic samples preparation and after that, microscopical analysis of the fuel's microstructure. Due to the complexity of the foreseen operations, the severe limitations imposed by the available space into the hot cells, the capabilities of the remote manipulation devices, the procedures of radiological protection and the needs to obtain samples with an adequate surface quality for microscopic analysis, the design of a hot cell for fuel samples preparation presents a high level of complexity. In this paper, the methodology used to develop a hot cell facility for nuclear fuel's metallographic and ceramographic samples preparation is presented. Equipment, devices and systems used in conventional sample preparation processes were evaluated during bench tests. After the necessary adjustments and processes adaptations, they were assembled in a mock-up of the respective hot cell, where they were tested in conditions as realistic as possible, in order to improve the operations and processes to be performed at the real hot cells. (author)

  6. Development of a hot cell for post-irradiation analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Silva, Selma S.C.; Silva Junior, Silverio Ferreira da; Loureiro, Joao Roberto M.

    2009-01-01

    Post irradiation examinations of nuclear fuels are performed in order to verify their in-service behavior. Examinations are conducted in compact structures called hot cells, designed to attend the different types of tests and analysis for fuel's characterization. The characterization of fuel microstructure is an activity performed in hot cells. Usually, hot cells for microstructural fuel analysis are designed to allow the metallographic and ceramographic samples preparation and after that, microscopical analysis of the fuel's microstructure. Due to the complexity of the foreseen operations, the severe limitations imposed by the available space into the hot cells, the capabilities of the remote manipulation devices, the procedures of radiological protection and the needs to obtain samples with an adequate surface quality for microscopic analysis, the design of a hot cell for fuel samples preparation presents a high level of complexity. In this paper, the methodology used to develop a hot cell facility for nuclear fuel's metallographic and ceramographic samples preparation is presented. Equipment, devices and systems used in conventional sample preparation processes were evaluated during bench tests. After the necessary adjustments and processes adaptations, they were assembled in a mock-up of the respective hot cell, where they were tested in conditions as realistic as possible, in order to improve the operations and processes to be performed at the real hot cells. (author)

  7. Qualification of a production and packaging hot cell for sodium pertechnetate Tc 99m

    International Nuclear Information System (INIS)

    Cavero, Luis; Robles, Anita; Miranda, Jesus; Martinez, Ramos; Paragulla, Wilson; Moore, Mariel; Herrera, Jorge; Ocana, Elias; Portilla, Arturo; Otero, Manuel; Novoa, Carlos; Koga, Roberto

    2014-01-01

    It was designed and implemented a protocol for a hot cell of production and packaging of sodium pertechnetate Tc 99m, in a two-step process: installation qualification (IQ) and operation qualification (OQ). In the IQ design specifications and user requirements and associated equipment and materials by traceable documentation was verified. In the OQ scheduled for operation and control sequences it was verified plus operational tests recommended by the World Health Organization (WHO) and ISO 14644-1 and 3 were performed to clean areas. The results showed that the hot cell complies with the classification for Grades C and A for the preparation and packaging of Tc 99m. (authors).

  8. Planning, Management and Organizational Aspects of the Decommissioning of a Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N. [Danish Decommissioning, Roskilde (Denmark)

    2013-08-15

    This CRP project document ''Planning, Management and Organizational Aspects in Decommissioning of a Hot Cell Facility'' aims to describe the establishment of a management organization that ensures that the DD Hot Cell Project is properly and safely conducted and that staff members, who are seconded to the project, have a strong feeling of ownership and being an integral part of the project. The objectives of the decommissioning project of the hot cell facility is to decontaminate the facility and to remove items that cannot be decontaminated on site, in order for the entire hot cell building to become useable for other purposes without any radiological restrictions. The project requires proper communication and coordination with all stakeholders on-site, comprehensive work plans and strict control of the individual working areas and operations. A project of this type obviously requires a strong and well managed and coordinated project organization. DD has established a management system - KMS. The purposes of the KMS are twofold. The system aims to secure the fulfilment of the conditions and requirements of quality set by the nuclear authorities. The system also aims to provide the basis for a rational and economically feasible operation with a high level of safety. One of the main lessons learned in this project is clear that is to ensure that the necessary resources are available and the required expertise is allocated timely for the performance of the project(s) a strong coordination and great flexibility within the DD organization is required. This document describes the approach and considerations from the project management point of view. The document initially gives an introduction to the hot cell decommissioning project followed by issues of the general considerations and planning of the project within the DD, including aspects on organisation, quality assurance and coordination. (author)

  9. Multipurpose reprocessing hot cell

    International Nuclear Information System (INIS)

    Fletcher, R.D.

    1975-01-01

    A multipurpose hot cell is being designed for use at the Idaho Chemical Processing Plant for handling future scheduled fuels that cannot be adequately handled by the existing facilities and equipment. In addition to providing considerable flexibility to handle a wide variety of fuel sizes up to 2,500 lb in weight the design will provide for remote maintenance or replacement of the in-cell equipment with a minimum of exposure to personnel and also provide process piping connections for custom processing of small quantities of fuel. (auth)

  10. Preliminary Feasibility Study on the Construction of Steel Hot Cell Facility for Precise Manipulated Examinations

    International Nuclear Information System (INIS)

    Ahn, Sangbok; Kwon, Hyungmun; Kim, Heemoon; Kim, Dosik; Min, Duckkee; Hong, Kwonpyo

    2006-01-01

    Hot laboratory is essential facility to research and develop in the nuclear industries to examine radioactive materials. The post irradiation examinations for irradiated fuels and materials should be mainly conducted in the hot cell facility to protect radiations to operators. Hot cells are divided into a concrete hot cell and a steel hot cell according to the wall materials. Usually a concrete hot cell is applied to test for high level radioactive materials like as a fuel assembly, rods, and large structure specimens, and a steel hot cell for comparatively lower level activity materials in fuel fragments, and small structural materials. A steel hot cell has many benefits in a specimen manipulation, construction and maintenance costs. In recent the test for the irradiated materials is more frequently required a small and precise manipulating examination for higher degree tests of research and developments. Unfortunately hot laboratory facilities in domestics have mainly constituted of concrete hot cells, and not ready for techniques in steel hot cells. In this paper the construction feasibility of steel hot cell facility is preliminary reviewed in the points of the status of domestic facilities, the test demand prospect and detailed plans

  11. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.

    1989-10-01

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft 2 and $96 per ft 2 of cell surface area. 14 figs., 4 tabs

  12. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  13. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Cho, Il Je; Kim, Ki Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  14. Identification of hot spot area of sediment contamination in a lake system using texture characteristics.

    Science.gov (United States)

    Sheela, A M; Letha, J; Joseph, Sabu; Thomas, Jobin

    2013-04-01

    Texture plays an important role in the identification of polluted stretch in a lake system. The organic matter as well as toxic elements get accumulated in the finer sediments. The aim of the work is to show the spatio-temporal distribution of texture of the lake sediment (Akkulam-Veli lake, Kerala) and to identify the hot spot areas of contamination. Hot spot areas vary with seasons. During PRM, (premonsoon), the upstream portion of the Akkulam lake is the hot spot. During MON (monsoon), the downstream portion of the Akkulam lake and the upstream portion of the Veli lake are the hot spots. During POM (postmonsoon), hot spot area is the downstream portion of the Akkulam lake. This methodology can be used for the quick identification of hot spots in water bodies.

  15. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell

    International Nuclear Information System (INIS)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J.

    1959-01-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  16. Hot food and beverage consumption and the risk of esophageal squamous cell carcinoma: A case-control study in a northwest area in China.

    Science.gov (United States)

    Tai, Wei-Ping; Nie, Guo-Ji; Chen, Meng-Jie; Yaz, Tajigul Yiminni; Guli, Arzi; Wuxur, Arzigul; Huang, Qing-Qing; Lin, Zhi-Gang; Wu, Jing

    2017-12-01

    This study was trying to investigate the association of hot food and beverage consumption and the risk of esophageal squamous cell carcinoma in Hotan, a northwest area of China with high risk of esophageal squmous cell carcinoma. A population-based case-control study was designed. For the study, 167 patients diagnosed with esophageal squamous cell carcinoma were selected from Hotan during 2014 to 2015, and 167 community-based controls were selected from the same area, matched with age and sex. Information involved of temperature of food and beverage intake was obtained by face-to-face interview. Logistic regression analyses were performed to investigate the association between temperature of food and beverage intake and the risk of esophageal squamous cell carcinoma. The temperature of the food and beverage consumed by the esophageal squamous cell carcinoma patients was significantly higher than the controls. High temperature of tea, water, and food intake significantly increased the risk of esophageal squamous cell carcinoma by more than 2-fold, with adjusted odds ratio 2.23 (1.45-2.90), 2.13 (1.53-2.66), and 2.98 (1.89-4.12). Intake of food and beverage with high temperature was positively associated with the incidence of esophageal squamous cell carcinoma in Northwestern China. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  17. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  18. Waste Handling in SVAFO's Hot Cell

    International Nuclear Information System (INIS)

    Moeller, Jennifer; Ekenborg, Fredrik; Hellsten, Erik

    2016-01-01

    The decommissioning and dismantling of nuclear installations entails the generation of significant quantities of radioactive waste that must be accepted for disposal. In order to optimise the use of the final repositories for radioactive waste it is important that the waste be sent to the correct repository; that is, that waste containing short-lived radionuclides not be designated as long-lived due to conservative characterisation procedures. The disposal of short-lived waste in a future Swedish repository for long-lived waste will result in increased costs, due to the higher volumetric cost of the disposal as well as costs associated with decades of interim storage before disposal can occur. SVAFO is a non-profit entity that is responsible for the decommissioning of nuclear facilities from historical research and development projects in Sweden. They provide interim storage for radioactive waste arising from research activities until the final repository for long-lived waste is available. SVAFO's offices and facilities are located on the Studsvik site on the east coast of Sweden near the town of Nykoeping. Some of the retired facilities that SVAFO is in the process of decommissioning are located elsewhere in Sweden. The HM facility is a small waste treatment plant owned and operated by SVAFO. The plant processes both liquid and solid radioactive wastes. The facility includes a hot cell equipped with a compactor, a saw and other tools as well as manipulators for the handling and packaging of waste with high dose rates. The cell is fitted with special systems for transporting waste in and passing it out in drums. As with most hot cells there has been an accumulation of surface contamination on the walls, floor and other surfaces during decades of operation. Until recently there has been no attempt to quantify or characterize this contamination. Current practices dictate that after waste is handled in the hot cell it is conservatively designated as long

  19. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  20. General reformulation of hot cell complex

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Souza, A.S.F. de; Souza, M.L.M. de; Rautenberg, F.A.

    1986-01-01

    The implantation of an operation philosophy without direct intervention of operator during isotope production process in hot cells of the CV-28 cyclotron is presented. The modifications carried out in equipments, systems and installations are described. (M.C.K.)

  1. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  2. Introduction of radiation protection and dosimetry in new hot cell facility in research center Rez

    International Nuclear Information System (INIS)

    Svrcula, P.; Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    The purpose of the poster is to present radiation protection and dosimetry in the new hot cell facility being constructed as part of the SUSEN project. The hot cell facility is composed of 10 hot cells and 1 semi-hot cell. All shielding is made from steel, the outer wall shielding has thickness of 500 mm, internal wall between hot cells 300 mm with the possibility to extension to 500 mm. The ceiling shielding has a thickness of 400 mm and the floor shielding is 300 mm wide. Shielded windows allow direct view into the hot cells. Their shielding effect is equivalent to 500 mm of steel. The dimension of the window in the control room is 800 mm x 600 mm with a thickness of 900 mm. All important operating data are collected in the central system of hot cells. The system monitors under-pressure level and temperature in each chamber. If necessary it can directly control the ventilation system. Each hot cell is equipped with dose rate probes. The system also measures and evaluates airborne radioactivity in the building

  3. Development of the maintenance process by the servo manipulator for the parts of the equipment outside the MSM's workspace in a hot cell

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, D. K.; Park, B. S.; Yun, G. S.

    2003-01-01

    In this study, the maintenance process by the servo manipulator for the parts of the equipment that cannot be reached by MSM in the hot cell was developed. To do this, the virtual mock up is implemented using virtual prototyping technology. And, Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. And the path planning of the servo manipulator using the collision detection of the virtual mockup is established. Also, the maintenance process for the parts of the equipment that are located out area of the MSM's workspace by the servo manipulator is proposed and verified through the graphic simulation. The proposed remote maintenance process of the equipment can be effectively used in the real hot cell operation. Also, the implemented virtual mock-up of the hot cell can be effecively used in analyzing the various hot cell operation and in enhancing the reliability and safety of the spent fuel manaement

  4. EDF requirements for hot cells examinations on irradiated fuel

    International Nuclear Information System (INIS)

    Segura, J.C.; Ducros, G.

    2002-01-01

    The objectives of increasing French Nuclear Power Plants (NPP) availability while lengthening the fuel irradiation cycle and reaching higher burnups lead EDF to carry out on site and hot cell examinations. The data issued from such fuel behaviour monitoring programmes will be used to ascertain that the design criteria are met. Data are also needed for modelling, development and validation. The paper deals quickly with the logistics linked to the selection and transport of fuel rods from NPP to hot cell laboratory. Hot cell PIEs remain a valuable method to obtain data in such fields as PCI (Pellet-Cladding Interaction), internal pressure, FGR (Fission Gas Release), oxide thickness, metallurgical aspects. The paper introduces burnup determination methods, inner pressure evaluation, preparation of samples for further irradiation such as power ramps for PCI and RIA (Reactivity Initiated Accident) testing. The nuclear microprobe of Perre Suee laboratory is also presented. (author)

  5. Engineering hot-cell windows for radiation protection

    International Nuclear Information System (INIS)

    Ferguson, K.R.; Courtney, J.C.

    1983-01-01

    Radiation protection considerations in the design and construction of hot-cell windows are discussed. The importance of evaluating the potential gamma spectra and neutron source terms is stressed. 11 references

  6. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    Science.gov (United States)

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  7. Development of a pattern hot cell for production of injectable radiopharmaceuticals

    International Nuclear Information System (INIS)

    Campos, Fabio Eduardo de

    2010-01-01

    A controlled ambient should be established to the production/processing of materials susceptible to contamination, like injectable pharmaceuticals, in order to agree with normative and regulatory requirements. Considering medical but also toxic, radioactive and dangerous products, the ambient should work in special conditions to assure that the materials, which in same cases can be also volatile, do not escape to the external ambient, working in a selective, secure and controlled way. The conditions recommended by local and international rules in use, report an negative pressured ambient in relation to the adjacent areas. The technology related with the sizing of project to this kind of system is fully described in the literature, taking in account the rules that clearly describe the essential requirements. However, it is necessary to develop a controlled ambient for radiopharmaceutical production, in a way compatible with the concept of clean rooms and with the safety related to the manipulation of open radioactive wastes. In this work, some devices were created, methods and procedures were established making possible the classification of the ambient inside the hot cell, without physical barriers in the area, using ergonomic, flexible and practical conditions of work, that can results in the improvement of the productivity. The project resulted in the creation of a controlled ambient, in agreement with the normative requirements, using a pass through for entrance and exit of the materials, without compromise the internal air condition. The tight of the hot cell was obtained using doors with efficient sealing system and active joints. Tong manipulators were used to produce ergonomic and secure conditions, without compromise the internal conditions related to tight and classification in A and B grade, according to local and international rules. An efficient ventilation/exhaustion system was adopted to produce these results, composed by filters and special devices

  8. Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory East

    International Nuclear Information System (INIS)

    Neimark, L.A.; Jackson, W.D.; Donahue, D.A.

    1979-01-01

    The Alpha-Gamma Hot-Cell Facility has been in operation at Argonne National Laboratory East (ANL-E) for 15 years. The facility was designed for plutonium research in support of ANL's LMFBR program. The facility consists of a kilocurie, nitrogen-atmosphere alpha-gamma hot cell and supporting laboratories. Modifications to the facility and its equipment have been made over the years as the workload and nature of the work changed. These modifications included inerting the entire hot cell, adding four work stations, modifying in-loading procedures and examination equipment to handle longer test articles, and changing to a new sodium-vapor lighting system. Future upgrading includes the addition of a decontamination and repair facility, use of radio-controlled transfer carts, refurbishment of the zinc bromide windows, and the installation of an Auger microprobe

  9. A Shielding Analysis of Hot Cell for a 10 MW Research Reactor

    International Nuclear Information System (INIS)

    Alnajjar, Alaaddin; Park, Chang Je; Roh, Gyuhong; Lee, Byunchul

    2013-01-01

    In this paper, a shielding analysis has been performed for the hot cell in a 10 MW research reactor. Two kinds of shielding analysis code systems are used such as MCNPX2.7 and M-Shield7. The first one is Monte Carlo stochastic code and the second one is a deterministic point kernel code. The results are compared in this study. In order to obtain source term, the ORIGEN-S code is used for different kinds of source. Four kinds of sources are taken into consideration. From the simulation, it is also proposed that the proper thickness of shielding material and the maximum source capacity in the hot cell. This study shows preliminary analysis results of hot cell shielding for 10MW research reactor. Total four different source terms are considered such as spent fuel assembly, Ir-192, Mo-99, and I-131. For shielding material, general concrete, heavy concrete, and lead are used. MCNPX code is mainly used for a simplified hot cell model and the result are nearly consistent when compared with M-Shield code. Required shielding thickness and the hot cell capacity are also obtained for various criterion of surface dose rates

  10. Iodine speciation in the hot cell effluent gases

    International Nuclear Information System (INIS)

    Lee, B.S.; Jester, W.A.; Olynyk, J.M.

    1990-01-01

    The various species of airborne radioiodine can affect the iodine source term of a severe core damage accident because of the different transport and deposition properties. also, the radiobiological hazardness may vary according to their chemical form. The purpose of the work reported in this paper was to characterize the various chemical forms of airborne radioiodine in hot cell effluent gases of a radiopharmaceutical production facility that produces medical radioisotopes from separated fission products of irradiated uranium targets. It is concluded that the methyl iodide is the youngest chemical species in terms of effective decay time age, and the hot cell filter bank is least efficient in removing the methyl iodide

  11. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  12. The development on electric discharge machine for hot cell usage

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Kim, Young Suk; Park, Dae Kyu; Choo, Yong Sun; Oh, Wan Ho

    1998-06-01

    The electric discharge machine(EDM) was developed for hot cell usages in IMEF. This machine will be used to fabricate specimen directly from irradiated components from NPP's. The detailed contents are as follows; 1. Outline of electric discharge machine 2. Specimen shape to be fabricated by EDM 3. Technical specification to manufacture EDM 4. Installation EDM in hot cell 5. Optimum discharge conditions to fabricate specimens from CANDU tube. (author). 4 tabs., 20 figs

  13. A State of the Art Report on the Case Study of Hot Cell Decontamination and Refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    Won, H. J.; Jung, C. H.; Moon, J. K.; Park, G. I.; Song, K. C

    2008-08-15

    As the increase of the operation age of the domestic high radiation facilities such as IMEF, PIEF and DFDF, the necessity of decontamination and refurbishment of hot cells in these facilities is also increased. In the near future, the possibilities of refurbishment of hot cells in compliance with the new regulations, the reuse of hot cells for the other purposes and the decommissioning of the facilities also exist. To prepare against the decontamination and refurbishment of hot cells, the reports on the refurbishment, decommissioning and decontamination experiences of hot cells in USA, Japan, France, Belgium and Great Britain were investigated. ANL of USA performed the project on the decontamination of hot cells. The purpose of the project was to practically eliminate the radioactive emissions of Rn-220 to the environment and to restore the hot cells to an empty restricted use condition. The five hot cells were emptied and decontaminated for restricted use. Chemical processing facility in JAEA of Japan was used for the reprocessing study of spent fuels, hot cells in CPF were refurbished from 1995 for the tests of the newly developed reprocessing process. In a first stage, decommissioning and decontamination were fully performed by the remote operation Then, decommissioning and decontamination were performed manually. By the newly developed process, they reported that the radiation exposure of workers were satisfactorily reduced. In the other countries, they also make an effort for the refurbishment and decontamination of hot cells and it is inferred that they accumulate experiences in these fields.

  14. Use of lasers at the Los Alamos Hot-Cell Facility

    International Nuclear Information System (INIS)

    Lazarus, M.E.

    1983-01-01

    An optical profilometer that uses a Techmet LaserMike scanning, focused, laser-beam, optical micrometer is installed in a remote alpha-gamma containment cell at the Los Alamos Hot-Cell Facility. A hot-cell extension chamber provides the nominal 30-cm (12-in.) working distance required by the LaserMike and, at the same time, keeps the LaserMike components outside the high-radiation-containment environment. This system provides measurement accuracy better than +- 5 μm (0.0002 in.) on diameters between 2 and 13 mm (0.88 and 0.5 in.) at a rate of 33 measurements per second. The Hot-Cell Facility also uses a Korad 20-J-output ruby pulsed laser to drill a hole in reactor-fuel-element cladding to sample fission gas. The laser is then used to reweld the hole so that the fuel element will not be contaminated and may be stored without an alpha-containment barrier. The wall thickness of the fuel elements sampled varies from 0.25 to 0.50 mm (0.010 to 0.020 in.)

  15. A Preliminary Shielding Study on the Integrated Operation Verification System in the Head-End Hot-Cell of the Pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhwam; Kim, Yewon; Park, Se-Hwan; Ahn, Seong-Kyu; Cho, Gyuseong [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power accounts for more than 30 percent of power production in Korea. Its significance has annually been increased. Disposal spent fuel containing uranium, transuranic elements, and fission products is unavoidable byproduct of nuclear power production. it is recognized that finding appropriate sites for interim storage of disposal spent fuel is not easy because isolated sites should be required. Pyro-processing technology, Pyro-processing should be operated under high radiation environment in hot-cell structures. Because of this reason, all workers should be unauthorized to access inside the hot-cell areas under any circumstances except for acceptable dose verification and a normal operation should be remotely manipulated. For the reliable normal operation of pyroprocessing, it is noted that an evaluation of the space dose distribution in the hot-cell environments is necessary in advance in order to determine which technologies or instruments can be utilized on or near the process as the Integrated Operation Verification System (IOVS) is measured. Not like the electroreduction and electro-refining hot-cells, the head-end hot-cell equips Camera Radiation Detector (CRD) in which plutonium is securely measured and monitored for the safeguard of the pyro-processing. Results have been obtained using F2 surface tally in order to observe the magnitude of the gamma-ray and neutron flux which pass through the surface of the process cell. Furthermore, T-mesh tally has also been used to obtain the space dose distribution in the headend hot-cell. The hot-cell was divided into 7,668 cells in which each dimension was 1 x 1 x 1m for the T-mesh tally. To determine the position of the CRD and the surveillance camera, divergent approaches were required. Because the purpose of the CRD which contains a gamma-ray detector and a neutron detector is to identify the material composition as the process proceeds, the position in which detectable flux is exposed is required, whereas

  16. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-10-01

    A concise description of the current status of the decommissioning of the hot cell capacity at Risoe National Laboratory is given in this 6th periodic report covering January 1st to June 30th, 1993. All registered and safeguarded fissile material has been removed and the task of cutting and packing scrap material and experimental equipment from the concrete cell line has been completed. Concrete cells 5 and 6 have been finally cleaned and the master slave manipulators removed from them. The major part of the contamination on the shutters and shutter houses were on their horizontal planes and the main contaminant was 137 Cs. Here the surfaces were cleaned by wiping with wet cloths. The method is described. Tables illustrating the resulting contamination levels are included, the density is now low on the shutters. The method of final inn-cell cleaning is explained, and here again tables represent the resulting contamination levels. The work on ''hot spot'' removal and remote cleaning by vacuuming continues on the remaining cells. A collective dose of ca. 16.3 man-mSv was ascribed to 18 persons in the first half of 1993, arising mainly from in-cell work and waste handling. To sum up, the main results from this period are successful removal of last waste from the cells, remote cleaning of cells 2 and 3, final condition for all shutters and shutter housings and final condition for cells 5 and 6. Tables illustrate measured dose rates in detail. (AB)

  17. ITER diagnostics: Maintenance and commissioning in the hot cell test bed

    International Nuclear Information System (INIS)

    Walker, C.I.; Barnsley, R.; Costley, A.E.; Gottfried, R.; Haist, B.; Itami, K.; Kondoh, T.; Loesser, G.D.; Palmer, J.; Sugie, T.; Tesini, A.; Vayakis, G.

    2005-01-01

    In-vessel diagnostic equipment in ITER integrated in six equatorial and 12 upper ports, 16 divertor cassettes and five lower ports is designed to be removed in modules and then repaired, tested and commissioned in the same location at the ITER hot cell. The repair requirements and tests on these components are described along with design features that facilitate repair. The testing establishes the repair strategy, qualifies the refurbishment work and finally checks the mechanical and diagnostic function before the return of the modules. At the hot cell, a dummy port is provided for tests of mechanical and vacuum integrity as well as commissioning of the diagnostic equipment. The scope of the hot cell maintenance and commissioning activities is summarised and an overview of the integration of the diagnostic equipment is given

  18. The 'SILOE' reactor at Grenoble, France and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the SILOE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  19. The 'OSIRIS' reactor at Saclay, France and available hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the OSIRIS reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  20. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    Science.gov (United States)

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Review of tritium confinement and atmosphere detritiation system in hot cells complex

    International Nuclear Information System (INIS)

    Rizzello, Claudio; Borgognoni, Fabio; Pinna, Tonio; Tosti, Silvano

    2010-01-01

    The tritium confinement strategy adopted during the past years in the ITER hot cell building is compared to the safety requirements given by the standard ISO-17873 'Nuclear facilities - criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors'. In fact, this is the reference safety guideline recommended by French licensing authorities. Several features of the considered design of the hot cell building are not in agreement with these guidelines. Main discrepancies concern the zoning of the hot cell complex, the flow rates of ventilation, and the possibility to recycle the room atmosphere and to detritiate the effluent air. These aspects are discussed together with some proposed modifications of the design.

  2. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    Science.gov (United States)

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  3. Experience of in-cell visual inspection using CCD camera in hot cell of Reprocessing Plant

    International Nuclear Information System (INIS)

    Reddy, Padi Srinivas; Amudhu Ramesh Kumar, R.; Geo Mathews, M.; Ravisankar, A.

    2013-01-01

    This paper describes the selection, customization and operating experience of the visual inspection system for the hot cell of a Reprocessing Plant. For process equipment such as fuel chopping machine, dissolver, centrifuge, centrifugal extractors etc., viewing of operations and maintenance using manipulators is required. For this, the service of in-cell camera is essential. The ambience of the hot cell of Compact facility for Reprocessing of Advanced fuels in Lead cell (CORAL) for the reprocessing of fast reactor spent fuel has high gamma radiation and acidic vapors. Black and white Charge Coupled Device (CCD) camera has been used in CORAL incorporating in-house modifications to suit the operating ambient conditions, thereby extending the operating life of the camera. (author)

  4. Conceptual design report of hot cell modification and process for fission Mo-99 production

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C.

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report

  5. Conceptual design report of hot cell modification and process for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report.

  6. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-02-01

    Concise description of progress in hot cell facility decommissioning at Risoe National Laboratory is presented. Removal of the large contaminated equipment has been completed, all the concrete cells have been finally cleaned. The total contamination left on the concrete walls is of the order of 1850 GBq. Preliminary smear tests proved the stack to be probably clean. The delay in project completion seems to be around 7 months, the remaining work being of rather conventional character. (EG)

  7. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-08-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, removal and decontamination of large cell internals, and of large equipment such as glove boxes and steel boxes, in addition to dose commitments, are explained. Tables illustrating the analysis of smear tests, constants for contamination level examination, contamination and radiation levels after cleaning and total contamination versus measured radiation are included. (AB)

  8. NDE of PWR fuel: Identifying candidates for hot cell examination

    International Nuclear Information System (INIS)

    Moon, J.E.; Bury, J.G.; Correal, O.A.; Kunishi, H.; Wilson, H.W.

    1992-05-01

    On-site examinations were performed at the Indian Point 3 and Callaway reactors to attempt to identify the leakage mechanism of several leaking fuel rods. The exams consisted of removing the leaking fuel rods from the assembly and performing a visual examination. These results, combined with other available on-site data on leaking fuel rods, were used to select fuel rods for shipment to a hot cell for detailed root cause examination. Three fuel rods from the Indian Point 3 reactor were found to be leaking due to debris-induced fretting. The examinations at Callaway were terminated prior to completion due to utility scheduler conflicts. Rods from the Callaway reactor were selected for shipment to the hot cell along with the rods from the Byron 1 and 2 and V.C. Summer reactors. The data presented in the report summarize the coolant activity history, the UT examination results, and a summary of the review of the fabrication records. The basis for the selection of the rods to be sent to the hot cells is also summarized

  9. New facilities of the ECN hot cell laboratory

    International Nuclear Information System (INIS)

    Duijves, K.A.; Konings, R.J.M.

    1996-04-01

    A description is given of two recent expansions of the ECN Hot Cell Laboratory in Petten; a production facility for molybdenum-99 and an actinide laboratory, a special facility to investigate unirradiated alpha- and beta-active samples. (orig.)

  10. The DIDO-reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DIDO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  11. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1998-04-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  12. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1995-01-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  13. Hot sample archiving. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1995-01-01

    This Engineering Study revision evaluated the alternatives to provide tank waste characterization analytical samples for a time period as recommended by the Tank Waste Remediation Systems Program. The recommendation of storing 40 ml segment samples for a period of approximately 18 months (6 months past the approval date of the Tank Characterization Report) and then composite the core segment material in 125 ml containers for a period of five years. The study considers storage at 222-S facility. It was determined that the critical storage problem was in the hot cell area. The 40 ml sample container has enough material for approximately 3 times the required amount for a complete laboratory re-analysis. The final result is that 222-S can meet the sample archive storage requirements. During the 100% capture rate the capacity is exceeded in the hot cell area, but quick, inexpensive options are available to meet the requirements

  14. Hot cell chemistry for isotope production at Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Barnes, J.W.; Bentley, G.E.; Ott, M.A.; DeBusk, T.P.

    1978-01-01

    A family of standardized glass and plastic ware has been developed for the unit processes of dissolution, volume reduction, ion exchange, extraction, gasification, filtration, centrifugation, and liquid transfer in the hot cells. Computerized data handling and gamma pulse analysis have been applied to quality control and process development in hot cell procedures for production of isotopes for research in physics and medicine. The above has greatly reduced the time needed to set up for and produce a new isotope

  15. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  16. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  17. Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells

    Science.gov (United States)

    Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan

    2018-03-01

    We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.

  18. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1986-01-01

    Accurate remote tightening of fasteners in a radioactive (Hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no ''feel,'' which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Test Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  19. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1987-01-01

    Accurate remote tightening of fasteners in a radioactive (hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no feel, which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Testing Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  20. Energy saving type area hot water supply system using heat of hot waste water from the sludge center as hot source for hot water; New energy rokko airando CITY. Surajjisenta karano onhaisuinetsu wo kyuyuyo netsugen ni riyosuru sho energy gata chiiki onsui kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Heat source of area hot water supply system in Rokko island City (man-made island) is heat of combustion at the sludge center (sludge incineration plant) in this island. Dehydrated sludge cakes (230ton/day) brought from seven sewage disposal plants in Kobe City is combusted (850degC) in the fluid bed hearth. Combustion gas washed in the scrubber, hot waste water after the washing give heat into heat transfer water in the first heat exchanger. Temperature being 64degC in summer and about 50degC in winter, this heat transfer water is sent into the second heat exchanger at every condominium building throughout the pipe line system circulating in the area. At each home, gas heater and hot water supply devices fitted, additional combustion is not necessary in summer but is used according to demand in other seasons. This hot water supply service has been carried out since 1988 and at present has been used by 3600 homes. Amount of supplying hot water being about 3000cu.m/day, saving is calculated roughly as 60% of gas for hot water supply. Fee for this system is 1500/yen/month uniformly for each home. 14 figs.

  1. The 'MELUSINE' reactor at Grenoble, France, and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the MELUSINE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of six information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities

  2. Zirconium Recycle Test Equipment for Hot Cell Operations

    International Nuclear Information System (INIS)

    Collins, Emory D.; DelCul, Guillermo Daniel; Spencer, Barry B.; Bradley, Eric Craig; Brunson, Ronald Ray

    2015-01-01

    The equipment components and assembly support work were modified for optimized, remote hot cell operations to complete this milestone. The modifications include installation of a charging door, Swagelok connector for the off-gas line between the reactor and condenser, and slide valve installation to permit attachment/replacement of the product salt collector bottle.

  3. Removal of an acid fume system contaminated with perchlorates located within hot cell

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers

  4. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  5. Decommissioning of the Risoe hot cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1992-02-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, of large contaminated equipment from the concrete cell line and a separate shielded storage facility, and the removal of large contaminated facilities such as out cell parts of a tube transport system between a concrete cell and a lead shielded steel box and a remotely operated Reichert Telatom microscope housed in a lead shielded glove box is described in addition to the initial mapping of radiation levels related to the decontamination of concrete cells. The dose commitment of 17.7 mSv was ascribed to 12 persons in the 2nd half of 1991. The work resulting in these doses was mainly handling of waste together with the frogman entrances in order to repair the in-cell crane and power manipulator. The overall time schedule for the project still appears to be applicable. (AB)

  6. Experiences from Refurbishment of Metallography Hot Cells and Application of a New Preparation Concept for Materialography Samples

    International Nuclear Information System (INIS)

    Oberlander, B. C.; Espeland, M.; Solum, N. O.

    2001-01-01

    After more than 30 years of operation the lead shielded metallography hot cells needed a basic renewal and modernisation not least of the specimen preparation equipment. Preparation in hot cells of radioactive samples for metallography and ceramography is challenging and time consuming. It demands a special design and quality of all in-cell equipment and skill and patience from the operator. Essentials in the preparation process are: simplicity and reliability of the machines, and a good quality, reproducibility and efficiency in performance. Desirable is process automation, flexibility and an alara amounto of radioactive waste produced per sample prepared. State of the art preparation equipment for materialography seems to meet most of the demands, however, it cannot be used in hot cells without modifications. Therefore. IFE and Struers in Copenhagen modified a standard model of a Strues precision cutting machine and a microprocessor controlled grinding and polishing machine for Hot Cell application. Hot cell utilisation of the microcomputer controlled grinding and polishing machine and the existing automatic dosing equipment made the task of preparing radioactive samples more attractive. The new grinding and polishing system for hot cells provides good sample preparation quality and reproductibility at reduced preparation time and reduced amount of contaminated waste produced per sample prepared. the sample materials examined were irradiated cladding materials and fuels

  7. Los Alamos Hot-Cell-Facility modifications for examining FFTF fuel pins

    International Nuclear Information System (INIS)

    Campbell, B.M.; Ledbetter, J.M.

    1982-01-01

    Commissioned in 1960, the Wing 9 Hot Cell Facility at Los Alamos was recently modified to meet the needs of the 1980s. Because fuel pins from the Fast Flux Test Facility (FFTF) at the Hanford Engineering Development Laboratory (HEDL) are too long for examination in the original hot cells, we modified cells to accommodate longer fuel pins and to provide other capabilities as well. For instance, the T-3 shipping cask now can be opened in an inert atmosphere that can be maintained for all nondestructive and destructive examinations of the fuel pins. The full-length pins are visually examined and photographed, the wire wrap is removed, and fission gas is sampled. After the fuel pin is cropped, a cap is seal-welded on the section containing the fuel column. This section is then transferred to other cells for gamma-scanning, radiography, profilometry, sectioning for metallography, and chemical analysis

  8. Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

    1977-01-01

    A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

  9. A Comparison of the Hot Spot and the Average Cancer Cell Counting Methods and the Optimal Cutoff Point of the Ki-67 Index for Luminal Type Breast Cancer.

    Science.gov (United States)

    Arima, Nobuyuki; Nishimura, Reiki; Osako, Tomofumi; Nishiyama, Yasuyuki; Fujisue, Mamiko; Okumura, Yasuhiro; Nakano, Masahiro; Tashima, Rumiko; Toyozumi, Yasuo

    2016-01-01

    In this case-control study, we investigated the most suitable cell counting area and the optimal cutoff point of the Ki-67 index. Thirty recurrent cases were selected among hormone receptor (HR)-positive/HER2-negative breast cancer patients. As controls, 90 nonrecurrent cases were randomly selected by allotting 3 controls to each recurrent case based on the following criteria: age, nodal status, tumor size, and adjuvant endocrine therapy alone. Both the hot spot and the average area of the tumor were evaluated on a Ki-67 immunostaining slide. The median Ki-67 index value at the hot spot and average area were 25.0 and 14.5%, respectively. Irrespective of the area counted, the Ki-67 index value was significantly higher in all of the recurrent cases (p hot spot was the most suitable cutoff point for predicting recurrence. Moreover, higher x0394;Ki-67 index value (the difference between the hot spot and the average area, ≥10%) and lower progesterone receptor expression (hot spot strongly correlated with recurrence, and the optimal cutoff point was found to be 20%. © 2015 S. Karger AG, Basel.

