WorldWideScience

Sample records for hot cell chemistry

  1. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  2. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  3. Remarks on theoretical hot-atom chemistry

    International Nuclear Information System (INIS)

    Inokuti, Mitio

    1993-01-01

    The publication of the 'Handbook of Hot Atom Chemistry', following the earlier volume 'Recent Trend and Application', was a major milestone in physical chemistry. Theoretical treatments of hot atom chemistry must address two classes of problems. The first class concerns the individual collisions of hot atoms with other atoms or molecules. The second class concerns the description of the consequences of the many collisions of hot atoms and their chemical environment. Most of the remarks pertain to the problems of the first class. The central issue is the adiabaticity of nuclear motions versus electronic motions. To be precise, any atomic core motion should be mentioned rather than pure nuclear motion, because tightly bound core electrons are largely irrelevant to the chemistry. When nuclear motions are sufficiently slow, or for other reasons that can be regarded as adiabatic, the collision problem is basically straightforward, therefore, interatomic and intermolecular forces can be assumed, and their consequences for nuclear motions are calculable in principle. In the case of non-adiabaticity being important, much more difficult problems arise, and it is briefly discussed, and the work by Phelps is cited. (K.I.)

  4. Hot atom chemistry of sulphur

    International Nuclear Information System (INIS)

    Todorovski, D. S.; Koleva, D. P.

    1982-01-01

    An attempt to cover all papers dealing with the hot atom chemistry of sulpphur is made. Publications which: a) only touch the problem, b) contain some data, indirectly connected with sulphur hot atom chemistry, c) deal with 35 S-production from a chloride matrix, are included as well. The author's name and literature source are given in the original language, transcribed, when it is necessary, in latine. A number of primery and secondary documents have been used including Chemical Abstracts, INIS Atomindex, the bibliographies of A. Siuda and J.-P. Adloff for 1973 - 77, etc. (authors)

  5. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  6. Hot atom chemistry of carbon

    International Nuclear Information System (INIS)

    Wolf, A.P.

    1975-01-01

    The chemistry of energetic carbon atoms is discussed. The experimental approach to studies that have been carried out is described and the mechanistic framework of hot carbon atom reactions is considered in some detail. Finally, the direction that future work might take is examined, including the relationship of experimental to theoretical work. (author)

  7. Handbook of hot atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.; Matsuura, Tatsuo; Yoshihara, Kenji

    1992-01-01

    Hot atom chemistry is an increasingly important field, which has contributed significantly to our understanding of many fundamental processes and reactions. Its techniques have become firmly entrenched in numerous disciplines, such as applied physics, biomedical research, and all fields of chemistry. Written by leading experts, this comprehensive handbook encompasses a broad range of topics. Each chapter comprises a collection of stimulating essays, given an in-depth account of the state-of-the-art of the field, and stressing opportunities for future work. An extensive introduction to the whole area, this book provides unique insight into a vast subject, and a clear delineation of its goals, techniques, and recent findings. It also contains detailed discussions of applications in fields as diverse as nuclear medicine, geochemistry, reactor technology, and the chemistry of comets and interstellar grains. (orig.)

  8. Hot functional test chemistry - long term experience

    International Nuclear Information System (INIS)

    Vonkova, K.; Kysela, J.; Marcinsky, M.; Martykan, M.

    2010-01-01

    Primary circuit materials undergo general corrosion in high temperature, deoxygenated, neutral or mildly alkaline solutions to form thin oxide films. These oxide layers (films) serve as protective film and mitigate the further corrosion of primary materials. Inner chromium-rich oxide layer has low cation diffusion coefficients and thus control iron and nickel transport from the metal surface to the outer layer and their dissolution into the coolant. Much less corrosion products are generated by the compact, integral and stable oxide (passivation) layer. For the latest Czech and Slovak stations commissioned (Temelin and Mochovce) a modified Hot Functional Test (HFT) chemistry was developed in the NRI Rez. Chromium rich surface layer formatted due to modified HTF chemistry ensures lower corrosion rates and radiation field formation and thus also mitigates crud formation during operation. This procedure was also designed to prepare the commissioned unit for the further proper water chemistry practise. Mochovce 1 (SK) was the first station commissioned using these recommendations in 1998. Mochovce 2 (1999) and Temelin 1 and 2 (CZ - 2000 and 2002) were subsequently commissioned using these guidelines too. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. Samples from Mochovce indicated that duplex oxide layers up to 20 μm thick were produced, which were mainly magnetite substituted with nickel and chromium (e.g. 60-65% Fe, 18-28% Cr, 9-12% Ni, <1% Mn and 1-2% Si on a stainless steel primary circuit sample). Long term operation experience from both nuclear power plants are discussed in this paper. Radiation field, occupational radiation exposure and corrosion layers evolution during the first c. ten years of operation are

  9. Hot cell chemistry for isotope production at Los Alamos Meson Physics Facility

    International Nuclear Information System (INIS)

    Barnes, J.W.; Bentley, G.E.; Ott, M.A.; DeBusk, T.P.

    1978-01-01

    A family of standardized glass and plastic ware has been developed for the unit processes of dissolution, volume reduction, ion exchange, extraction, gasification, filtration, centrifugation, and liquid transfer in the hot cells. Computerized data handling and gamma pulse analysis have been applied to quality control and process development in hot cell procedures for production of isotopes for research in physics and medicine. The above has greatly reduced the time needed to set up for and produce a new isotope

  10. Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS

    OpenAIRE

    Sumintadireja, Prihadi; Irawan, Dasapta Erwin; Rezky, Yuanno; Gio, Prana Ugiana; Agustin, Anggita

    2016-01-01

    This file is the dataset for the following paper "Classifying hot water chemistry: Application of MULTIVARIATE STATISTICS". Authors: Prihadi Sumintadireja1, Dasapta Erwin Irawan1, Yuano Rezky2, Prana Ugiana Gio3, Anggita Agustin1

  11. Accelerators and nuclear reactors as tools in hot atom chemistry

    International Nuclear Information System (INIS)

    Lindner, L.

    1975-01-01

    The characteristics of accelerators and of nuclear reactors - the latter to a lesser extent - are discussed in view of their present and future use in hot atom chemistry research and its applications. (author)

  12. WESF hot cells waste minimization criteria hot cells window seals evaluation

    International Nuclear Information System (INIS)

    Walterskirchen, K.M.

    1997-01-01

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years

  13. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  14. The hot-atom chemistry of crystalline chromates. Chapter 8

    International Nuclear Information System (INIS)

    Collins, C.H.; Collins, K.E.

    1979-01-01

    Chromates in general and potassium chromate in particular, have been attractive as compounds for hot-atom chemical study because of the favourable nuclear properties of chromium, the great thermal and radiation stability of the compounds, the apparent structural simplicity of the crystals and the presumed known and simple chemistry of the expected recoil products. A wealth of information has been accumulated over the past 25 years, from which the anticipation of a straightforward chemistry has given way to an expanding realization that these systems are actually quite complex. More solid-state hot-atom chemical studies have dealt with potassium chromate than with any other compound. Thus, a major fraction of this review is given to this compound. The emphasis is on recent literature and on the pesent views of phenomena which affect the chemical fate of recoil chromium atoms in chromates. Many other data are tabulated so that the interested reader can speculate independently on the results of a wide variety of experiments. (Auth.)

  15. Hot Chemistry Laboratory decommissioning activities at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Camilo, Ruth L.; Lainetti, Paulo E.O.

    2009-01-01

    IPEN's fuel cycle activities were accomplished in laboratory and pilot plant scale and most facilities were built in the 70-80 years. Nevertheless, radical changes of the Brazilian nuclear policy in the beginning of 90's determined the interruption of several fuel cycle activities and facilities shutdown. Since then, IPEN has faced the problem of the pilot plants decommissioning considering that there was no experience/expertise in this field at all. In spite of this, some laboratory and pilot plant decommissioning activities have been performed in IPEN in the last years, even without previous experience and training support. One of the first decommissioning activities accomplished in IPEN involved the Hot Chemistry Laboratory. This facility was built in the beginning of the 80's with the proposal of supporting research and development in the nuclear chemistry area. It was decided to settle a new laboratory in the place where the Hot Chemistry Laboratory was installed, being necessary its total releasing from the radioactive contamination point of view. The previous work in the laboratory involved the manipulation of samples of irradiated nuclear fuel, besides plutonium-239 and uranium-233 standard solutions. There were 5 glove-boxes in the facility but only 3 were used with radioactive material. The glove-boxes contained several devices and materials, besides the radioactive compounds, such as: electric and electronic equipment, metallic and plastic pieces, chemical reagents, liquid and solid radioactive wastes, etc. The laboratory's decommissioning process was divided in 12 steps. This paper describes the procedures, problems faced and results related to the Hot Chemistry Laboratory decommissioning operations and its reintegration as a new laboratory of the Chemical and Environmental Technology Center (CQMA) - IPEN-CNEN/SP. (author)

  16. Liquid phase hot atom chemistry: At crossroads

    International Nuclear Information System (INIS)

    Rack, E.P.; Veterans Administration Medical Center, Omaha, NE

    1981-01-01

    The state of current research in liquid phase hot atom chemistry is discussed. Four classes of experimental approaches are high-lighted. These include 1) primary physical data for (n,γ)-activated 128 I, (I.T.)-activated 130 I and effects on chemical reactivity; 2) the density-variation technique involving iodine reactions with saturated and unsaturated hydrocarbons; 3) stereochemistry experiments on chlorocarbon molecules with single and multiple chiral centers; and 4) experiments employing dilute aqueous solutions of halogenerated biomolecules in the ice state, exposed to neutron irradiation. (orig.) [de

  17. 12th international hot atom chemistry symposium, Balatonfuered, Hungary, 23-28 September 1984. Abstracts

    International Nuclear Information System (INIS)

    1984-08-01

    This proceedings contains the abstracts of 91 papers presented at the symposium. The majority of papers discusses various hot atom reactions and decay processes. A list of previous 11 international hot atom chemistry symposia from 1959 to 1982 is also given. One paper published in full length presents an overview of them (A.P. Wolf p. 89-89/b). (R.P.)

  18. Molecular beam studies and hot atom chemistry

    International Nuclear Information System (INIS)

    Continetti, R.E.; Lee, Y.T.

    1993-01-01

    The application of the crossed molecular beam technique to the study of hot atom chemistry has provided significant insights into the dynamics of hot atom reaction. To illustrate this, two recent studies are discussed. Those are the study on the influence of translational energy in 0.6 to 1.5 eV range on endoergic reaction, and the experimental study on the detailed dynamics of elementary reaction at translational energy of 0.53 and 1.01 eV. The first example illustrates the contribution that molecular beam experiment can make in the understanding of the dynamics of endoergic substitution reaction. The second example illustrates the role that such studies can play in evaluating exact three-dimensional quantum scattering calculation and ab initio potential energy surfaces for chemical reaction. In the case of endoergic reaction of halogen substitution, it was observed that the reactive collision involved short lived collision complexes. It is suggested that energetic effect alone cannot account for the difference in cross sections, and dynamic effect most play a large role. In atom-diatom reaction, the differential cross section measurement of D+H 2 →DH+H reaction was carried out, and the results are discussed. (K.I.)

  19. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    Higgy, H.R.; Abdel-Rassoul, A.A.

    1983-01-01

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  20. Testing grain-surface chemistry in massive hot-core regions

    Science.gov (United States)

    Bisschop, S. E.; Jørgensen, J. K.; van Dishoeck, E. F.; de Wachter, E. B. M.

    2007-04-01

    Aims:We study the chemical origin of a set of complex organic molecules thought to be produced by grain surface chemistry in high mass young stellar objects (YSOs). Methods: A partial submillimeter line-survey was performed toward 7 high-mass YSOs aimed at detecting H2CO, CH3OH, CH2CO, CH3CHO, C2H5OH, HCOOH, HNCO and NH2CHO. In addition, lines of CH3CN, C2H5CN, CH3CCH, HCOOCH3, and CH3OCH3 were observed. Rotation temperatures and beam-averaged column densities are determined. To correct for beam dilution and determine abundances for hot gas, the radius and H2 column densities of gas at temperatures >100 K are computed using 850 μm dust continuum data and source luminosity. Results: Based on their rotation diagrams, molecules can be classified as either cold (100 K). This implies that complex organics are present in at least two distinct regions. Furthermore, the abundances of the hot oxygen-bearing species are correlated, as are those of HNCO and NH2CHO. This is suggestive of chemical relationships within, but not between, those two groups of molecules. Conclusions: .The most likely explanation for the observed correlations of the various hot molecules is that they are "first generation" species that originate from solid-state chemistry. This includes H2CO, CH3OH, C2H5OH, HCOOCH3, CH3OCH3, HNCO, NH2CHO, and possibly CH3CN, and C2H5CN. The correlations between sources implies very similar conditions during their formation or very similar doses of energetic processing. Cold species such as CH2CO, CH3CHO, and HCOOH, some of which are seen as ices along the same lines of sight, are probably formed in the solid state as well, but appear to be destroyed at higher temperatures. A low level of non-thermal desorption by cosmic rays can explain their low rotation temperatures and relatively low abundances in the gas phase compared to the solid state. The CH3CCH abundances can be fully explained by low temperature gas phase chemistry. No cold N-containing molecules are found

  1. Hot cell verification facility update

    International Nuclear Information System (INIS)

    Titzler, P.A.; Moffett, S.D.; Lerch, R.E.

    1985-01-01

    The Hot Cell Verification Facility (HCVF) provides a prototypic hot cell mockup to check equipment for functional and remote operation, and provides actual hands-on training for operators. The facility arrangement is flexible and assists in solving potential problems in a nonradioactive environment. HCVF has been in operation for six years, and the facility is a part of the Hanford Engineering Development Laboratory

  2. Hot-cell verification facility

    International Nuclear Information System (INIS)

    Eschenbaum, R.A.

    1981-01-01

    The Hot Cell Verification Facility (HCVF) was established as the test facility for the Fuels and Materials Examination Facility (FMEF) examination equipment. HCVF provides a prototypic hot cell environment to check the equipment for functional and remote operation. It also provides actual hands-on training for future FMEF Operators. In its two years of operation, HCVF has already provided data to make significant changes in items prior to final fabrication. It will also shorten the startup time in FMEF since the examination equipment will have been debugged and operated in HCVF

  3. Characterisation study of radionuclides in Hot Cell Facility

    International Nuclear Information System (INIS)

    Ghare, P.T.; Rath, D.P.; Govalkar, Atul; Mukherjee, Govinda; AniIKumar, S.; Yadav, R.K.B.; Mallik, G.K.

    2016-01-01

    Examination of different types of experimental as well as power reactor irradiated fuels and validation of fuel modeling codes is carried out in general Hot cell facility. The Hot cell facility has six concrete shielded hot cells, capable of handling radioactivity varying from 3.7 TBQ to 3700 TBq gamma activity. The facility was augmented with two hot cells having designed capacity to handle radioactivity of 9250 TBQ of equivalent activity of 60 Co. The study of characterization of various radionuclides present inside the hot cell of PIE facility was taken up. This study will help in providing valuable inputs for various radiological safety parameters to keep personnel exposure to ALARA level as per the mandate of radiation safety program

  4. Introduction of hot cell facility in research center Rez - Poster

    International Nuclear Information System (INIS)

    Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    This poster presents the hot cell facility which is being constructed as part of the SUSEN project at the Rez research center (Czech Republic). Within this project a new complex of 10 hot cells and one semi-hot cell will be built. There will be 8 gamma hot cells and 2 alpha hot cells. In each hot cell a hermetic, removable box made of stainless steel will home different type of devices. The hot cells and semi hot cell will be equipped with devices for processing samples (cutting, welding, drilling, machining) as well as equipment for testing (sample preparation area, stress testing machine, fatigue machine, electromechanical creep machine, high frequency resonance pulsator...) and equipment for studying material microstructure (nano-indenter with nano-scratch tester and scanning electron microscope). An autoclave with water loop, installed in a cell will allow mechanical testing in control environment of water, pressure and temperature. A scheme shows the equipment of each cell. This hot laboratory will be able to cover all the process to study radioactive materials: receiving the material, the preparation of the samples, mechanical testing and microstructure observation. Our hot cells will be close to the research nuclear reactor LVR-15 and new irradiation facility (high irradiation by cobalt source) is planned to be built within the SUSEN project

  5. PWR primary system chemistry control during hot functional testing

    International Nuclear Information System (INIS)

    Reid, Richard D.; Little, Michael J.

    2014-01-01

    Hot Functional Testing (HFT) involves a number of pre-operational exercises performed to confirm the operability of plant systems at conditions expected during both normal and off-normal operation of a pressurized water reactor (PWR), including operability of safety systems. While the primary purposes of HFT are to demonstrate operability of plant systems and satisfy regulatory requirements, chemistry control during HFT is important to long-term integrity and performance of plant systems. Specifically, HFT is the first time plant equipment is exposed to high temperature water and the chemistry maintained during HFT can impact the passivation layers that form on wetted surfaces and long-term release of metals from these surfaces. Metals released from the inner surfaces of steam generator tubing and reactor coolant loop piping become activated in the core and can redeposit on ex-core surfaces. Because HFT is performed before fuel is loaded in the core, HFT provides an opportunity to produce a passive layer on primary surfaces that is free of activated corrosion products, resistant to metals release during subsequent plant operation, and also resistant to incorporation of activated corrosion products (once fuel is loaded in the core). Thus, maintaining desirable primary chemistry control during HFT is important for source term management, minimization of future shutdown activity releases, minimization of dose rates, and asset preservation. This paper presents an overview of passive film formation in the austenitic stainless steel and high nickel alloys that make up the majority of the primary circuit in advanced PWR designs. Based on this information, a summary is provided of the effects on passive film formation of key chemistry parameters that may be controlled during HFT. (author)

  6. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  7. Basic actinide chemistry and physics research in close cooperation with hot laboratories: ACTILAB

    International Nuclear Information System (INIS)

    Minato, K; Konashi, K; Fujii, T; Uehara, A; Nagasaki, S; Ohtori, N; Tokunaga, Y; Kambe, S

    2010-01-01

    Basic research in actinide chemistry and physics is indispensable to maintain sustainable development of innovative nuclear technology. Actinides, especially minor actinides of americium and curium, need to be handled in special facilities with containment and radiation shields. To promote and facilitate actinide research, close cooperation with the facilities and sharing of technical and scientific information must be very important and effective. A three-year-program B asic actinide chemistry and physics research in close cooperation with hot laboratories , ACTILAB, was started to form the basis of sustainable development of innovative nuclear technology. In this program, research on actinide solid-state physics, solution chemistry and solid-liquid interface chemistry is made using four main facilities in Japan in close cooperation with each other, where basic experiments with transuranium elements can be made. The 17 O-NMR measurements were performed on (Pu 0.91 Am 0.09 )O 2 to study the electronic state and the chemical behaviour of Am and Cm ions in electrolyte solutions was studied by distribution experiments.

  8. KfK Institute for Hot Atom Chemistry. Results report on research and development activities 1989

    International Nuclear Information System (INIS)

    1990-03-01

    The Institute for Hot Atom Chemistry is concerned with R and D tasks in nuclear fuel reprocessing. The aim is to optimize reprocessing technology with a view to safety and economic efficiency. Work is carried out within the framework of the projects reprocessing and waste management, and fast breeder in contact with WAK. The Institute increasingly carries out work within the framework of the project pollution abatement in the environment; the emphasis lies on dioxin chemistry. After the Wackersdorf task, subjects of waste management, in particular special wastes, have been added. (orig.) [de

  9. Work on the hot atom chemistry at the Institute of Nuclear Sciences Boris Kidric, Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    Veljkovic, S.

    1969-01-01

    A survey of work on hot atom chemistry from the establishment of the Institute up to now, where the role of Prof. P. Savic, should be specially emphasized, is given. The investigations in this domain during the first period, were directed to solve various problems in production of radioactive isotopes. Today these investigations are closely associated with the work in radiochemistry, physical chemistry of liquid and solid systems and fast reaction kinetics improving the development of these branches (author) [sr

  10. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1981-12-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design hasis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  11. Construction of concrete hot cells

    International Nuclear Information System (INIS)

    1980-09-01

    The standard is to be applied to rooms (hot cells) which are enclosed by a concrete shield and in which radioactive material is handled by remote control. The rooms may be in facilities for experimental purposes (e.g. development of fuel elements and materials or of chemical processes) or in facilities for production purposes (e.g. reprocessing of nuclear fuel or treatment of radioactive wastes). The standard is to give a design basis for concrete hot cells and their installations which is to be applied by designers, constructors, future users and competent authorities as well as independent experts. (orig.) [de

  12. Hot cell design in the vitrification plant China

    International Nuclear Information System (INIS)

    Jiang Yubo; Wang Guangkai; Zhang Wei; Liang Runan; Dou Yuan

    2015-01-01

    In the area of reprocessing and radioactive waste management, gloveboxes and cells are a kind of non-standard equipments providing an isolated room to operate radioactive material inside, while the operator outside with essential biological shield and protection. The hot cell is a typical one, which could handle high radioactive material with various operating means and tight enclosure. The dissertation is based on Vitrification Plant China, a cooperation project between China and Germany. For the sino-western difference in design philosophy, it was presented how to draft an acceptable design proposal of applicable huge hot cells by analysing the design requirements, such as radioprotection, observation, illumination, remote handling, transportation, maintenance and decontamination. The construction feasibility of hot cells was also approved. Thanks to 3D software Autodesk Inventor, digital hot cell was built to integrate all the interfaces inside, which validated the design by checking the mechanical interference. (author)

  13. Report of the Institute for Hot Chemistry on research and development in 1982

    International Nuclear Information System (INIS)

    1983-02-01

    The Institute for Hot Chemistry is concerned with research and development programmes in the field of re-processing nuclear fuels. The investigations are oriented towards the objectives of the planned waste disposal plant and are carried out within the frame-work of the Reprocessing, Waste Treatment and Fast Breeder Projects, with the cooperation of the firms DWK and WAK. The Institute can be divided up into the following subject areas: extraction chemistry and plant operation, analytical processing, chemical processing and apparatus development; solvent and waste gas treatment; process control and automation; organic analysis; and fundamental research. In the developmental stage, evaluations are carried out up to the kilogram and kilo-Curie level, at the technical level, however, up to a daily throughput in tonnes. (orig.) [de

  14. The development of synthetic test procedure for hot cell equipment systems in IMEF

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Lee, Key Soon; Park, Dae Kyu; Hong, Kwon Pyo; Choo, Yong Sun

    1998-04-01

    Hot cell facility should be confirmed to operation safety through pre-commissioning test after construction. In this report, the detailed procedure of hot cell equipment are described. The contents are as follows: 1. Entrance equipment of hot cell 2. Specimen transportation equipment between hot cells 3. Waste discharge equipment in hot cell 4. Specimen loading equipment to hot cell 5. Interlinking equipment in hot cell. (author). 4 tabs

  15. Reversible electron–hole separation in a hot carrier solar cell

    International Nuclear Information System (INIS)

    Limpert, S; Bremner, S; Linke, H

    2015-01-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron–hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron–hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices. (paper)

  16. Conceptual layout design of CFETR Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zheng, E-mail: gongz@mail.ustc.edu.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Qi, Minzhong, E-mail: qiminzhong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Cheng, Yong, E-mail: chengyong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [University of Science and Technology of China, Hefei 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • This article proposed a conceptual layout design for CFETR. • The design principles are to support efficient maintenance to ensure the realization of high duty time. • The preliminary maintenance process and logistics are described in detail. • Life cycle management, maneuverability, risk and safety are in the consideration of design. - Abstract: CFETR (China Fusion Engineering Test Reactor) is new generation of Tokomak device beyond EAST in China. An overview of hot cell layout design for CFETR has been proposed by ASIPP&USTC. Hot Cell, as major auxiliary facility, not only plays a pivotal role in supporting maintenance to meet the requirements of high duty time 0.3–0.5 but also supports installation and decommissioning. Almost all of the Tokomak devices are lateral handling internal components like ITER and JET, but CFETR maintain the blanket module from 4 vertical ports, which is quite a big challenge for the hot cell layout design. The activated in-vessel components and several diagnosis instruments will be repaired and refurbished in the Hot Cell Facility, so the appropriate layout is very important to the Hot Cell Facility to ensure the high duty time, it is divided into different parts equipped with a variety of RH equipment and diagnosis devices based on the functional requirements. The layout of the Hot Cell Facility should make maintenance process more efficient and reliable, and easy to service and rescue when a sudden events taking place, that is the capital importance issue considered in design.

  17. Hot cells of the Osiris reactor

    International Nuclear Information System (INIS)

    Jourdain, Jean

    1969-10-01

    Hot cells of the Osiris reactor are β and γ type cells. Their main functions are: the extraction of irradiated samples from experimental assemblies (irradiation loops, experimental devices) used to irradiate them, the reinstallation of experimental setups with irradiated samples, the fractioning of unrecoverable experimental devices, and the removal of irradiated samples and active wastes. Each cell is therefore equipped with means for remote handling, for observation and for removal, and a venting. Each cell may also receive additional equipment, notably for the dismantling of experimental setups. This report presents the cell implantation in the reactor, elements to be handled in cells, the path followed by elements to be handled (arrival, departure, conveyors). It describes the cells (capacity and protection, design and construction, external and internal arrangements) and the cell equipment (remote handling devices, windows, lighting, lifting unit, sound system), and the installed electric power. A realisation planning is provided. An appendix indicates the cost of these hot cells

  18. Design Report for ACP Hot Cell Rear Door

    Energy Technology Data Exchange (ETDEWEB)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W

    2005-12-15

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation.

  19. Design Report for ACP Hot Cell Rear Door

    International Nuclear Information System (INIS)

    Ku, J. H.; Kwon, K. C.; Choung, W. M.; Cho, I. J.; Kook, D. H.; Lee, W. K.; You, G. S.; Lee, E. P.; Park, S. W.

    2005-12-01

    A hot-cell facility was constructed at the IMEF building for the demonstrate ACP process. ACP hot-cell consists of process cell and maintenance cell, and each cell has rear door. Since this facility was constructed at basement floor, all process materials, equipment and radioactive materials are take in and out through the rear door. Also, this door can be an access route of workers for the maintenance works. Therefore ACP hot-cell rear doors must maintain the radiation shielding, sealing, mechanical and structural safety. This report presents design criteria, design contents of each part and driving part. It was confirmed that the rear doors sufficiently maintain the safety through the structural analysis and shielding analysis. Also, it was confirmed that the rear doors were constructed as designed by the gamma scanning test after the installation

  20. Seismic evaluation of a hot cell structure

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.

    1995-01-01

    The evaluation of the structural capacity of and the seismic demand on an existing hot cell structure in a nuclear facility is described. An ANSYS finite-element model of the cell was constructed, treating the walls as plates and the floor and ceiling as a system of discrete beams. A modal analysis showed that the fundamental frequencies of the cell walls lie far above the earthquake frequency range. An equivalent static analysis of the structure was performed. Based on the analysis it was demonstrated that the hot cell structure, would readily withstand the evaluation basis earthquake

  1. Linear thermal expansion coefficient measurement technology in hot cell

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Choo, Yong Sun; Ahn, Sang Bok; Hong, Kwon Pyo; Lee, K. S.

    1998-06-01

    To establish linear thermal expansion coefficient measurement technology in hot cell, we reviewed and evaluated various measuring technology by paper and these were compared with the data produced with pre-installed dilatometer in hot cell. Detailed contents are as follows; - The theory of test. - Review of characteristics for various measurement technology and compatibility with hot cell. - Review of standard testing regulations(ASTM). - System calibration of pre-installed dilatometer. - Performance test of pre-installed dilatometer. (author). 12 refs., 15 tabs., 8 figs

  2. Remote Robotic Cleaning System for Contaminated Hot-Cell Floor

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Park, Jang Jin; Yang, Myung S.; Kwon, Hyo Kjo

    2005-01-01

    The M6 hot-cell of the Irradiated Material Examination Facility at the Korea Atomic Energy Research Institute (KAERI) has been contaminated with spent fuel debris and other radioactive waste due to the DUPIC nuclear fuel development processes. As the hot-cell is active, direct human workers' access, even with protection, to the in-cell is not possible because of the nature of the high radiation level of the spent PWR fuel. A remote robotic cleaning system has been developed for use in a highly radioactive environment of the M6 hot-cell. The remote robotic cleaning system was designed to completely eliminate human interaction with hazardous radioactive contaminants. This robotic cleaning system was also designed to remove contaminants or contaminated smears placed or fixed on the floor of the M6 hot-cell by mopping it in a remote manner. The environmental, functional and mechanical design considerations, control system and capabilities of the developed remote robotic cleaning system are presented

  3. Hot-cell shielding system for high power transmission in DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Kim, K.; Lee, J.; Park, J.; Yang, M.; Park, H.

    2000-01-01

    This paper presents a newly designed hot-cell shielding system for use in the development of DUPIC (Direct Use of spent PWR fuel In CANDU reactors) fuel at KAERI (Korea Atomic Energy Research Institute). This hot-cell shielding system that was designed to transmit high power to sintering furnace in-cell from the out-of-cell through a thick cell wall has three subsystems - a steel shield plug with embedded spiral cooling line, stepped copper bus bars, and a shielding lead block. The dose-equivalent rates of the hot-cell shielding system and of the apertures between this system and the hot-cell wall were calculated. Calculated results were compared with the allowable dose limit of the existing hot-cell. Experiments for examining the temperature changes of the shielding system developed during normal furnace operation were also carried out. Finally, gamma-ray radiation survey experiments were conducted by Co-60 source. It is demonstrated that, from both calculated and experimental results, the newly designed hot-cell shielding system meets all the shielding requirements of the existing hot-cell facility, enabling high power transmission to the in-cell sintering furnace. (author)

  4. Handling of Highly Radioactive Radiation Sources in a Hot Cell Using a Mechanically Driven Cell Crane - 13452

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Huber, Wolfgang-Bruno [Siempelkamp Nukleartechnik GmbH, Am Taubenfeld 25/1, 69123 Heidelberg (Germany); Meyer, Franz [Nuclear Engineering Seibersdorf GmbH, 2444 Seibersdorf (Austria)

    2013-07-01

    In 2010, Siempelkamp Nukleartechnik GmbH was awarded the contract for design and erection of a Hot Cell for handling and storage of highly radioactive radiation sources. This Hot Cell is part of a new hot cell laboratory, constructed for the NHZ (Neues Handhabungszentrum = New Handling Center) of the Nuclear Engineering Seibersdorf GmbH (NES). All incurring radioactive materials from Austria are collected in the NHZ, where they are safely conditioned and stored temporarily until their final storage. The main tasks of the NES include, apart from the collection, conditioning and storage of radioactive waste, also the reprocessing and the decontamination of facilities and laboratories originating from 45 years of research and development at the Seibersdorf site as well as the operation of the Hot Cell Laboratory [1]. The new Hot Cell Laboratory inside the NHZ consists of the following room areas: - One hot cell, placed in the center, for remote controlled, radiation protected handling of radioactive materials, including an integrated floor storage for the long-term temporary storage of highly radioactive radiation sources; - An anteroom for the loading and unloading of the hot cell; - One control room for the remote controlling of the hot cell equipment; - One floor storage, placed laterally to the hot cell, for burial, interim storage and removal of fissionable radioactive material in leak-proof packed units in 100 l drums. The specific design activity of the hot cell of 1.85 Pbq relating to 1-Me-Radiator including the integrated floor storage influences realization and design of the components used in the cell significantly. (authors)

  5. Application of Cyclone to Removal of Hot Particulate in Hot Cell

    International Nuclear Information System (INIS)

    Kim, Gye Nam; Lee, Sung Yeol; Won, Hui Jun; Jung, Chong Hun; Oh, Won Zin

    2005-01-01

    The size and main ingredient of hot particulate generated during the nuclide experiment in hot cells of nuclear facilities were 0.5300 μm and UO 2 . A cyclone filter equipment which consists of a cyclone and Bag/HEPA filter was devised to remove hot particulate generated during the nuclide experiment in hot cells of nuclear facilities. The experimental conditions to maximize the collection efficiency of hot particulate were suggested through experiments done with the cyclone filter equipment. With the large size of simulated particulate, the collection efficiency of the particulate was high. When the size of simulated particulate was more than 5 μm, the collection efficiency of the particulate was more than 80% and when the size of simulated particulate was less than 1.0 μm, the collection efficiency decreased by less than. If the inflow velocity of simulated particulate was increased, the collection efficiency of the particulate was also increased. When the inflow velocity of simulated particulate was more than 12 m/sec, the collection efficiency was higher than , but after 17 m/sec inflow velocity, no change observed. The collection efficiency of the simulated particulate can be enhanced with the length of vortex finder inside the chamber. With the length of vortex finder, 7.2 cm, the observed collection efficiency of the particulate was the maximum. Moreover, when the sub-cone was attached under the cyclone, the collection efficiency of cyclone increased 2%. It was found that effect by attachment of sub-cone was not serious.

  6. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-02-01

    The Hot Cell facility at Risoe has been in active use since 1964. During the years several types of nuclear fuels have been handled and examined: test reactor fuel pins from the Danish reactor DR3, the Norwegian Halden reactor, etc; power reactor fuel pins from several foreign reactors, including plutonium enriched pins; HTGR fuel from the Dragon reactor. All kinds of physical and chemical non-destructive and destructive post irradiation examinations have been performed. Besides, different radiotherapy sources have been produced, mainly cobalt sources. The general object of the decommissioning programme for the Hot Cell facility was to obtain a safe condition for the total building that does not require the special safety provisions. The hot cell building will be usable for other purposes after decommissioning. The facilicy comprised six concrete cells, lead cells, glove boxes, a shielded unit for temporary storage of waste, frogman area, decontamination areas, workshops, various installations of importance for safe operation of the plant, offices, etc. The tasks comprised e.g. removal of all irradiated fuel items, removal of other radioactive items, removal of contaminated equipment, and decontamination of all the cells and rooms. The goal was to decontaminate all the concrete cells to a degree where no loose contamination exists in the cells, and where the radiation level is so low, that total removal of the cell structures can be done at any time in the future without significant dose commitments. (AB)

  7. Shield wall evaluation of hot cell facility for advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Cho, I. J.; Kuk, D. H.; Ko, J. H.; Jung, W. M.; Yoo, G. S.; Lee, E. P.; Park, S. W.

    2002-01-01

    The future hot cell is located in the Irradiated Material Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI). It is β-γ type hot cell that was constructed on the base floor in IMEF building for irradiated material testing. And this hot cell will be used for carrying out the Advanced spent fuel Conditioning Process (ACP). The radiation shielding capability of hot cell should be sufficient to meet the radiation dose requirements in the related regulations. Because the radioactive sources of ACP are expected to be higher than radioactive sources of IMEF design criteria, the future hot cell in current status is unsatisfactory to hot test of ACP. So the shielding analysis of the future hot cell is performed to evaluate shielding ability of concrete shield wall. The shielding analysis included (a) identification of ACP source term; (b) photon source spectrum; (c) shielding analysis by QADS and MCNP-4C; and (d) enhancement of concrete shield wall. In this research, dose rates are obtained according to ACP source, geometry and hot cell shield wall thickness. And the evaluation and reinforcement thickness of the shield wall about future hot cell are concluded

  8. Development of a hot cell for post-irradiation analysis of nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Selma S.C.; Silva Junior, Silverio Ferreira da; Loureiro, Joao Roberto M. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: selmasallam@yahoo.com.br, e-mail: silvasf@cdtn.br, e-mail: jrmattos@cdtn.br

    2009-07-01

    Post irradiation examinations of nuclear fuels are performed in order to verify their in-service behavior. Examinations are conducted in compact structures called hot cells, designed to attend the different types of tests and analysis for fuel's characterization. The characterization of fuel microstructure is an activity performed in hot cells. Usually, hot cells for microstructural fuel analysis are designed to allow the metallographic and ceramographic samples preparation and after that, microscopical analysis of the fuel's microstructure. Due to the complexity of the foreseen operations, the severe limitations imposed by the available space into the hot cells, the capabilities of the remote manipulation devices, the procedures of radiological protection and the needs to obtain samples with an adequate surface quality for microscopic analysis, the design of a hot cell for fuel samples preparation presents a high level of complexity. In this paper, the methodology used to develop a hot cell facility for nuclear fuel's metallographic and ceramographic samples preparation is presented. Equipment, devices and systems used in conventional sample preparation processes were evaluated during bench tests. After the necessary adjustments and processes adaptations, they were assembled in a mock-up of the respective hot cell, where they were tested in conditions as realistic as possible, in order to improve the operations and processes to be performed at the real hot cells. (author)

  9. Development of a hot cell for post-irradiation analysis of nuclear fuels

    International Nuclear Information System (INIS)

    Silva, Selma S.C.; Silva Junior, Silverio Ferreira da; Loureiro, Joao Roberto M.

    2009-01-01

    Post irradiation examinations of nuclear fuels are performed in order to verify their in-service behavior. Examinations are conducted in compact structures called hot cells, designed to attend the different types of tests and analysis for fuel's characterization. The characterization of fuel microstructure is an activity performed in hot cells. Usually, hot cells for microstructural fuel analysis are designed to allow the metallographic and ceramographic samples preparation and after that, microscopical analysis of the fuel's microstructure. Due to the complexity of the foreseen operations, the severe limitations imposed by the available space into the hot cells, the capabilities of the remote manipulation devices, the procedures of radiological protection and the needs to obtain samples with an adequate surface quality for microscopic analysis, the design of a hot cell for fuel samples preparation presents a high level of complexity. In this paper, the methodology used to develop a hot cell facility for nuclear fuel's metallographic and ceramographic samples preparation is presented. Equipment, devices and systems used in conventional sample preparation processes were evaluated during bench tests. After the necessary adjustments and processes adaptations, they were assembled in a mock-up of the respective hot cell, where they were tested in conditions as realistic as possible, in order to improve the operations and processes to be performed at the real hot cells. (author)

  10. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  11. Multipurpose reprocessing hot cell

    International Nuclear Information System (INIS)

    Fletcher, R.D.

    1975-01-01

    A multipurpose hot cell is being designed for use at the Idaho Chemical Processing Plant for handling future scheduled fuels that cannot be adequately handled by the existing facilities and equipment. In addition to providing considerable flexibility to handle a wide variety of fuel sizes up to 2,500 lb in weight the design will provide for remote maintenance or replacement of the in-cell equipment with a minimum of exposure to personnel and also provide process piping connections for custom processing of small quantities of fuel. (auth)

  12. Preliminary Feasibility Study on the Construction of Steel Hot Cell Facility for Precise Manipulated Examinations

    International Nuclear Information System (INIS)

    Ahn, Sangbok; Kwon, Hyungmun; Kim, Heemoon; Kim, Dosik; Min, Duckkee; Hong, Kwonpyo

    2006-01-01

    Hot laboratory is essential facility to research and develop in the nuclear industries to examine radioactive materials. The post irradiation examinations for irradiated fuels and materials should be mainly conducted in the hot cell facility to protect radiations to operators. Hot cells are divided into a concrete hot cell and a steel hot cell according to the wall materials. Usually a concrete hot cell is applied to test for high level radioactive materials like as a fuel assembly, rods, and large structure specimens, and a steel hot cell for comparatively lower level activity materials in fuel fragments, and small structural materials. A steel hot cell has many benefits in a specimen manipulation, construction and maintenance costs. In recent the test for the irradiated materials is more frequently required a small and precise manipulating examination for higher degree tests of research and developments. Unfortunately hot laboratory facilities in domestics have mainly constituted of concrete hot cells, and not ready for techniques in steel hot cells. In this paper the construction feasibility of steel hot cell facility is preliminary reviewed in the points of the status of domestic facilities, the test demand prospect and detailed plans

  13. Development of Radioactive Substance Contamination Diffusion Preventive Equipment for a Hot cell

    International Nuclear Information System (INIS)

    Choo, Yong Sun; Kim, Do Sik; Baik, Seung Je; Yoo, Byung Ok; Kim, Ki Ha; Lee, Eun Pyo; Ahn, Sang Bok; Ryu, Woo Seok

    2009-01-01

    The hot cell of irradiated materials examination facility (IMEF), which has been operating since 1996, is generally contaminated by the radioactive nuclides of irradiated nuclear fuels and structural steels like Cs-137, Co-60, Co-134 and Ru-106. Especially Cs-137 is a main contaminated radioactive isotope which is easily moved here and there due to air flow in the hot cell, water-soluble, extremely toxic, and has a half-life of 30.23 years. To repair or fix the abnormal function of test apparatus installed in the hot cell, the maintenance door, so called a rear door and located at an intervention area, is opened to enter the hot cell inside. In a moment of opening the maintenance door, dirty air diffusion from the hot cell to an intervention area could be occurred in spite of increasing the rpm of exhaust fan to maintain much low under pressure, but an adjacent area to a maintenance door, i.e. intervention area, is very severely contaminated due to the unpredictable air flow. In this paper, the development of the radioactive substance contamination diffusion preventive equipment for a hot cell is studied to prevent dirty and toxic gaseous radioactive nuclides diffusion from a hot cell and installed at an intervention area of IMEF

  14. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    A Metal-Insulator-Semiconductor (MIS) based device is developed for investigation of hot electron enhanced chemistry. A model of the device is presented explaining the key concepts of the functionality and the character- istics. The MIS hot electron emitter is fabricated using cleanroom technology...... and the process sequence is described. An Ultra High Vacuum (UHV) setup is modified to facilitate experiments with electron emission from the MIS hot electron emitters and hot electron chemistry. Simulations show the importance of keeping tunnel barrier roughness to an absolute minimum. The tunnel oxide...... to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...

  15. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell

    International Nuclear Information System (INIS)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J.

    1959-01-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  16. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  17. Waste Handling in SVAFO's Hot Cell

    International Nuclear Information System (INIS)

    Moeller, Jennifer; Ekenborg, Fredrik; Hellsten, Erik

    2016-01-01

    The decommissioning and dismantling of nuclear installations entails the generation of significant quantities of radioactive waste that must be accepted for disposal. In order to optimise the use of the final repositories for radioactive waste it is important that the waste be sent to the correct repository; that is, that waste containing short-lived radionuclides not be designated as long-lived due to conservative characterisation procedures. The disposal of short-lived waste in a future Swedish repository for long-lived waste will result in increased costs, due to the higher volumetric cost of the disposal as well as costs associated with decades of interim storage before disposal can occur. SVAFO is a non-profit entity that is responsible for the decommissioning of nuclear facilities from historical research and development projects in Sweden. They provide interim storage for radioactive waste arising from research activities until the final repository for long-lived waste is available. SVAFO's offices and facilities are located on the Studsvik site on the east coast of Sweden near the town of Nykoeping. Some of the retired facilities that SVAFO is in the process of decommissioning are located elsewhere in Sweden. The HM facility is a small waste treatment plant owned and operated by SVAFO. The plant processes both liquid and solid radioactive wastes. The facility includes a hot cell equipped with a compactor, a saw and other tools as well as manipulators for the handling and packaging of waste with high dose rates. The cell is fitted with special systems for transporting waste in and passing it out in drums. As with most hot cells there has been an accumulation of surface contamination on the walls, floor and other surfaces during decades of operation. Until recently there has been no attempt to quantify or characterize this contamination. Current practices dictate that after waste is handled in the hot cell it is conservatively designated as long

  18. General reformulation of hot cell complex

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Souza, A.S.F. de; Souza, M.L.M. de; Rautenberg, F.A.