  10. Dynamic and Geological-Ecological Spatial Planning Approach in Hot Mud Volcano Affected Area in Porong-Sidoarjo

    Directory of Open Access Journals (Sweden)

    Haryo Sulistyarso

    2010-08-01

    Full Text Available By May 29t h 2006 with an average hot mud volcano volume of 100,000 m3 /per day, disasters on well kick (i.e. Lapindo Brantas Ltd. in Banjar Panji 1 drilling well have deviated the Spatial Planning of Sidoarjo’s Regency for 2003- 2013. Regional Development Concept that is aimed at developing triangle growth pole model on SIBORIAN (SIdoarjo-JaBOn-KRIaAN could not be implemented. This planning cannot be applied due to environmental imbalance to sub district of Porong that was damaged by hot mud volcano. In order to anticipate deviations of the Regional and Spatial Planning of Sidoarjo Regency for 2003-2013, a review on regional planning and dynamic implementation as well as Spatial Planning Concept based on geologicalecological condition are required, especially the regions affected by well kick disaster. The spatial analysis is based on the geological and ecological condition by using an overlay technique using several maps of hot mud volcano affected areas. In this case, dynamic implementation is formulated to the responsiblity plan that can happen at any time because of uncertain ending of the hot mud volcano eruption disaster in Porong. The hot mud volcano affected areas in the Sidoarjo’s Spatial Planning 2009-2029 have been decided as a geologic protected zone. The result of this research is scenarios of spatial planning for the affected area (short term, medium term and long term spatial planning scenarios.

  11. Basic design and construction of a mobile hot cell for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    An Hongxiang; Fan Zhiwen; Al-Mughrabi, M.

    2011-01-01

    The conditioning of spent high activity radioactive sources is one important step in sealed radioactive sources management strategies. Based on the practice on the designing of the immobilized hot cell, the handling of the sealed radioactive sources, and the reference of the mobile hot cell constructed in South Africa, SHARS conditioning process and the basic design of a mobile hot cell is developed. The mobile hot cell has been constructed and the tests including the cold test of the SRS conditioning, the hot cell assemble and disassemble and SRS recovery were done. The shielding capacity were tested by 3.8 x 10 13 Bq cobalt-60 sources and the dose rate of the equipment surface, below 2 m, is less than 0.016 mSv/h. It is proved that the designing requirement is meet and the function of the equipment is good. (authors)

  12. Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haque Choudhury, Mohammad Shamimul, E-mail: shamimul129@gmail.com [Department of Frontier Material, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan); Department of Electrical and Electronic Engineering, International Islamic University Chittagong, b154/a, College Road, Chittagong 4203 (Bangladesh); Kishi, Naoki; Soga, Tetsuo [Department of Frontier Material, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2016-08-15

    Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness of this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.

  13. Criticality detector exclusion zone in a spent-fuel hot cell

    International Nuclear Information System (INIS)

    Kim, S.S.; Sterbentz, J.W.

    1999-01-01

    The main purpose of a criticality alarm system (CAS) is to protect personnel by detecting a criticality event (neutron radiation) and actuating an alarm system to initiate emergency response. Inadvertent criticality alarms from noncritical events, such as spurious voltage spikes or intense gamma radiation fields, can produce work cessation and time-consuming and costly event assessments and may result in harm to personnel during an evacuation. It therefore becomes a major concern to ensure that inadvertent or false criticality alarms do not occur or at least are minimized. Minimization of inadvertent criticality alarms due to intense gamma radiation emitted from spent-nuclear-fuel (SNF) elements as opposed to neutron radiation from an actual criticality event is the primary focus of this calculational and experimental study. The Irradiated Fuel Storage Facility (IFSF) located at the Idaho National Engineering and Environmental Laboratory is a government-owned, contractor-operated facility whose mission is to provide safe handling and dry storage for various types of SNFs. Although other fuel types (lower burnup) are stored in the IFSF, it is the high-burnup elements with the associated intense gamma radiation fields that have the potential to inadvertently set off the criticality alarms in the fuel-handling area adjacent to the storage vault. Typically, in the fuel-handling cave or hot cell of the IFSF, the cask lid is removed, and individual fuel elements are extracted from the cask and placed in special storage canisters. It is during the time period when fuel elements are extracted from their casks or when fully loaded canisters are moved in the hot cell that the CAS detectors are exposed to the intense gamma radiation fields from the spent fuel. The neutron detectors positioned in one of the manipulator ports are designed such that fast neutrons from a criticality event are thermalized by a polyethylene moderator, strike the scintillator detector material, and

  14. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  15. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  16. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  17. Apparatus of hot cell for iodine-123 production

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Rautenberg, F.A.; Souza, A.S.F. de.

    1986-01-01

    The hot cell installation at IEN cyclotron (Brazilian-CNEN) for sup(123)I production is presented. Several devices, such as, tube furnace coupling system, tube furnace driving system, sup(123)I target transfer system, product extraction system, furnace control system, and effluent systems, were constructed and modified for implanting process engineering. The requirements of safety engineering for operation process were based on ALARA concept. (M.C.K.)

  18. Seismic modifications to the hot suspect repair area Argonne National Laboratory, West

    International Nuclear Information System (INIS)

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-stoned area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams arc connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a now braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  19. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

    Science.gov (United States)

    Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François

    2018-03-01

    In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.

  20. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  1. Hot cell facilities for post irradiation examination

    International Nuclear Information System (INIS)

    Mishra, Prerna; Bhandekar, Anil; Pandit, K.M.; Dhotre, M.P.; Rath, B.N.; Nagaraju, P.; Dubey, J.S.; Mallik, G.K.; Singh, J.L.

    2017-01-01

    Reliable performance of nuclear fuels and critical core components has a large bearing on the economics of nuclear power and radiation safety of plant operating personnel. In view of this, Post Irradiation Examination (PIE) is periodically carried out on fuels and components to generate feedback information which is used by the designers, fabricators and the reactor operators to bring about changes for improved performance of the fuel and components. Examination of the fuel bundles has to be carried out inside hot cells due to their high radioactivity

  2. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    OSCAR, DEBBY S.; WALKER, SHARON ANN; HUNTER, REGINA LEE; WALKER, CHERYL A.

    1999-01-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2

  3. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  4. Development of one body α-γ type manipulator for hot cell facility

    International Nuclear Information System (INIS)

    Jung, S. K.; Lee, S. B.; Lee, E. P.

    2004-01-01

    To handle the high level radioactive materials in a sealed type hot cell, our company has developed the one body alpha-gamma type manipulator and this is an improved model compared with the previously developed beta-gamma and separated alpha-gamma type manipulators. The successful development of one body alpha-gamma type manipulator means our company has a whole capacity to design and fabricate all kinds of manipulators using in hot cells. Until now most of the manipulators in Korea were imported from other countries. The development of Korean manipulators gives us the easier maintenance and lower price compared to the foreign products. It is also possible to export the Korean manipulators to overseas

  5. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  6. Some geophysical and geological studies of the Tanzawa Mountains. [Nakagawa Hot Spring area, Hokizawa, and Higashizawa

    Energy Technology Data Exchange (ETDEWEB)

    Minakami, T; Matsuda, T; Hiraga, S; Horai, K I; Sugita, M

    1964-11-01

    Joints and zeolite-veins in both metamorphic rocks and quartz diorite exposed along the Nakagawa River were studied. Fractures with zeolite-veins are most developed in three areas, the Nakagawa hot spring area, Hokizawa, and Higashizawa. They follow two prevailing directions: N--S with minor right-lateral displacement and N60/sup 0/E with minor left-lateral displacement. The two fractures should represent a conjugate set that was produced by stress with maximum principal axis of N30/sup 0/E-S30/sup 0/W. Distribution and prevailing directions of fractures are illustrated. Geothermal gradients are measured in two newly opened boreholes, at the Nakagawa hot spring area and Higashizawa. The geothermal gradients are 12.60 +- 0.48/sup 0/C/100m at the Nakagawa hot spring and 5.55 +- 0.24/sup 0/C/100m at Higashizawa. Temperature-depth relationships in the two boreholes are given. Seismic observation was made at the Higashizawa. In five days 43 shocks were recorded, of which 20 are thought to have occurred 2 to 20km from the observation station, that is, in and very near the Tanzawa mountains. None have shallower hypocenters than 2 km in depth.

  7. Conceptual design of the hot cell facility universal docking station at ITER

    International Nuclear Information System (INIS)

    Dammann, A.; Benchikhoune, M.; Friconneau, J.P.; Ivanov, V.; Lemee, A.; Martins, J.P.; Tamassy, G.

    2011-01-01

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  8. Conceptual design of the hot cell facility universal docking station at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Benchikhoune, M.; Friconneau, J.P.; Ivanov, V. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lemee, A. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France); Martins, J.P. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Tamassy, G. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France)

    2011-10-15

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  9. Standard guide for hot cell specialized support equipment and tools

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 This guide presents practices and guidelines for the design and implementation of equipment and tools to assist assembly, disassembly, alignment, fastening, maintenance, or general handling of equipment in a hot cell. Operating in a remote hot cell environment significantly increases the difficulty and time required to perform a task compared to completing a similar task directly by hand. Successful specialized support equipment and tools minimize the required effort, reduce risks, and increase operating efficiencies. 1.2 Applicability: 1.2.1 This guide may apply to the design of specialized support equipment and tools anywhere it is remotely operated, maintained, and viewed through shielding windows or by other remote viewing systems. 1.2.2 Consideration should be given to the need for specialized support equipment and tools early in the design process. 1.2.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conv...

  10. Particle-in-cell studies of laser-driven hot spots and a statistical model for mesoscopic properties of Raman backscatter

    International Nuclear Information System (INIS)

    Albright, B.J.; Yin, L.; Bowers, K.J.; Kline, J.L.; Montgomery, D.S.; Fernandez, J.C.; Daughton, W.

    2006-01-01

    The authors use explicit particle-in-cell simulations to model stimulated scattering processes in media with both solitary and multiple laser hot spots. These simulations indicate coupling among hot spots, whereby scattered light, plasma waves, and hot electrons generated in one laser hot spot may propagate to neighboring hot spots, which can be destabilized to enhanced backscatter. A nonlinear statistical model of a stochastic beam exhibiting this coupled behavior is described here. Calibration of the model using particle-in-cell simulations is performed, and a threshold is derived for 'detonation' of the beam to high reflectivity. (authors)

  11. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...... lamination have a great influence on the catalyst properties of a low-temperature PEMFC, especially on its durability. Lamination pressure, temperature and duration were systematically studied in relation to the electrochemical surface area, platinum dissolution, platinum particle size and electrode surface...

  12. Some steps of the dismantling of the hot cell ATTILA

    International Nuclear Information System (INIS)

    Terrasson, L.

    1989-01-01

    This paper describes the dismantling, during 2 years and just finished now, of a large hot cell (11.6 m x 5.90 m x 5.80 m) at Fontenay-aux-Roses (France) characterised by an importand irradiation and contamination mean dose rate 7 rads/hr, in some places 20 rads/hr, coming at 98 % from Cesium 137 (beta decay radioisotope). Put into operation in March 1967, the Attila cell was used for spent fuel processing using halogenides [fr

  13. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  14. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  15. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell would allow source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at single sites in each IAEA Member State. The mobile hot cell and related equipment is transported in two shipping containers to a specific country where the following process takes place: 1-) Assembly of hot cell; 2-) Removal of SHARS from working shields, encapsulation into a stainless steel capsule and placement into a long term storage shield; 3-) Conditioning of any other spent sources the country may require; 4-) Dismantling of the hot cell; 5-) Shipping equipment out of country. The operation in a specific country is planned to be executed over a three week period. This presentation will discuss the development of the mobile hot cell facility as well as the demonstration of the state of readiness of the system for manipulation of SHARS and the planned execution of the conditioning operations. As a result of this project, excess SHARS could be managed safely and securely and possibly be more easily repatriated to their country of origin for appropriate final disposition. (author)

  16. An assessment of solar hot water heating in the Washington, D.C. area - Implications for local utilities

    Science.gov (United States)

    Stuart, M. W.

    1980-04-01

    A survey of residential solar hot water heating in the Washington, D.C. area is presented with estimates of the total solar energy contribution per year. These estimates are examined in relation to a local utility's peak-load curves to determine the impact of a substantial increase in solar domestic hot water use over the next 20 yr in the area of utility management. The results indicate that a 10% market penetration of solar water heaters would have no detrimental effect on the utility's peak-load profile and could save several million dollars in new plant construction costs.

  17. Device for inserting and removing electric plug in socket- using remote handling apparatus inside radioactive hot cell

    International Nuclear Information System (INIS)

    Chevallereau, R.; Galmard, Y.

    1994-01-01

    A device for pushing an electric plug into a supply socket inside a radioactive hot cell and for withdrawing the plug after use of the appliance attached to it, comprises a pair of pivotally mounted arms. It can be used inside radioactive hot cells, to insert and put in and put off electric plugs

  18. Ballooning test equipment for use in hot cells

    International Nuclear Information System (INIS)

    Broendsted, P.; Adrian, F.

    1979-12-01

    An equipment for testing the LOCA behaviour of irradiated cladding materials is described. The details of the construction and of the installation in the Hot Cells are reported. Pilot tests carried out showed that the performance of the system fulfills the basic experimental prerequisites, which were: heating rate of 2-3degC/s, final temperature 1150degC/s, internal pressure max. 30 atm, external pressure max. 1 atm, test atmosphere either air or steam. (author)

  19. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.

    Science.gov (United States)

    Kim, Sung-Min; Choi, Yosoon

    2017-06-18

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z -score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z -scores: high content with a high z -score (HH), high content with a low z -score (HL), low content with a high z -score (LH), and low content with a low z -score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1-4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  20. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    2017-06-01

    Full Text Available To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH, high content with a low z-score (HL, low content with a high z-score (LH, and low content with a low z-score (LL. The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  1. 324 and 325 Building Hot Cell Cleanout Program: Air lock cover block refurbishment

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.; Gale, R.M.

    1989-05-01

    The high-density concrete cover blocks shielding the pipe trench in the hot-cell air lock of the 324 Building Radiochemical Engineering Cells had accumulated fixed radioactivity ranging from 1100 to 22, 000 mrad/hr. A corresponding increase in the radiation exposure to personnel entering the air lock, together with ALARA concerns, led to the removal of the contaminated concrete surface with a hydraulic spaller and the emplacement of a stainless steel covering over a layer of grout. The resultant saving in radiation exposure is estimated to be 7200 mrad for personnel completing burial box runs for the 324 and 325 Building Hot Cell Cleanout Program. Radiation exposure to all staff members entering the air lock is now at least 50% lower. 3 refs., 22 figs., 1 tab

  2. Exposure management in a hot-cell decontamination and refurbishment campaign

    International Nuclear Information System (INIS)

    Courtney, J.C.; Ferguson, K.R.; Chesnovar, D.L.; Huebner, M.F.

    1984-01-01

    We developed a minicomputer-based system to provide rapid access to personnel dosimetry data during a campaign to decontaminate and refurbish a hot-cell at the Hot Fuel Examination Facility (HFEF) Complex. This system allows project management to estimate doses for future tasks, assess the effectiveness of decontamination and personnel protection techniques, and balance exposures among members of various skill groups. As the campaign progresses, projected total exposures can be minimized by tradeoffs between estimated doses during decontamination and estimated dose savings during the refurbishment phase. The effectiveness of various dose-reduction procedures can be compared on the basis of data from a few cell entries before more extensive routine operations are scheduled. Because the radiation fields vary significantly with location in the cell, we find that measurements of whole-body, skin, and extremity doses are more valuable than dose-rate information. Penetrating and skin radiation doses to personnel can be compared to administrative guidelines. This helps us to select the most effective combination of protective clothing. For example, leaded gauntlets reduce the dose rate to the workers' hands, but their use can increase the time required for some in-cell tasks. Hence, use of gauntlets can lead to higher whole-body and skin doses. The program is written for the HFEF Complex Harris/6 minimainframe computer with a disk-monitor operating system

  3. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  4. Evaluation of Tritium Behavior in the Epoxy Painted Concrete Wall of ITER Hot Cell

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Kobayashi, Kazuhiro; Nishi, Masataka

    2005-01-01

    Tritium behavior released in the ITER hot cell has been investigated numerically using a combined analytical methods of a tritium transport analysis in the multi-layer wall (concrete and epoxy paint) with the one dimensional diffusion model and a tritium concentration analysis in the hot cell with the complete mixing model by the ventilation. As the results, it is revealed that tritium concentration decay and permeation issues are not serious problem in a viewpoint of safety, since it is expected that tritium concentration in the hot cell decrease rapidly within several days just after removing the tritium release source, and tritium permeation through the epoxy painted concrete wall will be negligible as long as the averaged realistic diffusion coefficient is ensured in the concrete wall. It is also revealed that the epoxy paint on the concrete wall prevents the tritium inventory increase in the concrete wall greatly (two orders of magnitudes), but still, the inventory in the wall is estimated to reach about 0.1 PBq for 20 years operation

  5. Seismic modifications to the Hot and Suspect Repair area Argone National Laboratory - West

    International Nuclear Information System (INIS)

    Malik, L.E.; Harris, B.G.

    1993-01-01

    The ANL-W WIPP Waste Facility Enhancement Project required substantial remodeling and upgrades to the Hot Fuels Examination Facility (HFEF) building, including the Hot and Suspect Repair Area (HSRA). The HSRA is an enclosed single-storied area inside the HFEF. It is separated into several compartments, some of which are used for handling radioactive materials. The HSRA roof consists of 18 GA steel Robertson Q decking with 1.5 in. concrete topping, and is utilized for storage. Braced steel frames support the HSRA roof, except at the north side, where the steel beams are connected to the HFEF columns. The HSRA has hollow block masonry perimeter and interior walls. Seismic evaluations concluded that the HSRA did not have a competent seismic force resisting system. The structure was upgraded by decoupling it from the HFEF framing for N/S motions, modifying two existing braced frames, adding a new braced frame that can be removed temporarily during maintenance and strengthening the roof diaphragm by a unique modification consisting of special epoxy grout and steel plates installed over the existing concrete roof

  6. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-02-01

    A concise description of the current status (December 31st, 1992) regarding the decommissioning of the hot cell facility at Risoe National Laboratory is given in this periodic report. During the second half of the year 1992, all remaining fissile material and a large amount of contaminated material were removed, major repair work was carried out on the in-cell crane, the shielded storage facility was decontaminated and sealed, iodine filters in the cell ventilation system were removed, remote cleaning was carried out on three concrete cells to radiation levels acceptable for final cleaning by frogmen, and the remaining work schedule was planned. These processes are briefly described. Some breakdowns of older, but vital equipment (i.e. the in-cell crane and the power manipulator) that was taken into extensive use led to a certain amount of delay. The collective radiation doses during this half-year were no higher than under normal operation of the facility, and amounted to 12 man-mSv ascribed to 14 persons. It was concluded that, when removing old epoxy paint in the cells using paint strippers applied by hand, personnel can wear polythene oversuits, although a technique for remote handling has been developed. Tables illustrate measured radiation levels in cells number 1,4,5 and 6, and a diagram describes the shielded storage facility. (AB)

  7. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  8. DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Lee

    2006-02-06

    This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques.

  9. Cleanout and decontamination of radiochemical hot cells

    International Nuclear Information System (INIS)

    Surma, J.E.; Holton, L.K. Jr.; Katayama, Y.B.; Gose, J.E.; Haun, F.E.; Dierks, R.D.

    1990-01-01

    The Pacific Northwest Laboratory is developing and employing advanced remote and contact technologies in cleaning out and decontaminating six radiochemical hot cells at Hanford under the Department of Energy's Surplus Facilities Management Program. The program is using a series of remote and contact decontamination techniques to reduce costs and to significantly lower radiation doses to workers. Refurbishment of the cover blocks above the air lock trench reduced radiation exposure in the air lock and cleanout and decontamination of an analytical cell achieved a reduction in radioactive contamination. Nuclear Regulatory Commission-approved Type B burial boxes are also being used to reduce waste disposal costs and radiation doses. PNL is currently decommissioning its pilot-scale radioactive liquid-fed ceramic melter. Special tools have been developed and are being used to accomplish the world's first such effort. 4 refs., 5 figs

  10. Analysis of the hot cell lay-out for the advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Hong, D. H.; Kim, Y. H.; Yoon, J. S

    2003-04-01

    Equipment used for ACP must operate in intense radiation fields enclosed in a hot cell and be remotely maintained. For the reliable remote maintenance operation, several design aspects should be considered. Even though the design results seem to be satisfactory, all the remote operation should be checked prior to the hot demonstration. The best way to check the remote operability is a real mock-up test, but the mock-up test is too expensive and time consuming, and need refabrication of the design to deal with the problem found in the test operation. The 3D graphic simulator gives an alternate solution for this. It can check the remote operability of the process without fabrication of the process equipment. In other words, using a graphic simulator, remote operation task can be simulated in a computer(virtual environment), not the real environment. In this report, for the analysis on the hat cell layout for the ACP process, the verification from the concept of the process to the detailed motion of the equipment and the remote operation devices using virtual prototyping is described. Also, the requirement of the process equipment in the sense of size and remote maintenance, and that of the transportation and handling for the process material are described. Finally, from these results, the hot cell layout alternatives and the bases for the selection of the optimum layout are implemented. The graphical simulator and the results from this analysis can be effectively used not only for optimizing the hot cell layout but also designing the ACP equipment and maintenance process.

  11. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Ching Sheng, Chu

    2008-03-01

    capsaicin at the corresponding concentration. 4. Hot pepper extract and capsaicin caused shrinkage of fat cells, resulting in cell death at the concentration of 1.0 ㎎/㎖, although capsaicin exerted this action over wide area than hot pepper extract. Conclusions : These results suggest that hot pepper extract and capsaicin efficiently inhibited adipogenesis, increased lipolysis of adipocytes and caused to shrink fat cells. Future studies are needed to make use of hot pepper extract pharmacopuncture for the treatment of obesity.

  12. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

    KAUST Repository

    Haschke, Jan

    2017-03-23

    Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.

  13. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation...... of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries...... enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C)....

  14. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    NARCIS (Netherlands)

    van Oosterhout, J.; Abbink, D. A.; Koning, J. F.; Boessenkool, H.; Wildenbeest, J. G. W.; Heemskerk, C. J. M.

    2013-01-01

    A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested

  15. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  16. Computer control of ET-RR-1 hot cell manipulators

    International Nuclear Information System (INIS)

    Effat, A.M.; Rahman, F.A.

    1990-01-01

    The hot cell designed for remote handling of radioactive materials are, in effect, integral systems of safety devices for attaining adequate radiological protection for the operating personnel. Their operation involve potential hazards that are sometimes of great magnitude. The effect of an incident or accident could thus be fatal. some of these incident are due to the collision of the manipulator slave side with the radioactive objectives. Therefore in order to minimize the probability of such type of incidents, the movement of the manipulators is suggested (in the present investigation) to be kept under computer control. A model have been developed to control the movement of the hot cell manipulators in the slave side for Egypt first research reactor ET-RR-1, specially in the hidden sectors. The model is based on the use of a microprocessor and some accessories fixed to the manipulators slave side in a special manner such that it prevents the manipulator from colliding with radioactive objects. This is achieved by a signal transmitted to a specially designed brake which controls the movement of the upper arm of the manipulator master side. The hardware design of the model as well as the software are presented in details

  17. Research and design of module supporting and rotary device in hot cell

    International Nuclear Information System (INIS)

    Wu Wenguang; Song Changfei; Chen Mingchi

    2013-01-01

    Background: This paper introduced a device for tandem accelerator project, designed for the radioactive target source module maintaining and testing. Purpose: The module is required to be lifting, rotary and precise orientation in technology. Methods: We designed the structure of rotary drum, supporting drum and screw lifting device to achieve the function. In circumference, we adopt the project with electro-motion cursory locate, hand-motion precise locate, sensor location detect and cylinder locate pin, the measure is safe and trustiness. Results: Via experimentation, all technology targets are fulfilled, and the rationality and reliability of the device has been validated. Conclusions: The successful development of this device provides a good direction and reference for radioactive areas such as accelerator, hot cell, reactor etc., and can be adapted to its capability of long-distance shield operating, maintaining or testing. (authors)

  18. Solvent-accessible surface area: How well can be applied to hot-spot detection?

    Science.gov (United States)

    Martins, João M; Ramos, Rui M; Pimenta, António C; Moreira, Irina S

    2014-03-01

    A detailed comprehension of protein-based interfaces is essential for the rational drug development. One of the key features of these interfaces is their solvent accessible surface area profile. With that in mind, we tested a group of 12 SASA-based features for their ability to correlate and differentiate hot- and null-spots. These were tested in three different data sets, explicit water MD, implicit water MD, and static PDB structure. We found no discernible improvement with the use of more comprehensive data sets obtained from molecular dynamics. The features tested were shown to be capable of discerning between hot- and null-spots, while presenting low correlations. Residue standardization such as rel SASAi or rel/res SASAi , improved the features as a tool to predict ΔΔGbinding values. A new method using support machine learning algorithms was developed: SBHD (Sasa-Based Hot-spot Detection). This method presents a precision, recall, and F1 score of 0.72, 0.81, and 0.76 for the training set and 0.91, 0.73, and 0.81 for an independent test set. Copyright © 2013 Wiley Periodicals, Inc.

  19. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows

    Science.gov (United States)

    Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.

  1. Shielding calculation of a hot cell for the processing of fission products

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S. de; Silva, J.J.G. da.

    1986-12-01

    A dose rate estimation is made for an operator of a lead wall, fission products processing hot cell, in a distance of 50 cm from the emission source, at Brazilian Institute of Nuclear Engineering (IEN). (L.C.J.A.)

  2. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  3. Hot cells for testing the UO{sub 2} fuel elements after irradiation. Radiation protection conditions for hot cells design; Vruce celije za ispitivanje gorivnih elemenata UO{sub 2} posle ozracivanja, Uslovi zastite pri projektovanju vrucih celija

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, A; Devic, J; Mihailovic, K [Institut za nuklearne nauke Vinca, Belgrade (Yugoslavia)

    1969-07-01

    This paper includes protection conditions which hot cells should satisfy for the investigation of fuel elements after reactor irradiation. The basic elements of hot cells are given, and the conditions for a special ventilation, dosimetric control and a special treatment of contaminated water are established (author) U radu su obuhvaceni uslovi zastite koje treba da zadovolje vruce celije za ispitivanje gorivnih elemenata posle ozracivanja u reaktoru, dati su osnovni elementi vrucih celija i postavljeni su uslovi za specijalnu ventilaciju, dozimentrijsku kontrolu i specijalni tretman otpadnih voda (author)

  4. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    Tachon, M.

    1988-01-01

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant [fr

  5. Radiation protection measures for hot cell sanitation

    International Nuclear Information System (INIS)

    Berger, H.U.; Burck, W.; Dilger, H.

    1983-01-01

    The cell 5 of the Hot Cell Facility of the Kernforschungszentrum Karlsruhe GmbH (KfK) was to be restored and reequipped after 12 years of operation. The decontamination work was first done remotely controlled and afterwards by 38 persons entering the cell, which took about 2 months. The radiation protection methods and personal dosimetry systems are described. At the beginning of the work the γ-dose rate amounted up to 900 mSv/h. After completion of the remotely controlled decontamination work the γ-dose rate decreased to 1.5 mSv/h. At that time the (α+β-contamination was 10 5 Bq/cm 2 . Till the end of the work the removable activity dropped to 10 2 - 10 3 Bq/cm 2 for β-radiation, to 0.3 - 30 Bq/cm 2 for α-radiation and the local dose rate to about 0.03 mSv/h. During the work the accumulated collective doses were listed for breast, hand, head, gonads and foot. In the figure the development with the time of the doses for breast and hand is shown. During restoration work of the cell the accumulated collective whole-body dose amounted to 30 mSv. (orig.) [de

  6. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  7. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu, E-mail: aykutlu@unam.bilkent.edu.tr [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  8. Thermal Shielding of the Shock Absorber to a Seal of a Hot-cell Cask

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    In order to safely transport the radioactive waste arising from the hot test of ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore KAERI is developing a shipping package to transport the radioactive waste arising in the ACPF during a hot test. Regulatory requirements for a Type B package are specified in the Korea MOST Act 2008-69, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. performed a research on the thermal protection provided by shock absorbers by using CAFE computer code. This paper discusses the experimental approach used to simulate the response of the hot cell cask to fire in a furnace with chamber dimensions of 300 cm(W) x 400 cm(L) x 200 cm(H) by using a 1/2 scale model which was damaged by both a 9 m drop test and a 1 m puncture test

  9. Mobile Launch Platform Vehicle Assembly Building Area (SWMU 056) Hot Spot 3 Bioremediation Interim Measures Work Plan, Kennedy Space Center, Florida

    Science.gov (United States)

    Whitney L. Morrison; Daprato, Rebecca C.

    2016-01-01

    This Interim Measures Work Plan (IMWP) presents an approach and design for the remediation of chlorinated volatile organic compound (CVOC) groundwater impacts using bioremediation (biostimulation and bioaugmentation) in Hot Spot 3, which is defined by the area where CVOC (trichloroethene [TCE], cis-1,2-dichloroethene [cDCE], and vinyl chloride [VC]) concentrations are greater than 10 times their respective Florida Department of Environmental Protection (FDEP) Natural Attenuation Default Concentration (NADC) [10xNADC] near the western Mobile Launch Platform (MLP) structure. The IM treatment area is the Hot Spot 3 area, which is approximately 0.07 acres and extends from approximately 6 to 22 and 41 to 55 feet below land surface (ft BLS). Within Hot Spot 3, a source zone (SZ; area with TCE concentrations greater than 1% solubility [11,000 micrograms per liter (micrograms/L)]) was delineated and is approximately 0.02 acres and extends from approximately 6 to 16 and 41 to 50 ft BLS.

  10. Road and street smart lighting control systems as a new application area of the hot-potato protocol

    DEFF Research Database (Denmark)

    Kiedrowski, Piotr; Gutierrez Lopez, Jose Manuel; Boniewicz, Piotr

    2014-01-01

    This paper presents the new application area of the hot-potato routing protocol, which is a “last-mile” communication network for controlling systems of road and street lighting. Four variants of the hot-potato protocol are analyzed with use of the graph theory. For the assessment of the traffic ...... parameters the ETX parameter is used in relation to the length of the shortest path. Proposed methods are independent of the media type and can be implemented either in wireless or PLC....

  11. Stress Analysis for Mobile Hot Cell Design

    International Nuclear Information System (INIS)

    Muhammad Hannan Bahrin; Anwar Abdul Rahman; Mohd Arif Hamzah

    2015-01-01

    Prototype and Plant Development Centre (PDC) is developing a Mobile Hot Cell (MHC) to handle and manage Spent High Activity Radioactive Sources (SHARS), such as teletherapy heads and dry irradiators. At present, there are two units of MHC in the world, one in South Africa and the other one in China. Malaysian Mobile MHC is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design to fulfill the safety requirement in MHC operation. This paper discusses the loading effect analysis from the radiation shielding materials to the MHC wall structure, roof supporting column and window structure. (author)

  12. Preliminary evaluation of rotational Vol-oxidizer for hot cell operation - 5320

    International Nuclear Information System (INIS)

    Kim, Y.H.; Lee, J.W.; Cho, Y.Z.; Ahn, D.H.; Song, K.C.

    2015-01-01

    KAERI is developing a mechanical head-end process for pyro-processing. As a piece of the processing equipment, a vol-oxidizer that can handle several tens of kg of HM/batch is under development to supply U 3 O 8 powders to an electrolytic reduction (ER) reactor. To operate a vol-oxidizer in a hot cell, the reactor should be optimized by the mechanical design, and the vol-oxidizer should have a high hull recovery rate. In addition, a vol-oxidizer for hot cell demonstrations that handles the spent fuel of high radiation virulence in a limited space should have a small size and not scatter in its outlet. In this paper, we aim at a preliminary evaluation of a rotational vol-oxidizer for hot cell operation. To evaluate the preliminary situation, we produced a theoretical equation of an optimum reactor size, and verification tests were conducted using an acryl vessel and zircaloy-4 tube according to various weights and lengths. In addition, we predicted the terminal velocity of U 3 O 8 using the terminal velocity of SiO 2 , which will determine the optimum air flux, and through an oxidation experiment, we verified the theory form to detect the existence of U 3 O 8 powder in a discharge filter. In addition, hull separation tests were conducted using a reactor and hulls with a 50 kg HM/batch for the recovery rate of the hulls. The results indicate that we obtained an appropriate air flux so as to not cause U 3 O 8 powder dispersion from using a Stokes equation and density ratio equation prior to the demonstration. The optimum flow and experimental results of the hull separation test have been applied for the design of the demonstration oxidizer, and the operation conditions of the oxidizer were produced. (authors)

  13. Roll-to-roll hot embossing system with shape preserving mechanism for the large-area fabrication of microstructures

    Science.gov (United States)

    Peng, Linfa; Wu, Hao; Shu, Yunyi; Yi, Peiyun; Deng, Yujun; Lai, Xinmin

    2016-10-01

    Roll-to-roll (R2R) hot embossing is a promising approach to fulfilling the demands of high throughput fabrication of large-area polymeric components with micro-structure arrays which have been widely employed in the domains of optics, optoelectronics, biology, chemistry, etc. Nevertheless, the characteristic of continuous and fast forming for the R2R hot embossing process limits material flow during filling stage and results in significant springback during demolding stage. As a result, forming defects usually appear and the process window is very narrow which hinders the industrialization of this technology. This study developed a R2R hot embossing machine and proposed a shape preserving mechanism to extend the material filling time and realized the cooling effect during the demolding process. Comparative experiments were conducted on the R2R hot embossing process for micro-pyramid arrays to understand the effect of shape preserving mechanism. The influence of tension force and encapsulation angle to the forming quality was systematically analyzed. Furthermore, the influence of processing parameters has been investigated by using the one-variable-at-a-time method. Afterwards, a series of experiments based on the central composite design approach have been conducted for the analysis of variance and the establishment of empirical models of the R2R hot embossing process. As a result, the process window was extended by the shape preserving mechanism. More importantly, the feeding speed was improved from 0.5 m min-1 to 2.5 m min-1 for the large-area fabrication of micro-pyramid arrays, which is very attractive to the industrialization of this technology.

  14. Radiological Studies in the Hot Spring Region of Oyoun Mossa and Hammam Faraun Thermal Spring Areas in Western Sinai

    International Nuclear Information System (INIS)

    Ramadan, Kh.A.; Badran, H.M.; Ramadan, Kh.A.; Seddeek, M.K.; Sharshar, T.; Sharshar, T.

    2009-01-01

    Radioactivity in and around the two hot springs, Oyoun Mossa and Hammam Faraun, Western Sinai has been determined. The ground water, sediment and sand samples were measured by gamma-ray spectrometer for 232 Th, 226 Ra and 40 K isotopes. The enrichment of 226 Ra in Hammam Faraun hot spring was the most prominent feature. The concentration of 226 Ra in Oyoun Mossa and Hammam Faraun hot springs are 68 and 2377 Bq/kg for sediments, 3.5 and 54.7 Bq/kg for wild plants, and 205 and 1945 mBq/l for the ground water, respectively. In addition, the concentration of sand samples are 14 times larger in the area of Hammam Faraun compared with that of Oyoun Mossa. On the other hand, the concentration of 232 Th in different samples are comparable in the two areas while 137 Cs concentrations are relatively higher in Oyoun Mossa. For the purpose of comparison, sand samples were collected from two locations 5-12 km away from each spring. The activity concentrations of the four locations are comparable and in agreement with those from the area of the two springs except in one case. The major difference was the activity concentration of 226 Ra in the area of Hammam Faraun, which is much higher. The concentrations of all detected isotopes in water samples from these two springs are much higher than that detected in 27 natural wells in north Sinai. The results of the present study indicate that water only in Hammam Faraun hot spring is contaminated with 238 U-isotopes and the surrounding area is affected by this contamination. The calculated annual effective dose equivalents in the surroundings of Hammam Faraun (81.8 μSv) is superior to the maximum contaminant levels recommended.

  15. Engineering Evaluation/Cost Analysis (EE/CA) for Decommissioning of TAN-607 Hot Shop Area

    Energy Technology Data Exchange (ETDEWEB)

    J. P. Floerke

    2007-02-05

    Test Area North (TAN) -607, the Technical Support Facility, is located at the north end of the Idaho National Laboratory (INL) Site. U.S. Department of Energy Idaho Operations Office (DOE-ID) is proposing to decommission the northern section of the TAN-607 facility, hereinafter referred to as TAN-607 Hot Shop Area, under a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA). Despite significant efforts by the United States (U.S.) Department of Energy (DOE) to secure new business, no future mission has been identified for the TAN-607 Hot Shop Area. Its disposition has been agreed to by the Idaho State Historical Preservation Office documented in the Memorandum of Agreement signed October 2005 and it is therefore considered a surplus facility. A key element in DOE's strategy for surplus facilities is decommissioning to the maximum extent possible to ensure risk and building footprint reduction and thereby eliminating operations and maintenance cost. In addition, the DOE's 2006 Strategic Plan is ''complete cleanup of the contaminated nuclear weapons manufacturing and testing sites across the United States. DOE is responsible for the risk reduction and cleanup of the environmental legacy of the Nation's nuclear weapons program, one of the largest, most diverse, and technically complex environmental programs in the world. The Department will successfully achieve this strategic goal by ensuring the safety of the DOE employees and U.S. citizens, acquiring the best resources to complete the complex tasks, and managing projects throughout the United States in the most efficient and effective manner.'' TAN-607 is designated as a historical Signature Property by DOE Headquarters Advisory Council on Historic Preservation and, as such, public participation is required to determine the final disposition of the facility. The decommissioning action will place the TAN-607 Hot Shop

  16. Development of maintenance equipment for nuclear material fabrication equipment in a highly active hot cell

    International Nuclear Information System (INIS)

    Park, J. J.; Yang, M. S.; Kim, K. H. and others

    2000-09-01

    This report presents the development of a maintenance system for a highly contaminated nuclear material handling equipment at a hot-cell. This maintenance system has mainly three subsystems - a gamma-radiation measurement module for detecting a gamma-radiation level and identifying its distribution in-situ, a dry-type decontamination device for cleaning up contaminated particles, and a maintenance chamber for isolating contaminated equipment. The mechanical design considerations, controller, capabilities and remote operation and manipulation of the maintenance system are described. Such subsystems developed were installed and tested in the IMEF (Irradiated Material Examination Facility) M6 hot-cell after mock-up tests and performed their specific tasks successfully

  17. Development of maintenance equipment for nuclear material fabrication equipment in a highly active hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Yang, M. S.; Kim, K. H. and others

    2000-09-01

    This report presents the development of a maintenance system for a highly contaminated nuclear material handling equipment at a hot-cell. This maintenance system has mainly three subsystems - a gamma-radiation measurement module for detecting a gamma-radiation level and identifying its distribution in-situ, a dry-type decontamination device for cleaning up contaminated particles, and a maintenance chamber for isolating contaminated equipment. The mechanical design considerations, controller, capabilities and remote operation and manipulation of the maintenance system are described. Such subsystems developed were installed and tested in the IMEF (Irradiated Material Examination Facility) M6 hot-cell after mock-up tests and performed their specific tasks successfully.

  18. The Spatial Predilection for Early Esophageal Squamous Cell Neoplasia: A "Hot Zone" for Endoscopic Screening and Surveillance.

    Science.gov (United States)

    Wang, Wen-Lun; Chang, I-Wei; Chen, Chien-Chuan; Chang, Chi-Yang; Lin, Jaw-Town; Mo, Lein-Ray; Wang, Hsiu-Po; Lee, Ching-Tai

    2016-04-01

    Early esophageal squamous cell neoplasias (ESCNs) are easily missed with conventional white-light endoscopy. This study aimed to assess whether early ESCNs have a spatial predilection and the patterns of recurrence after endoscopic treatment. We analyzed the circumferential and longitudinal location of early ESCNs, as well as their correlations with exposure to carcinogens in a cohort of 162 subjects with 248 early ESCNs; 219 of which were identified by screening and 29 by surveillance endoscopy. The circumferential location was identified using a clock-face orientation, and the longitudinal location was identified according to the distance from the incisor. The most common circumferential and longitudinal distributions of the early ESCNs were found in the 6 to 9 o'clock quadrant (38.5%) and at 26 to 30 cm from the incisor (41.3%), respectively. A total of 163 lesions (75%) were located in the lower hemisphere arc, and 149 (68.4%) were located at 26 to 35 cm from the incisor. One hundred eleven (51%) early ESCNs were centered within the "hot zone" (i.e., lower hemisphere arc of the esophagus at 26 to 35 cm from the incisor), which comprised 20% of the esophageal area. Exposure to alcohol, betel nut, or cigarette was risk factors for the development of early ESCNs in the lower hemisphere. After complete endoscopic treatment, the mean annual incidence of metachronous tumors was 10%. In addition, 43% of the metachronous recurrent neoplasias developed within the "hot zone." Cox regression analysis revealed that the index tumor within the hot zone (hazard ratio [HR]: 3.19; 95% confidence interval [CI]: 1.17-8.68; P = 0.02) and the presence of numerous Lugol-voiding lesions in the esophageal background mucosa were independent predictors for metachronous recurrence (HR: 4.61; 95% CI: 1.36-15.56; P = 0.01). We identified a hot zone that may be used to enhance the detection of early ESCNs during endoscopic screening and surveillance, especially in areas that

  19. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  20. Dismantling of a hot cell of high level activity. Method and tools used

    International Nuclear Information System (INIS)

    Jeantet, E.; Miquel, P.; Baudoin, J.C.; Moutonnet, A.

    1981-05-01

    The aim of this operation is the removal of all the equipment and the material introduced and used in the hot cell 'Attila' and its decontamination to obtain an irradiation level as low as possible to allow direct intervention. The Attila facilitie was build in 1964-1966 to study dry processing of irradiated fuels by halogenide volatility process. Dismantling of the out-cell and of the laboratory associated to the shielded cell, dismantling inside the shielded cell with the remote handling equipment of the cell and tools used for these operations are described in this article [fr

  1. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Science.gov (United States)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  2. Automation in nuclear hot cells (Paper No. 020)

    International Nuclear Information System (INIS)

    Pal, B.C.; Chougule, A.S.; Radke, M.G.; Ramaswamy, N.V.; Ramkumar, M.S.

    1987-02-01

    Bhabha Atomic Research Centre (BARC) in Trombay produces radioactive sources for a wide variety of uses in industry, agriculture and medicine, both within the country and abroad. The production and delivery of the radioactive sources in a form, ready for the end use, entails a number of operations, most of which are to be done with remote handling facilities, to maintain the prescribed biological shield to protect the operators. One of the repetitive operation among these which has to be done inside a concrete shielded hot-cell is the picking up of tiny radioactive wafers of iridium as small as 2.5mm dia., 0.3mm thick placing them in the required numbers to make up the total activity inside a capsule, closing the capsule with a top lid and finally welding the capsule. For doing this job remotely, recourse had to be taken to the use of master-slave manipulators (MSM), needing highly skilled operators to handle it for such delicate jobs repetitively. The operations for this repetitive job unlike most of other hot-cell operations, can be structured for machine operation and also fully automated. An automated system synthesising electromechanical, pneumatic and welding operations developed by the Division of Remote Handling and Robotics, BARC is described here. This relieves the operator of a number of jobs, to be repetitively done by MSM which would be strenous and taxing on account of the extremely small sizes of the pellets and wafers when they are to be handled, by remote indirect means with reliance on the master slave manipulators. A description of the automated system is given. (author). 3 figs

  3. Target Surface Area Effects on Hot Electron Dynamics from High Intensity Laser-Plasma Interactions

    Science.gov (United States)

    2016-08-19

    Science, University ofMichigan, AnnArbor,MI 48109-2099, USA E-mail: czulick@umich.edu Keywords: laser- plasma ,mass-limited, fast electrons , sheath...New J. Phys. 18 (2016) 063020 doi:10.1088/1367-2630/18/6/063020 PAPER Target surface area effects on hot electron dynamics from high intensity laser... plasma interactions CZulick, ARaymond,AMcKelvey, VChvykov, AMaksimchuk, AGRThomas, LWillingale, VYanovsky andKKrushelnick Center forUltrafast Optical

  4. Decommissioning program and future plan for research hot laboratory (2)

    International Nuclear Information System (INIS)

    Koya, Toshio; Nozawa, Yukio; Hanada, Yasushi; Ono, Katsuto; Kanazawa, Hiroyuki; Nihei, Yasuo; Owada, Isao

    2010-01-01

    The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) was constructed in 1961, as the first one in JAPAN, to perform the examinations of irradiated fuels and materials. RHL consists of 10 heavy concrete cells and 38 lead cells, which had been contributed to research and development program in or out of JAEA for the investigation of irradiation behavior for fuels and nuclear materials. However, RHL is the one of target as the rationalization program for decrepit facilities in former Tokai institute. Therefore the decommissioning works of RHL have been started on April 2003. The decommissioning work will be progressing, dismantling the lead cells and decontamination of concrete caves then release in the regulation of controlled area. The 18 lead cells (including semi-hot cell and junior-cell) had been dismantled. Removal of the applause from the cells, survey of the contamination revel in the lead cells and prediction of radio active waste have been finished as the preparing work for dismantling of the remained 20 lead cells. The future plan of decommissioning work has been prepared to incarnate the basic vision and dismantling procedure. (author)

  5. Functional components for a design strategy: Hot cell shielding in the high reliability safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: rborrelli@uidaho.edu

    2016-08-15

    The high reliability safeguards (HRS) methodology has been established for the safeguardability of advanced nuclear energy systems (NESs). HRS is being developed in order to integrate safety, security, and safeguards concerns, while also optimizing these with operational goals for facilities that handle special nuclear material (SNM). Currently, a commercial pyroprocessing facility is used as an example system. One of the goals in the HRS methodology is to apply intrinsic features of the system to a design strategy. This current study investigates the thickness of the hot cell walls that could adequately shield processed materials. This is an important design consideration that carries implications regarding the formation of material balance areas, the location of key measurement points, and material flow in the facility.

  6. High Density Radiation Shielding Concretes for Hot Cells of 99mTc Project

    International Nuclear Information System (INIS)

    Sakr, K.

    2006-01-01

    High density concrete [more than 3.6 ton/m 3 (3.6x10 3 kg/m 3 )] was prepared to be used as a radiation shielding concrete (RSC) for hot-cells in gel technetium project at inshas to attenuate gamma radiation emitted from radioactive sources. different types of concrete were prepared by mixing local mineral aggregates mainly gravel and ilmenite . iron shots were added to the concrete mixture proportion as partial replacement of heavy aggregates to increase its density. the physical properties of prepared concrete in both plastic and hardened phases were investigated. compressive strength and radiation attenuation of gamma rays were determined. Results showed that ilmenite concrete mixed with iron shots had the highest density suitable to be use as RSC according to the chinese hot cell design requirements. Recommendations to avoid some technical problems of manufacturing radiation shielding concrete were maintained

  7. Utilizing hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  8. Hot flashes and sleep in women.

    Science.gov (United States)

    Moe, Karen E

    2004-12-01

    Sleep disturbances during menopause are often attributed to nocturnal hot flashes and 'sweats' associated with changing hormone patterns. This paper is a comprehensive critical review of the research on the relationship between sleep disturbance and hot flashes in women. Numerous studies have found a relationship between self-reported hot flashes and sleep complaints. However, hot flash studies using objective sleep assessment techniques such as polysomnography, actigraphy, or quantitative analysis of the sleep EEG are surprisingly scarce and have yielded somewhat mixed results. Much of this limited evidence suggests that hot flashes are associated with objectively identified sleep disruption in at least some women. At least some of the negative data may be due to methodological issues such as reliance upon problematic self-reports of nocturnal hot flashes and a lack of concurrent measures of hot flashes and sleep. The recent development of a reliable and non-intrusive method for objectively identifying hot flashes during the night should help address the need for substantial additional research in this area. Several areas of clinical relevance are described, including the effects of discontinuing combined hormone therapy (estrogen plus progesterone) or estrogen-only therapy, the possibility of hot flashes continuing for many years after menopause, and the link between hot flashes and depression.

  9. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Science.gov (United States)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  10. Slow hot carrier cooling in cesium lead iodide perovskites

    Science.gov (United States)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  11. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  12. Radiation dose assessment of ACP hot cell in accident

    International Nuclear Information System (INIS)

    Kook, D. H.; Jeong, W. M.; Koo, J. H.; Jeo, I. J.; Lee, E. P.; Ryu, K. S.

    2003-01-01

    The Advanced spent fuel Condition in Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be performed. To give priority to the environments safety, radiation doses evaluations for the radioactive nuclides in accident cases were preliminarily performed with the meteorological data around facility site. Fire accident prevails over several accidnets. Internal Dose and External Dose evaluation according to short dispersion data for that case show a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed

  13. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W; Sidow, Arend

    2013-01-01

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF's direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF's motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  14. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  15. Hot springs in Hokuriku District

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. (Hot Springs Research Center, Japan)

    1971-01-01

    In the Hokuriku district including Toyama, Ishikawa, and Fukui Prefectures, hot springs of more than 25/sup 0/C were investigated. In the Toyama Prefecture, there are 14 hot springs which are located in an area from the Kurobe River to the Tateyama volcano and in the mountainous area in the southwest. In Ishikawa Prefecture there are 16 hot springs scattered in Hakusan and its vicinity, the Kaga mountains, and in the Noto peninsula. In northern Fukui Prefecture there are seven hot springs. The hot springs in Shirakawa in Gifu Prefecture are characterized as acid springs producing exhalations and H/sub 2/S. These are attributed to the Quaternary volcanoes. The hot springs of Wakura, Katayamazu, and Awara in Ishikawa Prefecture are characterized by a high Cl content which is related to Tertiary andesite. The hot springs of Daishoji, Yamanaka, Yamashiro, Kuritsu, Tatsunokuchi, Yuwaku, and Yunotani are characterized by a low HCO/sub 3/ content. The Ca and SO/sub 4/ content decreases from east to west, and the Na and Cl content increases from west to east. These fluctuations are related to the Tertiary tuff and rhyolite. The hot springs of Kuronagi, Kinshu, and Babadani, located along the Kurobe River are characterized by low levels of dissolved components and high CO/sub 2/ and HCO/sub 3/ content. These trends are related to late Paleozoic granite. Hot springs resources are considered to be connected to geothermal resources. Ten tables, graphs, and maps are provided.

  16. Aerosol size characteristics in selected working areas

    International Nuclear Information System (INIS)

    Ahmed, K.

    1984-05-01

    This report presents the work done to study the aerosol activity size distributions and their respirable fractions in some selected areas of the Juelich Nuclear Research Center. Anderson cascade impactors were used to find the aerodynamic size ranges of the airborne particles for subsequent analysis of activity associated with each size group. The aerosols were found to follow in general log-normal distributions in the hot cells with values of AMAD between 5 and 10 μm. Measurements in the AVR containment and decontamination laboratory in Uranit GmbH showed deviations from log-normal distribution. In the waste press area the distribution is sometimes log-normal and sometimes not, depending upon the origin of waste. The values of AMAD are in the range of 2 to 4 μm in these areas. The respirable fractions were calculated using ACGIH definition for respirable dust to be < 25% in hot cells and < 60% in other areas. Pulmonary depositions according to ICRP model were < 10% and < 15% respectively. (orig./HP)

  17. Development of a pattern hot cell for production of injectable radiopharmaceuticals; Desenvolvimento de um modelo de cela para processamento de radiofarmacos injetaveis

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Fabio Eduardo de

    2010-07-01

    A controlled ambient should be established to the production/processing of materials susceptible to contamination, like injectable pharmaceuticals, in order to agree with normative and regulatory requirements. Considering medical but also toxic, radioactive and dangerous products, the ambient should work in special conditions to assure that the materials, which in same cases can be also volatile, do not escape to the external ambient, working in a selective, secure and controlled way. The conditions recommended by local and international rules in use, report an negative pressured ambient in relation to the adjacent areas. The technology related with the sizing of project to this kind of system is fully described in the literature, taking in account the rules that clearly describe the essential requirements. However, it is necessary to develop a controlled ambient for radiopharmaceutical production, in a way compatible with the concept of clean rooms and with the safety related to the manipulation of open radioactive wastes. In this work, some devices were created, methods and procedures were established making possible the classification of the ambient inside the hot cell, without physical barriers in the area, using ergonomic, flexible and practical conditions of work, that can results in the improvement of the productivity. The project resulted in the creation of a controlled ambient, in agreement with the normative requirements, using a pass through for entrance and exit of the materials, without compromise the internal air condition. The tight of the hot cell was obtained using doors with efficient sealing system and active joints. Tong manipulators were used to produce ergonomic and secure conditions, without compromise the internal conditions related to tight and classification in A and B grade, according to local and international rules. An efficient ventilation/exhaustion system was adopted to produce these results, composed by filters and special devices

  18. The results of decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Lee, E. P. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, the experiments in PIEF have been completed. Since all DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must be performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. This report describes the basic plan for dismantlement/decontamination of the characterization equipment (power and sintered fuel). And methods of measurement/packing/transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order. 7 refs., 42 figs., 10 tabs. (Author)

  19. Surveillance and radiological protection in the Hot Cell laboratory

    International Nuclear Information System (INIS)

    Ramirez, J.M.; Torre, J. De la; Garcia C, M.A.

    2004-01-01

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  20. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2010-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Administration (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused Spent High Activity Radioactive Sources (SHARS) in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell allows source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at national radioactive waste storage facilities. (authors)

  1. The feasibility study of hot cell decontamination by the PFC spray method

    International Nuclear Information System (INIS)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-01

    module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu 2 O 3 powder. The spray pressure was 41 kgf/cm 2 , the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm 2 . From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm 2 and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the

  2. A study on the effect of the injected absolute ethanol and hot-saline in the normal liver of rat

    International Nuclear Information System (INIS)

    Rhim, Hyun Chul; Hong, Eun Kyung; Cho, On Koo; Song, Soon Young; Koh, Byung Hee; Seo, Heung Suk; Hahm, Chang Kok; Park, Hwon Kyum

    1995-01-01

    To compare the effect of local injection therapy with absolute ethanol and hot-saline in the normal liver of rat. An experimental study was performed with the normal liver of 52 rats. The resected livers were pathologically analyzed on three days, one week, two weeks, and four weeks after injection of 0.1 ml absolute ethanol and hot-saline. The assessment was done in view of 1) main pathologic changes on time, 2) pattern of inflammatory cell infiltration, 3) measurement of necrotic area, 4) effect on vascular and biliary tracts adjacent to necrotic area, and 5) extrahepatic peritoneal adhesion. The main pathologic changes were acute necrosis with inflammation for three days group and secondary regenerative fibrosis in all groups. The degree of necrosis was significantly more severe in absolute ethanol injection group, demonstrating larger necrotic area, than hot-saline injection group. The effect on vessels and bile ducts adjacent to the necrotic area was almost not seen in both groups. The extrahepatic peritoneal adhesion was noted in both groups, but the degree was more prominent in the absolute ethanol injection group than hot-saline injection group. Absolute ethanol is superior to hot-saline in the necrotic effect of percutaneous injection therapy. However, hot-saline could be applied in case of the borderline area between mass and adjacent normal liver or the subcapsular mass

  3. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    Daubert, R.L.; DesChane, D.J.

    1987-01-01

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  4. Robot Work Platform for Large Hot Cell Deactivation

    International Nuclear Information System (INIS)

    BITTEN, E.J.

    2000-01-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  5. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H W

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  6. The improvement of dynamic universal testing machine for hot cell usages

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Lee, Key Soon; Park, Dae Kyu; Hong, Kwon Pyo; Choo, Yong Sun

    1998-01-01

    Dynamic universal testing machine(UTM) were developed for hot cell usages, which can perform tensile, compression, bending, fracture toughness and fatigue crack growth tests. In this report, technical reviews in the course of developing machine were described. Detailed subjects are as follows; 1. Outline of testing method using dynamic UTM 2. Detailed testing system organizations 3. Technical specification to develop machine 4. Setting up load string 5. Inspection and pre-commissioning tests on machine. (author). 14 figs

  7. Advanced manipulator system for large hot cells

    International Nuclear Information System (INIS)

    Vertut, J.; Moreau, C.; Brossard, J.P.

    1981-01-01

    Large hot cells can be approached as extrapolated from smaller ones as wide, higher or longer in size with the same concept of using mechanical master slave manipulators and high density windows. This concept leads to a large number of working places and corresponding equipments, with a number of penetrations through the biological protection. When the large cell does not need a permanent operation of number of work places, as in particular to serve PIE machines and maintain the facility, use of servo manipulators with a large supporting unit and extensive use of television appears optimal. The advance on MA 23 and supports will be described including the extra facilities related to manipulators introduction and maintenance. The possibility to combine a powered manipulator and MA 23 (single or pair) on the same boom crane system will be described. An advance control system to bring the minimal dead time to control support movement, associated to the master slave arm operation is under development. The general television system includes over view cameras, associated with the limited number of windows, and manipulators camera. A special new system will be described which brings an automatic control of manipulator cameras and saves operator load and dead time. Full scale tests with MA 23 and support will be discussed. (author)

  8. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 microSv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 microSv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey

  9. Decontamination of Savannah River Plant H-Area hot-canyon crane

    International Nuclear Information System (INIS)

    Rankin, W.N.; Sims, J.R.

    1985-01-01

    Decontamination techniques applicable to the remotely operated bridge cranes in canyon buildings at the Savannah River Plant (SRP) were identified and were evaluated in laboratory-scale tests. High pressure Freon blasting was found to be the most attractive process available for this application. Strippable coatings were selected as an alternative technique in selected applications. The ability of high pressure Freon blasting plus two strippable coatings (Quadcoat 100 and Alara 1146) to remove the type of contamination expected on SRP cranes was demonstrated in laboratory-scale tests. Quadrex HPS was given a contract to decontaminate the H-Area hot canyon crane. Decontamination operations were successfully carried out within the specified time-frame window. The radiation level goals specified by SRP were met and decontamination was accomplished with 85% less personnel exposure than estimated by SRP before the job started. This reduction is attributed to the increased efficiency of the new decontamination techniques used. 6 refs., 1 tab

  10. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  11. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  12. A study on decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Lee, H. S.; Lee, E. P.

    2000-09-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, The experiments in PIEF have been completed. It is supposed to dismantle and decontaminate the installed equipment by the end of year 2000. Since all of DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must br performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. Firstly, This report describes the basic plan for dismantlement/decontamination of the characterization equipment(power and sintered fuel). And methods of measurement/packing/ transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order

  13. Temporary shielding of hot spots in the drainage areas of cutaneous melanoma improves accuracy of lymphoscintigraphic sentinel lymph node diagnostics

    International Nuclear Information System (INIS)

    Maza, S.; Valencia, R.; Geworski, L.; Zander, A.; Munz, D.L.; Draeger, E.; Winter, H.; Sterry, W.

    2002-01-01

    Detection of the ''true'' sentinel lymph nodes, permitting correct staging of regional lymph nodes, is essential for management and prognostic assessment in malignant melanoma. In this study, it was prospectively evaluated whether simple temporary shielding of hot spots in lymphatic drainage areas could improve the accuracy of sentinel lymph node diagnostics. In 100 consecutive malignant melanoma patients (45 women, 55 men; age 11-91 years), dynamic and static lymphoscintigraphy in various views was performed after strict intracutaneous application of technetium-99m nanocolloid (40-150 MBq; 0.05 ml/deposit) around the tumour (31 patients) or the biopsy scar (69 patients, safety distance 1 cm). The images were acquired with and without temporary lead shielding of the most prominent hot spots in the drainage area. In 33/100 patients, one or two additional sentinel lymph nodes that showed less tracer accumulation or were smaller (<1.5 cm) were detected after shielding. Four of these patients had metastases in the sentinel lymph nodes; the non-sentinel lymph nodes were tumour negative. In 3/100 patients, hot spots in the drainage area proved to be lymph vessels, lymph vessel intersections or lymph vessel ectasias after temporary shielding; hence, a node interpreted as a non-sentinel lymph node at first glance proved to be the real sentinel lymph node. In two of these patients, lymph node metastasis was histologically confirmed; the non-sentinel lymph nodes were tumour free. In 7/100 patients the exact course of lymph vessels could be mapped after shielding. In one of these patients, two additional sentinel lymph nodes (with metastasis) were detected. Overall, in 43/100 patients the temporary shielding yielded additional information, with sentinel lymph node metastases in 7%. In conclusion, when used in combination with dynamic acquisition in various views, temporary shielding of prominent hot spots in the drainage area of a malignant melanoma of the skin leads to an

  14. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    Science.gov (United States)

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  15. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  16. Evaluation of the Shielding Performance for the Hot-cell built in 100-MeV Isotope Beam-line of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Min; Park, Sung Kyun; Min, Yi Sub; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study describes the structure of the hot-cell constructed in KOMAC for radioisotope production and evaluates the shielding performance for the hot-cell via the radiation shielding ability test. Korea multi-purpose accelerator complex (KOMAC) is currently operating 20-MeV and 100-MeV beam-line one by on. Additional 100-MeV beam-line and target room (TR101) are planned for the purpose of the radioisotope production in this year. The initial goal of the radioisotope production is to produce the radioactive isotopes, Sr-82 or Cu-67, used widely for the diagnosis and treatment of the cancer. In order to produce these radioisotopes mentioned, the proton beam with the energy between 70-MeV and 100- MeV at a beam current of 300 μA is irradiated into a solid target made of ZnO or RbCl. After the irradiation of the proton beam during approximately 100 hours, the radioisotope Sr-82 with the radioactivity amount of about 3.8 Ci or the Cu-67 with the amount of about 2.7 Ci will be produced. Radioisotopes produced though this process should be conveyed from the TR101 target room to the PR101 processing room and then in order to be delivered into the place for the next process step, a hot-cell is necessary. Result of the shielding performance evaluation of the hot-cell for producing radioisotopes shows the necessity of the shield reinforcement using lead material at side of the lead glass window.

  17. Modeling deflagration waves out of hot spots

    Science.gov (United States)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  18. Construction of concrete hot cells; requirements for shielding windows for concrete walls with different densities

    International Nuclear Information System (INIS)

    1987-10-01

    The shielding windows form part of the basic equipment of hot cells for remote handling, as defined in standard DIN 25 420 part 1. The draft standard in hand is intended to specify the design and manufacture requirements, especially with regard to main dimensions, sight quality, shielding effects, and radiation resistance. The standard refers to three types of shielding window with surface area design (product of density and wall thickness) corresponding to concrete walls of the densities 2.4, 3.4, and 4.0 g/cm 3 . The windows fit to three types of concrete of common usage, and the design is made for Co-60 radiation, with attenuation factors of about 10 4 , 10 6 , or 10 7 . For concrete walls with densities between these data, a shielding window suitable to the next higher density data is to be chosen. (orig./HP) [de

  19. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection

    Science.gov (United States)

    Qi, Zhiyang; Zhai, Yusheng; Wen, Long; Wang, Qilong; Chen, Qin; Iqbal, Sami; Chen, Guangdian; Xu, Ji; Tu, Yan

    2017-07-01

    The heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency. In this study, we propose an efficient and low-cost plasmonic hot electron NIR photodetector based on a Au nanoparticle (Au NP)-decorated Si pyramid Schottky junction. The large-area and lithography-free photodetector is realized by using an anisotropic chemical wet etching and rapid thermal annealing (RTA) of a thin Au film. We experimentally demonstrate that these hot electron detectors have broad photoresponsivity spectra in the NIR region of 1200-1475 nm, with a low dark current on the order of 10-5 A cm-2. The observed responsivities enable these devices to be competitive with other reported Si-based NIR hot electron photodetectors using perfectly periodic nanostructures. The improved performance is attributed to the pyramid surface which can enhance light trapping and the localized electric field, and the nano-sized Au NPs which are beneficial for the tunneling of hot electrons. The simple and large-area preparation processes make them suitable for large-scale thermophotovoltaic cell and low-cost NIR detection applications.

  20. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  1. Work strain in decontamination of hot cells, 2

    International Nuclear Information System (INIS)

    Kinouchi, Nobuyuki; Ikezawa, Yoshio

    1991-01-01

    In decontamination of hot cells, the workers should wear suitable protective clothing to protect them from internal exposure and skin contamination. But such protective clothing causes some work strain, especially heat-stress. As a simple method to evaluate quantitative work strain, we used sweat rates of the wearers. In the previous paper, sweat rates for workers with two types of protective clothing were reported. In the present paper, sweat rates under severer working conditions are measured for three types: (1) pressure ventilated blouse; (2) full-face mask and polyethylene coverall; (3) full-face mask and vinyl anorak. The measured values for 65 subjects widely scatter from 0.2 to 2.5 l/h for all the protective clothing. Based on these values, the effects of protective clothing and working conditions (ambient temperature and humidity) on work strain are discussed. (author)

  2. A user friendly method for image based acquisition of constraint information during constrained motion of servo manipulator in hot-cells

    International Nuclear Information System (INIS)

    Saini, Surendra Singh; Sarkar, Ushnish; Swaroop, Tumapala Teja; Panjikkal, Sreejith; Ray, Debasish Datta

    2016-01-01

    In master slave manipulator, slave arm is controlled by an operator to manipulate the objects in remote environment using an iso-kinematic master arm which is located in the control room. In such a scenario, where the actual work environment is separated from the operator, formulation of techniques for assisting the operator to execute constrained motion (preferential inclusion or preferential exclusion of workspace zones) in the slave environment are not only helpful, but also essential. We had earlier demonstrated the efficacy of constraint motion with predefined geometrical constraints of various types. However, in a hot-cell scenario the generation of the constraint equations is difficult since we shall not have access to the cell for taking measurements. In this paper, a user friendly method is proposed for image based acquisition of the various constraint geometries thus eliminating the need to take in-cell measurements. For this purpose various hot cell tasks and required geometrical primitives pertaining to these tasks have been surveyed and an algorithm has been developed for generating the constraint geometry for each primitive. This methodology shall increase the efficiency and ease of use of the hot cell Telemanipulator by providing real time constraint acquisition and subsequent assistive force based constrained motion. (author)

  3. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R; Blin, J; Cherel, G; Duvaux, Y; Cherel, G; Mustelier, J P; Bussy, P; Gondal, G; Bloch, J; Faugeras, P; Raggenbass, A; Raggenbass, P; Fufresne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  4. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  5. Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes.

    Science.gov (United States)

    Goddeti, Kalyan C; Lee, Changhwan; Lee, Young Keun; Park, Jeong Young

    2018-05-09

    Titanium dioxide (TiO 2 ) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO 2 and Ag/TiO 2 nanodiode architectures composed of TiO 2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO 2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal-semiconductor interface area.

  6. D and D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

    International Nuclear Information System (INIS)

    Lagos, L.; Shoffner, P.; Espinosa, E.; Pena, G.; Kirk, P.; Conley, T.

    2009-01-01

    The objective of the US Department of Energy Office of Environmental Management's (DOE-EM's) D and D Toolbox Project is to use an integrated systems approach to develop a suite of decontamination and decommissioning (D and D) technologies, a D and D toolbox, that can be readily used across the DOE complex to improve safety, reduce technical risks, and limit uncertainty within D and D operations. Florida International University's Applied Research Center (FIU-ARC) is supporting this initiative by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting technology demonstrations of selected technologies at FIU-ARC facilities in Miami, Florida. To meet the technology gap challenge for a technology to remotely apply strippable/fixative coatings, FIU-ARC identified and demonstrated of a remote fixative sprayer platform. During this process, FIU-ARC worked closely with the Oak Ridge National Laboratory in the selection of typical fixatives and in the design of a hot cell mockup facility for demonstrations at FIUARC. For this demonstration and for future demonstrations, FIU-ARC built a hot cell mockup facility at the FIU-ARC Technology Demonstration/Evaluation site in Miami, Florida. FIU-ARC selected the International Climbing Machines' (ICM's) Robotic Climber to perform this technology demonstration. The selected technology was demonstrated at the hot cell mockup facility at FIU-ARC during the week of November 10, 2008. Fixative products typically used inside hot cells were investigated and selected for this remote application. The fixatives tested included Sherwin Williams' Promar 200 and DTM paints and Bartlett's Polymeric Barrier System (PBS). The technology evaluation documented the ability of the remote system to spray fixative products on horizontal and vertical concrete surfaces. The technology performance, cost, and health and safety issues were evaluated

  7. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the senso....... Finally, it will be shown how previously developed dew point diagrams for the anode side in a fuel cell can be corrected for a humidified hydrogen inlet stream....

  8. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Zachary M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examine postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.

  9. Dismantling of a hot cell-block and the treatment of the produced concrete bars

    International Nuclear Information System (INIS)

    Rompf, U.; Brielmayer, M.; Graf, A.; Stutz, U.; Ambos, F.

    2003-01-01

    A building with hot cells had been operated in Karlstein/Main from 1968 to 1989 in order to perform check-ups at radiated fuel rods and nuclear components. The operation of the system was stopped after an operation period of approximately 20 years. The core part of the building to be disassembled is a U-shaped hot cell-block with nine individual cells, partly consisting of heavy reinforced concrete, located in the ground floor (fig. 1 and fig. 2). The major part of the cells was covered with 10 mm steel plate and provided with approx. 1,400 openings of all different kinds. The wall thickness of the cells was between 0.90 m and 1.10 m. Under these conditions a successful decontamination at the ''existing building structure'' was not possible. Therefore, the non-supporting structures of the hot cell-block were removed in individual blocks by means of sawing and the remaining walls and floors were peeled by using the diamond rope sawing technique. The dismantling took 17 months. A re-treatment of the produced concrete blocks (235 blocks, approx. 970 Mg) to reduce the radioactive waste to a minimum was performed at the Research Centre Karlsruhe, Central Decontamination Department (HDB). The Target of the concrete bar treatment at HDB is to reduce the volume of radioactive waste to a minimum and to add the major part of the concrete bars to harmless utilisation. To achieve the same, initially the more contaminated parts of the bars without openings, such as tubes, cable or ventilating shafts, are removed by means of wire cutting and packed into a KONRAD-Container as radioactive waste. The remaining bar is decontaminated by means of sandblasting and afterwards, following successful release measurement, released from the scope of the regulations under the Atomic Energy. Bars with openings are crushed into small pieces by means of the remote-controlled chisel excavator, in order to separate the individual kinds of material. The rubble is packed into drums and measured by

  10. Separations and hot and cold spot areas for anterior adjacent fields

    International Nuclear Information System (INIS)

    Supe, S.S.; Sharma, A.K.

    1991-01-01

    Due to the limitation on the maximum field size opening on telecobalt machines, the use of two adjoining fields is a necessary requisite for treatment of abdominal malignancies. Matching of these adjoining fields is important to avoid cold and hot spots inside the tumour volume. Detailed treatment planning for these treatment is obligatory. Formulae have been derived for the determination of the separations required at the skin surface for achieving dose homogeneity at the depth of interest. The advantages and disadvantages associated with the use of higher source to skin distances are also discussed. In the case of adjoining fields from both anterior and posterior sides, adjustment in field size is a must. However, cold and hot spots cannot be completely avoided. During the course of treatment continous shifting of separations on the skin surface helps in reducing cold and hot spots. (author). 2 refs., 2 figs

  11. Standard Test Method for Hot Spot Protection Testing of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides a procedure to determine the ability of a photovoltaic (PV) module to endure the long-term effects of periodic “hot spot” heating associated with common fault conditions such as severely cracked or mismatched cells, single-point open circuit failures (for example, interconnect failures), partial (or non-uniform) shadowing or soiling. Such effects typically include solder melting or deterioration of the encapsulation, but in severe cases could progress to combustion of the PV module and surrounding materials. 1.2 There are two ways that cells can cause a hot spot problem; either by having a high resistance so that there is a large resistance in the circuit, or by having a low resistance area (shunt) such that there is a high-current flow in a localized region. This test method selects cells of both types to be stressed. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method....

  12. An empirical method for estimating surface area of aggregates in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    R.P. Panda

    2016-04-01

    Full Text Available Bitumen requirement in hot mix asphalt (HMA is directly dependent on the surface area of the aggregates in the mix, which in turn has effect on the asphalt film thickness and the flow characteristics. The surface area of aggregate blend in HMA is calculated using the specific surface area factors assigned to percentage passing through some specific standard sieve sizes and the imaging techniques. The first process is less capital intensive, but purely manual and labour intensive and prone to human errors. Imaging techniques though eliminating the human errors, still have limited use due to capital intensiveness and requirement of well-established laboratories with qualified technicians. Most of the developing countries like India are shortage of well-equipped laboratories and qualified technicians. To overcome these difficulties, the present mathematical model has been developed to estimate the surface area of aggregate blend of HMA from physical properties of aggregates evaluated using simple laboratory equipment. This model has been validated compared with the existing established methods of calculations and can be used as one of the tools in different developing and under developed countries for proper design of HMA.