    1986-01-01

    The implantation of an operation philosophy without direct intervention of operator during isotope production process in hot cells of the CV-28 cyclotron is presented. The modifications carried out in equipments, systems and installations are described. (M.C.K.)

  19. Safety evaluation report of hot cell facilities for demonstration of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    You, Gil Sung; Choung, W. M.; Ku, J. H.; Cho, I. J.; Kook, D. H.; Park, S. W.; Bek, S. Y.; Lee, E. P.

    2004-10-01

    The advanced spent fuel conditioning process(ACP) proposed to reduce the overall volume of the PWR spent fuel and improve safety and economy of the long-term storage of spent fuel. In the next phase(2004∼2006), the hot test will be carried out for verification of the ACP in a laboratory scale. For the hot test, the hot cell facilities of α- type and auxiliary facilities are required essentially for safe handling of high radioactive materials. As the hot cell facilities for demonstration of the ACP, a existing hot cell of β- type will be refurbished to minimize construction expenditures of hot cell facility. Up to now, the detail design of hot cell facilities and process were completed, and the safety analysis was performed to substantiate secure of conservative safety. The design data were submitted for licensing which was necessary for construction and operation of hot cell facilities. The safety investigation of KINS on hot cell facilities was completed, and the license for construction and operation of hot cell facilities was acquired already from MOST. In this report, the safety analysis report submitted to KINS was summarized. And also, the questionnaires issued from KINS and answers of KAERI in process of safety investigation were described in detail

  20. Introduction of radiation protection and dosimetry in new hot cell facility in research center Rez

    International Nuclear Information System (INIS)

    Svrcula, P.; Petrickova, A.; Srba, O.; Miklos, M.; Svoboda, P.

    2015-01-01

    The purpose of the poster is to present radiation protection and dosimetry in the new hot cell facility being constructed as part of the SUSEN project. The hot cell facility is composed of 10 hot cells and 1 semi-hot cell. All shielding is made from steel, the outer wall shielding has thickness of 500 mm, internal wall between hot cells 300 mm with the possibility to extension to 500 mm. The ceiling shielding has a thickness of 400 mm and the floor shielding is 300 mm wide. Shielded windows allow direct view into the hot cells. Their shielding effect is equivalent to 500 mm of steel. The dimension of the window in the control room is 800 mm x 600 mm with a thickness of 900 mm. All important operating data are collected in the central system of hot cells. The system monitors under-pressure level and temperature in each chamber. If necessary it can directly control the ventilation system. Each hot cell is equipped with dose rate probes. The system also measures and evaluates airborne radioactivity in the building

  1. Implementation of a cabin X-rays in hot cell

    International Nuclear Information System (INIS)

    Berduola, F.; Caral, L.

    2001-01-01

    The Fabrice process for the reconstituted short length irradiated rods in a hot cell was developed by the CEA especially for power ramp testing. This technique requires intricate operations in a hot cell with specially adapted equipment and great skill people. And end plug is inserted under pressure and fitted to the opening end of a cladding tube. The meeting surfaces of the en plug and the opening end are welded by a TIG (tunsten inert gas) process. Nevertheless, somo predominate defects may occur in the end plug weld joints, such as lack of penetration and cavity. So, particular attention must be paid to non-destructive examination in particular X-ray control of welding areas. A radioscopy technique has been applied to the control of TIG welds of the end plugs to rod assemblies in a hot cell mock-up to be tested under realistic geometric conditions. This X-rays method enables immediate monitoring of any welding defaults on a TV screen. A remote positioning system for the Fabrice rod is being developed to position fuel rods below a X-ray source. Radioscopy pictures will be recorded during remote positioning of the rod movement. This document presents the modifications achieved by the constructor in cooperation with our laboratory staff, concerning the nuclearization of the apparatus as well as its implementation in the shielded hot cell n paragraph 2 of the CEA-DEC/SLS/LECA Laboratory in Cadarache. Hot operation of the rod positioner is planned for september 2022 because of recent refurbishing works in the plant. (Author)

  2. Pre-cometary ice composition from hot core chemistry.

    Science.gov (United States)

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  3. EDF requirements for hot cells examinations on irradiated fuel

    International Nuclear Information System (INIS)

    Segura, J.C.; Ducros, G.

    2002-01-01

    The objectives of increasing French Nuclear Power Plants (NPP) availability while lengthening the fuel irradiation cycle and reaching higher burnups lead EDF to carry out on site and hot cell examinations. The data issued from such fuel behaviour monitoring programmes will be used to ascertain that the design criteria are met. Data are also needed for modelling, development and validation. The paper deals quickly with the logistics linked to the selection and transport of fuel rods from NPP to hot cell laboratory. Hot cell PIEs remain a valuable method to obtain data in such fields as PCI (Pellet-Cladding Interaction), internal pressure, FGR (Fission Gas Release), oxide thickness, metallurgical aspects. The paper introduces burnup determination methods, inner pressure evaluation, preparation of samples for further irradiation such as power ramps for PCI and RIA (Reactivity Initiated Accident) testing. The nuclear microprobe of Perre Suee laboratory is also presented. (author)

  4. Engineering hot-cell windows for radiation protection

    International Nuclear Information System (INIS)

    Ferguson, K.R.; Courtney, J.C.

    1983-01-01

    Radiation protection considerations in the design and construction of hot-cell windows are discussed. The importance of evaluating the potential gamma spectra and neutron source terms is stressed. 11 references

  5. Hot spots and heavily dislocated regions in multicrystalling silicon cells

    International Nuclear Information System (INIS)

    Simo, A.; Martinuzzi, S.

    1990-01-01

    The formation mechanism and the electrical consequences of hot spots have been investigated in multicrystalline solar cells. The hot spots were revealed by means of an infrared camera when the cells are reverse biassed in the dark. The minority carrier diffusion length (L n ), the photovoltage (V oc ) and the photocurrent (J sc ) were measured in the hot spot area and far from this zone thanks to mesa diodes. Dark forward I-V curves lead to values of ideality factor (M) and reverse saturation current (J o ). It is found that J o and M are higher in the hot spot area, while J sc , V oc and at a less extent L n are smaller. Large densities of dislocations and lineages structures are revealed in the abnormally heated regions

  6. Technical specifications of variable speed motors for negative pressure control in hot cell area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Duk; Bang, H. S.; Cho, W. K

    2002-01-01

    Hot cells are the facilities for handling the high radioactive materials and various R and D activities are performed using hot cells. Therefore the control of air flow in hot cell area is very important technology and it is started with the variable speed motor(VSM) controlling the air handling system in that area. This report describes various technical aspects of VS motors and will be useful for understanding the practical technologies of VS motors and also for optimization of the negative pressure controls in hot cell area.

  7. Alpha-Gamma Hot-Cell Facility at Argonne National Laboratory East

    International Nuclear Information System (INIS)

    Neimark, L.A.; Jackson, W.D.; Donahue, D.A.

    1979-01-01

    The Alpha-Gamma Hot-Cell Facility has been in operation at Argonne National Laboratory East (ANL-E) for 15 years. The facility was designed for plutonium research in support of ANL's LMFBR program. The facility consists of a kilocurie, nitrogen-atmosphere alpha-gamma hot cell and supporting laboratories. Modifications to the facility and its equipment have been made over the years as the workload and nature of the work changed. These modifications included inerting the entire hot cell, adding four work stations, modifying in-loading procedures and examination equipment to handle longer test articles, and changing to a new sodium-vapor lighting system. Future upgrading includes the addition of a decontamination and repair facility, use of radio-controlled transfer carts, refurbishment of the zinc bromide windows, and the installation of an Auger microprobe

  8. A Shielding Analysis of Hot Cell for a 10 MW Research Reactor

    International Nuclear Information System (INIS)

    Alnajjar, Alaaddin; Park, Chang Je; Roh, Gyuhong; Lee, Byunchul

    2013-01-01

    In this paper, a shielding analysis has been performed for the hot cell in a 10 MW research reactor. Two kinds of shielding analysis code systems are used such as MCNPX2.7 and M-Shield7. The first one is Monte Carlo stochastic code and the second one is a deterministic point kernel code. The results are compared in this study. In order to obtain source term, the ORIGEN-S code is used for different kinds of source. Four kinds of sources are taken into consideration. From the simulation, it is also proposed that the proper thickness of shielding material and the maximum source capacity in the hot cell. This study shows preliminary analysis results of hot cell shielding for 10MW research reactor. Total four different source terms are considered such as spent fuel assembly, Ir-192, Mo-99, and I-131. For shielding material, general concrete, heavy concrete, and lead are used. MCNPX code is mainly used for a simplified hot cell model and the result are nearly consistent when compared with M-Shield code. Required shielding thickness and the hot cell capacity are also obtained for various criterion of surface dose rates

  9. Iodine speciation in the hot cell effluent gases

    International Nuclear Information System (INIS)

    Lee, B.S.; Jester, W.A.; Olynyk, J.M.

    1990-01-01

    The various species of airborne radioiodine can affect the iodine source term of a severe core damage accident because of the different transport and deposition properties. also, the radiobiological hazardness may vary according to their chemical form. The purpose of the work reported in this paper was to characterize the various chemical forms of airborne radioiodine in hot cell effluent gases of a radiopharmaceutical production facility that produces medical radioisotopes from separated fission products of irradiated uranium targets. It is concluded that the methyl iodide is the youngest chemical species in terms of effective decay time age, and the hot cell filter bank is least efficient in removing the methyl iodide

  10. A Wet Chemistry Laboratory Cell

    Science.gov (United States)

    2008-01-01

    This picture of NASA's Phoenix Mars Lander's Wet Chemistry Laboratory (WCL) cell is labeled with components responsible for mixing Martian soil with water from Earth, adding chemicals and measuring the solution chemistry. WCL is part of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) instrument suite on board the Phoenix lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Water chemistry experiences with VVERs at Kudankulam

    International Nuclear Information System (INIS)

    Rout, D.; Upadhyaya, T.C.; Ravindranath; Selvinayagam, P.; Sundar, R.S.

    2015-01-01

    Kudankulam Nuclear Power Project - 1 and 2 (Kudankulam NPP - 1 and 2) are pressurised water cooled VVERs of 1000 MWe each. Kudankulam NPP Unit - 1 is presently on its first cycle of operation and Kudankulam NPP Unit - 2 is on the advanced stage of commissioning with the successful completion of hot run related Functional tests. Water Chemistry aspects during various phases of commissioning of Kudankulam NPP Unit - 1 such as Hot Run, Boric acid flushing, initial fuel Loading (IFL), First approach to Criticality (FAC) are discussed. The main objectives of the use of controlled primary water chemistry programme during the hot functional tests are reviewed. The importance of the relevant water chemistry parameters were ensured to have the quality of the passive layer formed on the primary coolant system surfaces. The operational experiences during the 1 st cycle of operation of primary water chemistry, radioactivity transport and build-up are presented. The operational experience of some VVER units in the field of the primary water chemistry, radioactivity transport and build-up are presented as a comparison to VVER at Kudankulam NPP. The effects of the initial passivated layer formed on metal surfaces during hot run, activated corrosion products levels in the primary coolant under controlled water chemistry regime and the contamination/radiation situation are discussed. This report also includes the water chemistry related issues of secondary water systems. (author)

  12. Single-nanowire, low-bandgap hot carrier solar cells with tunable open-circuit voltage

    Science.gov (United States)

    Limpert, Steven; Burke, Adam; Chen, I.-Ju; Anttu, Nicklas; Lehmann, Sebastian; Fahlvik, Sofia; Bremner, Stephen; Conibeer, Gavin; Thelander, Claes; Pistol, Mats-Erik; Linke, Heiner

    2017-10-01

    Compared to traditional pn-junction photovoltaics, hot carrier solar cells offer potentially higher efficiency by extracting work from the kinetic energy of photogenerated ‘hot carriers’ before they cool to the lattice temperature. Hot carrier solar cells have been demonstrated in high-bandgap ferroelectric insulators and GaAs/AlGaAs heterostructures, but so far not in low-bandgap materials, where the potential efficiency gain is highest. Recently, a high open-circuit voltage was demonstrated in an illuminated wurtzite InAs nanowire with a low bandgap of 0.39 eV, and was interpreted in terms of a photothermoelectric effect. Here, we point out that this device is a hot carrier solar cell and discuss its performance in those terms. In the demonstrated devices, InP heterostructures are used as energy filters in order to thermoelectrically harvest the energy of hot electrons photogenerated in InAs absorber segments. The obtained photovoltage depends on the heterostructure design of the energy filter and is therefore tunable. By using a high-resistance, thermionic barrier, an open-circuit voltage is obtained that is in excess of the Shockley-Queisser limit. These results provide generalizable insight into how to realize high voltage hot carrier solar cells in low-bandgap materials, and therefore are a step towards the demonstration of higher efficiency hot carrier solar cells.

  13. From trace chemistry to single atom chemistry

    International Nuclear Information System (INIS)

    Adloff, J.P.

    1993-01-01

    Hot atom chemistry in the vast majority of experimental works deals with the trace amount of radioactive matters. Accordingly, the concept of trace chemistry is at the heart of hot atom chemistry. Some aspects of the chemistry at trace scale and at subtrace scale are presented together with the related problems of speciation and the complication which may arise due to the formation of radio colloids. The examples of 127 I(n,γ) 128 I and 132 Te (β - ) 132 I are shown, and the method based on radioactivity was used. The procedure of separating the elements in pitchblende is shown as the example of the chemistry of traces. 13 27 Al+ 2 4 He→ 0 1 n+ 15 30 P and 15 30 P→ 14 30 Si+e + +V are shown, and how to recognize the presence of radioactive colloids is explained. The formation of radiocolloids is by the sorption of a trace radioelement on pre-existing colloidal impurity or the self-condensation of monomeric species. The temporal parameters of the nature of reactions at trace concentration are listed. The examples of Class A and Class B reactions are shown. The kinetics of reactions at trace level, radon concentration, anthropogenic Pu and natural Pu in environment, the behavior of Pu atoms and so on are described. (K.I.)

  14. Estimation of radiation exposure for hot cell workers during DUPIC fuel fabrication process in IMEF M6 cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Yong Bum; Baek, Sang Yeol; Park, Dae Kyu

    1997-06-01

    DUPIC(Direct Use of spent PWR fuel In CANDU) fuel cycle to utilize the PWR spent fuel in fabricating CANDU fuel, which is expected to reduce not only the total amount of high level radwastes but the energy sources is underway. IMEF M6 cell to be used as DUPIC fuel fabrication facility is refurbished and retrofitted. Radiation exposure for the hot cell worker by dispersion of the radioactive materials during the DUPIC process were estimated on the basis of the hot cell design information. According to the estimation results, DUPIC fuel fabrication process could be run without any severe impacts to the hot cell workers when the ventilation system to maintain the sufficient pressure difference between hotcell and working area and radiation monitoring system is supports the hot cell operation properly. (author). 4 tabs., 6 figs.

  15. The development on electric discharge machine for hot cell usage

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Kim, Young Suk; Park, Dae Kyu; Choo, Yong Sun; Oh, Wan Ho

    1998-06-01

    The electric discharge machine(EDM) was developed for hot cell usages in IMEF. This machine will be used to fabricate specimen directly from irradiated components from NPP's. The detailed contents are as follows; 1. Outline of electric discharge machine 2. Specimen shape to be fabricated by EDM 3. Technical specification to manufacture EDM 4. Installation EDM in hot cell 5. Optimum discharge conditions to fabricate specimens from CANDU tube. (author). 4 tabs., 20 figs

  16. A State of the Art Report on the Case Study of Hot Cell Decontamination and Refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    Won, H. J.; Jung, C. H.; Moon, J. K.; Park, G. I.; Song, K. C

    2008-08-15

    As the increase of the operation age of the domestic high radiation facilities such as IMEF, PIEF and DFDF, the necessity of decontamination and refurbishment of hot cells in these facilities is also increased. In the near future, the possibilities of refurbishment of hot cells in compliance with the new regulations, the reuse of hot cells for the other purposes and the decommissioning of the facilities also exist. To prepare against the decontamination and refurbishment of hot cells, the reports on the refurbishment, decommissioning and decontamination experiences of hot cells in USA, Japan, France, Belgium and Great Britain were investigated. ANL of USA performed the project on the decontamination of hot cells. The purpose of the project was to practically eliminate the radioactive emissions of Rn-220 to the environment and to restore the hot cells to an empty restricted use condition. The five hot cells were emptied and decontaminated for restricted use. Chemical processing facility in JAEA of Japan was used for the reprocessing study of spent fuels, hot cells in CPF were refurbished from 1995 for the tests of the newly developed reprocessing process. In a first stage, decommissioning and decontamination were fully performed by the remote operation Then, decommissioning and decontamination were performed manually. By the newly developed process, they reported that the radiation exposure of workers were satisfactorily reduced. In the other countries, they also make an effort for the refurbishment and decontamination of hot cells and it is inferred that they accumulate experiences in these fields.

  17. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  18. Use of lasers at the Los Alamos Hot-Cell Facility

    International Nuclear Information System (INIS)

    Lazarus, M.E.

    1983-01-01

    An optical profilometer that uses a Techmet LaserMike scanning, focused, laser-beam, optical micrometer is installed in a remote alpha-gamma containment cell at the Los Alamos Hot-Cell Facility. A hot-cell extension chamber provides the nominal 30-cm (12-in.) working distance required by the LaserMike and, at the same time, keeps the LaserMike components outside the high-radiation-containment environment. This system provides measurement accuracy better than +- 5 μm (0.0002 in.) on diameters between 2 and 13 mm (0.88 and 0.5 in.) at a rate of 33 measurements per second. The Hot-Cell Facility also uses a Korad 20-J-output ruby pulsed laser to drill a hole in reactor-fuel-element cladding to sample fission gas. The laser is then used to reweld the hole so that the fuel element will not be contaminated and may be stored without an alpha-containment barrier. The wall thickness of the fuel elements sampled varies from 0.25 to 0.50 mm (0.010 to 0.020 in.)

  19. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-10-01

    A concise description of the current status of the decommissioning of the hot cell capacity at Risoe National Laboratory is given in this 6th periodic report covering January 1st to June 30th, 1993. All registered and safeguarded fissile material has been removed and the task of cutting and packing scrap material and experimental equipment from the concrete cell line has been completed. Concrete cells 5 and 6 have been finally cleaned and the master slave manipulators removed from them. The major part of the contamination on the shutters and shutter houses were on their horizontal planes and the main contaminant was 137 Cs. Here the surfaces were cleaned by wiping with wet cloths. The method is described. Tables illustrating the resulting contamination levels are included, the density is now low on the shutters. The method of final inn-cell cleaning is explained, and here again tables represent the resulting contamination levels. The work on ''hot spot'' removal and remote cleaning by vacuuming continues on the remaining cells. A collective dose of ca. 16.3 man-mSv was ascribed to 18 persons in the first half of 1993, arising mainly from in-cell work and waste handling. To sum up, the main results from this period are successful removal of last waste from the cells, remote cleaning of cells 2 and 3, final condition for all shutters and shutter housings and final condition for cells 5 and 6. Tables illustrate measured dose rates in detail. (AB)

  20. Progress report on research and development work 1991 of the Department of Hot Chemistry, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1991-03-01

    In the year under review, the Institute of Hot Chemistry (IHCH) was in the midst of a thematic reorientation process. The priority of future chemical-technical work will be in the field of the development of supercriticality processes. The objective of such work consists in seeking new ways for getting rid of resistant chemical pollutants (halogenated organic compounds). The following projects are presented in detail: 1) Waste control in the environment (communal waste management; water and soil; emission-reducing processes; highly polluted soils); 2) Solid state and materials research (chemistry of materials research); basic physical research (neutrino and particle physics); 3) Nuclear waste management (concluding work on reprocessing technology), and 4) Other research projects (Institute-related research). The Annex lists the publications made by the IHCH staff. (BBR) [de

  1. ITER diagnostics: Maintenance and commissioning in the hot cell test bed

    International Nuclear Information System (INIS)

    Walker, C.I.; Barnsley, R.; Costley, A.E.; Gottfried, R.; Haist, B.; Itami, K.; Kondoh, T.; Loesser, G.D.; Palmer, J.; Sugie, T.; Tesini, A.; Vayakis, G.

    2005-01-01

    In-vessel diagnostic equipment in ITER integrated in six equatorial and 12 upper ports, 16 divertor cassettes and five lower ports is designed to be removed in modules and then repaired, tested and commissioned in the same location at the ITER hot cell. The repair requirements and tests on these components are described along with design features that facilitate repair. The testing establishes the repair strategy, qualifies the refurbishment work and finally checks the mechanical and diagnostic function before the return of the modules. At the hot cell, a dummy port is provided for tests of mechanical and vacuum integrity as well as commissioning of the diagnostic equipment. The scope of the hot cell maintenance and commissioning activities is summarised and an overview of the integration of the diagnostic equipment is given

  2. The 'SILOE' reactor at Grenoble, France and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the SILOE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  3. The 'OSIRIS' reactor at Saclay, France and available hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the OSIRIS reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  4. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    Science.gov (United States)

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Review of tritium confinement and atmosphere detritiation system in hot cells complex

    International Nuclear Information System (INIS)

    Rizzello, Claudio; Borgognoni, Fabio; Pinna, Tonio; Tosti, Silvano

    2010-01-01

    The tritium confinement strategy adopted during the past years in the ITER hot cell building is compared to the safety requirements given by the standard ISO-17873 'Nuclear facilities - criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors'. In fact, this is the reference safety guideline recommended by French licensing authorities. Several features of the considered design of the hot cell building are not in agreement with these guidelines. Main discrepancies concern the zoning of the hot cell complex, the flow rates of ventilation, and the possibility to recycle the room atmosphere and to detritiate the effluent air. These aspects are discussed together with some proposed modifications of the design.

  6. Experience of in-cell visual inspection using CCD camera in hot cell of Reprocessing Plant

    International Nuclear Information System (INIS)

    Reddy, Padi Srinivas; Amudhu Ramesh Kumar, R.; Geo Mathews, M.; Ravisankar, A.

    2013-01-01

    This paper describes the selection, customization and operating experience of the visual inspection system for the hot cell of a Reprocessing Plant. For process equipment such as fuel chopping machine, dissolver, centrifuge, centrifugal extractors etc., viewing of operations and maintenance using manipulators is required. For this, the service of in-cell camera is essential. The ambience of the hot cell of Compact facility for Reprocessing of Advanced fuels in Lead cell (CORAL) for the reprocessing of fast reactor spent fuel has high gamma radiation and acidic vapors. Black and white Charge Coupled Device (CCD) camera has been used in CORAL incorporating in-house modifications to suit the operating ambient conditions, thereby extending the operating life of the camera. (author)

  7. Conceptual design report of hot cell modification and process for fission Mo-99 production

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C.

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report

  8. Conceptual design report of hot cell modification and process for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I.; Hwang, D. S.; Kim, Y. K.; Park, K. B.; Jung, Y. J.; Kim, D. S.; Park, Y. C

    2001-05-01

    In this conceptual design report, the basic data and design guides for detail design of fission Mo-99 production process and hot cell modification are included.The basic data and design guides for detail design of fission Mo-99 production process contains following contents. -design capacity, the basic process, process flow diagram, process material balance, process data. The basic data and design guides for modification of existing hot cell contains following contents. - plot plan of hot cell facility, the plan for shield reinforcement of hot cell, the plan for management and storage of high level liquid wastes, the plan of ventilation system, the plan for modification of auxiliary facilities. And also, the results of preliminary safety analysis(normal operation and accidents) and criticality analysis are included in this conceptual design report.

  9. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-02-01

    Concise description of progress in hot cell facility decommissioning at Risoe National Laboratory is presented. Removal of the large contaminated equipment has been completed, all the concrete cells have been finally cleaned. The total contamination left on the concrete walls is of the order of 1850 GBq. Preliminary smear tests proved the stack to be probably clean. The delay in project completion seems to be around 7 months, the remaining work being of rather conventional character. (EG)

  10. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1991-08-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, removal and decontamination of large cell internals, and of large equipment such as glove boxes and steel boxes, in addition to dose commitments, are explained. Tables illustrating the analysis of smear tests, constants for contamination level examination, contamination and radiation levels after cleaning and total contamination versus measured radiation are included. (AB)

  11. NDE of PWR fuel: Identifying candidates for hot cell examination

    International Nuclear Information System (INIS)

    Moon, J.E.; Bury, J.G.; Correal, O.A.; Kunishi, H.; Wilson, H.W.

    1992-05-01

    On-site examinations were performed at the Indian Point 3 and Callaway reactors to attempt to identify the leakage mechanism of several leaking fuel rods. The exams consisted of removing the leaking fuel rods from the assembly and performing a visual examination. These results, combined with other available on-site data on leaking fuel rods, were used to select fuel rods for shipment to a hot cell for detailed root cause examination. Three fuel rods from the Indian Point 3 reactor were found to be leaking due to debris-induced fretting. The examinations at Callaway were terminated prior to completion due to utility scheduler conflicts. Rods from the Callaway reactor were selected for shipment to the hot cell along with the rods from the Byron 1 and 2 and V.C. Summer reactors. The data presented in the report summarize the coolant activity history, the UT examination results, and a summary of the review of the fabrication records. The basis for the selection of the rods to be sent to the hot cells is also summarized

  12. New facilities of the ECN hot cell laboratory

    International Nuclear Information System (INIS)

    Duijves, K.A.; Konings, R.J.M.

    1996-04-01

    A description is given of two recent expansions of the ECN Hot Cell Laboratory in Petten; a production facility for molybdenum-99 and an actinide laboratory, a special facility to investigate unirradiated alpha- and beta-active samples. (orig.)

  13. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.

    Science.gov (United States)

    Joshi, Kaushik L; Chaudhuri, Santanu

    2015-07-28

    Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions.

  14. The DIDO-reactor at Harwell, U.K. and ancillary hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DIDO reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  15. Hot atom chemistry of mixed crystals. 35 years of research

    International Nuclear Information System (INIS)

    Mueller, H.

    1993-01-01

    When this contribution was prepared, the author decided to present the more personal aspects of his work and the concepts that directed him. Since the time when the author interested in solid state hot atom chemistry more than 30 years ago, still now the generally accepted theory has not been existed. The irradiation test by using the BEPO pile in Harwell is reported. The use of glass fiber paper instead of cellulose paper was investigated. The real problem of the different models of primary retention should be solved. The idea of mixed crystal systems was the result of an experimental accident. The attempt of preparing mixed crystals, the papers that the author has written, the procedures of the experiment such as electrophoresis, the results of the electrophoretic separation are discussed. The next step was obviously the investigation of the ligand recoil. The production of the transient ligand vacancy complexes and their final fate resulted in mixed hexachlorobromometallate species is shown for the system K 2 O s Cl 6 -K 2 O s Br 6 (n,γ) 38 Cl. The reaction of the 38 Cl, the information about recoil atom reactions which increased with the complexity of target substances, and the resulted informations are reported. (K.I.)71 refs

  16. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1998-04-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analyses are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  17. AECL hot-cell facilities and post-irradiation examination services

    International Nuclear Information System (INIS)

    Schankula, M.H.; Plaice, E.L.; Woodworth, L.G.

    1995-01-01

    This paper presents an overview of the post-irradiation examination (PIE) services available at AECL's hot-cell facilities (HCF). The HCFs are used primarily to provide PIE support for operating CANDU power reactors in Canada and abroad, and for the examination of experimental fuel bundles and core components irradiated in research reactors at the Chalk River Laboratories (CRL) and off-shore. A variety of examinations and analysis are performed ranging from non-destructive visual and dimensional inspections to detailed optical and scanning electron microscopic examinations. Several hot cells are dedicated to mechanical property testing of structural materials and to determine the fitness-for-service of reactor core components. Facility upgrades and the development of innovative examination techniques continue to improve AECL's PIE capabilities. (author)

  18. The Relation Between Alloy Chemistry and Hot-Cracking

    Science.gov (United States)

    Nunes, A. C., Jr.; Talia, J. E.

    2000-01-01

    Hot cracking is a problem in welding 2195 aluminum-lithium alloy. Weld wire additives seem to reduce the problem. This study proposes a model intended to clarify the way alloying elements affect hot-cracking. The brittle temperature range of an alloy extends wherever the tensile stress required to move the meniscus of the liquid film at the grain/dendrite boundaries is less than the bulks flow stress Sigma(sub B) of the grains: 2gamma/delta alloys outgas.) If the above condition is not met, the grains deform under stress and the liquid film remains in place. Curves of 2gamma/delta and sigma(sub B) vs. temperature in the range just below the melting temperature determine the hot cracking susceptibility of an alloy. Both are zero at onset of solidification. sigma(sub B) rises as the thermal activation of the slip mechanism is reduced. 2gamma/delta rises as the film thickness delta which can be estimated from the Scheil equation, drops. But, given an embrittled alloy, whether the alloy actually cracks is determined by the strain imposed upon it in the embrittled condition. A critical strain is estimated, Epsilon(sub C) on the order of Epsilon(sub C) is approximately delta/l where L = grain size and where the the volume increment due to the strain, concentrated at the liquid film, is on the order of the liquid film volume. In the early 80's an empirical critical strain cracking envelope Epsilon(sub C)(T) was incorporated into a damage criterion to estimate the effect of welding parameters on the formation of microfissures in a superalloy with good results. These concepts, liquid film decoherence vs. grain bulk deformation and critical strain, form the key elements of a quantitative theory of hot-cracking applicable for assessing the effect of alloying elements on hot-cracking during welding.

  19. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    Science.gov (United States)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  20. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  1. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  2. The DR 3 reactor at Risoe, Denmark and its associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the DR 2 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of seven information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  3. Evaluation of modular robot system for maintenance tasks in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Pagala, Prithvi Sekhar, E-mail: ps.pagala@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Ferre, Manuel, E-mail: m.ferre@upm.es [Centre for Automation and Robotics UPM-CSIC (Spain); Orona, Luis, E-mail: l.orona@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung (Germany)

    2014-10-15

    Highlights: •Modular robot deployment inside hot cell for remote manipulation evaluated. •Flexible and adaptable system for variety of tasks presented. •Uses in large workspaces and evolving requirements shown. -- Abstract: This work assesses the use of a modular robot system to perform maintenance and inspection tasks such as, remote flexible inspection, manipulation and cooperation with deployed systems inside the hot cell. A flexible modular solution for the inclusion in maintenance operations is presented. The proposed heterogeneous modular robotic system is evaluated using simulations of the prototype across selected robot configuration to perform tasks. Results obtained show the advantages and ability of the modular robot to perform the necessary tasks as well as its ability to adapt and evolve depending on the need. The simulation test case inside hot cell shows modular robot configuration, a two modular arm to perform tele-operation tasks in the workspace and a wheeled platform for inspection collaborating to perform tasks. The advantage of using re-configurable modular robot over conventional robot platforms is shown.

  4. Analytical modeling of the temporal evolution of hot spot temperatures in silicon solar cells

    Science.gov (United States)

    Wasmer, Sven; Rajsrima, Narong; Geisemeyer, Ino; Fertig, Fabian; Greulich, Johannes Michael; Rein, Stefan

    2018-03-01

    We present an approach to predict the equilibrium temperature of hot spots in crystalline silicon solar cells based on the analysis of their temporal evolution right after turning on a reverse bias. For this end, we derive an analytical expression for the time-dependent heat diffusion of a breakdown channel that is assumed to be cylindrical. We validate this by means of thermography imaging of hot spots right after turning on a reverse bias. The expression allows to be used to extract hot spot powers and radii from short-term measurements, targeting application in inline solar cell characterization. The extracted hot spot powers are validated at the hands of long-term dark lock-in thermography imaging. Using a look-up table of expected equilibrium temperatures determined by numerical and analytical simulations, we utilize the determined hot spot properties to predict the equilibrium temperatures of about 100 industrial aluminum back-surface field solar cells and achieve a high correlation coefficient of 0.86 and a mean absolute error of only 3.3 K.

  5. On the existence of hot positronium reactions

    International Nuclear Information System (INIS)

    Lazzarini, E.

    1984-01-01

    The existence of hot Ps reactions is nowadays questioned; the controversy arises from the two models (the Ore gap and the spur theories) advanced in order to explain the mechanism of the positronium formation and of its inhibition in liquids by dissolution of certain compounds. The hypothesis of the hot Ps reactions was initially advanced as an additional statement for explaining the inhibition phenomenon within the framework of the Ore gap theory, but it is not considered necessary for the spur theory. The present paper is chiefly intended as a presentation of this particular aspect of Ps chemistry to hot atom chemists unspecialized in the field. The reader is assumed to be familiar with the basic physics and experimental methods used in positronium chemistry. Contents: positrons and positronium formation; inhibition and enhancement of Ps formation in solutions; positronium reactions in gases. (Auth.)

  6. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  7. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    International Nuclear Information System (INIS)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-01-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal–semiconductor, and metal–insulator–metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles. (topical review)

  8. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1986-01-01

    Accurate remote tightening of fasteners in a radioactive (Hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no ''feel,'' which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Test Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  9. Fastener tightening in a radioactive (hot) cell

    International Nuclear Information System (INIS)

    Kalk, J.J.

    1987-01-01

    Accurate remote tightening of fasteners in a radioactive (hot) cell can be a very exasperating experience. Viewing can be difficult (in many places) and work sometimes must be done using mirrors and/or cameras. If electro mechanical manipulators are used, the operator has no feel, which often can result in cross threading, or improper torquing of fasteners. At the Interim Examination and Maintenance (IEM) Cell, where reactor components from the Fast Flux Testing Facility (FFTF) are disassembled, these problems are prevalent because three of the IEM Cell walls have no windows. Electric impact wrenches were first proposed and tested for the IEM Cell, but the combined effects of radiation, dry argon atmosphere and poor visibility radically altered the cell tool development philosophy. This change in philosophy is reflected in the development of several simple fastener tightening devices

  10. Work on the hot atom chemistry at the Institute of Nuclear Sciences Boris Kidric, Vinca, Yugoslavia; Hemija vruceg atoma

    Energy Technology Data Exchange (ETDEWEB)

    Veljkovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1969-07-01

    A survey of work on hot atom chemistry from the establishment of the Institute up to now, where the role of Prof. P. Savic, should be specially emphasized, is given. The investigations in this domain during the first period, were directed to solve various problems in production of radioactive isotopes. Today these investigations are closely associated with the work in radiochemistry, physical chemistry of liquid and solid systems and fast reaction kinetics improving the development of these branches (author) [Serbo-Croat] Daje se pregled rada na hemiji vruceg atoma od osnivanja Instituta do danas, pri cemu se narocito istice uloga koju je u tome imao prof. P. Savic. Dok su u prvom periodu istrazivanja u ovoj oblasti doprinosila resavanju raznih problema proizvodnje radioaktivnih izotopa, ona su danas tesno povezana sa radom u radiohemiji, fizickoj hemiji tecnih i cvrstih sistema, kinetici brzih reakcija, doprinoseci sa svoje strane razvoju tih oblasti (author)

  11. The 'MELUSINE' reactor at Grenoble, France, and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the MELUSINE reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities and specialized irradiation devices (loops and capsules). The information is presented in the form of six information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities

  12. Zirconium Recycle Test Equipment for Hot Cell Operations

    International Nuclear Information System (INIS)

    Collins, Emory D.; DelCul, Guillermo Daniel; Spencer, Barry B.; Bradley, Eric Craig; Brunson, Ronald Ray

    2015-01-01

    The equipment components and assembly support work were modified for optimized, remote hot cell operations to complete this milestone. The modifications include installation of a charging door, Swagelok connector for the off-gas line between the reactor and condenser, and slide valve installation to permit attachment/replacement of the product salt collector bottle.

  13. Removal of an acid fume system contaminated with perchlorates located within hot cell

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers

  14. The FR 2 reactor at Karlsruhe, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FR 2 reactor and associated hot cell facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  15. Decommissioning of the Risoe hot cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1992-02-01

    Concise descriptions of actions taken in relation to the decommissioning of the hot cell facility at Risoe National Laboratory are presented. The removal of fissile material, of large contaminated equipment from the concrete cell line and a separate shielded storage facility, and the removal of large contaminated facilities such as out cell parts of a tube transport system between a concrete cell and a lead shielded steel box and a remotely operated Reichert Telatom microscope housed in a lead shielded glove box is described in addition to the initial mapping of radiation levels related to the decontamination of concrete cells. The dose commitment of 17.7 mSv was ascribed to 12 persons in the 2nd half of 1991. The work resulting in these doses was mainly handling of waste together with the frogman entrances in order to repair the in-cell crane and power manipulator. The overall time schedule for the project still appears to be applicable. (AB)

  16. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  17. Experiences from Refurbishment of Metallography Hot Cells and Application of a New Preparation Concept for Materialography Samples

    International Nuclear Information System (INIS)

    Oberlander, B. C.; Espeland, M.; Solum, N. O.

    2001-01-01

    After more than 30 years of operation the lead shielded metallography hot cells needed a basic renewal and modernisation not least of the specimen preparation equipment. Preparation in hot cells of radioactive samples for metallography and ceramography is challenging and time consuming. It demands a special design and quality of all in-cell equipment and skill and patience from the operator. Essentials in the preparation process are: simplicity and reliability of the machines, and a good quality, reproducibility and efficiency in performance. Desirable is process automation, flexibility and an alara amounto of radioactive waste produced per sample prepared. State of the art preparation equipment for materialography seems to meet most of the demands, however, it cannot be used in hot cells without modifications. Therefore. IFE and Struers in Copenhagen modified a standard model of a Strues precision cutting machine and a microprocessor controlled grinding and polishing machine for Hot Cell application. Hot cell utilisation of the microcomputer controlled grinding and polishing machine and the existing automatic dosing equipment made the task of preparing radioactive samples more attractive. The new grinding and polishing system for hot cells provides good sample preparation quality and reproductibility at reduced preparation time and reduced amount of contaminated waste produced per sample prepared. the sample materials examined were irradiated cladding materials and fuels

  18. Los Alamos Hot-Cell-Facility modifications for examining FFTF fuel pins

    International Nuclear Information System (INIS)

    Campbell, B.M.; Ledbetter, J.M.

    1982-01-01

    Commissioned in 1960, the Wing 9 Hot Cell Facility at Los Alamos was recently modified to meet the needs of the 1980s. Because fuel pins from the Fast Flux Test Facility (FFTF) at the Hanford Engineering Development Laboratory (HEDL) are too long for examination in the original hot cells, we modified cells to accommodate longer fuel pins and to provide other capabilities as well. For instance, the T-3 shipping cask now can be opened in an inert atmosphere that can be maintained for all nondestructive and destructive examinations of the fuel pins. The full-length pins are visually examined and photographed, the wire wrap is removed, and fission gas is sampled. After the fuel pin is cropped, a cap is seal-welded on the section containing the fuel column. This section is then transferred to other cells for gamma-scanning, radiography, profilometry, sectioning for metallography, and chemical analysis

  19. Basic design and construction of a mobile hot cell for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    An Hongxiang; Fan Zhiwen; Al-Mughrabi, M.

    2011-01-01

    The conditioning of spent high activity radioactive sources is one important step in sealed radioactive sources management strategies. Based on the practice on the designing of the immobilized hot cell, the handling of the sealed radioactive sources, and the reference of the mobile hot cell constructed in South Africa, SHARS conditioning process and the basic design of a mobile hot cell is developed. The mobile hot cell has been constructed and the tests including the cold test of the SRS conditioning, the hot cell assemble and disassemble and SRS recovery were done. The shielding capacity were tested by 3.8 x 10 13 Bq cobalt-60 sources and the dose rate of the equipment surface, below 2 m, is less than 0.016 mSv/h. It is proved that the designing requirement is meet and the function of the equipment is good. (authors)

  20. Cooling Grapple System for FMEF hot cell

    International Nuclear Information System (INIS)

    Semmens, L.S.; Frandsen, G.B.; Tome, R.

    1983-01-01

    A Cooling Grapple System was designed and built to handle fuel assemblies within the FMEF hot cell. The variety of functions for which it is designed makes it unique from grapples presently in use. The Cooling Grapple can positively grip and transport assemblies vertically, retrieve assemblies from molten sodium where six inches of grapple tip is submerged, cool 7 kw assemblies in argon, and service an in-cell area of 372 m 2 (4000 ft 2 ). Novel and improved operating and maintenance features were incorporated in the design including a shear pin and mechanical catcher system to prevent overloading the grapple while allowing additional reaction time for crane shutdown

  1. Planning, Management and Organizational Aspects of the Decommissioning of a Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    Strufe, N. [Danish Decommissioning, Roskilde (Denmark)

    2013-08-15

    This CRP project document ''Planning, Management and Organizational Aspects in Decommissioning of a Hot Cell Facility'' aims to describe the establishment of a management organization that ensures that the DD Hot Cell Project is properly and safely conducted and that staff members, who are seconded to the project, have a strong feeling of ownership and being an integral part of the project. The objectives of the decommissioning project of the hot cell facility is to decontaminate the facility and to remove items that cannot be decontaminated on site, in order for the entire hot cell building to become useable for other purposes without any radiological restrictions. The project requires proper communication and coordination with all stakeholders on-site, comprehensive work plans and strict control of the individual working areas and operations. A project of this type obviously requires a strong and well managed and coordinated project organization. DD has established a management system - KMS. The purposes of the KMS are twofold. The system aims to secure the fulfilment of the conditions and requirements of quality set by the nuclear authorities. The system also aims to provide the basis for a rational and economically feasible operation with a high level of safety. One of the main lessons learned in this project is clear that is to ensure that the necessary resources are available and the required expertise is allocated timely for the performance of the project(s) a strong coordination and great flexibility within the DD organization is required. This document describes the approach and considerations from the project management point of view. The document initially gives an introduction to the hot cell decommissioning project followed by issues of the general considerations and planning of the project within the DD, including aspects on organisation, quality assurance and coordination. (author)

  2. Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haque Choudhury, Mohammad Shamimul, E-mail: shamimul129@gmail.com [Department of Frontier Material, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan); Department of Electrical and Electronic Engineering, International Islamic University Chittagong, b154/a, College Road, Chittagong 4203 (Bangladesh); Kishi, Naoki; Soga, Tetsuo [Department of Frontier Material, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555 (Japan)

    2016-08-15

    Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness of this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.

  3. Strategic Planning for Hot Cell Closure

    International Nuclear Information System (INIS)

    LANGSTAFF, D.C.

    2001-01-01

    The United States Department of Energy (DOE) and its contractor were remediating a large hot cell complex to mitigate the radiological hazard. A Resource Conservation and Recovery Act (RCRA) closure unit was determined to be located within the complex. The regulator established a challenge to develop an acceptable closure plan on a short schedule (four months). The scope of the plan was to remove all excess equipment and mixed waste from the closure unit, establish the requirements of the legally binding Closure Plan and develop an acceptable schedule. The complex has several highly radioactive tanks, tank vaults, piping, and large hot cells containing complex chemical processing equipment. Driven by a strong need to develop an effective strategy to meet cleanup commitments, three principles were followed to develop an acceptable plan: (1) Use a team approach, (2) Establish a buffer zone to support closure, and (3) Use good practice when planning the work sequence. The team was composed of DOE, contractor, and Washington State Department of Ecology (Regulator) staff. The team approach utilized member expertise and fostered member involvement and communication. The buffer zone established an area between the unregulated parts of the building and the areas that were allegedly not in compliance with environmental standards. Introduction of the buffer zone provided simplicity, clarity, and flexibility into the process. Using good practice means using the DOE Integrated Safety Management Core Functions for planning and implementing work safely. Paying adequate attention to detail when the situation required contributed to the process credibility and a successful plan

  4. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  5. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  6. The FRJ 1 reactor (MERLIN) at Juelich, F.R. Germany and associated hot cell facilities. Information sheets

    International Nuclear Information System (INIS)

    Hardt, P. von der; Roettger, H.

    1981-01-01

    Technical information is given on the FRJ 1 reactor and associated hot cell facilities, with the main emphasis on experimental irradiation facilities, specialized irradiation devices (loops and capsules) and possibilities for post-irradiation examinations of samples. The information is presented in the form of eight information sheets under the headings: main characteristics of the reactor; utilization and specialization of the reactor; experimental facilities; neutron spectra; main characteristics of specialized irradiation devices; main characteristics of hot cell facilities; equipment and techniques available for post-irradiation examinations; utilization and specialization of the hot cell facilities

  7. Apparatus of hot cell for iodine-123 production

    International Nuclear Information System (INIS)

    Almeida, G.L. de; Rautenberg, F.A.; Souza, A.S.F. de.

    1986-01-01

    The hot cell installation at IEN cyclotron (Brazilian-CNEN) for sup(123)I production is presented. Several devices, such as, tube furnace coupling system, tube furnace driving system, sup(123)I target transfer system, product extraction system, furnace control system, and effluent systems, were constructed and modified for implanting process engineering. The requirements of safety engineering for operation process were based on ALARA concept. (M.C.K.)

  8. Comparative Analysis of Click Chemistry Mediated Activity-Based Protein Profiling in Cell Lysates

    Directory of Open Access Journals (Sweden)

    Yinliang Yang

    2013-10-01

    Full Text Available Activity-based protein profiling uses chemical probes that covalently attach to active enzyme targets. Probes with conventional tags have disadvantages, such as limited cell permeability or steric hindrance around the reactive group. A tandem labeling strategy with click chemistry is now widely used to study enzyme targets in situ and in vivo. Herein, the probes are reacted in live cells, whereas the ensuing detection by click chemistry takes place in cell lysates. We here make a comparison of the efficiency of the activity-based tandem labeling strategy by using Cu(I-catalyzed and strain-promoted click chemistry, different ligands and different lysis conditions.

  9. Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature

    Science.gov (United States)

    Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François

    2018-03-01

    In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.

  10. Hot oxygen atoms: Their generation and chemistry

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta 2 O 5 and V 2 O 5 . Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O( 3 P) with cis- and trans-butenes were investigated

  11. Design and rescue scenario of common repair equipment for in-vessel components in ITER hot cell

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Takeda, Nobukazu; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-06-01

    Transportation of the in-vessel components to be repaired in the ITER hot cell is carried by two kinds of transporters, i.e., overhead cranes and floor vehicles. The access area for repair operations in the hot cell is duplicated by these transporters. Clear sharing of the respective roles of these transporters with the minimum duplication is therefore useful for rationalization. The overhead cranes, which are independently installed in the respective cells in the hot sell, cannot pass through the components to be repaired between cells, i.e., receiving cell and refurbishment cell as an example. If the floor vehicle with simple mechanisms can cover the inaccessible area for the overhead cranes, a global transporter system in the hot cell will be simplified and the reliability will be increased. Based on this strategy, the overhead crane and floor vehicle concepts are newly proposed. The overhead crane has an adapter for change of the end-effectors, which can be easily changed, to grasp many kinds of components to be repaired. The floor vehicle, which is equipped with wheel mechanisms for transportation, is just to pass through the components between cells with only straight (linear) motion on the floor. The simple wheel mechanism can solve the spread of the dust, which is the critical issue of the original air bearing mechanism for traveling in the 2001 FDR design. Rescue scenarios and procedures in the hot cell are also studied in this report. The proposed rescue crane has major two functions for rescue operations of the hot cell facility, i.e., one for the overhead crane and the other for refurbishment equipment such as workstation for divertor repair. The rescue of the faulty overhead crane is carried out using the rescue tool installed on the rescue crane or directly traveled by pushing/pulling by the rescue crane after docking on the faulty overhead crane. For the rescue of the workstation, the rescue crane consists of a telescopic manipulator (maximum length

  12. Hot cell facilities for post irradiation examination

    International Nuclear Information System (INIS)

    Mishra, Prerna; Bhandekar, Anil; Pandit, K.M.; Dhotre, M.P.; Rath, B.N.; Nagaraju, P.; Dubey, J.S.; Mallik, G.K.; Singh, J.L.

    2017-01-01

    Reliable performance of nuclear fuels and critical core components has a large bearing on the economics of nuclear power and radiation safety of plant operating personnel. In view of this, Post Irradiation Examination (PIE) is periodically carried out on fuels and components to generate feedback information which is used by the designers, fabricators and the reactor operators to bring about changes for improved performance of the fuel and components. Examination of the fuel bundles has to be carried out inside hot cells due to their high radioactivity

  13. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    OSCAR, DEBBY S.; WALKER, SHARON ANN; HUNTER, REGINA LEE; WALKER, CHERYL A.

    1999-01-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2

  14. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  15. Development of one body α-γ type manipulator for hot cell facility

    International Nuclear Information System (INIS)

    Jung, S. K.; Lee, S. B.; Lee, E. P.

    2004-01-01

    To handle the high level radioactive materials in a sealed type hot cell, our company has developed the one body alpha-gamma type manipulator and this is an improved model compared with the previously developed beta-gamma and separated alpha-gamma type manipulators. The successful development of one body alpha-gamma type manipulator means our company has a whole capacity to design and fabricate all kinds of manipulators using in hot cells. Until now most of the manipulators in Korea were imported from other countries. The development of Korean manipulators gives us the easier maintenance and lower price compared to the foreign products. It is also possible to export the Korean manipulators to overseas

  16. Hot Cell Window Shielding Analysis Using MCNP

    International Nuclear Information System (INIS)

    Pope, Chad L.; Scates, Wade W.; Taylor, J. Todd

    2009-01-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  17. Conceptual design of the hot cell facility universal docking station at ITER

    International Nuclear Information System (INIS)

    Dammann, A.; Benchikhoune, M.; Friconneau, J.P.; Ivanov, V.; Lemee, A.; Martins, J.P.; Tamassy, G.

    2011-01-01

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  18. Conceptual design of the hot cell facility universal docking station at ITER

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Benchikhoune, M.; Friconneau, J.P.; Ivanov, V. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Lemee, A. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France); Martins, J.P. [ITER Organization, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Tamassy, G. [SOGETI High Tech, 180 Rue Rene Descartes, 13851 Aix en Provence (France)

    2011-10-15

    Between main shutdowns of the ITER machine, in-vessel components and Iter Remote Maintenance System (IRMS) are transferred between the Tokamak complex and the Hot Cell Facility using different types of sealed casks. Transfer Casks have different physical interfaces with the Vacuum Vessel, which need to be the same at the docking stations of the HCF. It means that in-vessel components and IRMS are cleaned in the same cells, which is in fact not convenient. Furthermore, logistic studies showed that the use rate of the cells is very inhomogeneous. In order to have dedicated cell for decontamination of Remote Handling tools, in order to increase the operability efficiency and to removes the hot cell docking operation from the critical path, the concept of a universal docking station has been investigated. Based on an existing design, the work was focused on a review of requirements, the re-design and the integration within the HCF layout. The universal docking station has been proposed and is now integrated in HCF design.

  19. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Directory of Open Access Journals (Sweden)

    Seung Nam Yu

    2015-10-01

    Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  20. Standard guide for hot cell specialized support equipment and tools

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 This guide presents practices and guidelines for the design and implementation of equipment and tools to assist assembly, disassembly, alignment, fastening, maintenance, or general handling of equipment in a hot cell. Operating in a remote hot cell environment significantly increases the difficulty and time required to perform a task compared to completing a similar task directly by hand. Successful specialized support equipment and tools minimize the required effort, reduce risks, and increase operating efficiencies. 1.2 Applicability: 1.2.1 This guide may apply to the design of specialized support equipment and tools anywhere it is remotely operated, maintained, and viewed through shielding windows or by other remote viewing systems. 1.2.2 Consideration should be given to the need for specialized support equipment and tools early in the design process. 1.2.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conv...

  1. Particle-in-cell studies of laser-driven hot spots and a statistical model for mesoscopic properties of Raman backscatter

    International Nuclear Information System (INIS)

    Albright, B.J.; Yin, L.; Bowers, K.J.; Kline, J.L.; Montgomery, D.S.; Fernandez, J.C.; Daughton, W.

    2006-01-01

    The authors use explicit particle-in-cell simulations to model stimulated scattering processes in media with both solitary and multiple laser hot spots. These simulations indicate coupling among hot spots, whereby scattered light, plasma waves, and hot electrons generated in one laser hot spot may propagate to neighboring hot spots, which can be destabilized to enhanced backscatter. A nonlinear statistical model of a stochastic beam exhibiting this coupled behavior is described here. Calibration of the model using particle-in-cell simulations is performed, and a threshold is derived for 'detonation' of the beam to high reflectivity. (authors)

  2. Hot cell renovation in the spent fuel conditioning process facility at the Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Seung Nam; Lee, Jong Kwang; Park, Byung Suk; Cho, Il Je; Kim, Ki Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

  3. Some steps of the dismantling of the hot cell ATTILA

    International Nuclear Information System (INIS)

    Terrasson, L.

    1989-01-01

    This paper describes the dismantling, during 2 years and just finished now, of a large hot cell (11.6 m x 5.90 m x 5.80 m) at Fontenay-aux-Roses (France) characterised by an importand irradiation and contamination mean dose rate 7 rads/hr, in some places 20 rads/hr, coming at 98 % from Cesium 137 (beta decay radioisotope). Put into operation in March 1967, the Attila cell was used for spent fuel processing using halogenides [fr

  4. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  5. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  6. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources (SHARS)

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2008-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Agency (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused SHARS in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell would allow source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at single sites in each IAEA Member State. The mobile hot cell and related equipment is transported in two shipping containers to a specific country where the following process takes place: 1-) Assembly of hot cell; 2-) Removal of SHARS from working shields, encapsulation into a stainless steel capsule and placement into a long term storage shield; 3-) Conditioning of any other spent sources the country may require; 4-) Dismantling of the hot cell; 5-) Shipping equipment out of country. The operation in a specific country is planned to be executed over a three week period. This presentation will discuss the development of the mobile hot cell facility as well as the demonstration of the state of readiness of the system for manipulation of SHARS and the planned execution of the conditioning operations. As a result of this project, excess SHARS could be managed safely and securely and possibly be more easily repatriated to their country of origin for appropriate final disposition. (author)

  7. Device for inserting and removing electric plug in socket- using remote handling apparatus inside radioactive hot cell

    International Nuclear Information System (INIS)

    Chevallereau, R.; Galmard, Y.

    1994-01-01

    A device for pushing an electric plug into a supply socket inside a radioactive hot cell and for withdrawing the plug after use of the appliance attached to it, comprises a pair of pivotally mounted arms. It can be used inside radioactive hot cells, to insert and put in and put off electric plugs

  8. Ballooning test equipment for use in hot cells

    International Nuclear Information System (INIS)

    Broendsted, P.; Adrian, F.

    1979-12-01

    An equipment for testing the LOCA behaviour of irradiated cladding materials is described. The details of the construction and of the installation in the Hot Cells are reported. Pilot tests carried out showed that the performance of the system fulfills the basic experimental prerequisites, which were: heating rate of 2-3degC/s, final temperature 1150degC/s, internal pressure max. 30 atm, external pressure max. 1 atm, test atmosphere either air or steam. (author)

  9. Pressurized hot water extraction of proteins from Sambucus nigra L. branches

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Hohnová, Barbora

    2017-01-01

    Roč. 108, DEC (2017), s. 312-315 ISSN 0926-6690 Grant - others:GA AV ČR(CZ) R200311521 Institutional support: RVO:68081715 Keywords : elderberry * pressurized hot water extraction * proteins Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.181, year: 2016

  10. 324 and 325 Building Hot Cell Cleanout Program: Air lock cover block refurbishment

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.; Gale, R.M.

    1989-05-01

    The high-density concrete cover blocks shielding the pipe trench in the hot-cell air lock of the 324 Building Radiochemical Engineering Cells had accumulated fixed radioactivity ranging from 1100 to 22, 000 mrad/hr. A corresponding increase in the radiation exposure to personnel entering the air lock, together with ALARA concerns, led to the removal of the contaminated concrete surface with a hydraulic spaller and the emplacement of a stainless steel covering over a layer of grout. The resultant saving in radiation exposure is estimated to be 7200 mrad for personnel completing burial box runs for the 324 and 325 Building Hot Cell Cleanout Program. Radiation exposure to all staff members entering the air lock is now at least 50% lower. 3 refs., 22 figs., 1 tab

  11. Exposure management in a hot-cell decontamination and refurbishment campaign

    International Nuclear Information System (INIS)

    Courtney, J.C.; Ferguson, K.R.; Chesnovar, D.L.; Huebner, M.F.

    1984-01-01

    We developed a minicomputer-based system to provide rapid access to personnel dosimetry data during a campaign to decontaminate and refurbish a hot-cell at the Hot Fuel Examination Facility (HFEF) Complex. This system allows project management to estimate doses for future tasks, assess the effectiveness of decontamination and personnel protection techniques, and balance exposures among members of various skill groups. As the campaign progresses, projected total exposures can be minimized by tradeoffs between estimated doses during decontamination and estimated dose savings during the refurbishment phase. The effectiveness of various dose-reduction procedures can be compared on the basis of data from a few cell entries before more extensive routine operations are scheduled. Because the radiation fields vary significantly with location in the cell, we find that measurements of whole-body, skin, and extremity doses are more valuable than dose-rate information. Penetrating and skin radiation doses to personnel can be compared to administrative guidelines. This helps us to select the most effective combination of protective clothing. For example, leaded gauntlets reduce the dose rate to the workers' hands, but their use can increase the time required for some in-cell tasks. Hence, use of gauntlets can lead to higher whole-body and skin doses. The program is written for the HFEF Complex Harris/6 minimainframe computer with a disk-monitor operating system

  12. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    International Nuclear Information System (INIS)

    Katayama, Y.B.; Holton, L.K. Jr.

    1989-10-01

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft 2 and $96 per ft 2 of cell surface area. 14 figs., 4 tabs

  13. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Al Shakhshir, Saher; Andreasen, Søren Juhl; Berning, Torsten

    2016-01-01

    In order to better understand and more accurately measure the water balance in a proton exchange membrane fuel cell, our group has recently proposed to apply hot wire anemometry in the fuel cell's anode outlet. It was theoretically shown that the electrical signal obtained from the hot wire sensor...... can be directly converted into the fuel cell water balance. In this work an ex-situ experimental investigation is performed to examine the effect of the wire diameter and the outlet pipe diameter on the voltage signal. For a laboratory fuel cell where the mass flow rate the anode outlet is small...... number Nu range between m = 0.137 and m = 0.246. In general, it is shown that applying hot wire anemometry yields in fact very clear voltage readings with high frequency, and it can be used as a diagnosis tool in various fuel cell applications....

  14. Evaluation of Tritium Behavior in the Epoxy Painted Concrete Wall of ITER Hot Cell

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Hayashi, Takumi; Kobayashi, Kazuhiro; Nishi, Masataka

    2005-01-01

    Tritium behavior released in the ITER hot cell has been investigated numerically using a combined analytical methods of a tritium transport analysis in the multi-layer wall (concrete and epoxy paint) with the one dimensional diffusion model and a tritium concentration analysis in the hot cell with the complete mixing model by the ventilation. As the results, it is revealed that tritium concentration decay and permeation issues are not serious problem in a viewpoint of safety, since it is expected that tritium concentration in the hot cell decrease rapidly within several days just after removing the tritium release source, and tritium permeation through the epoxy painted concrete wall will be negligible as long as the averaged realistic diffusion coefficient is ensured in the concrete wall. It is also revealed that the epoxy paint on the concrete wall prevents the tritium inventory increase in the concrete wall greatly (two orders of magnitudes), but still, the inventory in the wall is estimated to reach about 0.1 PBq for 20 years operation

  15. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1993-02-01

    A concise description of the current status (December 31st, 1992) regarding the decommissioning of the hot cell facility at Risoe National Laboratory is given in this periodic report. During the second half of the year 1992, all remaining fissile material and a large amount of contaminated material were removed, major repair work was carried out on the in-cell crane, the shielded storage facility was decontaminated and sealed, iodine filters in the cell ventilation system were removed, remote cleaning was carried out on three concrete cells to radiation levels acceptable for final cleaning by frogmen, and the remaining work schedule was planned. These processes are briefly described. Some breakdowns of older, but vital equipment (i.e. the in-cell crane and the power manipulator) that was taken into extensive use led to a certain amount of delay. The collective radiation doses during this half-year were no higher than under normal operation of the facility, and amounted to 12 man-mSv ascribed to 14 persons. It was concluded that, when removing old epoxy paint in the cells using paint strippers applied by hand, personnel can wear polythene oversuits, although a technique for remote handling has been developed. Tables illustrate measured radiation levels in cells number 1,4,5 and 6, and a diagram describes the shielded storage facility. (AB)

  16. Ionospheric hot spot at high latitudes

    International Nuclear Information System (INIS)

    Schunk, R.W.; Sojka, J.J.

    1982-01-01

    A hot spot (or spots) can occur in the high-latitude ionosphere depending on the plasma convection pattern. The hot spot corresponds to a small magnetic local time-magnetic latitude region of elevated ion temperatures located near the dusk and/or dawn meridians. For asymmetric convection electric field patterns, with enhanced flow in either the dusk or dawn sector of the polar cap, a single hot spot should occur in association with the strong convection cell. However, on geomagnetically disturbed days, two strong convection cells can occur, and hence, two hot spots should exist. The hot spot should be detectable when the electric field in the strong convection cell exceeds about 40 mV m -1 . For electric fields of the order of 100 mV m -1 in the convection cell, the ion temperature in the hot spot is greatest at low altitudes, reaching 4000 0 K at 160 km, and decreases with altitude in the F-region. An ionospheric hot spot (or spots) can be expected at all seasons and for a wide range of solar cycle conditions

  17. DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Lee

    2006-02-06

    This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques.

  18. Cleanout and decontamination of radiochemical hot cells

    International Nuclear Information System (INIS)

    Surma, J.E.; Holton, L.K. Jr.; Katayama, Y.B.; Gose, J.E.; Haun, F.E.; Dierks, R.D.

    1990-01-01

    The Pacific Northwest Laboratory is developing and employing advanced remote and contact technologies in cleaning out and decontaminating six radiochemical hot cells at Hanford under the Department of Energy's Surplus Facilities Management Program. The program is using a series of remote and contact decontamination techniques to reduce costs and to significantly lower radiation doses to workers. Refurbishment of the cover blocks above the air lock trench reduced radiation exposure in the air lock and cleanout and decontamination of an analytical cell achieved a reduction in radioactive contamination. Nuclear Regulatory Commission-approved Type B burial boxes are also being used to reduce waste disposal costs and radiation doses. PNL is currently decommissioning its pilot-scale radioactive liquid-fed ceramic melter. Special tools have been developed and are being used to accomplish the world's first such effort. 4 refs., 5 figs

  19. VVER operational experience - effect of preconditioning and primary water chemistry on radioactivity build-up

    International Nuclear Information System (INIS)

    Zmitko, M.; Kysela, J.; Dudjakova, K.; Martykan, M.; Janesik, J.; Hanus, V.; Marcinsky, P.

    2004-01-01

    The primary coolant technology approaches currently used in VVER units are reviewed and compared with those used in PWR units. Standard and modified water chemistries differing in boron-potassium control are discussed. Preparation of the VVER Primary Water Chemistry Guidelines in the Czech Republic is noted. Operational experience of some VVER units, operated in the Czech Republic and Slovakia, in the field of the primary water chemistry, and radioactivity transport and build-up are presented. In Mochovce and Temelin units, a surface preconditioning (passivation) procedure has been applied during hot functional tests. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. The first operational experience obtained in the course of beginning of these units operation is presented mainly with respect to the corrosion products coolant and surface activities. Effect of the initial passivation performed during hot functional tests and the primary water chemistry on corrosion products radioactivity level and radiation situation is discussed. (author)

  20. Analysis of the hot cell lay-out for the advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Hong, D. H.; Kim, Y. H.; Yoon, J. S

    2003-04-01

    Equipment used for ACP must operate in intense radiation fields enclosed in a hot cell and be remotely maintained. For the reliable remote maintenance operation, several design aspects should be considered. Even though the design results seem to be satisfactory, all the remote operation should be checked prior to the hot demonstration. The best way to check the remote operability is a real mock-up test, but the mock-up test is too expensive and time consuming, and need refabrication of the design to deal with the problem found in the test operation. The 3D graphic simulator gives an alternate solution for this. It can check the remote operability of the process without fabrication of the process equipment. In other words, using a graphic simulator, remote operation task can be simulated in a computer(virtual environment), not the real environment. In this report, for the analysis on the hat cell layout for the ACP process, the verification from the concept of the process to the detailed motion of the equipment and the remote operation devices using virtual prototyping is described. Also, the requirement of the process equipment in the sense of size and remote maintenance, and that of the transportation and handling for the process material are described. Finally, from these results, the hot cell layout alternatives and the bases for the selection of the optimum layout are implemented. The graphical simulator and the results from this analysis can be effectively used not only for optimizing the hot cell layout but also designing the ACP equipment and maintenance process.

  1. Where is the future of nuclear chemistry

    International Nuclear Information System (INIS)

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  2. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Fabio E.; Araujo, Elaine B., E-mail: fecampos@ipen.b, E-mail: ebaraujo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  3. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    International Nuclear Information System (INIS)

    Campos, Fabio E.; Araujo, Elaine B.

    2009-01-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  4. Operating experience and radiation protection problems in the working of the radio-metallurgy hot cell facilities at BARC

    International Nuclear Information System (INIS)

    Janardhanan, S.; Watamwar, S.B.; Mehta, S.K.; Pillai, P.M.B.; John, Jacob; Kutty, K.N.

    1977-01-01

    The Bhabha Atomic Research Centre at Bombay has six hot cell facilities for radiometallurgical investigations of irradiated/failed fuel elements. The hot cell facilities have been provided with certain built-in safety features, a ventilation system, radiation monitoring instruments for various purposes, a centralised air monitoring system and a central panel for display of various alarms. Procedures adopted for radiation protection and contamination control include : (1) radiation leak test for cells and filter efficiency evaluation before cell activation, (2) practices to be followed by frog suit personnel while working in hot cell areas, (3) receipt and handling of irradiated fuel elements, (4) cell filter change operation, (5) checks on high level drains and (6) effluent discharge and waste shipments. Operating experience in the working of these facilities along with radiation accident incidents is described. Data regarding release of activity during normal cell operations, dose rates during various metallurgical operations and personnel exposures are presented. (M.G.B.)

  5. Decommissioning of the Risoe Hot Cell facility

    International Nuclear Information System (INIS)

    Carlsen, H.

    1994-06-01

    Nuclear fuels have been handled and examined after irradiation by physical and chemical techniques, and radiotherapy sources, mainly 60 Co, have been produced at Risoe National Laboratory since 1964. The aims of decommissioning (during 1990-94, at IAEA Stage 2 level for reactors) were to obtain safe conditions for the remaining parts of the facility and to produce clean space areas for new projects. The facility comprises 6 concrete cells, several lead-shielded steel cells, glove boxes, shielded storage for waste, a remotely operated optical microscope, a frogman area for personnel access to the concrete cells, a decontamination facility, workshops and safety installations. All steel cells, glove boxes and the microscope were emptied and removed. The concrete cells were emptied of fissile material, scientific equipment, general tools and scrap. Decontamination should facilitate waste packing and reduce amount of waste to be stored temporarily at the Risoe waste treatment facility together with highly active waste. The concrete cells were cleaned remotely by wiping, hot spot removal, by mechanical means and vacuum cleaning. The interiors of 2 cells were decontaminated by high pressure water jetting. All master-slave manipulators and part of the contaminated ventilation system at the cells were removed. The cells are left in a non-ventilated state, connected to the atmosphere by an absolute filter. The main contaminants measured before cell closure were 60 Co, 137 Cs and alpha-emitters. Dismantling, decontamination waste disposal and received doses are described. Simple techniques involving low doses were found to be very effective. (AB)

  6. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  7. 'Signs of disequilibrium chemistry in extrasolar hot-Jupiter type planets?'

    Science.gov (United States)

    Rocha, Graca; Swain, Mark; Line, Michael; West, Robert

    2018-01-01

    In the recent years Infrared spectroscopy of hot exoplanets has been revealing their atmospheric composition. For example the spectra of the planet HD189733b exhibits signatures of CH4, CO2, CO and H2O molecules (Swain et al 2008, 2009, etc.). The original 2008 detection of CH4 was a surprise because it is not thermochemically favored at the relatively high temperature (~1300 K) of the atmosphere of HD 189733b. More recent analysis of HD 189733b measurements (Swain, Line, Deroo 2014) implied a CH4 enhancement of ~1000x greater than has been assumed. Significantly more data has recently become available from WFC3 observations (Mccullah et al. 2014, Crozet at al. 2015) of this planet. In the meantime theoretical models by Moses et al. 2011 showed that large enhancement of quenched methane is possible due to transport if vertical eddy diffusion is significant.In this talk we will present results from a new study of CH4 enhancement in the atmosphere of HD189733b. We analysise the transit spectra of this planet obtained with the Hubble Space Telescope, combining the shorter wavelength 1.1-1.6 μm data from WFC3 measurements with the 1.5-2.4 μm data from NICMOS measurements. We also introduce a new methodology, implemented within a Bayesian framework, where hypothesis testing is conducted via evidence based model selection. Our analysis indicates, for the first time, that the observed excess of Methane in HD189733b’s atmosphere requires disequilibrium chemistry. However the Evidence has a modest discriminatory power amongst a subset of models. Furthermore our constraints confirm Swain et al. 2014 results with an excess of Methane with a mixing ratio of 10 2.26 ppm with EvidencelogZ=-58.602 +/- 0.109.

  8. The impact of silicon solar cell architecture and cell interconnection on energy yield in hot & sunny climates

    KAUST Repository

    Haschke, Jan

    2017-03-23

    Extensive knowledge of the dependence of solar cell and module performance on temperature and irradiance is essential for their optimal application in the field. Here we study such dependencies in the most common high-efficiency silicon solar cell architectures, including so-called Aluminum back-surface-field (BSF), passivated emitter and rear cell (PERC), passivated emitter rear totally diffused (PERT), and silicon heterojunction (SHJ) solar cells. We compare measured temperature coefficients (TC) of the different electrical parameters with values collected from commercial module data sheets. While similar TC values of the open-circuit voltage and the short circuit current density are obtained for cells and modules of a given technology, we systematically find that the TC under maximum power-point (MPP) conditions is lower in the modules. We attribute this discrepancy to additional series resistance in the modules from solar cell interconnections. This detrimental effect can be reduced by using a cell design that exhibits a high characteristic load resistance (defined by its voltage-over-current ratio at MPP), such as the SHJ architecture. We calculate the energy yield for moderate and hot climate conditions for each cell architecture, taking into account ohmic cell-to-module losses caused by cell interconnections. Our calculations allow us to conclude that maximizing energy production in hot and sunny environments requires not only a high open-circuit voltage, but also a minimal series-to-load-resistance ratio.

  9. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    NARCIS (Netherlands)

    van Oosterhout, J.; Abbink, D. A.; Koning, J. F.; Boessenkool, H.; Wildenbeest, J. G. W.; Heemskerk, C. J. M.

    2013-01-01

    A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested

  10. Computer control of ET-RR-1 hot cell manipulators

    International Nuclear Information System (INIS)

    Effat, A.M.; Rahman, F.A.

    1990-01-01

    The hot cell designed for remote handling of radioactive materials are, in effect, integral systems of safety devices for attaining adequate radiological protection for the operating personnel. Their operation involve potential hazards that are sometimes of great magnitude. The effect of an incident or accident could thus be fatal. some of these incident are due to the collision of the manipulator slave side with the radioactive objectives. Therefore in order to minimize the probability of such type of incidents, the movement of the manipulators is suggested (in the present investigation) to be kept under computer control. A model have been developed to control the movement of the hot cell manipulators in the slave side for Egypt first research reactor ET-RR-1, specially in the hidden sectors. The model is based on the use of a microprocessor and some accessories fixed to the manipulators slave side in a special manner such that it prevents the manipulator from colliding with radioactive objects. This is achieved by a signal transmitted to a specially designed brake which controls the movement of the upper arm of the manipulator master side. The hardware design of the model as well as the software are presented in details

  11. HIGH METALLICITY AND NON-EQUILIBRIUM CHEMISTRY IN THE DAYSIDE ATMOSPHERE OF HOT-NEPTUNE GJ 436b

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2011-01-01

    We present a detailed analysis of the dayside atmosphere of the hot-Neptune GJ 436b, based on recent Spitzer observations. We report statistical constraints on the thermal and chemical properties of the planetary atmosphere, study correlations between the various molecular species, and discuss scenarios of equilibrium and non-equilibrium chemistry in GJ 436b. We model the atmosphere with a one-dimensional line-by-line radiative transfer code with parameterized molecular abundances and temperature structure. We explore the model parameter space with 10 6 models, using a Markov chain Monte Carlo scheme. Our results encompass previous findings, indicating a paucity of methane, an overabundance of CO and CO 2 , and a slight underabundance of H 2 O, as compared to equilibrium chemistry with solar metallicity. The concentrations of the species are highly correlated. Our best-fit, and most plausible, constraints require a CH 4 mixing ratio of 10 -7 to10 -6 , with CO ≥10 -3 , CO 2 ∼10 -6 to10 -4 , and H 2 O ≤10 -4 ; higher CH 4 would require much higher CO and CO 2 . Based on calculations of equilibrium and non-equilibrium chemistry, we find that the observed abundances can potentially be explained by a combination of high metallicity (∼10x solar) and vertical mixing with K zz ∼ 10 6 -10 7 cm 2 s -1 . The inferred metallicity is enhanced over that of the host star which is known to be consistent with solar metallicity. Our constraints rule out a dayside thermal inversion in GJ 436b. We emphasize that the constraints reported in this work depend crucially on the observations in the two Spitzer channels at 3.6 μm and 4.5 μm. Future observations with warm Spitzer and with the James Webb Space Telescope will be extremely important to improve upon the present constraints on the abundances of carbon species in the dayside atmosphere of GJ 436b.

  12. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.

    Science.gov (United States)

    Jun, Ho Joon; Nguyen, Anh H; Kim, Yeul Hong; Park, Kyong Hwa; Kim, Doyoun; Kim, Kyeong Kyu; Sim, Sang Jun

    2014-07-23

    The scattering of light redirects and resonances when an electromagnetic wave interacts with electrons orbits in the hot spot core protein and oscillated electron of the gold nanoparticles (AuNP). This report demonstrates convincingly that resonant Rayleigh scattering generated from hot spot mutant p53 proteins is correspondence to cancer cells. Hot spot mutants have unique local electron density changes that affect specificity of DNA binding affinity compared with wild types. Rayleigh scattering changes introduced by hot-spot mutations were monitored by localized surface plasmon resonance (LSPR) shift changes. The LSPR λmax shift for hot-spot mutants ranged from 1.7 to 4.2 nm for mouse samples and from 0.64 nm to 2.66 nm for human samples, compared to 9.6 nm and 15 nm for wild type and mouse and human proteins, respectively with a detection sensitivity of p53 concentration at 17.9 nM. It is interesting that hot-spot mutants, which affect only interaction with DNA, launches affinitive changes as considerable as wild types. These changes propose that hot-spot mutants p53 proteins can be easily detected by local electron density alterations that disturbs the specificity of DNA binding of p53 core domain on the surface of the DNA probed-nanoplasmonic sensor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A Preliminary Shielding Study on the Integrated Operation Verification System in the Head-End Hot-Cell of the Pyro-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinhwam; Kim, Yewon; Park, Se-Hwan; Ahn, Seong-Kyu; Cho, Gyuseong [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    Nuclear power accounts for more than 30 percent of power production in Korea. Its significance has annually been increased. Disposal spent fuel containing uranium, transuranic elements, and fission products is unavoidable byproduct of nuclear power production. it is recognized that finding appropriate sites for interim storage of disposal spent fuel is not easy because isolated sites should be required. Pyro-processing technology, Pyro-processing should be operated under high radiation environment in hot-cell structures. Because of this reason, all workers should be unauthorized to access inside the hot-cell areas under any circumstances except for acceptable dose verification and a normal operation should be remotely manipulated. For the reliable normal operation of pyroprocessing, it is noted that an evaluation of the space dose distribution in the hot-cell environments is necessary in advance in order to determine which technologies or instruments can be utilized on or near the process as the Integrated Operation Verification System (IOVS) is measured. Not like the electroreduction and electro-refining hot-cells, the head-end hot-cell equips Camera Radiation Detector (CRD) in which plutonium is securely measured and monitored for the safeguard of the pyro-processing. Results have been obtained using F2 surface tally in order to observe the magnitude of the gamma-ray and neutron flux which pass through the surface of the process cell. Furthermore, T-mesh tally has also been used to obtain the space dose distribution in the headend hot-cell. The hot-cell was divided into 7,668 cells in which each dimension was 1 x 1 x 1m for the T-mesh tally. To determine the position of the CRD and the surveillance camera, divergent approaches were required. Because the purpose of the CRD which contains a gamma-ray detector and a neutron detector is to identify the material composition as the process proceeds, the position in which detectable flux is exposed is required, whereas

  14. Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows

    Science.gov (United States)

    Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.

    2018-01-01

    Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.

  15. Qualification of a production and packaging hot cell for sodium pertechnetate Tc 99m

    International Nuclear Information System (INIS)

    Cavero, Luis; Robles, Anita; Miranda, Jesus; Martinez, Ramos; Paragulla, Wilson; Moore, Mariel; Herrera, Jorge; Ocana, Elias; Portilla, Arturo; Otero, Manuel; Novoa, Carlos; Koga, Roberto

    2014-01-01

    It was designed and implemented a protocol for a hot cell of production and packaging of sodium pertechnetate Tc 99m, in a two-step process: installation qualification (IQ) and operation qualification (OQ). In the IQ design specifications and user requirements and associated equipment and materials by traceable documentation was verified. In the OQ scheduled for operation and control sequences it was verified plus operational tests recommended by the World Health Organization (WHO) and ISO 14644-1 and 3 were performed to clean areas. The results showed that the hot cell complies with the classification for Grades C and A for the preparation and packaging of Tc 99m. (authors).

  16. Chemistry of the organic-rich hot core G327.3-0.6

    Science.gov (United States)

    Gibb, E.; Nummelin, A.; Irvine, W. M.; Whittet, D. C.; Bergman, P.; Ferris, J. P. (Principal Investigator)

    2000-01-01

    We present gas-phase abundances of species found in the organic-rich hot core G327.3-0.6. The data were taken with the Swedish-ESO Submillimetre Telescope (SEST). The 1-3 mm spectrum of this source is dominated by emission features of nitrile species and saturated organics, with abundances greater than those found in many other hot cores, including Sgr B2 and OMC-1. Population diagram analysis indicates that many species (CH3CN, C2H3CN, C2H5CN, CH3OH, etc.) have hot components that originate in a compact (2") region. Gas-phase chemical models cannot reproduce the high abundances of these molecules found in hot cores, and we suggest that they originate from processing and evaporation of icy grain mantle material. In addition, we report the first detection of vibrationally excited ethyl cyanide and the first detection of methyl mercaptan (CH3SH) outside the Galactic center.

  17. Water chemistry management during hot functional test

    International Nuclear Information System (INIS)

    Yokoyama, Jiro; Kanda, Tomio; Kagawa, Masaru

    1988-01-01

    To reduce radiation exposure in light water reactor, it is important decrease radioactive corrosion product which is a radiation source. One of the countermeasures is to improve water quality during plant trial operation to form a stable oxide film and to minimize metal release to the coolant at the beginning of commercial operation. This study reviews the optimum water quality conditions to form a chromium rich oxide film during hot functional test (HFT) that is thought to be stable under the PWR condition and reduce the release of Ni that is the source of Co-58, the main radiation source of exposure. (author)

  18. Shielding calculation of a hot cell for the processing of fission products

    International Nuclear Information System (INIS)

    Rocha, A.C.S. da; Pina, J.L.S. de; Silva, J.J.G. da.

    1986-12-01

    A dose rate estimation is made for an operator of a lead wall, fission products processing hot cell, in a distance of 50 cm from the emission source, at Brazilian Institute of Nuclear Engineering (IEN). (L.C.J.A.)

  19. Hot cells for testing the UO{sub 2} fuel elements after irradiation. Radiation protection conditions for hot cells design; Vruce celije za ispitivanje gorivnih elemenata UO{sub 2} posle ozracivanja, Uslovi zastite pri projektovanju vrucih celija

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovic, A; Devic, J; Mihailovic, K [Institut za nuklearne nauke Vinca, Belgrade (Yugoslavia)

    1969-07-01

    This paper includes protection conditions which hot cells should satisfy for the investigation of fuel elements after reactor irradiation. The basic elements of hot cells are given, and the conditions for a special ventilation, dosimetric control and a special treatment of contaminated water are established (author) U radu su obuhvaceni uslovi zastite koje treba da zadovolje vruce celije za ispitivanje gorivnih elemenata posle ozracivanja u reaktoru, dati su osnovni elementi vrucih celija i postavljeni su uslovi za specijalnu ventilaciju, dozimentrijsku kontrolu i specijalni tretman otpadnih voda (author)

  20. Dismantling of an alpha contaminated hot cell at the Marcoule Pilot Plant

    International Nuclear Information System (INIS)

    Tachon, M.

    1988-01-01

    For the remodeling of Marcoule Pilot Plant, the cell 82: old unit for plutonium solution purification by extraction, was dismantled. About 42 tons of wastes were evacuated. Some wastes wen decontaminated by mechanical means other wastes with higher residual activity were stored for subsequent processing. The operation shows that dismantling of a hot cell is possible even if incorporated in an operating plant [fr

  1. Radiation protection measures for hot cell sanitation

    International Nuclear Information System (INIS)

    Berger, H.U.; Burck, W.; Dilger, H.

    1983-01-01

    The cell 5 of the Hot Cell Facility of the Kernforschungszentrum Karlsruhe GmbH (KfK) was to be restored and reequipped after 12 years of operation. The decontamination work was first done remotely controlled and afterwards by 38 persons entering the cell, which took about 2 months. The radiation protection methods and personal dosimetry systems are described. At the beginning of the work the γ-dose rate amounted up to 900 mSv/h. After completion of the remotely controlled decontamination work the γ-dose rate decreased to 1.5 mSv/h. At that time the (α+β-contamination was 10 5 Bq/cm 2 . Till the end of the work the removable activity dropped to 10 2 - 10 3 Bq/cm 2 for β-radiation, to 0.3 - 30 Bq/cm 2 for α-radiation and the local dose rate to about 0.03 mSv/h. During the work the accumulated collective doses were listed for breast, hand, head, gonads and foot. In the figure the development with the time of the doses for breast and hand is shown. During restoration work of the cell the accumulated collective whole-body dose amounted to 30 mSv. (orig.) [de

  2. Hot wire deposited hydrogenated amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mahan, A.H.; Iwaniczko, E.; Nelson, B.P.; Reedy, R.C. Jr.; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    This paper details the results of a study in which low H content, high deposition rate hot wire (HW) deposited amorphous silicon (a-Si:H) has been incorporated into a substrate solar cell. The authors find that the treatment of the top surface of the HW i layer while it is being cooled from its high deposition temperature is crucial to device performance. They present data concerning these surface treatments, and correlate these treatments with Schottky device performance. The authors also present first generation HW n-i-p solar cell efficiency data, where a glow discharge (GD) {mu}c-Si(p) layer was added to complete the partial devices. No light trapping layer was used to increase the device Jsc. Their preliminary investigations have yielded efficiencies of up to 6.8% for a cell with a 4000 {Angstrom} thick HW i-layer, which degrade less than 10% after a 900 hour light soak. The authors suggest avenues for further improvement of their devices.

  3. Thermal Shielding of the Shock Absorber to a Seal of a Hot-cell Cask

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    In order to safely transport the radioactive waste arising from the hot test of ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore KAERI is developing a shipping package to transport the radioactive waste arising in the ACPF during a hot test. Regulatory requirements for a Type B package are specified in the Korea MOST Act 2008-69, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. performed a research on the thermal protection provided by shock absorbers by using CAFE computer code. This paper discusses the experimental approach used to simulate the response of the hot cell cask to fire in a furnace with chamber dimensions of 300 cm(W) x 400 cm(L) x 200 cm(H) by using a 1/2 scale model which was damaged by both a 9 m drop test and a 1 m puncture test

  4. Extending atomistic scale chemistry to mesoscale model of condensed-phase deflagration

    Science.gov (United States)

    Joshi, Kaushik; Chaudhuri, Santanu

    2017-01-01

    Predictive simulations connecting chemistry that follow the shock or thermal initiation of energetic materials to subsequent deflagration or detonation events is currently outside the realm of possibilities. Molecular dynamics and first-principles based dynamics have made progress in understanding reactions in picosecond to nanosecond time scale. Results from thermal ignition of different phases of RDX show a complex reaction network and emergence of a deterministic behavior for critical temperature before ignition and hot spot growth rates. The kinetics observed is dependent on the hot spot temperature, system size and thermal conductivity. For cases where ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. The gradual temperature and pressure increase in the incubation period is accompanied by accumulation of heavier polyradicals. The challenge of connecting such chemistry in mesoscale simulations remain in reducing the complexity of chemistry. The hot spot growth kinetics in RDX grains and interfaces is an important challenge for reactive simulations aiming to fill in the gaps in our knowledge in the nanoseconds to microseconds time scale. The results discussed indicate that the mesoscale chemistry may include large polyradical molecules in dense reactive mix reaching an instability point at certain temperatures and pressures.

  5. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    R Zahran

    Full Text Available Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5-7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.

  6. Human development VIII: a theory of "deep" quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organisms consciousness and complex behavior.

    Science.gov (United States)

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav

    2006-11-14

    Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it "sees", and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occam's razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules' orbitals make one huge "cell-orbital", which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants) and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness.

  7. Stress Analysis for Mobile Hot Cell Design

    International Nuclear Information System (INIS)

    Muhammad Hannan Bahrin; Anwar Abdul Rahman; Mohd Arif Hamzah

    2015-01-01

    Prototype and Plant Development Centre (PDC) is developing a Mobile Hot Cell (MHC) to handle and manage Spent High Activity Radioactive Sources (SHARS), such as teletherapy heads and dry irradiators. At present, there are two units of MHC in the world, one in South Africa and the other one in China. Malaysian Mobile MHC is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design to fulfill the safety requirement in MHC operation. This paper discusses the loading effect analysis from the radiation shielding materials to the MHC wall structure, roof supporting column and window structure. (author)

  8. Preliminary evaluation of rotational Vol-oxidizer for hot cell operation - 5320

    International Nuclear Information System (INIS)

    Kim, Y.H.; Lee, J.W.; Cho, Y.Z.; Ahn, D.H.; Song, K.C.