  13. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Geothermal Exploration in Hot Springs, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  15. Hot embossing holographic images in BOPP shrink films through large-area roll-to-roll nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Menglin; Lin, Shiwei, E-mail: linsw@hainu.edu.cn; Jiang, Wenkai; Pan, Nengqian

    2014-08-30

    Highlights: • High-quality holographic images were replicated in large-area shrink film. • Surface morphology evolution was analyzed in films embossed at different temperatures. • Optical, mechanical, and thermal characteristics were systematically analyzed. - Abstract: Diffraction grating-based holographic images have been successfully replicated in biaxially oriented polypropylene (BOPP) shrink films through large-area roll-to-roll nanoimprint technique. Such hot embossing of holographic images on BOPP films represents a promising means of creating novel security features in packaging applications. The major limitation of the high-quality replication is the relatively large thermal shrinkage of BOPP shrink film. However, although an appropriate shrinkage is demanded after embossing, over-shrinking not only causes distortion in embossed images, but also reduces the various properties of BOPP shrink films mainly due to the disappearance of orientation. The effects of embossing temperature on the mechanical, thermal and optical properties as well as polymer surface morphologies were systematically analyzed. The results show that the optimal process parameters are listed as follows: the embossing temperature at 104–110 °C, embossing force 6 kg/cm{sup 2} and film speed 32 m/min. The variation in flow behavior of polymer surface during hot embossing process is highly dependent on the temperature. In addition, the adhesion from the direct contact between the rubber press roller and polymer surfaces is suggested to cause the serious optical properties failure.

  16. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells

    NARCIS (Netherlands)

    Heintges, G.H.L.; Leenaers, P.J.; Janssen, R.A.J.

    2017-01-01

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of

  17. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.

    2003-01-01

    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  18. Hot particles

    International Nuclear Information System (INIS)

    Merwin, S.E.; Moeller, M.P.

    1989-01-01

    Nuclear Regulatory Commission (NRC) licensees are required to assess the dose to skin from a hot particle contamination event at a depth of skin of7mg/cm 2 over an area of 1 cm 2 and compare the value to the current dose limit for the skin. Although the resulting number is interesting from a comparative standpoint and can be used to predict local skin reactions, comparison of the number to existing limits based on uniform exposures is inappropriate. Most incidents that can be classified as overexposures based on this interpretation of dose actually have no effect on the health of the worker. As a result, resources are expended to reduce the likelihood that an overexposure event will occur when they could be directed toward eliminating the cause of the problem or enhancing existing programs such as contamination control. Furthermore, from a risk standpoint, this practice is not ALARA because some workers receive whole body doses in order to minimize the occurrence of hot particle skin contaminations. In this paper the authors suggest an alternative approach to controlling hot particle exposures

  19. Spent Fuel Handling and Packaging Program: a survey of hot cell facilities

    International Nuclear Information System (INIS)

    Menon, M.N.

    1978-07-01

    Hot cell facilities in the United States were surveyed to determine their capabilities for conducting integral fuel assembly and individual fuel rod examinations that are required in support of the Spent Fuel Handling and Packaging Program. The ability to receive, handle, disassemble and reconstitute full-length light water reactor spent fuel assemblies, and the ability to conduct nondestructive and destructive examinations on full-length fuel rods were of particular interest. Three DOE-supported facilities and three commercial facilities were included in the survey. This report provides a summary of the findings

  20. Report on fiscal 1998 investigation of Jozankei hot spring conservation and hot spring structure; 1998 nendo Jozankei onsen hozen chosa. Onsen kozo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    With the purpose of evaluating recoverable hot water quantity and elucidating the change over a long term, investigations were carried out, with the results summarized, on the geology, alteration zone, gravitational analysis, fluid geochemistry and hydraulics in the area. The investigations covered the area of 7 km x 6 km in about 30 km southwest of Sapporo City and were performed for the period from September 10, 1998 to October 31, 1999. The results were as follows. In the Jozankei area, with the Usubetu layer in the Old Tertiary system as the basement, layers are superposed from the Palaeogene Oligocene to the Quaternary Pleistocene. Distributing in various places between Yunosawa vicinity and Jozankei Hot Spring area are acid to neutral geothermal alteration zones. The hot spring gushing-out zone in the Jozankei hot spring area is supposed to be regulated by side-by-side cracks in the NE-SW direction. It was inferred from tritium concentration and a minor component ratio that, as the mechanism of forming a hot spring, water of precipitation origin circulating and residing for a long time on the Usubetsu layer which is marine sediment is heated by a volcanic heat source latent in the depth. (NEDO)

  1. An improved out-cell to in-cell rapid transfer system at the HFEF-south

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1990-01-01

    The Argonne National Laboratory (ANL) Hot Fuel Examination Facility-South (HFEF-S), located at the ANL-West site of the Idaho National Engineering Laboratory, is currently undergoing extensive refurbishment and modifications in preparation for its use, beginning in 1991, in demonstrating remote recycling of fast reactor, metal-alloy fuel as part of the US Department of Energy liquid-metal reactor, Integral Fast Reactor (IFR) program. Included in these improvements to HFEF-S is a new, small-item, rapid transfer system (RTS). When installed, this system will enable the rapid transfer of small items from the hot-cell exterior into the argon cell (argon-gas atmosphere) of the facility without necessitating the use of time-consuming and laborious procedures. The new RTS will also provide another important function associated with HFEF-S hot-cell operation in the IFR Fuel Recycle Program; namely, the rapid insertion of clean, radioactive contamination-measuring smear paper specimens into the hot cells for area surveys, and the expedited removal of these contaminated (including alpha as well as beta/gamma contamination) smears from the argon cell for transfer to an adjacent health physics field laboratory in the facility for nuclear contamination/radiation counting

  2. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  3. Identifying Hot Spots of Critical Forage Supply in Dryland Nomadic Pastoralist Areas: A Case Study for the Afar Region, Ethiopia

    NARCIS (Netherlands)

    Sonneveld, B.G.J.S.; Keyzer, M.A.; van Wesenbeeck, C.F.A.; Georgis, Kidane; Beyene, Fekadu; Urbano, Ferdinando; Meroni, Michele; Leo, Olivier; Yimer, Merkebu; Abdullatif, Mohammed

    2017-01-01

    This study develops a methodology to identify hot spots of critical forage supply in nomadic pastoralist areas, using the Afar Region, Ethiopia, as a special case. It addresses two main problems. First, it makes a spatially explicit assessment of fodder supply and demand extracted from a data poor

  4. Hot-carrier solar cells using low-dimensional quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Daiki; Kasamatsu, Naofumi; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-10-27

    We propose a high-conversion-efficiency solar cell (SC) utilizing the hot carrier (HC) population in an intermediate-band (IB) of a quantum dot superlattice (QDSL) structure. The bandgap of the host semiconductor in this device plays an important role as an energy-selective barrier for HCs in the QDSLs. According to theoretical calculation using the detailed balance model with an air mass 1.5 spectrum, the optimum IB energy is determined by a trade-off relation between the number of HCs with energy exceeding the conduction-band edge and the number of photons absorbed by the valence band−IB transition. Utilizing experimental data of HC temperature in InAs/GaAs QDSLs, the maximum conversion efficiency under maximum concentration (45 900 suns) has been demonstrated to increase by 12.6% as compared with that for a single-junction GaAs SC.

  5. Decommissioning of hot cells using a hydraulically powered servo manipulator

    International Nuclear Information System (INIS)

    Asquith, J.D.; Loughborough, D.

    1993-01-01

    This paper describes the preparations and initial trials involved in remotely dismantling the containment boxes within two concrete shielded hot cells at Harwell Laboratory using a hydraulically powered servo manipulator, ARTISAN. The manipulator deploys a variety of tools for cutting operations. The modular design has enabled it to be specifically configured for this application by adjusting the link lengths using spacers between the joints. In addition to the remote handling requirements, a new posting and ventilation system for the facility is outlined. Trials with ARTISAN in an in-active mock-up have now been successfully completed, and the manipulator is installed in the active facility. The considerations and approach adopted in this project are typical of many situations where remote techniques are required for decommissioning activities. (author)

  6. Microscopic characterizations of membrane electrode assemblies prepared under different hot-pressing conditions

    International Nuclear Information System (INIS)

    Liang, Z.X.; Zhao, T.S.; Xu, C.; Xu, J.B.

    2007-01-01

    The durability of the membrane electrode assembly (MEA) for direct methanol fuel cells (DMFCs) is one of the most critical issues to be addressed before widespread commercialization of the DMFC technology. In this work, we investigated the effect of the hot-pressing duration on the performance and durability of the MEA prepared by hot-pressing technique. It was found that the 60-min hot pressing at 135 deg. C under the pressure of 4.0 MPa yielded a significantly improved MEA durability than did the 3-min hot pressing (a typical duration in practice) under the same condition, but no substantial difference was found in the cell performance of the MEAs prepared with the two different hot-pressing durations. The reason why the hot-pressing duration had no significant effect on cell performance is explained based on X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) characterizations of the changes in the physiochemical properties of MEAs and their constituent components, including the anode, cathode and Nafion membrane, before and after hot pressing with different durations

  7. Report on geothermal development promotion survey in fiscal 1999. Survey on hot water (collection and analysis of hot water) in Tsujinodake Area No. B-6; 1999 nendo chinetsu kaihatsu sokushin chosa hokokusho. Nessui no chosa (nessui no saishu oyobi bunseki) No.B-6 Tsujinodake chiiki

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This paper reports the survey on hot water in the geothermal development promotion survey in fiscal 1999 in the Tsujinodake area. The hot water pumped up at the N11-TD-2 well is considered to have been originated from sea water mixed with the same amount of meteoric water including waters from Ikeda Lake and Unagi Pond, and been heated mainly by heat conduction. The hot water temperature near the well is 120 to 130 degrees C, but the upper stream of hot water flow is estimated to be 160 to 230 degrees C. The test samples collected and analyzed are those pumped up from depths greater than 1,500 m, having the same origin as the high temperature hot water of higher than 200 degrees C flowing sideways at the relatively shallow portions (depths of 400 to 800 m). The hot water is estimated to be rising from deep portions of mainly the north-east shore of Unagi Pond in which exhalation bands are located, and its temperature is considered to be 260 to 270 degrees C at deep sections. The high temperature geothermal reservoir spreading in relatively shallow sections of the N11-TD-2 well mainly around the vicinity of the north-east shore of Unagi Pond has a high possibility of being continued even to the vicinity of the west Ibusuki area in the north-east direction. However, the spread of the geothermal reservoir with high temperatures (200 degrees C or higher) is considered not too large in the direction of the Matsugakubo in the north-west and the Narikawa area direction in the south-east. (NEDO)

  8. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2006-07-01

    occurred during Phase II. The activities included: a. Dismantlement of the building structure surrounding the hot cells and then finally dismantlement of the hot cell block b. Soil remediation c. Handling and disposal of decommissioning wastes d. Confirmatory surveys 3. Final site release occurred during Phase III. 4. The final activity which occurred substantially after Phases II and III were complete was the shipment of the IFM to a DOE facility. The HCF and HM structures are approximately the same size on a volumetric basis. The volume of the HM hot cells is about 12 percent greater than at HCF but the HCF had 27 percent more surface area due to the existence of three separate cells. Of potential importance is that the contamination levels on the hot cell surfaces were not equal. The HCF facility was highly contaminated from such activities as band-sawing irradiated high temperature gas cooled reactor fuel. On these grounds it might be expected that the HCF actual costs would be higher than HM estimates. However, a factor of almost nine times higher seems to be exceptional. The very large difference in fact stems from a number of special circumstances at HCF that need to be backed-out of a cost comparison in order to make it meaningful. One special requirement was the removal and safe management of irradiated fuel material, including high enriched uranium. Another cost related to maintenance of the building before decommissioning could commence. The costs of waste disposal also vary substantially, in terms of unit costs and the proportion of dismantling waste that needs to be sentenced to a radioactive waste repository. The available information for HM has been evaluated and compared, to the extent possible, with the HCF decommissioning costs and other selected NAC derived decommissioning cost benchmarks. In summary the main conclusions for the HM decommissioning cost estimate are as follows: Theoretical estimates of planning and other support activities can have a

  9. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    Dismantlement occurred during Phase II. The activities included: a. Dismantlement of the building structure surrounding the hot cells and then finally dismantlement of the hot cell block b. Soil remediation c. Handling and disposal of decommissioning wastes d. Confirmatory surveys 3. Final site release occurred during Phase III. 4. The final activity which occurred substantially after Phases II and III were complete was the shipment of the IFM to a DOE facility. The HCF and HM structures are approximately the same size on a volumetric basis. The volume of the HM hot cells is about 12 percent greater than at HCF but the HCF had 27 percent more surface area due to the existence of three separate cells. Of potential importance is that the contamination levels on the hot cell surfaces were not equal. The HCF facility was highly contaminated from such activities as band-sawing irradiated high temperature gas cooled reactor fuel. On these grounds it might be expected that the HCF actual costs would be higher than HM estimates. However, a factor of almost nine times higher seems to be exceptional. The very large difference in fact stems from a number of special circumstances at HCF that need to be backed-out of a cost comparison in order to make it meaningful. One special requirement was the removal and safe management of irradiated fuel material, including high enriched uranium. Another cost related to maintenance of the building before decommissioning could commence. The costs of waste disposal also vary substantially, in terms of unit costs and the proportion of dismantling waste that needs to be sentenced to a radioactive waste repository. The available information for HM has been evaluated and compared, to the extent possible, with the HCF decommissioning costs and other selected NAC derived decommissioning cost benchmarks. In summary the main conclusions for the HM decommissioning cost estimate are as follows: Theoretical estimates of planning and other support activities can

  10. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  11. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  12. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  13. Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell

    Science.gov (United States)

    Chen, Chun-Yu; Chang, Hao-Wen; Chang, Yu-Fan; Chang, Bo-Jie; Lin, Yuan-Sheng; Jian, Pei-Siou; Yeh, Han-Cheng; Chien, Hung-Ta; Chen, En-Chen; Chao, Yu-Chiang; Meng, Hsin-Fei; Zan, Hsiao-Wen; Lin, Hao-Wu; Horng, Sheng-Fu; Cheng, Yen-Ju; Yen, Feng-Wen; Lin, I.-Feng; Yang, Hsiu-Yuan; Huang, Kuo-Jui; Tseng, Mei-Rurng

    2011-11-01

    A continuous roll-to-roll compatible blade-coating method for multi-layers of general organic semiconductors is developed. Dissolution of the underlying film during coating is prevented by simultaneously applying heating from the bottom and gentle hot wind from the top. The solvent is immediately expelled and reflow inhibited. This method succeeds for polymers and small molecules. Uniformity is within 10% for 5 cm by 5 cm area with a mean value of tens of nanometers for both organic light-emitting diode (OLED) and solar cell structure with little material waste. For phosphorescent OLED 25 cd/A is achieved for green, 15 cd/A for orange, and 8 cd/A for blue. For fluorescent OLED 4.3 cd/A is achieved for blue, 9 cd/A for orange, and 6.9 cd/A for white. For OLED with 2 cm by 3 cm active area, the luminance variation is within 10%. Power conversion efficiency of 4.1% is achieved for polymer solar cell, similar to spin coating using the same materials. Very-low-cost and high-throughput fabrication of efficient organic devices is realized by the continuous blade-only method.

  14. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Lain, M.J.; Fletcher, P.A.; Dawson, R.K.; Pottinger, J.S.

    1989-01-01

    The primary aim of the programme is to develop and evaluate remote electrochemical decontamination systems for metal surfaces. The bulk of the waste volume should be reduced to a reuse or low-level waste disposal category, while concentrating most of the activity in a small volume suitable for immobilisation. The goal of the development programme is to test these techniques in both alpha-active and alpha-beta-gamma hot cells in order to ascertain their usefulness as a component of an overall decommissioning strategy. As a result of the radiological environment, particular emphasis will be placed on remote operation in order to reduce occupational radiation exposure. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate will be investigated: immersion of small items in tanks for electroetching and in situ electropolishing. In both cases, reagents will be chosen with their subsequent disposal in mind. (Author)

  15. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique

  16. Modification of a scanning electron microscope for remote operation in a hot cell

    International Nuclear Information System (INIS)

    Reed, J.R.; Watson, H.E.; Smidt, F.A. Jr.

    1982-01-01

    Scanning electron microscopy (SEM) examination of broken fracture specimens is an essential part of the characterization of the failure mode of fracture toughness of specimens. The large specimen mass required for such examinations dictates the use of a shielded facility for performing such examinations on irradiated specimens. This report describes the modification of a commercial SEM for remote operation in a hot cell. The facility is used to examine specimens from several Navy and DOE-sponsored programs conducted at NRL which require the examination of radioactive materials

  17. FABRICE process for the refrabrication of experimental pins in a hot cell, from pins pre-irradiated in power reactors

    International Nuclear Information System (INIS)

    Vignesoult, N.; Atabek, R.; Ducas, S.

    1982-06-01

    The Fabrice ''hot cell refabrication'' process for small pins from very long irradiated fuel elements was developed at the CEA to allow parametric studies of the irradiation behavior of pins from nuclear power plants. Since this operation required complete assurance of the validity of the process, qualification of the fabrication was performed on test pins, refabricated in the hot cell, as well as irradiation qualification. The latter qualification was intended to demonstrate that, in identical experimental irradiation conditions, the refabricated Fabrice pins behaved in the same way as whole pins with the same initial characteristics. This qualification of the Fabrice process, dealing with more than twenty pins at different burnups, showed that fabrication did not alter: the inherent characteristics of the sampled fuel element and the irradiation behavior of the sampled fuel element [fr

  18. WAVE PROPAGATION in the HOT DUCT of VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz; Jim C. P. Liou

    2013-07-01

    In VHTR, helium from the reactor vessel is conveyed to a power conversion unit through a hot duct. In a hypothesized Depressurized Conduction Cooldown event where a rupture of the hot duct occurs, pressure waves will be initiated and reverberate in the hot duct. A numerical model is developed to quantify the transients and the helium mass flux through the rupture for such events. The flow path of the helium forms a closed loop but only the hot duct is modeled in this study. The lower plum of the reactor vessel and the steam generator are treated as specified pressure and/or temperature boundary to the hot duct. The model is based on the conservation principles of mass, momentum and energy, and on the equations of state for helium. The numerical solution is based on the method of characteristics with specified time intervals with a predictor and corrector algorithm. The rupture sub-model gives reasonable results. Transients induced by ruptures with break area equaling 20%, 10%, and 5% of the duct cross-sectional area are described.

  19. Use of a CO2 pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    Bench, T.R.

    1997-01-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO 2 ) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO 2 pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility

  20. Thermal comfort of people in the hot and humid area of China-impacts of season, climate, and thermal history.

    Science.gov (United States)

    Zhang, Y; Chen, H; Wang, J; Meng, Q

    2016-10-01

    We conducted a climate chamber study on the thermal comfort of people in the hot and humid area of China. Sixty subjects from naturally ventilated buildings and buildings with split air conditioners participated in the study, and identical experiments were conducted in a climate chamber in both summer and winter. Psychological and physiological responses were observed over a wide range of conditions, and the impacts of season, climate, and thermal history on human thermal comfort were analyzed. Seasonal and climatic heat acclimatization was confirmed, but they were found to have no significant impacts on human thermal sensation and comfort. The outdoor thermal history was much less important than the indoor thermal history in regard to human thermal sensation, and the indoor thermal history in all seasons of a year played a key role in shaping the subjects' sensations in a wide range of thermal conditions. A warmer indoor thermal history in warm seasons produced a higher neutral temperature, a lower thermal sensitivity, and lower thermal sensations in warm conditions. The comfort and acceptable conditions were identified for people in the hot and humid area of China. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Automated quantification of proliferation with automated hot-spot selection in phosphohistone H3/MART1 dual-stained stage I/II melanoma.

    Science.gov (United States)

    Nielsen, Patricia Switten; Riber-Hansen, Rikke; Schmidt, Henrik; Steiniche, Torben

    2016-04-09

    Staging of melanoma includes quantification of a proliferation index, i.e., presumed melanocytic mitoses of H&E stains are counted manually in hot spots. Yet, its reproducibility and prognostic impact increases by immunohistochemical dual staining for phosphohistone H3 (PHH3) and MART1, which also may enable fully automated quantification by image analysis. To ensure manageable workloads and repeatable measurements in modern pathology, the study aimed to present an automated quantification of proliferation with automated hot-spot selection in PHH3/MART1-stained melanomas. Formalin-fixed, paraffin-embedded tissue from 153 consecutive stage I/II melanoma patients was immunohistochemically dual-stained for PHH3 and MART1. Whole slide images were captured, and the number of PHH3/MART1-positive cells was manually and automatically counted in the global tumor area and in a manually and automatically selected hot spot, i.e., a fixed 1-mm(2) square. Bland-Altman plots and hypothesis tests compared manual and automated procedures, and the Cox proportional hazards model established their prognostic impact. The mean difference between manual and automated global counts was 2.9 cells/mm(2) (P = 0.0071) and 0.23 cells per hot spot (P = 0.96) for automated counts in manually and automatically selected hot spots. In 77 % of cases, manual and automated hot spots overlapped. Fully manual hot-spot counts yielded the highest prognostic performance with an adjusted hazard ratio of 5.5 (95 % CI, 1.3-24, P = 0.024) as opposed to 1.3 (95 % CI, 0.61-2.9, P = 0.47) for automated counts with automated hot spots. The automated index and automated hot-spot selection were highly correlated to their manual counterpart, but altogether their prognostic impact was noticeably reduced. Because correct recognition of only one PHH3/MART1-positive cell seems important, extremely high sensitivity and specificity of the algorithm is required for prognostic purposes. Thus, automated

  2. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    Science.gov (United States)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  3. Investigation of hot air balloon fatalities.

    Science.gov (United States)

    McConnell, T S; Smialek, J E; Capron, R G

    1985-04-01

    The rising popularity of the sport of hot air ballooning has been accompanied by several recent incidents, both in this country and other parts of the world, where mechanical defects and the improper operation of balloons have resulted in several fatalities. A study was conducted to identify the location and frequency of hot air ballooning accidents. Furthermore, the study attempted to identify those accidents that were the result of improper handling on the part of the balloon operators and those that were related to specific defects in the construction of the balloon. This paper presents a background of the sport of hot air ballooning, together with an analysis of the construction of a typical hot air balloon, pointing out the specific areas where defects may occur that could result in a potential fatal balloon crash. Specific attention is given to the two recent balloon crashes that occurred in Albuquerque, N.M., hot air balloon capital of the world, and that resulted in multiple fatalities.

  4. Causes of appearance of scintigraphic hot areas on thyroid scintigraphy analyzed with clinical features and comparative ultrasonographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Masahiro [Hikone Municipal Hospital, Shiga (Japan); Kasagi, Kanji [Takamatsu Red Cross Hospital, Kagawa (Japan); Hatabu, Hiroto [Univ. of Pennsylvania Medical Center, PA (United States); Misaki, Takashi; Iida, Yasuhiro; Fujita, Toru; Konishi, Junji [Kyoto Univ. (Japan). Graduate School of Medicine

    2002-06-01

    This study was done retrospectively to analyze the ultrasonographic (US) findings in thyroid scintigraphic hot areas (HA). Three-thousand, eight-hundred and thirty-nine consecutive patients who underwent {sup 99m}Tc-pertechnetate (n=3435) or {sup 123}I (n=457) scintigraphy were analyzed. HA were regarded as present when the tracer concentration was greater than the remaining thyroid tissue, or when hemilobar uptake was observed. High-resolution US examinations were performed with a real-time electronic linear scanner with a 7.5 or 10 MHz transducer. One hundred and four (2.7%) were found to be scintigraphic HA (n=120). US revealed a nodular lesion or well-demarcated thyroid tissue corresponding to the HA in 94 areas (78.4%, Category 1), an ill-defined region with different echogenicity in 13 areas (10.8%, Category 2), and no correlating lesion in 13 areas (10.8%, Category 3). These 104 patients included 43 with adenomatous goiter (59 areas), 33 with adenoma, 11 with Hashimoto's thyroiditis, 5 with primary thyroid cancer, 4 with euthyroid ophthalmic Graves' disease (EOG), 3 with hemilobar atrophy or hypogenesis, 2 with hemilobar agenesis, 2 with hypothyroidism with blocking-type TSH-receptor antibodies (TSHRAb), 1 with acute suppurative thyroiditis. Among the 59 adenomatous nodules and 33 adenomas, 51 (86.4%) and 32 (97.0%), respectively, belonged to Category 1. A solitary toxic nodule was significantly larger and occurs more often in older patients than in younger patients. On the other hand, all 17 patients with known autoimmune thyroid diseases including Hashimoto's thyroiditis, EOG and hypothyroidism with blocking TSHRAb belonged to Category 2 or 3. Possible underlying mechanisms are hyperfunctioning tumors or nodules, localized functioning thyroid tissue freed from autoimmune destruction, inflammation or tumor invasion, congenital abnormality, clusters of hyperactive follicular cells caused by long-term TSH and/or TSHRAb stimulation, asymmetry

  5. Causes of appearance of scintigraphic hot areas on thyroid scintigraphy analyzed with clinical features and comparative ultrasonographic findings

    International Nuclear Information System (INIS)

    Iwata, Masahiro; Kasagi, Kanji; Hatabu, Hiroto; Misaki, Takashi; Iida, Yasuhiro; Fujita, Toru; Konishi, Junji

    2002-01-01

    This study was done retrospectively to analyze the ultrasonographic (US) findings in thyroid scintigraphic hot areas (HA). Three-thousand, eight-hundred and thirty-nine consecutive patients who underwent 99m Tc-pertechnetate (n=3435) or 123 I (n=457) scintigraphy were analyzed. HA were regarded as present when the tracer concentration was greater than the remaining thyroid tissue, or when hemilobar uptake was observed. High-resolution US examinations were performed with a real-time electronic linear scanner with a 7.5 or 10 MHz transducer. One hundred and four (2.7%) were found to be scintigraphic HA (n=120). US revealed a nodular lesion or well-demarcated thyroid tissue corresponding to the HA in 94 areas (78.4%, Category 1), an ill-defined region with different echogenicity in 13 areas (10.8%, Category 2), and no correlating lesion in 13 areas (10.8%, Category 3). These 104 patients included 43 with adenomatous goiter (59 areas), 33 with adenoma, 11 with Hashimoto's thyroiditis, 5 with primary thyroid cancer, 4 with euthyroid ophthalmic Graves' disease (EOG), 3 with hemilobar atrophy or hypogenesis, 2 with hemilobar agenesis, 2 with hypothyroidism with blocking-type TSH-receptor antibodies (TSHRAb), 1 with acute suppurative thyroiditis. Among the 59 adenomatous nodules and 33 adenomas, 51 (86.4%) and 32 (97.0%), respectively, belonged to Category 1. A solitary toxic nodule was significantly larger and occurs more often in older patients than in younger patients. On the other hand, all 17 patients with known autoimmune thyroid diseases including Hashimoto's thyroiditis, EOG and hypothyroidism with blocking TSHRAb belonged to Category 2 or 3. Possible underlying mechanisms are hyperfunctioning tumors or nodules, localized functioning thyroid tissue freed from autoimmune destruction, inflammation or tumor invasion, congenital abnormality, clusters of hyperactive follicular cells caused by long-term TSH and/or TSHRAb stimulation, asymmetry, etc. Scintigraphic HA are

  6. Causes of appearance of scintigraphic hot areas on thyroid scintigraphy analyzed with clinical features and comparative ultrasonographic findings.

    Science.gov (United States)

    Iwata, Masahiro; Kasagi, Kanji; Hatabu, Hiroto; Misaki, Takashi; Iida, Yasuhiro; Fujita, Toru; Konishi, Junji

    2002-06-01

    This study was done retrospectively to analyze the ultrasonographic (US) findings in thyroid scintigraphic hot areas (HA). Three-thousand, eight-hundred and thirty-nine consecutive patients who underwent 99mTc-pertechnetate (n = 3435) or 123I (n = 457) scintigraphy were analyzed. HA were regarded as present when the tracer concentration was greater than the remaining thyroid tissue, or when hemilobar uptake was observed. High-resolution US examinations were performed with a real-time electronic linear scanner with a 7.5 or 10 MHz transducer. One hundred and four (2.7%) were found to be scintigraphic HA (n = 120). US revealed a nodular lesion or well-demarcated thyroid tissue corresponding to the HA in 94 areas (78.4%, Category 1), an ill-defined region with different echogenicity in 13 areas (10.8%, Category 2), and no correlating lesion in 13 areas (10.8%, Category 3). These 104 patients included 43 with adenomatous goiter (59 areas), 33 with adenoma, 11 with Hashimoto's thyroiditis, 5 with primary thyroid cancer, 4 with euthyroid ophthalmic Graves' disease (EOG), 3 with hemilobar atrophy or hypogenesis, 2 with hemilobar agenesis, 2 with hypothyroidism with blocking-type TSH-receptor antibodies (TSHRAb), I with acute suppurative thyroiditis. Among the 59 adenomatous nodules and 33 adenomas, 51 (86.4%) and 32 (97.0%), respectively, belonged to Category 1. A solitary toxic nodule was significantly larger and occurs more often in older patients than in younger patients. On the other hand, all 17 patients with known autoimmune thyroid diseases including Hashimoto's thyroiditis, EOG and hypothyroidism with blocking TSHRAb belonged to Category 2 or 3. Possible underlying mechanisms are 1) hyperfunctioning tumors or nodules, 2) localized functioning thyroid tissue freed from autoimmune destruction, inflammation or tumor invasion, 3) congenital abnormality, 4) clusters of hyperactive follicular cells caused by long-term TSH and/or TSHRAb stimulation, 5) asymmetry, etc

  7. The Hot Cell Radioactive Waste Concept of Forschungszentrum Juelich

    International Nuclear Information System (INIS)

    Pott, G.; Halaszovich, St.

    1999-01-01

    During the last 30 years extensive scientific examinations on radioactive metals,ceramics and fuel elements have been carried out, so that a high volume of waste has resulted. Also from the dismantling of irradiated facilities metallics waste has o be handed. Prior for equipment repair the hot cell involved has to be decontaminated and a large amount of lower active waste is produced. The waste is collected for conditioning and storing. There are different categories as: low active liquid waste, low active burnable waste, fuel waste, low and high active metallic waste. For each waste category special transport container are used. For the volume reduction our Waste Department is equipped with special facilities e.g.: furnace for burning, drying, liquids evaporators, hydraulic press for pelletizing, decontamination box for the dismantling ad cleaning of components. After conditioning the waste will be stored on site or transported to final storage in a salt mine (ERAM) . Special documentation has to be done for the acceptance of this waste

  8. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  9. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    Science.gov (United States)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  10. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  11. How to deal with the annoying Hot Spots in FEA

    DEFF Research Database (Denmark)

    Svenninggaard, Jon

    2017-01-01

    How do we deal with the annoying ”Hot Spots” in our solid structure Finite Element Analysis (FEA) and how do we justify the stresses in those areas?......How do we deal with the annoying ”Hot Spots” in our solid structure Finite Element Analysis (FEA) and how do we justify the stresses in those areas?...

  12. Hot and cold CO{sub 2}-rich mineral waters in Chaves geothermal area (northern Portugal)

    Energy Technology Data Exchange (ETDEWEB)

    Aires-Barros, Luis; Marques, Jose Manuel; Graca, Rui Cores; Matias, Maria Jose [Universidade Tecnica de Lisboa, Lab. de Mineralogia e Petrologia (LAMPIST), Lisboa (Portugal); Weijden, Cornelis H. van der; Kreulen, Rob [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Eggenkamp, Hermanus Gerardus M. [Utrecht Univ., Dept. of Geochemistry, Utrecht (Netherlands); Reading Univ., Postgraduate Research Inst. for Sedimentology, Reading (United Kingdom)

    1998-02-01

    In order to update the geohydrologic characterisation of Chaves geothermal area, coupled isotopic and chemical studies have been carried out on hot and cold CO{sub 2}-rich mineral waters discharging, in northern Portugal, along one of the major regional NNE-trending faults (the so-called Verin-Chaves-Penacova Depression). Based upon their location, and chemical and isotopic composition, the analysed waters can be divided into two groups. The northern group belongs to the HCO{sub 3}/Na/CO{sub 2}-rich type, and consists of the hot spring waters of Chaves and the cold spring waters of Vilarelho da Raia. The {delta}D and {delta}{sup 18}O values show that these waters are of meteoric origin. The lack of an {sup 18}O shift indicates that there is no evidence of water/rock interaction at high temperatures. The southern group includes the cold spring waters of Campilho/Vidago and Sabroso/Pedras Salgadas. Their chemistry is similar to that of the northern group but their heavier {delta}D and {delta}{sup 18}O values could be attributed to different recharge altitudes. Mixing between deep mineralised waters and dilute superficial waters of meteoric origin might explain the higher {sup 3}H activity found in the Vidago and Pedras Salgadas mineral waters. Alternatively, they could be mainly related to shallow underground flowpaths. The {delta}{sup 13}C values support a deep-seated origin for the CO{sub 2}. The {delta}{sup 37}Cl is comparable in all the mineral waters of the study areas, indicating a common origin of Cl. The {sup 87}Sr/{sup 86}Sr ratios in waters seem to be dominated by the dissolution of plagioclases or granitic rocks. (Author)

  13. Detecting hot spots at hazardous-waste sites

    International Nuclear Information System (INIS)

    Zirschky, J.; Gilbert, R.O.

    1984-01-01

    Evaluating the need for remedial cleanup at a waste site involves both finding the average contaminant concentration and identifying highly contaminated areas, or hot spots. A nomographic procedure to determine the sample configuration needed to locate a hot spot is presented. The technique can be used to develop a waste-site sampling plant - to determine either the grid spacing required to detect a hot spot at a given level of confidence, or the probability of finding a hot spot of a certain size, given a particular grid spacing. The method and computer program (ELIPGRID) were developed for locating geologic deposits, but the basic procedure can also be used to detect hot spots at chemical- or nuclear-waste disposal sites. Nomographs based on the original program are presented for three sampling-grid configurations - square, rectangular and triangular

  14. Trends in gel dosimetry: Preliminary bibliometric overview of active growth areas, research trends and hot topics from Gore’s 1984 paper onwards

    International Nuclear Information System (INIS)

    Baldock, C

    2017-01-01

    John Gore’s seminal 1984 paper on gel dosimetry spawned a vibrant research field ranging from fundamental science through to clinical applications. A preliminary bibliometric study was undertaken of the gel dosimetry family of publications inspired by, and resulting from, Gore’s original 1984 paper to determine active growth areas, research trends and hot topics from Gore’s paper up to and including 2016. Themes and trends of the gel dosimetry research field were bibliometrically explored by way of co-occurrence term maps using the titles and abstracts text corpora from the Web of Science database for all relevant papers from 1984 to 2016. Visualisation of similarities was used by way of the VOSviewer visualisation tool to generate cluster maps of gel dosimetry knowledge domains and the associated citation impact of topics within the domains. Heat maps were then generated to assist in the understanding of active growth areas, research trends, and emerging and hot topics in gel dosimetry. (paper)

  15. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas.

    Science.gov (United States)

    Vinothkumar, Vilvanathan; Arunkumar, Ganesan; Revathidevi, Sundaramoorthy; Arun, Kanagaraj; Manikandan, Mayakannan; Rao, Arunagiri Kuha Deva Magendhra; Rajkumar, Kottayasamy Seenivasagam; Ajay, Chandrasekar; Rajaraman, Ramamurthy; Ramani, Rajendren; Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan

    2016-06-01

    Squamous cell carcinoma (SCC) of the uterine cervix and oral cavity are most common cancers in India. Telomerase reverse transcriptase (TERT) overexpression is one of the hallmarks for cancer, and activation through promoter mutation C228T and C250T has been reported in variety of tumors and often shown to be associated with aggressive tumors. In the present study, we analyzed these two hot spot mutations in 181 primary tumors of the uterine cervix and oral cavity by direct DNA sequencing and correlated with patient's clinicopathological characteristics. We found relatively high frequency of TERT hot spot mutations in both cervical [21.4 % (30/140)] and oral [31.7 % (13/41)] squamous cell carcinomas. In cervical cancer, TERT promoter mutations were more prevalent (25 %) in human papilloma virus (HPV)-negative cases compared to HPV-positive cases (20.6 %), and both TERT promoter mutation and HPV infection were more commonly observed in advanced stage tumors (77 %). Similarly, the poor and moderately differentiated tumors of the uterine cervix had both the TERT hot spot mutations and HPV (16 and 18) at higher frequency (95.7 %). Interestingly, we observed eight homozygous mutations (six 228TT and two 250TT) only in cervical tumors, and all of them were found to be positive for high-risk HPV. To the best of our knowledge, this is the first study from India reporting high prevalence of TERT promoter mutations in primary tumors of the uterine cervix and oral cavity. Our results suggest that TERT reactivation through promoter mutation either alone or in association with the HPV oncogenes (E6 and E7) could play an important role in the carcinogenesis of cervical and oral cancers.

  16. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  17. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  18. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  19. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  20. Basal cell carcinoma of the skin with areas of squamous cell carcinoma: a basosquamous cell carcinoma?

    OpenAIRE

    de Faria, J

    1985-01-01

    The diagnosis of basosquamous cell carcinoma is controversial. A review of cases of basal cell carcinoma showed 23 cases that had conspicuous areas of squamous cell carcinoma. This was distinguished from squamous differentiation and keratotic basal cell carcinoma by a comparative study of 40 cases of compact lobular and 40 cases of keratotic basal cell carcinoma. Areas of intermediate tumour differentiation between basal cell and squamous cell carcinoma were found. Basal cell carcinomas with ...

  1. Techniques for remote maintenance of in-cell material-handling system in the HFEF/N main cell

    International Nuclear Information System (INIS)

    Tobias, D.A.; Frickey, C.A.

    1975-01-01

    Operations in the main cell of HFEF/N have required development of remote handling equipment and unique techniques for maintaining the in-cell material-handling system. Specially designed equipment is used to remove a disabled crane or electromechanical manipulator bridge from its support rails and place it on floor stands for repair or maintenance. Support areas for the main cell, such as the spray chamber and hot repair area, provide essential decontamination, repair, and staging areas for the in-cell material-handling-system equipment and tools. A combined engineering and technical effort in upgrading existing master-slave manipulators has definitely reduced the requirements for their maintenance. The cell is primarily for postirradiation examination of LMFBR materials and fuel elements

  2. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  3. Large-area OLED lightings and their applications

    International Nuclear Information System (INIS)

    Park, J W; Shin, D C; Park, S H

    2011-01-01

    In this paper, we review the key issues related to the fabrication of large-area organic light-emitting devices (OLEDs) for lighting applications. We discuss the origin of a short-circuit problem, luminance non-uniformity, hot spot, efficiency reduction (power loss), and heat generation and present the way of suppressing them. We also introduce three different application areas of large-area OLED lighting panels. They can be integrated with a solar cell for power recycling or inorganic LEDs for emotional lightings. The feasibility of using OLEDs for the application of visible-light communications is also reviewed

  4. TWRS tank waste pretreatment process development hot test siting report

    International Nuclear Information System (INIS)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities

  5. Perpendicular electron cyclotron emission from hot electrons in TMX-U

    International Nuclear Information System (INIS)

    James, R.A.; Ellis, R.F.; Lasnier, C.J.; Casper, T.A.; Celata, C.M.

    1984-01-01

    Perpendicular electron cyclotron emission (PECE) from the electron cyclotron resonant heating of hot electrons in TMX-U is measured at 30 to 40 and 50 to 75 GHz. This emission is optically thin and is measured at the midplane, f/sub ce/ approx. = 14 GHz, in either end cell. In the west end cell, the emission can be measured at different axial positions thus yielding the temporal history of the hot electron axial profile. These profiles are in excellent agreement with the axial diamagnetic signals. In addition, the PECE signal level correlates well with the diamagnetic signal over a wide range of hot electron densities. Preliminary results from theoretical modeling and comparisons with other diagnostics are also presented

  6. Hot ductility of medium carbon steel with vanadium

    International Nuclear Information System (INIS)

    Lee, Chang-Hoon; Park, Jun-Young; Chung, JunHo; Park, Dae-Bum; Jang, Jin-Young; Huh, Sungyul; Ju Kim, Sung; Kang, Jun-Yun; Moon, Joonoh; Lee, Tae-Ho

    2016-01-01

    Hot ductility of medium carbon steel containing 0.52 wt% of carbon and 0.11 wt% of vanadium was investigated using a hot tensile test performed up to fracture. The hot ductility was evaluated by measuring the reduction of area of the fractured specimens, which were strained at a variety of test temperatures in a range of 600–1100 °C at a strain rate of 2×10"−"3/s. The hot ductility was excellent in a temperature range of 950–1100 °C, followed by a decrease of the hot ductility below 950 °C. The hot ductility continued to drop as the temperature was lowered to 600 °C. The loss of hot ductility in a temperature range of 800–950 °C, which is above the Ae_3 temperature, was due to V(C,N) precipitation at austenite grain boundaries. The further decline of hot ductility between 700 °C and 750 °C resulted from the transformation of ferrite films decorating austenite grain boundaries. The hot ductility continued to decrease at 650 °C or less, owing to ferrite films and the pearlite matrix, which is harder than ferrite. The pearlite was transformed from austenite due to relatively high carbon content.

  7. Assessment of PCBs and exposure risk to infants in breast milk of primiparae and multiparae mothers in an electronic waste hot spot and non-hot spot areas in Ghana.

    Science.gov (United States)

    Asamoah, Anita; Essumang, David Kofi; Muff, Jens; Kucheryavskiy, Sergey V; Søgaard, Erik Gydesen

    2018-01-15

    The aim of the study was to assess the levels of PCBs in the breast milk of some Ghanaian women at suspected hotspot and relatively non-hotspot areas and to find out if the levels of these PCBs pose any risk to the breastfed infants. A total of 128 individual human breast milk were sampled from both primiparae and multiparae mothers. The levels of PCBs in the milk samples were compared. Some of these mothers (105 individuals) work or reside in and around Agbogbloshie (hot-spot), the largest electric and electronic waste dump and recycling site in Accra, Ghana. Others (23 donor mothers) also reside in and around Kwabenya (non-hotspot) which is a mainly residential area without any industrial activities. Samples were analyzed using GC-MS/MS. The total mean levels and range of Σ 7 PCBs were 3.64ng/glipidwt and ˂LOD-29.20ng/glipidwt, respectively. Mean concentrations from Agbogbloshie (hot-spot area) and Kwabenya (non-hotspot areas) were 4.43ng/glipidwt and 0.03ng/glipidwt, respectively. PCB-28 contributed the highest of 29.5% of the total PCBs in the milk samples, and PCB-101 contributed the lowest of 1.74%. The estimated daily intake of PCBs and total PCBs concentrations in this work were found to be lower as compared to similar studies across the world. The estimated hazard quotient using Health Canada's guidelines threshold limit of 1μg/kgbw/day showed no potential health risk to babies. However, considering minimum tolerable value of 0.03μg/kgbw/day defined by the Agency for Toxic Substances and Disease Registry (ATSDR), the values of some mothers were found to be at the threshold limit. This may indicate a potential health risk to their babies. Mothers with values at the threshold levels of the minimum tolerable limits are those who work or reside in and around the Agbogbloshie e-waste site. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    Science.gov (United States)

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Report on achievements in fiscal 1973 in studies of technologies to develop and utilize resources and preserve national land. Study on hot water systems in geothermal areas; 1973 nendo chinetsu chiiki no nessuikei ni kansuru kenkyu seika chukan hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    It is important for geothermal energy to develop and utilize it in a rational manner. To achieve the objective, hot water systems must be studied comprehensively and elucidated from the standpoint of the systems as a whole. The present study, standing on this viewpoint, is intended to elucidate hot water systems and establish a survey method thereon. Fiscal 1973 has selected four areas (northern Hachimantai, southern Hachimantai, Onikubi and Kuju areas) as the model study fields, and used as the main field the Onikubi area, which clearly shows the structural catchment basin. Studies were performed in this area on hydraulic hot flow rates, isotopic geology, and reservoirs. In the hydraulic hot flow rate study, the amount of rainfall, amount of flowing water, and amount of hot spring water flow-out were observed continually. In the isotopic geology study, hydrogen in hot spring water and underground water, and composition of oxygen isotope were analyzed. Estimation was made from the result thereof on water balance, heat balance, and underground residence time. In the study of reservoirs, measurements were performed inside the wells, and estimation was made on locations and sizes of the reservoirs by surveying distribution of transformed minerals and cracks. (NEDO)

  10. HOT AEROSOL FIRE EXTINGUISHING AGENTS AND THE ASSOCIATED TECHNOLOGIES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Xiaotian Zhang

    2015-09-01

    Full Text Available AbstractSince the phase out of Halon extinguishers in the 1980s, hot aerosol fire suppression technology has gained much attention. Unlike traditional inert gas, foam, water mist and Halon fire suppression agents, hot aerosol fire extinguishing agents do not need to be driven out by pressurized gases and can extinguish class A, B, C, D and K fires at 30 to 200 g/m3. Generally, hot aerosol fire extinguishing technology has developed from a generation I oil tank suppression system to a generation III strontium salt based S-type system. S-type hot aerosol fire extinguishing technology greatly solves the corrosion problem of electrical devices and electronics compared to potassium salt based generation I & II hot aerosol fire extinguishing technology. As substitutes for Halon agents, the ODP and GWP values of hot fire extinguishing aerosols are nearly zero, but those fine aerosol particles can cause adverse health effects once inhaled by human. As for configurations of hot aerosol fire extinguishing devices, fixed or portable cylindrical canisters are the most common among generation II & III hot aerosol fire extinguishers across the world, while generation I hot aerosol fire suppression systems are integrated with the oil tank as a whole. Some countries like the U.S., Australia, Russia and China, etc. have already developed standards for manufacturing and quality control of hot aerosol fire extinguishing agents and norms for hot aerosol fire extinguishing system design under different fire protection scenarios. Coolants in hot aerosol fire suppression systems, which are responsible for reducing hot aerosol temperature to avoid secondary fire risk are reviewed for the first time. Cooling effects are generally achieved through vaporization and endothermic chemical decomposition of coolants. Finally, this review discussed areas applying generation I, II or III hot aerosol fire suppression technologies. The generation III hot aerosol fire extinguishing

  11. Hot water reticulation

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, S. K.

    1977-10-15

    Hot water reticulation (district heating) is an established method of energy supply within cities in many countries. It is based on the fact that heat can often be obtained cheaply in bulk, and that the resultant savings can, in suitable circumstances, justify the investment in a reticulation network of insulated pipes to distribute the heat to many consumers in the form of hot water or occasionally steam. The heat can be used by domestic, commercial, and industrial consumers for space heating and water heating, and by industries for process heat. The costs of supplying domestic consumers can be determined by considering an average residential area, but industrial and commercial consumers are so varied in their requirements that every proposal must be treated independently. Fixed costs, variable costs, total costs, and demand and resource constraints are discussed.

  12. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  13. Study of hot cracking potential in a 6-ton steel ingot casting

    Science.gov (United States)

    Yang, Jing'an; Liu, Baicheng; Shen, Houfa

    2018-04-01

    A new hot cracking potential (HCP) criterion, for the appearance of hot tearing in steel ingot castings, is proposed. The maximum value of the first principal stress, divided by the dynamic yield strength in the brittle temperature range (BTR), was used to identify the HCP. Experiments were carried out on a 6-ton P91 steel ingot in which severe hot tearing was detected in the upper centerline. Another ingot, with a better heat preservation riser, and without hot tearing, was used for comparison. Samples were obtained from the area of the ingot body with hot tearing, and their morphologies were inspected by a X-ray high energy industrial computed tomography. The carbon and sulfur distributions around the hot tearing were characterized by an infrared spectrometry carbon and sulfur analyzer. High temperature mechanical properties were obtained by a Gleeble thermal simulation machine, under different strain rates. Then, thermo-mechanical simulations using an elasto-viscoplastic finite-element model were conducted to analyze the stress and strain evolution during ingot solidification. The results showed that the hot tearing area, which was rich in both carbon and sulfur, was under excessive tensile stress in the BTR, bearing the highest HCP.

  14. Immune changes during whole body hot water immersion: the role of growth hormone.

    Science.gov (United States)

    Kappel, M; Poulsen, T D; Hansen, M B; Galbo, H; Pedersen, B K

    1997-07-01

    Studies examined the role of growth hormone, catecholamines, and beta-endorphins in changes in natural killer cell activity, subtypes of blood mononuclear cells, and leukocyte concentration in response to hot water immersion in humans. The response of leukocytes and neutrophils to 2 hours of hot water immersion and simultaneous administration of propranolol, somatostatin, naloxone, or isotonic saline are reported.

  15. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  16. FY 1996 geothermal development/promotion survey. Report of hot water survey results (No. B-3 Kumaishi area); 1996 nendo chinetsu kaihatsu sokushin chosa. Nessui no chosa hokokusho (No.B-3 Kumaishi chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Reported herein are the survey results of hot water in the Kumaishi area, Hokkaido, as part of the FY 1996 geothermal development/promotion survey project. A total of 277 spouting guidance tests were conducted by the swabbing method for 10 days at the N7-KI-1 well, which, however, failed to achieve continuous spouting of geothermal fluid. A total of 144 swabbing tests were conducted for 8 days at the N7-KI-2 well. The geothermal fluid is spontaneously spouted out, although intermittently, after the main valve was opened, because it had a pressure of 4.1 kg/cm{sup 2} G at the mouth of the well from the first. However, the final self-spouting quantity remained unchanged in spite of the guidance works. The hot water had a pH 6.4, and contained Na as a cation at 8,940 mg/L and Cl as an anion at 14,500 mg/L as the major impurities. The associated gas was mainly composed of carbon dioxide, containing little hydrogen sulfide. The hot water spouted out through the wells contained Na and a high concentration of Cl as the major impurities, suggesting possibility of mixing hot water containing a high concentration of salt with surface water. It is considered that neither hot water nor its impurity concentrations are evenly distributed in the deep underground of the Kumaishi area. It is therefore considered that the deep underground hot water sources for hot spring slightly vary in composition and impurity concentrations. (NEDO)

  17. Closure of the concrete supercontainer in hot cell under thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Craeye, Bart, E-mail: bart.craeye@artesis.b [Artesis Univerity College of Antwerp, Applied Engineering and Technology, Antwerp (Belgium); De Schutter, Geert [Magnel Laboratory for Concrete Research, Ghent University, Technologiepark-Zwijnaarde 904, 9052 Ghent (Belgium); Wacquier, William; Van Humbeeck, Hughes [ONDRAF/NIRAS, Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Belgium); Van Cotthem, Alain [Tractebel Development Engineering, Consulting Company (Belgium); Areias, Lou [SCK.CEN, Belgian Nuclear Research Center (Belgium)

    2011-05-15

    Research highlights: We model the behaviour of the supercontainer for the disposal of high-level waste and spent fuel assemblies during fabrication at ground surface. We study the early-age cracking behaviour of the buffer and evaluate the crack creating mechanisms. In case accurate measures are taken, cracking of the buffer can be avoided. - Abstract: For the final disposal of long-lived, heat-emitting vitrified high-level waste (HLW) in a clayey host rock, an intensive study is conducted to investigate the early-age behaviour of concrete supercontainers. Self-compacting concrete (SCC) is taken as the reference concrete type as it facilitates the casting process in combination with an improved homogeneity compared to the traditional concrete compositions. A laboratory characterization program is conducted to obtain the relevant thermal, mechanical and maturity-related properties of the SCC. These obtained data are implemented into the material database of the finite element tool HEAT to study the behaviour of the concrete layers during the different construction stages of the supercontainer: (i) Stage 1: Fabrication of the concrete buffer inside a stainless steel envelope. No early-age cracking is expected in case accurate measures are taken to reduce the thermal gradient between the outer surface and the middle of the buffer, e.g. by providing insulation and excluding wind. (ii) Stages 2-4: Emplacement of the carbon steel overpack containing the HLW canisters, filling the remaining annular gap with cementitious filler and closure by fitting the lid under thermal load. The construction stages (2-4) for the closure of the supercontainer are executed in hot cell. In this study, the crack creating mechanism and the behaviour of the concrete supercontainer during these construction stages in hot cell are investigated. In case precautionary measures are taken, such as reducing the coefficient of thermal expansion (CTE) of the overpack, prolonging the preceding cooling

  18. Closure of the concrete supercontainer in hot cell under thermal load

    International Nuclear Information System (INIS)

    Craeye, Bart; De Schutter, Geert; Wacquier, William; Van Humbeeck, Hughes; Van Cotthem, Alain; Areias, Lou

    2011-01-01

    Research highlights: → We model the behaviour of the supercontainer for the disposal of high-level waste and spent fuel assemblies during fabrication at ground surface. → We study the early-age cracking behaviour of the buffer and evaluate the crack creating mechanisms. → In case accurate measures are taken, cracking of the buffer can be avoided. - Abstract: For the final disposal of long-lived, heat-emitting vitrified high-level waste (HLW) in a clayey host rock, an intensive study is conducted to investigate the early-age behaviour of concrete supercontainers. Self-compacting concrete (SCC) is taken as the reference concrete type as it facilitates the casting process in combination with an improved homogeneity compared to the traditional concrete compositions. A laboratory characterization program is conducted to obtain the relevant thermal, mechanical and maturity-related properties of the SCC. These obtained data are implemented into the material database of the finite element tool HEAT to study the behaviour of the concrete layers during the different construction stages of the supercontainer: (i) Stage 1: Fabrication of the concrete buffer inside a stainless steel envelope. No early-age cracking is expected in case accurate measures are taken to reduce the thermal gradient between the outer surface and the middle of the buffer, e.g. by providing insulation and excluding wind. (ii) Stages 2-4: Emplacement of the carbon steel overpack containing the HLW canisters, filling the remaining annular gap with cementitious filler and closure by fitting the lid under thermal load. The construction stages (2-4) for the closure of the supercontainer are executed in hot cell. In this study, the crack creating mechanism and the behaviour of the concrete supercontainer during these construction stages in hot cell are investigated. In case precautionary measures are taken, such as reducing the coefficient of thermal expansion (CTE) of the overpack, prolonging the

  19. Modeling Single Occupant Vehicle Behavior in High-Occupancy Toll (HOT) Facilities

    Science.gov (United States)

    2009-12-14

    High-occupancy toll (HOT) lanes are in operation, under construction, and planned for in several major metropolitan areas. The premise behind HOT lanes is to allow single occupant vehicles (SOVs) to access high occupancy vehicle (HOV) lanes (and theo...

  20. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodière, Jean; Lombez, Laurent, E-mail: laurent.lombez@chimie-paristech.fr [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); Le Corre, Alain; Durand, Olivier [INSA, FOTON-OHM, UMR 6082, F-35708 Rennes (France); Guillemoles, Jean-François [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); NextPV, LIA CNRS-RCAST/U. Tokyo-U. Bordeaux, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-05-04

    We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs. This indicates a working condition beyond the classical Shockley-Queisser limit.

  1. Depressurization test on hot gas duct

    International Nuclear Information System (INIS)

    Tanihira, Masanori; Kunitomi; Kazuhiko; Inagaki, Yoshiyuki; Miyamoto, Yoshiaki; Sato, Yutaka.

    1989-05-01

    To study the integrity of internal structures and the characteristics in a hot gas duct under the rapid depressurization accident, depressurization tests have been carried out using a test apparatus installed the hot gas duct with the same size and the same structures as that of the High Temperature Engineering Test Reactor (HTTR). The tests have been performed with three parameters: depressurization rate (0.14-3.08 MPa/s) determined by orifice diameter, area of the open space at the slide joint (11.9-2036 mm 2 ), and initial pressure (1.0-4.0 MPa) filled up in a pressure vessel, by using nitrogen gas and helium gas. The maximum pressure difference applied on the internal structures of the hot gas duct was 2.69 MPa on the liner tube and 0.45 MPa on the separating plate. After all tests were completed, the hot gas duct which was used in the tests was disassembled. Inspection revealed that there were no failure and no deformation on the internal structures such as separating plates, insulation layers, a liner tube and a pressure tube. (author)

  2. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting

    OpenAIRE

    Arıkan, Mustafa

    2015-01-01

    Hot ductility properties of a peritectic steel for welded gas cylinders during continuous casting were studied by performing hot tensile tests at certain temperatures ranging from 1200 to 700 °C for some cooling rates by using Gleeble-3500 thermo-mechanical test and simulation machine in this study. The effects of cooling rate and strain rate on hot ductility were investigated and continuous casting process map (time-temperature-ductility) were plotted for this material. Reduction of area ...

  3. Characteristics of hot spots of melon fly, Bactrocera (Dacus) cucurbitae Coquillett (Diptera: Tephritidae) in sterile fly release areas on Okinawa island [Japan

    International Nuclear Information System (INIS)

    Nakamori, H.; Shiga, M.; Kinjo, K.

    1993-01-01

    The spatio-temporal dynamics of populations of the melon fly, Bactrocera (Dacus) cucurbitae COQUILLETT, in the southern part of Okinawa Island where an eradication program using sterile flies has been conducted, were analyzed in relation to the seasonal succession and abundance of wild and cultivated host fruits. The study areas were classified into four major zones according to the seasonal abundance of flies caught by cue-lure traps and the availability of host fruits including Diplocyclos palmatus, Melothria liukiuensis and Momordica charantia var. pevel. Zone-I is characterized by the continuous presence of host fruits and a relatively-high population density of the melon fly indicated by the cue-lure trap catch of more than 1, 000 flies per 1, 000 traps per day throughout the year. Zone-II has a characteristic decline in both number of host fruits and fly density during the fall-winter period with an annual average of less than 1, 000 flies per 1, 000 traps per day. Zone-III includes areas where host fruits and flies (about 1 fly/trap/day) were relatively abundant only during the winter-spring period. Zone-IV is characterized by constantly low availability of host fruits and low fly density throughout the year. Hot spots, which are defined as areas where the ratio of sterile to wild flies hardly increases despite frequent and intensive release of sterile flies, were found in the Zone-I areas. Therefore, the continuous presence and abundance of host fruits appears to hot spots. For effective control of this species, it is essential to locate such areas and release sterile flies

  4. Ceramide-Enriched Membrane Domains in Red Blood Cells and the Mechanism ofSphingomyelinase-Induced Hot-Cold Hemolysis

    DEFF Research Database (Denmark)

    Montes, Ruth; Lopez, David; Sot, Jesus

    2008-01-01

    Hot-cold hemolysis is the phenomenon whereby red blood cells, preincubated at 37 °C in the presence of certain agents, undergo rapid hemolysis when transferred to 4 °C. The mechanism of this phenomenon is not understood. PlcHR2, a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa......) but also in goat erythrocytes, which lack PC. However, in horse erythrocytes, with a large proportion of PC and almost no SM, hot-cold hemolysis induced by PlcHR2 is not observed. Fluorescence microscopy observations confirm the formation of ceramide-enriched domains as a result of PlcHR2 activity. After......-cold hemolysis. Differential scanning calorimetry of erytrocyte membranes treated with PlcHR2 demonstrates the presence of ceramide-rich domains that are rigid at 4 °C but fluid at 37 °C. Ceramidase treatment causes the disapperance of the calorimetric signal assigned to ceramide-rich domains. Finally...

  5. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  6. Early and late hot extremes, and elongation of the warm period over Greece

    Science.gov (United States)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2017-04-01

    The eastern Mediterranean has been assigned as one of the most responsive areas in climate change, mainly with respect to the occurrence of warmer and drier conditions. In Greece in particular, observations suggest prominent increases in the summer air temperature which in some areas amount to approximately 1 0C/decade since the mid 1970s, while Regional Climate Models simulate further increases in the near and distant future. These changes are coupled with simultaneous increase in the occurrence of hot extremes. In addition to changes in the frequency and intensity of hot extrems, timing of occurrence is also of special interest. Early heat waves in particular, have been found to increase thermal risk in humans. The study explores variations and trends in timing, namely the date of first and last occurrence of hot extremes within the year, and subsequently the hot extremes period (season), defined as the time interval (number of days) between first and last hot extremes occurrence, over Greece. A case study for the area of Athens covering a longer than 100-years period (1897-2015) was conducted first, which will be extended to other Greek areas. Several heat related climatic indices were used, based either on predefined temperature thresholds such as 'tropical days' (daily maximum air temperature, Tmax >30 0C), 'tropical nights' (daily minimum air temperature, Tmin >20 0C), 'hot days' (Tmax >35 0C), or on local climate statistics such as days with Tmax (or Tmin) > 95th percentile. The analysis revealed significant changes in the period of hot extremes and specifically elongation of the period, attributed to early rather than late hot extremes occurrence. An earlier shift of the first tropical day and the first tropical night occurrence by approximately 2 days/decade was found over the study period. An overall elongation of the 'hot days' season by 2.6 days/decade was also observed, which is more prominent since the early 1980s. Over the last three decades, earlier

  7. Hot air balloon engine

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd, 12 Lentara Street, Kenmore, Brisbane 4069 (Australia)

    2009-04-15

    This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10 kW to 1 MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines. (author)

  8. Delayed hot spots in a low energy plasma focus

    International Nuclear Information System (INIS)

    Rout, R.K.; Shyam, A.

    1991-01-01

    In a low energy Mather-type plasma focus device, hot spots having temperature in the range of few keV have been observed even 1 μs after the pinch disintegration and in regions away from the pinch area. These hot spots are perhaps created by the thermal runaway due to temperature fluctuations in the background gas. (author). 12 refs., 6 figs

  9. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    International Nuclear Information System (INIS)

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA's hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R ampersand D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required

  10. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  11. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  12. Study of tourists exposure rate in Mahallat hot Spring Region

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, H. M.B. [Isfahan Univ. of Medical Sciences, Isfahan (Iran, Islamic Republic of); Fallah, M.G. [Isfahan University of Medical Sciences (Iran, Islamic Republic of); Ghiasinejad, M. [Iran Atomic Energy Organization, Tehran (Iran, Islamic Republic of)

    2006-07-01

    Introduction: High level radiation areas have been recognized on various parts of the earth. Some of these areas include: Brasilia, India, and Iran. Mahallat hot spring region in the central part of Iran is also one of these areas. Study of exposure in these areas could be helpful in investigating the effects of ionizing radiation. Materials and Methods: In addition to several seasonal springs, Mahallat hot spring region contains five permanent springs named: Soleimani, Shafa, Dombe, Romatism and Sauda. Internal exposure (due to inhalation of radon gas and drinking water) and external exposure (due to cosmic rays and radioactive elements in the ground) to the tourists was studied. Used materials and apparatus include: RSS -112 ionizing chamber for environmental gamma rays exposure measurement, highly pure germanium detector for measuring radioactive elements in the ground, liquid scintillation counter for measuring {sup 222}Rn gas concentration in water samples, Bubbler chamber and Locus cells for Rn concentration measurements (Emanation method) and Alfa guard detector for {sup 226}Ra concentration measurements. Conclusions and Discussion: A total of 270 visitors are included in this study. Considering residual durations of the studied group in open and closed environment of bathrooms, hotel and inn rooms, obtained annual external effective dose is 75.4{+-}8.7{mu}Sv and 138.3{+-}11.8{mu}Sv for natives and travelers respectively. EEC coefficients has been used for calculating annual internal effective dose due to radon gas inhalation. Annual internal effective dose, in this path, is 0.9 and 2.1 mSv in open and closed environment for native and visitors respectively. Annual internal effective dose due to drinking water, is 0.43 and 0.09{mu}Sv for natives people and travelers, respectively. Measurements show that more than 90% of the received dose in the studied groups is due to radon gas inhalation. External and internal dose summation is 0.98 mSv for natives and 2

  13. Study of tourists exposure rate in Mahallat hot Spring Region

    International Nuclear Information System (INIS)

    Tavakoli, H. M.B.; Fallah, M.G.; Ghiasinejad, M.

    2006-01-01

    Introduction: High level radiation areas have been recognized on various parts of the earth. Some of these areas include: Brasilia, India, and Iran. Mahallat hot spring region in the central part of Iran is also one of these areas. Study of exposure in these areas could be helpful in investigating the effects of ionizing radiation. Materials and Methods: In addition to several seasonal springs, Mahallat hot spring region contains five permanent springs named: Soleimani, Shafa, Dombe, Romatism and Sauda. Internal exposure (due to inhalation of radon gas and drinking water) and external exposure (due to cosmic rays and radioactive elements in the ground) to the tourists was studied. Used materials and apparatus include: RSS -112 ionizing chamber for environmental gamma rays exposure measurement, highly pure germanium detector for measuring radioactive elements in the ground, liquid scintillation counter for measuring 222 Rn gas concentration in water samples, Bubbler chamber and Locus cells for Rn concentration measurements (Emanation method) and Alfa guard detector for 226 Ra concentration measurements. Conclusions and Discussion: A total of 270 visitors are included in this study. Considering residual durations of the studied group in open and closed environment of bathrooms, hotel and inn rooms, obtained annual external effective dose is 75.4±8.7μSv and 138.3±11.8μSv for natives and travelers respectively. EEC coefficients has been used for calculating annual internal effective dose due to radon gas inhalation. Annual internal effective dose, in this path, is 0.9 and 2.1 mSv in open and closed environment for native and visitors respectively. Annual internal effective dose due to drinking water, is 0.43 and 0.09μSv for natives people and travelers, respectively. Measurements show that more than 90% of the received dose in the studied groups is due to radon gas inhalation. External and internal dose summation is 0.98 mSv for natives and 2.2 mSv for for

  14. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  15. Geochemistry of hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Parry, W T; Ballantyne, J M; Bryant, N L; Dedolph, R E

    1980-01-01

    Hot spring deposits in the Roosevelt thermal area consist of opaline sinter and sinter-cemented alluvium. Alluvium, plutonic rocks, and amphibolite-facies gneiss have been altered by acid-sulfate water to alunite and opal at the surface, and alunite, kaolinite, montmorillonite, and muscovite to a depth of 70 m. Marcasite, pyrite, chlorite, and calcite occur below the water table at about 30 m. The thermal water is dilute (ionic strength 0.1 to 0.2) sodium-chloride brine. The spring water now contains 10 times as much Ca, 100 times as much Mg, and up to 2.5 times as much SO/sub 4/ as the deep water. Although the present day spring temperature is 25/sup 0/C, the temperature was 85/sup 0/C in 1950. A model for development of the observed alteration is supported by observation and irreversible mass transfer calculations. Hydrothermal fluid convectively rises along major fractures. Water cools by conduction and steam separation, and the pH rises due to carbon dioxide escape. At the surface, hydrogen and sulfate ions are produced by oxidation of H/sub 2/S. The low pH water percolates downward and reacts with feldspar in the rocks to produce alunite, kaolinite, montmorillonite, and muscovite as hydrogen ion is consumed. 4 figures, 4 tables.

  16. Mobile hot cell transition design phase study for radioactive waste treatment on the Hanford reservation site

    International Nuclear Information System (INIS)

    Pons, Y.

    2010-01-01

    Full text of publication follows: At the US Department of Energy's Hanford Reservation site, 4 caissons in under ground storage contain approximately 23 cubic meters of Transuranic (TRU) waste, in over 5,000 small packages. The retrieval of these wastes presents a number of very difficult issues, including the configuration of the vaults, approximately 50,000 curies of activity, high dose rates, and damaged/degraded waste packages. The waste will require remote retrieval and processing sufficient to produce certifiable RH-TRU waste packages. This RH-TRU will be packaged for staging on site until certification by CCP is completed to authorize shipment to the Waste Isolation Pilot Plant (WIPP). The project has introduced AREVA' s innovative Hot Mobile Cell (HMC) technology to perform size reduction, sorting, characterization, and packaging of the RH waste stream at the point of generation, the retrieval site in the field. This approach minimizes dose and hazard exposure to workers that is usually associated with this operation. The HMC can also be used to provide employee protection, weather protection, and capacity improvements similar to those realized in general burial ground. AREVA TA and his partner AFS will provide this technology based on the existing HMCs developed and operated in France: - ERFB (Bituminized Waste Drum Retrieval Facility): ERFB was built specifically for retrieving the bituminized waste drums (approximately 6,000 stored in trenches in the North zone on the Marcoule site (in operation since 2001). - ERCF (Waste Drum Recovery and Packaging Facility): The ERCF was built specifically to retrieve bituminized waste drums stored in 35 pits located in the south area on Marcoule site (in operation) - FOSSEA (Legacy Waste Removal and Trench Cleanup): The FOSSEA project consists of the retrieval of waste stored on the Basic Nuclear Facility. Waste from the 56 trenches will be inspected, characterised, and if necessary processed or repackaged, and

  17. Possibilities and prospects of investigation of irradiated structural and fuel materials using scanning electron microscope PHILLIPS XL 30 ESEM-TMP installed in the hot cell

    International Nuclear Information System (INIS)

    Golovanov, V. N.; Novoselov, A.E.; Kuzmin, S.V.; Yakovlev, V. V.

    2005-01-01

    Scanning electron microscope Philips XL 30 ESEM - TMP with X-ray microanalysis system INCA has been installed at SSC RF RIAR. The microscope is placed in the hot cell. Monitoring and control system is installed in the operator's room. Irradiated specimens are supplied to the hot cell through the transport terminal and installed into the microscope by manipulators. Direct contact of the personnel with radioactive materials is impossible. In addition it is developed the system of remote placement of the irradiated specimens into the specimen chamber of microscope. The system includes a stage with three seats, holders for different types of specimens and equipment for their remote loading in the holders. (Author)

  18. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Lanoe, J.Y.; Rivalier, P.

    2000-01-01

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h -1 . For a total throughput of 300 mL.h -1 , the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the

  19. Why superconducting vortices follow to moving hot sport?

    Science.gov (United States)

    Sergeev, Andrei; Michael, Reizer

    Recent experiments reported in Nature Comm. 7, 12801, 2016 show that superconducting vortices follow to the moving hot sport created by a focused laser beam, i.e. vortices move from the cold area to the moving hot area. This behavior is opposite to the vortex motion observed in numerous measurements of the vortex Nernst effect, where vortices always move against the temperature gradient. Taking into account that superconducting magnetization currents do not transfer entropy, we analyze the balance of forces acting on a vortex in stationary and dynamic temperature gradients. We show that the dynamic measurements may be described by a single vortex approximation, while in stationary measurements interaction between vortices is critical. Supported by NRC.

  20. A feature-based approach to modeling protein-protein interaction hot spots.

    Science.gov (United States)

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions.

  1. A feature-based approach to modeling protein–protein interaction hot spots

    Science.gov (United States)

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-01-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to π–related interactions, especially π · · · π interactions. PMID:19273533

  2. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    Science.gov (United States)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  3. The reliability improvement plan of hot cell examination data by introducing of Kolas

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Park, Dae Gyu; Ahn, Sang Bok; Choo, Yong Sun; Song, Wung Sup; Jung, Yang Hong; Yoo, Byung Ok; Baik, Seung Je; Lim, Nam Jin; Nam Ju Hee

    2000-01-01

    For enhancement of hot cell data reliability produced at Irradiated Material Examination Facility in KAERI,Korea a project to introduce Kolas of National Quality Assurance Institute. By Kolas introduction the examination data currently produced would be reinforced by additional function of uncertainty evaluation and would obtained more reliable data. The all of data collected would be quality controlled, so that it would be re-traceable. Presently at IMEF shock test, tension test, dimension measurement test, hardness test, density test, and composition analysis test will be subject to Kolas. It is also planned to expand the number of test items in near future. At the end of 2000 year IMEF aims to secure the certificate issued by the National Quality Assurance Institute. (Hong, J. S.)

  4. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  5. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  6. A new approach for helium backfilling and leak testing seal-welded capsules in a hot cell

    International Nuclear Information System (INIS)

    Strasslsund, E.K.; Berger, D.N.