    2015-01-01

    KAERI is developing a mechanical head-end process for pyro-processing. As a piece of the processing equipment, a vol-oxidizer that can handle several tens of kg of HM/batch is under development to supply U 3 O 8 powders to an electrolytic reduction (ER) reactor. To operate a vol-oxidizer in a hot cell, the reactor should be optimized by the mechanical design, and the vol-oxidizer should have a high hull recovery rate. In addition, a vol-oxidizer for hot cell demonstrations that handles the spent fuel of high radiation virulence in a limited space should have a small size and not scatter in its outlet. In this paper, we aim at a preliminary evaluation of a rotational vol-oxidizer for hot cell operation. To evaluate the preliminary situation, we produced a theoretical equation of an optimum reactor size, and verification tests were conducted using an acryl vessel and zircaloy-4 tube according to various weights and lengths. In addition, we predicted the terminal velocity of U 3 O 8 using the terminal velocity of SiO 2 , which will determine the optimum air flux, and through an oxidation experiment, we verified the theory form to detect the existence of U 3 O 8 powder in a discharge filter. In addition, hull separation tests were conducted using a reactor and hulls with a 50 kg HM/batch for the recovery rate of the hulls. The results indicate that we obtained an appropriate air flux so as to not cause U 3 O 8 powder dispersion from using a Stokes equation and density ratio equation prior to the demonstration. The optimum flow and experimental results of the hull separation test have been applied for the design of the demonstration oxidizer, and the operation conditions of the oxidizer were produced. (authors)

  9. Decommissioning of a hot cell with high levels of contamination. Experience during the Undressed of Workers

    International Nuclear Information System (INIS)

    Martinez, A.; Sancho, C.

    1998-01-01

    The object of this work is to show the radiological controls in decommissioning of the inner of the Base Cell of the Nuclear Facility of CIEMAT, IN-04 (Metallurgy Hot Cells) and the experience during the undressed of workers in decommissioning of this cell. The workers were equipped with one cotton overalls and one or two paper overalls of one-use. Also, when the radiation levels are high, the workers were equipped with leaded glasses and aprons. The protection equipment for internal contamination were autonomous and semi-autonomous respiratory equipment. Due to a high superficial contamination levels, two areas were established in order to proceed to the undressed of the workers when these concluded their work. The first area was a confined enclosure by joined to the hot cell, where an expert of the Radiation Protection Service (RPS), trained for it, take off the first paper overall and the first pair of gloves to the worker that come out the hot cells. The second area was at the exist of the Load Zone, where another expert of PRS, take off the second paper overall, the second pair of gloves and dislocated the pipe of air of the semi-autonomous respiratory equipment, to the worker that come out this zone. (Author)

  10. Development of the maintenance process by the servo manipulator for the parts of the equipment outside the MSM's workspace in a hot cell

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, D. K.; Park, B. S.; Yun, G. S.

    2003-01-01

    In this study, the maintenance process by the servo manipulator for the parts of the equipment that cannot be reached by MSM in the hot cell was developed. To do this, the virtual mock up is implemented using virtual prototyping technology. And, Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. And the path planning of the servo manipulator using the collision detection of the virtual mockup is established. Also, the maintenance process for the parts of the equipment that are located out area of the MSM's workspace by the servo manipulator is proposed and verified through the graphic simulation. The proposed remote maintenance process of the equipment can be effectively used in the real hot cell operation. Also, the implemented virtual mock-up of the hot cell can be effecively used in analyzing the various hot cell operation and in enhancing the reliability and safety of the spent fuel manaement

  11. Development of maintenance equipment for nuclear material fabrication equipment in a highly active hot cell

    International Nuclear Information System (INIS)

    Park, J. J.; Yang, M. S.; Kim, K. H. and others

    2000-09-01

    This report presents the development of a maintenance system for a highly contaminated nuclear material handling equipment at a hot-cell. This maintenance system has mainly three subsystems - a gamma-radiation measurement module for detecting a gamma-radiation level and identifying its distribution in-situ, a dry-type decontamination device for cleaning up contaminated particles, and a maintenance chamber for isolating contaminated equipment. The mechanical design considerations, controller, capabilities and remote operation and manipulation of the maintenance system are described. Such subsystems developed were installed and tested in the IMEF (Irradiated Material Examination Facility) M6 hot-cell after mock-up tests and performed their specific tasks successfully

  12. Development of maintenance equipment for nuclear material fabrication equipment in a highly active hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Yang, M. S.; Kim, K. H. and others

    2000-09-01

    This report presents the development of a maintenance system for a highly contaminated nuclear material handling equipment at a hot-cell. This maintenance system has mainly three subsystems - a gamma-radiation measurement module for detecting a gamma-radiation level and identifying its distribution in-situ, a dry-type decontamination device for cleaning up contaminated particles, and a maintenance chamber for isolating contaminated equipment. The mechanical design considerations, controller, capabilities and remote operation and manipulation of the maintenance system are described. Such subsystems developed were installed and tested in the IMEF (Irradiated Material Examination Facility) M6 hot-cell after mock-up tests and performed their specific tasks successfully.

  13. Hot Fuel Examination Facility (HFEF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Hot Fuel Examination Facility (HFEF) is one of the largest hot cells dedicated to radioactive materials research at Idaho National Laboratory (INL). The nation's...

  14. Combinatorial chemistry approach to development of molecular plastic solar cells

    NARCIS (Netherlands)

    Godovsky, Dmitri; Inganäs, Olle; Brabec, Christoph J.; Sariciftci, N. Serdar; Hummelen, Jan C.; Janssen, Rene A.J.; Prato, M.; Maggini, M.; Segura, Jose; Martin, Nazario

    1999-01-01

    We used a combinatorial chemistry approach to develop the molecular plastic solar cells based on soluble fullerene derivatives or solubilized TCNQ molecules in combination with conjugated polymers. Profiles, formed by the diffusion of low molecular weight component in the spin-cast polymer host were

  15. Dismantling of a hot cell of high level activity. Method and tools used

    International Nuclear Information System (INIS)

    Jeantet, E.; Miquel, P.; Baudoin, J.C.; Moutonnet, A.

    1981-05-01

    The aim of this operation is the removal of all the equipment and the material introduced and used in the hot cell 'Attila' and its decontamination to obtain an irradiation level as low as possible to allow direct intervention. The Attila facilitie was build in 1964-1966 to study dry processing of irradiated fuels by halogenide volatility process. Dismantling of the out-cell and of the laboratory associated to the shielded cell, dismantling inside the shielded cell with the remote handling equipment of the cell and tools used for these operations are described in this article [fr

  16. Automation in nuclear hot cells (Paper No. 020)

    International Nuclear Information System (INIS)

    Pal, B.C.; Chougule, A.S.; Radke, M.G.; Ramaswamy, N.V.; Ramkumar, M.S.

    1987-02-01

    Bhabha Atomic Research Centre (BARC) in Trombay produces radioactive sources for a wide variety of uses in industry, agriculture and medicine, both within the country and abroad. The production and delivery of the radioactive sources in a form, ready for the end use, entails a number of operations, most of which are to be done with remote handling facilities, to maintain the prescribed biological shield to protect the operators. One of the repetitive operation among these which has to be done inside a concrete shielded hot-cell is the picking up of tiny radioactive wafers of iridium as small as 2.5mm dia., 0.3mm thick placing them in the required numbers to make up the total activity inside a capsule, closing the capsule with a top lid and finally welding the capsule. For doing this job remotely, recourse had to be taken to the use of master-slave manipulators (MSM), needing highly skilled operators to handle it for such delicate jobs repetitively. The operations for this repetitive job unlike most of other hot-cell operations, can be structured for machine operation and also fully automated. An automated system synthesising electromechanical, pneumatic and welding operations developed by the Division of Remote Handling and Robotics, BARC is described here. This relieves the operator of a number of jobs, to be repetitively done by MSM which would be strenous and taxing on account of the extremely small sizes of the pellets and wafers when they are to be handled, by remote indirect means with reliance on the master slave manipulators. A description of the automated system is given. (author). 3 figs

  17. High Density Radiation Shielding Concretes for Hot Cells of 99mTc Project

    International Nuclear Information System (INIS)

    Sakr, K.

    2006-01-01

    High density concrete [more than 3.6 ton/m 3 (3.6x10 3 kg/m 3 )] was prepared to be used as a radiation shielding concrete (RSC) for hot-cells in gel technetium project at inshas to attenuate gamma radiation emitted from radioactive sources. different types of concrete were prepared by mixing local mineral aggregates mainly gravel and ilmenite . iron shots were added to the concrete mixture proportion as partial replacement of heavy aggregates to increase its density. the physical properties of prepared concrete in both plastic and hardened phases were investigated. compressive strength and radiation attenuation of gamma rays were determined. Results showed that ilmenite concrete mixed with iron shots had the highest density suitable to be use as RSC according to the chinese hot cell design requirements. Recommendations to avoid some technical problems of manufacturing radiation shielding concrete were maintained

  18. Human Development VIII: A Theory of “Deep” Quantum Chemistry and Cell Consciousness: Quantum Chemistry Controls Genes and Biochemistry to Give Cells and Higher Organisms Consciousness and Complex Behavior

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2006-01-01

    Full Text Available Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it “sees”, and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occam’s razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules’ orbitals make one huge “cell-orbital”, which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness.

  19. Development of a pattern hot cell for production of injectable radiopharmaceuticals

    International Nuclear Information System (INIS)

    Campos, Fabio Eduardo de

    2010-01-01

    A controlled ambient should be established to the production/processing of materials susceptible to contamination, like injectable pharmaceuticals, in order to agree with normative and regulatory requirements. Considering medical but also toxic, radioactive and dangerous products, the ambient should work in special conditions to assure that the materials, which in same cases can be also volatile, do not escape to the external ambient, working in a selective, secure and controlled way. The conditions recommended by local and international rules in use, report an negative pressured ambient in relation to the adjacent areas. The technology related with the sizing of project to this kind of system is fully described in the literature, taking in account the rules that clearly describe the essential requirements. However, it is necessary to develop a controlled ambient for radiopharmaceutical production, in a way compatible with the concept of clean rooms and with the safety related to the manipulation of open radioactive wastes. In this work, some devices were created, methods and procedures were established making possible the classification of the ambient inside the hot cell, without physical barriers in the area, using ergonomic, flexible and practical conditions of work, that can results in the improvement of the productivity. The project resulted in the creation of a controlled ambient, in agreement with the normative requirements, using a pass through for entrance and exit of the materials, without compromise the internal air condition. The tight of the hot cell was obtained using doors with efficient sealing system and active joints. Tong manipulators were used to produce ergonomic and secure conditions, without compromise the internal conditions related to tight and classification in A and B grade, according to local and international rules. An efficient ventilation/exhaustion system was adopted to produce these results, composed by filters and special devices

  20. Hot atom chemistry: Three decades of progress

    International Nuclear Information System (INIS)

    Urch, D.S.

    1990-01-01

    The seminal experiments of Szilard and Chalmers indicated that the energy released in a nuclear transformation could be used to initiate chemical reaction. But basic studies of small molecules in the gas phase, from which reaction mechanisms could be elucidated, were not made until the late 50's. Since then theory and experiments have gone hand in hand in the study of the hot atom reactions of many recoil species. This review will present a broad overview of progress that has been made in understanding how the energy received by the atom (translation, ionization, electronic) in a nuclear transformation is used to drive chemical reactions. The limitations implied by concomitant radiation damage and ignorance of the exact state of the reacting species, upon fundamental studies and practical applications, will also be discussed

  1. Nuclear Materials Characterization in the Materials and Fuels Complex Analytical Hot Cells

    International Nuclear Information System (INIS)

    Rodriquez, Michael

    2009-01-01

    As energy prices skyrocket and interest in alternative, clean energy sources builds, interest in nuclear energy has increased. This increased interest in nuclear energy has been termed the 'Nuclear Renaissance'. The performance of nuclear fuels, fuels and reactor materials and waste products are becoming a more important issue as the potential for designing new nuclear reactors is more immediate. The Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) Analytical Laboratory Hot Cells (ALHC) are rising to the challenge of characterizing new reactor materials, byproducts and performance. The ALHC is a facility located near Idaho Falls, Idaho at the INL Site. It was built in 1958 as part of the former Argonne National Laboratory West Complex to support the operation of the second Experimental Breeder Reactor (EBR-II). It is part of a larger analytical laboratory structure that includes wet chemistry, instrumentation and radiochemistry laboratories. The purpose of the ALHC is to perform analytical chemistry work on highly radioactive materials. The primary work in the ALHC has traditionally been dissolution of nuclear materials so that less radioactive subsamples (aliquots) could be transferred to other sections of the laboratory for analysis. Over the last 50 years though, the capabilities within the ALHC have also become independent of other laboratory sections in a number of ways. While dissolution, digestion and subdividing samples are still a vitally important role, the ALHC has stand alone capabilities in the area of immersion density, gamma scanning and combustion gas analysis. Recent use of the ALHC for immersion density shows that extremely fine and delicate operations can be performed with the master-slave manipulators by qualified operators. Twenty milligram samples were tested for immersion density to determine the expansion of uranium dioxide after irradiation in a nuclear reactor. The data collected confirmed modeling analysis with very tight

  2. The influence of the surface chemistry of silver nanoparticles on cell death

    International Nuclear Information System (INIS)

    Sur, Ilknur; Altunbek, Mine; Kahraman, Mehmet; Culha, Mustafa

    2012-01-01

    The influence of the surface chemistry of silver nanoparticles (AgNPs) on p53 mediated cell death was evaluated using human dermal fibroblast (HDF) and lung cancer (A549) cells. The citrate reduced AgNPs (C-AgNPs) were modified with either lactose (L-AgNPs) or a 12-base long oligonucleotide (O-AgNPs). Both unmodified and modified AgNPs showed increased concentration and time dependent cytotoxicity and genotoxicity causing an increased p53 up-regulation within 6 h and led to apoptotic or necrotic cell deaths. The C-AgNPs induced more cytotoxicity and cellular DNA damage than the surface modified AgNPs. Modifying the C-AgNPs with lactose or the oligonucleotide reduced both necrotic and apoptotic cell deaths in the HDF cells. The C-AgNPs caused an insignificant necrosis in A549 cells whereas the modified AgNPs caused necrosis and apoptosis in both cell types. Compared to the O-AgNPs, the L-AgNPs triggered more cellular DNA damage, which led to up-regulation of p53 gene inducing apoptosis in A549 cells compared to HDF cells. This suggests that the different surface chemistries of the AgNPs cause different cellular responses that may be important not only for their use in medicine but also for reducing their toxicity. (paper)

  3. Interplay of hot electrons from localized and propagating plasmons.

    Science.gov (United States)

    Hoang, Chung V; Hayashi, Koki; Ito, Yasuo; Gorai, Naoki; Allison, Giles; Shi, Xu; Sun, Quan; Cheng, Zhenzhou; Ueno, Kosei; Goda, Keisuke; Misawa, Hiroaki

    2017-10-03

    Plasmon-induced hot-electron generation has recently received considerable interest and has been studied to develop novel applications in optoelectronics, photovoltaics and green chemistry. Such hot electrons are typically generated from either localized plasmons in metal nanoparticles or propagating plasmons in patterned metal nanostructures. Here we simultaneously generate these heterogeneous plasmon-induced hot electrons and exploit their cooperative interplay in a single metal-semiconductor device to demonstrate, as an example, wavelength-controlled polarity-switchable photoconductivity. Specifically, the dual-plasmon device produces a net photocurrent whose polarity is determined by the balance in population and directionality between the hot electrons from localized and propagating plasmons. The current responsivity and polarity-switching wavelength of the device can be varied over the entire visible spectrum by tailoring the hot-electron interplay in various ways. This phenomenon may provide flexibility to manipulate the electrical output from light-matter interaction and offer opportunities for biosensors, long-distance communications, and photoconversion applications.Plasmon-induced hot electrons have potential applications spanning photodetection and photocatalysis. Here, Hoang et al. study the interplay between hot electrons generated by localized and propagating plasmons, and demonstrate wavelength-controlled polarity-switchable photoconductivity.

  4. Session 4: The influence of elementary heterogeneous reforming chemistry within solid-oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, H.; Kee, R.J. [Engineering Division, Colorado School of Mines, Golden, CO (United States); Janardhanan, V.M.; Deutschmann, O. [Karlsruhe Univ., Institute for Chemical Technology (Germany); Goodwin, D.G. [Engineering and Applied Science., California Inst. of Technology, Pasadena, CA (United States); Sullivan, N.P. [ITN Energy Systems, Littleton, CO (United States)

    2004-07-01

    In the work presented a computational model is developed that represents the coupled effects of fluid flow in fuel channels, porous media transport and chemistry in the anode, and electrochemistry associated with the membrane-electrode assembly. An important objective is to explore the role of heterogeneous chemistry within the anode. In addition to cell electrical performance the chemistry model predicts important behaviors like catalyst-fouling deposit formation (i.e., coking). The model is applied to investigate alternative fuel-cell operating conditions, including varying fuel flow rates, adding air to the fuel stream, and recirculating exhaust gases. Results include assessments of performance metrics like fuel utilization, cell efficiency, power density, and catalyst coking. The model shows that 'direct electrochemical oxidation' of hydrocarbon fuels in solid-oxide fuel cells can be explained by a process that involves reforming the fuel to H{sub 2}, with hydrogen being the only species responsible for charge exchange. The model can be applied to investigate alternative design and operating conditions, seeking to improve the overall performance. (O.M.)

  5. Utilizing hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  6. Advanced Manufacturing Technologies (AMT): Additive Manufactured Hot Fire Planning and Testing in GRC Cell 32 Project

    Science.gov (United States)

    Fikes, John C.

    2014-01-01

    The objective of this project is to hot fire test an additively manufactured thrust chamber assembly TCA (injector and thrust chamber). GRC will install the additively manufactured Inconel 625 injector, two additively manufactured (SLM) water cooled Cu-Cr thrust chamber barrels and one additively manufactured (SLM) water cooled Cu-Cr thrust chamber nozzle on the test stand in Cell 32 and perform hot fire testing of the integrated TCA.

  7. Natural radioactivity in hot and mineral waters in Syria

    International Nuclear Information System (INIS)

    Othman, I.; Abbass, M.; Kattan, Z.

    1994-08-01

    A study of water chemistry and radioactivity of hot and mineral ground waters was conducted in Syria in order to determine the natural radioactivity levels as well as the mobility process of major radionuclides in the studied systems. The water samples were collected generally from carbonate and basaltic aquifer systems. The chemistry of groundwaters was a reflection of the rock type, while no relationship was found between the radionuclide activities and water temperatures. The increase of 222 Rn concentration in hot and mineral waters was accompanied by a similar increase of the concentration of its patent radionuclides (U t ot and 226 Ra). In parallel, the relative increase of 222 Rn concentration was correlated significantly with the presence of the large faults systems prevailing in the studied areas (Palmyrides and Great African Faults Systems). In all the cases, the radionuclide activity levels were below the maximum contaminant levels given for drinking water and health effects. (author). 11 refs., 7 figs., 8 tabs

  8. Slow hot carrier cooling in cesium lead iodide perovskites

    Science.gov (United States)

    Shen, Qing; Ripolles, Teresa S.; Even, Jacky; Ogomi, Yuhei; Nishinaka, Koji; Izuishi, Takuya; Nakazawa, Naoki; Zhang, Yaohong; Ding, Chao; Liu, Feng; Toyoda, Taro; Yoshino, Kenji; Minemoto, Takashi; Katayama, Kenji; Hayase, Shuzi

    2017-10-01

    Lead halide perovskites are attracting a great deal of interest for optoelectronic applications such as solar cells, LEDs, and lasers because of their unique properties. In solar cells, heat dissipation by hot carriers results in a major energy loss channel responsible for the Shockley-Queisser efficiency limit. Hot carrier solar cells offer the possibility to overcome this limit and achieve energy conversion efficiency as high as 66% by extracting hot carriers. Therefore, fundamental studies on hot carrier relaxation dynamics in lead halide perovskites are important. Here, we elucidated the hot carrier cooling dynamics in all-inorganic cesium lead iodide (CsPbI3) perovskite using transient absorption spectroscopy. We observe that the hot carrier cooling rate in CsPbI3 decreases as the fluence of the pump light increases and the cooling is as slow as a few 10 ps when the photoexcited carrier density is 7 × 1018 cm-3, which is attributed to phonon bottleneck for high photoexcited carrier densities. Our findings suggest that CsPbI3 has a potential for hot carrier solar cell applications.

  9. Employing Hot Wire Anemometry to Directly Measure the Water Balance of a Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Berning, Torsten

    Proton exchange membrane fuel cells (PEMFC’s) are currently being commercialized for various applications ranging from automotive to stationary such as powering telecom back-up units. In PEMFC’s, oxygen from air is internally combined with hydrogen to form water and produce electricity and waste......-hoc and real time electrical signal of the fuel cell water balance by employing hot wire anemometry. The hot wire sensor is placed into a binary mixture of hydrogen and water vapour, and the voltage signal received gives valuable insight into heat and mass transfer phenomena in a PEMFC. A central question...

  10. Radiation dose assessment of ACP hot cell in accident

    International Nuclear Information System (INIS)

    Kook, D. H.; Jeong, W. M.; Koo, J. H.; Jeo, I. J.; Lee, E. P.; Ryu, K. S.

    2003-01-01

    The Advanced spent fuel Condition in Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be performed. To give priority to the environments safety, radiation doses evaluations for the radioactive nuclides in accident cases were preliminarily performed with the meteorological data around facility site. Fire accident prevails over several accidnets. Internal Dose and External Dose evaluation according to short dispersion data for that case show a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed

  11. Criticality detector exclusion zone in a spent-fuel hot cell

    International Nuclear Information System (INIS)

    Kim, S.S.; Sterbentz, J.W.

    1999-01-01

    The main purpose of a criticality alarm system (CAS) is to protect personnel by detecting a criticality event (neutron radiation) and actuating an alarm system to initiate emergency response. Inadvertent criticality alarms from noncritical events, such as spurious voltage spikes or intense gamma radiation fields, can produce work cessation and time-consuming and costly event assessments and may result in harm to personnel during an evacuation. It therefore becomes a major concern to ensure that inadvertent or false criticality alarms do not occur or at least are minimized. Minimization of inadvertent criticality alarms due to intense gamma radiation emitted from spent-nuclear-fuel (SNF) elements as opposed to neutron radiation from an actual criticality event is the primary focus of this calculational and experimental study. The Irradiated Fuel Storage Facility (IFSF) located at the Idaho National Engineering and Environmental Laboratory is a government-owned, contractor-operated facility whose mission is to provide safe handling and dry storage for various types of SNFs. Although other fuel types (lower burnup) are stored in the IFSF, it is the high-burnup elements with the associated intense gamma radiation fields that have the potential to inadvertently set off the criticality alarms in the fuel-handling area adjacent to the storage vault. Typically, in the fuel-handling cave or hot cell of the IFSF, the cask lid is removed, and individual fuel elements are extracted from the cask and placed in special storage canisters. It is during the time period when fuel elements are extracted from their casks or when fully loaded canisters are moved in the hot cell that the CAS detectors are exposed to the intense gamma radiation fields from the spent fuel. The neutron detectors positioned in one of the manipulator ports are designed such that fast neutrons from a criticality event are thermalized by a polyethylene moderator, strike the scintillator detector material, and

  12. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W; Sidow, Arend

    2013-01-01

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF's direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF's motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  13. Transcription-factor occupancy at HOT regions quantitatively predicts RNA polymerase recruitment in five human cell lines.

    KAUST Repository

    Foley, Joseph W

    2013-10-20

    BACKGROUND: High-occupancy target (HOT) regions are compact genome loci occupied by many different transcription factors (TFs). HOT regions were initially defined in invertebrate model organisms, and we here show that they are a ubiquitous feature of the human gene-regulation landscape. RESULTS: We identified HOT regions by a comprehensive analysis of ChIP-seq data from 96 DNA-associated proteins in 5 human cell lines. Most HOT regions co-localize with RNA polymerase II binding sites, but many are not near the promoters of annotated genes. At HOT promoters, TF occupancy is strongly predictive of transcription preinitiation complex recruitment and moderately predictive of initiating Pol II recruitment, but only weakly predictive of elongating Pol II and RNA transcript abundance. TF occupancy varies quantitatively within human HOT regions; we used this variation to discover novel associations between TFs. The sequence motif associated with any given TF\\'s direct DNA binding is somewhat predictive of its empirical occupancy, but a great deal of occupancy occurs at sites without the TF\\'s motif, implying indirect recruitment by another TF whose motif is present. CONCLUSIONS: Mammalian HOT regions are regulatory hubs that integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for RNA polymerase II recruitment.

  14. Recoil 18F-chemistry in fluoroalkanes

    International Nuclear Information System (INIS)

    Linde, K.D. van der.

    1982-01-01

    This thesis describes the study of the chemical reactions of recoil 18 F-atoms in gaseous fluoromethanes and fluoroethanes. A brief survey of the organic hot atom chemistry is given in Chapter I. Chapter II deals with the experimental procedures used in this investigation. The irradiation facilities, the vapour phase radio-chromatography and the identification, including the synthesis of some fluorocarbons, are described in detail. Chapter III consists of a study on the applicability of perfluoropropene, C 3 F 6 , as scavenger for thermal 18 F-atoms and radicals. Chapters IV, V, VI and VII deal with 18 F-recoil chemistry in gaseous fluoroethanes, using H 2 S as scavenger. Chapter VIII is a short discussion on the hot 18 F-atom based production of 18 F-labeled organic compounds via decay of the intermediate 18 Ne. A target system is proposed for production of this isotope in high energy and ultra high flux particle beams, which possibly would become available in fast breeders and fusion reactors. (Auth.)

  15. A university hot laboratory for teaching and research

    International Nuclear Information System (INIS)

    Heinonen, O.; Miettinen, J.K.

    1976-01-01

    In small countries which have limited material and capital resources there is more need for studying and teaching reactor chemistry in universities than there is in countries with special nuclear research and training centres. A new 150-m 2 laboratory of reactor chemistry was added to the premises of the Department of Radiochemistry, University of Helsinki, in October 1975. It contains a hot area with low-pressure air-conditioning, a sanitary room, a low-activity area, and an office area. The main instrument is a mass-spectrometer MI-1309 equipped with an ion counter which is particularly useful for plutonium analysis. The laboratory can handle samples up-to 10Ci gamma-acitivity - which equals one pellet of a fuel rod - in a sealed lead cell which has an interchangeable box for alpha-active work. Pretreated samples are submitted to chemical separations in glove-boxes. Samples for alpha and mass spectroscopy are also prepared in glove-boxes. Also the laboratory is provided with fume hoods suitable for building lead shields. Radiation protection and special features typical to the university environment are discussed. Methods for verfication of contamination and protection against internal and external contamination are applied. These include air monitoring, analysis of excreta, and whole-body counting. (author)

  16. The results of decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Cho, K. H.; Yang, M. S.; Lee, E. P. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, the experiments in PIEF have been completed. Since all DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must be performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. This report describes the basic plan for dismantlement/decontamination of the characterization equipment (power and sintered fuel). And methods of measurement/packing/transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order. 7 refs., 42 figs., 10 tabs. (Author)

  17. Physics and chemistry of irradiated protostars

    DEFF Research Database (Denmark)

    Lindberg, Johan

    not resemble so-called hot corinos or warm carbon-chain chemistry sources (the previously known types of low-mass Class 0 objects as defined by their chemistry). The absence of complex organic molecules in combination with high abundances of radicals such as cyanide (CN) and hydroxyl (OH) suggest...... that the chemistry is dominated by radiation from R CrA. In the high-resolution interferometry data we also detect signs of a 100 AU Keplerian disc around the Class 0/I object IRS7B. The disc may be responsible for the lack of detections of complex organic molecules on the smaller scales as it may have flattened......) and chemistry (such as molecular abundances) in low-mass protostellar envelopes is studied. The work studies the nearby low-mass star-forming region Corona Australis, in which a large proportion of the youngest low-mass protostars (so-called Class 0 and Class I objects) are located in a dense cloud situated...

  18. SOFIA/EXES High Spectral Resolution Observations of the Orion Hot Core

    Science.gov (United States)

    Rangwala, Naseem; Colgan, Sean; Le Gal, Romane; Acharya, Kinsuk; Huang, Xinchuan; Herbst, Eric; Lee, Timothy J.; Richter, Matthew J.; Boogert, Adwin

    2018-01-01

    The Orion hot core has one of the richest molecular chemistries observed in the ISM. In the MIR, the Orion hot core composition is best probed by the closest, compact, bright background continuum source in this region, IRc2. We present high-spectral resolution observations from 12.96 - 13.33 μm towards Orion IRc2 using the mid-infrared spectrograph, EXES, on SOFIA, to probe the physical and chemical conditions of the Orion hot core. All ten of the rovibrational C2H2 transitions expected in our spectral coverage, are detected with high S/N, yielding continuous coverage of the R-branch lines from J=9-8 to J=18-17, including both ortho and para species. Eight of these rovibrational transitions are newly reported detections. These data show distinct ortho and para ladders towards the Orion hot core for the first time, with an ortho to para ratio (OPR) of only 0.6 - much lower than the high temperature equilibrium value of 3. A non-equilibrium OPR is a further indication of the Orion hot core being heated externally by shocks likely resulting from a well-known explosive event which occurred 500 yrs ago. The OPR conversion timescales are much longer than the 500 yr shock timescale and thus a low OPR might be a remnant from an earlier colder pre-stellar phase before the density enhancement (now the hot core) was impacted by shocks.We will also present preliminary results from an on-going SOFIA Cycle-5 impact program to use EXES to conduct an unbiased, high-S/N, continuous, molecular line survey of the Orion hot core from 12.5 - 28.3 microns. This survey is expected to be 50 times better than ISO in detecting isolated, narrow lines to (a) resolve the ro-vibrational structure of the gas phase molecules and their kinematics, (b) detect new gas phase molecules missed by ISO, and (c) provide useful constraints on the hot core chemistry and the source of Orion hot core excitation. This survey will greatly enhance the inventory of resolved line features in the MIR for hot cores

  19. The cycle life chemistry of ambient-temperature secondary lithium cells

    Science.gov (United States)

    Somoano, R.; Carter, B. J.; Subba Rao, S.; Shen, D.; Yen, S. P. S.

    1985-01-01

    The Jet Propulsion Laboratory is involved in a NASA-sponsored research program to demonstrate the feasibility of ambient-temperature secondary lithium batteries for geosynchronous space applications. Encouraging cycle life has been demonstrated in sealed, cathode-limited laboratory cells. However, the cell capacity declines with cycle life. The results of recent studies of the lithium electrode passivation chemistry, and of conductive diluents for TiS2 cathodes and their possible contribution to capacity decline, are here presented. Technical issues associated with the unique operational requirements of a geosynchronous mission are also described.

  20. Surveillance and radiological protection in the Hot Cell laboratory

    International Nuclear Information System (INIS)

    Ramirez, J.M.; Torre, J. De la; Garcia C, M.A.

    2004-01-01

    The Hot Cells Laboratory (LCC) located in the National Institute of Nuclear Research are an installation that was designed for the management at distance of 10,000 Curies of Co-60 or other radioactive materials with different values in activity. The management of such materials in the installation, implies to analyze and to determine the doses that the POE will receive as well as the implementation of protection measures and appropriate radiological safety so that is completed the specified by the ALARA concept. In this work it is carried out an evaluation of the doses to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of results is made with the program of surveillance and radiological protection implemented for the development of the works that carried out in the installation. (Author)

  1. The development of a mobile hot cell facility for the conditioning of spent high activity radioactive sources

    International Nuclear Information System (INIS)

    Liebenberg, G.R.; Al-Mughrabi, M.

    2010-01-01

    The International Atomic Energy Agency (IAEA) Waste Technology Section with additional support from the U.S. National Nuclear Security Administration (NNSA) through the IAEA Nuclear Security Fund has funded the design, fabrication, evaluation, and testing of a portable hot cell intended to address the problem of disused Spent High Activity Radioactive Sources (SHARS) in obsolete irradiation devices such as teletherapy heads and dry irradiators. The project is initially targeting the African continent but expected soon to expand to Latin America and Asia. This hot cell allows source removal, characterization, consolidation, repackaging in modern storage shields, and secure storage of high risk SHARS at national radioactive waste storage facilities. (authors)

  2. Dose levels in the hot cells area ININ

    International Nuclear Information System (INIS)

    Torre, J. De la; Ramirez, J.M.; Solis, M.L.

    2004-01-01

    The Laboratory of Hot Cells (LCC) located in the National Institute of Nuclear Research (ININ) is an institution, it is an area where radioactive material is managed with different activity values, in function of its original design for 10,000 curies of Co-60. Managing this materials in the installation, it implies to measure and to analyze the dose levels that the POE will receive as well as the implementation of appropriate measures of radiological protection and radiological safety, so that that is completed settled down by the concept ALARA. In this work they are carried out mensurations of the levels of the dose to receive for the POE when managing radionuclides with maximum activities that can be allowed in function of the current conditions of the cells and an evaluation of the obtained results is made comparing them with the effective international norms as well as the application of the program of surveillance and radiological protection implemented for the development of the works that are carry out in the installation. (Author)

  3. Upgrades of Hanford Engineering Development Laboratory hot cell facilities

    International Nuclear Information System (INIS)

    Daubert, R.L.; DesChane, D.J.

    1987-01-01

    The Hanford Engineering Development Laboratory operates the 327 Postirradiation Testing Laboratory (PITL) and the 324 Shielded Materials Facility (SMF). These hot cell facilities provide diverse capabilities for the postirradiation examination and testing of irradiated reactor fuels and materials. The primary function of these facilities is to determine failure mechanisms and effects of irradiation on physical and mechanical properties of reactor components. The purpose of this paper is to review major equipment and facility upgrades that enhance customer satisfaction and broaden the engineering capabilities for more diversified programs. These facility and system upgrades are providing higher quality remote nondestructive and destructive examination services with increased productivity, operator comfort, and customer satisfaction

  4. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H W

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  5. The improvement of dynamic universal testing machine for hot cell usages

    International Nuclear Information System (INIS)

    Ahn, Sang Bok; Lee, Key Soon; Park, Dae Kyu; Hong, Kwon Pyo; Choo, Yong Sun

    1998-01-01

    Dynamic universal testing machine(UTM) were developed for hot cell usages, which can perform tensile, compression, bending, fracture toughness and fatigue crack growth tests. In this report, technical reviews in the course of developing machine were described. Detailed subjects are as follows; 1. Outline of testing method using dynamic UTM 2. Detailed testing system organizations 3. Technical specification to develop machine 4. Setting up load string 5. Inspection and pre-commissioning tests on machine. (author). 14 figs

  6. Chemistry with Inexpensive Materials: Spray Bottles and Plastic Bags.

    Science.gov (United States)

    Zoltewicz, Susan

    1993-01-01

    Presents eight chemistry activities that are interesting and involve simple, easily available materials. Topics include mystery writing, valentine hearts, flame tests, evaporation race, buoyancy versus mass, determination of relative masses of gases, mole sample container, and cold and hot packs. (DDR)

  7. Advanced manipulator system for large hot cells

    International Nuclear Information System (INIS)

    Vertut, J.; Moreau, C.; Brossard, J.P.

    1981-01-01

    Large hot cells can be approached as extrapolated from smaller ones as wide, higher or longer in size with the same concept of using mechanical master slave manipulators and high density windows. This concept leads to a large number of working places and corresponding equipments, with a number of penetrations through the biological protection. When the large cell does not need a permanent operation of number of work places, as in particular to serve PIE machines and maintain the facility, use of servo manipulators with a large supporting unit and extensive use of television appears optimal. The advance on MA 23 and supports will be described including the extra facilities related to manipulators introduction and maintenance. The possibility to combine a powered manipulator and MA 23 (single or pair) on the same boom crane system will be described. An advance control system to bring the minimal dead time to control support movement, associated to the master slave arm operation is under development. The general television system includes over view cameras, associated with the limited number of windows, and manipulators camera. A special new system will be described which brings an automatic control of manipulator cameras and saves operator load and dead time. Full scale tests with MA 23 and support will be discussed. (author)

  8. Chemistry in protoplanetary disks

    Science.gov (United States)

    Semenov, D. A.

    2012-01-01

    In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.

  9. CTD Data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT218-227 during 2010) (NODC Accession 0087584)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  10. CTD data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT228-237 during 2011 (NODC Accession 0101727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  11. CTD data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT199-206 during 2008 (NODC Accession 0059842)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  12. CTD data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT177-188 during 2006 (NODC Accession 0042029)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  13. CTD data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT239-248 during 2012 (NODC Accession 0119895)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  14. CTD Data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT189-198 during 2007 (NODC Accession 0048725)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  15. Thermosalinograph data of the Hawaii Ocean Time-series (HOT) program in the North Pacific, 100 Miles North of Oahu, Hawaii for cruises HOT208-217 during 2009 (NODC Accession 0069501)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  16. CTD data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT208-217 during 2009 (NODC Accession 0068957)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  17. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    International Nuclear Information System (INIS)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 microSv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 microSv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey

  18. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  19. CTD data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT249-258 during 2013 (NODC Accession 0125647)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. The program began in 1988....

  20. Thermosalinograph data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT259-268 during 2014 (NCEI Accession 0140225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. The program began in 1988....

  1. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    2012-01-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  2. Significance of fundamental processes of radiation chemistry in hot atom chemical processes: electron thermalization

    International Nuclear Information System (INIS)

    Nishikawa, M.

    1984-01-01

    The author briefly reviews the current understanding of the course of electron thermalization. An outline is given of the physical picture without going into mathematical details. The analogy of electron thermalization with hot atom processes is taken as guiding principle in this paper. Content: secondary electrons (generation, track structure, yields); thermalization (mechanism, time, spatial distribution); behaviour of hot electrons. (Auth.)

  3. Enhancing Students' HOTS in Laboratory Educational Activity by Using Concept Map as an Alternative Assessment Tool

    Science.gov (United States)

    Ghani, I. B. A.; Ibrahim, N. H.; Yahaya, N. A.; Surif, J.

    2017-01-01

    Educational transformation in the 21st century demands in-depth knowledge and understanding in order to promote the development of higher-order thinking skills (HOTS). However, the most commonly reported problem with respect to developing a knowledge of chemistry is poor mastery of basic concepts. Chemistry laboratory educational activities are…

  4. Hot Cell Facility (HCF) Safety Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  5. Hot Cell Facility (HCF) Safety Analysis Report

    International Nuclear Information System (INIS)

    MITCHELL, GERRY W.; LONGLEY, SUSAN W.; PHILBIN, JEFFREY S.; MAHN, JEFFREY A.; BERRY, DONALD T.; SCHWERS, NORMAN F.; VANDERBEEK, THOMAS E.; NAEGELI, ROBERT E.

    2000-01-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR

  6. Thermosalinograph data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT155 - 176 during 2004 - 2005 (NODC Accession 0011142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  7. Niskin bottle data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT228-238 during 2011 (NODC Accession 0101146)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  8. Niskin bottle data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT249-258 during 2013 (NODC Accession 0125579)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  9. Niskin Bottle Data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT218-227 during 2010 (NODC Accession 0087596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  10. Hydrographic data from the Hawaii Ocean Time-series (HOT) program in the North Pacific, 100 miles north of Oahu, Hawaii for cruises HOT 101-121 during 1999-2000 (NODC Accession 0000639)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  11. CTD Data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT122-154 during 2001-2003 (NODC Accession 0001704)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  12. CTD data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles North of Oahu, Hawaii for cruises HOT155-176 during 2004 - 2005 (NODC Accession 0010740)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  13. CTD data of the Hawaii Ocean Time-series (HOT) Program in the North Pacific 100 miles north of Oahu, Hawaii for Cruises HOT 101-121 during 1999 - 2000 (NODC Accession 0000640)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  14. Niskin bottle data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT239-248 during 2012 (NCEI Accession 0119430)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  15. Thermosalinograph data of the Hawaii Ocean Time-series (HOT) Program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT101-121 during 1999-2000 (NODC Accession 0000641)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  16. Niskin bottle data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 miles north of Oahu, Hawaii for cruises HOT208-217 during 2009 (NODC Accession 0069177)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  17. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  18. A study on decontamination and decommissioning of experimental DUPIC equipment at PIEF 9405 hot cell

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Lee, H. S.; Lee, E. P.

    2000-09-01

    The characterization experiment for powder and sintered fuel had been performed using about 1 kg-U spent PWR fuel at No. 9405 hot-cell in PIEF(Post Irradiated Experiment Facility) since early in 1999. Currently, The experiments in PIEF have been completed. It is supposed to dismantle and decontaminate the installed equipment by the end of year 2000. Since all of DUPIC equipment in hot-cell are contaminated by high radioactive material, the decontamination and dismantlement must br performed remotely by M/S manipulator. During the radioactive waste packing and transportation, the reduction method of radiation exposure has to be considered. Firstly, This report describes the basic plan for dismantlement/decontamination of the characterization equipment(power and sintered fuel). And methods of measurement/packing/ transportation, method of dismantlement/decontamination of the experimental apparatus and the reduction method of radiation dose exposure, etc. are explained in order

  19. Hot water-extracted Lycium barbarum and Rehmannia glutinosa inhibit proliferation and induce apoptosis of hepatocellular carcinoma cells

    Science.gov (United States)

    Chao, Jane C-J; Chiang, Shih-Wen; Wang, Ching-Chiung; Tsai, Ya-Hui; Wu, Ming-Shun

    2006-01-01

    AIM: To investigate the effect of hot water-extracted Lycium barbarum (LBE) and Rehmannia glutinosa (RGE) on cell proliferation and apoptosis in rat and/or human hepatocellular carcinoma (HCC) cells. METHODS: Rat (H-4-II-E) and human HCC (HA22T/VGH) cell lines were incubated with various concentrations (0-10 g/L) of hot water-extracted LBE and RGE. After 6-24 h incubation, cell proliferation (n = 6) was measured by a colorimetric method. The apoptotic cells (n = 6) were detected by flow cytometry. The expression of p53 protein (n = 3) was determined by SDS-PAGE and Western blotting. RESULTS: Crude LBE (2-5 g/L) and RGE (2-10 g/L) dose-dependently inhibited proliferation of H-4-II-E cells by 11% (P < 0.05) to 85% (P < 0.01) after 6-24 h treatment. Crude LBE at a dose of 5 g/L suppressed cell proliferation of H-4-II-E cells more effectively than crude RGE after 6-24 h incubation (P < 0.01). Crude LBE (2-10 g/L) and RGE (2-5 g/L) also dose-dependently inhibited proliferation of HA22T/VGH cells by 14%-43% (P < 0.01) after 24 h. Crude LBE at a dose of 10 g/L inhibited the proliferation of HA22T/VGH cells more effectively than crude RGE (56.8% ± 1.6% vs 70.3% ± 3.1% of control, P = 0.0003 < 0.01). The apoptotic cells significantly increased in H-4-II-E cells after 24 h treatment with higher doses of crude LBE (2-5 g/L) and RGE (5-10 g/L) (P < 0.01). The expression of p53 protein in H-4-II-E cells was 119% and 143% of the control group compared with the LBE-treated (2, 5 g/L) groups, and 110% and 132% of the control group compared with the RGE -treated (5, 10 g/L) groups after 24 h. CONCLUSION: Hot water-extracted crude LBE (2-5 g/L) and RGE (5-10 g/L) inhibit proliferation and stimulate p53-mediated apoptosis in HCC cells. PMID:16874858

  20. Evaluation of the Shielding Performance for the Hot-cell built in 100-MeV Isotope Beam-line of KOMAC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Min; Park, Sung Kyun; Min, Yi Sub; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This study describes the structure of the hot-cell constructed in KOMAC for radioisotope production and evaluates the shielding performance for the hot-cell via the radiation shielding ability test. Korea multi-purpose accelerator complex (KOMAC) is currently operating 20-MeV and 100-MeV beam-line one by on. Additional 100-MeV beam-line and target room (TR101) are planned for the purpose of the radioisotope production in this year. The initial goal of the radioisotope production is to produce the radioactive isotopes, Sr-82 or Cu-67, used widely for the diagnosis and treatment of the cancer. In order to produce these radioisotopes mentioned, the proton beam with the energy between 70-MeV and 100- MeV at a beam current of 300 μA is irradiated into a solid target made of ZnO or RbCl. After the irradiation of the proton beam during approximately 100 hours, the radioisotope Sr-82 with the radioactivity amount of about 3.8 Ci or the Cu-67 with the amount of about 2.7 Ci will be produced. Radioisotopes produced though this process should be conveyed from the TR101 target room to the PR101 processing room and then in order to be delivered into the place for the next process step, a hot-cell is necessary. Result of the shielding performance evaluation of the hot-cell for producing radioisotopes shows the necessity of the shield reinforcement using lead material at side of the lead glass window.