    1992-05-01

    Gamma irradiation sources containing radioactive 137 Cesium Chloride are being produced at the US Department of Energy's Hanford Site as part of a Westinghouse Hanford company/Pacific Northwest Laboratory cooperative program. New equipment was developed to leak test the double-encapsulated sources in a hot cell. The equipment, which includes a helium backfill chamber and end cap press , a vacuum chamber, and a helium mass spectrometer, has provided technicians with the capability to detect leaks in sealed sources as small as 1. 0x10 -7 atm cm 3 /S helium

  7. Investigation of geothermal development and promotion for fiscal 1997. Fluid geochemical investigation (hot-spring gas) report (No. B-5 Musadake area); 1997 nendo chinetsu kaihatus sokushin chosa. Ryutai chikagaku chosa (onsen gas) hokokusho (No.B-5 Musadake chiiki)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This investigation elucidated the possible existence of geothermal reservoir layer in the subject area by studying and analyzing the hot-spring gasses of Musadake. The Musadake area is the one extending over Shibetu-cho and Nakashibetu-cho, Shibetu district, Hokkaido. The sampling of the hot-spring gasses was carried out at three natural gusher sites and one hot spring well site. The gasses in the Kawakita hot spring is most affected by volcanic gasses. The origin of the volcanic gasses is a magmatic gas of andesite nature the {sup 3}He/{sup 4}He ratio of which is 8X10{sup -6} or about. As a result of the analysis, the hot-spring water is Na-Cl type, high salt concentrated, and 200 degrees C in temperature; from the result of a gas geochemical thermometer, it is estimated to be not less than 250 degrees C. In the tectonic viewpoint, the depth hot water is derived from the meteorite water that flows in through a bent zone incident to the Musadake-Shitabanupuri mountain fault and from the fossil sea water that exists in the underground depth; the depth hot water is formed by conduction heat from a magma reservoir that formed Musadake and by volcanic ejecta. This depth hot water rises along Kawakita south, Urappu River fault, etc., mixing with the meteorite water and forming the shallow reservoir layer. (NEDO)

  8. Provision of 3G Mobile Services in Sparsely Populated Areas Using High Altitude Platforms

    Directory of Open Access Journals (Sweden)

    J. Holis

    2008-04-01

    Full Text Available This paper deals with the application of High Altitude Platforms for the provision of third generation mobile services in sparsely-populated areas or in developing countries. It focuses on the behavior of large cells provided via a multiple HAP deployment and shows the possibilities of using small cells located inside these large cells to serve hot-spot areas. The impact of the different types of HAP antenna masks and their adjustment on cell capacity and the quality of coverage is presented. The main parameter of the antenna radiation pattern under investigation is the power roll-off at the cell edge. Optimal values of this parameter are presented for different scenarios. Simulations of system level parameters were based on an iteration loops approach.

  9. Characterization report for Building 301 Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950`s and 1960`s for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970`s, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled.

  10. Characterization report for Building 301 Hot Cell Facility

    International Nuclear Information System (INIS)

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950's and 1960's for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970's, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled

  11. Murine leukemia virus vector integration favors promoter regions and regional hot spots in a human T-cell line

    International Nuclear Information System (INIS)

    Tsukahara, Tomonori; Agawa, Hideyuki; Matsumoto, Sayori; Matsuda, Mizuho; Ueno, Shuichi; Yamashita, Yuki; Yamada, Koichiro; Tanaka, Nobuyuki; Kojima, Katsuhiko; Takeshita, Toshikazu

    2006-01-01

    Genomic analysis of integration will be important in evaluating the safety of human gene therapy with retroviral vectors. Here, we investigated MLV vector integration sites in human T-cells, since they are amenable to gene transfer studies, and have been used therapeutically in clinical trials. We mapped 340 MLV vector integration sites in the infected human T-cell clones we established. The data showed that MLV preferred integration near the transcription start sites (±5 kb), near CpG islands (±1 kb), and within the first intron of RefSeq genes. We also identified MLV integration hot spots that contained three or more integrations within a 100 kb region. RT-PCR revealed that mRNA-levels of T-cell clones that contained MLV integrations near transcription start sites or introns were dysregulated compared to the uninfected cells. These studies help define the profile of MLV integration in T-cells and the risks associated with MLV-based gene therapy

  12. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Shikama, Tatsuo

    1999-01-01

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  13. Geothermal energy and hot springs in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Koga, T. (Hot Springs Therapeutics Research Institute, Kyushu, Univ., Japan)

    1971-01-01

    The hot springs in Ethiopia are concentrated in two areas: the North Afar depression and adjacent Red Sea shore, and a geothermal field 100 km from northeast to southwest in the central part of Ethiopia. The latter extends not only to the Great Rift Valley but also to the Aden Gulf. In the lake district in the central Great Rift Valley, there are a number of hot springs on the lake shore. These are along NE-SW fault lines, and the water is a sodium bicarbonate-type rich in HCO/sub 3/ and Na but low in C1 and Ca. In Dallol in the North Afar depression, CO/sub 2/-containing hot springs with high temperatures (110/sup 0/C) and a specific gravity of 1.4, were observed. In the South Afar depression, located in the northeastern part of the Rift Valley, there are many active volcanoes and hot springs between the lake district and the Danakil depression. The spring water is a sodium bicarbonate saline type. Nine graphs and maps are included.

  14. Hot interstellar matter in elliptical galaxies

    CERN Document Server

    Kim, Dong-Woo

    2012-01-01

    Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.

  15. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  16. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  17. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    Science.gov (United States)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  18. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  19. Thermal water of the Yugawara Hot Spring

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Y; Ogino, K; Nagatsuka, Y; Hirota, S; Kokaji, F; Takahashi, S; Sugimoto, M

    1963-03-01

    The Yugawara Hot Spring is located in the bottom of the dissected creata of the Yugawara volcano. Natural hot spring water ran dry almost twenty five years ago, and thermal water is now pumped up by means of deep drill holes. The hydrorogy of the thermal water was studied from both geochemical and geophysical points of view. Two types of thermal water, sodium chloride and calcium sulfate, are recognized. Sodium chloride is predominant in the high temperature area and low in the surrounding low temperature area. Calcium sulfate predominates in the low temperature area. Sodium chloride is probably derived from deep magmatic emanations as indicated in the high Li content. Sulfate ion seems to originate from oxidation of pyrite whose impregnation took place in the ancient activity of the Yugawara volcano. The content of Ca is stoichiometrically comparable with SO/sub 4//sup 2 -/. It is suggested that sulfuric acid derived from the oxidation of pyrite attacks calcite formed during the hydrothermal alteration of rocks. Some consideration of well logging in the geothermal area is also discussed. Temperature measurement in recharging of cold water is applicable to the logging of drill holes as well as the electric logging.

  20. Microbial ecology of hot desert edaphic systems.

    Science.gov (United States)

    Makhalanyane, Thulani P; Valverde, Angel; Gunnigle, Eoin; Frossard, Aline; Ramond, Jean-Baptiste; Cowan, Don A

    2015-03-01

    A significant proportion of the Earth's surface is desert or in the process of desertification. The extreme environmental conditions that characterize these areas result in a surface that is essentially barren, with a limited range of higher plants and animals. Microbial communities are probably the dominant drivers of these systems, mediating key ecosystem processes. In this review, we examine the microbial communities of hot desert terrestrial biotopes (including soils, cryptic and refuge niches and plant-root-associated microbes) and the processes that govern their assembly. We also assess the possible effects of global climate change on hot desert microbial communities and the resulting feedback mechanisms. We conclude by discussing current gaps in our understanding of the microbiology of hot deserts and suggest fruitful avenues for future research. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Management of hot cell waste in Atalante Facilities (abstract and presentation slides)

    International Nuclear Information System (INIS)

    Dancausse, Jean-Philippe; Ferlay, Gilles; Eysseric, Catherine

    2005-01-01

    In solution R and D experiments on nuclear fuel from dissolution to liquid extraction lead to produce a large set of wastes. This paper present how these highly contaminated solid and liquid wastes is managed in Hot Cells and in Atalante. Firstly, an inventory of several types of generated wastes is made: 1) Solid wastes. 2) Glass reactors and liquid solution containers. 3) Plastic and Teflon materials for sampling, Highly corrosive solutions. 4) Metallic containers for solid storage like fuels, crucibles. 5) Miscellaneous mixed solid materials. 6) Liquid wastes. 7) Rinsing liquids. 8) Highly corrosive waste containing fluorhydric acid. 9) Analytical solution with sulphate ions. 10) Organic solvent coming from liquid-liquid extraction. A focus will be made on optimised treatment of 1) solid wastes: Mechanically and chemically 2) liquid wastes containing sulphate ions and hydrogen fluoride, 3) organic liquid waste: to remove activity before hydrothermal oxidation. (Author)

  2. Amorphous areas in the cytoplasm of Dendrobium tepal cells

    Science.gov (United States)

    van Doorn, Wouter G.; Kirasak, Kanjana; Ketsa, Saichol

    2013-01-01

    In Dendrobium flowers some tepal mesophyll cells showed cytoplasmic areas devoid of large organelles. Such amorphous areas comprised up to about 40% of the cross-section of a cell. The areas were not bound by a membrane. The origin of these areas is not known. We show data suggesting that they can be formed from vesicle-like organelles. The data imply that these organelles and other material become degraded inside the cytoplasm. This can be regarded as a form of autophagy. The amorphous areas became surrounded by small vacuoles, vesicles or double membranes. These seemed to merge and thereby sequester the areas. Degradation of the amorphous areas therefore seemed to involve macroautophagy. PMID:23823702

  3. Treatment of concrete bars from the dismantling of hot cells

    International Nuclear Information System (INIS)

    Graf, A.; Stutz, U.; Valencia, L.

    2002-01-01

    The Central Decontamination Operations Department (HDB) of the Karlsruhe Research Center operates facilities for the disposal of radioactive waste. In general, their objective is to decontaminate radioactive residues for unrestricted release in order to minimize the volume of waste products suitable for repository storage. In the case of about 120 concrete bars from the dismantling of hot cells, we reduce the volume of radioactive waste by sawing off the most contaminated parts of the bar. If there are no insertions such as cables or ventilation systems, the rest of the bar is sandblasted and its activity manually measured to ensure compliance with the release criteria. Otherwise, the bar is minced into small pieces by a power shovel. Afterwards, the rubble is filled into drums and its activity is measured by the clearance measurement facility. If the rubble and the sandblasted bars do not exceed the activity limit specified by the release criteria, the material is disposed of without further regulations for unrestricted use. Those parts of the bars which can not be released must be stored in special containers suitable for the KONRAD final disposal. Using this method, about 70 % of the total mass can be released. (author)

  4. Dose control programme of Hot Cell facility at Isotope Wing

    International Nuclear Information System (INIS)

    Sapkal, Jyotsna A.; Suresh, Manju; Shreenivas, V.; Amruta, C.T.; Yadav, R.K.B.; Gopalkrishanan, R.K.; Patil, B.N.; Sastry, K.V.S.

    2015-01-01

    Hot Cell Facility of Board of Radiation Isotope Technology (BRIT) at Radiological Laboratories (RLG) is involved in fabrication of sealed radioisotopes like Cobalt-60, Cesium-137 and Iridium-192 radioisotopes which are widely used for various medical and industrial applications. In the field of Medicine, above radioactive sources are used for treatment procedures such as Teletherapy and Brachytherapy. 192 Ir radioisotope is widely used for industrial radiography particularly for non-destructive testing of welds in steel in the oil and gas industries. In spite of the increased production of these radioisotopes to meet the requirements from medical and industrial sector, the annual Collective Dose for BRIT facility, during 2011-2013 has shown a downward trend. This paper describes in brief the measures adopted by the facility based on the radiological safety inputs provided by Radiation Hazards Control (RHC) Unit of Isotope Wing, RLG for reducing the collective dose during year 2012 and 2013 by nearly 40% of collective dose consumed for year-2011. Strict implementation of the radiological safety measures during handling of radioactive sources, administrative controls and engineered safety measures resulted in lowering of collective dose during year 2011-2013. (author)

  5. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    Science.gov (United States)

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  6. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  7. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  8. Effects of Hot Streak Shape on Rotor Heating in a High-Subsonic Single-Stage Turbine

    Science.gov (United States)

    Dorney, Daniel J.; Gundy-Burlet, Karen L.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.

  9. Incidence of adult T-cell leukemia/lymphoma in nonendemic areas.

    Science.gov (United States)

    Yoshida, Noriaki; Chihara, Dai

    2015-02-01

    Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell neoplasm with extremely poor prognosis caused by human T-cell leukemia virus type 1 (HTLV-1). The distribution of HTLV-1 and the incidence of ATLL in endemic areas have been well described, however, little is known about the incidences and the trends of the disease in nonendemic areas. Recently, studies have shown that the HTLV-1 carriers are increasing in nonendemic areas. Also, the incidence of ATLL seems to be significantly increasing in nonendemic areas suggesting that HTLV-1 carriers have emigrated from endemic areas. These epidemiologic studies indicate the necessity of edification of the disease caused by HTLV-1 and establishing appropriate preventive methods against infection in nonendemic areas.

  10. Microstructural analysis of hot press formed 22MnB5 steel

    Science.gov (United States)

    Aziz, Nuraini; Aqida, Syarifah Nur; Ismail, Izwan

    2017-10-01

    This paper presents a microstructural study on hot press formed 22MnB5 steel for enhanced mechanical properties. Hot press forming process consists of simultaneous forming and quenching of heated blank. The 22MnB5 steel was processed at three different parameter settings: quenching time, water temperature and water flow rate. 22MnB5 was processed using 33 full factorial design of experiment (DOE). The full factorial DOE was designed using three factors of quenching time, water temperature and water flow rate at three levels. The factors level were quenching time range of 5 - 11 s, water temperature; 5 - 27°C and water flow rate; 20 - 40 L/min. The as-received and hot press forming processed steel was characterised for metallographic study and martensitic structure area percentage using JEOL Field Emission Scanning Electron Microscopic (FESEM). From the experimental finding, the hot press formed 22MnB5 steel consisted of 50 to 84% martensitic structure area. The minimum quenching time of 8 seconds was required to obtain formed sample with high percentage of martensite. These findings contribute to initial design of processing parameters in hot press forming of 22MnB5 steel blanks for automotive component.

  11. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  12. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  13. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  14. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  15. An environmental survey of Serpentine Hot Springs: Geology, hydrology, geochemistry, and microbiology

    Science.gov (United States)

    Nordstrom, D. Kirk; Hasselbach, Linda; Ingebritsen, Steven E.; Skorupa, Dana; McCleskey, R. Blaine; McDermott, Timothy R.

    2015-01-01

    Serpentine Hot Springs is the most visited site in the Bering Land Bridge National Preserve. The hot springs have traditionally been used by the Native people of the Seward Peninsula for religious, medicinal and spiritual purposes and continue to be used in many of the same ways by Native people today. The hot springs are also popular with non-Native users from Nome and other communities, recreational users and pilots from out of the area, and hunters and hikers.

  16. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  17. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China.

    Science.gov (United States)

    Song, Zhao-Qi; Wang, Feng-Ping; Zhi, Xiao-Yang; Chen, Jin-Quan; Zhou, En-Min; Liang, Feng; Xiao, Xiang; Tang, Shu-Kun; Jiang, Hong-Chen; Zhang, Chuanlun L; Dong, Hailiang; Li, Wen-Jun

    2013-04-01

    Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. HOT SPOT RELIEF WITH EMBEDDED BEAM FOR CDMA SYSTEMS IN HAPS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.

  19. Hot tearing susceptibility of binary Mg–Y alloy castings

    International Nuclear Information System (INIS)

    Wang, Zhi; Huang, Yuanding; Srinivasan, Amirthalingam; Liu, Zheng; Beckmann, Felix; Kainer, Karl Ulrich; Hort, Norbert

    2013-01-01

    Highlights: ► Quantitatively and qualitatively assessing hot tearing susceptibility for different alloys. ► Monitoring the hot tearing propagation process. ► Detecting the hot tearing initiation/onset temperature. ► Recording the stress and strain evolution during the casting solidification and the subsequent cooling. - Abstract: The influence of Y content on the hot tearing susceptibility (HTS) of binary Mg–Y alloys has been predicted using thermodynamic calculations based on Clyne and Davies model. The calculated results are compared with experimental results determined using a constrained rod casting (CRC) apparatus with a load cell and data acquisition system. Both thermodynamic calculations and experimental measurements indicate that the hot tearing susceptibility as a function of Y content follows the “λ” shape. The experimental results show that HTS first increases with increase in Y content, reaches the maximum at about 0.9 wt.%Y and then decreases with further increase the Y content. The maximum susceptibility observed in Mg–0.9 wt.%Y alloy is attributed to its coarsened columnar microstructure, large solidification range and small amount of eutectic at the time of hot tearing. The initiation of hot cracks is monitored during CRC experiments. It corresponds to a drop in load increment on the force curves. The critical solid fractions at which the hot cracks are initiated are in the range from 0.9 to 0.99. It is also found that it decreases with increasing the content of Y. The hot cracks propagate along the dendritic or grain boundaries through the interdendritic separation or tearing of interconnected dendrites. Some of the formed cracks are possible to be healed by the subsequent refilling of the remained liquids

  20. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER.

    Science.gov (United States)

    Heusermann, Wolf; Hean, Justin; Trojer, Dominic; Steib, Emmanuelle; von Bueren, Stefan; Graff-Meyer, Alexandra; Genoud, Christel; Martin, Katrin; Pizzato, Nicolas; Voshol, Johannes; Morrissey, David V; Andaloussi, Samir E L; Wood, Matthew J; Meisner-Kober, Nicole C

    2016-04-25

    Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery. © 2016 Heusermann et al.

  1. Hot Cell Facility modifications at Sandia National Laboratories to support 99Mo production

    International Nuclear Information System (INIS)

    Vernon, M.; Philbin, J.; Berry, D.

    1997-01-01

    In September, 1996, following the completion of an extensive Environmental Impact Statement (EIS), a record of decision (ROD) was issued by DOE selecting Sandia as the facility to take on the 99 Mo production mission. 99 Mo is the precursor to 99m Tc which is used in 36,000 medical procedures per day in the US. to meet US 99 Mo medical demands, 20 kCi of 99 Mo must be delivered to the pharmaceutical companies each week. This could be accomplished by the processing of twenty-five targets (total fission product of 15 kCi/target) each week within the SNL Hot Cell Facility (HCF). To accomplish this new mission, significant modifications to the HCF will have to be undertaken. This paper presents a brief history of the HCF, and describes modifications necessary to achieve DOE directives

  2. Modeling Hot Spot Motor Vehicle Theft Crime in Relation to Landuse and Settlement Patterns

    Directory of Open Access Journals (Sweden)

    Djaka Marwasta

    2004-01-01

    Full Text Available The crowd of Yogyakarta urban has impacted its surrounding area, including Depok sub district, which is indicated by the rising of physical development, for example education facilities and settlements. The progress does not only bring positive impact, but also negative impact for instance the rising of crime number i.e. motor vehicle robbery. The aims of this research are 1 mapping motor vehicle robbery data as the distribution map and identifying motor vehicle robbery hot spot base on distrbution map; and 2 studying the correlation of motor vehicle robbery hot spot with physical environment phenomena, i.e. land use type and settlement pattern. The research method consists of two parts; they are motor vehicle robbery cluster analysis and the relation of motor vehicle robbery and physical environment analysis. Motor vehicle robbery cluster analysis is using distribution data, which analyzes the distribution into motor vehicle robbery hot spot with nearest neighbor tehnique. Contingency coefficient and frequency distribution analysis is used to analyze the correlation of motor vehicle robbery hot spot and physical environment. Contingency coefficient is used to study the relation of motor vehicle robbery hot spot polygon with physical environment condition, whereas frequency distribution is used to study the distribution of motor vehicle robbery in the hot spot with physical environment condition. Physical environment which consists of land use type, housing density, house regularity pattern, and the average of building size, are obtained from interpretation of black and white panchromatic aerial photograph year 2000, in the scale 1 : 20.000. the most motor vehicle robbery hot spot is found on the settlement area, 68,3% from 378 motor vehicle robbery cases in the hot spot. The seond level is found on the education area (16.4%. The most motor vehicle hot spot in the settlement is found on the hight density and irregular settlement, which have big

  3. In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules.

    Science.gov (United States)

    Liu, Huiqiao; Li, Qiang; Li, Mingmin; Ma, Sisi; Liu, Dingbin

    2017-05-02

    Single-molecule detection using surface-enhanced Raman spectroscopy (SERS) has attracted increasing attention in chemical and biomedical analysis. However, it remains a major challenge to probe single biomolecules by means of SERS hot spots owing to the small volume of hot spots and their random distribution on substrates. We here report an in situ hot-spot assembly method as a general strategy for probing single biomolecules. As a proof-of-concept, this proposed strategy was successfully used for the detection of single microRNA-21 (miRNA-21, a potential cancer biomarker) at the single-cell level, showing great capability in differentiating the expression of miRNA-21 in single cancer cells from normal cells. This approach was further extended to single-protein detection. The versatility of the strategy opens an exciting avenue for single-molecule detection of biomarkers of interest and thus holds great promise in a variety of biological and biomedical applications.

  4. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  5. Sol Duc Hot Springs feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  6. A university hot laboratory for teaching and research

    International Nuclear Information System (INIS)

    Heinonen, O.; Miettinen, J.K.

    1976-01-01

    In small countries which have limited material and capital resources there is more need for studying and teaching reactor chemistry in universities than there is in countries with special nuclear research and training centres. A new 150-m 2 laboratory of reactor chemistry was added to the premises of the Department of Radiochemistry, University of Helsinki, in October 1975. It contains a hot area with low-pressure air-conditioning, a sanitary room, a low-activity area, and an office area. The main instrument is a mass-spectrometer MI-1309 equipped with an ion counter which is particularly useful for plutonium analysis. The laboratory can handle samples up-to 10Ci gamma-acitivity - which equals one pellet of a fuel rod - in a sealed lead cell which has an interchangeable box for alpha-active work. Pretreated samples are submitted to chemical separations in glove-boxes. Samples for alpha and mass spectroscopy are also prepared in glove-boxes. Also the laboratory is provided with fume hoods suitable for building lead shields. Radiation protection and special features typical to the university environment are discussed. Methods for verfication of contamination and protection against internal and external contamination are applied. These include air monitoring, analysis of excreta, and whole-body counting. (author)

  7. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    International Nuclear Information System (INIS)

    Schropp, R.E.I.

    2015-01-01

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  8. Industrialization of Hot Wire Chemical Vapor Deposition for thin film applications

    Energy Technology Data Exchange (ETDEWEB)

    Schropp, R.E.I., E-mail: r.e.i.schropp@tue.nl

    2015-11-30

    The consequences of implementing a Hot Wire Chemical Vapor Deposition (HWCVD) chamber into an existing in-line or roll-to-roll reactor are described. The hardware and operation of the HWCVD production reactor is compared to that of existing roll-to-roll reactors based on Plasma Enhanced Chemical Vapor Deposition. The most important consequences are the technical consequences and the economic consequences, which are both discussed. The technical consequences are adaptations needed to the hardware and to the processing sequences due to the different interaction of the HWCVD process with the substrate and already deposited layers. The economic consequences are the reduced investments in radio frequency (RF) supplies and RF components. This is partially offset by investments that have to be made in higher capacity pumping systems. The most mature applications of HWCVD are moisture barrier coatings for thin film flexible devices such as Organic Light Emitting Diodes and Organic Photovoltaics, and passivation layers for multicrystalline Si solar cells, high mobility field effect transistors, and silicon heterojunction cells (also known as heterojunction cells with intrinsic thin film layers). Another example is the use of Si in thin film photovoltaics. The cost perspective per unit of thin film photovoltaic product using HWCVD is estimated at 0.07 €/Wp for the Si thin film component. - Highlights: • Review of consequences of implementing Hot Wire CVD into a manufacturing plant • Aspects of scaling up to large area and continuous manufacturing are discussed • Economic advantage of introducing a HWCVD process in a production system is estimated • Using HWCVD, the cost for the Si layers in photovoltaic products is 0.08 €/Wp.

  9. New bathing therapy in Japanese hot springs using radiation from radon

    International Nuclear Information System (INIS)

    Sugimori, Kenji; Okajima, Maiko; Oowada, Mizuno; Koyama, Yoshihisa; Shozugawa, Katsumi; Matsuo, Motoyuki

    2015-01-01

    Japanese-style bathing is an important part of the traditional culture of Japan, and most Japanese people love hot springs. Many kinds of hot springs exist all over Japan and are often a major factor when considering where to go for travel, relaxation and rest. However, other countries, especially in Europe, also use hot springs for medical treatments such as balneo therapy, hydrokinetic therapy, fango therapy and inhalation therapy. Some hot springs in Japan are located on radioactive springs. Five typical radioactive spring areas can be found in Tamagawa (Akita Pref.), Murasugi (Niigata Pref.), Masutomi (Yamanashi Pref.), Misasa (Tottori Pref.), and Sekigane (Tottori Pref.). While hot springs in Japan are mainly used for bathing, these radioactive springs are also used for bedrock bathing and/or inhalation therapy. In Italy, Fango therapy is a medical treatment conducted under a medical doctor's super vision with peloids maturated with hot spring water called 'Fango'. Japanese style Fango, named Biofango R , has already been made by using natural hot springs that have been modified with Italian Fango. Medical evaluation of test subjects has shown good results after treatment with Fango therapy. An important point in Fango therapy is how to make satisfactory maturated peloids. For this purpose, an experiment was conducted at Masutomi hot spring to confirm the possibility of using radioactive spring water to make maturated peloids. The basement material for the peloids used for this experiment was made from bentonite mixed with original rock from the Masutomi hot spring area consisting of crushed basalt and granite that have a fine amount of radioactivity. These peloids were circulated through hot spring water for two weeks to a month and then used for treatment. The medical data showed that therapy using this method resulted in greater improvement in 'test subjects' body functions compared with the data from previous observations. This

  10. Determination of the nano-scaled contact area of staphylococcal cells.

    Science.gov (United States)

    Spengler, Christian; Thewes, Nicolas; Jung, Philipp; Bischoff, Markus; Jacobs, Karin

    2017-07-20

    Bacterial adhesion is a crucial step during the development of infections as well as the formation of biofilms. Hence, fundamental research of bacterial adhesion mechanisms is of utmost importance. So far, less is known about the size of the contact area between bacterial cells and a surface. This gap will be filled by this study using a single-cell force spectroscopy-based method to investigate the contact area between a single bacterial cell of Staphylococcus aureus and a solid substrate. The technique relies on the strong influence of the hydrophobic interaction on bacterial adhesion: by incrementally crossing a very sharp hydrophobic/hydrophilic interface while performing force-distance curves with a single bacterial probe, the bacterial contact area can be determined. Assuming circular contact areas, their radii - determined in our experiments - are in the range from tens of nanometers to a few hundred nanometers. The contact area can be slightly enlarged by a larger load force, yet does not resemble a Hertzian contact, rather, the enlargement is a property of the individual bacterial cell. Additionally, Staphylococcus carnosus has been probed, which is less adherent than S. aureus, yet both bacteria exhibit a similar contact area size. This corroborates the notion that the adhesive strength of bacteria is not a matter of contact area, but rather a matter of which and how many molecules of the bacterial species' cell wall form the contact. Moreover, our method of determining the contact area can be applied to other microorganisms and the results might also be useful for studies using nanoparticles covered with soft, macromolecular coatings.

  11. Hot Charge Carrier Transmission from Plasmonic Nanostructures

    Science.gov (United States)

    Christopher, Phillip; Moskovits, Martin

    2017-05-01

    Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes—processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

  12. Preliminary report for the license of a hot cell that will be use in the technology development for the obtention of Mo-99

    International Nuclear Information System (INIS)

    Fucugauchi, L.A.; Millan S, S.; Lopez M, A.E.; Lopez C, R; Sanchez M, V.; Reynoso V, R.; Vera, A.

    1991-05-01

    A preliminary report for the license of a hot cell that will be used in the development of the technology for the obtaining of Mo-99 is presented. The following topics are also included: objective of the project, technical description, description of the prototype cell, handling of radioactive wastes, lists of equipment that will be used, risk analysis, curricula, quality assurance plan and an annex with the report on handling of radioactive wastes presented to the PAGD-IAEA. (Author)

  13. Warming increases hotspot areas of enzyme activity and shortens the duration of hot moments in the detritusphere

    Science.gov (United States)

    Ma, Xiaomin; Razavi, Bahar S.; Holz, Maire; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2017-04-01

    Temperature effects on enzyme kinetics and on the spatial distribution of microbial hotspots are important because of their potential feedback to climate change. We used direct zymography to study the spatial distributions of enzymes responsible for P (phosphatase), C (cellobiohydrolase) and N (leucine-aminopeptidase) cycles in the rhizosphere (living roots of maize) and detritusphere (7 and 14 days after cutting shoots). Soil zymography was coupled with enzyme kinetics to test temperature effects (10, 20, 30 and 40 °C) on the dynamics and localization of these three enzymes in the detritusphere. Total hotspot areas of enzyme activity were 1.9-7.9 times larger and their extension was broader in the detritusphere compared to rhizosphere. From 10 to 30 °C, the hotspot areas enlarged by a factor of 2-24 and Vmax increased by 1.5-6.6 times; both, however, decreased at 40 °C. For the first time, we found a close positive correlation between Vmax and the areas of enzyme activity hotspots, indicating that maximum reaction rate is coupled with hotspot formation. The substrate turnover time at 30 °C were 1.7-6.7-fold faster than at 10 °C. The Km of cellobiohydrolase and phosphatase significantly increased at 30 and 40 °C, indicating high enzyme conformational flexibility, or isoenzyme production at warm temperatures. We conclude that soil warming (at least up to 30°C) increases hotspot areas of enzyme activity and the maximum reaction rate (Vmax) in the detritusphere. This, in turn, leads to faster substrate exhaustion and shortens the duration of hot moments.

  14. Hürthle cell tumor dwelling in hot thyroid nodules: preoperative detection with technetium-99m-MIBI dual-phase scintigraphy.

    Science.gov (United States)

    Vattimo, A; Bertelli, P; Cintorino, M; Burroni, L; Volterrani, D; Vella, A; Lazzi, S

    1998-05-01

    Single injection dual-phase scintigraphy (early and late acquisitions) with 99mTc-MIBI was used to differentiate benign and malignant hot thyroid nodules. Thirteen euthyroid and two hyperthyroid patients displaying a hot thyroid nodule on the 99mTc scan due to an autonomously functioning thyroid nodule (AFTN) underwent early (15-30 min) and late (3-4 hr) thyroid scintigraphy after the administration of 740-1000 MBq 99mTc-MIBI. Visual scoring was done to assess nodular tracer uptake and retention. In addition, the nodular-to-thyroid (N/T) uptake ratio in the early and late image and the washout rates (WO) from the nodule and thyroidal tissue were measured. All patients underwent thyroid surgery. Histopathology revealed a Hürthle cell tumor in three nodules, a benign adenoma with oxyphilic metaplasia in two nodules and a benign adenoma without oxyphilic cells in the remaining 10 nodules. The Hürthle cell tumor nodules displayed intense and persistent uptake of 99mTc-MIBI (N/T was 2.81 +/- 0.52 and 5.53 +/- 1.06 in early and late images, respectively; WO from the nodule was 12.33 +/- 0.47, WO from the thyroidal tissue was 22.00 +/- 3.56). The benign nodules showed intense uptake in the early image and intense uptake to absent retention in the late image (N/T was 2.94 +/- 1.31 and 1.62 +/- 0.50 in the early and late images, respectively; WO from the nodule was 20.25 +/- 2.92, WO from the thyroidal tissue was 20.33 +/- 2.92). Single injection dual-phase 99mTc-MIBI scintigraphy of the thyroid with AFTN can identify nodules as a result of the activity of a Hürthle cell tumor, since these tumors cause intense and persistent tracer uptake in contrast with a benign AFTN.

  15. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Y.; Yang, H.X. [Hong Kong Polytechnic Univ., Renewable Energy Research Group, Hung Hom, Kowloon, (Hong Kong). Dept. of Building Services Engineering

    2008-07-01

    Due to its high energy efficiency and reliable operation capability, the ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions. However, when the technology is used in buildings where there is only cooling load in hot-weather areas such as Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE), resulting in degradation of system performance and increased system operating costs. This problem can be resolved by using a hybrid ground-coupled heat pump (HGCHP) system, as it uses supplemental heat rejecters to reject the accumulated heat. By modeling the heat transfer process of the system's main components, this paper presented a practical hourly simulation model of the HGCHP system. Based on this hourly simulation model, the computer program could be used to calculate the hour-by-hour operation data of the HGCHP system according to the cooling and hot water heating loads of a building. The paper discussed a case study that involved a design of both a HGCHP system and a traditional GCHP system for a hypothetical private residential building located in Hong Kong. The economic comparisons were performed between these two types of systems. It was concluded through the simulations that the HGCHP system could effectively solve the heat accumulation problem and reduce both the initial cost and operating cost of the air-conditioning system in the building. 19 refs., 1 tab., 13 figs.

  16. 75 FR 29537 - Draft Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5

    Science.gov (United States)

    2010-05-26

    ... Quantitative Hot- spot Analyses in PM 2.5 and PM 10 Nonattainment and Maintenance Areas AGENCY: Environmental... finalized, this guidance would help state and local agencies complete quantitative PM 2.5 and PM 10 hot-spot... projects. A hot-spot analysis includes an estimation of project-level emissions, air quality modeling, and...

  17. Prediction of protein interaction hot spots using rough set-based multiple criteria linear programming.

    Science.gov (United States)

    Chen, Ruoying; Zhang, Zhiwang; Wu, Di; Zhang, Peng; Zhang, Xinyang; Wang, Yong; Shi, Yong

    2011-01-21

    Protein-protein interactions are fundamentally important in many biological processes and it is in pressing need to understand the principles of protein-protein interactions. Mutagenesis studies have found that only a small fraction of surface residues, known as hot spots, are responsible for the physical binding in protein complexes. However, revealing hot spots by mutagenesis experiments are usually time consuming and expensive. In order to complement the experimental efforts, we propose a new computational approach in this paper to predict hot spots. Our method, Rough Set-based Multiple Criteria Linear Programming (RS-MCLP), integrates rough sets theory and multiple criteria linear programming to choose dominant features and computationally predict hot spots. Our approach is benchmarked by a dataset of 904 alanine-mutated residues and the results show that our RS-MCLP method performs better than other methods, e.g., MCLP, Decision Tree, Bayes Net, and the existing HotSprint database. In addition, we reveal several biological insights based on our analysis. We find that four features (the change of accessible surface area, percentage of the change of accessible surface area, size of a residue, and atomic contacts) are critical in predicting hot spots. Furthermore, we find that three residues (Tyr, Trp, and Phe) are abundant in hot spots through analyzing the distribution of amino acids. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Topographic hot spot before descemet stripping automated endothelial keratoplasty is associated with postoperative hyperopic shift.

    Science.gov (United States)

    Shimizu, Tsutomu; Yamaguchi, Takefumi; Satake, Yoshiyuki; Shimazaki, Jun

    2015-03-01

    The aim of this study was to investigate topographic "hot spots" on the anterior corneal surface before Descemet stripping automated endothelial keratoplasty (DSAEK) and their effects on postoperative visual acuity and hyperopic shift. Twenty-seven eyes of 27 patients with bullous keratopathy, who underwent DSAEK were studied. We defined a hot spot as a focal area with relatively high refractive power on the anterior corneal surface in eyes with bullous keratopathy. Refractive spherical equivalent, keratometric value, and corneal topography were retrospectively evaluated using anterior segment optical coherence tomography (AS-OCT). Hot spots were identified in 11 eyes (42.3%) before DSAEK and disappeared in 9 eyes of these eyes (81.8%) at 6 months after DSAEK. AS-OCT revealed focal epithelial thickening in the same areas as the hot spots. There was no significant difference in the postoperative visual acuity between eyes with and without hot spots (P > 0.05). The keratometric value of the anterior corneal surface significantly flattened from 45.7 ± 2.7 diopters (D) before DSAEK to 44.2 ± 2.7 D 1 month after DSAEK in eyes with hot spots (P = 0.01), whereas in eyes without hot spots, there were no significant differences in the keratometric values before and after DSAEK. At 6 months, the refractive change was +1.1 ± 1.3 D in eyes with hot spots and -0.2 ± 0.6 D in eyes without hot spots (P = 0.034). In eyes with focal epithelial thickening, topographic hot spots on the anterior corneal surface were observed using AS-OCT. The hot spots disappeared after DSAEK and had no influence on the postoperative visual acuity.

  19. Development of a microbial population within a hot-drinks vending machine and the microbial load of vended hot chocolate drink.

    Science.gov (United States)

    Hall, A; Short, K; Saltmarsh, M; Fielding, L; Peters, A

    2007-09-01

    In order to understand the development of the microbial population within a hot-drinks vending machine a new machine was placed in a staff area of a university campus vending only hot chocolate. The machine was cleaned weekly using a detergent based protocol. Samples from the mixing bowl, dispense area, and drink were taken over a 19-wk period and enumerated using plate count agar. Bacillus cereus was identified using biochemical methods. Vended drinks were sampled at 0, 3, 6, and 9 min after vending; the hot chocolate powder was also sampled. Over the 1st 8 wk, a significant increase in the microbial load of the machine components was observed. By the end of the study, levels within the vended drink had also increased significantly. Inactivation of the automatic flush over a subsequent 5-wk period led to a statistically but not operationally significant increase in the microbial load of the dispense area and vended drink. The simple weekly clean had a significant impact on the microbial load of the machine components and the vended drink. This study demonstrated that a weekly, detergent-based cleaning protocol was sufficient to maintain the microbial population of the mixing bowl and dispense point in a quasi-steady state below 3.5 log CFU/cm2 ensuring that the microbial load of the vended drinks was maintained below 3.4 log CFU/mL. The microbial load of the drinks showed no significant changes over 9 min after vending, suggesting only spores are present in the final product.

  20. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  1. Neutron activation analysis of the rare earth elements in Nasu hot springs

    International Nuclear Information System (INIS)

    Ikeda, Nagao; Takahashi, Naruto.

    1978-01-01

    Eleven rare earth elements (lanthanum, cerium, neodymium, samarium, europium, gadolinium, terbium, holmium, thulium, ytterbium and lutetium) in hot spring waters and sinter deposits in the Nasu area were determined by the neutron activation method. The rare earth elements in hot spring water were preconcentrated in ferric hydroxide precipitate and neutron-irradiated. The rare earth elements were chemically separated into lighter and heavier groups and the activity of each group was measured with a Ge(Li) detector. Distribution of the rare earth elements between the hot spring water and the sinter deposit was also discussed. (auth.)

  2. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Abbink, D.A.; Koning, J.F.; Boessenkool, H.; Wildenbeest, J.G.W.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations

  3. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: J.vanOosterhout@differ.nl [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Abbink, D.A. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wildenbeest, J.G.W. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands)

    2013-10-15

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations.

  4. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    International Nuclear Information System (INIS)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun; Wang Jiaxiang

    2012-01-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  5. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ziyu; Li Jianfeng; Yu Yong; Li Xiaoya; Peng Qixian; Zhu Wenjun [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Wang Jiaxiang [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China)

    2012-11-15

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  6. Evaluation of options for disposition of dispersible material in B-Cell

    International Nuclear Information System (INIS)

    Tokarz, R.D.; Defferding, L.J.; Adickes, M.D.; Keene, K.E.; Pilger, J.P.; Alzheimer, J.M.; Paxton, M.M.

    1993-10-01

    The radioactive contaminants in the dispersible material in B-cell of the 324 Building Radiochemical Energy (RE) hot-cell complex at the Hanford Site in southeastern Washington exceed the allowable level. In 1986, there was a spill of 1.3 million curies of concentrated cesium and strontium in B-cell. Cleanup is required, and candidate technologies for cleaning up or otherwise addressing problems associated with the dispersible material are being evaluated by Pacific Northwest Laboratory (PNL). The RE hot-cell complex in 324 Building was constructed in the late 1950s. From the early 1960s until today the complex has been the site of numerous research, development, and demonstration programs using radioactive and hazardous materials. In mid-FY 1988, a program to clean B-cell was initiated. At present, dispersible material has been collected from 45% of the cell floor area, and 64% of the equipment and support racks have been removed from the cell. The evaluation of decontamination procedures are described

  7. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  8. Physical processes in hot cosmic plasmas

    International Nuclear Information System (INIS)

    Fabian, A.G.; Giovannelli, F.

    1990-01-01

    The interpretation of many high energy astrophysical phenomena relies on a detailed knowledge of radiation and transport processes in hot plasmas. The understanding of these plasma properties is one of the aims of terrestrial plasma physics. While the microscopic properties of astrophysical plasmas can hardly be determined experimentally, laboratory plasmas are more easily accessible to experimental techniques, but transient phenomena and the interaction of the plasma with boundaries often make the interpretation of measurements cumbersome. This book contains the talks given at the NATO Advanced Research Workshop on astro- and plasma-physics in Vulcano, Sicily, May 29-June 2, 1989. The book focuses on three main areas: radiation transport processes in hot (astrophysical and laboratory) plasmas; magnetic fields; their generation, reconnection and their effects on plasma transport properties; relativistic and ultra-high density plasmas

  9. Models and methods for hot spot safety work

    DEFF Research Database (Denmark)

    Vistisen, Dorte

    2002-01-01

    Despite the fact that millions DKK each year are spent on improving roadsafety in Denmark, funds for traffic safety are limited. It is therefore vital to spend the resources as effectively as possible. This thesis is concerned with the area of traffic safety denoted "hot spot safety work", which...... is the task of improving road safety through alterations of the geometrical and environmental characteristics of the existing road network. The presently applied models and methods in hot spot safety work on the Danish road network were developed about two decades ago, when data was more limited and software...... and statistical methods less developed. The purpose of this thesis is to contribute to improving "State of the art" in Denmark. Basis for the systematic hot spot safety work are the models describing the variation in accident counts on the road network. In the thesis hierarchical models disaggregated on time...

  10. Detection of spatial hot spots and variation for the neon flying squid Ommastrephes bartramii resources in the northwest Pacific Ocean

    Science.gov (United States)

    Feng, Yongjiu; Chen, Xinjun; Liu, Yan

    2017-07-01

    With the increasing effects of global climate change and fishing activities, the spatial distribution of the neon flying squid ( Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean. This research aims to identify the spatial hot and cold spots (i.e. spatial clusters) of O. bartramii to reveal its spatial structure using commercial fishery data from 2007 to 2010 collected by Chinese mainland squid-jigging fleets. A relatively strongly-clustered distribution for O. bartramii was observed using an exploratory spatial data analysis (ESDA) method. The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from 2008 to 2010. The hot and cold spots in 2007 occupied 8.2% and 5.6% of the study area, respectively; these percentages for hot and cold spot areas were 5.8% and 3.1% in 2008, 10.2% and 2.9% in 2009, and 16.4% and 11.9% in 2010, respectively. Nearly half (>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8% in 2010, indicating that the hot spot areas are central fishing grounds. A further change analysis shows the area centered at 156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010. Furthermore, the hot spots were mainly identified in areas with sea surface temperature (SST) in the range of 15-20°C around warm Kuroshio Currents as well as with the chlorophyll- a (chl- a) concentration above 0.3 mg/m3. The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O. bartramii and is useful for sustainable exploitation, assessment, and management of this squid.

  11. Design and management of hot-laboratories

    International Nuclear Information System (INIS)

    1976-09-01

    This document is a manual for the design and management of hot-laboratories. It is composed of three parts. The first part is devoted to the design of hot-laboratories. Items included here are; conceptual design; many regulations which must be considered at design stage; design of cave and its shielding; and the design of building, ventilation, and draining. Many examples of specific designs are presented by figures and photographs. The second part is concerned with the methods of operation management. Organizational structure, scheduling of operation, process management, and regulatory problems are discussed with some examples. Technological problems associated with the operation of a hot laboratory (e.g., manipulator, transfer machine, maintenance, and decontamination) are also discussed based on the authors' experiences. An example of the operation manual is presented for reference. The third part is devoted to the safety management and the training of personnel. The regulations by law are briefly explained. Most of this part is devoted to the problem of monitoring radio-activity. Monitoring of control areas, radio-active wastes, and personal dosage is discussed together with many other specific monitoring problems. As for training, the purpose and the present status are explained. (Aoki, K.)

  12. Development of remote crane system for use inside small argon hot-cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Ilje [Nuclear Fuel Cycle Process Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

  13. Remote-welding technique for assembling in-pile IASCC capsule in hot cell

    International Nuclear Information System (INIS)

    Kawamata, Kazuo; Ishii, Toshimitsu; Kanazawa, Yoshiharu; Iwamatsu, Shigemi; Ohmi, Masao; Shimizu, Michio; Matsui, Yoshinori; Saito, Jun-ichi; Ugachi, Hirokazu; Kaji, Yoshiyuki; Tsukada, Takashi

    2006-01-01

    In order to investigate behavior of the irradiation assisted stress corrosion cracking (IASCC) caused by the simultaneous effects of neutron irradiation and high temperature water environment in such a light water reactor (LWR), it is necessary to perform crack growth tests in an in-pile IASCC capsule irradiated in the Japan Materials Testing Reactor (JMTR). The development of the remote-welding technique is essential for remotely assembling the in-pile IASCC capsule installing the pre-irradiated CT specimens. This report describes a new remote-welding machine developed for assembling the in-pile IASCC capsule. The remote-welding technique that the capsule tube is rotated light under the fixed torch was applied to the machine for the welding of thick and large-diameter tubes. The assembly work of four in-pile IASCC capsules having pre-irradiated CT specimens in the hot cell was succeeded for performing the crack growth test under the neutron irradiation in JMTR. The irradiation test of two capsules has been already finished in JMTR without problems. (author)

  14. Teaching Earth Science Using Hot Air Balloons

    Science.gov (United States)

    Kuhl, James; Shaffer, Karen

    2008-01-01

    Constructing model hot air balloons is an activity that captures the imaginations of students, enabling teachers to present required content to minds that are open to receive it. Additionally, there are few activities that lend themselves to integrating so much content across subject areas. In this article, the authors describe how they have…

  15. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Energy Technology Data Exchange (ETDEWEB)

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  16. Remote real time x-ray examination of fuel elements in a hot cell environment

    International Nuclear Information System (INIS)

    Yapuncich, F.L.

    1993-01-01

    This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin

  17. Standard guide for mechanical drive systems for remote operation in hot cell facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: 1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment. 1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. 1.2.1.3 The ...

  18. Candidate sites for future hot-dry-rock development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.; Decker, E.R.

    1982-12-01

    Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is cateogrized accoridng to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are described: The Geysers-Clear lake region in California, the Roosevelt Hot Springs area in Utah, and the White Mountains region in New Hampshire. These areas are singled out to illustrate the roles of significantly different geology and geophysics, reservoir rocks, and reservoir heat contents in possible HDR developments.

  19. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  20. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

  1. What are Chinese talking about in hot weibos?

    Science.gov (United States)

    Li, Yuan; Gao, Haoyu; Yang, Mingmin; Guan, Wanqiu; Ma, Haixin; Qian, Weining; Cao, Zhigang; Yang, Xiaoguang

    2015-02-01

    SinaWeibo is a Twitter-like social network service emerging in China recently. We analyzed the hot weibos (tweets), which exceed threshold of being reposted for 1000 times, from a data set of 650 million weibos during August 2009 and January 2012. We classified the hot weibos into eight categories, namely Entertainment & Fashion, Hot Social Events, Leisure & Mood, Life & Health, Seeking for Help, Sales Promotion, Fengshui & Fortune and Deleted weibos. There are several findings. Firstly, Leisure & Mood and Hot Social Events account for almost 65% of all the hot weibos. This may indicate a potential dual-structure of the current society of China: On the one hand, economy of the country as a whole is gaining sustaining growth, which enables people to enjoy a better life and spare more time on leisure and mood topics. On the other hand, there still exist considerable amount of serious social problems, such as government corruption and environmental pollution, which draw people's concern and worries all the time. Secondly, users' posting and reposting behaviors are associated with user profiles, namely: (1) Gender. Male users generate two thirds of hot weibos. (2) Verification status. Verified users contribute 46.5% of hot weibos, who comprise only 0.1% in SinaWeibo user population. Interestingly, 39.2% of the verified-user-generated weibos are written by SPA users (who generate weibos of a particular style, or in a consistent way, e.g. to say words of wisdom, 'chicken-soup-soul' like sentences, and jokes etc.). This complements the previous finding of Yu et al. (2012), implying that SinaWeibo is in an 'artificial inflation' not only on the reposting side but also on the posting side. Unfortunately, only 14.4% of the hot weibos are created by grassroots (not verified users). (3) Geographical location. Users from different areas of China show distinct posting and reposting behaviors, which partially reflect their indigenous cultures. Finally, homophily is also examined

  2. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area

    Directory of Open Access Journals (Sweden)

    Zhixin Liu

    2018-05-01

    Full Text Available Urban trees can significantly improve the outdoor thermal environment, especially in subtropical zones. However, due to the lack of fundamental evaluations of numerical simulation models, design and modification strategies for optimizing the thermal environment in subtropical hot-humid climate zones cannot be proposed accurately. To resolve this issue, this study investigated the physiological parameters (leaf surface temperature and vapor flux and thermal effects (solar radiation, air temperature, and humidity of four common tree species (Michelia alba, Mangifera indica, Ficus microcarpa, and Bauhinia blakeana in both spring and summer in Guangzhou, China. A comprehensive comparison of the observed and modeled data from ENVI-met (v4.2 Science, a three-dimensional microclimate model was performed. The results show that the most fundamental weakness of ENVI-met is the limitation of input solar radiation, which cannot be input hourly in the current version and may impact the thermal environment in simulation. For the tree model, the discrepancy between modeled and observed microclimate parameters was acceptable. However, for the physiological parameters, ENVI-met tended to overestimate the leaf surface temperature and underestimate the vapor flux, especially at midday in summer. The simplified calculation of the tree model may be one of the main reasons. Furthermore, the thermal effect of trees, meaning the differences between nearby treeless sites and shaded areas, were all underestimated in ENVI-met for each microclimate variable. This study shows that the tree model is suitable in subtropical hot-humid climates, but also needs some improvement.

  3. Determination of the interfacial heat transfer coefficient in the hot stamping of AA7075

    Directory of Open Access Journals (Sweden)

    Liu Xiaochuan

    2015-01-01

    Full Text Available The interfacial heat transfer coefficient (IHTC is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE models to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC value between a hot aluminium alloy 7075 blank and cold dies. The IHTC was determined at different contact pressures under both dry and lubricated (Omega-35 conditions. In addition, a model to calculate the IHTC value at different contact pressures and area densities of lubricant was developed for the hot stamping process.

  4. Identifying fish diversity hot-spots in data-poor situations.

    Science.gov (United States)

    Fonseca, Vinícius Prado; Pennino, Maria Grazia; de Nóbrega, Marcelo Francisco; Oliveira, Jorge Eduardo Lins; de Figueiredo Mendes, Liana

    2017-08-01

    One of the more challenging tasks in Marine Spatial Planning (MSP) is identifying critical areas for management and conservation of fish stocks. However, this objective is difficult to achieve in data-poor situations with different sources of uncertainty. In the present study we propose a combination of hierarchical Bayesian spatial models and remotely sensed estimates of environmental variables to be used as flexible and reliable statistical tools to identify and map fish species richness and abundance hot-spots. Results show higher species aggregates in areas with higher sea floor rugosity and habitat complexity, and identify clear richness hot-spots. Our findings identify sensitive habitats through essential and easy-to-use interpretation tools, such as predictive maps, which can contribute to improving management and operability of the studied data-poor situations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hot Ductility Behavior of an 8 Pct Cr Roller Steel

    Science.gov (United States)

    Wang, Zhenhua; Sun, Shuhua; Shi, Zhongping; Wang, Bo; Fu, Wantang

    2015-04-01

    The hot ductility of an 8 pct Cr roller steel was determined between 1173 K and 1473 K (900 °C and 1200 °C) at strain rates of 0.01 to 10 s-1 through tensile testing. The fracture morphology was observed using scanning electron microscopy, and the microstructure was examined through optical microscopy and transmission electron microscopy. The dependence of the hot ductility behavior on the deformation conditions, grain size, and precipitation was analyzed. The relationship between the reduction in area and the natural logarithm of the Zener-Hollomon parameter (ln Z) was found to be a second-order polynomial. When ln Z was greater than 40 s-1, the hot ductility was poor and fracture was mainly caused by incompatible deformation between the grains. When ln Z was between 32 and 40 s-1, the hot ductility was excellent and the main fracture mechanism was void linking. When ln Z was below 32 s-1, the hot ductility was poor and fracture was mainly caused by grain boundary sliding. A fine grain structure is beneficial for homogenous deformation and dynamic recrystallization, which induces better hot ductility. The effect of M7C3 carbide particles dispersed in the matrix on the hot ductility was small. The grain growth kinetics in the 8 pct Cr steel were obtained between 1373 K and 1473 K (1100 °C and 1200 °C). Finally, optimized preheating and forging procedures for 8 pct Cr steel rollers are provided.

  6. Structural Safety Analysis of Openable Working Table in ACP Hot Cell for Spent Fuel Treatment

    International Nuclear Information System (INIS)

    Kwon, Ki Chan; Ku, Jeong Hoe; Lee, Eun Pyo; Choung, Won Myung; You, Gil Sung; Lee, Won Kyung; Cho, IL Je; Kuk, Dong Hak

    2006-01-01

    A demonstration facility for advanced spent fuel conditioning process (ACP) is under construction in KAERI. In this hot cell facility, all process equipment and materials are taken in and out only through the rear door. The working table in front of the process rear door is specially designed to be openable for the efficient use of the space. This paper presents the structural safety analysis of the openable working table, for the normal operational load condition and accidental drop condition of heavy object. Both cases are investigated through static and dynamic finite element analyses. The analysis results show that structural safety of the working table is sufficiently assured and the working table is not collapsed even when an object of 500 kg is dropped from the height of 50 cm.

  7. Serratia sp. ZF03: an efficient radium biosorbent isolated from hot-spring waters in high background radiation areas of Ramsar

    International Nuclear Information System (INIS)

    Zakeri, F.; Sadeghizadeh, M.; Akbari Noghabi, K.; Farshidpour, M.R.; Kardan, M.R.; Atarilar, A.

    2010-01-01

    Natural radionuclides, in particular those emitting alpha particles, make the largest contribution to the world population exposure. The most important example is 226 Ra, with a high potency for causing biological damages. Accordingly, it can be a potential concern in many areas, where these elements have been existed naturally, mined or processed. In addition to its own radiological properties, radium isotopes present additional environmental and health concerns due to the fact that they decay into radon ( 222 Rn); a Class-A carcinogen and the second leading cause of lung cancer estimated to cause 21,000 deaths in the US annually. Physico-chemical methods have been widely used to remove radionuclides and heavy metal ions from wastewaters. These conventional methods may be ineffective or expensive with a few major disadvantages such as high energy requirements, incomplete removal and generation of toxic sludge which needs proper disposal. Biological treatment is an innovative technology available for heavy metal and radionuclide polluted wastewaters. The aim of this study was to isolate and characterize 226 Ra biosorbing indigenous bacterial strains from soils and hot-springs of Ramsar containing high concentration of 226 Ra by using biochemical and molecular approaches. Hence, the studied biomass proved very effective and could be used as a low cost and ecofriendly biosorbent for treatment of hot-spring waters containing high levels of 226 Ra in Ramsar

  8. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  9. Photovoltaic network connection portraits (XIV): The issue of hot cells; Retraso de la conexion fotovoltaica a la red (XIV): El asunto de las celulas calientes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E.; Martinez, F.; Moreton, R.

    2009-07-01

    In some cases due to plants performance is not as correct as hoped, and in some other, simply because the nice colors of the thermographs resulted very attractive to plenty of people; many photovoltaic generators have been profusely thermography within the current year. It has caused a special interest on hot cells phenomenon, that is to say those cells which operate at a significantly higher temperature than other placed in the same panel. (Author) 4 refs.

  10. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  11. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  12. Development and performance tests of the bridge-transported servo manipulator system for remote maintenance jobs in a hot cell

    International Nuclear Information System (INIS)

    Jin, Jae Hyun; Park, Byung Suk; Ko, Byung Seung; Yoon, Ji Sup; Jung, Ki Jung

    2005-01-01

    In this paper, a prototype of the Bridge-Transported Servo Manipulator (BTSM) system introduced, which has been developed to do operation and maintenance jobs remotely in a hot cell. The system consists of a telescopic transporter, a slave arm, a master arm, and a control system. Several tests such as a positional tracking, a weight handling, reliability, and operability have been performed and test results are presented. Based on the test results, an upgraded system which will be used during demonstrations of the advanced spent fuel conditioning process (ACP) has been designed.

  13. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  14. Determination of the Interfacial Heat Transfer Coefficient in the Hot Stamping of AA7075

    Directory of Open Access Journals (Sweden)

    Ji Kang

    2016-01-01

    Full Text Available The interfacial heat transfer coefficient (IHTC is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE simulations to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC values between a hot aluminium alloy 7075 blank and cold dies. The IHTC values were determined at different contact pressures under both dry and lubricated (Omega-35 conditions. In addition, a model to calculate the IHTC value at different contact pressures and area densities of lubricant was developed for the hot stamping process, which was proved to be working well with verification tests.

  15. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    International Nuclear Information System (INIS)

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K.; Paek, Kyung-Hee

    2006-01-01

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P 0 interaction, but not during compatible TMV-P 1.2 interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant

  16. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  17. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  18. Geochemical studies of Ishiwa hot springs in Yamanashi Prefecture-yearly change of hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T. (Yamanashi Prefecture Womens Junior College, Japan)

    1971-12-01

    The effect of drilling on the Ishiwa hot springs was studied. About 50 wells have been drilled since 1961 when the first well was drilled to a depth of 146 m where 47/sup 0/C water flowed at 1376 l/min. Changes have occurred in flow rate, temperature, and chemical composition of the spring water. In area A near the foot of northern Okura-Keijisan along the Byodo and Fuefuki rivers, the pH value was 8.0 to 8.2 when drilling began, but it is now 7.4 to 8.0. In area B in the central spring area along the Chikatsu water reservoir, the pH was about 8.5 when drilling began, but is presently 10. The shift of area A pH to acidic is thought to be due to the effect of river water. The shift in area B pH to alkaline was thought to be connected to the fountainhead with pH 10 which appeared in the Kami-Ogihara Resseki district in Shioyama City. The fountainhead was located along the Fuefuki River at the foot of Obosatsu, 20 km from the Ishiwa area.

  19. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  20. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  1. Hot ductility testing and weld simulation tests

    International Nuclear Information System (INIS)

    Weber, G.; Schick, M.

    1999-01-01

    The objective of the project was to enhance the insight into the causes of intergranular cracks detected in austenitic circumferential welds at BWR pipes. The susceptibility of a variety of austenitic pipe materials to hot cracking during welding and in-service intergranular crack corrosion was examined. The assumption was cracking in the root area of the HAZ of a multiple-layer weld. Hot-ductility tests and weld simulation tests specifically designed for the project were performed with the austenitic LWR pipe materials 1.4553 (X6 CrNiNb 18 10 S), 1.4550 (X10 CrNiNb 18 9), 1.4533 (X6 CrNiTi 18 9, two weld pools), and a non-stabilized TP 304 (X5 CrNi 18 10). (orig./CB) [de

  2. Hot cell examination on the surveillance capsule and HANARO capsule in IMEF

    International Nuclear Information System (INIS)

    Choo, Yong Sun; Oh, Wan Ho; Yoo, Byung Ok; Jung, Yang Hong; Ahn, Sang Bok; Baik, Seung Je; Song, Wung Sup; Hong, Kwon Pyo

    2000-01-01

    For the maintenance of integrity and safety of pressurizer of commercial power plant until its life span, it is required by US NRC 10CFR50 APP. G and H and ASTM E185-94 to periodically monitor irradiation embrittlement by neutron irradiation. In order to accomplished the requirement reactor operator has been carrying out the test by extracting the monitoring capsule embeded in reactor during the period of planned preventive maintenance. In relation to this irradiation samples are being used for prediction of reactor vessel life span and reactor vessel's adjusted reference temperature by irradiation of neutron flux enough to reach to end of life span. And also irradiation capsules with and without instrumentation are used for R and D on nuclear materials. Each capsule contains high radioactivity, therefore, post irradiation examination has to be handled by all means in the hot cell. The facility available for this purpose is Irradiated material examination facility (IMEF) to handle such works as capsule receiving, capsule cut and dismantling, sample classification, various examination, and finally development and improvement of examination equipment and instrumentation. (Hong, J. S.)

  3. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Science.gov (United States)

    2010-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that are...

  4. Manual on Safety Aspects of the Design and Equipment of Hot Laboratories

    International Nuclear Information System (INIS)

    1969-01-01

    With the development of atomic energy application and research, hot laboratories are now being constructed in a number of countries. The present publication describes and discusses experience in several countries in designing equipment for these laboratories. The safe handling of highly radioactive substances is the main purpose of hot laboratory design and equipment. The manual aims at helping those persons, particularly in the developing countries, who plan to design and construct a new hot laboratory or modify an existing one. It does not deal in great detail with the engineering design of protective and handling equipment; these matters can be found in the comprehensive list of references. The manual itself covers only basic ideas and different approaches in the design of laboratory building, hot cells, shielded and glove boxes, fume cupboards, and handling and viewing equipment. Systems for transferring materials and main services are also discussed.

  5. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  6. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  7. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    Science.gov (United States)

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot.

  8. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    International Nuclear Information System (INIS)

    Takeda, Yasuhiko; Sugimoto, Noriaki; Ichiki, Akihisa; Kusano, Yuya; Motohiro, Tomoyoshi

    2015-01-01

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs

  9. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Sugimoto, Noriaki [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Ichiki, Akihisa [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, Yuya [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Toyota Motor Corp., 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Motohiro, Tomoyoshi [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-09-28

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  10. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status.

    Directory of Open Access Journals (Sweden)

    Simon Memmel

    Full Text Available Glioblastoma multiforme (GBM is characterized by rapid growth, invasion and resistance to chemo-/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM, the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN exhibited the lowest degree of membrane folding, probed by the area-specific capacitance C m = 1.9 µF/cm(2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19 showed the highest C m values of 3.7-4.0 µF/cm(2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the

  11. Assessment of radiation dose formation due to hot particles of Chernobyl origin

    International Nuclear Information System (INIS)

    Demchuk, V.; Lutkovsky, V.; Bondarenko, O.

    1997-01-01

    The necessity to apply original data about the size and the activity distributions of hot particles has been arising at many post-Chernobyl research. Such researches include first of all (i) studying of migration processes at soil-water complexes, (ii) retrospective inhalation dose reconstruction for the population, and (iii) validation different scenarios of the Chernobyl accident deployment. Results of this research show that the fuel matrix in soil can be considered as constant with accuracy 20-30% for transuranic nuclides and major of long-living fission products. Temporal stability of hot particles at the natural environment gives a unique possibility to use the hot particle size distribution data and the soil contamination data for retrospective restoring of doses even 10 years later the Chernobyl accident. In present research the value of the integral of hot particle activity deposited into the lung was calculated using a standard inhalation model which takes into account the hot particle size distribution. This value normalised on the fallout density is equal to 0.55 Bq/(Bq.m -2 ) for areas nearby the Chernobyl NPP. (author)

  12. Assessing the economic aspects of solar hot water production in Greece

    International Nuclear Information System (INIS)

    Haralambopoulos, D.; Kovras, H.

    1997-01-01

    The long-term performance of various systems was determined and the economic aspects of solar hot water production were investigated in this work. The effect of the collector inclination angle, collector area and storage volume was examined for all systems, and various climatic conditions and their payback period was calculated. It was found that the collector inclination angle does not have a significant effect on system performance. Large collector areas have a diminishing effect on the system's overall efficiency. The increase in storage volume has a detrimental effect for small daily load volumes, but a beneficial one when there is a large daily consumption. Solar energy was found to be truly competitive when the conventional fuel being substituted is electricity, and it should not replace diesel oil on pure economic grounds. Large daily load volumes and large collector areas are in general associated with shorter payback periods. Overall, the systems are oversized and are economically suitable for large daily hot water load volumes. (Author)

  13. Hot cell examination on the surveillance capsule of SA 533 cl. 1 reactor pressure vessel (1st test report)

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yong Sun; Jung, Y. H.; Yoo, B. O.; Baik, S. J.; Oh, W. H.; Soong, W. S.; Hong, K. P

    2000-08-01

    The post-irradiated examinations such as impact test, tensile test, composition analysis and etc. were conducted to monitor and to evaluate the radiation-induced changes, so called radiation embrittlement, in the mechanical properties of ferritic materials. Those data should be applied to confirm safety as well as reliability of reactor pressure vessel. The scopes and contents of hot cell examination on the surveillance capsule are as follows; - Capsule transportation, cutting, dismantling and classification - Shim block and Dosimeter cutting and dismantling - Impact test - Tensile test - Composition analysis by EPMA - SEM observation on the fractured surface - Hardness test - Radwaste treatment.

  14. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  15. Large area, low cost space solar cells with optional wraparound contacts

    Science.gov (United States)

    Michaels, D.; Mendoza, N.; Williams, R.

    1981-01-01

    Design parameters for two large area, low cost solar cells are presented, and electron irradiation testing, thermal alpha testing, and cell processing are discussed. The devices are a 2 ohm-cm base resistivity silicon cell with an evaporated aluminum reflector produced in a dielectric wraparound cell, and a 10 ohm-cm silicon cell with the BSF/BSR combination and a conventional contact system. Both cells are 5.9 x 5.9 cm and require 200 micron thick silicon material due to mission weight constraints. Normalized values for open circuit voltage, short circuit current, and maximum power calculations derived from electron radiation testing are given. In addition, thermal alpha testing values of absorptivity and emittance are included. A pilot cell processing run produced cells averaging 14.4% efficiencies at AMO 28 C. Manufacturing for such cells will be on a mechanized process line, and the area of coverslide application technology must be considered in order to achieve cost effective production.

  16. Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion, and metastasis of murine B16 melanoma cells.

    Science.gov (United States)

    Itoh, Tomohiro; Umekawa, Hayato; Furuichi, Yukio

    2005-03-01

    The 40% ethanol eluent of the fraction of hot-water extract from adzuki beans (EtEx.40) adsorbed onto DIAION HP-20 resin has many biological activities, for example, antioxidant, antitumorigenesis, and intestinal alpha-glucosidase suppressing activities. This study examined the inhibitory effect of EtEx.40 on experimental lung metastasis and the invasion of B16-BL6 melanoma cells. EtEx.40 was found significantly to reduce the number of tumor colonies. It also inhibited the adhesion and migration of B16-BL6 melanoma cells into extracellular matrix components and their invasion into reconstituted basement membrane (matrigel) without affecting cell proliferation in vitro. These in vivo data suggest that EtEx.40 possesses a strong antimetastatic ability, which might be a lead compound in functional food development.

  17. Carbon materials as new nanovehicles in hot-melt drug deposition

    International Nuclear Information System (INIS)

    Bielicka, Agnieszka; Wiśniewski, Marek; Terzyk, Artur P; Gauden, Piotr A; Furmaniak, Sylwester; Bieniek, A; Roszek, Katarzyna; Kowalczyk, Piotr

    2013-01-01

    The application of commercially available carbon materials (nanotubes and porous carbons) for the preparation of drug delivery systems is studied. We used two types of carbon nanotubes (CNT) and two activated carbons as potential materials in so-called hot-melt drug deposition (HMDD). The materials were first studied using Raman spectroscopy. Paracetamol was chosen as a model drug. The performed thermal analysis, kinetics, and adsorption–desorption studies revealed that nanoaggregates are formed between carbon nanotubes. In contrast, in pores of activated carbon we do not observe this process and the drug adsorption phenomenon mechanism is simply the filling of small pores. The formation of nanoaggregates was confirmed by the results of GCMC (grand canonical Monte Carlo) simulations and the study of the surface area on nitrogen adsorption–desorption isotherms. The application of carbon nanotubes in HMDD offers the possibility of controlling the rate of drug delivery. Performed MTT tests of nanotubes and drug-loaded nanotubes show that the observed decrease in cell viability number is caused by the influence of the cytostatic properties of nanotubes—they inhibit the proliferation of cells. The carbon nanotubes studied in this paper are essentially nontoxic. (paper)

  18. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    International Nuclear Information System (INIS)

    Ducki, K J; Rodak, K

    2011-01-01

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 deg. C, at a strain rate 0.1 and 1.0 s -1 . Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called f reezing . The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  19. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Ducki, K J; Rodak, K, E-mail: kazimierz.ducki@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 deg. C, at a strain rate 0.1 and 1.0 s{sup -1}. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called {sup f}reezing{sup .} The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  20. The hot-deformability and quantitative description of the microstructure of hot-deformed Fe-Ni superalloy

    Science.gov (United States)

    Ducki, K. J.; Rodak, K.

    2011-05-01

    The paper presents the results of research concerning the influence of hot plastic forming parameters on the deformability and structure of a Fe-Ni austenitic alloy. The research was performed on a torsion plastometer in the range of temperatures of 900-1150 °C, at a strain rate 0.1 and 1.0 s-1. Plastic properties of the alloy were characterized by the worked out flow curves and the temperature relationships of flow stress and strain limit. The structural inspections were performed on microsections taken from plastometric samples after so called "freezing". The stereological parameters as the recrystallized grain size, inhomogenity and grain shape have been determined. Functional relations between the Zener-Hollomon parameter and the peak stress and the mean grain size have been developed and the activation energy of the hot plastic deformation has been estimated. The examination of substructure on TEM allowed the calculation of structural parameters: the average subgrain area and the mean dislocation density. A detailed investigation has shown that the substructure is inhomogeneous, consists of dense dislocation walls, subgrains and recrystallized regions.

  1. Isotopic and chemical features of hot springs in Akita Prefecture

    International Nuclear Information System (INIS)

    Matsubaya, Osamu

    1997-01-01

    All over the Akita Prefecture, many hot springs are located. Most of them are of meteoric water, fossil sea water and volcanic gas origins. In the Ohdate-Kazuno area, moderate temperature hot springs of meteoric water origin are found, which may exist as rather shallow formation water in the Green Tuff formations. On the contrary, high temperature geothermal waters of meteoric origin, which are used for power generation, are obtained in two volcanic area of Hachimantai and Oyasu. Those geothermal waters are expected to come up through vertical fissures from depth deeper than 2 km. The difference of these two manners of meteoric water circulation should be necessarily explained to understand the relationship of shallow and deep geothermal systems. About some hot springs of fossil sea water origin, the relationships of δ D and Cl - don't agree to the mixing relation of sea water and meteoric water. This may be explained by two different processes, one of which is mixing of sea water with saline meteoric water (Cl - ca. 12 g/kg). The other is modification of δD by hydrogen isotopic exchange with hydrous minerals underground, or by exchange with atmospheric vapor during a relic lake before burying. (author)

  2. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  3. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    Science.gov (United States)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  4. Current activities in development of PIE techniques in JMTR hot laboratory

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ohmi, Masao; Shimizu, Michio; Kaji, Yoshiyuki; Ueno, Fumiyoshi

    2006-01-01

    A wide variety of post-irradiation examinations (PIEs) for research and development of nuclear fuels and materials to be utilized in nuclear field has been carried out since 1971 in three kinds of β-γ hot cells; concrete, lead and steel cells in the JMTR Hot Laboratory (JMTR HL) associated with the Japan Materials Testing Reactor (JMTR). In addition to PIEs, the re-capsuling work including re-instrumentation was also conducted for the power ramping tests of the irradiated LWR fuels using Boiling Water Capsule (BOCA). Recently, new PIE techniques are required for the advanced irradiation studies. In this paper, the irradiation assisted stress corrosion cracking (IASCC) growth test technique of irradiated in-core structural materials and the remote operation technique of the atomic force microscope (AFM) are described as JMTR HL's current activities in the development of new PIE techniques. (author)

  5. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    International Nuclear Information System (INIS)

    Rodriquez, Michael

    2009-01-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the 'Nuclear Renaissance'. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight

  6. Hot laboratory design on the basis of standardized components

    International Nuclear Information System (INIS)

    Cadrot, J.

    1976-01-01

    The paper describes the principal effects on hot laboratory design brought about over the last 15 years by the use of standardized components developed jointly with the CEA and the industrial associates of AFINE. After a rapid survey of the various advantages of standardization, the author turns to the specific case of a laboratory producing mixed plutonium and uranium oxide fuels, giving a brief description of the glove-boxes and ancillary equipment. He then deals with the design of an isotope production laboratory. The basic component is the DR 200 standard cell, which permits the civil engineering work to be effected on modular principles. Use of a safety-flow pressure regulating valve makes possible pneumatic automation of the production-cell internals. A substantial gain in output is the result. In the next section the paper refers to a pilot facility for irradiated fuel studies, and describes the components used, which require taking into account the high activities and intense radiations encountered in studies of this type. The author then demonstrates the flexibility with which standardized components can be adapted to different uses, thus solving many distinct problems, an example of which is represented by a semi-hot box for handling up to 100g of americium-241. Finally, the paper offers a rapid summary of the effects of standardization at the various stages concerned, from initial design to the commissioning of a hot laboratory. (author)

  7. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) in southeast Alaska

    Science.gov (United States)

    Gende, Scott M.; Sigler, Michael F.