  1. Studies in hot atom and radiation chemistry. Progress report, December 1, 1979-November 30, 1980

    International Nuclear Information System (INIS)

    Koski, W.S.

    1980-09-01

    /sub nThe results on the reactive scattering of B + ( 3 P/sub u/) by D 2 has been published and a corresponding study on the ground state ( 1 S/sub g/) of B + has been submitted for publication. The ionic aspect of the Br-ethane hot atom system is being investigated using beam techniques. It is found that there is no direct reaction of Br + with ethane which can explain the thermal ionic yield of CH 3 Br reported by hot atom chemists for the Br-ethane hot atom system. Likewise, no satisfactory explanation exists for the dependence of the thermal ionic yield of CH 3 Br on moderator mole fraction. Studies of the collisions of Br + with Kr (which is used as a moderator in hot atom systems) shows that ions such as BrKr + are formed. Electron irradiation of CH 3 Br-Kr mixtures shows that CH 3 BrKr + is formed in good yield. Electron irradiation of Br 2 -Kr mixtures shows that ions such as Br(Kr)/sub n/ + are formed. Such ions can be produced in the Kr moderated Br-ethane hot atom system and can explain the thermal ionic yield of CH 3 Br and its dependence on Kr pressure

  2. Modeling deflagration waves out of hot spots

    Science.gov (United States)

    Partom, Yehuda

    2017-01-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives comes about by a two-step process known as ignition and growth. In the first step a shock sweeping through an explosive cell (control volume) creates hot spots that become ignition sites. In the second step, deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in the cell depends on the speed of those deflagration waves and on the average distance between neighboring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration waves may depend on both pressure and temperature. It depends on pressure for quasistatic loading near ambient temperature, and on temperature at high temperatures resulting from shock loading. From the simulation we obtain deflagration fronts emanating out of the hot spots. For 8 to 13 GPa shocks, the emanating fronts propagate as deflagration waves to consume the explosive between hot spots. For higher shock levels deflagration waves may interact with the sweeping shock to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds.

  3. Niskin Bottle Data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT122-154 during 2001-2003 (NODC Accession 0001707)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  4. Niskin bottle data of the Hawaii Ocean Time-series (HOT) program in the North Pacific, 100 miles north of Oahu, Hawaii, for cruises HOT155-176 during 2004 - 2005 (NODC Accession 0010624)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  5. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  6. Work strain in decontamination of hot cells, 2

    International Nuclear Information System (INIS)

    Kinouchi, Nobuyuki; Ikezawa, Yoshio

    1991-01-01

    In decontamination of hot cells, the workers should wear suitable protective clothing to protect them from internal exposure and skin contamination. But such protective clothing causes some work strain, especially heat-stress. As a simple method to evaluate quantitative work strain, we used sweat rates of the wearers. In the previous paper, sweat rates for workers with two types of protective clothing were reported. In the present paper, sweat rates under severer working conditions are measured for three types: (1) pressure ventilated blouse; (2) full-face mask and polyethylene coverall; (3) full-face mask and vinyl anorak. The measured values for 65 subjects widely scatter from 0.2 to 2.5 l/h for all the protective clothing. Based on these values, the effects of protective clothing and working conditions (ambient temperature and humidity) on work strain are discussed. (author)

  7. A user friendly method for image based acquisition of constraint information during constrained motion of servo manipulator in hot-cells

    International Nuclear Information System (INIS)

    Saini, Surendra Singh; Sarkar, Ushnish; Swaroop, Tumapala Teja; Panjikkal, Sreejith; Ray, Debasish Datta

    2016-01-01

    In master slave manipulator, slave arm is controlled by an operator to manipulate the objects in remote environment using an iso-kinematic master arm which is located in the control room. In such a scenario, where the actual work environment is separated from the operator, formulation of techniques for assisting the operator to execute constrained motion (preferential inclusion or preferential exclusion of workspace zones) in the slave environment are not only helpful, but also essential. We had earlier demonstrated the efficacy of constraint motion with predefined geometrical constraints of various types. However, in a hot-cell scenario the generation of the constraint equations is difficult since we shall not have access to the cell for taking measurements. In this paper, a user friendly method is proposed for image based acquisition of the various constraint geometries thus eliminating the need to take in-cell measurements. For this purpose various hot cell tasks and required geometrical primitives pertaining to these tasks have been surveyed and an algorithm has been developed for generating the constraint geometry for each primitive. This methodology shall increase the efficiency and ease of use of the hot cell Telemanipulator by providing real time constraint acquisition and subsequent assistive force based constrained motion. (author)

  8. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R; Blin, J; Cherel, G; Duvaux, Y; Cherel, G; Mustelier, J P; Bussy, P; Gondal, G; Bloch, J; Faugeras, P; Raggenbass, A; Raggenbass, P; Fufresne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  9. Hot laboratory in Saclay. Equipment and radio-metallurgy technique of the hot lab in Saclay. Description of hot cell for handling of plutonium salts. Installation of an hot cell; Laboratoire a tres haute activite de Saclay. Equipement et techniques radiometallurgiques du laboratoire a haute activite de Saclay. Description de cellules pour manipulation de sels de plutonium. Amenagement d'une cellule du laboratoire de haute activite

    Energy Technology Data Exchange (ETDEWEB)

    Bazire, R.; Blin, J.; Cherel, G.; Duvaux, Y.; Cherel, G.; Mustelier, J.P.; Bussy, P.; Gondal, G.; Bloch, J.; Faugeras, P.; Raggenbass, A.; Raggenbass, P.; Fufresne, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    Describes the conception and installation of the hot laboratory in Saclay (CEA, France). The construction ended in 1958. The main aim of this laboratory is to examine fuel rods of EL2 and EL3 as well as nuclear fuel studies. It is placed in between both reactors. In a first part, the functioning and specifications of the hot lab are given. The different hot cells are described with details of the ventilation and filtration system as well as the waste material and effluents disposal. The different safety measures are explained: description of the radiation protection, decontamination room and personnel monitoring. The remote handling equipment is composed of cutting and welding machine controlled with manipulators. Periscopes are used for sight control of the operation. In a second part, it describes the equipment of the hot lab. The unit for an accurate measurement of the density of irradiated uranium is equipped with an high precision balance and a thermostat. The equipment used for the working of irradiated uranium is described and the time length of each operation is given. There is also an installation for metallographic studies which is equipped with a manipulation bench for polishing and cleaning surfaces and a metallographic microscope. X-ray examination of uranium pellets will also be made and results will be compared with those of metallography. The last part describes the hot cells used for the manipulation of plutonium salts. The plutonium comes from the reprocessing plant and arrived as a nitric solution. Thus these cells are used to study the preparation of plutonium fluorides from nitric solution. The successive operations needed are explained: filtration, decontamination and extraction with TBP, purification on ion exchangers and finally formation of the plutonium fluorides. Particular attention has been given to the description of the specifications of the different gloveboxes and remote handling equipment used in the different reaction steps and

  10. Green chemistry: to rethink chemistry for tomorrow's world. Press briefing of 20 January 2015

    International Nuclear Information System (INIS)

    Legrand, Francois

    2015-01-01

    This document discusses various issues related to the development of the green chemistry sector, and mentions and presents activities performed by the CEA in this respect. A first part outlines how green chemistry is an answer to stakes for a sustainable development. The second part addresses metal recycling: recovery of silver from photovoltaic cells, avoiding tensions related to rare earth supply. The third part discusses how to replace dangerous or costly compounds (chromium in aircraft paintings, platinum in fuel cells, ruthenium in photovoltaic cells, rare earth in magnetic wire). The fourth part addresses how to transform wastes into useful products (production of formamides, of aromatic compounds, and of methanol, respectively from waste recycling, natural lignin, and CO_2). The fifth part presents new concepts for chemical synthesis: chemistry under ultrasounds, production of hydrogen from water. The sixth part presents contributions of life sciences to green chemistry: reduction of carbon dioxide emissions, bioremediation (biology for soil rehabilitation), production of molecules of interest by using micro algae, enzymes or bacteria. The last part discusses issues which outline that chemistry is at the heart of challenges for a sustainable nuclear in terms of materials, for a closed fuel cycle, in terms of fuel cycle processes, of installation sanitation and dismantling. Appendices formulate 5 societal challenges for green chemistry, and 12 background principles of green chemistry

  11. D and D Toolbox Project - Technology Demonstration of Fixatives Applied to Hot Cell Facilities via Remote Sprayer Platforms

    International Nuclear Information System (INIS)

    Lagos, L.; Shoffner, P.; Espinosa, E.; Pena, G.; Kirk, P.; Conley, T.

    2009-01-01

    The objective of the US Department of Energy Office of Environmental Management's (DOE-EM's) D and D Toolbox Project is to use an integrated systems approach to develop a suite of decontamination and decommissioning (D and D) technologies, a D and D toolbox, that can be readily used across the DOE complex to improve safety, reduce technical risks, and limit uncertainty within D and D operations. Florida International University's Applied Research Center (FIU-ARC) is supporting this initiative by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting technology demonstrations of selected technologies at FIU-ARC facilities in Miami, Florida. To meet the technology gap challenge for a technology to remotely apply strippable/fixative coatings, FIU-ARC identified and demonstrated of a remote fixative sprayer platform. During this process, FIU-ARC worked closely with the Oak Ridge National Laboratory in the selection of typical fixatives and in the design of a hot cell mockup facility for demonstrations at FIUARC. For this demonstration and for future demonstrations, FIU-ARC built a hot cell mockup facility at the FIU-ARC Technology Demonstration/Evaluation site in Miami, Florida. FIU-ARC selected the International Climbing Machines' (ICM's) Robotic Climber to perform this technology demonstration. The selected technology was demonstrated at the hot cell mockup facility at FIU-ARC during the week of November 10, 2008. Fixative products typically used inside hot cells were investigated and selected for this remote application. The fixatives tested included Sherwin Williams' Promar 200 and DTM paints and Bartlett's Polymeric Barrier System (PBS). The technology evaluation documented the ability of the remote system to spray fixative products on horizontal and vertical concrete surfaces. The technology performance, cost, and health and safety issues were evaluated

  12. Applying hot-wire anemometry to directly measure the water balance in a proton exchange membrane fuel cell for a pre-humidified hydrogen stream

    DEFF Research Database (Denmark)

    Berning, Torsten; Shakhshir, Saher Al

    2016-01-01

    In a recent publication it has been shown how the water balance in a proton exchange membrane fuel cell can be determined employing hot wire anemometry. The hot wire sensor has to be placed into the anode outlet pipe of the operating fuel cell, and the voltage signal E that is read from the senso....... Finally, it will be shown how previously developed dew point diagrams for the anode side in a fuel cell can be corrected for a humidified hydrogen inlet stream....

  13. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were......V and showed a similar tendency to form agglomerates with a size of ∼200 nm in cell culture environment. The cytotoxicity of CuO NPs to MSCs at various concentrations and incubation periods were firstly evaluated. The CuO NPs showed dose-dependent and time-dependent toxicity to MSCs, and their surface...

  14. Water Column Chemical Data of the Hawaii Ocean Time-series (HOT) program in the North Pacific 100 Miles North of Oahu, Hawaii for Cruises HOT199-227 during 2008-2010 (NODC Accession 0088839)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  15. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  16. Hot Cell Installation and Demonstration of the Severe Accident Test Station

    Energy Technology Data Exchange (ETDEWEB)

    Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Zachary M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    A Severe Accident Test Station (SATS) capable of examining the oxidation kinetics and accident response of irradiated fuel and cladding materials for design basis accident (DBA) and beyond design basis accident (BDBA) scenarios has been successfully installed and demonstrated in the Irradiated Fuels Examination Laboratory (IFEL), a hot cell facility at Oak Ridge National Laboratory. The two test station modules provide various temperature profiles, steam, and the thermal shock conditions necessary for integral loss of coolant accident (LOCA) testing, defueled oxidation quench testing and high temperature BDBA testing. The installation of the SATS system restores the domestic capability to examine postulated and extended LOCA conditions on spent fuel and cladding and provides a platform for evaluation of advanced fuel and accident tolerant fuel (ATF) cladding concepts. This document reports on the successful in-cell demonstration testing of unirradiated Zircaloy-4. It also contains descriptions of the integral test facility capabilities, installation activities, and out-of-cell benchmark testing to calibrate and optimize the system.

  17. Dismantling of a hot cell-block and the treatment of the produced concrete bars

    International Nuclear Information System (INIS)

    Rompf, U.; Brielmayer, M.; Graf, A.; Stutz, U.; Ambos, F.

    2003-01-01

    A building with hot cells had been operated in Karlstein/Main from 1968 to 1989 in order to perform check-ups at radiated fuel rods and nuclear components. The operation of the system was stopped after an operation period of approximately 20 years. The core part of the building to be disassembled is a U-shaped hot cell-block with nine individual cells, partly consisting of heavy reinforced concrete, located in the ground floor (fig. 1 and fig. 2). The major part of the cells was covered with 10 mm steel plate and provided with approx. 1,400 openings of all different kinds. The wall thickness of the cells was between 0.90 m and 1.10 m. Under these conditions a successful decontamination at the ''existing building structure'' was not possible. Therefore, the non-supporting structures of the hot cell-block were removed in individual blocks by means of sawing and the remaining walls and floors were peeled by using the diamond rope sawing technique. The dismantling took 17 months. A re-treatment of the produced concrete blocks (235 blocks, approx. 970 Mg) to reduce the radioactive waste to a minimum was performed at the Research Centre Karlsruhe, Central Decontamination Department (HDB). The Target of the concrete bar treatment at HDB is to reduce the volume of radioactive waste to a minimum and to add the major part of the concrete bars to harmless utilisation. To achieve the same, initially the more contaminated parts of the bars without openings, such as tubes, cable or ventilating shafts, are removed by means of wire cutting and packed into a KONRAD-Container as radioactive waste. The remaining bar is decontaminated by means of sandblasting and afterwards, following successful release measurement, released from the scope of the regulations under the Atomic Energy. Bars with openings are crushed into small pieces by means of the remote-controlled chisel excavator, in order to separate the individual kinds of material. The rubble is packed into drums and measured by

  18. Smart SERS Hot Spots: Single Molecules Can Be Positioned in a Plasmonic Nanojunction Using Host-Guest Chemistry.

    Science.gov (United States)

    Kim, Nam Hoon; Hwang, Wooseup; Baek, Kangkyun; Rohman, Md Rumum; Kim, Jeehong; Kim, Hyun Woo; Mun, Jungho; Lee, So Young; Yun, Gyeongwon; Murray, James; Ha, Ji Won; Rho, Junsuk; Moskovits, Martin; Kim, Kimoon

    2018-04-04

    Single-molecule surface-enhanced Raman spectroscopy (SERS) offers new opportunities for exploring the complex chemical and biological processes that cannot be easily probed using ensemble techniques. However, the ability to place the single molecule of interest reliably within a hot spot, to enable its analysis at the single-molecule level, remains challenging. Here we describe a novel strategy for locating and securing a single target analyte in a SERS hot spot at a plasmonic nanojunction. The "smart" hot spot was generated by employing a thiol-functionalized cucurbit[6]uril (CB[6]) as a molecular spacer linking a silver nanoparticle to a metal substrate. This approach also permits one to study molecules chemically reluctant to enter the hot spot, by conjugating them to a moiety, such as spermine, that has a high affinity for CB[6]. The hot spot can accommodate at most a few, and often only a single, analyte molecule. Bianalyte experiments revealed that one can reproducibly treat the SERS substrate such that 96% of the hot spots contain a single analyte molecule. Furthermore, by utilizing a series of molecules each consisting of spermine bound to perylene bisimide, a bright SERS molecule, with polymethylene linkers of varying lengths, the SERS intensity as a function of distance from the center of the hot spot could be measured. The SERS enhancement was found to decrease as 1 over the square of the distance from the center of the hot spot, and the single-molecule SERS cross sections were found to increase with AgNP diameter.

  19. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Science.gov (United States)

    Reid, Concha; Bennett, William

    2009-01-01

    NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established

  20. Radiochemistry and nuclear chemistry

    CERN Document Server

    Choppin, Gregory; RYDBERG, JAN; Ekberg, Christian

    2013-01-01

    Radiochemistry or nuclear chemistry is the study of radiation from an atomic and molecular perspective, including elemental transformation and reaction effects, as well as physical, health and medical properties. This revised edition of one of the earliest and best-known books on the subject has been updated to bring into teaching the latest developments in research and the current hot topics in the field. To further enhance the functionality of this text, the authors have added numerous teaching aids, examples in MathCAD with variable quantities and options, hotlinks to relevant text secti

  1. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells

    NARCIS (Netherlands)

    Heintges, G.H.L.; Leenaers, P.J.; Janssen, R.A.J.

    2017-01-01

    The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of

  3. Fire preparedness measures in buildings with hot laboratories

    International Nuclear Information System (INIS)

    Oberlaender, B.C.

    2003-01-01

    Important hot laboratory safety issues are the general design/construction of the building with respect to fire, fire prevention, fire protection, administrative controls, and risk assessment. Within the network of the European Working Group Hot Laboratories and Remote Handling items concerning 'fire preparedness measures in hot laboratories' were screened and studied. Two questionnaires were sent to European hot laboratories; the first in November 2002 on 'fire preparedness measures, fire detection and fire suppression/extinguishing in lead shielded cells, concrete shielded cells' and the second in June 2003 on 'Fire preparedness measures in buildings with hot laboratories'. The questionnaires were filled in by a total of ten hot laboratories in seven European countries. On request of participants the answers were evaluated and 'anonymised' for presentation and discussion at the plenary meeting. The answers showed that many European hot laboratories are implementing improvements to their fire protection programmes to comply with more stringent requirements of the national authorities. The recommendations ('International guidelines for the fire protection of Nuclear Power Plants') given by the insurance pools are followed up with national variations. An ISO standard (ISO 17873) is in progress giving criteria for the design and the operation of ventilation systems as well as fire hazard management in nuclear installations others than reactors

  4. Biomineralization of radioactive sulfide minerals in strong acidic Tamagawa hot springs

    International Nuclear Information System (INIS)

    Tazaki, Kazue; Watanabe, Hiroaki

    2004-01-01

    Bioaccumulation of radioactive sulfide minerals by bacteria in strong acidic hot spring water was found at Tamagawa Hot Springs, Akita prefecture in Japan. The hot spring water produces Hokutolite of radioactive minerals high radium and radon. The β-ray measurements of sediments and biofilms indicate 1850-2420 and 5700 cpm, respectively, which are 50-100 times higher than that of the water and the air (50-90 cpm). The characteristics of hot spring water show pH (1.2), Eh (140 mV), EC (29 mS/cm), DO (0.8 mg/l), and water temperature (99.5degC), indicating extremely strong acidic and reducing conditions. The hot spring water contains mainly HCl associated with high concentrations of Ca 2+ , Al 3+ , Fe 2+ , HSO 4 - and SO 4 2- . SEM-EDX and TEM demonstrate some insight into how microorganisms affect the chemistry and microbiological characteristics of the strong acidic surroundings with high S, As, Ba, and Ca contents in biofilms. Especially SEM-EDX, ED-XRF, and STEM-EDX elemental content maps illustrate the distribution of sulfur-bearing compounds of barite (BaSO 4 ), gypsum (CaSO 4 ·2H 2 O), elemental sulfur (S) and orpiment(As 2 S 3 ) in the reddish orange biofilms. The presence of a hydrogen sulfide-rich (H 2 S) thermal spring and gypsum deposits suggest the volatilization of H 2 S from the spring water, oxidation of the H 2 S gas to sulfuric acid, and reaction of the sulfuric acid. TEM micrographs of bacteria in the biofilms reveal in detail the intimate connections between biological and mineralogical processes that the cells are entirely accumulated with spherical grains, 100∼200 nm in diameter. The relationship among sulfide minerals, such as barite, gypsum, sulfur, orpiment, and Hakutolite, associated with bacteria implies that heavy metals have been transported from strong acidic hot spring water to sediments through bacteria metabolism. It is possible that the capability of radioactive sulfide biofilms for heavy metal immobilization can be used to

  5. Emphasizing the role of surface chemistry on hydrophobicity and cell adhesion behavior of polydimethylsiloxane/TiO2 nanocomposite films.

    Science.gov (United States)

    Yousefi, Seyedeh Zahra; Tabatabaei-Panah, Pardis-Sadat; Seyfi, Javad

    2018-07-01

    Improving the bioinertness of materials is of great importance for developing biomedical devices that contact human tissues. The main goal of this study was to establish correlations among surface morphology, roughness and chemistry with hydrophobicity and cell adhesion in polydimethylsiloxane (PDMS) nanocomposites loaded with titanium dioxide (TiO 2 ) nanoparticles. Firstly, wettability results showed that the nanocomposite loaded with 30 wt.% of TiO 2 exhibited a superhydrophobic behavior; however, the morphology and roughness analysis proved that there was no discernible difference between the surface structures of samples loaded with 20 and 30 wt.% of nanoparticles. Both cell culture and MTT assay experiments showed that, despite the similarity between the surface structures, the sample loaded with 30 wt.% nanoparticles exhibits the greatest reduction in the cell viability (80%) as compared with the pure PDMS film. According to the X-ray photoelectron spectroscopy results, the remarkable reduction in cell viability of the superhydrophobic sample could be majorly attributed to the role of surface chemistry. The obtained results emphasize the importance of adjusting the surface properties especially surface chemistry to gain the optimum cell adhesion behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The effects of diffusion in hot subdwarf progenitors from the common envelope channel

    Science.gov (United States)

    Byrne, Conor M.; Jeffery, C. Simon; Tout, Christopher A.; Hu, Haili

    2018-04-01

    Diffusion of elements in the atmosphere and envelope of a star can drastically alter its surface composition, leading to extreme chemical peculiarities. We consider the case of hot subdwarfs, where surface helium abundances range from practically zero to almost 100 percent. Since hot subdwarfs can form via a number of different evolution channels, a key question concerns how the formation mechanism is connected to the present surface chemistry. A sequence of extreme horizontal branch star models was generated by producing post-common envelope stars from red giants. Evolution was computed with MESA from envelope ejection up to core-helium ignition. Surface abundances were calculated at the zero-age horizontal branch for models with and without diffusion. A number of simulations also included radiative levitation. The goal was to study surface chemistry during evolution from cool giant to hot subdwarf and determine when the characteristic subdwarf surface is established. Only stars leaving the giant branch close to core-helium ignition become hydrogen-rich subdwarfs at the zero-age horizontal branch. Diffusion, including radiative levitation, depletes the initial surface helium in all cases. All subdwarf models rapidly become more depleted than observations allow. Surface abundances of other elements follow observed trends in general, but not in detail. Additional physics is required.

  7. Developing and Implementing a Simple, Affordable Hydrogen Fuel Cell Laboratory in Introductory Chemistry

    Science.gov (United States)

    Klara, Kristina; Hou, Ning; Lawman, Allison; Wu, Liheng; Morrill, Drew; Tente, Alfred; Wang, Li-Qiong

    2014-01-01

    A simple, affordable hydrogen proton exchange membrane (PEM) fuel cell laboratory was developed through a collaborative effort between faculty and undergraduate students at Brown University. It has been incorporated into the introductory chemistry curriculum and successfully implemented in a class of over 500 students per academic year for over 3…

  8. Spent Fuel Handling and Packaging Program: a survey of hot cell facilities

    International Nuclear Information System (INIS)

    Menon, M.N.

    1978-07-01

    Hot cell facilities in the United States were surveyed to determine their capabilities for conducting integral fuel assembly and individual fuel rod examinations that are required in support of the Spent Fuel Handling and Packaging Program. The ability to receive, handle, disassemble and reconstitute full-length light water reactor spent fuel assemblies, and the ability to conduct nondestructive and destructive examinations on full-length fuel rods were of particular interest. Three DOE-supported facilities and three commercial facilities were included in the survey. This report provides a summary of the findings

  9. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Ching Sheng, Chu

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖. The effects of hot pepper extract and capsaicin on adipogenesis were examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖ for 3 hrs. The effects of hot pepper extract and capsaicin on lipolysis were examined by measuring free glycerol released. Fat tissue from pig skin was injected with hot pepper extract or capsaicinCFP ranging from 0.1 to 10㎎/㎖ to examine the effects of hot pepper extract and capsaicin on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Hot pepper extract and capsaicin inhibited adipogenic differentiation at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenesis than hot pepper extract. 2. Hot pepper extract and capsaicin decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenic differentiation than hot pepper extract. 3. Hot pepper extract and capsaicin increased glycerol release at the concentration of 0.1㎎/㎖. There was no difference in lipolytic activity between hot pepper extract and

  10. HOT CELL SYSTEM FOR DETERMINING FISSION GAS RETENTION IN METALLIC FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Sell, D. A.; Baily, C. E.; Malewitz, T. J.; Medvedev, P. G.; Porter, D. L.; Hilton, B. A.

    2016-09-01

    A system has been developed to perform measurements on irradiated, sodium bonded-metallic fuel elements to determine the amount of fission gas retained in the fuel material after release of the gas to the element plenum. During irradiation of metallic fuel elements, most of the fission gas developed is released from the fuel and captured in the gas plenums of the fuel elements. A significant amount of fission gas, however, remains captured in closed porosities which develop in the fuel during irradiation. Additionally, some gas is trapped in open porosity but sealed off from the plenum by frozen bond sodium after the element has cooled in the hot cell. The Retained fission Gas (RFG) system has been designed, tested and implemented to capture and measure the quantity of retained fission gas in characterized cut pieces of sodium bonded metallic fuel. Fuel pieces are loaded into the apparatus along with a prescribed amount of iron powder, which is used to create a relatively low melting, eutectic composition as the iron diffuses into the fuel. The apparatus is sealed, evacuated, and then heated to temperatures in excess of the eutectic melting point. Retained fission gas release is monitored by pressure transducers during the heating phase, thus monitoring for release of fission gas as first the bond sodium melts and then the fuel. A separate hot cell system is used to sample the gas in the apparatus and also characterize the volume of the apparatus thus permitting the calculation of the total fission gas release from the fuel element samples along with analysis of the gas composition.

  11. Hot-carrier solar cells using low-dimensional quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Daiki; Kasamatsu, Naofumi; Harada, Yukihiro; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-10-27

    We propose a high-conversion-efficiency solar cell (SC) utilizing the hot carrier (HC) population in an intermediate-band (IB) of a quantum dot superlattice (QDSL) structure. The bandgap of the host semiconductor in this device plays an important role as an energy-selective barrier for HCs in the QDSLs. According to theoretical calculation using the detailed balance model with an air mass 1.5 spectrum, the optimum IB energy is determined by a trade-off relation between the number of HCs with energy exceeding the conduction-band edge and the number of photons absorbed by the valence band−IB transition. Utilizing experimental data of HC temperature in InAs/GaAs QDSLs, the maximum conversion efficiency under maximum concentration (45 900 suns) has been demonstrated to increase by 12.6% as compared with that for a single-junction GaAs SC.

  12. Limets 2: a hot-cell test set-up for Liquid Metal Embrittlement (LME) studies in liquid lead alloys

    International Nuclear Information System (INIS)

    Van den Bosch, J.; Bosch, R.W.; Al Mazouzi, A.

    2008-01-01

    Full text of publication follows. In the nuclear energy sector one of the main candidate designs for the accelerator driven system (ADS) uses liquid lead or lead bismuth eutectic both as a coolant and as spallation target. In the fusion community liquid lead lithium eutectic is considered as a possible coolant for the blanket and as a tritium source. Therefore the candidate materials for such structural components should not only comply with the operating conditions but in addition need to guarantee chemical and physical integrity when coming into contact with the lead alloys. The latter phenomena can be manifested in terms of erosion/corrosion. and/or of the so called liquid metal embrittlement (LME). Thus the susceptibility to LME of the structural materials under consideration to be used in such applications should be investigated in contact with the various lead alloys. LME, if occurring in any solid metal/liquid meta] couple, is likely to increase with irradiation hardening as localised stresses and crack initiations can promote it. To investigate the mechanical response of irradiated materials in contact with a liquid metal under representative conditions, a dedicated testing facility has recently been developed and built at our centre. It consists of an instrumented hot cell. equipped with a testing machine that allows mechanical testing of active materials in contact with active liquid lead lithium and liquid lead bismuth under well controlled chemistry conditions. The specificity of the installation is to handle highly activated and contaminated samples. Also a dedicated dismantling set-up has been developed that allows to retrieve the samples from the irradiation rig without any supplementary damage. In this presentation we will focus on the technical design of this new installation, its special features that have been developed to allow testing in a hot environment and the modifications and actions that have been taken to allow testing in liquid lead

  13. Decommissioning of hot cells using a hydraulically powered servo manipulator

    International Nuclear Information System (INIS)

    Asquith, J.D.; Loughborough, D.

    1993-01-01

    This paper describes the preparations and initial trials involved in remotely dismantling the containment boxes within two concrete shielded hot cells at Harwell Laboratory using a hydraulically powered servo manipulator, ARTISAN. The manipulator deploys a variety of tools for cutting operations. The modular design has enabled it to be specifically configured for this application by adjusting the link lengths using spacers between the joints. In addition to the remote handling requirements, a new posting and ventilation system for the facility is outlined. Trials with ARTISAN in an in-active mock-up have now been successfully completed, and the manipulator is installed in the active facility. The considerations and approach adopted in this project are typical of many situations where remote techniques are required for decommissioning activities. (author)

  14. Microscopic characterizations of membrane electrode assemblies prepared under different hot-pressing conditions

    International Nuclear Information System (INIS)

    Liang, Z.X.; Zhao, T.S.; Xu, C.; Xu, J.B.

    2007-01-01

    The durability of the membrane electrode assembly (MEA) for direct methanol fuel cells (DMFCs) is one of the most critical issues to be addressed before widespread commercialization of the DMFC technology. In this work, we investigated the effect of the hot-pressing duration on the performance and durability of the MEA prepared by hot-pressing technique. It was found that the 60-min hot pressing at 135 deg. C under the pressure of 4.0 MPa yielded a significantly improved MEA durability than did the 3-min hot pressing (a typical duration in practice) under the same condition, but no substantial difference was found in the cell performance of the MEAs prepared with the two different hot-pressing durations. The reason why the hot-pressing duration had no significant effect on cell performance is explained based on X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) characterizations of the changes in the physiochemical properties of MEAs and their constituent components, including the anode, cathode and Nafion membrane, before and after hot pressing with different durations

  15. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  16. Hot Deformation Behavior of Hot-Extruded AA7175 Through Hot Torsion Tests.

    Science.gov (United States)

    Lee, Se-Yeon; Jung, Taek-Kyun; Son, Hyeon-Woo; Kim, Sang-Wook; Son, Kwang-Tae; Choi, Ho-Joon; Oh, Sang-Ho; Lee, Ji-Woon; Hyun, Soong-Keun

    2018-03-01

    The hot deformation behavior of hot-extruded AA7175 was investigated with flow curves and processing maps through hot torsion tests. The flow curves and the deformed microstructures revealed that dynamic recrystallization (DRX) occurred in the hot-extruded AA7175 during hot working. The failure strain was highest at medium temperature. This was mainly influenced by the dynamic precipitation of fine rod-shaped MgZn2. The processing map determined the optimal deformation condition for the alloy during hot working.

  17. Directing functional chemistries on micropatterned conducting polymers for all-polymer cell analysis microsystems

    DEFF Research Database (Denmark)

    Lind, Johan Ulrik; Daugaard, Anders Egede; Andresen, Thomas Lars

    Micrometer scale electrical circuits of PEDOT (poly(3,4-dioxythiophene)) were created by locally oxidizing PEDOT thin films with an agarose stamp containing the oxidizing agent NaOCl. The oxidized PEDOT was removed completely by applying detergents. The process was sufficiently mild that chemical...... groups on the underlying substrate, such as azides or alkynes, were preserved for subsequent specific functionalization. Moreover entire PMOXA (poly(2-methyl-2-oxazoline)) films preventing cell binding could be hidden below the PEDOT and be re-exposed upon stamping, allowing for cell capturing...... microelectrodes on a cell non-adhesive background. Chemically functionalized PEDOT types permitted the introduction of multiple additional types of micropatterned chemistry....

  18. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Lain, M.J.; Fletcher, P.A.; Dawson, R.K.; Pottinger, J.S.

    1989-01-01

    The primary aim of the programme is to develop and evaluate remote electrochemical decontamination systems for metal surfaces. The bulk of the waste volume should be reduced to a reuse or low-level waste disposal category, while concentrating most of the activity in a small volume suitable for immobilisation. The goal of the development programme is to test these techniques in both alpha-active and alpha-beta-gamma hot cells in order to ascertain their usefulness as a component of an overall decommissioning strategy. As a result of the radiological environment, particular emphasis will be placed on remote operation in order to reduce occupational radiation exposure. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate will be investigated: immersion of small items in tanks for electroetching and in situ electropolishing. In both cases, reagents will be chosen with their subsequent disposal in mind. (Author)

  19. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique

  20. Modification of a scanning electron microscope for remote operation in a hot cell

    International Nuclear Information System (INIS)

    Reed, J.R.; Watson, H.E.; Smidt, F.A. Jr.

    1982-01-01

    Scanning electron microscopy (SEM) examination of broken fracture specimens is an essential part of the characterization of the failure mode of fracture toughness of specimens. The large specimen mass required for such examinations dictates the use of a shielded facility for performing such examinations on irradiated specimens. This report describes the modification of a commercial SEM for remote operation in a hot cell. The facility is used to examine specimens from several Navy and DOE-sponsored programs conducted at NRL which require the examination of radioactive materials

  1. FABRICE process for the refrabrication of experimental pins in a hot cell, from pins pre-irradiated in power reactors

    International Nuclear Information System (INIS)

    Vignesoult, N.; Atabek, R.; Ducas, S.

    1982-06-01

    The Fabrice ''hot cell refabrication'' process for small pins from very long irradiated fuel elements was developed at the CEA to allow parametric studies of the irradiation behavior of pins from nuclear power plants. Since this operation required complete assurance of the validity of the process, qualification of the fabrication was performed on test pins, refabricated in the hot cell, as well as irradiation qualification. The latter qualification was intended to demonstrate that, in identical experimental irradiation conditions, the refabricated Fabrice pins behaved in the same way as whole pins with the same initial characteristics. This qualification of the Fabrice process, dealing with more than twenty pins at different burnups, showed that fabrication did not alter: the inherent characteristics of the sampled fuel element and the irradiation behavior of the sampled fuel element [fr

  2. Prediction of hot-ductility of steels during continuous casting using artificial neural networks

    International Nuclear Information System (INIS)

    Liu, W.J.; Emadi, D.; Essadiqi, E.

    2000-01-01

    During continuous casting, transversal cracks can be developed due to tensile stress in temperature regions where the steel exhibits a low ductility. The cracking tendency during continuous casting depends on the steel chemistry and the casting parameters such as lubrication, mold type, secondary cooling and bending/unbending temperatures. To prevent cracking one needs to predict the hot-ductility of a material under continuous-casting conditions. However, hot-ductility is one of the poorly understood material behaviors and cannot be readily modeled using conventional techniques. In the present study, we used an alternative method, namely Artificial Neural Networks (ANN), to model the ductility of a steel under continuous casting conditions. A hot-ductility database was established based on published literature. Several standard three-layer ANN models were then trained using data randomly selected from the database. The outputs of the ANN models were subsequently compared with the remaining data in the database. The results indicate that ANN is a suitable modelling technique for hot-ductility prediction. (author)

  3. Use of a CO2 pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    Bench, T.R.

    1997-01-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO 2 ) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO 2 pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility

  4. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H_2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N_2H"+, ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N_2H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N_2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N_2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH_3 and NH_3/N_2 mixtures)

  5. Primary production and sediment trap flux measurements and calculations by the Hawaii Ocean Time-series (HOT) program at Station ALOHA in the North Pacific 100 miles north of Oahu, Hawaii for Cruises HOT1-227 during 1988-2010 (NODC Accession 0089168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hawaii Ocean Time-series (HOT) program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii....

  6. Photoinducible bioorthogonal chemistry: a spatiotemporally controllable tool to visualize and perturb proteins in live cells.

    Science.gov (United States)

    Lim, Reyna K V; Lin, Qing

    2011-09-20

    Visualization in biology has been greatly facilitated by the use of fluorescent proteins as in-cell probes. The genes coding for these wavelength-tunable proteins can be readily fused with the DNA coding for a protein of interest, which enables direct monitoring of natural proteins in real time inside living cells. Despite their success, however, fluorescent proteins have limitations that have only begun to be addressed in the past decade through the development of bioorthogonal chemistry. In this approach, a very small bioorthogonal tag is embedded within the basic building blocks of the cell, and then a variety of external molecules can be selectively conjugated to these pretagged biomolecules. The result is a veritable palette of biophysical probes for the researcher to choose from. In this Account, we review our progress in developing a photoinducible, bioorthogonal tetrazole-alkene cycloaddition reaction ("photoclick chemistry") and applying it to probe protein dynamics and function in live cells. The work described here summarizes the synthesis, structure, and reactivity studies of tetrazoles, including their optimization for applications in biology. Building on key insights from earlier reports, our initial studies of the reaction have revealed full water compatibility, high photoactivation quantum yield, tunable photoactivation wavelength, and broad substrate scope; an added benefit is the formation of fluorescent cycloadducts. Subsequent studies have shown fast reaction kinetics (up to 11.0 M(-1) s(-1)), with the rate depending on the HOMO energy of the nitrile imine dipole as well as the LUMO energy of the alkene dipolarophile. Moreover, through the use of photocrystallography, we have observed that the photogenerated nitrile imine adopts a bent geometry in the solid state. This observation has led to the synthesis of reactive, macrocyclic tetrazoles that contain a short "bridge" between two flanking phenyl rings. This photoclick chemistry has been used

  7. Research involving hot atoms of nucleogenic origin and its practical application

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Over the years, a large body of information has amassed which has helped to clarify the authors understanding of the complex chemistry occurring within chemical systems immediately following a nuclear reaction. With the increased knowledge of how reactive nuclides generated by such processes react chemically, it became increasingly apparent that the translational or recoil energy imparted to such species was not always the driving force behind some of the unusual chemistry seen in these systems. In many instances, the state of electronic excitation was found to strongly affect their chemistry. In others, the concomitant radiation chemistry often altered initial chemical states. Even so, with just a general understanding of how these effects work in unison, it has been possible in many instances to predict radiolabel distributions and yields in molecules. This ability has had an enormous impact in other fields utilizing radiotracers in research. This presentation will highlight specific examples in basic hot atom research which have focused on these problems, and describe general applications to other disciplines using radiotracers

  8. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  9. EPRI BWR Water Chemistry Guidelines Revision

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.

    2014-01-01

    BWRVIP-190: BWR Water Chemistry Guidelines – 2008 Revision has been revised. The revision committee consisted of U.S. and non-U.S. utilities (members of the BWR Vessel and Internals Protection (BWRVIP) Mitigation Committee), reactor system manufacturers, fuel suppliers, and EPRI and industry experts. The revised document, BWRVIP-190 Revision 1, was completely reformatted into two volumes, with a simplified presentation of water chemistry control, diagnostic and good practice parameters in Volume 1 and the technical bases in Volume 2, to facilitate use. The revision was developed in parallel and in coordination with preparation of the Fuel Reliability Guidelines Revision 1: BWR Fuel Cladding Crud and Corrosion. Guidance is included for plants operating under normal water chemistry (NWC), moderate hydrogen water chemistry (HWC-M), and noble metal application (GE-Hitachi NobleChem™) plus hydrogen injection. Volume 1 includes significant changes to BWR feedwater and reactor water chemistry control parameters to provide increased assurance of intergranular stress corrosion cracking (IGSCC) mitigation of reactor materials and fuel reliability during all plant conditions, including cold shutdown (≤200°F (93°C)), startup/hot standby (>200°F (93°C) and ≤ 10%) and power operation (>10% power). Action Level values for chloride and sulfate have been tightened to minimize environmentally assisted cracking (EAC) of all wetted surfaces, including those not protected by hydrogen injection, with or without noble metals. Chemistry control guidance has been enhanced to minimize shutdown radiation fields by clarifying targets for depleted zinc oxide (DZO) injection while meeting requirements for fuel reliability. Improved tabular presentations of parameter values explicitly indicate levels at which actions are to be taken and required sampling frequencies. Volume 2 provides the technical bases for BWR water chemistry control for control of EAC, flow accelerated corrosion

  10. The Hot Cell Radioactive Waste Concept of Forschungszentrum Juelich

    International Nuclear Information System (INIS)

    Pott, G.; Halaszovich, St.

    1999-01-01

    During the last 30 years extensive scientific examinations on radioactive metals,ceramics and fuel elements have been carried out, so that a high volume of waste has resulted. Also from the dismantling of irradiated facilities metallics waste has o be handed. Prior for equipment repair the hot cell involved has to be decontaminated and a large amount of lower active waste is produced. The waste is collected for conditioning and storing. There are different categories as: low active liquid waste, low active burnable waste, fuel waste, low and high active metallic waste. For each waste category special transport container are used. For the volume reduction our Waste Department is equipped with special facilities e.g.: furnace for burning, drying, liquids evaporators, hydraulic press for pelletizing, decontamination box for the dismantling ad cleaning of components. After conditioning the waste will be stored on site or transported to final storage in a salt mine (ERAM) . Special documentation has to be done for the acceptance of this waste

  11. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  12. Modeling and characterization of double resonant tunneling diodes for application as energy selective contacts in hot carrier solar cells

    Science.gov (United States)

    Jehl, Zacharie; Suchet, Daniel; Julian, Anatole; Bernard, Cyril; Miyashita, Naoya; Gibelli, Francois; Okada, Yoshitaka; Guillemolles, Jean-Francois

    2017-02-01

    Double resonant tunneling barriers are considered for an application as energy selective contacts in hot carrier solar cells. Experimental symmetric and asymmetric double resonant tunneling barriers are realized by molecular beam epitaxy and characterized by temperature dependent current-voltage measurements. The negative differential resistance signal is enhanced for asymmetric heterostructures, and remains unchanged between low- and room-temperatures. Within Tsu-Esaki description of the tunnel current, this observation can be explained by the voltage dependence of the tunnel transmission amplitude, which presents a resonance under finite bias for asymmetric structures. This effect is notably discussed with respect to series resistance. Different parameters related to the electronic transmission of the structure and the influence of these parameters on the current voltage characteristic are investigated, bringing insights on critical processes to optimize in double resonant tunneling barriers applied to hot carrier solar cells.

  13. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    2007-01-01

    The Opening talk of the workshop 'Hot Laboratories and Remote Handling' was given by Marin Ciocanescu with the communication 'Overview of R and D Program in Romanian Institute for Nuclear Research'. The works of the meeting were structured into three sections addressing the following items: Session 1. Hot cell facilities: Infrastructure, Refurbishment, Decommissioning; Session 2. Waste, transport, safety and remote handling issues; Session 3. Post-Irradiation examination techniques. In the frame of Section 1 the communication 'Overview of hot cell facilities in South Africa' by Wouter Klopper, Willie van Greunen et al, was presented. In the framework of the second session there were given the following four communications: 'The irradiated elements cell at PHENIX' by Laurent Breton et al., 'Development of remote equipment for DUPIC fuel fabrication at KAERI', by Jung Won Lee et al., 'Aspects of working with manipulators and small samples in an αβγ-box, by Robert Zubler et al., and 'The GIOCONDA experience of the Joint Research Centre Ispra: analysis of the experimental assemblies finalized to their safe recovery and dismantling', by Roberto Covini. Finally, in the framework of the third section the following five communications were presented: 'PIE of a CANDU fuel element irradiated for a load following test in the INR TRIGA reactor' by Marcel Parvan et al., 'Adaptation of the pole figure measurement to the irradiated items from zirconium alloys' by Yury Goncharenko et al., 'Fuel rod profilometry with a laser scan micrometer' by Daniel Kuster et al., 'Raman spectroscopy, a new facility at LECI laboratory to investigate neutron damage in irradiated materials' by Lionel Gosmain et al., and 'Analysis of complex nuclear materials with the PSI shielded analytical instruments' by Didier Gavillet. In addition, eleven more presentations were given as posters. Their titles were: 'Presentation of CETAMA activities (CEA analytic group)' by Alain Hanssens et al. 'Analysis of

  14. Annual report on operation and management of hot laboratories and facilities. From April 1, 2006 to March 31, 2007

    International Nuclear Information System (INIS)

    2008-02-01

    This is an annual report in a fiscal year 2006 that describes activities of the Reactor Fuel Examination Facility (RFEF), the Waste Safety Testing Facility (WASTEF), the Research Hot Laboratory (RHL) and the other research hot facilities in the Department of Hot laboratories and facilities. In RFEF, destructive examinations of BWR fuel rods and re-assembly were carried out as PIEs for a fuel assembly irradiated for 5 cycles in the Fukushima-2 Nuclear Power Station Unit-1. Mechanical property measurement of high burn-up fuel rods were performed as spent fuel integrity test for long term dry storage in order to formulate guidelines and technical criteria. In WASTEF, Slow Strain Rate Tests (SSRT) and Uni-axial Constant Load Tensile tests (UCLT) of in-core materials in pressurized high-temperature water condition, stress corrosion cracking tests for high-performance fuel cladding material and calorific value measurement of pulse irradiated fuel in NSRR were carried out. In RHL, equipment un-installations and decontamination were performed to lead cells according to the decommissioning plan. And modification of fuel storage room were started in order to utilize the facility for un-irradiated fuel storage after a fiscal year 2007. In addition, management of the other research hot facilities (No.1 Plutonium Laboratory, No.2 Research Laboratory, No.4 Research Laboratory, Analytical Chemistry Laboratory, Uranium Enrichment Laboratory, (Simulation Test for Environmental Radionuclide Migration (STEM), Clean Laboratory for Environmental Analysis and Research (CLEAR) and fuel storage) were carried out. (author)

  15. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas.

    Science.gov (United States)

    Vinothkumar, Vilvanathan; Arunkumar, Ganesan; Revathidevi, Sundaramoorthy; Arun, Kanagaraj; Manikandan, Mayakannan; Rao, Arunagiri Kuha Deva Magendhra; Rajkumar, Kottayasamy Seenivasagam; Ajay, Chandrasekar; Rajaraman, Ramamurthy; Ramani, Rajendren; Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan

    2016-06-01

    Squamous cell carcinoma (SCC) of the uterine cervix and oral cavity are most common cancers in India. Telomerase reverse transcriptase (TERT) overexpression is one of the hallmarks for cancer, and activation through promoter mutation C228T and C250T has been reported in variety of tumors and often shown to be associated with aggressive tumors. In the present study, we analyzed these two hot spot mutations in 181 primary tumors of the uterine cervix and oral cavity by direct DNA sequencing and correlated with patient's clinicopathological characteristics. We found relatively high frequency of TERT hot spot mutations in both cervical [21.4 % (30/140)] and oral [31.7 % (13/41)] squamous cell carcinomas. In cervical cancer, TERT promoter mutations were more prevalent (25 %) in human papilloma virus (HPV)-negative cases compared to HPV-positive cases (20.6 %), and both TERT promoter mutation and HPV infection were more commonly observed in advanced stage tumors (77 %). Similarly, the poor and moderately differentiated tumors of the uterine cervix had both the TERT hot spot mutations and HPV (16 and 18) at higher frequency (95.7 %). Interestingly, we observed eight homozygous mutations (six 228TT and two 250TT) only in cervical tumors, and all of them were found to be positive for high-risk HPV. To the best of our knowledge, this is the first study from India reporting high prevalence of TERT promoter mutations in primary tumors of the uterine cervix and oral cavity. Our results suggest that TERT reactivation through promoter mutation either alone or in association with the HPV oncogenes (E6 and E7) could play an important role in the carcinogenesis of cervical and oral cancers.

  16. Solar 'hot spots' are still hot

    Science.gov (United States)

    Bai, Taeil

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22.

  17. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  18. Solar hot spots are still hot

    International Nuclear Information System (INIS)

    Bai, T.

    1990-01-01

    Longitude distributions of solar flares are not random but show evidence for active zones (or hot spots) where flares are concentrated. According to a previous study, two hot spots in the northern hemisphere, which rotate with a synodic period of about 26.72 days, produced the majority of major flares, during solar cycles 20 and 21. The more prominent of these two hot spots is found to be still active during the rising part of cycle 22, producing the majority of northern hemisphere major flares. The synodic rotation period of this hot spot is 26.727 + or - 0.007 days. There is also evidence for hot spots in the southern hemisphere. Two hot spots separated by 180 deg are found to rotate with a period of 29.407 days, with one of them having persisted in the same locations during cycles 19-22 and the other, during cycles 20-22. 14 refs

  19. HOT 2015

    DEFF Research Database (Denmark)

    Hannibal, Sara Stefansen

    2016-01-01

    HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud.......HOT samler og formidler 21 literacykyndiges bud på, hvad der er hot, og hvad der bør være hot inden for literacy – og deres begrundelser for disse bud....

  20. Solution chemistry techniques in SYNROC preparation

    International Nuclear Information System (INIS)

    Dosch, R.G.; Lynch, A.W.

    1981-07-01

    Investigations of titanate-based ceramic forms for radioactive waste immobilization are underway at Sandia National Laboratories (SNLA) and at Lawrence Livermore National Laboratory (LLNL). Although the waste forms differ as to overall product composition, the waste-containing phases in both ceramic products have similar crystalline structure types. These include metallic phases along with oxides with structure types of the mineral analogues perovskite, zirconolite, and hollandite. Significant differences also exist in the area of processing. More conventional ceramic processing methods are used at LLNL to produce SYNROC while solution chemistry techniques involving metal alkoxide chemistry and ion exchange have been developed at SNLA to prepare calcium titanate-based waste ceramics. The SNLA techniques were recently modified and applied to producing SYNROC (compositions C and D) as part of an interlaboratory information exchange between SNLA and LLNL. This report describes the methods used in preparing SYNROC including the solution interaction, and hot-pressing methods used to obtain fully dense SYNROC monoliths

  1. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  2. TWRS tank waste pretreatment process development hot test siting report

    International Nuclear Information System (INIS)

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities

  3. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  4. Hot sample archiving. Revision 3

    International Nuclear Information System (INIS)

    McVey, C.B.

    1995-01-01

    This Engineering Study revision evaluated the alternatives to provide tank waste characterization analytical samples for a time period as recommended by the Tank Waste Remediation Systems Program. The recommendation of storing 40 ml segment samples for a period of approximately 18 months (6 months past the approval date of the Tank Characterization Report) and then composite the core segment material in 125 ml containers for a period of five years. The study considers storage at 222-S facility. It was determined that the critical storage problem was in the hot cell area. The 40 ml sample container has enough material for approximately 3 times the required amount for a complete laboratory re-analysis. The final result is that 222-S can meet the sample archive storage requirements. During the 100% capture rate the capacity is exceeded in the hot cell area, but quick, inexpensive options are available to meet the requirements

  5. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids

  6. Perpendicular electron cyclotron emission from hot electrons in TMX-U

    International Nuclear Information System (INIS)

    James, R.A.; Ellis, R.F.; Lasnier, C.J.; Casper, T.A.; Celata, C.M.

    1984-01-01

    Perpendicular electron cyclotron emission (PECE) from the electron cyclotron resonant heating of hot electrons in TMX-U is measured at 30 to 40 and 50 to 75 GHz. This emission is optically thin and is measured at the midplane, f/sub ce/ approx. = 14 GHz, in either end cell. In the west end cell, the emission can be measured at different axial positions thus yielding the temporal history of the hot electron axial profile. These profiles are in excellent agreement with the axial diamagnetic signals. In addition, the PECE signal level correlates well with the diamagnetic signal over a wide range of hot electron densities. Preliminary results from theoretical modeling and comparisons with other diagnostics are also presented

  7. Primary processes and ionic reactions in the chemistry of recoiling silicon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Boo, B.H.; Stewart, G.W.

    1993-01-01

    Hot atom chemistry has permitted the elucidation of the chemistry of free atoms, and these include the polyvalent atoms of refractory group 14 elements, that is, carbon, silicon and germanium. Since no more than two bonds are formed normally in a single reactive collision of free atoms, the study on the chemistry of atoms like C, Si and Ge that require the formation of more than two bonds to saturate their chemical valence necessarily involves the study of reactive intermediates. By the studies on the chemistry of recoiling 31 Si atoms, the mechanistic conclusions reached are reported. The most important unanswered questions concerning the reaction of recoiling 31 Si atoms in the systems are shown, and progress has been made toward the answering. By using tetramethyl silane as a trapping agent for silicon ions, it has been established that the reaction of 31 Si ions contributes significantly to the formation of products in recoil systems. The studies by various researchers on this theme are reported. (K.I.)

  8. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    International Nuclear Information System (INIS)

    Garcia, S.E.; Giannelli, J.F.; Jarvis, M.L.

    2010-01-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  9. BWR chemistry control status: a summary of industry chemistry status relative to the BWR water chemistry guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.E., E-mail: sgarcia@epri.com [Electric Power Research Inst. (EPRI), Palo Alto, California (United States); Giannelli, J.F.; Jarvis, M.L., E-mail: jgiannelli@finetech.com [Finetech, Inc., Parsippany, NJ (United States)

    2010-07-01

    The EPRI Boiling Water Reactor (BWR) Water Chemistry Guidelines were revised and issued in October 2008. The 2008 Revision of the Guidelines continues to focus on intergranular stress corrosion cracking (IGSCC), which can limit the service life of susceptible materials and components exposed to water chemistry environments. The 2008 Revision also places increased emphasis on fuel performance and meeting the industry goal of zero fuel failures by 2010. As an industry consensus document, the Guidelines were created to provide proactive water chemistry control strategies for mitigating IGSCC, maintaining fuel integrity and controlling radiation fields. The Guidelines provide a technically-based framework for an effective BWR water chemistry program. This paper provides an overview of industry experience relative to the Guidelines. Over the past few years, many BWR units have implemented noble metal chemical application technologies either during plant hot or cold shutdown or at normal power operating conditions. This paper explores plant experience with optimized water chemistry, implementation of various additive chemistries such as noble metal application and zinc addition, and compliance with the Guidelines recommendations. Depleted zinc oxide addition has been broadly applied across the BWR fleet since the 1980s. The guidance for zinc addition has been revised in the Guidelines to reflect concerns with fuel performance. While zinc addition is a successful method for shutdown dose rate control, concerns still exist for high zinc deposition on fuel surfaces, especially when feedwater iron is elevated and as fuel cores are being driven to provide maximum power output over longer fuel cycles. Recent plant experience has shown that the utilization of online noble metal application and continued zinc addition may provide additional benefits for radiation control. Dose rate experiences at plants utilizing the online noble metal application technology and zinc addition

  10. STUDI KEMAMPUAN GURU KIMIA SMA LULUSAN UNY DALAM MENGEMBANGKAN SOAL UAS BERBASIS HOTS

    Directory of Open Access Journals (Sweden)

    Dodi Iskandar

    2015-04-01

    Full Text Available This study aimed to investigate senior high school chemistry teachers ability to develop semester examination materials based on higher-order thinking skills. This kind of research was a survey. A number of respondents were 15 chemistry teachers with 559 questions of semester final examination in year 2013. The used methods was documentation. This research used a document check list as an instrument to collect data. The analyzed data were C1 (remember, C2 (understand, C3 (apply that included lower order thinking skills (LOTS, C4 (analyze, C5 (evaluate and C6 (create which classified to higher order thingking skills (HOTS. The results of the study was senior high school chemistry teachers ability to develop a semester examination material based on higher order thinking skills is 13,9%, which consists of C4 13.2%; C5 0.7% and C6 0.0%.

  11. Labeling proteins on live mammalian cells using click chemistry.

    Science.gov (United States)

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d.

  12. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    Science.gov (United States)

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  13. Chemical effect in nuclear decay processes. Applications in in situ studies in hot atom chemistry

    International Nuclear Information System (INIS)

    Urch, D.S.

    1993-01-01

    In certain cases, secondary processes, such as X-ray or electron emission initiated by the primary event, do show effects which can be correlated with the chemical state of the emitting atom. The most well known is Moessbauer recoil-less γ-emission, but this talk will concentrate on other, more widespread processes that follow either γ-ray internal conversion (γIC) or electron capture (EC). The former leads to electron emission and the latter to X-ray and Auger electron emission. Such emissions have been extensively studied in non-radioactive situations. These studies have shown that changes in photo- or Auger-electron energy can be readily correlated with valency and that the energies, peak shapes and peak intensities of X-rays that are generated by valence-core transitions show chemically related perturbations. γIC has been applied to the determination of changes of 3p and 3d binding energies as a function of technetium valency. The results are comparable with those from conventional X-ray photoelectron spectroscopy. In X-ray emission spectroscopy (XES) it is the Kα and Kβ X-rays from chromium ( 51 Cr) that have been most extensively studied. Studies in non-radioactive systems for chromium and related first row transition elements seem to indicate that the Kβ/Kα intensity ratio increases with valency. This may be rationalized as due to a greater response by 3p than 2p electrons to a reduction in the number of 3d electrons: 3p becomes more contracted and so the 3p → 1s transition probability is enhanced leading to the relative increase in Kβ intensity. Once 'chemical effects' in γIC and EC:XES have been established for a range of recoil elements they may be used to determine the chemical state of a recoil atom in a solid state matrix without recourse to dissolution. Such a non-invasive procedure will yield invalunable data on the primary hot atom chemistry processes. (author)

  14. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P [Maison de la Chimie, 75 - Paris (France); Davenas, A [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M [Air Force Office of Scientific Research, Arlington, VA (United States); and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  15. New design architecture decisions on water chemistry support systems at new VVER plants

    International Nuclear Information System (INIS)

    Kumanina, V.E.; Yurmanova, A.V.

    2010-01-01

    Major goals of nuclear power plant design upgrading are reduction of cost and construction time with unconditional safety assurance. Main ways of further improvement of nuclear power plant design are as follows: review of the results of research engineering and development and of new technologies; harmonization with international codes and standards; justified liberalization of conservatism based on operating experience and use of improved design codes. Operational experience of Russian and foreign NPPs has shown that the designs of new NPPs could be improved by upgrading water chemistry support systems. Some new design solutions for water chemistry support systems are currently implemented at new WWER plants such as Bushehr, Kudankulam, Belene, Balakovo Units 5 and 6, AES-2006 project. The paper highlights the improvements of the following systems and processes: low temperature high pressure primary coolant clean-up system; primary system surface preconditioning during pre-start hot functional testing; steam generator blowdown cleanup system; secondary water chemistry; phosphate water chemistry in intermediate cooling circuits and other auxiliary systems; alternator cooling system water chemistry; steam generator cleanup and decontamination systems. (author)

  16. Hot oxygen atoms: Their generation and chemistry. [Production by sputtering; reaction with butenes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrieri, R.A.; Chu, Yung Y.; Wolf, A.P.

    1987-01-01

    Oxygen atoms with energies between 1 and 10 eV have been produced through ion beam sputtering from metal oxide targets. Argon ion beams were used on Ta/sub 2/O/sub 5/ and V/sub 2/O/sub 5/. Results show that some control may be exerted over the atom's kinetic energy by changing the target. Reactions of the hot O(/sup 3/P) with cis- and trans-butenes were investigated. (DLC)

  17. Electrolyte chemistry control in electrodialysis processing

    Science.gov (United States)

    Hayes, Thomas D.; Severin, Blaine F.

    2017-12-26

    Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

  18. Color and Surface Chemistry Changes of Pine Wood Flour after Extraction and Delignification

    Science.gov (United States)

    Yao Chen; Mandla A. Tshabalala; Jianmin Gao; Nicole M. Stark; Yongming Fan

    2014-01-01

    A detailed study was undertaken to examine the color and chemistry changes of pine wood flour when its extractives are removed and when it is delignified. The solvent systems employed were toluene/ethanol (TE), acetone/water (AW), and hot-water (HW), while sodium chlorite/acetic acid were used for delignification (i.e., lignin removal (LR)). Samples were analyzed by...

  19. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Science.gov (United States)

    Hartmann, Pascal; Bender, Conrad L; Busche, Martin; Eufinger, Christine

    2015-01-01

    Summary Research devoted to room temperature lithium–sulfur (Li/S8) and lithium–oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems. PMID:25977873

  20. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

    Directory of Open Access Journals (Sweden)

    Philipp Adelhelm

    2015-04-01

    Full Text Available Research devoted to room temperature lithium–sulfur (Li/S8 and lithium–oxygen (Li/O2 batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampered by some fundamental key issues, which are currently being tackled by numerous approaches. Quite surprisingly, not much is known about the analogous sodium-based battery systems, although the already commercialized, high-temperature Na/S8 and Na/NiCl2 batteries suggest that a rechargeable battery based on sodium is feasible on a large scale. Moreover, the natural abundance of sodium is an attractive benefit for the development of batteries based on low cost components. This review provides a summary of the state-of-the-art knowledge on lithium–sulfur and lithium–oxygen batteries and a direct comparison with the analogous sodium systems. The general properties, major benefits and challenges, recent strategies for performance improvements and general guidelines for further development are summarized and critically discussed. In general, the substitution of lithium for sodium has a strong impact on the overall properties of the cell reaction and differences in ion transport, phase stability, electrode potential, energy density, etc. can be thus expected. Whether these differences will benefit a more reversible cell chemistry is still an open question, but some of the first reports on room temperature Na/S8 and Na/O2 cells already show some exciting differences as compared to the established Li/S8 and Li/O2 systems.

  1. Immune changes during whole body hot water immersion: the role of growth hormone.

    Science.gov (United States)

    Kappel, M; Poulsen, T D; Hansen, M B; Galbo, H; Pedersen, B K

    1997-07-01

    Studies examined the role of growth hormone, catecholamines, and beta-endorphins in changes in natural killer cell activity, subtypes of blood mononuclear cells, and leukocyte concentration in response to hot water immersion in humans. The response of leukocytes and neutrophils to 2 hours of hot water immersion and simultaneous administration of propranolol, somatostatin, naloxone, or isotonic saline are reported.

  2. Surface chemistry of gold nanoparticles determines the biocorona composition impacting cellular uptake, toxicity and gene expression profiles in human endothelial cells.

    Science.gov (United States)

    Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A

    2017-05-01

    This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.

  3. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen......Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  4. Closure of the concrete supercontainer in hot cell under thermal load

    Energy Technology Data Exchange (ETDEWEB)

    Craeye, Bart, E-mail: bart.craeye@artesis.b [Artesis Univerity College of Antwerp, Applied Engineering and Technology, Antwerp (Belgium); De Schutter, Geert [Magnel Laboratory for Concrete Research, Ghent University, Technologiepark-Zwijnaarde 904, 9052 Ghent (Belgium); Wacquier, William; Van Humbeeck, Hughes [ONDRAF/NIRAS, Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Belgium); Van Cotthem, Alain [Tractebel Development Engineering, Consulting Company (Belgium); Areias, Lou [SCK.CEN, Belgian Nuclear Research Center (Belgium)

    2011-05-15

    Research highlights: We model the behaviour of the supercontainer for the disposal of high-level waste and spent fuel assemblies during fabrication at ground surface. We study the early-age cracking behaviour of the buffer and evaluate the crack creating mechanisms. In case accurate measures are taken, cracking of the buffer can be avoided. - Abstract: For the final disposal of long-lived, heat-emitting vitrified high-level waste (HLW) in a clayey host rock, an intensive study is conducted to investigate the early-age behaviour of concrete supercontainers. Self-compacting concrete (SCC) is taken as the reference concrete type as it facilitates the casting process in combination with an improved homogeneity compared to the traditional concrete compositions. A laboratory characterization program is conducted to obtain the relevant thermal, mechanical and maturity-related properties of the SCC. These obtained data are implemented into the material database of the finite element tool HEAT to study the behaviour of the concrete layers during the different construction stages of the supercontainer: (i) Stage 1: Fabrication of the concrete buffer inside a stainless steel envelope. No early-age cracking is expected in case accurate measures are taken to reduce the thermal gradient between the outer surface and the middle of the buffer, e.g. by providing insulation and excluding wind. (ii) Stages 2-4: Emplacement of the carbon steel overpack containing the HLW canisters, filling the remaining annular gap with cementitious filler and closure by fitting the lid under thermal load. The construction stages (2-4) for the closure of the supercontainer are executed in hot cell. In this study, the crack creating mechanism and the behaviour of the concrete supercontainer during these construction stages in hot cell are investigated. In case precautionary measures are taken, such as reducing the coefficient of thermal expansion (CTE) of the overpack, prolonging the preceding cooling

  5. Closure of the concrete supercontainer in hot cell under thermal load

    International Nuclear Information System (INIS)

    Craeye, Bart; De Schutter, Geert; Wacquier, William; Van Humbeeck, Hughes; Van Cotthem, Alain; Areias, Lou

    2011-01-01

    Research highlights: → We model the behaviour of the supercontainer for the disposal of high-level waste and spent fuel assemblies during fabrication at ground surface. → We study the early-age cracking behaviour of the buffer and evaluate the crack creating mechanisms. → In case accurate measures are taken, cracking of the buffer can be avoided. - Abstract: For the final disposal of long-lived, heat-emitting vitrified high-level waste (HLW) in a clayey host rock, an intensive study is conducted to investigate the early-age behaviour of concrete supercontainers. Self-compacting concrete (SCC) is taken as the reference concrete type as it facilitates the casting process in combination with an improved homogeneity compared to the traditional concrete compositions. A laboratory characterization program is conducted to obtain the relevant thermal, mechanical and maturity-related properties of the SCC. These obtained data are implemented into the material database of the finite element tool HEAT to study the behaviour of the concrete layers during the different construction stages of the supercontainer: (i) Stage 1: Fabrication of the concrete buffer inside a stainless steel envelope. No early-age cracking is expected in case accurate measures are taken to reduce the thermal gradient between the outer surface and the middle of the buffer, e.g. by providing insulation and excluding wind. (ii) Stages 2-4: Emplacement of the carbon steel overpack containing the HLW canisters, filling the remaining annular gap with cementitious filler and closure by fitting the lid under thermal load. The construction stages (2-4) for the closure of the supercontainer are executed in hot cell. In this study, the crack creating mechanism and the behaviour of the concrete supercontainer during these construction stages in hot cell are investigated. In case precautionary measures are taken, such as reducing the coefficient of thermal expansion (CTE) of the overpack, prolonging the

  6. Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rodière, Jean; Lombez, Laurent, E-mail: laurent.lombez@chimie-paristech.fr [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); Le Corre, Alain; Durand, Olivier [INSA, FOTON-OHM, UMR 6082, F-35708 Rennes (France); Guillemoles, Jean-François [IRDEP, Institute of R and D on Photovoltaic Energy, UMR 7174, CNRS-EDF-Chimie ParisTech, 6 Quai Watier-BP 49, 78401 Chatou Cedex (France); NextPV, LIA CNRS-RCAST/U. Tokyo-U. Bordeaux, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-05-04

    We investigated a semiconductor heterostructure based on InGaAsP multi quantum wells (QWs) using optical characterizations and demonstrate its potential to work as a hot carrier cell absorber. By analyzing photoluminescence spectra, the quasi Fermi level splitting Δμ and the carrier temperature are quantitatively measured as a function of the excitation power. Moreover, both thermodynamics values are measured at the QWs and the barrier emission energy. High values of Δμ are found for both transition, and high carrier temperature values in the QWs. Remarkably, the quasi Fermi level splitting measured at the barrier energy exceeds the absorption threshold of the QWs. This indicates a working condition beyond the classical Shockley-Queisser limit.

  7. Bottled water, spas, and early years of water chemistry

    Science.gov (United States)

    Back, William; Landa, Edward R.; Meeks, Lisa

    1995-01-01

    Although hot springs have been used and enjoyed for thousands of years, it was not until the late 1700s that they changed the course of world civilization by being the motivation for development of the science of chemistry. The pioneers of chemistry such as Priestley, Cavendish, Lavoisier, and Henry were working to identify and generate gases, in part, to determine their role in carbonated beverages. In the 18th century, spas in America were developed to follow the traditional activities of popular European spas. However, they were to become a dominant political and economic force in American history on three major points: (1) By far the most important was to provide a place for the leaders of individual colonies to meet and discuss the need for separation from England and the necessity for the Revolutionary War; (2) the westward expansion of the United States was facilitated by the presence of hot springs in many locations that provided the economic justification for railroads and settlement; and (3) the desire for the preservation of hot springs led to the establishment of the National Park Service. Although mineral springs have maintained their therapeutic credibility in many parts of the world, they have not done so in the United States. We suggest that the American decline was prompted by: (1) the establishment of The Johns Hopkins School of Medicine in 1893; (2) enactment of the Pure Food and Drug Act of 1907; and (3) the remarkable achievement of providing safe water supplies for American cities by the end of the 1920s. The current expanding market for bottled water is based in part on bottled water being an alternative beverage Ito alcohol and sweetened drinks and the inconsistent palatability and perceived health hazards of some tap waters.

  8. Measurement of in-core and recirculation system response to hydrogen water chemistry at Nine Mile Point 1

    International Nuclear Information System (INIS)

    Head, R.A.; Indig, M.E.; Andresen, P.L.

    1991-03-01

    The value of hydrogen water chemistry (HWC) as a mitigation technique for out-of-core piping systems susceptible to intergranular stress corrosion cracking (IGSCC) is well established. However, certain reactor internal components exposed to high levels of radiation are susceptible to a cracking mechanism referred to as irradiation assisted stress corrosion cracking (IASCC). Some of the components potentially affected by IASCC include the top guide, SRM/IRM housings, the core shroud, and control blades. Fortunately, laboratory data indicate that IASCC can be controlled by altering the coolant environment. Hot cell tests performed at GE's Vallecitos Nuclear Center (VNC) on highly irradiated material produced a fracture surface with 99% IGSCC under normal BWR water chemistry. However, under HWC conditions, only ductile failure occurred. With this background, a program was established to determine the chemistry and oxidizing potential of the core bypass coolant at Nine Mile Point-1 (NMP-1) under normal and HWC conditions. The objective of the program was to assess whether HWC could sufficiently modify the core bypass environment to mitigate IASCC. Results showed that with the addition of hydrogen to the feedwater, core bypass dissolved oxygen decreased very rapidly, compared to the recirculation water, indicating very efficient recombination of hydrogen and oxygen in the non-boiling core bypass region. Since low concentrations of dissolved oxygen have been shown to eliminate IASCC, these results are encouraging. 8 figs., 1 tab

  9. BWR fuel performance under advanced water chemistry conditions – a delicate journey towards zero fuel failures – a review

    International Nuclear Information System (INIS)

    Hettiarachchi, S.

    2015-01-01

    Boiling Water Reactors (BWRs) have undergone a variety of chemistry evolutions over the past few decades as a result of the need to control stress corrosion cracking of reactor internals, radiation fields and personnel exposure. Some of the advanced chemistry changes include hydrogen addition, zinc addition, iron reduction using better filtration technologies, and more recently noble metal chemical addition to many of the modern day operating BWRs. These water chemistry evolutions have resulted in changes in the crud distribution on fuel cladding material, Co-60 levels and the Rod oxide thickness (ROXI) measurements using the conventional eddy current techniques. A limited number of Post-Irradiation Examinations (PIE) of fuel rods that exhibited elevated oxide thickness using eddy current techniques showed that the actual oxide thickness by metallography is much lower. The difference in these observations is attributed to the changing magnetic properties of the crud affecting the rod oxide thickness measurement by the eddy current technique. This paper will review and summarize the BWR fuel cladding performance under these advanced and improved water chemistry conditions and how these changes have affected the goal to reach zero fuel failures. The paper will also provide a brief summary of some of the results of hot cell PIE, results of crud composition evaluation, crud spallation, oxide thickness measurements, hydrogen content in the cladding and some fuel failure observations. (author) Key Words: Boiling Water Reactor, Fuel Performance, Hydrogen Addition, Zinc Addition, Noble Metal Chemical Addition, Zero Leakers

  10. Ceramide-Enriched Membrane Domains in Red Blood Cells and the Mechanism ofSphingomyelinase-Induced Hot-Cold Hemolysis

    DEFF Research Database (Denmark)

    Montes, Ruth; Lopez, David; Sot, Jesus

    2008-01-01

    Hot-cold hemolysis is the phenomenon whereby red blood cells, preincubated at 37 °C in the presence of certain agents, undergo rapid hemolysis when transferred to 4 °C. The mechanism of this phenomenon is not understood. PlcHR2, a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa......) but also in goat erythrocytes, which lack PC. However, in horse erythrocytes, with a large proportion of PC and almost no SM, hot-cold hemolysis induced by PlcHR2 is not observed. Fluorescence microscopy observations confirm the formation of ceramide-enriched domains as a result of PlcHR2 activity. After......-cold hemolysis. Differential scanning calorimetry of erytrocyte membranes treated with PlcHR2 demonstrates the presence of ceramide-rich domains that are rigid at 4 °C but fluid at 37 °C. Ceramidase treatment causes the disapperance of the calorimetric signal assigned to ceramide-rich domains. Finally...

  11. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  12. Archaeal diversity in Icelandic hot springs

    DEFF Research Database (Denmark)

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation...... of Archaea by analysis of amplified 16S rRNA genes. In addition to the three solfataras and the neutral hot spring, 10 soil samples in transects of the soil adjacent to the solfataras were analysed using terminal restriction fragment length polymorphism (t-RFLP). The sequence data from the clone libraries...... enzymes AluI and BsuRI. The sequenced clones from this solfatara belonged to Sulfolobales, Thermoproteales or were most closest related to sequences from uncultured Archaea. Sequences related to group I.1b were not found in the neutral hot spring or the hyperthermophilic solfatara (90 degrees C)....

  13. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    International Nuclear Information System (INIS)

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA's hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R ampersand D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required

  14. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  15. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    Science.gov (United States)

    Mikulska, Anna; Filipowska, Joanna; Osyczka, Anna; Nowakowska, Maria; Szczubiałka, Krzysztof

    2014-12-01

    Polymeric surfaces suitable for cell culture (DR/Pec) were constructed from diazoresin (DR) and pectin (Pec) in a form of ultrathin films using the layer-by-layer (LbL) technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs) to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins) was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP) activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2) to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  16. Osteoinductive activity of insulin-functionalized cell culture surfaces obtained using diazonium chemistry

    Directory of Open Access Journals (Sweden)

    Anna eMikulska

    2015-01-01

    Full Text Available Polymeric surfaces suitable for cell culture (DR/Pec were constructed from diazoresin (DR and pectin (Pec in a form of ultrathin films using the layer-by-layer (LbL technique. The surfaces were functionalized with insulin using diazonium chemistry. Such functionalized surfaces were used to culture human mesenchymal stem cells (hMSCs to assess their suitability for bone tissue engineering and regeneration. The activity of insulin immobilized on the surfaces (DR/Pec/Ins was compared to that of insulin dissolved in the culture medium. Human MSC grown on insulin-immobilized DR/Pec surfaces displayed increased proliferation and higher osteogenic activity. The latter was determined by means of alkaline phosphatase (ALP activity, which increases at early stages of osteoblasts differentiation. Insulin dissolved in the culture medium did not stimulate cell proliferation and its osteogenic activity was significantly lower. Addition of recombinant human bone morphogenetic protein 2 (rhBMP-2 to the culture medium further increased ALP activity in hMSCs indicating additive osteogenic action of immobilized insulin and rhBMP-2

  17. Employing Hot Wire Anemometry to Directly Measure the Water Balance in a Proton Exchange membrane Fuel Cell

    DEFF Research Database (Denmark)

    Shakhshir, Saher Al; Hussain, Nabeel; Berning, Torsten

    2015-01-01

    Water management in proton exchange membrane fuel cells (PEMFC’s) remains a critical problem for their durability, cost, and performance. Because the anode side of this fuel cell has the tendency to become dehydrated, measuring the water balance can be an important diagnosis tool during fuel cell...... operation. The water balance indicates how much of the product water leaves at the anode side versus the cathode side. Previous methods of determining the fuel cell water balance often relied on condensing the water in the exhaust gas streams and weighing the accumulated mass which is a time consuming...... process that has limited accuracy. Currently, our group is developing a novel method to accurately determine the water balance in a PEMFC in real time by employing hot-wire anemometry. The amount of heat transferred from the wire to the anode exhaust stream can be translated into a voltage signal which...

  18. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  19. Chemistry and biology by new multiple choice

    International Nuclear Information System (INIS)

    Seo, Hyeong Seok; Kim, Seong Hwan

    2003-02-01

    This book is divided into two parts, the first part is about chemistry, which deals with science of material, atom structure and periodic law, chemical combination and power between molecule, state of material and solution, chemical reaction and an organic compound. The second part give description of biology with molecule and cell, energy in cells and chemical synthesis, molecular biology and heredity, function on animal, function on plant and evolution and ecology. This book has explanation of chemistry and biology with new multiple choice.

  20. Synergetic topography and chemistry cues guiding osteogenic differentiation in bone marrow stromal cells through ERK1/2 and p38 MAPK signaling pathway.

    Science.gov (United States)

    Zhang, Xinran; Li, Haotian; Lin, Chucheng; Ning, Congqin; Lin, Kaili

    2018-01-30

    Both the topographic surface and chemical composition modification can enhance rapid osteogenic differentiation and bone formation. Till now, the synergetic effects of topography and chemistry cues guiding biological responses have been rarely reported. Herein, the ordered micro-patterned topography and classically essential trace element of strontium (Sr) ion doping were selected to imitate topography and chemistry cues, respectively. The ordered micro-patterned topography on Sr ion-doped bioceramics was successfully duplicated using the nylon sieve as the template. Biological response results revealed that the micro-patterned topography design or Sr doping could promote cell attachment, ALP activity, and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Most importantly, the samples both with micro-patterned topography and Sr doping showed the highest promotion effects, and could synergistically activate the ERK1/2 and p38 MAPK signaling pathways. The results suggested that the grafts with both specific topography and chemistry cues have synergetic effects on osteogenic activity of BMSCs and provide an effective approach to design functional bone grafts and cell culture substrates.

  1. Hot Flashes

    Science.gov (United States)

    Hot flashes Overview Hot flashes are sudden feelings of warmth, which are usually most intense over the face, neck and chest. Your skin might redden, as if you're blushing. Hot flashes can also cause sweating, and if you ...

  2. Possibilities and prospects of investigation of irradiated structural and fuel materials using scanning electron microscope PHILLIPS XL 30 ESEM-TMP installed in the hot cell

    International Nuclear Information System (INIS)

    Golovanov, V. N.; Novoselov, A.E.; Kuzmin, S.V.; Yakovlev, V. V.

    2005-01-01

    Scanning electron microscope Philips XL 30 ESEM - TMP with X-ray microanalysis system INCA has been installed at SSC RF RIAR. The microscope is placed in the hot cell. Monitoring and control system is installed in the operator's room. Irradiated specimens are supplied to the hot cell through the transport terminal and installed into the microscope by manipulators. Direct contact of the personnel with radioactive materials is impossible. In addition it is developed the system of remote placement of the irradiated specimens into the specimen chamber of microscope. The system includes a stage with three seats, holders for different types of specimens and equipment for their remote loading in the holders. (Author)

  3. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    International Nuclear Information System (INIS)

    Juárez, Carmen; Girart, Josep M.; Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier; Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab; Zhang, Qizhou; Qiu, Keping

    2017-01-01

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s −1 , converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  4. Development of a new miniature short-residence-time annular centrifugal solvent extraction contactor for tests of process flowsheets in hot cells

    International Nuclear Information System (INIS)

    Lanoe, J.Y.; Rivalier, P.

    2000-01-01

    Researches undertaken on new nuclear fuel reprocessing extraction processes need tests of process flowsheets in hot cells. To this goal, a new miniature short residence-time annular centrifugal solvent extraction contactor was conceived and developed at Marcoule. This single stage contactor is composed of an outer stationary cylinder (made of transparent plexiglas on prototype and of stainless steel on models for hot cells) and a suspended inner rotating cylinder of stainless steel; the inside diameter of the rotor is 12 mm. Aqueous and organic phases are fed into the gap between the two cylinders. The mixture flows down the annular space and then up through an orifice at the bottom of the rotor. Into the rotor, the emulsion breaks rapidly under the centrifugal force (up to 600 g with rotor speed of 10,000 rpm). The separated phases flow over their weirs and discharge at the top in their collector rings. The liquid hold-up of this centrifugal contactor is approximately 6 mL. The use in hots cells needed original designs for: - the assembly of a single-stage contactor: every part (motor, rotor, stationary housing) is simply inserted on the other one without screws and nuts; - the assembly of multistage group: every stage is stacking in two rails and an intermediate part (supported on the two rails) links exit ports and their corresponding inlet ports. All the parts are pressed and sealed against a terminal plate with a screw. Separating capacity tests with. a prototype were conducted using water as the aqueous phase and hydrogenated tetra-propylene (TPH) as the organic phase with aqueous to organic (A/O) flow ratio equal to 1. The best performances were obtained with rotor speed ranging from 4000 to 5000 rpm; the total throughput was then up to 2 L.h -1 . For a total throughput of 300 mL.h -1 , the hold-up in the annular mixing zone varied from 0.5 to 1.5 mL according to the A/O ratio and the starting mode. A number of tests were also performed to measure the

  5. The reliability improvement plan of hot cell examination data by introducing of Kolas

    International Nuclear Information System (INIS)

    Hong, Kwon Pyo; Park, Dae Gyu; Ahn, Sang Bok; Choo, Yong Sun; Song, Wung Sup; Jung, Yang Hong; Yoo, Byung Ok; Baik, Seung Je; Lim, Nam Jin; Nam Ju Hee

    2000-01-01

    For enhancement of hot cell data reliability produced at Irradiated Material Examination Facility in KAERI,Korea a project to introduce Kolas of National Quality Assurance Institute. By Kolas introduction the examination data currently produced would be reinforced by additional function of uncertainty evaluation and would obtained more reliable data. The all of data collected would be quality controlled, so that it would be re-traceable. Presently at IMEF shock test, tension test, dimension measurement test, hardness test, density test, and composition analysis test will be subject to Kolas. It is also planned to expand the number of test items in near future. At the end of 2000 year IMEF aims to secure the certificate issued by the National Quality Assurance Institute. (Hong, J. S.)

  6. Research and design of module supporting and rotary device in hot cell

    International Nuclear Information System (INIS)

    Wu Wenguang; Song Changfei; Chen Mingchi

    2013-01-01

    Background: This paper introduced a device for tandem accelerator project, designed for the radioactive target source module maintaining and testing. Purpose: The module is required to be lifting, rotary and precise orientation in technology. Methods: We designed the structure of rotary drum, supporting drum and screw lifting device to achieve the function. In circumference, we adopt the project with electro-motion cursory locate, hand-motion precise locate, sensor location detect and cylinder locate pin, the measure is safe and trustiness. Results: Via experimentation, all technology targets are fulfilled, and the rationality and reliability of the device has been validated. Conclusions: The successful development of this device provides a good direction and reference for radioactive areas such as accelerator, hot cell, reactor etc., and can be adapted to its capability of long-distance shield operating, maintaining or testing. (authors)

  7. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Fruzzetti, K.; Garcia, S. [Electric Power Research Inst., Palo Alto, California (United States); Eaker, R. [Richard W. Eaker, LLC, Matthews, North Carolina (United States); Giannelli, J.; Tangen, J. [Finetech, Inc., Parsippany, New Jersey (United States); Gorman, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Sawochka, S. [NWT Corp., San Jose, California (United States)

    2010-07-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  8. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Kim, K.; Fruzzetti, K.; Garcia, S.; Eaker, R.; Giannelli, J.; Tangen, J.; Gorman, J.; Marks, C.; Sawochka, S.

    2010-01-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for current operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of industry approved water chemistry controls. In parallel, the industry will need to consider and develop updated water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. In 2010, EPRI began to assess chemistry control strategies at advanced plants, based on the Design Control Documents (DCDs), Combined Construction and Operating License Applications (COLA), and operating experiences (where they exist) against current Water Chemistry Guidelines. Based on this assessment, differences between planned chemistry operations at new plants and the current Guidelines will be identified. This assessment will form the basis of future activities to address these differences. The project will also assess and provide, as feasible, water chemistry guidance for startup and hot functional testing of the new plants. EPRI will initially assess the GE-Hitachi/Toshiba ABWR and the Westinghouse AP1000 designs. EPRI subsequently plans to assess other plant designs such as the AREVA U.S. EPR, Mitsubishi Heavy Industries (MHI) U.S. APWR, and GE-Hitachi (GE-H) ESBWR. This paper discusses the 2010 assessments of the ABWR and AP1000. (author)

  9. HOT 2011

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager 21 læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet....

  10. Solar Hot Water Heater

    Science.gov (United States)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  11. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...... lamination have a great influence on the catalyst properties of a low-temperature PEMFC, especially on its durability. Lamination pressure, temperature and duration were systematically studied in relation to the electrochemical surface area, platinum dissolution, platinum particle size and electrode surface...

  12. A new approach for helium backfilling and leak testing seal-welded capsules in a hot cell

    International Nuclear Information System (INIS)

    Strasslsund, E.K.; Berger, D.N.

    1992-05-01

    Gamma irradiation sources containing radioactive 137 Cesium Chloride are being produced at the US Department of Energy's Hanford Site as part of a Westinghouse Hanford company/Pacific Northwest Laboratory cooperative program. New equipment was developed to leak test the double-encapsulated sources in a hot cell. The equipment, which includes a helium backfill chamber and end cap press , a vacuum chamber, and a helium mass spectrometer, has provided technicians with the capability to detect leaks in sealed sources as small as 1. 0x10 -7 atm cm 3 /S helium

  13. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  14. Characterization report for Building 301 Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950`s and 1960`s for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970`s, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled.

  15. Characterization report for Building 301 Hot Cell Facility

    International Nuclear Information System (INIS)

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950's and 1960's for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970's, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled

  16. THE DETECTION OF A HOT MOLECULAR CORE IN THE LARGE MAGELLANIC CLOUD WITH ALMA

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kawamura, Akiko; Aikawa, Yuri

    2016-01-01

    We report the first detection of a hot molecular core outside our Galaxy based on radio observations with ALMA toward a high-mass young stellar object (YSO) in a nearby low metallicity galaxy, the Large Magellanic Cloud (LMC). Molecular emission lines of CO, C 17 O, HCO + , H 13 CO + , H 2 CO, NO, SiO, H 2 CS, 33 SO, 32 SO 2 , 34 SO 2 , and 33 SO 2 are detected from a compact region (∼0.1 pc) associated with a high-mass YSO, ST11. The temperature of molecular gas is estimated to be higher than 100 K based on rotation diagram analysis of SO 2 and 34 SO 2 lines. The compact source size, warm gas temperature, high density, and rich molecular lines around a high-mass protostar suggest that ST11 is associated with a hot molecular core. We find that the molecular abundances of the LMC hot core are significantly different from those of Galactic hot cores. The abundances of CH 3 OH, H 2 CO, and HNCO are remarkably lower compared to Galactic hot cores by at least 1–3 orders of magnitude. We suggest that these abundances are characterized by the deficiency of molecules whose formation requires the hydrogenation of CO on grain surfaces. In contrast, NO shows a high abundance in ST11 despite the notably low abundance of nitrogen in the LMC. A multitude of SO 2 and its isotopologue line detections in ST11 imply that SO 2 can be a key molecular tracer of hot core chemistry in metal-poor environments. Furthermore, we find molecular outflows around the hot core, which is the second detection of an extragalactic protostellar outflow. In this paper, we discuss the physical and chemical characteristics of a hot molecular core in the low metallicity environment.

  17. Murine leukemia virus vector integration favors promoter regions and regional hot spots in a human T-cell line

    International Nuclear Information System (INIS)

    Tsukahara, Tomonori; Agawa, Hideyuki; Matsumoto, Sayori; Matsuda, Mizuho; Ueno, Shuichi; Yamashita, Yuki; Yamada, Koichiro; Tanaka, Nobuyuki; Kojima, Katsuhiko; Takeshita, Toshikazu

    2006-01-01

    Genomic analysis of integration will be important in evaluating the safety of human gene therapy with retroviral vectors. Here, we investigated MLV vector integration sites in human T-cells, since they are amenable to gene transfer studies, and have been used therapeutically in clinical trials. We mapped 340 MLV vector integration sites in the infected human T-cell clones we established. The data showed that MLV preferred integration near the transcription start sites (±5 kb), near CpG islands (±1 kb), and within the first intron of RefSeq genes. We also identified MLV integration hot spots that contained three or more integrations within a 100 kb region. RT-PCR revealed that mRNA-levels of T-cell clones that contained MLV integrations near transcription start sites or introns were dysregulated compared to the uninfected cells. These studies help define the profile of MLV integration in T-cells and the risks associated with MLV-based gene therapy

  18. Hot cell works and related irradiation tests in fission reactor for development of new materials for nuclear application

    International Nuclear Information System (INIS)

    Shikama, Tatsuo

    1999-01-01

    Present status of research works in Oarai Branch, Institute for Materials Research, Tohoku University, utilizing Japan Materials Testing Reactor and related hot cells will be described.Topics are mainly related with nuclear materials studies, excluding fissile materials, which is mainly aiming for development of materials for advanced nuclear systems such as a nuclear fusion reactor. Conflict between traditional and routined procedures and new demands will be described and future perspective is discussed. (author)

  19. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    Science.gov (United States)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  20. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes the activities of the Department of Research Reactor Operation in fiscal year of 1989. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 was reconstructed to enhance the performance for utilization. The first criticality was achieved on March 22, 1989, and it subsequently went into operation. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  1. Ayty: a New Line-List for Hot Formaldehyde

    Science.gov (United States)

    Al-Refaie, Ahmed Faris; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2015-06-01

    The ExoMol [1] project aims at providing spectroscopic data for key molecules that can be used to characterize the atmospheres of exoplanets and cool stars. Formaldehyde (H2CO) is of growing importance in studying and modelling terrestrial atmospheric chemistry and dynamics. It also has relevance in astrophysical phenomena that include interstellar medium abundance, proto-planetary and cometary ice chemistry and masers from extra-galactic sources. However there gaps in currently available absolute intensities and a lack of higher rotational excitations that makes it unfeasible to accurately model high temperature systems such as hot Jupiters. Here we present AYTY [2], a new line list for formaldehyde applicable to temperatures up to 1500 K. AYTY contains almost 10 million states reaching rotational excitations up to J=70 and over 10 billion transitions at up to 10 000 cm-1. The line list was computed using the variational ro-vibrational solver TROVE with a refined ab-initio potential energy surface and dipole moment surface. J.~Tennyson and S.~N. Yurchenko MNRAS, 425:21--33, 2012. A.~F. Al-Refaie, S.~N. Yurchenko, A.~Yachmenev, and J.~Tennyson MNRAS, 2015.

  2. Decommissioning program and future plan for research hot laboratory (2)

    International Nuclear Information System (INIS)

    Koya, Toshio; Nozawa, Yukio; Hanada, Yasushi; Ono, Katsuto; Kanazawa, Hiroyuki; Nihei, Yasuo; Owada, Isao

    2010-01-01

    The Research Hot Laboratory (RHL) in Japan Atomic Energy Agency (JAEA) was constructed in 1961, as the first one in JAPAN, to perform the examinations of irradiated fuels and materials. RHL consists of 10 heavy concrete cells and 38 lead cells, which had been contributed to research and development program in or out of JAEA for the investigation of irradiation behavior for fuels and nuclear materials. However, RHL is the one of target as the rationalization program for decrepit facilities in former Tokai institute. Therefore the decommissioning works of RHL have been started on April 2003. The decommissioning work will be progressing, dismantling the lead cells and decontamination of concrete caves then release in the regulation of controlled area. The 18 lead cells (including semi-hot cell and junior-cell) had been dismantled. Removal of the applause from the cells, survey of the contamination revel in the lead cells and prediction of radio active waste have been finished as the preparing work for dismantling of the remained 20 lead cells. The future plan of decommissioning work has been prepared to incarnate the basic vision and dismantling procedure. (author)

  3. HOT 2014

    DEFF Research Database (Denmark)

    Lund, Henriette

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  4. Management of hot cell waste in Atalante Facilities (abstract and presentation slides)

    International Nuclear Information System (INIS)

    Dancausse, Jean-Philippe; Ferlay, Gilles; Eysseric, Catherine

    2005-01-01

    In solution R and D experiments on nuclear fuel from dissolution to liquid extraction lead to produce a large set of wastes. This paper present how these highly contaminated solid and liquid wastes is managed in Hot Cells and in Atalante. Firstly, an inventory of several types of generated wastes is made: 1) Solid wastes. 2) Glass reactors and liquid solution containers. 3) Plastic and Teflon materials for sampling, Highly corrosive solutions. 4) Metallic containers for solid storage like fuels, crucibles. 5) Miscellaneous mixed solid materials. 6) Liquid wastes. 7) Rinsing liquids. 8) Highly corrosive waste containing fluorhydric acid. 9) Analytical solution with sulphate ions. 10) Organic solvent coming from liquid-liquid extraction. A focus will be made on optimised treatment of 1) solid wastes: Mechanically and chemically 2) liquid wastes containing sulphate ions and hydrogen fluoride, 3) organic liquid waste: to remove activity before hydrothermal oxidation. (Author)

  5. Treatment of concrete bars from the dismantling of hot cells

    International Nuclear Information System (INIS)

    Graf, A.; Stutz, U.; Valencia, L.

    2002-01-01

    The Central Decontamination Operations Department (HDB) of the Karlsruhe Research Center operates facilities for the disposal of radioactive waste. In general, their objective is to decontaminate radioactive residues for unrestricted release in order to minimize the volume of waste products suitable for repository storage. In the case of about 120 concrete bars from the dismantling of hot cells, we reduce the volume of radioactive waste by sawing off the most contaminated parts of the bar. If there are no insertions such as cables or ventilation systems, the rest of the bar is sandblasted and its activity manually measured to ensure compliance with the release criteria. Otherwise, the bar is minced into small pieces by a power shovel. Afterwards, the rubble is filled into drums and its activity is measured by the clearance measurement facility. If the rubble and the sandblasted bars do not exceed the activity limit specified by the release criteria, the material is disposed of without further regulations for unrestricted use. Those parts of the bars which can not be released must be stored in special containers suitable for the KONRAD final disposal. Using this method, about 70 % of the total mass can be released. (author)

  6. Dose control programme of Hot Cell facility at Isotope Wing

    International Nuclear Information System (INIS)

    Sapkal, Jyotsna A.; Suresh, Manju; Shreenivas, V.; Amruta, C.T.; Yadav, R.K.B.; Gopalkrishanan, R.K.; Patil, B.N.; Sastry, K.V.S.

    2015-01-01

    Hot Cell Facility of Board of Radiation Isotope Technology (BRIT) at Radiological Laboratories (RLG) is involved in fabrication of sealed radioisotopes like Cobalt-60, Cesium-137 and Iridium-192 radioisotopes which are widely used for various medical and industrial applications. In the field of Medicine, above radioactive sources are used for treatment procedures such as Teletherapy and Brachytherapy. 192 Ir radioisotope is widely used for industrial radiography particularly for non-destructive testing of welds in steel in the oil and gas industries. In spite of the increased production of these radioisotopes to meet the requirements from medical and industrial sector, the annual Collective Dose for BRIT facility, during 2011-2013 has shown a downward trend. This paper describes in brief the measures adopted by the facility based on the radiological safety inputs provided by Radiation Hazards Control (RHC) Unit of Isotope Wing, RLG for reducing the collective dose during year 2012 and 2013 by nearly 40% of collective dose consumed for year-2011. Strict implementation of the radiological safety measures during handling of radioactive sources, administrative controls and engineered safety measures resulted in lowering of collective dose during year 2011-2013. (author)

  7. A new stack effluent monitoring system at the Risoe Hot Cell plant

    International Nuclear Information System (INIS)

    Boetter-Jensen, L.; Hedemann Jensen, P.; Lauridsen, B.

    1984-06-01

    This report describes a new stack effluent monitoring system that has been installed at the Hot Cell facility. It is an integrating iodine/particulate system consisting of a γ-shielded flow house in which a continous air sample from the ventilation channel ia sucked through coal and glass filter papers. Activity is accumulated on the filter papers and a thin plastic scintillator detects the β-radiation from the trapped iodine or particulate activity. The stack effluent monitoring system has a two-step regulating function as applied to the ventilation system, first switching it to a recirculating mode, and finally to building-seal after given releases of 131 I. The collection efficiency for iodine in form of elementary iodine (I 2 ) and methyliodide (CH 3 I) has been determined experimentally. The unwanted response from a noble gas release has also been determined from experiments. The noble gas response was determined from puff releases of the nuclide 41 Ar in the concrete cells. It is concluded that the iodine/particulate system is extremely sensitive and that it can easily detect iodine or particulate releases as low as a few MBq. A gamma monitor placed in connection with the iodine/particulate system detects Xe/Kr-releases as low as a few tens of MBq per second. (author)

  8. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  9. Criticality safety training at the Hot Fuel Examination Facility

    International Nuclear Information System (INIS)

    Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

    1983-01-01

    HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program

  10. HOT 2010

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  11. HOT 2013

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010.......En undersøgelse af, hvad der er hot - og burde være hot på læseområdet. I undersøgelsen deltager en række læsekyndige fra praksisfeltet, professionshøjskolerne og forskningsområdet. Undersøgelsen er gentaget hvert år siden 2010....

  12. Suppression of sawtooth oscillations due to hot electrons and hot ions

    International Nuclear Information System (INIS)

    Zhang, Y.Z.; Berk, H.L.

    1989-01-01

    The theory of m = 1 kink mode stabilization is discussed in the presence of either magnetically trapped hot electrons or hot ions. For instability hot ion requires particles peaked inside the q = 1 surface, while hot electrons require that its pressure profile be increasing at the q = 1 surface. Experimentally observed sawtooth stabilization usually occurs with off-axis heating with ECRH and near axis heating with ICRH. Such heating may produce the magnetically trapped hot particle pressure profiles that are consistent with theory. 17 refs., 2 figs

  13. Magnetized Converging Flows toward the Hot Core in the Intermediate/High-mass Star-forming Region NGC 6334 V

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Carmen; Girart, Josep M. [Institut de Ciències de l’Espai, (CSIC-IEEC), Campus UAB, Carrer de Can Magrans, S/N, E-08193 Cerdanyola del Vallès, Catalonia (Spain); Zamora-Avilés, Manuel; Palau, Aina; Ballesteros-Paredes, Javier [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, P.O. Box 3-72, 58090, Morelia, Michoacán (Mexico); Tang, Ya-Wen; Koch, Patrick M.; Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei, 10617, Taiwan (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping, E-mail: juarez@ice.cat [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China)

    2017-07-20

    We present Submillimeter Array (SMA) observations at 345 GHz toward the intermediate/high-mass cluster-forming region NGC 6334 V. From the dust emission we spatially resolve three dense condensations, the brightest one presenting the typical chemistry of a hot core. The magnetic field (derived from the dust polarized emission) shows a bimodal converging pattern toward the hot core. The molecular emission traces two filamentary structures at two different velocities, separated by 2 km s{sup −1}, converging to the hot core and following the magnetic field distribution. We compare the velocity field and the magnetic field derived from the SMA observations with magnetohydrodynamic simulations of star-forming regions dominated by gravity. This comparison allows us to show how the gas falls in from the larger-scale extended dense core (∼0.1 pc) of NGC 6334 V toward the higher-density hot core region (∼0.02 pc) through two distinctive converging flows dragging the magnetic field, whose strength seems to have been overcome by gravity.

  14. Robot Work Platform for Large Hot Cell Deactivation

    International Nuclear Information System (INIS)

    BITTEN, E.J.

    2000-01-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area

  15. Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b

    Science.gov (United States)

    Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.

    2018-03-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.

  16. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    Science.gov (United States)

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Evaluation of advanced hot conditioning process for PHWRS

    International Nuclear Information System (INIS)

    Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S.

    2015-01-01

    Hot-conditioning/hot functional test process is carried out to the PHT system of reactor before reactor going to critical/operational. The process is aimed in checking the component functionalities at high temperature and high pressure conditions, the process also checks/removes the suspended corrosion products in heat transport circuit. This process leads to formation of a passive or corrosion oxide film on the heat transport circuit surfaces which protects/mitigates the corrosion of the system circuits during the operation of plant. Major concerned alloy in the Primary Heat Transport (PHT) system of Indian PHWRs during the hot conditioning process and also during operation is the carbon steel due to its high corrosion. Hot-conditioning process mitigates the corrosion of carbon steel by the formation of iron oxide (Fe 3 O 4 ) as major oxide phase layer on the carbon steel surface with a typical thickness of 1.0 μm with particle size of 1μm after 336 h of process at 250 °C. But this passive oxide film thickness increase with time of operation of system with c.a. 10μm for 2.2 EFYP. The protectiveness of passive layer can be further enhanced by reducing the particle sizes in the passive film to nano meter range. The process can impact on the compactness of passive oxide layer with reduced pores in the oxide layer and properties of the nano nature oxide (transport properties) impacting the corrosion mitigation. The corrosion mitigation reduce the source term in the activated corrosion product generation. To achieve this a new process 'Advanced hot conditioning' was developed in water steam chemistry division, BARC for getting a passive oxide film with a lowered particle size in the passive film. The AHC process with 1g/L of PEG-8000 at 250 °C for 336 h showed a particle size <100 nm. The process was tested under the normal operating conditions as function of the time, the corrosion parameter like oxide film thickness, corrosion rate and metal ion

  18. Twenty years of chemistry associated with the needs and utilization of nuclear reactors at the 'Boris Kidric' Institute of nuclear sciences, Vinca, Yugoslavia

    International Nuclear Information System (INIS)

    1969-01-01

    This publication covers nine review papers on the following topics related to the needs and utilization of nuclear reactors in the Boris Kidric Institute of nuclear sciences during previous twenty years: radiochemistry, hot atom chemistry, isotope production, spent nuclear fuel reprocessing, chemistry of transuranium elements; liquid radioactive waste processing, purification of reactor coolant water by inorganic ion exchangers, research related to deuterium concentration processes, and chemical dosimetry at the RA reactor [sr

  19. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    KAUST Repository

    Avşar, Özgür

    2017-08-07

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2–3m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth\\'s crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from K

  20. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins

    Science.gov (United States)

    Avşar, Özgür; Avşar, Ulaş; Arslan, Şebnem; Kurtuluş, Bedri; Niedermann, Samuel; Güleç, Nilgün

    2017-10-01

    In this study, horizontal temperature measurements along organized grids have been used to detect subaqueous hot springs. The study area, located in the southwest of Turkey and comprised of Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay, was scanned by measuring temperatures horizontally, 2-3 m above the bottom of the lake or sea. After analyzing the temperature data along the grids, the locations with anomalous temperature values were detected, and divers headed here for further verification. Accordingly, among these anomalies, the divers confirmed seven of them as subaqueous hot springs. Three of these hot springs are located in the Köyceğiz Lake, three of them are located in the Dalyan Channel and one hot spring is located in the Fethiye-Göcek Bay. At the locations where temperature anomalies were detected, the divers collected samples directly from the subaqueous hot spring using a syringe-type sampler. We evaluated these water samples together with samples collected from hot and cold springs on land and from local rivers, lakes and the sea, with an aim to generate a conceptual hydrogeochemical model of the geothermal system in the study area. This model predicts that rainwater precipitating in the highlands percolates through fractures and faults into the deeper parts of the Earth's crust, here it is heated and ascends through the sea bottom via buried faults. Pervious carbonate nappes that are underlain and overlain by impervious rocks create a confined aquifer. The southern boundary of the Carbonate-Marmaris nappes is buried under alluvium and/or sea/lake water bodies and this phenomenon determines whether hot springs occur on land or subaqueous. The chemical and isotopic properties of the hot springs point to seawater mixing at deep levels. Thus, the mixing most probably occurs while the water is ascending through the faults and fractures. The gas geochemistry results reveal that the lowest mantle He contributions occur in the samples from K

  1. Hot tearing susceptibility of binary Mg–Y alloy castings

    International Nuclear Information System (INIS)

    Wang, Zhi; Huang, Yuanding; Srinivasan, Amirthalingam; Liu, Zheng; Beckmann, Felix; Kainer, Karl Ulrich; Hort, Norbert

    2013-01-01

    Highlights: ► Quantitatively and qualitatively assessing hot tearing susceptibility for different alloys. ► Monitoring the hot tearing propagation process. ► Detecting the hot tearing initiation/onset temperature. ► Recording the stress and strain evolution during the casting solidification and the subsequent cooling. - Abstract: The influence of Y content on the hot tearing susceptibility (HTS) of binary Mg–Y alloys has been predicted using thermodynamic calculations based on Clyne and Davies model. The calculated results are compared with experimental results determined using a constrained rod casting (CRC) apparatus with a load cell and data acquisition system. Both thermodynamic calculations and experimental measurements indicate that the hot tearing susceptibility as a function of Y content follows the “λ” shape. The experimental results show that HTS first increases with increase in Y content, reaches the maximum at about 0.9 wt.%Y and then decreases with further increase the Y content. The maximum susceptibility observed in Mg–0.9 wt.%Y alloy is attributed to its coarsened columnar microstructure, large solidification range and small amount of eutectic at the time of hot tearing. The initiation of hot cracks is monitored during CRC experiments. It corresponds to a drop in load increment on the force curves. The critical solid fractions at which the hot cracks are initiated are in the range from 0.9 to 0.99. It is also found that it decreases with increasing the content of Y. The hot cracks propagate along the dendritic or grain boundaries through the interdendritic separation or tearing of interconnected dendrites. Some of the formed cracks are possible to be healed by the subsequent refilling of the remained liquids

  2. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER.

    Science.gov (United States)

    Heusermann, Wolf; Hean, Justin; Trojer, Dominic; Steib, Emmanuelle; von Bueren, Stefan; Graff-Meyer, Alexandra; Genoud, Christel; Martin, Katrin; Pizzato, Nicolas; Voshol, Johannes; Morrissey, David V; Andaloussi, Samir E L; Wood, Matthew J; Meisner-Kober, Nicole C

    2016-04-25

    Exosomes are nanovesicles released by virtually all cells, which act as intercellular messengers by transfer of protein, lipid, and RNA cargo. Their quantitative efficiency, routes of cell uptake, and subcellular fate within recipient cells remain elusive. We quantitatively characterize exosome cell uptake, which saturates with dose and time and reaches near 100% transduction efficiency at picomolar concentrations. Highly reminiscent of pathogenic bacteria and viruses, exosomes are recruited as single vesicles to the cell body by surfing on filopodia as well as filopodia grabbing and pulling motions to reach endocytic hot spots at the filopodial base. After internalization, exosomes shuttle within endocytic vesicles to scan the endoplasmic reticulum before being sorted into the lysosome as their final intracellular destination. Our data quantify and explain the efficiency of exosome internalization by recipient cells, establish a new parallel between exosome and virus host cell interaction, and suggest unanticipated routes of subcellular cargo delivery. © 2016 Heusermann et al.

  3. Proceedings of the DAE-BRNS fifth interdisciplinary symposium on materials chemistry

    International Nuclear Information System (INIS)

    Jafar, Mohsin; Tyagi, Adish; Tyagi, Deepak

    2014-12-01

    The focus of the present symposium on materials chemistry was on research areas in materials chemistry like: nuclear materials; high purity materials; nanomaterials and clusters; carbon based materials; fuel cell materials and other electro-ceramics; biomaterials; polymers and soft condensed matter; materials for energy conversion; thin films and surface chemistry; magnetic materials; catalysis; chemical sensors; organic and organometallic compounds; computational material chemistry etc. Papers relevant to INIS are indexed separately

  4. Hot Cell Facility modifications at Sandia National Laboratories to support 99Mo production

    International Nuclear Information System (INIS)

    Vernon, M.; Philbin, J.; Berry, D.

    1997-01-01

    In September, 1996, following the completion of an extensive Environmental Impact Statement (EIS), a record of decision (ROD) was issued by DOE selecting Sandia as the facility to take on the 99 Mo production mission. 99 Mo is the precursor to 99m Tc which is used in 36,000 medical procedures per day in the US. to meet US 99 Mo medical demands, 20 kCi of 99 Mo must be delivered to the pharmaceutical companies each week. This could be accomplished by the processing of twenty-five targets (total fission product of 15 kCi/target) each week within the SNL Hot Cell Facility (HCF). To accomplish this new mission, significant modifications to the HCF will have to be undertaken. This paper presents a brief history of the HCF, and describes modifications necessary to achieve DOE directives

  5. Hydrothermal alteration at Roosevelt Hot Springs KGRA - DDH 1976-1

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Major alteration zones include: 1) an advanced argillic zone in the upper 30 feet of altered detritus containing alunite, opal, vermiculite, and relic quartz; 2) an argillic zone from 30 feet to 105 feet containing kaolinite, muscovite, and minor alunite; and 3) a propylitic zone from 105 to 200 feet containing muscovite, pyrite, marcasite, montmorillonite, and chlorite in weakly altered quartz monzonite. Comparison of the alternation mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth.

  6. The feasibility study of hot cell decontamination by the PFC spray method

    International Nuclear Information System (INIS)

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-01

    module. A performance test on each module was executed and the results have been reported. A combined test of the four modules, however, has not been performed as yet. The main objective of the present study is to demonstrate the feasibility of the full PFC spray decontamination process. Decontamination of the inside of the IMEF hot cell by the PFC spray method was also performed. PFC spray decontamination process was demonstrated by using a surrogate wall contaminated with Eu 2 O 3 powder. The spray pressure was 41 kgf/cm 2 , the orifice diameter was 0.2 mm and the spray velocity was 0.2 L/min. And, the decontaminated area was 100 cm 2 . From previous test results, we found that the decontamination factor of the PFC spray method was in the range from 9.6 to 62.4. When the decontamination efficiency of Co-60 was high, then the decontamination efficiency of Cs-137 was also high. As the surface roughness of the specimen increased, the PFC spray decontamination efficiency decreased. Inferring from the previous results, the surface of the surrogate wall was cleaned by the PFC spray method. The vacuum cup of the collection module operated well and gathered more than 99 % of the PFC solution. Also, filtration and distillation modules operated well. All the filtered PFC solution flowed to the storage chamber where some of the PFC solution was distilled. The coolant of the distillation module was a dry ice. And, the recycled solution was transferred to the spray module by a high pressure pump. To evaluate the PFC spray decontamination efficiency, a smear device was fabricated and operated by a manipulator. Before and after decontamination, a smear test was performed. The tested area was 100 cm 2 and the radioactivity was estimated indirectly by measuring the radioactivity of the filter paper. The average decontamination factor was in the range between 10 and 15. One application time was 2 minutes. The sprayed PFC solution was collected by the vacuum cup and it was stored in the

  7. In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules.

    Science.gov (United States)

    Liu, Huiqiao; Li, Qiang; Li, Mingmin; Ma, Sisi; Liu, Dingbin

    2017-05-02

    Single-molecule detection using surface-enhanced Raman spectroscopy (SERS) has attracted increasing attention in chemical and biomedical analysis. However, it remains a major challenge to probe single biomolecules by means of SERS hot spots owing to the small volume of hot spots and their random distribution on substrates. We here report an in situ hot-spot assembly method as a general strategy for probing single biomolecules. As a proof-of-concept, this proposed strategy was successfully used for the detection of single microRNA-21 (miRNA-21, a potential cancer biomarker) at the single-cell level, showing great capability in differentiating the expression of miRNA-21 in single cancer cells from normal cells. This approach was further extended to single-protein detection. The versatility of the strategy opens an exciting avenue for single-molecule detection of biomarkers of interest and thus holds great promise in a variety of biological and biomedical applications.

  8. ETA chemistry experience and assessment on CPP in Korea

    International Nuclear Information System (INIS)

    Park, K.K.; Lee, J.B.; Yoon, S.W.

    2002-01-01

    To reduce FAC of carbon steel in secondary system, water treatment chemistry was converted to ETA at Kori unit 1. Full scale tests to choose the optimum concentration of ETA were conducted and the evaluation after one cycle operation with ETA was also performed. Optimum concentration of ETA in final feed water was determined as 1.8 ppm. At this condition, iron concentration was reduced by 69.8% in final feed water and 69.7% in heater drain compared to ammonia-AVT. The amount of sludge removed from each steam generator was 11.3 kg, which was 88.2% lower than that of ammonia-AVT. With successful results of Kori unit 1, Applications of ETA were extended to other PWRs. Iron transport was found to be reduced significantly. Also, the output of electric power increased by 9 MWe at Young-Kwang unit 1. However, fouling of ion exchange resin in CPP was appeared. ETA appears to have a solvent function in the initial stage of ETA chemistry. Resin was restored when the fouling was removed with hot water and sodium bicarbonates. In particular, the MR type anion resin may be effective in resistance to fouling when ETA-chemistry is used. (authors)

  9. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    International Nuclear Information System (INIS)

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-01-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T eff > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  10. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  11. An Overview of the EPRI PWR Primary Chemistry Program

    International Nuclear Information System (INIS)

    Perkins, David; Fruzzetti, Keith; Haas, Carey; Wells, Dan

    2012-09-01

    and changed from stainless steel to the various advanced alloys utilized today. The ever present demand to shorten outage durations is compounding the challenges faced in shutdown chemistry. Utilities continue to optimize shutdown and cool down activities for refueling outages supporting outage durations < 30 days and in some cases < 20 days. The industry continues to review plant shutdown strategies including a rapid shutdown and cool down that allows utilities to enter cold shutdown conditions in = 6 hours from hot standby. The EPRI Materials Reliability Program (MRP), Fuel Reliability Program (FRP), Chemistry and Radiation Management (RM) programs have ongoing research related to optimized chemistry supporting industry efforts in dose reduction, mitigation of primary water stress corrosion cracking (PWSCC) in nickel-based alloys and improved fuel reliability. This paper describes the ongoing EPRI pressurized water reactor primary water chemistry research supporting these programs, as well as an update to previous papers presented in the conference series. (authors)

  12. An Origin of Life in Cycling Hot Spring Pools: Emerging Evidence from Chemistry, Geology and Computational Studies

    Science.gov (United States)

    Deamer, D. W.; Damer, B. F.; Van Kranendonk, M. J.; Djokic, T.

    2017-07-01

    New evidence for an origin of life in a hot spring setting on land is supported by three studies: chemical (polymerization in wet-dry cycles), geological (stromatolites in a 3.48 Ga geothermal field) and computational (verifying the kinetic trap).

  13. Supramolecular chemistry and crystal engineering*

    Indian Academy of Sciences (India)

    Administrator

    two important prototypes – the large unit cell of elusive saccharin hydrate, .... tures that are able to guide the rational design of .... methanolyated complex could be regenerated to the ..... turn all of chemistry on its ear, since one of chemis-.

  14. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  15. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    Science.gov (United States)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  16. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    NARCIS (Netherlands)

    Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T.M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G.G.; Turquety, S.; Richter, A.; Burrows, J.P.; Denier Van Der Gon, H.A.C.

    2012-01-01

    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors

  17. Preliminary report for the license of a hot cell that will be use in the technology development for the obtention of Mo-99

    International Nuclear Information System (INIS)

    Fucugauchi, L.A.; Millan S, S.; Lopez M, A.E.; Lopez C, R; Sanchez M, V.; Reynoso V, R.; Vera, A.

    1991-05-01

    A preliminary report for the license of a hot cell that will be used in the development of the technology for the obtaining of Mo-99 is presented. The following topics are also included: objective of the project, technical description, description of the prototype cell, handling of radioactive wastes, lists of equipment that will be used, risk analysis, curricula, quality assurance plan and an annex with the report on handling of radioactive wastes presented to the PAGD-IAEA. (Author)

  18. Fifty years of high energy chemistry. Current situation and perspectives of development in the Slovak Republic and the Czech Republic

    International Nuclear Information System (INIS)

    Kuruc, J.

    2017-01-01

    This presentation describes the concepts of a new chemical science - High-Energy Chemistry (HECH). Under this concept, the field of science has been associated with chemical processes initiated by non-thermal energy carriers - ionizing radiation, light, electric, sound field etc. Since 1967, the journal of High Energy Chemistry (Russian Academy of Sciences) has been published, which is translated into the English language High Energy Chemistry (Pleiades Publishing, Ltd.). The common feature of HECH is the formation of ions and excited states at temperatures from the ambient temperature at which these particles cannot be generated due to equilibrium processes. The non-thermal energy carriers and chemical sciences are systematized that have been created by examining the impact of these energy carriers on substances. There are two groups of energy carriers: those that transmit an interaction energy substantially higher than kT (ionizing radiation, light, etc.) in one act, and those that transmit the energy of interaction is higher than kT in a single act but the flux of these energy carriers is so high that in this field, the formation of ions and electron-excited states and free radicals are observed. HECH processes consist of three stages: 1) Interaction of energy carriers with the substance in times of femtosecond with the formation of primary intermediates; 2) Conversion of primary intermediates proceed in times of picoseconds to nanoseconds to secondary and tertiary intermediates ("hot spots") because the energy distribution in the medium is inhomogeneous; intermediates unusual for thermal chemistry play an important role at this stage; 3) Chemical stage that takes place over a time exceeding the microsecond, excited states, ions, and radicals, also common for thermal chemistry are involved. In contrast with thermal reactions, the concentration of intermediates of many orders exceeds equilibrium in terms of Maxwell-Boltzmann distribution. High-energy chemistry

  19. The Spatial Predilection for Early Esophageal Squamous Cell Neoplasia: A "Hot Zone" for Endoscopic Screening and Surveillance.

    Science.gov (United States)

    Wang, Wen-Lun; Chang, I-Wei; Chen, Chien-Chuan; Chang, Chi-Yang; Lin, Jaw-Town; Mo, Lein-Ray; Wang, Hsiu-Po; Lee, Ching-Tai

    2016-04-01

    Early esophageal squamous cell neoplasias (ESCNs) are easily missed with conventional white-light endoscopy. This study aimed to assess whether early ESCNs have a spatial predilection and the patterns of recurrence after endoscopic treatment. We analyzed the circumferential and longitudinal location of early ESCNs, as well as their correlations with exposure to carcinogens in a cohort of 162 subjects with 248 early ESCNs; 219 of which were identified by screening and 29 by surveillance endoscopy. The circumferential location was identified using a clock-face orientation, and the longitudinal location was identified according to the distance from the incisor. The most common circumferential and longitudinal distributions of the early ESCNs were found in the 6 to 9 o'clock quadrant (38.5%) and at 26 to 30 cm from the incisor (41.3%), respectively. A total of 163 lesions (75%) were located in the lower hemisphere arc, and 149 (68.4%) were located at 26 to 35 cm from the incisor. One hundred eleven (51%) early ESCNs were centered within the "hot zone" (i.e., lower hemisphere arc of the esophagus at 26 to 35 cm from the incisor), which comprised 20% of the esophageal area. Exposure to alcohol, betel nut, or cigarette was risk factors for the development of early ESCNs in the lower hemisphere. After complete endoscopic treatment, the mean annual incidence of metachronous tumors was 10%. In addition, 43% of the metachronous recurrent neoplasias developed within the "hot zone." Cox regression analysis revealed that the index tumor within the hot zone (hazard ratio [HR]: 3.19; 95% confidence interval [CI]: 1.17-8.68; P = 0.02) and the presence of numerous Lugol-voiding lesions in the esophageal background mucosa were independent predictors for metachronous recurrence (HR: 4.61; 95% CI: 1.36-15.56; P = 0.01). We identified a hot zone that may be used to enhance the detection of early ESCNs during endoscopic screening and surveillance, especially in areas that

  20. Analytical cell decontamination and shielding window refurbishment. Final report, March 1984-March 1985

    International Nuclear Information System (INIS)

    Smokowski, R.T.

    1985-01-01

    This is a report on the decontamination and refurbishment of five inactive contaminated analytical cells and six zinc bromide filled shielding windows. The analytical cells became contaminated during the nuclear fuel reprocessing carried out by Nuclear Fuel Services from 1966 to 1972. The decontamination and decommissioning (D and D) work was performed in these cells to make them useful as laboratories in support of the West Valley Demonstration Project. To accomplish this objective, unnecessary equipment was removed from these cells. Necessary equipment and the interior of each cell were decontaminated and repaired. The shielding windows, essentially tanks holding zinc bromide, were drained and disassembled. The deteriorated, opaque zinc bromide was refined to optical clarity and returned to the tanks. All wastes generated in this operation were characterized and disposed of properly. All the decontamination and refurbishment was accomplished within 13 months. The Analytical Hot Cell has been turned over to Analytical Chemistry for the performance high-level waste (HLW) characterization analysis

  1. Hürthle cell tumor dwelling in hot thyroid nodules: preoperative detection with technetium-99m-MIBI dual-phase scintigraphy.

    Science.gov (United States)

    Vattimo, A; Bertelli, P; Cintorino, M; Burroni, L; Volterrani, D; Vella, A; Lazzi, S

    1998-05-01

    Single injection dual-phase scintigraphy (early and late acquisitions) with 99mTc-MIBI was used to differentiate benign and malignant hot thyroid nodules. Thirteen euthyroid and two hyperthyroid patients displaying a hot thyroid nodule on the 99mTc scan due to an autonomously functioning thyroid nodule (AFTN) underwent early (15-30 min) and late (3-4 hr) thyroid scintigraphy after the administration of 740-1000 MBq 99mTc-MIBI. Visual scoring was done to assess nodular tracer uptake and retention. In addition, the nodular-to-thyroid (N/T) uptake ratio in the early and late image and the washout rates (WO) from the nodule and thyroidal tissue were measured. All patients underwent thyroid surgery. Histopathology revealed a Hürthle cell tumor in three nodules, a benign adenoma with oxyphilic metaplasia in two nodules and a benign adenoma without oxyphilic cells in the remaining 10 nodules. The Hürthle cell tumor nodules displayed intense and persistent uptake of 99mTc-MIBI (N/T was 2.81 +/- 0.52 and 5.53 +/- 1.06 in early and late images, respectively; WO from the nodule was 12.33 +/- 0.47, WO from the thyroidal tissue was 22.00 +/- 3.56). The benign nodules showed intense uptake in the early image and intense uptake to absent retention in the late image (N/T was 2.94 +/- 1.31 and 1.62 +/- 0.50 in the early and late images, respectively; WO from the nodule was 20.25 +/- 2.92, WO from the thyroidal tissue was 20.33 +/- 2.92). Single injection dual-phase 99mTc-MIBI scintigraphy of the thyroid with AFTN can identify nodules as a result of the activity of a Hürthle cell tumor, since these tumors cause intense and persistent tracer uptake in contrast with a benign AFTN.

  2. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  3. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...

  4. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal.

    Science.gov (United States)

    Macgregor, Melanie; Williams, Rachel; Downes, Joni; Bachhuka, Akash; Vasilev, Krasimir

    2017-09-14

    The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.

  5. sup(60)Co hot atom chemistry of tris(acetylacetonato) cobalt(III) adsorbed on silica gel

    International Nuclear Information System (INIS)

    Nishioji, H.; Sakai, Y.; Tominaga, T.

    1985-01-01

    The sup(60)Co hot atom reactions were studied in tris(acetylacetonato)cobalt(III) adsorbed on silica gel surface. sup(57)Fe Moessbauer spectra of tris(acetylacetonato)iron(III) in the corresponding system were also measured in order to examine the state of dispersion of complex molecules on silica gel. The retention formation processes were discussed in terms of the dependence of sup(60)Co retention on the adsorbed amount (concentration) of cobalt(III) complexes. (author)

  6. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Directory of Open Access Journals (Sweden)

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  7. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    International Nuclear Information System (INIS)

    Varley, Geoff; Rusch, Chris

    2006-07-01

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO 2 - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and Dismantlement

  8. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO{sub 2} - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and

  9. Effect of Non-Stoichiometric Solution Chemistry on Improving the Performance of Wide-Bandgap Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Mengjin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kim, Donghoe [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Zhen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yu, Yue [University of Toledo; Song, Zhaoning [University of Toledo; Zhao, Dewei [University of Toledo; Wang, Changlei [University of Toledo; Li, Liwei [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Meng, Yuan [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Guo, Ted [ENN Energy Research Institute; ENN Solar Energy Co., Ltd.; Yan, Yanfa [University of Toledo

    2017-10-18

    A high-efficiency wide-bandgap (WBG) perovskite solar cell is critical for developing perovskite-related (e.g., all-perovskite, perovskite/Si, or perovskite/Cu(In,Ga)Se2) tandem devices. Here, we demonstrate the use of non-stoichiometric precursor chemistry with excess methylammonium halides (MAX; X = I, Br, or Cl) for preparing high-quality ~1.75-eV FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite solar cells. Among various methylammonium halides, using excess MABr in the non-stoichiometric precursor exhibits the strongest effect on improving perovskite crystallographic properties and device characteristics without affecting the perovskite composition. In contrast, using excess MAI significantly reduces the bandgap of perovskite due to the replacement of Br with I. Using 40% excess MABr, we demonstrate a single-junction WBG perovskite solar cell with stabilized efficiency of 16.4%. We further demonstrate a 20.3%-efficient 4-terminal tandem device by using a 14.7%-efficient semi-transparent WBG perovskite top cell and an 18.6%-efficient unfiltered (5.6%-efficient filtered) Si bottom cell.

  10. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    International Nuclear Information System (INIS)

    Oosterhout, J. van; Abbink, D.A.; Koning, J.F.; Boessenkool, H.; Wildenbeest, J.G.W.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations

  11. Haptic shared control improves hot cell remote handling despite controller inaccuracies

    Energy Technology Data Exchange (ETDEWEB)

    Oosterhout, J. van, E-mail: J.vanOosterhout@differ.nl [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Abbink, D.A. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute for Fundamental Energy Research), Association EURATOM-FOM, Partner in the Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Wildenbeest, J.G.W. [Delft University of Technology, Faculty of 3mE, BioMechanical Engineering Department, Mekelweg 2, 2628 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Heemskerk, C.J.M. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands)

    2013-10-15

    Highlights: Haptic shared control is generally based upon perfect environment information. A realistic implementation holds model errors with respect to the environment. Operators were aided with inaccurate guiding forces during a peg-in-hole task. The results showed that small guiding inaccuracies still aid the operator. -- Abstract: A promising solution to improve task performance in ITER hot cell remote handling is the use of haptic shared control. Haptic shared control can assist the human operator along a safe and optimal path with continuous guiding forces from an intelligent autonomous controller. Previous research tested such controllers with accurate knowledge of the environment (giving flawless guiding forces), while in a practical implementation guidance forces will sometimes be flawed due to inaccurate models or sensor information. This research investigated the effect of zero and small (7.5 mm) errors on task performance compared to normal (unguided) operation. In a human factors experiment subjects performed a three dimensional virtual reality peg-in-hole type task (30 mm diameter; 0.1 mm clearance), with and without potentially flawed haptic shared control. The results showed that the presence of guiding forces, despite of small guiding errors, still improved task performance with respect to unguided operations.

  12. Small-scale hot facility for reprocessing and alpha research

    International Nuclear Information System (INIS)

    Abdel-Rassoul, A.A.

    1976-01-01

    The experimental hot facility at Inchas is planned for research activities related to the decontamination of radioactive wastes, analytical chemistry of alpha emitters and chemical treatment of spent UO 2 -Mg fuel samples. The design concept permits safe handling of source materials with radioactivity levels up to 10000Ci. The laboratory includes a reception area, process hall, a number of research laboratories and other facilities for chemical and physical analysis, nuclear measurements and health physics control. The radioactive waste management plant allows for control and decontamination of intermediate- and low-level laboratory effluents. Fixation of radioactive residues will be carried out in the sludge immobilization plant. High-level fission-product waste liquors are subject to preconcentration and transformation to a glassy matrix before ultimate storage. (author)

  13. Functional components for a design strategy: Hot cell shielding in the high reliability safeguards methodology

    Energy Technology Data Exchange (ETDEWEB)

    Borrelli, R.A., E-mail: rborrelli@uidaho.edu

    2016-08-15

    The high reliability safeguards (HRS) methodology has been established for the safeguardability of advanced nuclear energy systems (NESs). HRS is being developed in order to integrate safety, security, and safeguards concerns, while also optimizing these with operational goals for facilities that handle special nuclear material (SNM). Currently, a commercial pyroprocessing facility is used as an example system. One of the goals in the HRS methodology is to apply intrinsic features of the system to a design strategy. This current study investigates the thickness of the hot cell walls that could adequately shield processed materials. This is an important design consideration that carries implications regarding the formation of material balance areas, the location of key measurement points, and material flow in the facility.

  14. Radiation shielding design for a hot repair facility

    International Nuclear Information System (INIS)

    Courtney, J.C.; Dwight, C.C.

    1991-01-01

    A new repair and decontamination area is being built to support operations at the demonstration fuel cycle facility for the Integral Fast Reactor program at Argonne National Laboratory's site at the Idaho National Engineering Laboratory. Provisions are made for remote, glove wall, and contact maintenance on equipment removed from hot cells where spent fuel will be electrochemically processed and recycled to the Experimental Breeder Reactor-II. The source for the shielding design is contamination from a mix of fission and activation products present on items removed from the hot cells. The repair facility also serves as a transfer path for radioactive waste produced by processing operations. Radiation shields are designed to limit dose rates to no more than 5 microSv h-1 (0.5 mrem h-1) in normally occupied areas. Point kernel calculations with buildup factors have been used to design the shielding and to position radiation monitors within the area

  15. Hot dewatering and resin encapsulation of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Rickman, J.; Birch, D.

    1985-01-01

    The chemistry of the processes involved in the hot dewatering and encapsulation of alumino-ferric hydroxide floc in epoxide resin have been studied. Pretreatment of the floc to reduce resin attack and hydrolysis and to increase the dimensional stability of the solidified wasteform has been evaluated. It has been demonstrated that removal of ammonium nitrate from the floc and control of the residual water in the resin are important factors in ensuring dimensional stability of the solidified resin. Resin systems have been identified which, together with the appropriate waste pretreatment have successfully encapsulated a simulated magnox sludge producing a stable wasteform having mechanical and physical properties comparable with the basic resin. (author)

  16. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    judged to be capable of maintaining water chemistry in accordance with existing EPRI water chemistry guidelines. However, it is important to resolve inconsistencies and knowledge gaps identified in the assessments to ensure water chemistry control guidance is optimized for the new plant designs. Additionally, the current EPRI guidelines do not specifically address water chemistry controls during pre-operational system lay-up, Hot Functional Testing, initial plant start up and early plant operations. Optimized water chemistry controls during these phases can provide significant long-term benefits in both equipment reliability and source term minimization. (authors)

  17. OT1_ebergin_5: A Systematic Survery of the Water D to H Ratio in Hot Molecular Cores

    Science.gov (United States)

    Bergin, E.

    2010-07-01

    The D/H ratio of water and the enrichment of HDO relative to H2O in comets, oceans, and interstellar water vapor, has been posited as one of the primary links between chemistry in the cold (T = 10-20 K) dense interstellar medium (ISM) and chemistry in the Solar Nebula. However, there are only ~10 measurements of HDO/H2O, even in hot (T > 100 K) molecular cores, which have the most favorable chemistry (due to fossil evaporation of D-enriched ices) and excitation. In addition the existing measurements have a wide range of uncertainty, making it impossible to discern the presence of source-to-source variations, which could hint at the origin of deuterium enrichments in the dense ISM. We propose here to change this statistic with a systematic survey of HDO and H2O in a sample of 20 hot molecular cores spanning a two order of magnitude range in mass and luminosity. This will increase the number of known water D/H ratios by ~200%. This program is unique in scope for Herschel and requires the uniformity in calibration and high spectral resolution offered by the HIFI instrument. With the stability of HIFI we will be able to derive D/H ratios with significantly less uncertainty. Our observations will be combined with theoretical chemical models to explore the statistics offered by this sample. By looking at a large number of objects with a range of conditions we aim to unlock the secrets of water deuteration in the interstellar space.

  18. Characterization of in vivo chemistry of cations in the heart

    International Nuclear Information System (INIS)

    Mousa, S.A.; Williams, S.J.; Sands, H.

    1987-01-01

    A variety of laboratory procedures can be used to define the chemistry and pharmacokinetics of myocardial cationic imaging agents. These methods are utilized to define the in vivo chemistry of cationic heart agents, in order to understand the kinetics and mechanisms of: tissue and cellular transport, subcellular distribution, and intracellular localization. Transport across cell membranes can be active, passive or facilitated. Studies performed in erythrocytes, heart cells, slices and isolated perfused hearts using methods for separation of metabolites have shown a high degree of myocardial specificity for [99mTc]hexakis alkyl isonitrile by an uptake mechanism different from 201 Tl. These studies demonstrate the importance of in vivo chemistry and pharmacokinetics in the development of new radiopharmaceuticals. 31 references

  19. Dynamics and mechanisms of catalytic processes and hot chemistry. Final report, March 1, 1972-October 31, 1984

    International Nuclear Information System (INIS)

    Spicer, L.D.

    1984-10-01

    General areas of research addressed are recoil chemistry of halogens, tritium, and sulfur, radiotracer methods for studies of chemical dynamics, thermal and photochemistry of sulfur dioxide, and photochemistry and photoassistance in catalytic systems

  20. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  1. Development of remote crane system for use inside small argon hot-cell

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Kwang; Park, Byung Suk; Yu, Seung-Nam; Kim, Kiho; Cho, Ilje [Nuclear Fuel Cycle Process Technology Development Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    In this paper, we describe the design of a novel crane system for the use in a small argon hot-cell where only a pair of master-slave manipulators (MSM) is available for the remote maintenance of the crane. To increase the remote maintainability in the space-limited environment, we devised a remote actuation mechanism in which electrical parts consisting of a servo-motor, a position sensor, and two limit switches located inside the workspace of the MSM transmit power to the mechanical parts located in the ceiling. Even though the design concept does not provide thoroughly sufficient solution because the mechanical parts are placed out of the MSM's workspace, the durability of mechanical parts can be easily increased if they have a high safety margin. Therefore, the concept may be one of the best solutions for our special crane system. In addition, we developed a servo-control system based on absolute positioning technology; therefore, it is possible for us to perform the given tasks more safely through an automatic operation. (authors)

  2. Remote-welding technique for assembling in-pile IASCC capsule in hot cell

    International Nuclear Information System (INIS)

    Kawamata, Kazuo; Ishii, Toshimitsu; Kanazawa, Yoshiharu; Iwamatsu, Shigemi; Ohmi, Masao; Shimizu, Michio; Matsui, Yoshinori; Saito, Jun-ichi; Ugachi, Hirokazu; Kaji, Yoshiyuki; Tsukada, Takashi

    2006-01-01

    In order to investigate behavior of the irradiation assisted stress corrosion cracking (IASCC) caused by the simultaneous effects of neutron irradiation and high temperature water environment in such a light water reactor (LWR), it is necessary to perform crack growth tests in an in-pile IASCC capsule irradiated in the Japan Materials Testing Reactor (JMTR). The development of the remote-welding technique is essential for remotely assembling the in-pile IASCC capsule installing the pre-irradiated CT specimens. This report describes a new remote-welding machine developed for assembling the in-pile IASCC capsule. The remote-welding technique that the capsule tube is rotated light under the fixed torch was applied to the machine for the welding of thick and large-diameter tubes. The assembly work of four in-pile IASCC capsules having pre-irradiated CT specimens in the hot cell was succeeded for performing the crack growth test under the neutron irradiation in JMTR. The irradiation test of two capsules has been already finished in JMTR without problems. (author)

  3. Water chemistry and soil radon survey at the Poas volcano (Costa Rica

    Directory of Open Access Journals (Sweden)

    J. L. Seidel

    2005-06-01

    Full Text Available Radon-in-soil monitoring at the Poas volcano (Costa Rica has been performed together with water chemistry from the hot crater lake since 1981 and 1983 respectively. The results are discussed as a function of the eruptive evolution of the volcano over a 13 years period (1981-1994. It is shown that no definitely clear precursory radon signals have been recorded. On the contrary, ionic species concentrations are likely to be considered good precursors, together with the temperature variations of the crater lake water.

  4. Remote real time x-ray examination of fuel elements in a hot cell environment

    International Nuclear Information System (INIS)

    Yapuncich, F.L.

    1993-01-01

    This report discusses the Remote Real Time X-ray System which will allow for detailed examination of fuel elements. This task will be accomplished in a highly radioactive hot cell environment. Two remote handling systems win be utilized at the examination station. One handling system will transfer the fuel element to and from the shielded x-ray system. A second handling system will allow for vertical and rotational inspection of the fuel elements. The process win include removing a single nuclear fuel element from a element fabrication magazine(EFM), positioning the fuel element within the shielding envelope of the x-ray system and transferring the fuel element from the station manipulator to the x-ray system manipulator, performing the x-ray inspection, and then transferring the fuel element to either the element storage magazine(ESM) or a reject bin

  5. Eleventh IHAC symposium

    International Nuclear Information System (INIS)

    1982-01-01

    Abstracts of papers for the 11th International Hot Atom chemistry Symposia are presented in this volume. These are grouped under the following sessions: nuclear chemistry and solid-state hot atom chemistry I; inorganic and solid-state hot atom chemistry II; positronium, mu-meson, and recoil tritium chemistry; kinetic theory of energetic chemical reactions; astrochemistry; inorganic and solid-state hot atom chemistry III; chemistry of energetic atoms; and target chemistry and synthesis I

  6. Standard guide for mechanical drive systems for remote operation in hot cell facilities

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Intent: 1.1.1 The intent of this standard is to provide general guidelines for the design, selection, quality assurance, installation, operation, and maintenance of mechanical drive systems used in remote hot cell environments. The term mechanical drive systems used herein, encompasses all individual components used for imparting motion to equipment systems, subsystems, assemblies, and other components. It also includes complete positioning systems and individual units that provide motive power and any position indicators necessary to monitor the motion. 1.2 Applicability: 1.2.1 This standard is intended to be applicable to equipment used under one or more of the following conditions: 1.2.1.1 The materials handled or processed constitute a significant radiation hazard to man or to the environment. 1.2.1.2 The equipment will generally be used over a long-term life cycle (for example, in excess of two years), but equipment intended for use over a shorter life cycle is not excluded. 1.2.1.3 The ...

  7. Twice daily low-passed filtered time-series data from inverted echo sounders for the Hawaii Ocean Time Series (HOT) project north of Oahu, Hawaii from 19910201 to 19980715 (NODC Accession 9900215)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The HOT program makes repeated observations of the physics, biology and chemistry at a site approximately 100 km north of Oahu, Hawaii. Two stations are visited...

  8. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  9. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    Science.gov (United States)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  10. Development of a pattern hot cell for production of injectable radiopharmaceuticals; Desenvolvimento de um modelo de cela para processamento de radiofarmacos injetaveis

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Fabio Eduardo de

    2010-07-01

    A controlled ambient should be established to the production/processing of materials susceptible to contamination, like injectable pharmaceuticals, in order to agree with normative and regulatory requirements. Considering medical but also toxic, radioactive and dangerous products, the ambient should work in special conditions to assure that the materials, which in same cases can be also volatile, do not escape to the external ambient, working in a selective, secure and controlled way. The conditions recommended by local and international rules in use, report an negative pressured ambient in relation to the adjacent areas. The technology related with the sizing of project to this kind of system is fully described in the literature, taking in account the rules that clearly describe the essential requirements. However, it is necessary to develop a controlled ambient for radiopharmaceutical production, in a way compatible with the concept of clean rooms and with the safety related to the manipulation of open radioactive wastes. In this work, some devices were created, methods and procedures were established making possible the classification of the ambient inside the hot cell, without physical barriers in the area, using ergonomic, flexible and practical conditions of work, that can results in the improvement of the productivity. The project resulted in the creation of a controlled ambient, in agreement with the normative requirements, using a pass through for entrance and exit of the materials, without compromise the internal air condition. The tight of the hot cell was obtained using doors with efficient sealing system and active joints. Tong manipulators were used to produce ergonomic and secure conditions, without compromise the internal conditions related to tight and classification in A and B grade, according to local and international rules. An efficient ventilation/exhaustion system was adopted to produce these results, composed by filters and special devices

  11. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells.

    Science.gov (United States)

    Ismail, F S Magdon; Rohanizadeh, R; Atwa, S; Mason, R S; Ruys, A J; Martin, P J; Bendavid, A

    2007-05-01

    The purpose of the present study was to determine in vitro the effects of different surface topographies and chemistries of commercially pure titanium (cpTi) and diamond-like carbon (DLC) surfaces on osteoblast growth and attachment. Microgrooves (widths of 2, 4, 8 and 10 microm and a depth of 1.5-2 microm) were patterned onto silicon (Si) substrates using microlithography and reactive ion etching. The Si substrates were subsequently vapor coated with either cpTi or DLC coatings. All surfaces were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. Using the MG63 Osteoblast-Like cell line, we determined cell viability, adhesion, and morphology on different substrates over a 3 day culture period. The results showed cpTi surfaces to be significantly more hydrophilic than DLC for groove sizes larger than 2 microm. Cell contact guidance was observed for all grooved samples in comparison to the unpatterned controls. The cell viability tests indicated a significantly greater cell number for 8 and 10 microm grooves on cpTi surfaces compared to other groove sizes. The cell adhesion study showed that the smaller groove sizes, as well as the unpatterned control groups, displayed better cell adhesion to the substrate.

  12. A Comparison of the Hot Spot and the Average Cancer Cell Counting Methods and the Optimal Cutoff Point of the Ki-67 Index for Luminal Type Breast Cancer.

    Science.gov (United States)

    Arima, Nobuyuki; Nishimura, Reiki; Osako, Tomofumi; Nishiyama, Yasuyuki; Fujisue, Mamiko; Okumura, Yasuhiro; Nakano, Masahiro; Tashima, Rumiko; Toyozumi, Yasuo

    2016-01-01

    In this case-control study, we investigated the most suitable cell counting area and the optimal cutoff point of the Ki-67 index. Thirty recurrent cases were selected among hormone receptor (HR)-positive/HER2-negative breast cancer patients. As controls, 90 nonrecurrent cases were randomly selected by allotting 3 controls to each recurrent case based on the following criteria: age, nodal status, tumor size, and adjuvant endocrine therapy alone. Both the hot spot and the average area of the tumor were evaluated on a Ki-67 immunostaining slide. The median Ki-67 index value at the hot spot and average area were 25.0 and 14.5%, respectively. Irrespective of the area counted, the Ki-67 index value was significantly higher in all of the recurrent cases (p hot spot was the most suitable cutoff point for predicting recurrence. Moreover, higher x0394;Ki-67 index value (the difference between the hot spot and the average area, ≥10%) and lower progesterone receptor expression (hot spot strongly correlated with recurrence, and the optimal cutoff point was found to be 20%. © 2015 S. Karger AG, Basel.

  13. Quantitative Secretome Analysis of Activated Jurkat Cells Using Click Chemistry-Based Enrichment of Secreted Glycoproteins.

    Science.gov (United States)

    Witzke, Kathrin E; Rosowski, Kristin; Müller, Christian; Ahrens, Maike; Eisenacher, Martin; Megger, Dominik A; Knobloch, Jürgen; Koch, Andrea; Bracht, Thilo; Sitek, Barbara

    2017-01-06

    Quantitative secretome analyses are a high-performance tool for the discovery of physiological and pathophysiological changes in cellular processes. However, serum supplements in cell culture media limit secretome analyses, but serum depletion often leads to cell starvation and consequently biased results. To overcome these limiting factors, we investigated a model of T cell activation (Jurkat cells) and performed an approach for the selective enrichment of secreted proteins from conditioned medium utilizing metabolic marking of newly synthesized glycoproteins. Marked glycoproteins were labeled via bioorthogonal click chemistry and isolated by affinity purification. We assessed two labeling compounds conjugated with either biotin or desthiobiotin and the respective secretome fractions. 356 proteins were quantified using the biotin probe and 463 using desthiobiotin. 59 proteins were found differentially abundant (adjusted p-value ≤0.05, absolute fold change ≥1.5) between inactive and activated T cells using the biotin method and 86 using the desthiobiotin approach, with 31 mutual proteins cross-verified by independent experiments. Moreover, we analyzed the cellular proteome of the same model to demonstrate the benefit of secretome analyses and provide comprehensive data sets of both. 336 proteins (61.3%) were quantified exclusively in the secretome. Data are available via ProteomeXchange with identifier PXD004280.

  14. High Energy Batteries for Hybrid Buses

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing

  15. Structural Safety Analysis of Openable Working Table in ACP Hot Cell for Spent Fuel Treatment

    International Nuclear Information System (INIS)

    Kwon, Ki Chan; Ku, Jeong Hoe; Lee, Eun Pyo; Choung, Won Myung; You, Gil Sung; Lee, Won Kyung; Cho, IL Je; Kuk, Dong Hak

    2006-01-01

    A demonstration facility for advanced spent fuel conditioning process (ACP) is under construction in KAERI. In this hot cell facility, all process equipment and materials are taken in and out only through the rear door. The working table in front of the process rear door is specially designed to be openable for the efficient use of the space. This paper presents the structural safety analysis of the openable working table, for the normal operational load condition and accidental drop condition of heavy object. Both cases are investigated through static and dynamic finite element analyses. The analysis results show that structural safety of the working table is sufficiently assured and the working table is not collapsed even when an object of 500 kg is dropped from the height of 50 cm.

  16. Proceedings of DAE-BRNS third international symposium on materials chemistry

    International Nuclear Information System (INIS)

    Tyagi, Deepak; Banerjee, Atindra Mohan; Nigam, Sandeep; Varma, Salil; Tripathi, Arvind Kumar; Bharadwaj, Shyamala Rajkumar; Das, Dasarathi

    2010-12-01

    The present volume consists of the proceedings of the DAE-BRNS Third International Symposium on Materials Chemistry. In order to keep pace with the advancements made in the area of materials chemistry, new topics like materials for energy conversion, biomaterials, carbon based materials, soft condensed materials, thin films, surface chemistry, polymer based materials, organic and organometallics, magnetic materials and high purity materials have been included in this symposium while topics like nuclear materials, nanomaterials and clusters, catalysis, chemical sensors, fuel cell materials and computational research in materials chemistry have been continued as important features of the symposium. Papers relevant to INIS are indexed separately

  17. Hot Surface Ignition

    OpenAIRE

    Tursyn, Yerbatyr; Goyal, Vikrant; Benhidjeb-Carayon, Alicia; Simmons, Richard; Meyer, Scott; Gore, Jay P.

    2015-01-01

    Undesirable hot surface ignition of flammable liquids is one of the hazards in ground and air transportation vehicles, which primarily occurs in the engine compartment. In order to evaluate the safety and sustainability of candidate replacement fuels with respect to hot surface ignition, a baseline low lead fuel (Avgas 100 LL) and four experimental unleaded aviation fuels recommended for reciprocating aviation engines were considered. In addition, hot surface ignition properties of the gas tu...

  18. Photovoltaic network connection portraits (XIV): The issue of hot cells; Retraso de la conexion fotovoltaica a la red (XIV): El asunto de las celulas calientes

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzo, E.; Martinez, F.; Moreton, R.

    2009-07-01

    In some cases due to plants performance is not as correct as hoped, and in some other, simply because the nice colors of the thermographs resulted very attractive to plenty of people; many photovoltaic generators have been profusely thermography within the current year. It has caused a special interest on hot cells phenomenon, that is to say those cells which operate at a significantly higher temperature than other placed in the same panel. (Author) 4 refs.

  19. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  20. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [ARIES Collaborative, New York, NY (United States); Wade, Jeremy [ARIES Collaborative, New York, NY (United States)

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  1. Development and performance tests of the bridge-transported servo manipulator system for remote maintenance jobs in a hot cell

    International Nuclear Information System (INIS)

    Jin, Jae Hyun; Park, Byung Suk; Ko, Byung Seung; Yoon, Ji Sup; Jung, Ki Jung

    2005-01-01

    In this paper, a prototype of the Bridge-Transported Servo Manipulator (BTSM) system introduced, which has been developed to do operation and maintenance jobs remotely in a hot cell. The system consists of a telescopic transporter, a slave arm, a master arm, and a control system. Several tests such as a positional tracking, a weight handling, reliability, and operability have been performed and test results are presented. Based on the test results, an upgraded system which will be used during demonstrations of the advanced spent fuel conditioning process (ACP) has been designed.

  2. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  3. Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis

    International Nuclear Information System (INIS)

    Lee, Boo-Ja; Kwon, Sun Jae; Kim, Sung-Kyu; Kim, Ki-Jeong; Park, Chang-Jin; Kim, Young-Jin; Park, Ohkmae K.; Paek, Kyung-Hee

    2006-01-01

    Two-dimensional gel electrophoresis (2-DE) was applied for the screening of Tobacco mosaic virus (TMV)-induced hot pepper (Capsicum annuum cv. Bugang) nuclear proteins. From differentially expressed protein spots, we acquired the matched peptide mass fingerprint (PMF) data, analyzed by MALDI-TOF MS, from the non-redundant hot pepper EST protein FASTA database using the VEMS 2.0 software. Among six identified nuclear proteins, the hot pepper 26S proteasome subunit RPN7 (CaRPN7) was subjected to further study. The level of CaRPN7 mRNA was specifically increased during incompatible TMV-P 0 interaction, but not during compatible TMV-P 1.2 interaction. When CaRPN7::GFP fusion protein was targeted in onion cells, the nuclei had been broken into pieces. In the hot pepper leaves, cell death was exacerbated and genomic DNA laddering was induced by Agrobacterium-mediated transient overexpression of CaPRN7. Thus, this report presents that the TMV-induced CaRPN7 may be involved in programmed cell death (PCD) in the hot pepper plant

  4. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  5. Modelling Hot Air Balloons.

    Science.gov (United States)

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  6. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.

    Science.gov (United States)

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, Jihyun; Goddard, William A; Kim, Hyungjun; Kang, Kisuk

    2013-07-03

    Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.

  7. Software Simulation of Hot Tearing

    DEFF Research Database (Denmark)

    Andersen, S.; Hansen, P.N.; Hattel, Jesper Henri

    1999-01-01

    The brittleness of a solidifying alloy in a temperature range near the solidus temperature has been recognised since the fifties as the mechanism responsible for hot tearing. Due to this brittlenes, the metal will crack under even small amounts of strain in that temperature range. We see these hot...... tears in castings close to hot centres, where the level of strain is often too high.Although the hot tearing mechanism is well understood, until now it has been difficult to do much to reduce the hot tearing tendency in a casting. In the seventies, good hot tearing criteria were developed by considering...... the solidification rate and the strain rate of the hot tear prone areas. But, until recently it was only possible to simulate the solidification rate, so that the criteria could not be used effectively.Today, with new software developments, it is possible to also simulate the strain rate in the hot tear prone areas...

  8. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  9. Hot tub folliculitis

    Science.gov (United States)

    ... survives in hot tubs, especially tubs made of wood. Symptoms The first symptom of hot tub folliculitis ... may help prevent the problem. Images Hair follicle anatomy References D'Agata E. Pseudomonas aeruginosa and other ...

  10. Hot cell examination on the surveillance capsule and HANARO capsule in IMEF

    International Nuclear Information System (INIS)

    Choo, Yong Sun; Oh, Wan Ho; Yoo, Byung Ok; Jung, Yang Hong; Ahn, Sang Bok; Baik, Seung Je; Song, Wung Sup; Hong, Kwon Pyo

    2000-01-01

    For the maintenance of integrity and safety of pressurizer of commercial power plant until its life span, it is required by US NRC 10CFR50 APP. G and H and ASTM E185-94 to periodically monitor irradiation embrittlement by neutron irradiation. In order to accomplished the requirement reactor operator has been carrying out the test by extracting the monitoring capsule embeded in reactor during the period of planned preventive maintenance. In relation to this irradiation samples are being used for prediction of reactor vessel life span and reactor vessel's adjusted reference temperature by irradiation of neutron flux enough to reach to end of life span. And also irradiation capsules with and without instrumentation are used for R and D on nuclear materials. Each capsule contains high radioactivity, therefore, post irradiation examination has to be handled by all means in the hot cell. The facility available for this purpose is Irradiated material examination facility (IMEF) to handle such works as capsule receiving, capsule cut and dismantling, sample classification, various examination, and finally development and improvement of examination equipment and instrumentation. (Hong, J. S.)

  11. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  12. Update on Production Chemistry of the Roosevelt Hot Springs Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Stuart; Kirby, Stefan; Allis, Rick; Moore, Joe; Fischer, Tobias

    2018-02-12

    Analyses of production fluids from the Roosevelt Hot Springs reservoir were acquired from well sampling campaigns in 2015 and 2016. The resulting data have been recalculated to reservoir conditions by correcting for effects of steam loss, and the values are compared to legacy data from earlier reports to quantify changes with time in response to fluid production. The reservoir composition is similar to that at the start of reservoir exploitation, having near neutral pH, total dissolved solids of 7000-10,000 mg/kg, and ionic ratios of Cl/HCO3 ~50-100, Cl/SO4 ~50-100, and Na/K ~4-5. Cation, gas and silica geothermometers indicate a range of equilibration temperatures between 240 and 300 °C, but quartz-silica values are most closely consistent with measured reservoir temperatures and well enthalpies. The largest change in fluid composition is observed in well 54-3. The fluid has evolved from being fed by a single phase liquid to a twophase mixture of steam and liquid due to pressure draw down. The fluid also shows a 25% increase in reservoir chloride and a ~20° C decrement of cooling related to mixing with injected brine. The other production wells also show increase in chloride and decrease in temperature, but these changes diminish in magnitude with distance from injection well 14-2. Stable isotope compositions indicate that the reservoir water is largely meteoric in origin, having been modified by hydrothermal waterrock interaction. The water has also become progressively enriched in isotopic values in response to steam loss and mixing of injectate. N2-Ar-He and helium isotope ratios indicate a deep magmatic source region that probably supplies the heat for the hydrothermal system, consistent with recent Quaternary volcanism in the Mineral Mountains.

  13. Manual on Safety Aspects of the Design and Equipment of Hot Laboratories

    International Nuclear Information System (INIS)

    1969-01-01

    With the development of atomic energy application and research, hot laboratories are now being constructed in a number of countries. The present publication describes and discusses experience in several countries in designing equipment for these laboratories. The safe handling of highly radioactive substances is the main purpose of hot laboratory design and equipment. The manual aims at helping those persons, particularly in the developing countries, who plan to design and construct a new hot laboratory or modify an existing one. It does not deal in great detail with the engineering design of protective and handling equipment; these matters can be found in the comprehensive list of references. The manual itself covers only basic ideas and different approaches in the design of laboratory building, hot cells, shielded and glove boxes, fume cupboards, and handling and viewing equipment. Systems for transferring materials and main services are also discussed.

  14. Hot conditioning equipment conceptual design report

    International Nuclear Information System (INIS)

    Bradshaw, F.W.

    1996-01-01

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage

  15. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  16. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  17. Defect Chemistry and Electrical Conductivity of Sm-Doped La1-xSrxCoO3-δ for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Björketun, Mårten; Castelli, Ivano Eligio; Rossmeisl, Jan

    2017-01-01

    We have calculated the electrical conductivity of the solid oxide fuel cell (SOFC) cathode contact material La1-xSrxCoO3-δ at 900 K. Experimental trends in conductivity against x, and against δ for fixed x, are correctly reproduced for x ≲ 0.8. Furthermore, we have studied the chemistry of neutral...

  18. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    International Nuclear Information System (INIS)

    Takeda, Yasuhiko; Sugimoto, Noriaki; Ichiki, Akihisa; Kusano, Yuya; Motohiro, Tomoyoshi

    2015-01-01

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs

  19. Resonant tunneling diodes as energy-selective contacts used in hot-carrier solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Sugimoto, Noriaki [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Ichiki, Akihisa [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Kusano, Yuya [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Toyota Motor Corp., 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Motohiro, Tomoyoshi [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2015-09-28

    Among the four features unique to hot-carrier solar cells (HC-SCs): (i) carrier thermalization time and (ii) carrier equilibration time in the absorber, (iii) energy-selection width and (iv) conductance of the energy-selective contacts (ESCs), requisites of (i)-(iii) for high conversion efficiency have been clarified. We have tackled the remaining issues related to (iv) in the present study. The detailed balance model of HC-SC operation has been improved to involve a finite value of the ESC conductance to find the required values, which in turn has been revealed to be feasible using resonant tunneling diodes (RTDs) consisting of semiconductor quantum dots (QDs) and quantum wells (QWs) by means of a formulation to calculate the conductance of the QD- and QW-RTDs derived using the rigorous solutions of the effective-mass Hamiltonians. Thus, all of the four requisites unique to HC-SCs to achieve high conversion efficiency have been elucidated, and the two requisites related to the ESCs can be fulfilled using the QD- and QW-RTDs.

  20. Chemistry control approach of pre commissioning and power operation of primary and auxiliary system of KGS-3 and 4 and trouble shooting made

    International Nuclear Information System (INIS)

    Bennet Raj, N.; Sahu, B.S.; Kumar, Vineet; Valluri, J.

    2008-01-01

    KGS (Kaiga Generating Station) 3 and 4 is a 220 MWe pressurized heavy water reactor (PHWR) using heavy water (D 2 O) as moderator and primary heat coolant and the secondary system is light water which is used to make the steam for generating the power. The chemistry control approach made for the successful commissioning and subsequent power operation of the unit is discussed here. The chemistry control is of two parts first part covers the pre commissioning chemistry control and the second part covers the commissioning chemistry control. During commissioning all systems were preserved by proper chemistry control and regular recirculation of system to avoid stagnancy. The major pre commissioning and commissioning chemistry control are depicted below: Pre commissioning chemistry control of primary heat transport (PHT) system and auxiliaries; Pre commissioning chemistry control of moderator system; Primary heat transport system hot conditioning with light water; Commissioning chemistry control of End Shield System (ESC) and Calandria Vault Cooling (CVC) system; Heavy water addition and its chemistry control in moderator system; and Heavy water addition and its chemistry control in PHT system. During power operation dew point in annular gas monitoring system (AGMS) of KGS unit 3 was maintaining in higher side under recirculation. The increase of dew point could be due to ingress of heavy water or light water. A new device was developed to collect condensate and the chemistry of the condensate was checked. The result indicated the ingress of light water. (author)

  1. Hot atom chemistry in oxyanion targets: Part 3. Some theoretical aspects of reincorporation of parent form in permanganates

    International Nuclear Information System (INIS)

    Mishra, S.P.; Singh, J.

    1988-01-01

    An attempt is made to advance qualitative and quantitative interpretations for the observed data on retention of recoil 56 Mn in potassium and ammonium permanganates in the light of following physical models; (a) extreme back-diffusion model, (b) billiard-ball collision model and (c) hot zone model. (author). 6 tables, 22 refs

  2. Hydrothermal alteration at Roosevelt Hot Springs KGRA: DDH 1976-1

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Alteration and mineral deposition recognized in a 200' drill core from DDH 1-76 is most intense in the upper 100 feet which consists of altered alluvium and opal deposits; the lower 100 feet is weakly altered quartz monzonite. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Comparison of the alteration mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth. The estimated heat flow varied from .02 HFU (for 200' depth, 400,000 yr duration, and no sulfur oxidation) to 67 HFU (for 5,000' depth, 1,000 yr duration, and all sulfur oxidized from sulfide). Heat flow contributions from hydrothermal alteration are comparable with those from a cooling granitic magma.

  3. Bioorthogonal chemistry: applications in activity-based protein profiling.

    Science.gov (United States)

    Willems, Lianne I; van der Linden, Wouter A; Li, Nan; Li, Kah-Yee; Liu, Nora; Hoogendoorn, Sascha; van der Marel, Gijs A; Florea, Bogdan I; Overkleeft, Herman S

    2011-09-20

    The close interaction between organic chemistry and biology goes back to the late 18th century, when the modern natural sciences began to take shape. After synthetic organic chemistry arose as a discipline, organic chemists almost immediately began to pursue the synthesis of naturally occurring compounds, thereby contributing to the understanding of their functions in biological processes. Research in those days was often remarkably interdisciplinary; in fact, it constituted chemical biology research before the phrase even existed. For example, histological dyes, both of an organic and inorganic nature, were developed and applied by independent researchers (Gram and Golgi) with the aim of visualizing cellular substructures (the bacterial cell wall and the Golgi apparatus). Over the years, as knowledge within the various fields of the natural sciences deepened, research disciplines drifted apart, becoming rather monodisciplinary. In these years, broadly ranging from the end of World War II to about the 1980s, organic chemistry continued to impact life sciences research, but contributions were of a more indirect nature. As an example, the development of the polymerase chain reaction, from which molecular biology and genetics research have greatly profited, was partly predicated on the availability of synthetic oligonucleotides. These molecules first became available in the late 1960s, the result of organic chemists pursuing the synthesis of DNA oligomers primarily because of the synthetic challenges involved. Today, academic natural sciences research is again becoming more interdisciplinary, and sometimes even multidisciplinary. What was termed "chemical biology" by Stuart Schreiber at the end of the last century can be roughly described as the use of intellectually chemical approaches to shed light on processes that are fundamentally rooted in biology. Chemical tools and techniques that are developed for biological studies in the exciting and rapidly evolving field

  4. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  5. Hot cell examination on the surveillance capsule of SA 533 cl. 1 reactor pressure vessel (1st test report)

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Yong Sun; Jung, Y. H.; Yoo, B. O.; Baik, S. J.; Oh, W. H.; Soong, W. S.; Hong, K. P

    2000-08-01

    The post-irradiated examinations such as impact test, tensile test, composition analysis and etc. were conducted to monitor and to evaluate the radiation-induced changes, so called radiation embrittlement, in the mechanical properties of ferritic materials. Those data should be applied to confirm safety as well as reliability of reactor pressure vessel. The scopes and contents of hot cell examination on the surveillance capsule are as follows; - Capsule transportation, cutting, dismantling and classification - Shim block and Dosimeter cutting and dismantling - Impact test - Tensile test - Composition analysis by EPMA - SEM observation on the fractured surface - Hardness test - Radwaste treatment.

  6. Sealed Attics Exposed to Two Years of Weathering in a Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William A [ORNL; Railkar, Sudhir [GAF; Shiao, Ming C [ORNL; Desjarlais, Andre Omer [ORNL

    2016-01-01

    Field studies in a hot, humid climate were conducted to investigate the thermal and hygrothermal performance of ventilated attics and non-ventilated semi-conditioned attics sealed with open-cell and with closed-cell spray polyurethane foam insulation. Moisture pin measurements made in the sheathing and absolute humidity sensor data from inside the foam and from the attic air show that moisture is being stored in the foam. The moisture in the foam diffuses to and from the sheathing dependent on the pressure gradient at the foam-sheathing interface which is driven by the irradiance and night-sky radiation. Ventilated attics in the same hot, humid climate showed less moisture movement in the sheathing than those sealed with either open- or closed-cell spray foam. In the ventilated attics the relative humidity drops as the attic air warms; however, the opposite was observed in the sealed attics. Peaks in measured relative humidity in excess of 80 90% and occasionally near saturation (i.e., 100%) were observed from solar noon till about 8 PM on hot, humid days. The conditioned space of the test facility is heated and cooled by an air-to-air heat pump. Therefore the partial pressure of the indoor air during peak irradiance is almost always less than that observed in the sealed attics. Field data will be presented to bring to light the critical humidity control issues in sealed attics exposed to hot, humid climates.

  7. Advanced chemistry management system to optimize BWR chemistry control

    International Nuclear Information System (INIS)

    Maeda, K.; Nagasawa, K.

    2002-01-01

    BWR plant chemistry control has close relationships among nuclear safety, component reliability, radiation field management and fuel integrity. Advanced technology is required to improve chemistry control [1,3,6,7,10,11]. Toshiba has developed TACMAN (Toshiba Advanced Chemistry Management system) to support BWR chemistry control. The TACMAN has been developed as response to utilities' years of requirements to keep plant operation safety, reliability and cost benefit. The advanced technology built into the TACMAN allows utilities to make efficient chemistry control and to keep cost benefit. TACMAN is currently being used in response to the needs for tools those plant chemists and engineers could use to optimize and identify plant chemistry conditions continuously. If an incipient condition or anomaly is detected at early stage, root causes evaluation and immediate countermeasures can be provided. Especially, the expert system brings numerous and competitive advantages not only to improve plant chemistry reliability but also to standardize and systematize know-how, empirical knowledge and technologies in BWR chemistry This paper shows detail functions of TACMAN and practical results to evaluate actual plant. (authors)

  8. Potential ability of hot water adzuki (Vigna angularis) extracts to inhibit the adhesion, invasion, and metastasis of murine B16 melanoma cells.

    Science.gov (United States)

    Itoh, Tomohiro; Umekawa, Hayato; Furuichi, Yukio

    2005-03-01

    The 40% ethanol eluent of the fraction of hot-water extract from adzuki beans (EtEx.40) adsorbed onto DIAION HP-20 resin has many biological activities, for example, antioxidant, antitumorigenesis, and intestinal alpha-glucosidase suppressing activities. This study examined the inhibitory effect of EtEx.40 on experimental lung metastasis and the invasion of B16-BL6 melanoma cells. EtEx.40 was found significantly to reduce the number of tumor colonies. It also inhibited the adhesion and migration of B16-BL6 melanoma cells into extracellular matrix components and their invasion into reconstituted basement membrane (matrigel) without affecting cell proliferation in vitro. These in vivo data suggest that EtEx.40 possesses a strong antimetastatic ability, which might be a lead compound in functional food development.

  9. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    Science.gov (United States)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  10. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Science.gov (United States)

    2010-01-01

    ... supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY... Water Heaters, Hot Water Supply Boilers and Unfired Hot Water Storage Tanks § 431.102 Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. The...

  11. Automated quantification of proliferation with automated hot-spot selection in phosphohistone H3/MART1 dual-stained stage I/II melanoma.

    Science.gov (United States)

    Nielsen, Patricia Switten; Riber-Hansen, Rikke; Schmidt, Henrik; Steiniche, Torben

    2016-04-09

    Staging of melanoma includes quantification of a proliferation index, i.e., presumed melanocytic mitoses of H&E stains are counted manually in hot spots. Yet, its reproducibility and prognostic impact increases by immunohistochemical dual staining for phosphohistone H3 (PHH3) and MART1, which also may enable fully automated quantification by image analysis. To ensure manageable workloads and repeatable measurements in modern pathology, the study aimed to present an automated quantification of proliferation with automated hot-spot selection in PHH3/MART1-stained melanomas. Formalin-fixed, paraffin-embedded tissue from 153 consecutive stage I/II melanoma patients was immunohistochemically dual-stained for PHH3 and MART1. Whole slide images were captured, and the number of PHH3/MART1-positive cells was manually and automatically counted in the global tumor area and in a manually and automatically selected hot spot, i.e., a fixed 1-mm(2) square. Bland-Altman plots and hypothesis tests compared manual and automated procedures, and the Cox proportional hazards model established their prognostic impact. The mean difference between manual and automated global counts was 2.9 cells/mm(2) (P = 0.0071) and 0.23 cells per hot spot (P = 0.96) for automated counts in manually and automatically selected hot spots. In 77 % of cases, manual and automated hot spots overlapped. Fully manual hot-spot counts yielded the highest prognostic performance with an adjusted hazard ratio of 5.5 (95 % CI, 1.3-24, P = 0.024) as opposed to 1.3 (95 % CI, 0.61-2.9, P = 0.47) for automated counts with automated hot spots. The automated index and automated hot-spot selection were highly correlated to their manual counterpart, but altogether their prognostic impact was noticeably reduced. Because correct recognition of only one PHH3/MART1-positive cell seems important, extremely high sensitivity and specificity of the algorithm is required for prognostic purposes. Thus, automated

  12. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  13. Current activities in development of PIE techniques in JMTR hot laboratory

    International Nuclear Information System (INIS)

    Ishii, Toshimitsu; Ohmi, Masao; Shimizu, Michio; Kaji, Yoshiyuki; Ueno, Fumiyoshi

    2006-01-01

    A wide variety of post-irradiation examinations (PIEs) for research and development of nuclear fuels and materials to be utilized in nuclear field has been carried out since 1971 in three kinds of β-γ hot cells; concrete, lead and steel cells in the JMTR Hot Laboratory (JMTR HL) associated with the Japan Materials Testing Reactor (JMTR). In addition to PIEs, the re-capsuling work including re-instrumentation was also conducted for the power ramping tests of the irradiated LWR fuels using Boiling Water Capsule (BOCA). Recently, new PIE techniques are required for the advanced irradiation studies. In this paper, the irradiation assisted stress corrosion cracking (IASCC) growth test technique of irradiated in-core structural materials and the remote operation technique of the atomic force microscope (AFM) are described as JMTR HL's current activities in the development of new PIE techniques. (author)

  14. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  15. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  16. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  17. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  18. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  19. Hot laboratory design on the basis of standardized components

    International Nuclear Information System (INIS)

    Cadrot, J.

    1976-01-01

    The paper describes the principal effects on hot laboratory design brought about over the last 15 years by the use of standardized components developed jointly with the CEA and the industrial associates of AFINE. After a rapid survey of the various advantages of standardization, the author turns to the specific case of a laboratory producing mixed plutonium and uranium oxide fuels, giving a brief description of the glove-boxes and ancillary equipment. He then deals with the design of an isotope production laboratory. The basic component is the DR 200 standard cell, which permits the civil engineering work to be effected on modular principles. Use of a safety-flow pressure regulating valve makes possible pneumatic automation of the production-cell internals. A substantial gain in output is the result. In the next section the paper refers to a pilot facility for irradiated fuel studies, and describes the components used, which require taking into account the high activities and intense radiations encountered in studies of this type. The author then demonstrates the flexibility with which standardized components can be adapted to different uses, thus solving many distinct problems, an example of which is represented by a semi-hot box for handling up to 100g of americium-241. Finally, the paper offers a rapid summary of the effects of standardization at the various stages concerned, from initial design to the commissioning of a hot laboratory. (author)

  20. The Brazilian medicinal chemistry from 1998 to 2008 in the Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry [A química medicinal brasileira de 1998 a 2008 nos periódicos Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters e European Journal of Medicinal Chemistry

    OpenAIRE

    Bárbara Vasconcellos da Silva; Renato Saldanha Bastos; Angelo da Cunha Pinto

    2009-01-01

    In this article we present the Brazilian publications, the research groups involved, the contributions per states and the main diseases studied from 1998 to 2008 in the following periodicals: Journal of Medicinal Chemistry, Bioorganic and Medicinal Chemistry, Bioorganic and Medicinal Chemistry Letters and European Journal of Medicinal Chemistry.