    2006-02-01

    Whereas primary and secondary productivity at oceanic 'hotspots' may be a function of upwelling and temperature fronts, the aggregation of higher-order vertebrates is a function of their ability to search for and locate these areas. Thus, understanding how predators aggregate at these productive foraging areas is germane to the study of oceanic hot spots. We examined the spatial distribution of forage fish in southeast Alaska for three years to better understand Steller sea lion ( Eumetopias jubatus) aggregations and foraging behavior. Energy densities (millions KJ/km 2) of forage fish were orders of magnitude greater during the winter months (November-February), due to the presence of schools of overwintering Pacific herring ( Clupea pallasi). Within the winter months, herring consistently aggregated at a few areas, and these areas persisted throughout the season and among years. Thus, our study area was characterized by seasonally variable, highly abundant but highly patchily distributed forage fish hot spots. More importantly, the persistence of these forage fish hot spots was an important characteristic in determining whether foraging sea lions utilized them. Over 40% of the variation in the distribution of sea lions on our surveys was explained by the persistence of forage fish hot spots. Using a simple spatial model, we demonstrate that when the density of these hot spots is low, effort necessary to locate these spots is minimized when those spots persist through time. In contrast, under similar prey densities but lower persistence, effort increases dramatically. Thus an important characteristic of pelagic hot spots is their persistence, allowing predators to predict their locations and concentrate search efforts accordingly.

  8. Geophysical investigations of the Seferihisar geothermal area, Western Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Drahor, Mahmut G.; Berge, Meric A. [Dokuz Eyluel University, Engineering Faculty, Department of Geophysics, Tinaztepe Campus, 35160 Buca-Izmir (Turkey)

    2006-06-15

    Self-potential (SP), magnetic and very low frequency electromagnetic (EM-VLF) surveys were carried out in the Seferihisar geothermal area to identify major and minor fault zones and characterize the geothermal system. The SP study provided useful information on the local faults and subsurface fluid flow. The main SP anomalies appear mostly along and near active fault zones in the area of the Cumali, Tuzla and Doganbey hot springs. Two of these anomalies near the Tuzla hot springs were further evaluated by SP modelling. Total magnetic field values increase from the Doganbey to the Cumali hot springs. Modelling performed on the magnetic data indicates that between these two spring areas are four different regions or units that can be distinguished on the basis of their magnetic susceptibility values. Fraser filtering of EM-VLF data also indicates that there are three significant conductive zones in the regions around the Cumali, Tuzla and Doganbey hot springs, and that they lie between important fault systems. The EM-VLF and total (stacked) SP data show that the conductive tilt anomalies obtained by Fraser filtering generally coincide with negative SP areas. According to our geophysical investigations, new exploratory wells should be drilled into the conductive zones located between the Cumali and Tuzla hot springs. We further recommend that resistivity and magnetotelluric methods be carried out in the area to obtain additional information on the Seferihisar geothermal system. (author)

  9. Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots

    Science.gov (United States)

    Wu, Zhen; Fallahi, Mohammad; Ouizem, Souad; Liu, Qin; Li, Weimin; Costi, Roberta; Roush, William R.; Bois, Philippe R. J.

    2016-01-01

    ABSTRACT Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined “hot spots.” In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots. PMID:27821479

  10. Analysis on energy-saving path of rural buildings in hot summer and cold winter zone

    Science.gov (United States)

    Huang, Mingqiang; Li, Jinheng

    2018-02-01

    Since the reform and opening policy, the construction of rural area in China has become more and more important. The idea of establishing green villages needs to be accepted and recognized by the public. The hot summer and cold winter zone combines two contradictory weather conditions that is cold winter and hot summer. So the living conditions are limited. In response to this climate, residents extensively use electric heaters or air conditioning to adjust the indoor temperature, resulting in energy waste and environmental pollution. In order to improve the living conditions of residents, rural area energy conservation has been put on the agenda. Based on the present situation and energy consumption analysis of the rural buildings in the hot summer and cold winter zone, this article puts forward several energy saving paths from government, construction technology and so on

  11. Process and equipment development for hot isostatic pressing treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Ken; Wahlquist, Dennis; Malewitz, Tim

    2015-03-01

    Battelle Energy Alliance (BEA), LLC, has developed processes and equipment for a pilot-scale hot isostatic pressing (HIP) treatability study to stabilize and volume reduce radioactive calcine stored at Idaho National Laboratory (INL). In 2009, the U. S. Department of Energy signed a Record of Decision with the state of Idaho selecting HIP technology as the method to treat 5,800 yd^3 (4,400 m^3) of granular zirconia and alumina calcine produced between 1953 and 1992 as a waste byproduct of spent nuclear fuel reprocessing. Since the 1990s, a variety of radioactive and hazardous waste forms have been remotely treated using HIP within INL hot cells. To execute the remote process at INL, waste is loaded into a stainless-steel or aluminum can, which is evacuated, sealed, and placed into a HIP furnace. The HIP simultaneously heats and pressurizes the waste, reducing its volume and increasing its durability. Two 1 gal cans of calcine waste currently stored in a shielded cask were identified as candidate materials for a treatability study involving the HIP process. Equipment and materials for cask-handling and calcine transfer into INL hot cells, as well as remotely operated equipment for waste can opening, particle sizing, material blending, and HIP can loading have been designed and successfully tested. These results demonstrate BEA’s readiness for treatment of INL calcine.

  12. HOTLAB: European hot laboratories research capacities and needs. Plenary meeting 2004

    International Nuclear Information System (INIS)

    Oberlaender, B.C.; Jenssen, H.K.

    2005-01-01

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented

  13. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    International Nuclear Information System (INIS)

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2014-01-01

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified

  14. MICROBIAL POPULATION OF HOT SPRING WATERS IN ESKİŞEHİR/TURKEY

    Directory of Open Access Journals (Sweden)

    Nalan YILMAZ SARIÖZLÜ

    2012-02-01

    Full Text Available In order to investigate and find out the bacterial community of hot spring waters in Eskişehir, Turkey, 7 hot spring water samples were collected from 7 different hot springs. All samples were inoculated using four different media (nutrient agar, water yeast extract agar, trypticase soy agar, starch casein agar. After incubation at 50 ºC for 14 days, all bacterial colonies were counted and purified. Gram reaction, catalase and oxidase properties of all isolates were determined and investigated by BIOLOG, VITEK and automated ribotyping system (RiboPrinter. The resistance of these bacteriawas examined against ampiciline, gentamisine, trimethoprime-sulphamethoxazole and tetracycline. As a result, heat resistant pathogenic microorganisms in addition to human normal flora were determined in hot spring waters (43-50 ºC in investigated area. Ten different species belong to 6 genera were identified as Alysiella filiformis, Bordetella bronchiseptica, B. pertussis, Molexalla caprae, M. caviae, M. cuniculi, M. phenylpyruvica, Roseomonas fauriae, Delftia acidovorans and Pseudomonas taetrolens.

  15. Characteristics and Origins of Hot Springs in the Tatun Volcano Group in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chia-Mei Liu

    2011-01-01

    Full Text Available This paper systematically surveyed distribution and field occurrences of 13 hot springs as well as geochemical investigation on the geothermal area of the Tatun Volcano Group (TVG. According to Piper diagrams, pH values, field occurrences and water-rock interactions, these hot springs can be classified into three types: (1 Type I, SO42- acidic water where the reservoir is located in the Wuchishan Formation; (2 Type II, HCO3- a near neutral spring where waters originate from the volcanic terrane (andesite; and (3 Type III, Cl- -rich acidic water where waters emanate from shallower Wuchishan Formation. In terms of isotopic ratio, δD and δ18O values, two groups of hot spring can be recognized. One is far away from the meteoric water line of the Tatun area with values ranging between -26.2‰ and -3.5‰, and from -3.2‰ to 1.6‰, respectively. However, another close to the meteoric water line of the Tatun area is between -28.4‰ and -13.6‰, and from -5.5‰ to -4.2‰, respectively. In addition, the δ34S value of thermal waters can also be distinguished into two groups, one ranging from 26.1‰ to 28.5‰, and the other between 0.8‰ and 7.8‰. Based on field occurrences and geochemical characteristics, a model has been proposed to illustrate the origin of these hot springs.

  16. Detection of Hot Halo Gets Theory Out of Hot Water

    Science.gov (United States)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  17. Surveillance and radiological protection in the Hot Cell laboratory; Vigilancia y proteccion radiologica en el Laboratorio de Celdas Calientes

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, J.M.; Torre, J. De la; Garcia C, M.A. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2004-07-01

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  18. An improved out-cell to in-cell rapid transfer system at the HFEF/South

    International Nuclear Information System (INIS)

    Bacca, J.P.; Sherman, E.K.

    1991-01-01

    This paper reports on Argonne National Laboratory's Fuel Cycle Facility (FCF) (formerly named Hot Fuel Examination Facility-South) (HFEF/South) which is currently being refurbished and upgraded in preparation for demonstrating remote, fast reactor metal-fuel reprocessing and refabrication, as part of the Integral Fast Reactor (IFR) Program. Among the FCF hot-cell system upgrades being provided is a newly fabricated, direct, out-of-cell to in-cell, small-item transfer system for the FCF argon cell. This system will enable the rapid transfer of selected small items from the hot cell exterior into the argon cell (argon-gas atmosphere) of the facility, without necessitating the use of formerly employed, very time-consuming, and quite laborious procedures. The new system will be especially valuable for the rapid insertion of IFR fuel processing makeup materials and small tools into the argon cell, and for use in argon cell and overall FCF radioactive contamination-control activities

  19. Hot Gas Halos in Galaxies

    Science.gov (United States)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  20. A hot water extract of Curcuma longa inhibits adhesion molecule protein expression and monocyte adhesion to TNF-α-stimulated human endothelial cells.

    Science.gov (United States)

    Kawasaki, Kengo; Muroyama, Koutarou; Yamamoto, Norio; Murosaki, Shinji

    2015-01-01

    The recruitment of arterial leukocytes to endothelial cells is an important step in the progression of various inflammatory diseases. Therefore, its modulation is thought to be a prospective target for the prevention or treatment of such diseases. Adhesion molecules on endothelial cells are induced by proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), and contribute to the recruitment of leukocytes. In the present study, we investigated the effect of hot water extract of Curcuma longa (WEC) on the protein expression of adhesion molecules, monocyte adhesion induced by TNF-α in human umbilical vascular endothelial cells (HUVECs). Treatment of HUVECs with WEC significantly suppressed both TNF-α-induced protein expression of adhesion molecules and monocyte adhesion. WEC also suppressed phosphorylation and degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) induced by TNF-α in HUVECs, suggesting that WEC inhibits the NF-κB signaling pathway.

  1. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    International Nuclear Information System (INIS)

    Soelberg, Nick; Enneking, Joe

    2011-01-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absorption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  2. ON THE EMERGENT SPECTRA OF HOT PROTOPLANET COLLISION AFTERGLOWS

    International Nuclear Information System (INIS)

    Miller-Ricci, Eliza; Meyer, Michael R.; Seager, Sara; Elkins-Tanton, Linda

    2009-01-01

    We explore the appearance of terrestrial planets in formation by studying the emergent spectra of hot molten protoplanets during their collisional formation. While such collisions are rare, the surfaces of these bodies may remain hot at temperatures of 1000-3000 K for up to millions of years during the epoch of their formation (of duration 10-100 Myr). These objects are luminous enough in the thermal infrared to be observable with current and next-generation optical/IR telescopes, provided that the atmosphere of the forming planet permits astronomers to observe brightness temperatures approaching that of the molten surface. Detectability of a collisional afterglow depends on properties of the planet's atmosphere-primarily on the mass of the atmosphere. A planet with a thin atmosphere is more readily detected, because there is little atmosphere to obscure the hot surface. Paradoxically, a more massive atmosphere prevents one from easily seeing the hot surface, but also keeps the planet hot for a longer time. In terms of planetary mass, more massive planets are also easier to detect than smaller ones because of their larger emitting surface areas-up to a factor of 10 in brightness between 1 and 10 M + planets. We present preliminary calculations assuming a range of protoplanet masses (1-10 M + ), surface pressures (1-1000 bar), and atmospheric compositions, for molten planets with surface temperatures ranging from 1000 to 1800 K, in order to explore the diversity of emergent spectra that are detectable. While current 8 to 10 m class ground-based telescopes may detect hot protoplanets at wide orbital separations beyond 30 AU (if they exist), we will likely have to wait for next-generation extremely large telescopes or improved diffraction suppression techniques to find terrestrial planets in formation within several AU of their host stars.

  3. Dynamics of cell area and force during spreading.

    Science.gov (United States)

    Brill-Karniely, Yifat; Nisenholz, Noam; Rajendran, Kavitha; Dang, Quynh; Krishnan, Ramaswamy; Zemel, Assaf

    2014-12-16

    Experiments on human pulmonary artery endothelial cells are presented to show that cell area and the force exerted on a substrate increase simultaneously, but with different rates during spreading; rapid-force increase systematically occurred several minutes past initial spreading. We examine this theoretically and present three complementary mechanisms that may accompany the development of lamellar stress during spreading and underlie the observed behavior. These include: 1), the dynamics of cytoskeleton assembly at the cell basis; 2), the strengthening of acto-myosin forces in response to the generated lamellar stresses; and 3), the passive strain-stiffening of the cytoskeleton. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Large area, low cost solar cell development and production readiness

    Science.gov (United States)

    Michaels, D.

    1982-01-01

    A process sequence for a large area ( or = 25 sq. cm) silicon solar cell was investigated. Generic cell choice was guided by the expected electron fluence, by the packing factors of various cell envelope designs onto each panel to provide needed voltage as well as current, by the weight constraints on the system, and by the cost goals of the contract.

  5. Fiscal 1981 Sunshine Project research report. Research on underground reinjection mechanism of hot water; 1981 nendo nessui no chika kangen mechanism no chosa kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This report summarizes the fiscal 1981 research result on the behavior and flow mechanism of underground reinjected hot water, and the effect of reinjected hot water on the ground. In the tracer survey in Takinoue area, Iwate prefecture, the re-upwelling rate and mixing rate of reinjected hot water were lower than those in previous surveys, showing the smaller effect of hot water on productivity. In Nigori-Gawa area, Hokkaido, natural conditions prior to industrial production and reinjection were observed by tracer survey. In the simulation research, it was confirmed that the hydraulic structural model and analysis technique established by previous researches are effective for new production and reinjection systems different from previous ones enough. On observation of minute earthquakes, study was made on the effect of reinjected hot water on the ground in Takinoue area. In Nigori-Gawa area, the data were collected under natural conditions prior to industrial production and reinjection through minute earthquake observations. (NEDO)

  6. Update on the KELT Transit Survey: Hot Planets around Hot Stars

    Science.gov (United States)

    Gaudi, B. Scott; Stassun, Keivan G.; Pepper, Joshua; KELT Collaboration

    2018-01-01

    The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescopes located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 70% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. I will provide an update on the planets discovered by KELT, focusing in detail on our recent discoveries of very hot planets transiting several bright A and early F stars.

  7. Hot subluminous star: HDE 283048

    International Nuclear Information System (INIS)

    Laget, M.; Vuillemin, A.; Parsons, S.B.; Henize, K.G.; Wray, J.D.

    1978-01-01

    The star HDE 283048, located at α = 3/sup h/50/sup m/.3, delta = +25 0 36', shows a strong ultraviolet continuum. Ground-based observations indicate a hot-dominated composite spectrum. Several lines of evidence suggest that the hot component is a hot subdwarf. 2 figures

  8. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan.

    Science.gov (United States)

    Amin, Arshia; Ahmed, Iftikhar; Salam, Nimaichand; Kim, Byung-Yong; Singh, Dharmesh; Zhi, Xiao-Yang; Xiao, Min; Li, Wen-Jun

    2017-07-01

    Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.

  9. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    International Nuclear Information System (INIS)

    Lockrem, L.L.; Owens, J.W.; Seidel, C.M.

    2009-01-01

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method

  10. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    Science.gov (United States)

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  11. The Results of HLW Processing Using Zirconium Salt of Dibutyl phosphoric Acid in Hot Cell

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Yu.S.; Zilberman, B.Ya.; Shmidt, O.V. [Khlopin Radium Institute, 2nd Murinsky Ave., 28, Saint-Petersburg, 194021 (Russian Federation)

    2008-07-01

    Zirconium salt of dibutyl phosphoric acid (ZS HDBP), is an effective solvent for liquid HLW and ILW (high and intermediate level wastes) processing with radionuclide partitioning into different groups for further immobilization according to radiotoxicity. The rig trials in mixer-settles in hot cells were carried out using 30 L of real HLW containing transplutonium (TPE), rare earths (RE), Sr and Cs in 2 mol/L HNO{sub 3}, characterized by total specific activity 520 MBk/L. The recovery factor for TPE and RE was as high as 10{sup 4}, but only 10 for Sr. Purification factor of TPE and RE from Cs and Sr was 10{sup 4}, and that of Sr from TPE and Cs was 10{sup 3}. Almost all Cs was localized in the second cycle raffinate. So Zr salt of HDBP can be used in HLW processing with radionuclide partitioning with respect to the categories of radiotoxicity. (authors)

  12. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.

    1974-05-01

    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  13. The radiological significance of beta emitting hot particles released from the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Hofmann, W.; Crawford-Brown, D.J.; Martonen, T.B.

    1988-01-01

    In order to assess radiological hazards associated with inhalation of beta emitting hot particles detected in fall-out from the Chernobyl incident, radiation doses and lung cancer risk are calculated for a hot particle composed entirely of 103 Ru. Lung cancer risk estimates are based upon an initiation-promotion model of carcinogenesis. In the immediate vicinity of a hot particle, calculations indicate that doses may be extremely high, so that all cells are killed and no tumour will arise. At intermediate distances, however, the probability for lung cancer induction exhibits a distinct maximum. Risk enhancement factors, computed relative to a uniform radionuclide distribution of equal activity, are highest for intermediate activities and hot particles moving in the lung. While the risk from inhalation of 103 Ru hot particles might, indeed, exceed that from all other exposure pathways of the Chernobyl fall-out, it still lies within normal fluctuations of radon progeny induced lung cancer risk. (author)

  14. Development of large area, high efficiency amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K.S.; Kim, S.; Kim, D.W. [Yu Kong Taedok Institute of Technology (Korea, Republic of)

    1996-02-01

    The objective of the research is to develop the mass-production technologies of high efficiency amorphous silicon solar cells in order to reduce the costs of solar cells and dissemination of solar cells. Amorphous silicon solar cell is the most promising option of thin film solar cells which are relatively easy to reduce the costs. The final goal of the research is to develop amorphous silicon solar cells having the efficiency of 10%, the ratio of light-induced degradation 15% in the area of 1200 cm{sup 2} and test the cells in the form of 2 Kw grid-connected photovoltaic system. (author) 35 refs., 8 tabs., 67 figs.

  15. Experience feedback on the refurbishment of the LECA hot laboratory at Cadarache

    International Nuclear Information System (INIS)

    Grandjean, Jean-Paul; Autran, Bernard; Blanc, Jean-Yves

    2007-01-01

    Full text: After ten years of renovation work, the LECA hot laboratory refurbishment project has finally been completed which means it is now time to draw a few conclusions. Refurbishment of LECA was needed to enable PIE in this laboratory up to 2015. Improvements were made according to the laboratory safety assessment in March 2001. More than 400,000 working hours were clocked up without any serious accidents. The overall radiological record remained below 0.4 man.Sv for this period despite a high contamination level in the venting system and hot cells. The total fissile mass was decreased by a factor of three, and contamination was also considerably reduced. The project was finalised two years later than expected, mainly due to difficulties with two contracts on civil engineering work to improve seismic resistance and on inserting stainless steel casing into some hot cells. Renovation work on existing structures was underestimated, as was the time required to re-commission the cells. The fact that the total number of external staff working inside the facility at the same time was limited also slowed work down. This delay affected the research programmes mainly over the last two years. On the whole, 85 % of all experimentation activities were nevertheless continued during refurbishment. New steps for refurbishment have already been planned so as to extend the LECA service life once again. A line of lead-shielded cells - not designed to withstand current earthquake standards - will be demolished before the end of 2008, and civil engineering operations have been programmed for 2013-2014 so the facility will be able to withstand a maximum design earthquake. (authors)

  16. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  17. Construction of an external electrode for determination of electrochemical corrosion potential in normal operational conditions of an BWR type reactor for hot cells

    International Nuclear Information System (INIS)

    Aguilar T, J.A.; Rivera M, H.; Hernandez C, R.

    2001-01-01

    The behavior of the corrosion processes at high temperature requires of external devices that being capable to resist a temperature of 288 Centigrade and a pressure of 80 Kg/cm 2 , to give stable and reproducible results of some variable and resisting physically and chemically the radiation. The external electrode of Ag/AgCl fulfils all the requirements in the determination of the electrochemical corrosion potential under normal operational conditions of a BWR type reactor in hot cells. (Author)

  18. Recent trend of administration on hot springs

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Shigeru [Environment Agency, Tokyo (Japan)

    1989-01-01

    The Environmental Agency exercises jurisdiction over Hot Spring Act, and plans to protect the source of the hot spring and to utilize it appropriately. From the aspect of utilization, hot springs are widely used as a means to remedy chronic diseases and tourist spots besides places for recuperation and repose. Statistics on Japanese hot springs showed that the number of hot spring spots and utilized-fountainhead increased in 1987, compared with the number in 1986. Considering the utilized-headspring, the number of naturally well-out springs has stabilized for 10 years while power-operated springs have increased. This is because the demand of hot springs has grown as the number of users has increased. Another reason is to keep the amount of hot water by setting up the power facility as the welled-out amount has decreased. Major point of recent administration on the hot spring is to permit excavation and utilization of hot springs. Designation of National hot spring health resorts started in 1954 in order to ensure the effective and original use of hot springs and to promote the public use of them, for the purpose of arranging the sound circumstances of hot springs. By 1988, 76 places were designated. 4 figs., 3 tabs.

  19. Computational Prediction of Hot Spot Residues

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2013-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues. PMID:22316154

  20. Applying hot wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell - Part 1

    DEFF Research Database (Denmark)

    Berning, Torsten; Al Shakhshir, Saher

    2015-01-01

    In order to accurately determine the water balance of a proton exchange membrane fuel cell it has recently been suggested to employ constant temperature anemometry (CTA), a frequently used method to measure the velocity of a fluid stream. CTA relies on convective heat transfer around a heated wire...... the equations required to calculate the heat transfer coefficient and the resulting voltage signal as function of the fuel cell water balance. The most critical and least understood part is the determination of the Nusselt number to calculate the heat transfer between the wire and the gas stream. Different...... expressions taken from the literature will be examined in detail, and it will be demonstrated that the power-law approach suggested by Hilpert is the only useful one for the current purposes because in this case the voltage response from the hot-wire sensor E/E0 shows the same dependency to the water balance...

  1. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor

    Science.gov (United States)

    Dwivedi, Dipankar; Arora, Bhavna; Steefel, Carl I.; Dafflon, Baptiste; Versteeg, Roelof

    2018-01-01

    We use 3-D high-resolution reactive transport modeling to investigate whether the spatial distribution of organic-carbon-rich and chemically reduced sediments located in the riparian zone and temporal variability in groundwater flow direction impact the formation and distribution of nitrogen hot spots (regions that exhibit higher reaction rates when compared to other locations nearby) and hot moments (times that exhibit high reaction rates as compared to longer intervening time periods) within the Rifle floodplain in Colorado. Groundwater flows primarily toward the Colorado River from the floodplain but changes direction at times of high river stage. The result is that oxic river water infiltrates the Rifle floodplain during these relatively short-term events. Simulation results indicate that episodic rainfall in the summer season leads to the formation of nitrogen hot moments associated with Colorado River rise and resulting river infiltration into the floodplain. The results further demonstrate that the naturally reduced zones (NRZs) present in sediments of the Rifle floodplain have a higher potential for nitrate removal, approximately 70% greater than non-NRZs for typical hydrological conditions. During river water infiltration, nitrate reduction capacity remains the same within the NRZs, however, these conditions impact non-NRZs to a greater extent (approximately 95% less nitrate removal). Model simulations indicate chemolithoautotrophs are primarily responsible for the removal of nitrate in the Rifle floodplain. These nitrogen hot spots and hot moments are sustained by microbial respiration and the chemolithoautotrophic oxidation of reduced minerals in the riparian zone.

  2. Characterization of nonlymphoid cells in rat spleen, with special reference to strongly Ia-positive branched cells in T-cell areas

    International Nuclear Information System (INIS)

    Dijkstra, C.D.

    1982-01-01

    By use of a monoclonal antibody against Ia antigen in an immunoperoxidase method, strongly Ia-positive branched cells are found in the T-cell areas of the splenic white pulp of the rat. In order to further characterize these cells, enzyme histochemical characteristics, phagocytic capacity, and irradiation sensitivity have been studied. Evidence is presented that these strongly Ia-positive branched cells represent interdigitating cells. The influence of whole-body irradiation on interdigitating cells is discussed. Comparison with data from the literature on the in vitro dendritic cell isolated from spleen cell suspensions reveals many similarities between the described interdigitating cell in vivo and the dendritic cell in vitro

  3. Scalability of multi-junction organic solar cells for large area organic solar modules

    Science.gov (United States)

    Xiao, Xin; Lee, Kyusang; Forrest, Stephen R.

    2015-05-01

    We investigate the scalability of multi-junction organic photovoltaic cells (OPV) with device areas ranging from 1 mm2 to 1 cm2, as well as 25 cm2 active area solar modules. We find that the series resistance losses in 1 cm2 vs. 1 mm2 OPV cell efficiencies are significantly higher in single junction cells than tandem, triple, and four junction cells due to the lower operating voltage and higher current of the former. Using sub-electrodes to reduce series resistance, the power conversion efficiency (PCE) of multi-junction cells is almost independent of area from 1 mm2 to 1 cm2. Twenty-five, 1 cm2 multi-junction cell arrays are integrated in a module and connected in a series-parallel circuit configuration. A yield of 100% with a deviation of PCE from cell to cell of <10% is achieved. The module generates an output power of 162 ± 9 mW under simulated AM1.5G illumination at one sun intensity, corresponding to PCE = 6.5 ± 0.1%, slightly lower than PCE of discrete cells ranging from 6.7% to 7.2%.

  4. Plasmonically enhanced hot electron based photovoltaic device.

    Science.gov (United States)

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths.

  5. HOTLAB: European hot laboratories research and capacities and needs. Plenary meeting 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Jenssen, H.K. (ed.)

    2005-01-01

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented.

  6. 30 CFR 77.303 - Hot gas inlet chamber dropout doors.

    Science.gov (United States)

    2010-07-01

    ... Section 77.303 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... employ a hot gas inlet chamber shall be equipped with drop-out doors at the bottom of the inlet chamber...

  7. Transfer flask for hot active fuel elements

    International Nuclear Information System (INIS)

    Aubert, Roger; Moutard, Daniel.

    1980-01-01

    This invention concerns a flask for transporting active fuel elements removed from a nuclear reactor vessel, after only a few days storage and hence cooling, either within a nuclear power station itself or between such a station and a near-by storage area. This containment system is not a flask for conveyance over long and medium distances. Specifically, the invention concerns a transport flask that enables hot fuel elements to be cooled, even in the event of accidents [fr

  8. Hot Spot Removal System: System description

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  9. Hot Spot Removal System: System description

    International Nuclear Information System (INIS)

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System''s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section

  10. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using HVACSIM+

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ping; Yang, Hongxing [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Spitler, Jeffrey D. [School of Mechanical Engineering, Oklahoma State University (United States); Fang, Zhaohong [Ground Source Heat Pump Research Center, Shandong University of Architecture and Engineering, Jinan (China)

    2008-07-01

    A hybrid ground-coupled heat pump (HGCHP) with domestic hot water (DHW) supply system has been proposed in this paper for space cooling/heating and DHW supply for residential buildings in hot-climate areas. A simulation model for this hybrid system is established within the HVACSIM+ environment. A sample system, applied for a small residential apartment located in Hong Kong, is hourly simulated in a typical meteorological year. The conventional GCHP system and an electric heater for DHW supply are also modeled and simulated on an hourly basis within the HVACSIM+ for comparison purpose. The results obtained from this case study show that the HGCHP system can effectively alleviate the imbalanced loads of the ground heat exchanger (GHE) and can offer almost 95% DHW demand. The energy saving for DHW heating is about 70% compared with an electric heater. This proposed scheme, i.e. the HGCHP with DHW supply, is suitable to residential buildings in hot-climate areas, such as in Hong Kong. (author)

  11. Estimation of solar collector area for water heating in buildings of Malaysia

    Science.gov (United States)

    Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.

    2018-04-01

    Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.

  12. Hot spring therapy of the patients exposed to atomic bomb radiation, 15

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Tamon [Genbaku Hibakusha Beppu Onsen Ryoyo Kenkyusho, Oita (Japan); Tsuji, Hideo

    1983-03-01

    The patients exposed to the atomic bomb radiation in Hiroshima area came to Beppu Spa to have hot spring therapy. During the fiscal year of 1982 (April, 1982, to March, 1983), 3972 persons came to the hot spring sanatorium, and 586 patients (14.8 %) received physical examination. Among them, 473 patients (80.7 %) were exposed to the atomic bomb radiation on August 6, 1945, or entered in the city of Hiroshima by August 20, 1945, according to the official notebook issued by the government. Physical examination was performed twice a week during their stay, and more than 53.5 % of the patients were older than 70, and the oldest was 93 years old. Blood pressure was measured when the patients came in and went out, and hypertensive patients were asked to observe the rule of treatment strictly. The complaints of the patients which brought them to the hot spring were mostly pain in bodies and lower extremities, and hypertension, common cold syndrome, diabetes and constipation. Patients took hot spring bath 2

  13. Surveillance of Vittaforma corneae in hot springs by a small-volume procedure.

    Science.gov (United States)

    Chen, Jung-Sheng; Hsu, Tsui-Kang; Hsu, Bing-Mu; Huang, Tung-Yi; Huang, Yu-Li; Shaio, Men-Fang; Ji, Dar-Der

    2017-07-01

    Vittaforma corneae is an obligate intracellular fungus and can cause human ocular microsporidiosis. Although accumulating reports of V. corneae causing keratoconjunctivitis in both healthy and immunocompromised persons have been published, little is known about the organism's occurrence in aquatic environments. Limitations in detection sensitivity have meant a large sampling volume is required to detect the pathogen up to now, which is problematic. A recent study in Taiwan has shown that some individuals suffering from microsporidial keratitis (MK) were infected after exposure to the pathogen at a hot spring. As a consequence of this, a survey and analysis of environmental V. corneae present in hot springs became an urgent need. In this study, sixty water samples from six hot spring recreation areas around Taiwan were analyzed. One liter of water from each sample site was filtered to harvest the fungi. The positive samples were detected using a modified nested PCR approach followed by sequencing using specific SSU rRNA gene primer pairs for V. corneae. In total fifteen V. corneae-like isolates were identified (25.0% of sites). Among them, six isolates, which were collected from recreational areas B, C and D, were highly similar to known V. corneae keratitis strains from Taiwan and other countries. Furthermore, five isolates, which were collected from recreation areas A, C, E and F, were very similar to Vittaforma-like diarrhea strains isolated in Portugal. Cold spring water tubs and public foot bath pools had the highest detection rate (50%), suggesting that hot springs might be contaminated via untreated water sources. Comparing the detection rate across different regions of Taiwan, Taitung, which is in the east of the island, gave the highest positive rate (37.5%). Statistical analysis showed that outdoor/soil exposure and a high heterotrophic plate count (HPC) were risk factors for the occurrence of V. corneae. Our findings provide empirical evidence

  14. The Distinction of Hot Herbal Compress, Hot Compress, and Topical Diclofenac as Myofascial Pain Syndrome Treatment.

    Science.gov (United States)

    Boonruab, Jurairat; Nimpitakpong, Netraya; Damjuti, Watchara

    2018-01-01

    This randomized controlled trial aimed to investigate the distinctness after treatment among hot herbal compress, hot compress, and topical diclofenac. The registrants were equally divided into groups and received the different treatments including hot herbal compress, hot compress, and topical diclofenac group, which served as the control group. After treatment courses, Visual Analog Scale and 36-Item Short Form Health survey were, respectively, used to establish the level of pain intensity and quality of life. In addition, cervical range of motion and pressure pain threshold were also examined to identify the motional effects. All treatments showed significantly decreased level of pain intensity and increased cervical range of motion, while the intervention groups exhibited extraordinary capability compared with the topical diclofenac group in pressure pain threshold and quality of life. In summary, hot herbal compress holds promise to be an efficacious treatment parallel to hot compress and topical diclofenac.

  15. The main chemical properties of hot and cold mineral waters in Bayankhongor, Mongolia

    Directory of Open Access Journals (Sweden)

    D Oyuntsetseg

    2014-12-01

    Full Text Available In the current study, hot and cold mineral springs and sub mineral waters in the Bayankhongor province were examined for their chemical characteristics and identified cold mineral waters classification according to mineral water classification of Mongolia. The hot spring waters belong to Na+-HCO3- and Na+-SO42- types. The cold mineral spring of Lkham belongs to Ca2+-HCO3- type. All sub mineral waters are generally located in the two areas (northern part or mountain forest area and the southern part or Gobi desert area. TDS concentrations of cold springs of the southern part in the study area were higher than northern part’s cold springs. The total dissolved silica content of cold spring was ranged from 4.5mg/L to 26 mg/L which did not correspond to requirements of mineral water standard of Mongolia. Thus, these cold springs are belonging to sub mineral water classification. The sub mineral waters were characterized into four types such as a Ca2+-SO42-, Na+-SO42-, Na+-HCO3 and Ca2+ - HCO3 by their chemical composition in the study area. The values for the quartz, chalcedony geothermometer and the Na/K geothermometer were quite different. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 124 and 197°C and most of the hot waters have been  probably mixed with cold water. The result shows that an averaged value of calculated temperature ranges from 77°C to 119°C which indicates that studied area has low temperature geothermal resources. DOI: http://doi.dx.org/10.5564/mjc.v15i0.324 Mongolian Journal of Chemistry 15 (41, 2014, p56-62

  16. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    Science.gov (United States)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  17. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    Science.gov (United States)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  18. Research and systematization of 'hot' particles in the Semipalatinsk nuclear test site soils - methodology and first results

    International Nuclear Information System (INIS)

    Gorlachev, I.D.; Knyazev, B.B.; Kvochkina, T.N.; Lukashenko, S.N.

    2005-01-01

    Full text: Sources of soil activity in Semipalatinsk Nuclear Test Site (SNTS) could be both 'hot' particles dimensions from tens microns to units millimeters and sub-microns particles determining a matrix activity of soil samples. The fractionating of radionuclides and formation of 'hot' particles radionuclide composition arose from temperature changes and complicated nuclear-physical and thermodynamics processes occurring in a fire ball and cloud of nuclear explosion. Knowledge of 'hot' particles physical-chemical properties is needed for evaluation of radioactive products migration in the environment and danger level of the people external and internal exposure. Moreover, minute information about the structure and compound of 'radioactive' particles can be useful for specification of processes occurring in a fiery sphere when conducting explosions of different phylum and also for specification of radioactive fallout forming mechanism. The main polluted spots of SNTS could be divided into the four the species depending on nuclear explosion phylum. Species of radionuclide and their distribution for the different nuclear explosions are able to differ considerably. Therefore, several most typical areas for the each phylum test were selected and twenty soil samples were collected to reveal their radionuclide pollution peculiarities. Collected soil samples were separated into the five granulometric fractions: 1 mm - 2 mm, 0.5 mm - 1 mm. 0.28 mm-0.5 mm, 0.112 mm - 0.28 mm and 1 mm), 210 'hot' particles of second fraction (1>f>0.5 mm) and 154 'hot' particles of third fraction (0.5>f>0.28 mm) have been selection from the twelve SNTS soil samples by the compelled fission and visual identification methods. Main sources of soil samples and 'hot' particles activities are 239+240 Pu, 241 Am, 137 Cs and 152 Eu isotopes.In addition to the described works the special sampling of large 'hot' particles (dimension more than 2 mm) was carried out in areas of the ground and air tests

  19. SHOSPA-MOD, Hot Spot Factors for Fuel and Clad, Hot Channel Factors

    International Nuclear Information System (INIS)

    Amendola, A.

    1982-01-01

    1 - Nature of the physical problem solved: SHOSPA evaluates the hot spot factors for fuel and cladding as well as the hot channel factor as a function of the confidence level. Moreover, it evaluates the probability on n hot subassemblies. The code has been developed with emphasis on sodium cooled fast reactors, but it is applicable to any type of reactors constituted of bundled fuel rods with single phase coolant. An option for plotting is available in this version. 2 - Restrictions on the complexity of the problem: This code is applicable to any type of reactors constituted of fuel rods with single phase coolant

  20. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland, The cells were rod-shaped, motile, and had terminal spores: cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed...