WorldWideScience

Sample records for host transcriptomic states

  1. Coral host transcriptomic states are correlated with Symbiodinium genotypes

    KAUST Repository

    DeSalvo, Michael K.

    2010-03-01

    A mutualistic relationship between reef-building corals and endosymbiotic dinoflagellates (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene expression microarray. Interestingly, gene expression was more similar among samples with the same Symbiodinium content rather than the same experimental condition. In order to discount for host-genotypic effects, we sampled fragments from a single colony of M. faveolata containing different symbiont types, and found that the host transcriptomic states grouped according to Symbiodinium genotype rather than thermal stress. As the first study that links coral host transcriptomic patterns to the clade content of their Symbiodinium community, our results provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-Symbiodinium partnerships. © 2010 Blackwell Publishing Ltd.

  2. Fungal transcriptomics from host samples

    Directory of Open Access Journals (Sweden)

    Sara eAmorim-Vaz

    2016-01-01

    Full Text Available Candida albicans adaptation to the host requires a profound reprogramming of the fungal transcriptome as compared to in vitro laboratory conditions. A detailed knowledge of the C. albicans transcriptome during the infection process is necessary in order to understand which of the fungal genes are important for host adaptation. Such genes could be thought of as potential targets for antifungal therapy. The acquisition of the C. albicans transcriptome is however technically challenging due to the low proportion of fungal RNA in host tissues. Two emerging technologies were used recently to circumvent this problem. One consists of the detection of low abundance fungal RNA using capture and reporter gene probes which is followed by emission and quantification of resulting fluorescent signals (nanoString. The other is based first on the capture of fungal RNA by short biotinylated oligonucleotide baits covering the C. albicans ORFome permitting fungal RNA purification. Next, the enriched fungal RNA is amplified and subjected RNA sequencing (RNA-seq. Here we detail these two transcriptome approaches and discuss their advantages and limitations and future perspectives in microbial transcriptomics from host material.

  3. Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations.

    Science.gov (United States)

    Thaiss, Christoph A; Levy, Maayan; Korem, Tal; Dohnalová, Lenka; Shapiro, Hagit; Jaitin, Diego A; David, Eyal; Winter, Deborah R; Gury-BenAri, Meital; Tatirovsky, Evgeny; Tuganbaev, Timur; Federici, Sara; Zmora, Niv; Zeevi, David; Dori-Bachash, Mally; Pevsner-Fischer, Meirav; Kartvelishvily, Elena; Brandis, Alexander; Harmelin, Alon; Shibolet, Oren; Halpern, Zamir; Honda, Kenya; Amit, Ido; Segal, Eran; Elinav, Eran

    2016-12-01

    The intestinal microbiota undergoes diurnal compositional and functional oscillations that affect metabolic homeostasis, but the mechanisms by which the rhythmic microbiota influences host circadian activity remain elusive. Using integrated multi-omics and imaging approaches, we demonstrate that the gut microbiota features oscillating biogeographical localization and metabolome patterns that determine the rhythmic exposure of the intestinal epithelium to different bacterial species and their metabolites over the course of a day. This diurnal microbial behavior drives, in turn, the global programming of the host circadian transcriptional, epigenetic, and metabolite oscillations. Surprisingly, disruption of homeostatic microbiome rhythmicity not only abrogates normal chromatin and transcriptional oscillations of the host, but also incites genome-wide de novo oscillations in both intestine and liver, thereby impacting diurnal fluctuations of host physiology and disease susceptibility. As such, the rhythmic biogeography and metabolome of the intestinal microbiota regulates the temporal organization and functional outcome of host transcriptional and epigenetic programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  5. Transcriptome analyses of Anguillicola crassus from native and novel hosts

    Directory of Open Access Journals (Sweden)

    Emanuel Heitlinger

    2014-11-01

    Full Text Available Anguillicola crassus is a swim bladder nematode of eels. The parasite is native to the Asian eel Anguilla japonica, but was introduced to Europe and the European eel Anguilla anguilla in the early 1980s. A Taiwanese source has been proposed for this introduction. In the new host in the recipient area, the parasite appears to be more pathogenic. As a reason for these differences, genetically fixed differences in infectivity and development between Taiwanese and European A.crassus have been described and disentangled from plasticity induced by different host environments. To explore whether transcriptional regulation is involved in these lifecycle differences, we have analysed a “common garden”, cross infection experiment, using deep-sequencing transcriptomics. Surprisingly, in the face of clear phenotypic differences in life history traits, we identified no significant differences in gene expression between parasite populations or between experimental host species. From 120,000 SNPs identified in the transcriptome data we found that European A. crassus were not a genetic subset of the Taiwanese nematodes sampled. The loci that have the major contribution to the European-Taiwanese population differentiation show an enrichment of synonymous and non-coding polymorphism. This argues against positive selection in population differentiation. However, genes involved in protein processing in the endoplasmatic reticulum membrane and genes bearing secretion signal sequences were enriched in the set of genes most differentiated between European and Taiwanese A. crassus. These genes could be a source for the phenotypically visible genetically fixed differences between European and Taiwanese A. crassus.

  6. First in Vivo Batrachochytrium dendrobatidis Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts.

    Science.gov (United States)

    Ellison, Amy R; DiRenzo, Graziella V; McDonald, Caitlin A; Lips, Karen R; Zamudio, Kelly R

    2017-01-05

    For generalist pathogens, host species represent distinct selective environments, providing unique challenges for resource acquisition and defense from host immunity, potentially resulting in host-dependent differences in pathogen fitness. Gene expression modulation should be advantageous, responding optimally to a given host and mitigating the costs of generalism. Batrachochytrium dendrobatidis (Bd), a fungal pathogen of amphibians, shows variability in pathogenicity among isolates, and within-strain virulence changes rapidly during serial passages through artificial culture. For the first time, we characterize the transcriptomic profile of Bd in vivo, using laser-capture microdissection. Comparison of Bd transcriptomes (strain JEL423) in culture and in two hosts (Atelopus zeteki and Hylomantis lemur), reveals >2000 differentially expressed genes that likely include key Bd defense and host exploitation mechanisms. Variation in Bd transcriptomes from different amphibian hosts demonstrates shifts in pathogen resource allocation. Furthermore, expressed genotype variant frequencies of Bd populations differ between culture and amphibian skin, and among host species, revealing potential mechanisms underlying rapid changes in virulence and the possibility that amphibian community composition shapes Bd evolutionary trajectories. Our results provide new insights into how changes in gene expression and infecting population genotypes can be key to the success of a generalist fungal pathogen. Copyright © 2017 Ellison et al.

  7. First in Vivo Batrachochytrium dendrobatidis Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts

    Directory of Open Access Journals (Sweden)

    Amy R. Ellison

    2017-01-01

    Full Text Available For generalist pathogens, host species represent distinct selective environments, providing unique challenges for resource acquisition and defense from host immunity, potentially resulting in host-dependent differences in pathogen fitness. Gene expression modulation should be advantageous, responding optimally to a given host and mitigating the costs of generalism. Batrachochytrium dendrobatidis (Bd, a fungal pathogen of amphibians, shows variability in pathogenicity among isolates, and within-strain virulence changes rapidly during serial passages through artificial culture. For the first time, we characterize the transcriptomic profile of Bd in vivo, using laser-capture microdissection. Comparison of Bd transcriptomes (strain JEL423 in culture and in two hosts (Atelopus zeteki and Hylomantis lemur, reveals >2000 differentially expressed genes that likely include key Bd defense and host exploitation mechanisms. Variation in Bd transcriptomes from different amphibian hosts demonstrates shifts in pathogen resource allocation. Furthermore, expressed genotype variant frequencies of Bd populations differ between culture and amphibian skin, and among host species, revealing potential mechanisms underlying rapid changes in virulence and the possibility that amphibian community composition shapes Bd evolutionary trajectories. Our results provide new insights into how changes in gene expression and infecting population genotypes can be key to the success of a generalist fungal pathogen.

  8. Transcriptome analysis of host-associated differentiation in Bemisia tabaci (Hemiptera: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Wen eXie

    2014-12-01

    Full Text Available Host-associated differentiation is one of the driving forces behind the diversification of phytophagous insects. In this study, host induced transcriptomic differences were investigated in the sweetpotato whitefly Bemisia tabaci, an invasive agricultural pest worldwide. Comparative transcriptomic analyses using coding sequence (CDS, 5’ and 3’ untranslated regions (UTR showed that sequence divergences between the original host plant, cabbage, and the derived hosts, including cotton, cucumber and tomato, were 0.11%-0.14%, 0.19%-0.26% and 0.15%-0.21%, respectively. In comparison to the derived hosts, 418 female and 303 male transcripts, respectively, were up-regulated in the original cabbage strain. Among them, 17 transcripts were consistently up-regulated in both female and male whiteflies originated from the cabbage host. Specifically, two ESTs annotated as Cathepsin B or Cathepsin B-like genes were significantly up-regulated in the original cabbage strain, representing a transcriptomic response to the dietary challenges imposed by the host shifting. Results from our transcriptome analysis, in conjunction with previous reports documenting the minor changes in their reproductive capacity, insecticide susceptibility, symbiotic composition and feeding behavior, suggest that the impact of host-associated differentiation in whiteflies is limited. Furthermore, it is unlikely the major factor contributing to their rapid range expansion/invasiveness.

  9. Transcriptome analysis of a cnidarian – dinoflagellate mutualism reveals complex modulation of host gene expression

    Directory of Open Access Journals (Sweden)

    Phillips Wendy S

    2006-02-01

    Full Text Available Abstract Background Cnidarian – dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian – algal symbiosis. Results We detected statistically significant differences in host gene expression profiles between sea anemones (Anthopleura elegantissima in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian – dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. Conclusion Our data do not support the existence of symbiosis-specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian – dinoflagellate associations provides critical insights into the maintenance and regulation of the

  10. Characterization of viral RNA splicing using whole-transcriptome datasets from host species.

    Science.gov (United States)

    Zhou, Chengran; Liu, Shanlin; Song, Wenhui; Luo, Shiqi; Meng, Guanliang; Yang, Chentao; Yang, Hua; Ma, Jinmin; Wang, Liang; Gao, Shan; Wang, Jian; Yang, Huanming; Zhao, Yun; Wang, Hui; Zhou, Xin

    2018-02-19

    RNA alternative splicing (AS) is an important post-transcriptional mechanism enabling single genes to produce multiple proteins. It has been well demonstrated that viruses deploy host AS machinery for viral protein productions. However, knowledge on viral AS is limited to a few disease-causing viruses in model species. Here we report a novel approach to characterizing viral AS using whole transcriptome dataset from host species. Two insect transcriptomes (Acheta domesticus and Planococcus citri) generated in the 1,000 Insect Transcriptome Evolution (1KITE) project were used as a proof of concept using the new pipeline. Two closely related densoviruses (Acheta domesticus densovirus, AdDNV, and Planococcus citri densovirus, PcDNV, Ambidensovirus, Densovirinae, Parvoviridae) were detected and analyzed for AS patterns. The results suggested that although the two viruses shared major AS features, dramatic AS divergences were observed. Detailed analysis of the splicing junctions showed clusters of AS events occurred in two regions of the virus genome, demonstrating that transcriptome analysis could gain valuable insights into viral splicing. When applied to large-scale transcriptomics projects with diverse taxonomic sampling, our new method is expected to rapidly expand our knowledge on RNA splicing mechanisms for a wide range of viruses.

  11. The transcriptome of the avian malaria parasite Plasmodium ashfordi displays host-specific gene expression.

    Science.gov (United States)

    Videvall, Elin; Cornwallis, Charlie K; Ahrén, Dag; Palinauskas, Vaidas; Valkiūnas, Gediminas; Hellgren, Olof

    2017-06-01

    Malaria parasites (Plasmodium spp.) include some of the world's most widespread and virulent pathogens. Our knowledge of the molecular mechanisms these parasites use to invade and exploit their hosts other than in mice and primates is, however, extremely limited. It is therefore imperative to characterize transcriptome-wide gene expression from nonmodel malaria parasites and how this varies across individual hosts. Here, we used high-throughput Illumina RNA sequencing on blood from wild-caught Eurasian siskins experimentally infected with a clonal strain of the avian malaria parasite Plasmodium ashfordi (lineage GRW2). Using a bioinformatic multistep approach to filter out host transcripts, we successfully assembled the blood-stage transcriptome of P. ashfordi. A total of 11 954 expressed transcripts were identified, and 7860 were annotated with protein information. We quantified gene expression levels of all parasite transcripts across three hosts during two infection stages - peak and decreasing parasitemia. Interestingly, parasites from the same host displayed remarkably similar expression profiles during different infection stages, but showed large differences across hosts, indicating that P. ashfordi may adjust its gene expression to specific host individuals. We further show that the majority of transcripts are most similar to the human parasite Plasmodium falciparum, and a large number of red blood cell invasion genes were discovered, suggesting evolutionary conserved invasion strategies between mammalian and avian Plasmodium. The transcriptome of P. ashfordi and its host-specific gene expression advances our understanding of Plasmodium plasticity and is a valuable resource as it allows for further studies analysing gene evolution and comparisons of parasite gene expression. © 2017 John Wiley & Sons Ltd.

  12. Host plant driven transcriptome plasticity in the salivary glands of the cabbage looper (Trichoplusia ni).

    Science.gov (United States)

    Rivera-Vega, Loren J; Galbraith, David A; Grozinger, Christina M; Felton, Gary W

    2017-01-01

    Generalist herbivores feed on a wide array of plants and need to adapt to varying host qualities and defenses. One of the first insect derived secretions to come in contact with the plant is the saliva. Insect saliva is potentially involved in both the pre-digestion of the host plant as well as induction/suppression of plant defenses, yet how the salivary glands respond to changes in host plant at the transcriptional level is largely unknown. The objective of this study was to determine how the labial salivary gland transcriptome varies according to the host plant on which the insect is feeding. In order to determine this, cabbage looper (Trichoplusia ni) larvae were reared on cabbage, tomato, and pinto bean artificial diet. Labial glands were dissected from fifth instar larvae and used to extract RNA for RNASeq analysis. Assembly of the resulting sequencing reads resulted in a transcriptome library for T. ni salivary glands consisting of 14,037 expressed genes. Feeding on different host plant diets resulted in substantial remodeling of the gland transcriptomes, with 4,501 transcripts significantly differentially expressed across the three treatment groups. Gene expression profiles were most similar between cabbage and artificial diet, which corresponded to the two diets on which larvae perform best. Expression of several transcripts involved in detoxification processes were differentially expressed, and transcripts involved in the spliceosome pathway were significantly downregulated in tomato-reared larvae. Overall, this study demonstrates that the transcriptomes of the salivary glands of the cabbage looper are strongly responsive to diet. It also provides a foundation for future functional studies that can help us understand the role of saliva of chewing insects in plant-herbivore interactions.

  13. Comprehensive Transcriptome Meta-analysis to Characterize Host Immune Responses in Helminth Infections

    Science.gov (United States)

    Zhou, Guangyan; Stevenson, Mary M.; Geary, Timothy G.; Xia, Jianguo

    2016-01-01

    Helminth infections affect more than a third of the world’s population. Despite very broad phylogenetic differences among helminth parasite species, a systemic Th2 host immune response is typically associated with long-term helminth infections, also known as the “helminth effect”. Many investigations have been carried out to study host gene expression profiles during helminth infections. The objective of this study is to determine if there is a common transcriptomic signature characteristic of the helminth effect across multiple helminth species and tissue types. To this end, we performed a comprehensive meta-analysis of publicly available gene expression datasets. After data processing and adjusting for study-specific effects, we identified ~700 differentially expressed genes that are changed consistently during helminth infections. Functional enrichment analyses indicate that upregulated genes are predominantly involved in various immune functions, including immunomodulation, immune signaling, inflammation, pathogen recognition and antigen presentation. Down-regulated genes are mainly involved in metabolic process, with only a few of them are involved in immune regulation. This common immune gene signature confirms previous observations and indicates that the helminth effect is robust across different parasite species as well as host tissue types. To the best of our knowledge, this study is the first comprehensive meta-analysis of host transcriptome profiles during helminth infections. PMID:27058578

  14. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection.

    Science.gov (United States)

    de Steenhuijsen Piters, Wouter A A; Heinonen, Santtu; Hasrat, Raiza; Bunsow, Eleonora; Smith, Bennett; Suarez-Arrabal, Maria-Carmen; Chaussabel, Damien; Cohen, Daniel M; Sanders, Elisabeth A M; Ramilo, Octavio; Bogaert, Debby; Mejias, Asuncion

    2016-11-01

    Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity, especially among healthy children. We postulate that the severity of RSV infection is influenced by modulation of the host immune response by the local bacterial ecosystem. To assess whether specific nasopharyngeal microbiota (clusters) are associated with distinct host transcriptome profiles and disease severity in children less than 2 years of age with RSV infection. We characterized the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy children by 16S-rRNA sequencing. In parallel, using multivariable models, we analyzed whole-blood transcriptome profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response, and clinical disease severity. We identified five nasopharyngeal microbiota clusters characterized by enrichment of either Haemophilus influenzae, Streptococcus, Corynebacterium, Moraxella, or Staphylococcus aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus and negatively associated with S. aureus abundance, independent of age. Children with RSV showed overexpression of IFN-related genes, independent of the microbiota cluster. In addition, transcriptome profiles of children with RSV infection and H. influenzae- and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to Toll-like receptor and by neutrophil and macrophage activation and signaling. Our data suggest that interactions between RSV and nasopharyngeal microbiota might modulate the host immune response, potentially affecting clinical disease severity.

  15. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens.

    Directory of Open Access Journals (Sweden)

    Deborah Chasman

    2016-07-01

    Full Text Available Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection.

  16. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella

    Science.gov (United States)

    2011-01-01

    Background The larvae of the greater wax moth Galleria mellonella are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. Results We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Conclusion Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and

  17. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella.

    Science.gov (United States)

    Vogel, Heiko; Altincicek, Boran; Glöckner, Gernot; Vilcinskas, Andreas

    2011-06-11

    The larvae of the greater wax moth Galleria mellonella are increasingly used (i) as mini-hosts to study pathogenesis and virulence factors of prominent bacterial and fungal human pathogens, (ii) as a whole-animal high throughput infection system for testing pathogen mutant libraries, and (iii) as a reliable host model to evaluate the efficacy of antibiotics against human pathogens. In order to compensate for the lack of genomic information in Galleria, we subjected the transcriptome of different developmental stages and immune-challenged larvae to next generation sequencing. We performed a Galleria transcriptome characterization on the Roche 454-FLX platform combined with traditional Sanger sequencing to obtain a comprehensive transcriptome. To maximize sequence diversity, we pooled RNA extracted from different developmental stages, larval tissues including hemocytes, and from immune-challenged larvae and normalized the cDNA pool. We generated a total of 789,105 pyrosequencing and 12,032 high-quality Sanger EST sequences which clustered into 18,690 contigs with an average length of 1,132 bases. Approximately 40% of the ESTs were significantly similar (E ≤ e-03) to proteins of other insects, of which 45% have a reported function. We identified a large number of genes encoding proteins with established functions in immunity related sensing of microbial signatures and signaling, as well as effector molecules such as antimicrobial peptides and inhibitors of microbial proteinases. In addition, we found genes known as mediators of melanization or contributing to stress responses. Using the transcriptomic data, we identified hemolymph peptides and proteins induced upon immune challenge by 2D-gelelectrophoresis combined with mass spectrometric analysis. Here, we have developed extensive transcriptomic resources for Galleria. The data obtained is rich in gene transcripts related to immunity, expanding remarkably our knowledge about immune and stress-inducible genes in

  18. Analysis of the Phialocephala subalpina Transcriptome during Colonization of Its Host Plant Picea abies.

    Directory of Open Access Journals (Sweden)

    Vanessa Reininger

    Full Text Available Phialocephala subalpina belongs to the Phialocephala fortinii s.l.-Acepphala applanata species complex (PAC forming one of the major groups belonging to the dark septate endophytes (DSE. Depending on the strain, PAC was shown to form neutral to pathogenic associations with its host plant Picea abies. To understand PACs lifestyle we investigated the effect of presence/absence of Picea abies on the transcriptome of strain 6_70_1.PAC strain 6_70_1 was grown in liquid Pachlewski media either induced by its host plant Picea abies or without host plant as a control. Mycelia were harvested in a time course (1, 2, 3, 4, 7, 11, 18 days with and without induction by the host plant and the fungal transcriptome revealed by Illumina sequencing. Differential gene expression analysis over the time course comparing control and treatment at each time point using the 'edgeR glm approach' and a gene enrichment analysis using GO categories were performed.The three main functional groups within differentially expressed genes were 'metabolism', 'transport' and 'cell rescue, defense and virulence'. Additionally, genes especially involved in iron metabolism could be detected by gene set enrichment analysis.In conclusion, we found PAC strain 6_70_1 to be metabolically very active during colonization of its host plant Picea abies. A major shift in functional groups over the time course of this experiment could not be observed but GO categories which were found to be enriched showed different emphasis depending in the day post induction.

  19. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian

    2017-12-08

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  20. The Complete Campylobacter jejuni Transcriptome during Colonization of a Natural Host Determined by RNAseq

    Science.gov (United States)

    Taveirne, Michael E.; Theriot, Casey M.; Livny, Jonathan; DiRita, Victor J.

    2013-01-01

    Campylobacter jejuni is a major human pathogen and a leading cause of bacterial derived gastroenteritis worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Despite this ability to highly regulate gene transcription, C. jejuni encodes few transcription factors and its genome lacks many canonical transcriptional regulators. High throughput deep sequencing of mRNA transcripts (termed RNAseq) has been used to study the transcriptome of many different organisms, including C. jejuni; however, this technology has yet to be applied to defining the transcriptome of C. jejuni during in vivo colonization of its natural host, the chicken. In addition to its use in profiling the abundance of annotated genes, RNAseq is a powerful tool for identifying and quantifying, as-of-yet, unknown transcripts including non-coding regulatory RNAs, 5’ untranslated regulatory elements, and anti-sense transcripts. Here we report the complete transcriptome of C. jejuni during colonization of the chicken cecum and in two different in vitro growth phases using strand-specific RNAseq. Through this study, we identified over 250 genes differentially expressed in vivo in addition to numerous putative regulatory RNAs, including trans-acting non-coding RNAs and anti-sense transcripts. These latter potential regulatory elements were not identified in two prior studies using ORF-based microarrays, highlighting the power and value of the RNAseq approach. Our results provide new insights into how C. jejuni responds and adapts to the cecal environment and reveals new functions involved in colonization of its natural host. PMID:23991199

  1. The complete Campylobacter jejuni transcriptome during colonization of a natural host determined by RNAseq.

    Directory of Open Access Journals (Sweden)

    Michael E Taveirne

    Full Text Available Campylobacter jejuni is a major human pathogen and a leading cause of bacterial derived gastroenteritis worldwide. C. jejuni regulates gene expression under various environmental conditions and stresses, indicative of its ability to survive in diverse niches. Despite this ability to highly regulate gene transcription, C. jejuni encodes few transcription factors and its genome lacks many canonical transcriptional regulators. High throughput deep sequencing of mRNA transcripts (termed RNAseq has been used to study the transcriptome of many different organisms, including C. jejuni; however, this technology has yet to be applied to defining the transcriptome of C. jejuni during in vivo colonization of its natural host, the chicken. In addition to its use in profiling the abundance of annotated genes, RNAseq is a powerful tool for identifying and quantifying, as-of-yet, unknown transcripts including non-coding regulatory RNAs, 5' untranslated regulatory elements, and anti-sense transcripts. Here we report the complete transcriptome of C. jejuni during colonization of the chicken cecum and in two different in vitro growth phases using strand-specific RNAseq. Through this study, we identified over 250 genes differentially expressed in vivo in addition to numerous putative regulatory RNAs, including trans-acting non-coding RNAs and anti-sense transcripts. These latter potential regulatory elements were not identified in two prior studies using ORF-based microarrays, highlighting the power and value of the RNAseq approach. Our results provide new insights into how C. jejuni responds and adapts to the cecal environment and reveals new functions involved in colonization of its natural host.

  2. Transcriptome modulation during host shift is driven by secondary metabolites in desert Drosophila.

    Science.gov (United States)

    De Panis, Diego N; Padró, Julián; Furió-Tarí, Pedro; Tarazona, Sonia; Milla Carmona, Pablo S; Soto, Ignacio M; Dopazo, Hernán; Conesa, Ana; Hasson, Esteban

    2016-09-01

    High-throughput transcriptome studies are breaking new ground to investigate the responses that organisms deploy in alternative environments. Nevertheless, much remains to be understood about the genetic basis of host plant adaptation. Here, we investigate genome-wide expression in the fly Drosophila buzzatii raised in different conditions. This species uses decaying tissues of cactus of the genus Opuntia as primary rearing substrate and secondarily, the necrotic tissues of the columnar cactus Trichocereus terscheckii. The latter constitutes a harmful host, rich in mescaline and other related phenylethylamine alkaloids. We assessed the transcriptomic responses of larvae reared in Opuntia sulphurea and T. terscheckii, with and without the addition of alkaloids extracted from the latter. Whole-genome expression profiles were massively modulated by the rearing environment, mainly by the presence of T. terscheckii alkaloids. Differentially expressed genes were mainly related to detoxification, oxidation-reduction and stress response; however, we also found genes involved in development and neurobiological processes. In conclusion, our study contributes new data onto the role of transcriptional plasticity in response to alternative rearing environments. © 2016 John Wiley & Sons Ltd.

  3. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Ho, Chai-Ling; Tan, Yung-Chie; Yeoh, Keat-Ai; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Hoh, Chee-Choong

    2016-01-19

    Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.

  4. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew J. Collins

    2012-05-01

    Full Text Available The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/ tandem mass spectrometry (LC-MS/MS proteomic analyses. 454 high-throughput sequencing produced 650,686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial associated molecular patterns (MAMPs were identified. Among these was a complete open reading frame (ORF to a putative peptidoglycan recognition protein (EsPGRP5 that has conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NFκB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative PCR of complement-related genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes isolated from adult squid with colonized light organs compared to those for which the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of the host.

  5. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions.

    Science.gov (United States)

    Swierzy, Izabela J; Händel, Ulrike; Kaever, Alexander; Jarek, Michael; Scharfe, Maren; Schlüter, Dirk; Lüder, Carsten G K

    2017-08-03

    The apicomplexan parasite Toxoplasma gondii infects various cell types in avian and mammalian hosts including humans. Infection of immunocompetent hosts is mostly asymptomatic or benign, but leads to development of largely dormant bradyzoites that persist predominantly within neurons and muscle cells. Here we have analyzed the impact of the host cell type on the co-transcriptomes of host and parasite using high-throughput RNA sequencing. Murine cortical neurons and astrocytes, skeletal muscle cells (SkMCs) and fibroblasts differed by more than 16,200 differentially expressed genes (DEGs) before and after infection with T. gondii. However, only a few hundred of them were regulated by infection and these largely diverged in neurons, SkMCs, astrocytes and fibroblasts indicating host cell type-specific transcriptional responses after infection. The heterogeneous transcriptomes of host cells before and during infection coincided with ~5,400 DEGs in T. gondii residing in different cell types. Finally, we identified gene clusters in both T. gondii and its host, which correlated with the predominant parasite persistence in neurons or SkMCs as compared to astrocytes or fibroblasts. Thus, heterogeneous expression profiles of different host cell types and the parasites' ability to adapting to them may govern the parasite-host cell interaction during toxoplasmosis.

  6. New Perspectives on Host-Parasite Interplay by Comparative Transcriptomic and Proteomic Analyses of Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Schistosomiasis remains a serious public health problem with an estimated 200 million people infected in 76 countries. Here we isolated ~ 8,400 potential protein-encoding cDNA contigs from Schistosoma japonicum after sequencing circa 84,000 expressed sequence tags. In tandem, we undertook a high-throughput proteomics approach to characterize the protein expression profiles of a number of developmental stages (cercariae, hepatic schistosomula, female and male adults, eggs, and miracidia and tissues at the host-parasite interface (eggshell and tegument by interrogating the protein database deduced from the contigs. Comparative analysis of these transcriptomic and proteomic data, the latter including 3,260 proteins with putative identities, revealed differential expression of genes among the various developmental stages and sexes of S. japonicum and localization of putative secretory and membrane antigens, enzymes, and other gene products on the adult tegument and eggshell, many of which displayed genetic polymorphisms. Numerous S. japonicum genes exhibited high levels of identity with those of their mammalian hosts, whereas many others appeared to be conserved only across the genus Schistosoma or Phylum Platyhelminthes. These findings are expected to provide new insights into the pathophysiology of schistosomiasis and for the development of improved interventions for disease control and will facilitate a more fundamental understanding of schistosome biology, evolution, and the host-parasite interplay.

  7. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    2006-04-01

    Full Text Available Schistosomiasis remains a serious public health problem with an estimated 200 million people infected in 76 countries. Here we isolated ~ 8,400 potential protein-encoding cDNA contigs from Schistosoma japonicum after sequencing circa 84,000 expressed sequence tags. In tandem, we undertook a high-throughput proteomics approach to characterize the protein expression profiles of a number of developmental stages (cercariae, hepatic schistosomula, female and male adults, eggs, and miracidia and tissues at the host-parasite interface (eggshell and tegument by interrogating the protein database deduced from the contigs. Comparative analysis of these transcriptomic and proteomic data, the latter including 3,260 proteins with putative identities, revealed differential expression of genes among the various developmental stages and sexes of S. japonicum and localization of putative secretory and membrane antigens, enzymes, and other gene products on the adult tegument and eggshell, many of which displayed genetic polymorphisms. Numerous S. japonicum genes exhibited high levels of identity with those of their mammalian hosts, whereas many others appeared to be conserved only across the genus Schistosoma or Phylum Platyhelminthes. These findings are expected to provide new insights into the pathophysiology of schistosomiasis and for the development of improved interventions for disease control and will facilitate a more fundamental understanding of schistosome biology, evolution, and the host-parasite interplay.

  8. Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission

    DEFF Research Database (Denmark)

    Malagocka, Joanna; Grell, Morten Nedergaard; Lange, Lene

    2015-01-01

    and fixing the dead cadaver to the surface, all to increase efficient spore dispersal. To investigate this fascinating pathogen-host interaction, we constructed interaction transcriptome libraries from two final infection stages from the material sampled in the field: (1) when the cadavers were fixed...

  9. Comprehensive Assessment of Host Responses to 5-Fluorouracil-Induced Oral Mucositis through Transcriptomic Analysis.

    Directory of Open Access Journals (Sweden)

    Chung-Ta Chang

    Full Text Available Chemotherapy plays an important role in current cancer therapy; however, several problems remain unsolved on the issue of host-therapeutics interaction. The purpose of this study was to investigate the host responses after 5-flurouracil (5-FU administration and to find the target genes and their relationship with other cytokines in the 5-FU-induced oral mucositis (OM mouse model through transcriptomic analysis.Thirty-six 6 to 8 week-old male BALB/c mice were randomly divided into the control group and 5-FU-treated group. In the 5-FU group, mice received 5-FU (100 mg/kg, intraperitoneally on day 1, day 8, day 15, day 22, and day 29, respectively. We evaluated the oral mucosal change under macroanalysis and histological examination at indicated periods, and then applied transcriptomic analysis of gene expression profile and Immunohistochemical stain to identify the target molecules related to 5-FU-induced OM.The most prominent histological change in this model was observed in the fifth week. The gene expression of Bone gamma-carboxyglutamate protein, related sequence 1 (Bglap-rs1 (-12.69-fold and Chitinase 3-like 4 (Chi3l4 (-6.35-fold were significantly down-regulated in this phase. The quantitative real-time PCR results also revealed the expression levels were 0.62-fold in Bglap-rs1 and 0.13-fold in Chi3l4 compared with the control group. Immunohistochemical stain showed significant expression of cluster of differentiation 11b (p<0.01, interleukin-1β (p<0.001 and tumor necrosis factor-α (p<0.05, and down-regulation of Bglap-rs1 (p<0.01 compared with the control group. By Kyoto Encyclopedia of Genes and Genomes pathway analysis, there were twenty-three pathways significantly participated in this study (p<0.05.Through comprehensively transcriptomic analysis and IHC stain, we discovered several valuable pathways, verified the main pro-inflammatory cytokines, and revealed two significantly down-regulated genes in the 5-FU-induced OM model. These

  10. Analysis of the Host Transcriptome from Demyelinating Spinal Cord of Murine Coronavirus-Infected Mice

    Science.gov (United States)

    Elliott, Ruth; Li, Fan; Dragomir, Isabelle; Chua, Ming Ming W.; Gregory, Brian D.; Weiss, Susan R.

    2013-01-01

    Persistent infection of the mouse central nervous system (CNS) with mouse hepatitis virus (MHV) induces a demyelinating disease pathologically similar to multiple sclerosis and is therefore used as a model system. There is little information regarding the host factors that correlate with and contribute to MHV-induced demyelination. Here, we detail the genes and pathways associated with MHV-induced demyelinating disease in the spinal cord. High-throughput sequencing of the host transcriptome revealed that demyelination is accompanied by numerous transcriptional changes indicative of immune infiltration as well as changes in the cytokine milieu and lipid metabolism. We found evidence that a Th1-biased cytokine/chemokine response and eicosanoid-derived inflammation accompany persistent MHV infection and that antigen presentation is ongoing. Interestingly, increased expression of genes involved in lipid transport, processing, and catabolism, including some with known roles in neurodegenerative diseases, coincided with demyelination. Lastly, expression of several genes involved in osteoclast or bone-resident macrophage function, most notably TREM2 and DAP12, was upregulated in persistently infected mouse spinal cord. This study highlights the complexity of the host antiviral response, which accompany MHV-induced demyelination, and further supports previous findings that MHV-induced demyelination is immune-mediated. Interestingly, these data suggest a parallel between bone reabsorption by osteoclasts and myelin debris clearance by microglia in the bone and the CNS, respectively. To our knowledge, this is the first report of using an RNA-seq approach to study the host CNS response to persistent viral infection. PMID:24058676

  11. Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands.

    Directory of Open Access Journals (Sweden)

    Erich Loza Telleria

    2014-04-01

    Full Text Available The agents of sleeping sickness disease, Trypanosoma brucei complex parasites, are transmitted to mammalian hosts through the bite of an infected tsetse. Information on tsetse-trypanosome interactions in the salivary gland (SG tissue, and on mammalian infective metacyclic (MC parasites present in the SG, is sparse. We performed RNA-seq analyses from uninfected and T. b. brucei infected SGs of Glossina morsitans morsitans. Comparison of the SG transcriptomes to a whole body fly transcriptome revealed that only 2.7% of the contigs are differentially expressed during SG infection, and that only 263 contigs (0.6% are preferentially expressed in the SGs (SG-enriched. The expression of only 37 contigs (0.08% and 27 SG-enriched contigs (10% were suppressed in infected SG. These suppressed contigs accounted for over 55% of the SG transcriptome, and included the most abundant putative secreted proteins with anti-hemostatic functions present in saliva. In contrast, expression of putative host proteins associated with immunity, stress, cell division and tissue remodeling were enriched in infected SG suggesting that parasite infections induce host immune and stress response(s that likely results in tissue renewal. We also performed RNA-seq analysis from mouse blood infected with the same parasite strain, and compared the transcriptome of bloodstream form (BSF cells with that of parasites obtained from the infected SG. Over 30% of parasite transcripts are differentially regulated between the two stages, and reflect parasite adaptations to varying host nutritional and immune ecology. These differences are associated with the switch from an amino acid based metabolism in the SG to one based on glucose utilization in the blood, and with surface coat modifications that enable parasite survival in the different hosts. This study provides a foundation on the molecular aspects of the trypanosome dialogue with its tsetse and mammalian hosts, necessary for future

  12. Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling

    Directory of Open Access Journals (Sweden)

    Bo eShu

    2016-03-01

    Full Text Available Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinenis Sonn.. However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes and AM fungi unigenes (33,120 unigenes were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin

  13. Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling.

    Science.gov (United States)

    Shu, Bo; Li, Weicai; Liu, Liqin; Wei, Yongzan; Shi, Shengyou

    2016-01-01

    Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol, and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes) and AM fungi unigenes (33,120 unigenes) were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG) showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin ligase complex

  14. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata.

    Science.gov (United States)

    Closek, Collin J; Sunagawa, Shinichi; DeSalvo, Michael K; Piceno, Yvette M; DeSantis, Todd Z; Brodie, Eoin L; Weber, Michele X; Voolstra, Christian R; Andersen, Gary L; Medina, Mónica

    2014-12-01

    Coral diseases impact reefs globally. Although we continue to describe diseases, little is known about the etiology or progression of even the most common cases. To examine a spectrum of coral health and determine factors of disease progression we examined Orbicella faveolata exhibiting signs of Yellow Band Disease (YBD), a widespread condition in the Caribbean. We used a novel combined approach to assess three members of the coral holobiont: the coral-host, associated Symbiodinium algae, and bacteria. We profiled three conditions: (1) healthy-appearing colonies (HH), (2) healthy-appearing tissue on diseased colonies (HD), and (3) diseased lesion (DD). Restriction fragment length polymorphism analysis revealed health state-specific diversity in Symbiodinium clade associations. 16S ribosomal RNA gene microarrays (PhyloChips) and O. faveolata complimentary DNA microarrays revealed the bacterial community structure and host transcriptional response, respectively. A distinct bacterial community structure marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families. The host transcriptome under YBD revealed a reduced cellular expression of defense- and metabolism-related processes, while the neighboring HD condition exhibited an intermediate expression profile. Although HD tissue appeared visibly healthy, the microbial communities and gene expression profiles were distinct. HD should be regarded as an additional (intermediate) state of disease, which is important for understanding the progression of YBD.

  15. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata

    KAUST Repository

    Closek, Collin J.

    2014-06-20

    Coral diseases impact reefs globally. Although we continue to describe diseases, little is known about the etiology or progression of even the most common cases. To examine a spectrum of coral health and determine factors of disease progression we examined Orbicella faveolata exhibiting signs of Yellow Band Disease (YBD), a widespread condition in the Caribbean. We used a novel combined approach to assess three members of the coral holobiont: the coral-host, associated Symbiodinium algae, and bacteria. We profiled three conditions: (1) healthy-appearing colonies (HH), (2) healthy-appearing tissue on diseased colonies (HD), and (3) diseased lesion (DD). Restriction fragment length polymorphism analysis revealed health state-specific diversity in Symbiodinium clade associations. 16S ribosomal RNA gene microarrays (PhyloChips) and O. faveolata complimentary DNA microarrays revealed the bacterial community structure and host transcriptional response, respectively. A distinct bacterial community structure marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families. The host transcriptome under YBD revealed a reduced cellular expression of defense- and metabolism-related processes, while the neighboring HD condition exhibited an intermediate expression profile. Although HD tissue appeared visibly healthy, the microbial communities and gene expression profiles were distinct. HD should be regarded as an additional (intermediate) state of disease, which is important for understanding the progression of YBD. © 2014 International Society for Microbial Ecology. All rights reserved.

  16. Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission.

    Science.gov (United States)

    Małagocka, Joanna; Grell, Morten N; Lange, Lene; Eilenberg, Jørgen; Jensen, Annette B

    2015-06-01

    Pandora formicae is an obligate entomopathogenic fungus from the phylum Entomophthoromycota, known to infect only ants from the genus Formica. In the final stages of infection, the fungus induces the so-called summit disease syndrome, manipulating the host to climb up vegetation prior to death and fixing the dead cadaver to the surface, all to increase efficient spore dispersal. To investigate this fascinating pathogen-host interaction, we constructed interaction transcriptome libraries from two final infection stages from the material sampled in the field: (1) when the cadavers were fixed, but the fungus had not grown out through the cuticle and (2) when the fungus was growing out from host cadaver and producing spores. These phases mark the switch from within-host growth to reproduction on the host surface, after fungus outgrowth through host integument. In this first de novo transcriptome of an entomophthoralean fungus, we detected expression of many pathogenicity-related genes, including secreted hydrolytic enzymes and genes related to morphological reorganization and nutrition uptake. Differences in expression of genes in these two infection phases were compared and showed a switch in enzyme expression related to either cuticle breakdown or cell proliferation and cell wall remodeling, particularly in subtilisin-like serine protease and trypsin-like protease transcripts. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Exon level transcriptomic profiling of HIV-1-infected CD4(+ T cells reveals virus-induced genes and host environment favorable for viral replication.

    Directory of Open Access Journals (Sweden)

    Michaël Imbeault

    Full Text Available HIV-1 is extremely specialized since, even amongst CD4(+ T lymphocytes (its major natural reservoir in peripheral blood, the virus productively infects only a small proportion of cells under an activated state. As the percentage of HIV-1-infected cells is very low, most studies have so far failed to capture the precise transcriptomic profile at the whole-genome scale of cells highly susceptible to virus infection. Using Affymetrix Exon array technology and a reporter virus allowing the magnetic isolation of HIV-1-infected cells, we describe the host cell factors most favorable for virus establishment and replication along with an overview of virus-induced changes in host gene expression occurring exclusively in target cells productively infected with HIV-1. We also establish that within a population of activated CD4(+ T cells, HIV-1 has no detectable effect on the transcriptome of uninfected bystander cells at early time points following infection. The data gathered in this study provides unique insights into the biology of HIV-1-infected CD4(+ T cells and identifies genes thought to play a determinant role in the interplay between the virus and its host. Furthermore, it provides the first catalogue of alternative splicing events found in primary human CD4(+ T cells productively infected with HIV-1.

  18. Transcriptomic Crosstalk between Fungal Invasive Pathogens and Their Host Cells: Opportunities and Challenges for Next-Generation Sequencing Methods

    Directory of Open Access Journals (Sweden)

    Francisco J. Enguita

    2016-01-01

    Full Text Available Fungal invasive infections are an increasing health problem. The intrinsic complexity of pathogenic fungi and the unmet clinical need for new and more effective treatments requires a detailed knowledge of the infection process. During infection, fungal pathogens are able to trigger a specific transcriptional program in their host cells. The detailed knowledge of this transcriptional program will allow for a better understanding of the infection process and consequently will help in the future design of more efficient therapeutic strategies. Simultaneous transcriptomic studies of pathogen and host by high-throughput sequencing (dual RNA-seq is an unbiased protocol to understand the intricate regulatory networks underlying the infectious process. This protocol is starting to be applied to the study of the interactions between fungal pathogens and their hosts. To date, our knowledge of the molecular basis of infection for fungal pathogens is still very limited, and the putative role of regulatory players such as non-coding RNAs or epigenetic factors remains elusive. The wider application of high-throughput transcriptomics in the near future will help to understand the fungal mechanisms for colonization and survival, as well as to characterize the molecular responses of the host cell against a fungal infection.

  19. Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host

    NARCIS (Netherlands)

    Wybouw, N.; Zhurov, V.; Martel, C.; Bruinsma, K.A.; Hendrickx, F.; Grbić, V.; van Leeuwen, T.

    2015-01-01

    Generalist arthropod herbivores rapidly adapt to a broad range of host plants. However, the extent of transcriptional reprogramming in the herbivore and its hosts associated with adaptation remains poorly understood. Using the spider mite Tetranychus urticae and tomato as models with available

  20. EXTRACTIVE INDUSTRIES, THE STATE AND HOST COM ...

    African Journals Online (AJOL)

    PUBLICATIONS1

    tions between mining companies and host com- munities are adversarial. The book clearly poses that the Ministry of Lands, Forestry and. Mines (now Ministry of Lands and Natural. Resources) is responsible for implementing mining policy in Ghana and each of these three sectors is represented nationwide by commis-.

  1. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  2. Transcriptomic analysis of circulating leukocytes reveals novel aspects of the host systemic inflammatory response to sheep scab mites.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available Infestation of ovine skin with the ectoparasitic mite Psoroptes ovis results in the development of a rapid cutaneous inflammatory response, leading to the crusted skin lesions characteristic of sheep scab. To facilitate the identification of novel diagnostic and therapeutic targets, a better understanding of the host-parasite relationship in sheep scab is essential. Although our knowledge of the host's local cutaneous inflammatory response to sheep scab has increased in recent years, we still know relatively little about the mechanisms of this response at the systemic level. This study used a combined network and pathway analysis of the in vivo transcriptomic response of circulating leukocytes to infestation with P. ovis, during a 6 week period. Network graph analysis identified six temporally-associated gene clusters, which separated into two distinct sub-networks within the graph, representing those genes either up or down-regulated during the time course. Functional and pathway analysis of these clusters identified novel insights into the host systemic response to P. ovis infestation, including roles for the complement system, clotting cascade and fibrinolysis. These analyses also highlighted potential mechanisms by which the systemic immune response to sheep scab can influence local tissue responses via enhanced leukocyte activation and extravasation. By analysing the transcriptomic responses of circulating leukocytes in sheep following infestation with P. ovis, this study has provided key insights into the inflammatory response to infestation and has also demonstrated the utility of these cells as a proxy of events occurring at local tissue sites, providing insight into the mechanisms by which a local allergen-induced inflammatory response may be controlled.

  3. Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs.

    Science.gov (United States)

    Ramesh, Shunmugiah V; Williams, Sarah; Kappagantu, Madhu; Mitter, Neena; Pappu, Hanu R

    2017-06-15

    RNA silencing mechanism functions as a major defense against invading viruses. The caveat in the RNA silencing mechanism is that the effector small interfering RNAs (siRNAs) act on any RNA transcripts with sequence complementarity irrespective of target's origin. A subset of highly expressed viral small interfering RNAs (vsiRNAs) derived from the tomato spotted wilt virus (TSWV; Tospovirus: Bunyaviridae) genome was analyzed for their propensity to downregulate the tomato transcriptome. A total of 11898 putative target sites on tomato transcripts were found to exhibit a propensity for down regulation by TSWV-derived vsiRNAs. In total, 2450 unique vsiRNAs were found to have potential cross-reacting capability with the tomato transcriptome. VsiRNAs were found to potentially target a gamut of host genes involved in basal cellular activities including enzymes, transcription factors, membrane transporters, and cytoskeletal proteins. KEGG pathway annotation of targets revealed that the vsiRNAs were mapped to secondary metabolite biosynthesis, amino acids, starch and sucrose metabolism, and carbon and purine metabolism. Transcripts for protein processing, hormone signalling, and plant-pathogen interactions were the most likely targets from the genetic, environmental information processing, and organismal systems, respectively. qRT-PCR validation of target gene expression showed that none of the selected transcripts from tomato cv. Marglobe showed up regulation, and all were down regulated even upto 20 folds (high affinity glucose transporter). However, the expression levels of transcripts from cv. Red Defender revealed differential regulation as three among the target transcripts showed up regulation (Cc-nbs-lrr, resistance protein, AP2-like ethylene-responsive transcription factor, and heat stress transcription factor A3). Accumulation of tomato target mRNAs of corresponding length was proved in both tomato cultivars using 5' RACE analysis. The TSWV-tomato interaction at

  4. Parasitological and transcriptomic comparison of Strongyloides ratti infections in natural and in suboptimal permissive hosts.

    Science.gov (United States)

    Jaleta, Tegegn G; Rödelsperger, Christian; Streit, Adrian

    2017-09-01

    The nematode genus Strongyloides consists of fairly species-specific small intestinal parasites of various vertebrates, among them the human pathogen S. stercoralis. Between the parthenogenetic parasitic generations these worms can also form single facultative sexual free-living generations. In addition to their primary hosts, several species can also live more or less well in other permissive hosts, which are sometimes not very closely related with the normal host. For example, S. stercoralis can also infect dogs and non-human primates. Here we compare the infection and reproductive success over time and the gene expression profiles as determined by quantitative sequencing of S. ratti parasitizing in its natural host rat and in the permissive host gerbil. We show that in gerbils fewer infective larvae successfully establish in the host, but those that do accomplish this survive and reproduce for longer and produced a higher proportion of males during the first two month of infection. Globally, the gene expression profiles in the two hosts are very similar. Among the relatively few differentially expressed genes, astacin-like and acetylcholinesterase genes are prominently represented. In the future it will be interesting to see if these changes in the suboptimal host are indeed ecologically sensible responses to the different host. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-κB-like signature in infected host cells.

    Science.gov (United States)

    Guiton, Pascale S; Sagawa, Janelle M; Fritz, Heather M; Boothroyd, John C

    2017-01-01

    Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world's human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα) signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection.

  6. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-κB-like signature in infected host cells.

    Directory of Open Access Journals (Sweden)

    Pascale S Guiton

    Full Text Available Toxoplasmosis is a zoonotic infection affecting approximately 30% of the world's human population. After sexual reproduction in the definitive feline host, Toxoplasma oocysts, each containing 8 sporozoites, are shed into the environment where they can go on to infect humans and other warm-blooded intermediate hosts. Here, we use an in vitro model to assess host transcriptomic changes that occur in the earliest stages of such infections. We show that infection of rat intestinal epithelial cells with mature sporozoites primarily results in higher expression of genes associated with Tumor Necrosis Factor alpha (TNFα signaling via NF-κB. Furthermore, we find that, consistent with their biology, these mature, invaded sporozoites display a transcriptome intermediate between the previously reported day 10 oocysts and that of their tachyzoite counterparts. Thus, this study uncovers novel host and pathogen factors that may be critical for the establishment of a successful intracellular niche following sporozoite-initiated infection.

  7. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions.

    Science.gov (United States)

    Mavromatis, Charalampos Harris; Bokil, Nilesh J; Totsika, Makrina; Kakkanat, Asha; Schaale, Kolja; Cannistraci, Carlo V; Ryu, Taewoo; Beatson, Scott A; Ulett, Glen C; Schembri, Mark A; Sweet, Matthew J; Ravasi, Timothy

    2015-05-01

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host-pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment. © 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.

  8. Systems biology analysis of Brucella infected Peyer's patch reveals rapid invasion with modest transient perturbations of the host transcriptome.

    Directory of Open Access Journals (Sweden)

    Carlos A Rossetti

    Full Text Available Brucella melitensis causes the most severe and acute symptoms of all Brucella species in human beings and infects hosts primarily through the oral route. The epithelium covering domed villi of jejunal-ileal Peyer's patches is an important site of entry for several pathogens, including Brucella. Here, we use the calf ligated ileal loop model to study temporal in vivo Brucella-infected host molecular and morphological responses. Our results document Brucella bacteremia occurring within 30 min after intraluminal inoculation of the ileum without histopathologic traces of lesions. Based on a system biology Dynamic Bayesian Network modeling approach (DBN of microarray data, a very early transient perturbation of the host enteric transcriptome was associated with the initial host response to Brucella contact that is rapidly averted allowing invasion and dissemination. A detailed analysis revealed active expression of Syndecan 2, Integrin alpha L and Integrin beta 2 genes, which may favor initial Brucella adhesion. Also, two intestinal barrier-related pathways (Tight Junction and Trefoil Factors Initiated Mucosal Healing were significantly repressed in the early stage of infection, suggesting subversion of mucosal epithelial barrier function to facilitate Brucella transepithelial migration. Simultaneously, the strong activation of the innate immune response pathways would suggest that the host mounts an appropriate protective immune response; however, the expression of the two key genes that encode innate immunity anti-Brucella cytokines such as TNF-α and IL12p40 were not significantly changed throughout the study. Furthermore, the defective expression of Toll-Like Receptor Signaling pathways may partially explain the lack of proinflammatory cytokine production and consequently the absence of morphologically detectable inflammation at the site of infection. Cumulatively, our results indicate that the in vivo pathogenesis of the early infectious process

  9. Rhinovirus detection in symptomatic and asymptomatic children value of host transcriptome analysis

    National Research Council Canada - National Science Library

    Heinonen, Santtu; Jartti, Tuomas; Garcia, Carla; Oliva, Silvia; Smitherman, Cynthia; Anguiano, Esperanza; De Steenhuijsen Piters, Wouter A A; Vuorinen, Tytti; Ruuskanen, Olli; Dimo, Blerta; Suarez, Nicolas M; Pascual, Virginia; Ramilo, Octavio; Mejias, Asuncion

    2016-01-01

    .... However, RVs can frequently be detected in asymptomatic individuals. Objectives: To evaluate the ability of host transcriptional profiling to differentiate between symptomatic RV infection and incidental detection in children. Methods...

  10. Transcriptome-microRNA analysis of Sarcoptes scabiei and host immune response.

    Directory of Open Access Journals (Sweden)

    Ran He

    Full Text Available Scabies is a parasitic disease, caused by the mite Sarcoptes scabiei, and is considered one of the top 50 epidemic diseases and one the most common human skin disease, worldwide. Allergic dermatitis, including an intense itch, is a common symptom, however diagnosis is difficult and there is currently no effective vaccine. The goal of this study was to examine the immune interaction mechanism of both S. scabiei and infected hosts. mRNA-seq and microRNA-seq were conducted on the S. scabiei mite and on infected and uninfected hosts. We focused on differential expression of unigenes and microRNAs, as well as the real targets of unigenes in enriched immune signaling pathways. S. scabiei enhanced host immune function and decreased metabolism after infection, while the immune response of the host inhibited S. scabiei proliferation and metabolism signaling pathways. Differentially expressed unigenes of S. scabiei were enriched in the JAK-STAT signaling pathway and the Toll-like receptor signaling pathway. The differential expression analysis indicated that microRNAs of S. scabiei and hosts have major roles in regulating immune interactions between parasites and hosts.

  11. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.

    Directory of Open Access Journals (Sweden)

    Chuya Shinzato

    Full Text Available Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp. We successfully distinguished contigs originating from the host (Porites and the symbiont (Symbiodinium by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of

  12. Site-specific programming of the host epithelial transcriptome by the gut microbiota

    DEFF Research Database (Denmark)

    Sommer, Felix; Nookaew, Intawat; Sommer, Nina

    2015-01-01

    BACKGROUND: The intestinal epithelium separates us from the microbiota but also interacts with it and thus affects host immune status and physiology. Previous studies investigated microbiota-induced responses in the gut using intact tissues or unfractionated epithelial cells, thereby limiting...

  13. Transcriptomics of host-virus interactions: immune responses to avian influenza virus in chicken

    NARCIS (Netherlands)

    Reemers, S.S.N.

    2010-01-01

    Upon entry of the respiratory tract avian influenza virus (AIV) triggers early immune responses in the host that are aimed to prevent or in case of already established infection control this infection. Although much research is performed to elucidate the course of events that follow after AIV

  14. Comparative transcriptomics reveal host-specific nucleotide variation in entomophthoralean fungi

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Jensen, Annette Bruun; Eilenberg, Jørgen

    2017-01-01

    of toxins that interfere with the host immune response. Phylogenetic comparison with the nonobligate generalist insect-pathogenic fungus Conidiobolus coronatus revealed a gene-family expansion of trehalase enzymes in E. muscae. The main sugar in insect haemolymph is trehalose, and efficient sugar...

  15. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein.

    Directory of Open Access Journals (Sweden)

    Ronan Le Goffic

    2011-08-01

    Full Text Available Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the

  16. Transcriptomic profiling of Microplitis demolitor bracovirus reveals host, tissue and stage-specific patterns of activity.

    Science.gov (United States)

    Bitra, Kavita; Zhang, Shu; Strand, Michael R

    2011-09-01

    The polydnaviruses (PDVs) are a family of DNA viruses that are symbiotically associated with parasitoid wasps. The transcription of particular genes or gene-family members have been reported for several PDVs, but no studies have characterized the spatio-temporal patterns of expression for the entire complement of predicted genes in the encapsidated genome of any PDV isolate. The braconid wasp Microplitis demolitor carries the PDV Microplitis demolitor bracovirus (MdBV) and parasitizes larval stage Pseudoplusia (Chrysodeixis) includens. The encapsidated genome consists of 15 genomic segments with 51 predicted ORFs encoding proteins ≥100 aa. A majority of these ORFs form four multimember gene families (ptp, ank, glc and egf) while the remaining ORFs consist of single copy (orph) genes. Here we used RT-PCR and quantitative real-time PCR methods to profile the encapsidated transcriptome of MdBV in P. includens and M. demolitor. Our results indicate that most predicted genes are expressed in P. includens. Spatial patterns of expression in P. includens differed among genes, but temporal patterns of expression were generally similar, with transcript abundance progressively declining between 24 and 120 h. A subset of ptp, ank and orph genes were also expressed in adult female but not male M. demolitor. Only one encapsidated gene (ank-H4) was expressed in all life stages of M. demolitor, albeit at much lower levels than in P. includens. However, another encapsidated gene (orph-B1) was expressed in adult M. demolitor at similar levels to those detected in P. includens.

  17. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation.

    Directory of Open Access Journals (Sweden)

    John Parkinson

    Full Text Available The cestode Echinococcus granulosus--the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide--is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages.We generated ~10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces, and pepsin/H(+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep that could either be active molecular species or represent precursors of small RNAs (like piRNAs; (ii an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development.This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on

  18. Wild felids as hosts for human plague, Western United States

    Science.gov (United States)

    Bevins, S.N.; Tracey, J.A.; Franklin, S.P.; Schmit, V.L.; MacMillan, M.L.; Gage, K.L.; Schriefer, M.E.; Logan, K.A.; Sweanor, L.L.; Alldredge, M.W.; Krumm, C.; Boyce, W.M.; Vickers, W.; Riley, S.P.D.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Roelke, M.E.; Salman, M.; Crooks, K.R.; VandeWoude, S.

    2009-01-01

    Plague seroprevalence was estimated in populations pumas and bobcats in the western United States. High levels of exposure in plague-endemic regions indicate the need to consider the ecology and pathobiology of plague nondomestic felid hosts to better understand the role of these species in disease persistence and transmission.

  19. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction.

    Science.gov (United States)

    Foth, Bernardo J; Tsai, Isheng J; Reid, Adam J; Bancroft, Allison J; Nichol, Sarah; Tracey, Alan; Holroyd, Nancy; Cotton, James A; Stanley, Eleanor J; Zarowiecki, Magdalena; Liu, Jimmy Z; Huckvale, Thomas; Cooper, Philip J; Grencis, Richard K; Berriman, Matthew

    2014-07-01

    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage-specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection.

  20. Gut transcriptome of replete adult female cattle ticks, Rhipicephalus (Boophilus) microplus, feeding upon a Babesia bovis-infected bovine host.

    Science.gov (United States)

    Heekin, Andrew M; Guerrero, Felix D; Bendele, Kylie G; Saldivar, Leo; Scoles, Glen A; Dowd, Scot E; Gondro, Cedric; Nene, Vishvanath; Djikeng, Appolinaire; Brayton, Kelly A

    2013-09-01

    As it feeds upon cattle, Rhipicephalus (Boophilus) microplus is capable of transmitting a number of pathogenic organisms, including the apicomplexan hemoparasite Babesia bovis, a causative agent of bovine babesiosis. The R. microplus female gut transcriptome was studied for two cohorts: adult females feeding on a bovine host infected with B. bovis and adult females feeding on an uninfected bovine. RNA was purified and used to generate a subtracted cDNA library from B. bovis-infected female gut, and 4,077 expressed sequence tags (ESTs) were sequenced. Gene expression was also measured by a microarray designed from the publicly available R. microplus gene index: BmiGI Version 2. We compared gene expression in the tick gut from females feeding upon an uninfected bovine to gene expression in tick gut from females feeding upon a splenectomized bovine infected with B. bovis. Thirty-three ESTs represented on the microarray were expressed at a higher level in female gut samples from the ticks feeding upon a B. bovis-infected calf compared to expression levels in female gut samples from ticks feeding on an uninfected calf. Forty-three transcripts were expressed at a lower level in the ticks feeding upon B. bovis-infected female guts compared with expression in female gut samples from ticks feeding on the uninfected calf. These array data were used as initial characterization of gene expression associated with the infection of R. microplus by B. bovis.

  1. Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis

    Directory of Open Access Journals (Sweden)

    McNeilly Tom N

    2010-11-01

    Full Text Available Abstract Background Infestation of ovine skin with the ectoparasitic mite Psoroptes ovis results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the in vivo skin response to infestation with P. ovis to gain a clearer understanding of the mechanisms and signalling pathways involved. Results Infestation with P. ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (IL1A, IL1B, IL6, IL8 and TNF and factors involved in immune cell activation and recruitment (SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 and CXCL2. The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response. Conclusions This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to P. ovis, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to P

  2. The ovarian transcriptome of the cattle tick, Rhipicephalus (Boophilus) microplus, feeding upon a bovine host infected with Babesia bovis.

    Science.gov (United States)

    Heekin, Andrew M; Guerrero, Felix D; Bendele, Kylie G; Saldivar, Leo; Scoles, Glen A; Dowd, Scot E; Gondro, Cedric; Nene, Vishvanath; Djikeng, Appolinaire; Brayton, Kelly A

    2013-09-23

    R. microplus ovarian transcriptome responding to infection by B. bovis. This dataset should prove useful in molecular studies of host-pathogen interactions between this tick and its apicomplexan parasite.

  3. Shaping Baltic States Defence Strategy: Host Nation Support

    Directory of Open Access Journals (Sweden)

    Otzulis Valdis

    2017-12-01

    Full Text Available The presence of NATO troops in the Baltic states has increased in the last years due to changing international environment, increased level of potential risks and threats, and necessity to enhance deterrence in the region. As a result of NATO’s Wales and Warsaw summits decisions, Estonia, Latvia, and Lithuania are entitled to host a battalion size battle group. The article aims at investigating how host nation support (HNS can contribute to the national defence and, additionally, to the self-defence capabilities of the Baltic states. The concept of HNS is present in the national defence concepts of all three countries. However, its active application and utilization started in the last two years. The article argues that more intensive incorporation of an HNS system in national defence policies serve the capability development in fields like national military logistics, infrastructure, and civil-military cooperation. Those capabilities can serve as an extension of the national defence.

  4. The salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine.

    Science.gov (United States)

    Goudeau, Danielle M; Parker, Craig T; Zhou, Yaguang; Sela, Shlomo; Kroupitski, Yulia; Brandl, Maria T

    2013-01-01

    Fresh vegetables have been recurrently associated with salmonellosis outbreaks, and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that population sizes of Salmonella enterica serovar Typhimurium SL1344 increased 56-fold when inoculated alone onto cilantro leaves, versus 2,884-fold when coinoculated with Dickeya dadantii, a prevalent pathogen that macerates plant tissue. A similar trend in S. enterica populations was observed for soft-rotted lettuce leaves. Transcriptome analysis of S. enterica cells that colonized D. dadantii-infected lettuce and cilantro leaves revealed a clear shift toward anaerobic metabolism and catabolism of substrates that are available due to the degradation of plant cells by the pectinolytic pathogen. Twenty-nine percent of the genes that were upregulated in cilantro macerates were also previously observed to have increased expression levels in the chicken intestine. Furthermore, multiple genes induced in soft rot lesions are also involved in the colonization of mouse, pig, and bovine models of host infection. Among those genes, the operons for ethanolamine and propanediol utilization as well as for the synthesis of cobalamin, a cofactor in these pathways, were the most highly upregulated genes in lettuce and cilantro lesions. In S. Typhimurium strain LT2, population sizes of mutants deficient in propanediol utilization or cobalamin synthesis were 10- and 3-fold lower, respectively, than those of the wild-type strain in macerated cilantro (P < 0.0002); in strain SL1344, such mutants behaved similarly to the parental strain. Anaerobic conditions and the utilization of nutrients in macerated plant tissue that are also present in the animal intestine indicate a niche overlap that may explain the high level of adaptation of S. enterica to soft rot lesions, a common postharvest plant disease.

  5. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice.

    Science.gov (United States)

    Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin

    2017-01-01

    Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein–Protein Interactions

    Science.gov (United States)

    Rossetti, Carlos A.; Drake, Kenneth L.; Lawhon, Sara D.; Nunes, Jairo S.; Gull, Tamara; Khare, Sangeeta; Adams, Leslie G.

    2017-01-01

    To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the “Two component system” providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as “ABC transporters” and “T4SS system” were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the “flagellar assembly” pathway and the cell components “bacterial-type flagellum hook” and “bacterial-type flagellum” were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein–protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein–protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches

  7. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein–Protein Interactions

    Directory of Open Access Journals (Sweden)

    Carlos A. Rossetti

    2017-07-01

    Full Text Available To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the “Two component system” providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as “ABC transporters” and “T4SS system” were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114, the “flagellar assembly” pathway and the cell components “bacterial-type flagellum hook” and “bacterial-type flagellum” were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein–protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein–protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis

  8. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation.

    Science.gov (United States)

    Picard, Marion A L; Boissier, Jérôme; Roquis, David; Grunau, Christoph; Allienne, Jean-François; Duval, David; Toulza, Eve; Arancibia, Nathalie; Caffrey, Conor R; Long, Thavy; Nidelet, Sabine; Rohmer, Marine; Cosseau, Céline

    2016-09-01

    Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on

  9. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation.

    Directory of Open Access Journals (Sweden)

    Marion A L Picard

    2016-09-01

    Full Text Available Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner.We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae and after (in adults the phenotypic sexual dimorphism appearance. In this paper we present (i candidate determinants of the sexual differentiation, (ii sex-biased players of the interaction with the vertebrate host, and (iii different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes.Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not

  10. Differences in performance and transcriptome-wide gene expression associated with Rhagoletis (Diptera: Tephritidae) larvae feeding in alternate host fruit environments.

    Science.gov (United States)

    Ragland, Gregory J; Almskaar, Kristin; Vertacnik, Kim L; Gough, Harlan M; Feder, Jeffrey L; Hahn, Daniel A; Schwarz, Dietmar

    2015-06-01

    Host race formation, the establishment of new populations using novel resources, is a major hypothesized mechanism of ecological speciation, especially in plant-feeding insects. The initial stages of host race formation will often involve phenotypic plasticity on the novel resource, with subsequent genetically based adaptations enhancing host-associated fitness differences. Several studies have explored the physiology of the plastic responses of insects to novel host environments. However, the mechanisms underlying evolved differences among host races and species remain poorly understood. Here, we demonstrate a reciprocal larval performance difference between two closely related species of Rhagoletis flies, R. pomonella and R. zephyria, specialized for feeding in apple and snowberry fruit, respectively. Microarray analysis of fly larvae feeding in apples versus snowberries revealed patterns of transcriptome-wide differential gene expression consistent with both plastic and evolved responses to the different fruit resources, most notably for detoxification-related genes such as cytochrome p450s. Transcripts exhibiting evolved expression differences between species tended to also demonstrate plastic responses to fruit environment. The observed pattern suggests that Rhagoletis larvae exhibit extensive plasticity in gene expression in response to novel fruit that may potentiate shifts to new hosts. Subsequent selection, particularly selection to suppress initially costly plastic responses, could account for the evolved expression differences observed between R. pomonella and R. zephyria, creating specialized races and new fly species. Thus, genetically based ecological adaptations generating new biodiversity may often evolve from initial plastic responses in gene expression to the challenges posed by novel environments. © 2015 John Wiley & Sons Ltd.

  11. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    Science.gov (United States)

    Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan

    2016-01-01

    Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  12. Metabolomic and Transcriptomic Comparison of Solid-State and Submerged Fermentation of Penicillium expansum KACC 40815.

    Directory of Open Access Journals (Sweden)

    Hyang Yeon Kim

    Full Text Available Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF and submerged fermentation (SmF. Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.

  13. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.

    Directory of Open Access Journals (Sweden)

    Guorong Xu

    Full Text Available High-throughput RNA sequencing (RNA-seq has become an instrumental assay for the analysis of multiple aspects of an organism's transcriptome. Further, the analysis of a biological specimen's associated microbiome can also be performed using RNA-seq data and this application is gaining interest in the scientific community. There are many existing bioinformatics tools designed for analysis and visualization of transcriptome data. Despite the availability of an array of next generation sequencing (NGS analysis tools, the analysis of RNA-seq data sets poses a challenge for many biomedical researchers who are not familiar with command-line tools. Here we present RNA CoMPASS, a comprehensive RNA-seq analysis pipeline for the simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological specimens. RNA CoMPASS leverages existing tools and parallel computing technology to facilitate the analysis of even very large datasets. RNA CoMPASS has a web-based graphical user interface with intrinsic queuing to control a distributed computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq data sets from 45 B-cell samples. Twenty-two of these samples were derived from lymphoblastoid cell lines (LCLs generated by the infection of naïve B-cells with the Epstein Barr virus (EBV, while another 23 samples were derived from Burkitt's lymphomas (BL, some of which arose in part through infection with EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction of the BLs. Cluster analysis of the human transcriptome component of the RNA CoMPASS output clearly separated the BLs (which have a germinal center-like phenotype from the LCLs (which have a blast-like phenotype with evidence of activated MYC signaling and lower interferon and NF-kB signaling in the BLs. Together, this analysis illustrates the utility of RNA CoMPASS in the simultaneous analysis of transcriptome and metatranscriptome data. RNA CoMPASS is freely

  14. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  15. Visas for entry and stays in the Host States

    CERN Multimedia

    DG Unit

    2010-01-01

    1. What is a visa? A visa is an administrative document authorising nationals of countries subject to the visa requirement to transit, enter and stay in a foreign country. The numerous types of visa include in particular: a) Short-stay visas (the Schengen C-type visa), which allows their holders to enter and reside in the Schengen Area1) for a continuous or a non-continuous period not exceeding 3 months within any six-month period with effect from initial entry into the Schengen Area; b) Long-stay visas (D-type visa or national visa for the purposes of taking up employment), which are required for stays of over three months, allowing the holder to obtain a legitimation document (titre de séjour) from the Host States: A “carte de légitimation” issued by the Swiss Federal Department of Foreign Affairs; A “titre de séjour spécial” issued by the French Ministry of Foreign and European Affairs. Since 5 April 2010...

  16. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions

    KAUST Repository

    Mavromatis, Charalampos Harris

    2015-01-24

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

  17. Impact of a novel protein meal on the gastrointestinal microbiota and host transcriptome of larval zebrafish Danio rerio

    Directory of Open Access Journals (Sweden)

    Eugene eRurangwa

    2015-04-01

    Full Text Available Larval zebrafish was subjected to a methodological exploration of the gastrointestinal microbiota and transcriptome. Assessed was the impact of two dietary inclusion levels of a novel protein meal (NPM of animal origin (ragworm Nereis virens on the gastrointestinal tract (GIT. Microbial development was assessed over the first 21 days post egg fertilisation (dpf through 16S rRNA gene-based microbial composition profiling by pyrosequencing. Differentially expressed genes in the GIT were demonstrated at 21 dpf by whole transcriptome sequencing (mRNAseq. Larval zebrafish showed rapid temporal changes in microbial colonization but domination occurred by one to three bacterial species generally belonging to Proteobacteria and Firmicutes. The high iron content of NPM may have led to an increased relative abundance of bacteria that were related to potential pathogens and bacteria with an increased iron metabolism. Functional classification of the 328 differentially expressed genes indicated that the GIT of larvae fed at higher NPM level was more active in transmembrane ion transport and protein synthesis. mRNAseq analysis did not reveal a major activation of genes involved in the immune response or indicating differences in iron uptake and homeostasis in zebrafish fed at the high inclusion level of NPM.

  18. Regulation of the Host Antiviral State by Intercellular Communications

    Directory of Open Access Journals (Sweden)

    Sonia Assil

    2015-08-01

    Full Text Available Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic.

  19. The Rhizoctonia solani AG1-IB (isolate 7/3/14 transcriptome during interaction with the host plant lettuce (Lactuca sativa L..

    Directory of Open Access Journals (Sweden)

    Bart Verwaaijen

    Full Text Available The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L. and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14 was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14. The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes

  20. Replication and virus-induced transcriptome of HAdV-5 in normal host cells versus cancer cells--differences of relevance for adenoviral oncolysis.

    Directory of Open Access Journals (Sweden)

    Dominik E Dorer

    Full Text Available Adenoviruses (Ads, especially HAdV-5, have been genetically equipped with tumor-restricted replication potential to enable applications in oncolytic cancer therapy. Such oncolytic adenoviruses have been well tolerated in cancer patients, but their anti-tumor efficacy needs to be enhanced. In this regard, it should be considered that cancer cells, dependent on their tissue of origin, can differ substantially from the normal host cells to which Ads are adapted by complex virus-host interactions. Consequently, viral replication efficiency, a key determinant of oncolytic activity, might be suboptimal in cancer cells. Therefore, we have analyzed both the replication kinetics of HAdV-5 and the virus-induced transcriptome in human bronchial epithelial cells (HBEC in comparison to cancer cells. This is the first report on genome-wide expression profiling of Ads in their native host cells. We found that E1A expression and onset of viral genome replication are most rapid in HBEC and considerably delayed in melanoma cells. In squamous cell lung carcinoma cells, we observed intermediate HAdV-5 replication kinetics. Infectious particle production, viral spread and lytic activity of HAdV-5 were attenuated in melanoma cells versus HBEC. Expression profiling at the onset of viral genome replication revealed that HAdV-5 induced the strongest changes in the cellular transcriptome in HBEC, followed by lung cancer and melanoma cells. We identified prominent regulation of genes involved in cell cycle and DNA metabolism, replication and packaging in HBEC, which is in accord with the necessity to induce S phase for viral replication. Strikingly, in melanoma cells HAdV-5 triggered opposing regulation of said genes and, in contrast to lung cancer cells, no weak S phase induction was detected when using the E2F promoter as reporter. Our results provide a rationale for improving oncolytic adenoviruses either by adaptation of viral infection to target tumor cells or by

  1. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Verwaaijen, Bart; Wibberg, Daniel; Kröber, Magdalena; Winkler, Anika; Zrenner, Rita; Bednarz, Hanna; Niehaus, Karsten; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas

    2017-01-01

    The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited

  2. A Snapshot of a Coral “Holobiont”: A Transcriptome Assembly of the Scleractinian Coral, Porites, Captures a Wide Variety of Genes from Both the Host and Symbiotic Zooxanthellae

    Science.gov (United States)

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral

  3. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range

    Science.gov (United States)

    2013-01-01

    Background Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain Aw12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. Results To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. Conclusions Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components

  4. The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach.

    Directory of Open Access Journals (Sweden)

    Gina Leisching

    Full Text Available During Mycobacterium tuberculosis (M.tb infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T, or in detergent-free medium (R179NT. RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14 were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not

  5. Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors.

    Science.gov (United States)

    Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B

    2016-11-03

    Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity

  6. From the environment to the host: re-wiring of the transcriptome of Pseudomonas aeruginosa from 22°C to 37°C.

    Directory of Open Access Journals (Sweden)

    Mariette Barbier

    Full Text Available Pseudomonas aeruginosa is a highly versatile opportunistic pathogen capable of colonizing multiple ecological niches. This bacterium is responsible for a wide range of both acute and chronic infections in a variety of hosts. The success of this microorganism relies on its ability to adapt to environmental changes and re-program its regulatory and metabolic networks. The study of P. aeruginosa adaptation to temperature is crucial to understanding the pathogenesis upon infection of its mammalian host. We examined the effects of growth temperature on the transcriptome of the P. aeruginosa PAO1. Microarray analysis of PAO1 grown in Lysogeny broth at mid-exponential phase at 22°C and 37°C revealed that temperature changes are responsible for the differential transcriptional regulation of 6.4% of the genome. Major alterations were observed in bacterial metabolism, replication, and nutrient acquisition. Quorum-sensing and exoproteins secreted by type I, II, and III secretion systems, involved in the adaptation of P. aeruginosa to the mammalian host during infection, were up-regulated at 37°C compared to 22°C. Genes encoding arginine degradation enzymes were highly up-regulated at 22°C, together with the genes involved in the synthesis of pyoverdine. However, genes involved in pyochelin biosynthesis were up-regulated at 37°C. We observed that the changes in expression of P. aeruginosa siderophores correlated to an overall increase in Fe²⁺ extracellular concentration at 37°C and a peak in Fe³⁺ extracellular concentration at 22°C. This suggests a distinct change in iron acquisition strategies when the bacterium switches from the external environment to the host. Our work identifies global changes in bacterial metabolism and nutrient acquisition induced by growth at different temperatures. Overall, this study identifies factors that are regulated in genome-wide adaptation processes and discusses how this life-threatening pathogen responds to

  7. The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis.

    Directory of Open Access Journals (Sweden)

    Kenneth A Field

    2015-10-01

    Full Text Available White-nose syndrome (WNS in North American bats is caused by an invasive cutaneous infection by the psychrophilic fungus Pseudogymnoascus destructans (Pd. We compared transcriptome-wide changes in gene expression using RNA-Seq on wing skin tissue from hibernating little brown myotis (Myotis lucifugus with WNS to bats without Pd exposure. We found that WNS caused significant changes in gene expression in hibernating bats including pathways involved in inflammation, wound healing, and metabolism. Local acute inflammatory responses were initiated by fungal invasion. Gene expression was increased for inflammatory cytokines, including interleukins (IL IL-1β, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such as Ccl2 and Ccl20. This pattern of gene expression changes demonstrates that WNS is accompanied by an innate anti-fungal host response similar to that caused by cutaneous Candida albicans infections. However, despite the apparent production of appropriate chemokines, immune cells such as neutrophils and T cells do not appear to be recruited. We observed upregulation of acute inflammatory genes, including prostaglandin G/H synthase 2 (cyclooxygenase-2, that generate eicosanoids and other nociception mediators. We also observed differences in Pd gene expression that suggest host-pathogen interactions that might determine WNS progression. We identified several classes of potential virulence factors that are expressed in Pd during WNS, including secreted proteases that may mediate tissue invasion. These results demonstrate that hibernation does not prevent a local inflammatory response to Pd infection but that recruitment of leukocytes to the site of infection does not occur. The putative virulence factors may provide novel targets for treatment or prevention of WNS. These observations support a dual role for inflammation during WNS; inflammatory responses provide protection but excessive inflammation may contribute to mortality

  8. A Comprehensive Analysis of the Transcriptomes of Marssonina brunnea and Infected Poplar Leaves to Capture Vital Events in Host-Pathogen Interactions.

    Directory of Open Access Journals (Sweden)

    Chengwen Chen

    Full Text Available Understanding host-pathogen interaction mechanisms helps to elucidate the entire infection process and focus on important events, and it is a promising approach for improvement of disease control and selection of treatment strategy. Time-course host-pathogen transcriptome analyses and network inference have been applied to unravel the direct or indirect relationships of gene expression alterations. However, time series analyses can suffer from absent time points due to technical problems such as RNA degradation, which limits the application of algorithms that require strict sequential sampling. Here, we introduce an efficient method using independence test to infer an independent network that is exclusively concerned with the frequency of gene expression changes.Highly resistant NL895 poplar leaves and weakly resistant NL214 leaves were infected with highly active and weakly active Marssonina brunnea, respectively, and were harvested at different time points. The independent network inference illustrated the top 1,000 vital fungus-poplar relationships, which contained 768 fungal genes and 54 poplar genes. These genes could be classified into three categories: a fungal gene surrounded by many poplar genes; a poplar gene connected to many fungal genes; and other genes (possessing low degrees of connectivity. Notably, the fungal gene M6_08342 (a metalloprotease was connected to 10 poplar genes, particularly including two disease-resistance genes. These core genes, which are surrounded by other genes, may be of particular importance in complicated infection processes and worthy of further investigation.We provide a clear framework of the interaction network and identify a number of candidate key effectors in this process, which might assist in functional tests, resistant clone selection, and disease control in the future.

  9. Characterization of the genome of a phylogenetically distinct tospovirus and its interactions with the local lesion-induced host Chenopodium quinoa by whole-transcriptome analyses.

    Directory of Open Access Journals (Sweden)

    Wan-Chen Chou

    Full Text Available Chenopodium quinoa is a natural local lesion host of numerous plant viruses, including tospoviruses (family Bunyaviridae. Groundnut chlorotic fan-spot tospovirus (GCFSV has been shown to consistently induce local lesions on the leaves of C. quinoa 4 days post-inoculation (dpi. To reveal the whole genome of GCFSV and its interactions with C. quinoa, RNA-seq was performed to determine the transcriptome profiles of C. quinoa leaves. The high-throughput reads from infected C. quinoa leaves were used to identify the whole genome sequence of GCFSV and its single nucleotide polymorphisms. Our results indicated that GCFSV is a phylogenetically distinct tospovirus. Moreover, 27,170 coding and 29,563 non-coding sequences of C. quinoa were identified through de novo assembly, mixing reads from mock and infected samples. Several key genes involved in the modulation of hypersensitive response (HR were identified. The expression levels of 4,893 deduced complete genes annotated using the Arabidopsis genome indicated that several HR-related orthologues of pathogenesis-related proteins, transcription factors, mitogen-activated protein kinases, and defense proteins were significantly expressed in leaves that formed local lesions. Here, we also provide new insights into the replication progression of a tospovirus and the molecular regulation of the C. quinoa response to virus infection.

  10. Characterization of the genome of a phylogenetically distinct tospovirus and its interactions with the local lesion-induced host Chenopodium quinoa by whole-transcriptome analyses.

    Science.gov (United States)

    Chou, Wan-Chen; Lin, Shih-Shun; Yeh, Shyi-Dong; Li, Siang-Ling; Peng, Ying-Che; Fan, Ya-Hsu; Chen, Tsung-Chi

    2017-01-01

    Chenopodium quinoa is a natural local lesion host of numerous plant viruses, including tospoviruses (family Bunyaviridae). Groundnut chlorotic fan-spot tospovirus (GCFSV) has been shown to consistently induce local lesions on the leaves of C. quinoa 4 days post-inoculation (dpi). To reveal the whole genome of GCFSV and its interactions with C. quinoa, RNA-seq was performed to determine the transcriptome profiles of C. quinoa leaves. The high-throughput reads from infected C. quinoa leaves were used to identify the whole genome sequence of GCFSV and its single nucleotide polymorphisms. Our results indicated that GCFSV is a phylogenetically distinct tospovirus. Moreover, 27,170 coding and 29,563 non-coding sequences of C. quinoa were identified through de novo assembly, mixing reads from mock and infected samples. Several key genes involved in the modulation of hypersensitive response (HR) were identified. The expression levels of 4,893 deduced complete genes annotated using the Arabidopsis genome indicated that several HR-related orthologues of pathogenesis-related proteins, transcription factors, mitogen-activated protein kinases, and defense proteins were significantly expressed in leaves that formed local lesions. Here, we also provide new insights into the replication progression of a tospovirus and the molecular regulation of the C. quinoa response to virus infection.

  11. Transcriptomic insights into the alternative splicing-mediated adaptation of the entomopathogenic fungus Beauveria bassiana to host niches: autophagy-related gene 8 as an example.

    Science.gov (United States)

    Dong, Wei-Xia; Ding, Jin-Li; Gao, Yang; Peng, Yue-Jin; Feng, Ming-Guang; Ying, Sheng-Hua

    2017-10-01

    Alternative splicing (AS) regulates various biological processes in fungi by extending the cellular proteome. However, comprehensive studies investigating AS in entomopathogenic fungi are lacking. Based on transcriptome data obtained via dual RNA-seq, the first overview of AS events was developed for Beauveria bassiana growing in an insect haemocoel. The AS was demonstrated for 556 of 8840 expressed genes, accounting for 5.4% of the total genes in B. bassiana. Intron retention was the most abundant type of AS, accounting for 87.1% of all splicing events and exon skipping events were rare, only accounting for 2.0% of all events. Functional distribution analysis indicated an association between alternatively spliced genes and several physiological processes. Notably, B. bassiana autophagy-related gene 8 (BbATG8), an indispensable gene for autophagy, was spliced at an alternative 5' splice site to generate two transcripts (BbATG8-α and BbATG8-β). The BbATG8-α transcript was necessary for fungal autophagy and oxidation tolerance, while the BbATG8-β transcript was not. These two transcripts differentially contributed to the formation of conidia or blastospores as well as fungal virulence. Thus, AS acts as a powerful post-transcriptional regulatory strategy in insect mycopathogens and significantly mediates fungal transcriptional adaption to host niches. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Transcriptomic evidence of a para-inflammatory state in the middle aged lumbar spinal cord.

    Science.gov (United States)

    Galbavy, William; Lu, Yong; Kaczocha, Martin; Puopolo, Michelino; Liu, Lixin; Rebecchi, Mario J

    2017-01-01

    We have previously reported elevated expression of multiple pro-inflammatory markers in the lumbar spinal cord (LSC) of middle-aged male rats compared to young adults suggesting a para-inflammatory state develops in the LSC by middle age, a time that in humans is associated with the greatest pain prevalence and persistence. The goal of the current study was to examine the transcriptome-wide gene expression differences between young and middle aged LSC. Young (3 month) and middle-aged (17 month) naïve Fisher 344 rats (n = 5 per group) were euthanized, perfused with heparinized saline, and the LSC were removed. ~70% of 31,000 coding sequences were detected. After normalization, ~ 1100 showed statistically significant differential expression. Of these genes, 353 middle-aged annotated genes differed by > 1.5 fold compared to the young group. Nearly 10% of these genes belonged to the microglial sensome. Analysis of this subset revealed that the principal age-related differential pathways populated are complement, pattern recognition receptors, OX40, and various T cell regulatory pathways consistent with microglial priming and T cell invasion and modulation. Many of these pathways substantially overlap those previously identified in studies of LSC of young animals with chronic inflammatory or neuropathic pain. Up-modulation of complement pathway, microglial priming and activation, and T cell/antigen-presenting cell communication in healthy middle-aged LSC was found. Taken together with our previous work, the results support our conclusion that an incipient or para-inflammatory state develops in the LSC in healthy middle-aged adults.

  13. Breeding matters: Natal experience influences population state-dependent host acceptance by an eruptive insect herbivore.

    Directory of Open Access Journals (Sweden)

    Jordan Lewis Burke

    Full Text Available Eruptive forest insects are highly influential agents of change in forest ecosystems, and their effects have increased with recent climate change. State-dependent life histories contribute significantly to the population dynamics of eruptive forest insect herbivores; however, the proximate mechanisms by which these species shift between states is poorly understood. Laboratory bioassays were conducted using the mountain pine beetle (Dendroctonus ponderosae to determine the effect of maternal host selection on offspring host preferences, as they apply to population state-dependent behaviors. Female mountain pine beetles exhibited state-dependent preference for artificial host material amended with monoterpenes in the absence of other cues, such that individuals reared in high-density epidemic-state simulations rejected low monoterpene conditions, while low-density endemic-state beetles accepted low monoterpene conditions. State-specific behavior in offspring was dependent on rearing conditions, as a function of maternal host selection, and these effects were observed within one generation. Density-dependent host selection behaviors exhibited by female mountain pine beetle offspring is reinforced by context-dependent maternal effects arising from parental host selection, and in situ exposure to conspecifics. These results demonstrate potential proximate mechanisms that control population dynamics in eruptive forest insects, and will allow for more accurate predictions of continued impact and spread of these species.

  14. Mapping of the Co-Transcriptomes of UPEC-Infected Macrophages Reveals New Insights into the Molecular Basis of Host-Pathogen Interactions in Human and Mouse

    KAUST Repository

    Mavromatis, Charalampos Harris

    2014-01-01

    Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC), the main causative agent of UTIs, can invade and replicate within bladder epithelial cells, and recent evidence demonstrated that some UPEC strains also survive within macrophages. To understand the mechanisms of host subversion that enable UPEC to survive within macrophages, and the contribution of macrophages to UPEC-mediated pathology, I performed hostpathogen co-transcriptome analyses using RNA sequencing. I developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. First, mouse bone morrow-derived macrophages (BMM) were challenged over a 24 h time course with UPEC reference strains, UTI89 (cystitis strain), 83972 and VR50 (asymptomatic bacteriuria strains) that possess contrasting intramacrophage phenotypes. My results showed that BMM responded to the three different UPEC strains with broadly similar gene expression programs. In contrast to the conserved pattern of BMM responses, the transcriptional responses of the different UPEC strains diverged markedly from each other. Hypothesizing that genes upregulated at 24 h post-infection may contribute to intramacrophage survival, I identified UTI89 genes upregulated at this time point, and showed that deletion of one of these genes (pspA) compromised intramacrophage survival of UPEC strain UTI89. Second, human monocyte-derived macrophages (HMDM) and BMM were challenged over a 24 h course with the UPEC strain EC958, a globally disseminated, multi-drug resistant strain. My analysis identified extensive divergence in UPEC-regulated orthologous gene expression between HMDM and BMM, and I validated both known and novel genes in the context of differential regulation. On the contrary, the transcriptional response of EC958 showed a broad conservation across both mammalian intramacrophage environments. My study thus

  15. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum.

    Science.gov (United States)

    Zhuang, Xiaofeng; McPhee, Kevin E; Coram, Tristan E; Peever, Tobin L; Chilvers, Martin I

    2012-11-26

    White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases of pea (Pisum sativum L.), however, little is known about the genetics and biochemistry of this interaction. Identification of genes underlying resistance in the host or pathogenicity and virulence factors in the pathogen will increase our knowledge of the pea-S. sclerotiorum interaction and facilitate the introgression of new resistance genes into commercial pea varieties. Although the S. sclerotiorum genome sequence is available, no pea genome is available, due in part to its large genome size (~3500 Mb) and extensive repeated motifs. Here we present an EST data set specific to the interaction between S. sclerotiorum and pea, and a method to distinguish pathogen and host sequences without a species-specific reference genome. 10,158 contigs were obtained by de novo assembly of 128,720 high-quality reads generated by 454 pyrosequencing of the pea-S. sclerotiorum interactome. A method based on the tBLASTx program was modified to distinguish pea and S. sclerotiorum ESTs. To test this strategy, a mixture of known ESTs (18,490 pea and 17,198 S. sclerotiorum ESTs) from public databases were pooled and parsed; the tBLASTx method successfully separated 90.1% of the artificial EST mix with 99.9% accuracy. The tBLASTx method successfully parsed 89.4% of the 454-derived EST contigs, as validated by PCR, into pea (6,299 contigs) and S. sclerotiorum (2,780 contigs) categories. Two thousand eight hundred and forty pea ESTs and 996 S. sclerotiorum ESTs were predicted to be expressed specifically during the pea-S. sclerotiorum interaction as determined by homology search against 81,449 pea ESTs (from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings) and 57,751 S. sclerotiorum ESTs (from mycelia at neutral pH, developing apothecia and developing sclerotia). Among those ESTs specifically expressed, 277 (9.8%) pea ESTs were predicted to be

  16. Rapid transcriptome characterization and parsing of sequences in a non-model host-pathogen interaction; pea-Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Zhuang Xiaofeng

    2012-11-01

    Full Text Available Abstract Background White mold, caused by Sclerotinia sclerotiorum, is one of the most important diseases of pea (Pisum sativum L., however, little is known about the genetics and biochemistry of this interaction. Identification of genes underlying resistance in the host or pathogenicity and virulence factors in the pathogen will increase our knowledge of the pea-S. sclerotiorum interaction and facilitate the introgression of new resistance genes into commercial pea varieties. Although the S. sclerotiorum genome sequence is available, no pea genome is available, due in part to its large genome size (~3500 Mb and extensive repeated motifs. Here we present an EST data set specific to the interaction between S. sclerotiorum and pea, and a method to distinguish pathogen and host sequences without a species-specific reference genome. Results 10,158 contigs were obtained by de novo assembly of 128,720 high-quality reads generated by 454 pyrosequencing of the pea-S. sclerotiorum interactome. A method based on the tBLASTx program was modified to distinguish pea and S. sclerotiorum ESTs. To test this strategy, a mixture of known ESTs (18,490 pea and 17,198 S. sclerotiorum ESTs from public databases were pooled and parsed; the tBLASTx method successfully separated 90.1% of the artificial EST mix with 99.9% accuracy. The tBLASTx method successfully parsed 89.4% of the 454-derived EST contigs, as validated by PCR, into pea (6,299 contigs and S. sclerotiorum (2,780 contigs categories. Two thousand eight hundred and forty pea ESTs and 996 S. sclerotiorum ESTs were predicted to be expressed specifically during the pea-S. sclerotiorum interaction as determined by homology search against 81,449 pea ESTs (from flowers, leaves, cotyledons, epi- and hypocotyl, and etiolated and light treated etiolated seedlings and 57,751 S. sclerotiorum ESTs (from mycelia at neutral pH, developing apothecia and developing sclerotia. Among those ESTs specifically expressed

  17. Radiation protection and radiation safety: CERN and its host states to sign a tripartite agreement.

    CERN Multimedia

    2010-01-01

    On 15 November CERN and its Host States will sign a tripartite agreement that replaces the existing bilateral agreements in matters of radiation protection and radiation safety at CERN. It will provide, for the first time, a single forum where the three parties will discuss how maximum overall safety can best be achieved in the specific CERN context.   CERN has always maintained close collaboration with its Host States in matters of safety. “The aim of this collaboration is especially to ensure best practice in the field of radiation protection and the safe operation of CERN’s facilities”, explains Ralf Trant, Head of the Occupational Health & Safety and Environmental Protection (HSE) Unit. Until today, CERN’s collaboration with its Host States was carried out under two sets of bilateral agreements: depending on which side of the French-Swiss border they were being carried out on, a different framework applied to the same activities. This approach has b...

  18. Identification of cotton fleahopper (Hemiptera: Miridae) host plants in central Texas and compendium of reported hosts in the United States.

    Science.gov (United States)

    Esquivel, J F; Esquivel, S V

    2009-06-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.

  19. The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art

    Directory of Open Access Journals (Sweden)

    Stefano de Franciscis

    2016-01-01

    Full Text Available Cardiovascular disease (CD and peripheral vascular disease (PVD are leading causes of mortality and morbidity in western countries and also responsible of a huge burden in terms of disability, functional decline, and healthcare costs. Biomarkers are measurable biological elements that reflect particular physiological or pathological states or predisposition towards diseases and they are currently widely studied in medicine and especially in CD. In this context, biomarkers can also be used to assess the severity or the evolution of several diseases, as well as the effectiveness of particular therapies. Genomics, transcriptomics, and proteomics have opened new windows on disease phenomena and may permit in the next future an effective development of novel diagnostic and prognostic medicine in order to better prevent or treat CD. This review will consider the current evidence of novel biomarkers with clear implications in the improvement of risk assessment, prevention strategies, and medical decision making in the field of CD.

  20. Transcriptome Analysis of Enterococcus faecalis during Mammalian Infection Shows Cells Undergo Adaptation and Exist in a Stringent Response State

    Science.gov (United States)

    Frank, Kristi L.; Colomer-Winter, Cristina; Grindle, Suzanne M.; Lemos, José A.; Schlievert, Patrick M.; Dunny, Gary M.

    2014-01-01

    As both a commensal and a major cause of healthcare-associated infections in humans, Enterococcus faecalis is a remarkably adaptable organism. We investigated how E. faecalis adapts in a mammalian host as a pathogen by characterizing changes in the transcriptome during infection in a rabbit model of subdermal abscess formation using transcriptional microarrays. The microarray experiments detected 222 and 291 differentially regulated genes in E. faecalis OG1RF at two and eight hours after subdermal chamber inoculation, respectively. The profile of significantly regulated genes at two hours post-inoculation included genes involved in stress response, metabolism, nutrient acquisition, and cell surface components, suggesting genome-wide adaptation to growth in an altered environment. At eight hours post-inoculation, 88% of the differentially expressed genes were down-regulated and matched a transcriptional profile consistent with a (p)ppGpp-mediated stringent response. Subsequent subdermal abscess infections with E. faecalis mutants lacking the (p)ppGpp synthetase/hydrolase RSH, the small synthetase RelQ, or both enzymes, suggest that intracellular (p)ppGpp levels, but not stringent response activation, influence persistence in the model. The ability of cells to synthesize (p)ppGpp was also found to be important for growth in human serum and whole blood. The data presented in this report provide the first genome-wide insights on E. faecalis in vivo gene expression and regulation measured by transcriptional profiling during infection in a mammalian host and show that (p)ppGpp levels affect viability of E. faecalis in multiple conditions relevant to mammalian infection. The subdermal abscess model can serve as a novel experimental system for studying the E. faecalis stringent response in the context of the mammalian immune system. PMID:25545155

  1. Molecular Confirmation of Frogs (Anura) as Hosts of Corethrellidae (Diptera) in the Southeastern United States.

    Science.gov (United States)

    Camp, Jeremy V; Irby, William S

    2017-09-01

    Flies in the family Corethrellidae Edwards 1932 (Diptera) are known to be attracted to the mating calls of male frogs. For the first time, the hosts of corethrellids were identified to species by analyzing bloodmeals taken from resting female flies. A portion of the cytochrome b gene was amplified and sequenced from blood-engorged flies using vertebrate-specific primers. The flies were collected over 6 yr at two locations in the southeastern United States from resting boxes and natural resting sites (rodent burrows). Potential host abundance focused on frog surveillance, and estimation relied on visual encounters, passive trapping (artificial refugia), and call surveys. This study confirms that corethrellids take blood from tree frogs (Hylidae); however, it was found that true frogs (Lithobates Fitzinger 1843 (Ranidae: Anura) sp.) were the principal host selected by Corethrella brakeleyi (Coquillett 1902) (~73% of identified bloodmeals). These preliminary data suggest that host selection of Corethrella Freeman 1962 sp. is not necessarily correlated with host calling abundance. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  2. Approaches to LLW disposal site selection and current progress of host states

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.J.; Kerr, T.A.

    1990-11-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985 and under the guidance of 10 CFR 61, States have begun entering into compacts to establish and operate regional disposal facilities for low-level radioactive waste. The progress a state makes in implementing a process to identify a specific location for a disposal site is one indication of the level of a state's commitment to meeting its responsibilities under Federal law and interstate compact agreements. During the past few years, several States have been engaged in site selection processes. The purpose of this report is to summarize the site selection approaches of some of the Host States (California, Michigan, Nebraska, New York, North Carolina, Texas, and Illinois), and their progress to date. An additional purpose of the report is to discern whether the Host States's site selection processes were heavily influenced by any common factors. One factor each state held in common was that political and public processes exerted a powerful influence on the site selection process at virtually every stage. 1 ref.

  3. Application of meta-transcriptomics and –proteomics to analysis of in situ physiological state

    Directory of Open Access Journals (Sweden)

    Allan eKonopka

    2012-05-01

    Full Text Available Analysis of the growth-limiting factor or environmental stressors affecting microbes in situ is of fundamental importance but analytically difficult. Microbes can reduce in situ limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems may contain multiple stressors. The patterns of gene or protein expression by microbes in nature can be used to infer growth limitations, because they are regulated in response to environmental conditions. Experimental studies under controlled conditions in the laboratory provide the physiological underpinnings for developing these physiological indicators. Although regulatory networks may differ among specific microbes, there are some broad principles that can be applied, related to limiting nutrient acquisition, resource allocation, and stress responses. As technologies for transcriptomics and proteomics mature, the capacity to apply these approaches to complex microbial communities will accelerate. In particular, global proteomics reflect expressed catalytic activities. Furthermore, the high mass accuracy of some proteomic approaches allows mapping back to specific microbial strains. For example, at the Rifle IFRC field site in Western Colorado, the physiological status of Fe(III-reducing populations has been tracked over time. Members of a subsurface clade within the Geobacter predominated during carbon amendment to the subsurface environment. At the functional level, proteomic identifications produced inferences regarding (i temporal changes in anabolism and catabolism of acetate, (ii the onset of N2 fixation when N became limiting, and (iii expression of phosphate transporters during periods of intense growth. The application of these approaches in situ can lead to discovery of novel physiological adaptations.

  4. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi.

    Science.gov (United States)

    Minning, Todd A; Weatherly, D Brent; Atwood, James; Orlando, Ron; Tarleton, Rick L

    2009-08-07

    Chronic chagasic cardiomyopathy is a debilitating and frequently fatal outcome of human infection with the protozoan parasite, Trypanosoma cruzi. Microarray analysis of gene expression during the T. cruzi life-cycle could be a valuable means of identifying drug and vaccine targets based on their appropriate expression patterns, but results from previous microarray studies in T. cruzi and related kinetoplastid parasites have suggested that the transcript abundances of most genes in these organisms do not vary significantly between life-cycle stages. In this study, we used whole genome, oligonucleotide microarrays to globally determine the extent to which T. cruzi regulates mRNA relative abundances over the course of its complete life-cycle. In contrast to previous microarray studies in kinetoplastids, we observed that relative transcript abundances for over 50% of the genes detected on the T. cruzi microarrays were significantly regulated during the T. cruzi life-cycle. The significant regulation of 25 of these genes was confirmed by quantitative reverse-transcriptase PCR (qRT-PCR). The T. cruzi transcriptome also mirrored published protein expression data for several functional groups. Among the differentially regulated genes were members of paralog clusters, nearly 10% of which showed divergent expression patterns between cluster members. Taken together, these data support the conclusion that transcript abundance is an important level of gene expression regulation in T. cruzi. Thus, microarray analysis is a valuable screening tool for identifying stage-regulated T. cruzi genes and metabolic pathways.

  5. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Orlando Ron

    2009-08-01

    Full Text Available Abstract Background Chronic chagasic cardiomyopathy is a debilitating and frequently fatal outcome of human infection with the protozoan parasite, Trypanosoma cruzi. Microarray analysis of gene expression during the T. cruzi life-cycle could be a valuable means of identifying drug and vaccine targets based on their appropriate expression patterns, but results from previous microarray studies in T. cruzi and related kinetoplastid parasites have suggested that the transcript abundances of most genes in these organisms do not vary significantly between life-cycle stages. Results In this study, we used whole genome, oligonucleotide microarrays to globally determine the extent to which T. cruzi regulates mRNA relative abundances over the course of its complete life-cycle. In contrast to previous microarray studies in kinetoplastids, we observed that relative transcript abundances for over 50% of the genes detected on the T. cruzi microarrays were significantly regulated during the T. cruzi life-cycle. The significant regulation of 25 of these genes was confirmed by quantitative reverse-transcriptase PCR (qRT-PCR. The T. cruzi transcriptome also mirrored published protein expression data for several functional groups. Among the differentially regulated genes were members of paralog clusters, nearly 10% of which showed divergent expression patterns between cluster members. Conclusion Taken together, these data support the conclusion that transcript abundance is an important level of gene expression regulation in T. cruzi. Thus, microarray analysis is a valuable screening tool for identifying stage-regulated T. cruzi genes and metabolic pathways.

  6. Application of meta-transcriptomics and -proteomics to analysis of in situ physiological state

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, Allan; Wilkins, Michael J.

    2012-05-18

    Analysis of the growth-limiting factor or environmental stressors affecting microbes in situ is of fundamental importance but analytically difficult. Microbes can reduce in situ limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems may contain multiple stressors. The patterns of gene or protein expression by microbes in nature can be used to infer growth limitations, because they are regulated in response to environmental conditions. Experimental studies under controlled conditions in the laboratory provide the physiological underpinnings for developing these physiological indicators. Although regulatory networks may differ among specific microbes, there are some broad principles that can be applied, related to limiting nutrient acquisition, resource allocation, and stress responses. As technologies for transcriptomics and proteomics mature, the capacity to apply these approaches to complex microbial communities will accelerate. Global proteomics has the particular advantage that it reflects expressed catalytic activities. Furthermore, the high mass accuracy of some proteomic approaches allows mapping back to specific microbial strains. For example, at the Rifle IFRC field site in Western Colorado, the physiological status of Fe(III)-reducing populations has been tracked over time. Members of a 'subsurface clade' within the Geobacter predominated during carbon amendment to the subsurface environment. At the functional level, proteomic identifications produced inferences regarding (i) temporal changes in anabolism and catabolism of acetate, (ii) the onset of N2 fixation when N became limiting, and (iii) expression of phosphate transporters during periods of intense growth. The application of these approaches in situ can lead to discovery of novel physiological adaptations.

  7. Host-Feeding Preference of the Mosquito, Culex quinquefasciatus, in Yucatan State, Mexico

    Science.gov (United States)

    Garcia-Rejon, Julian E.; Blitvich, Bradley J.; Farfan-Ale, Jose A.; Loroño-Pino, Maria A.; Chi Chim, Wilberth A.; Flores-Flores, Luis F.; Rosado-Paredes, Elsy; Baak-Baak, Carlos; Perez-Mutul, Jose; Suarez-Solis, Victor; Fernandez-Salas, Ildefonso; Beaty, Barry J.

    2010-01-01

    Studies were conducted to determine the host-feeding preference of Culex quinquefasciatus Say (Diptera: Culicidae) in relation to the availability of human and domestic animals in the city of Merida, Yucatan State, Mexico. Mosquitoes were collected in the backyards of houses using resting wooden boxes. Collections were made five times per week from January to December 2005. DNA was extracted from engorged females and tested by PCR using universal avian- and mammalian-specific primers. DNA extracted from avian-derived blood was further analyzed by PCR using primers that differentiate among the birds of three avian orders: Passeriformes, Columbiformes and Galliformes. PCR products obtained from mammalian-derived blood were subjected to restriction enzyme digestion to differentiate between human-, dog-, cat-, pig-, and horse-derived blood meals. Overall, 82% of engorged mosquitoes had fed on birds, and 18% had fed on mammals. The most frequent vertebrate hosts were Galliformes (47.1%), Passeriformes (23.8%), Columbiformes (11.2%) birds, and dogs (8.8%). The overall human blood index was 6.7%. The overall forage ratio for humans was 0.1, indicating that humans were not a preferred host for Cx. quinquefasciatus in Merida. PMID:20578953

  8. Spotted Fever: Epidemiology and Vector-Rickettsia-Host Relationship in Rio de Janeiro State

    Science.gov (United States)

    Montenegro, Diego C.; Bitencourth, Karla; de Oliveira, Stefan V.; Borsoi, Ana P.; Cardoso, Karen M.; Sousa, Maria S. B.; Giordano-Dias, Cristina; Amorim, Marinete; Serra-Freire, Nicolau M.; Gazêta, Gilberto S.; Brazil, Reginaldo P.

    2017-01-01

    The eco-epidemiological scenario of spotted fever (SF), a tick-borne disease that affects humans and other animals in several countries around the world, was analyzed in Rio de Janeiro (RJ) State, Brazil. During the last 34 years, 990 SF cases were reported in RJ (the Brazilian state with the highest population density), including 116 cases confirmed by serology (RIFI) or PCR, among 42.39% of the municipalities with reported cases of SF. The epidemiologic dynamics of SF in RJ State are very heterogeneous in time and space, with outbreaks, high mortality rates and periods of epidemiological silence (no SF cases reported). Furthermore, it exhibited a changing epidemiological profile from being rural to becoming an urban disease. This study identified arthropods infected with Rickettsia felis, R. bellii and R. rickettsii, and found that the abundance of ectoparasites was associated with specific hosts. The R. rickettsii-vector-host relationship was most evident in species-specific parasitism. This suggests that the association between dogs, cattle, horses, capybaras and their main ectoparasites, Rhipicephalus sanguineus and Ctenocephalides felis, Rhipicephalus microplus, Dermacentor nitens, and Amblyomma dubitatum, respectively, has a key role in the dynamics of R. rickettsii transmission in enzootic cycles and the maintenance of carrier ectoparasites, thus facilitating the existence of endemic areas with the ability to produce epidemic outbreaks of SF in RJ. This study found confirmed human infections for only the R. rickettsii carrier Amblyomma sculptum, which reinforces the importance of this species as a vector of the pathogen in Brazil. This study can be adapted to different eco-epidemiological scenarios of spotted fever throughout the Americas. PMID:28424664

  9. Global Mapping of the Macrophage-HIV-1 Transcriptome Reveals that Productive Infection Induces Remodeling of Host Cell DNA and Chromatin.

    Science.gov (United States)

    Deshiere, Alexandre; Joly-Beauparlant, Charles; Breton, Yann; Ouellet, Michel; Raymond, Frédéric; Lodge, Robert; Barat, Corinne; Roy, Marc-André; Corbeil, Jacques; Tremblay, Michel J

    2017-07-12

    It has been proposed that macrophages could serve as long-lived compartments for HIV-1 infection under in vivo situations because these cells are resistant to the virus-mediated cytopathic effect, produce progeny virus over extended periods of time and are localized in tissues that are often less accessible by treatment. Comprehensive experimental studies are thus needed to characterize the HIV-1-induced modulation of host genes in these myeloid lineage cells. To shed light on this important issue, we performed comparative analyses of mRNA expression levels of host genes in uninfected bystander and HIV-1-infected human macrophages using an infectious reporter virus construct coupled with a large-scale RNA sequencing approach. We observed a rapid differential expression of several host factors in the productively infected macrophage population including genes regulating DNA replication factors and chromatin remodeling. A siRNA-mediated screening study to functionally identify host determinants involved in HIV-1 biology has provided new information on the virus molecular regulation in macrophages.

  10. Delineating the effect of host environmental signals on a fully virulent strain of Bacillus anthracis using an integrated transcriptomics and proteomics approach

    NARCIS (Netherlands)

    Panda, G.; Basak, T.; Tanwer, P.; Sengupta, S.; Martins dos Santos, V.A.P.; Bhatnagar, R.

    2014-01-01

    Pathogenic bacteria sense the host environment and regulate expression of virulence-related genes. Environmental signals like temperature, bicarbonate/CO2 and glucose induce toxin production in Bacillus anthracis, but the mechanisms by which these signals contribute to virulence and overall

  11. MicroRNA Transcriptome of Poly I:C-Stimulated Peripheral Blood Mononuclear Cells Reveals Evidence for MicroRNAs in Regulating Host Response to RNA Viruses in Pigs

    Directory of Open Access Journals (Sweden)

    Jiying Wang

    2016-09-01

    Full Text Available MicroRNAs (miRNAs are one family of small noncoding RNAs that function to modulate the activity of specific mRNA targets in animals. To understand the role of miRNAs in regulating genes involved in the host immune response to RNA viruses, we profiled and characterized the miRNAs of swine peripheral blood mononuclear cells (PBMC stimulated with poly I:C, a synthetic dsRNA analog, by miRNA-sequencing (miRNA-seq. We identified a total of 905 miRNAs, of which 503 miRNAs were firstly exploited herein with no annotation in the latest miRBase 21.0. Expression analysis demonstrated that poly I:C stimulation can elicit significantly differentially expressed (DE miRNAs in Dapulian (n = 20, one Chinese indigenous breed, as well as Landrace (n = 23. By integrating the mRNA expression profiles of the same sample with miRNA profiles, we carried out function analyses of the target genes of these DE miRNAs, with the results indicating that target genes were most enriched in some immune-related pathways and gene ontology (GO terms, suggesting that DE miRNAs play an important role in the regulation of host to poly I:C stimulation. Furthermore, we also detected 43 and 61 significantly DE miRNAs between the two breeds in the control sample groups and poly I:C stimulation groups, respectively, which may be involved in regulation of the different characteristics of the two breeds. This study describes for the first time the PBMC miRNA transcriptomic response to poly I:C stimulation in pigs, which not only contributes to a broad view of the pig miRNAome but improves our understanding of miRNA function in regulating host immune response to RNA viruses.

  12. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection

    Science.gov (United States)

    Li, Yuan; Shah-Simpson, Sheena; Okrah, Kwame; Belew, A. Trey; Choi, Jungmin; Caradonna, Kacey L.; Padmanabhan, Prasad; Ndegwa, David M.; Temanni, M. Ramzi; Corrada Bravo, Héctor; El-Sayed, Najib M.; Burleigh, Barbara A.

    2016-01-01

    Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and host, our

  13. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection.

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-04-01

    Full Text Available Intracellular colonization and persistent infection by the kinetoplastid protozoan parasite, Trypanosoma cruzi, underlie the pathogenesis of human Chagas disease. To obtain global insights into the T. cruzi infective process, transcriptome dynamics were simultaneously captured in the parasite and host cells in an infection time course of human fibroblasts. Extensive remodeling of the T. cruzi transcriptome was observed during the early establishment of intracellular infection, coincident with a major developmental transition in the parasite. Contrasting this early response, few additional changes in steady state mRNA levels were detected once mature T. cruzi amastigotes were formed. Our findings suggest that transcriptome remodeling is required to establish a modified template to guide developmental transitions in the parasite, whereas homeostatic functions are regulated independently of transcriptomic changes, similar to that reported in related trypanosomatids. Despite complex mechanisms for regulation of phenotypic expression in T. cruzi, transcriptomic signatures derived from distinct developmental stages mirror known or projected characteristics of T. cruzi biology. Focusing on energy metabolism, we were able to validate predictions forecast in the mRNA expression profiles. We demonstrate measurable differences in the bioenergetic properties of the different mammalian-infective stages of T. cruzi and present additional findings that underscore the importance of mitochondrial electron transport in T. cruzi amastigote growth and survival. Consequences of T. cruzi colonization for the host include dynamic expression of immune response genes and cell cycle regulators with upregulation of host cholesterol and lipid synthesis pathways, which may serve to fuel intracellular T. cruzi growth. Thus, in addition to the biological inferences gained from gene ontology and functional enrichment analysis of differentially expressed genes in parasite and

  14. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state.

    Science.gov (United States)

    Clark, Melinda E; He, Zhili; Redding, Alyssa M; Joachimiak, Marcin P; Keasling, Jay D; Zhou, Jizhong Z; Arkin, Adam P; Mukhopadhyay, Aindrila; Fields, Matthew W

    2012-04-16

    Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from biofilm cells

  15. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum).

    Science.gov (United States)

    Lysøe, Erik; Dees, Merete W; Brurberg, May Bente

    2017-08-01

    Helminthosporium solani causes silver scurf, which affects the quality of potato. The biocontrol agent Clonostachys rosea greatly limited the severity of silver scurf symptoms and amount of H. solani genomic DNA in laboratory experiments. Transcriptomic analysis during interaction showed that H. solani gene expression was highly reduced when coinoculated with the biocontrol agent C. rosea, whereas gene expression of C. rosea was clearly boosted as a response to the pathogen. The most notable upregulated C. rosea genes were those encoding proteins involved in cellular response to oxidative stress, proteases, G-protein signaling, and the methyltransferase LaeA. The most notable potato response to both fungi was downregulation of defense-related genes and mitogen-activated protein kinase kinase kinases. At a later stage, this shifted, and most potato defense genes were turned on, especially those involved in terpenoid biosynthesis when H. solani was present. Some biocontrol-activated defense-related genes in potato were upregulated during early interaction with C. rosea alone that were not triggered by H. solani alone. Our results indicate that the reductions of silver scurf using C. rosea are probably due to a combination of mechanisms, including mycoparasitism, biocontrol-activated stimulation of plant defense mechanisms, microbial competition for nutrients, space, and antibiosis.

  16. Recent Evolutionary Radiation and Host Plant Specialization in the Xylella fastidiosa Subspecies Native to the United States

    Science.gov (United States)

    Vickerman, Danel B.; Bromley, Robin E.; Russell, Stephanie A.; Hartman, John R.; Morano, Lisa D.; Stouthamer, Richard

    2013-01-01

    The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influences plant host specialization. We identified 110 “non-IHR” isolates, 2 minimally recombinant “intermediate” ones (including the subspecific type), and 31 with extensive IHR. The non-IHR and intermediate isolates defined 23 sequence types (STs) which we used to identify 22 plant hosts (73% trees) characteristic of the subspecies. Except for almond, subsp. multiplex showed no host overlap with the introduced subspecies (subspecies fastidiosa and sandyi). MLST sequences revealed that subsp. multiplex underwent recent radiation (<25% of subspecies age) which included only limited intrasubspecific recombination (ρ/θ = 0.02); only one isolated lineage (ST50 from ash) was older. A total of 20 of the STs grouped into three loose phylogenetic clusters distinguished by nonoverlapping hosts (excepting purple leaf plum): “almond,” “peach,” and “oak” types. These host differences were not geographical, since all three types also occurred in California. ST designation was a good indicator of host specialization. ST09, widespread in the southeastern United States, only infected oak species, and all peach isolates were ST10 (from California, Florida, and Georgia). Only ST23 had a broad host range. Hosts of related genotypes were sometimes related, but often host groupings crossed plant family or even order, suggesting that phylogenetically plastic features of hosts affect bacterial pathogenicity. PMID:23354698

  17. Modulation of Host miRNAs Transcriptome in Lung and Spleen of Peste des Petits Ruminants Virus Infected Sheep and Goats

    Directory of Open Access Journals (Sweden)

    Aruna Pandey

    2017-06-01

    Full Text Available Peste des petits ruminants (PPR is one of the highly contagious viral disease, characterized by fever, sore mouth, conjunctivitis, gastroenteritis, and pneumonia, primarily affecting sheep and goats. Reports suggested variable host response in goats and sheep and this host response vis-a-vis the expression of microRNAs (miRNAs has not been investigated. Here, miRNAs were sequenced and proteomics data were generated to identify the role of differentially expressed miRNA (DEmiRNA in PPR virus (PPRV infected lung and spleen tissues of sheep and goats. In lungs, 67 and 37 DEmiRNAs have been identified in goats and sheep, respectively. Similarly, in spleen, 50 and 56 DEmiRNAs were identified in goats and sheep, respectively. A total of 20 and 11 miRNAs were found to be common differentially expressed in both the species in PPRV infected spleen and lung, respectively. Six DEmiRNAs—miR-21-3p, miR-1246, miR-27a-5p, miR-760-3p, miR-320a, and miR-363 were selected based on their role in viral infections, apoptosis, and fold change. The target prediction analysis of these six selected DEmiRNAs from the proteome data generated, revealed involvement of more number of genes in lung and spleen of goats than in sheep. On gene ontology analysis of host target genes these DEmiRNAs were found to regulate several immune response signaling pathways. It was observed that the pathways viz. T cell receptor signaling, Rap1 signaling, Toll-like receptor signaling, and B cell receptor signaling governed by DEmiRNAs were more perturbed in goats than in sheep. The data suggests that PPRV-induced miR-21-3p, miR-320a, and miR-363 might act cooperatively to enhance viral pathogenesis in the lung and spleen of sheep by downregulating several immune response genes. The study gives an important insight into the molecular pathogenesis of PPR by identifying that the PPRV—Izatnagar/94 isolate elicits a strong host response in goats than in sheep.

  18. Transcriptome Analysis of HepG2 Cells Expressing ORF3 from Swine Hepatitis E Virus to Determine the Effects of ORF3 on Host Cells

    Directory of Open Access Journals (Sweden)

    Kailian Xu

    2016-01-01

    Full Text Available Hepatitis E virus- (HEV- mediated hepatitis has become a global public health problem. An important regulatory protein of HEV, ORF3, influences multiple signal pathways in host cells. In this study, to investigate the function of ORF3 from the swine form of HEV (SHEV, high-throughput RNA-Seq-based screening was performed to identify the differentially expressed genes in ORF3-expressing HepG2 cells. The results were validated with quantitative real-time PCR and gene ontology was employed to assign differentially expressed genes to functional categories. The results indicated that, in the established ORF3-expressing HepG2 cells, the mRNA levels of CLDN6, YLPM1, APOC3, NLRP1, SCARA3, FGA, FGG, FGB, and FREM1 were upregulated, whereas the mRNA levels of SLC2A3, DKK1, BPIFB2, and PTGR1 were downregulated. The deregulated expression of CLDN6 and FREM1 might contribute to changes in integral membrane protein and basement membrane protein expression, expression changes for NLRP1 might affect the apoptosis of HepG2 cells, and the altered expression of APOC3, SCARA3, and DKK1 may affect lipid metabolism in HepG2 cells. In conclusion, ORF3 plays a functional role in virus-cell interactions by affecting the expression of integral membrane protein and basement membrane proteins and by altering the process of apoptosis and lipid metabolism in host cells. These findings provide important insight into the pathogenic mechanism of HEV.

  19. Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense.

    Science.gov (United States)

    Zhang, Hui; Dugé de Bernonville, Thomas; Body, Mélanie; Glevarec, Gaëlle; Reichelt, Michael; Unsicker, Sybille; Bruneau, Maryline; Renou, Jean-Pierre; Huguet, Elisabeth; Dubreuil, Géraldine; Giron, David

    2016-01-01

    Phytohormones have long been hypothesized to play a key role in the interactions between plant-manipulating organisms and their host-plants such as insect-plant interactions that lead to gall or 'green-islands' induction. However, mechanistic understanding of how phytohormones operate in these plant reconfigurations is lacking due to limited information on the molecular and biochemical phytohormonal modulation following attack by plant-manipulating insects. In an attempt to fill this gap, the present study provides an extensive characterization of how the leaf-miner Phyllonorycter blancardella modulates the major phytohormones and the transcriptional activity of plant cells in leaves of Malus domestica. We show here, that cytokinins strongly accumulate in mined tissues despite a weak expression of plant cytokinin-related genes. Leaf-mining is also associated with enhanced biosynthesis of jasmonic acid precursors but not the active form, a weak alteration of the salicylic acid pathway and a clear inhibition of the abscisic acid pathway. Our study consolidates previous results suggesting that insects may produce and deliver cytokinins to the plant as a strategy to manipulate the physiology of the leaf to create a favorable nutritional environment. We also demonstrate that leaf-mining by P. blancardella leads to a strong reprogramming of the plant phytohormonal balance associated with increased nutrient mobilization, inhibition of leaf senescence and mitigation of plant direct and indirect defense. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Host plants of insect-induced galls in areas of cerrado in the state of Goiás, Brazil

    Directory of Open Access Journals (Sweden)

    Walter Santos de Araújo

    2013-09-01

    Full Text Available Most studies of the interactions between plants and gall-inducing (galling insects have focused on the entomological aspects, few having addressed the diversity of galls in relation to the characteristics of the host plants. The objective of this study was to analyze the richness and composition of the community of host plants of galls in areas of cerrado (savanna in the state of Goiás, Brazil. To that end, we inventoried the galls in different regions of the state and within various types of vegetation formations, between 2005 and 2007. We registered 80 gall morphotypes in 58 species of host plants (30 families and 47 genera. The host family with highest diversity of galls was Fabaceae, with 17 morphotypes, followed by Styracaceae, with seven. In the cerrado, Fabaceae is the plant family with the highest number of species. Our results show that the composition of a plant community is a determinant of the distribution of galling insects. At the family or genus level, the presence of certain taxa increases the species richness of the population of galling insects.

  1. Transcriptome-wide characterization of human cytomegalovirus in natural infection and experimental latency.

    Science.gov (United States)

    Cheng, Shu; Caviness, Katie; Buehler, Jason; Smithey, Megan; Nikolich-Žugich, Janko; Goodrum, Felicia

    2017-11-20

    The transcriptional program associated with herpesvirus latency and the viral genes regulating entry into and exit from latency are poorly understood and controversial. Here, we developed and validated a targeted enrichment platform and conducted large-scale transcriptome analyses of human cytomegalovirus (HCMV) infection. We used both an experimental hematopoietic cell model of latency and cells from naturally infected, healthy human subjects (clinical) to define the breadth of viral genes expressed. The viral transcriptome derived from experimental infection was highly correlated with that from clinical infection, validating our experimental latency model. These transcriptomes revealed a broader profile of gene expression during infection in hematopoietic cells than previously appreciated. Further, using recombinant viruses that establish a nonreactivating, latent-like or a replicative infection in CD34+ hematopoietic progenitor cells, we defined classes of low to moderately expressed genes that are differentially regulated in latent vs. replicative states of infection. Most of these genes have yet to be studied in depth. By contrast, genes that were highly expressed, were expressed similarly in both latent and replicative infection. From these findings, a model emerges whereby low or moderately expressed genes may have the greatest impact on regulating the switch between viral latency and replication. The core set of viral genes expressed in natural infection and differentially regulated depending on the pattern of infection provides insight into the HCMV transcriptome associated with latency in the host and a resource for investigating virus-host interactions underlying persistence.

  2. Intersubspecific recombination in Xylella fastidiosa Strains native to the United States: infection of novel hosts associated with an unsuccessful invasion.

    Science.gov (United States)

    Nunney, Leonard; Hopkins, Donald L; Morano, Lisa D; Russell, Stephanie E; Stouthamer, Richard

    2014-02-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.

  3. Identification of Host Fruit Volatiles from Snowberry (Symphoricarpos albus), Attractive to Rhagoletis zephyria Flies from the Western United States.

    Science.gov (United States)

    Cha, Dong H; Olsson, Shannon B; Yee, Wee L; Goughnour, Robert B; Hood, Glen R; Mattsson, Monte; Schwarz, Dietmar; Feder, Jeffrey L; Linn, Charles E

    2017-02-01

    A mixture of behaviorally active volatiles was identified from the fruit of snowberry, Symphoricarpos albus laevigatus, for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), dimethyl trisulfide (1%), 1-octen-3-ol (40%), myrcene (8%), nonanal (9%), linalool (13%), (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT, 6%), decanal (15%), and β-caryophyllene (5%) was identified that gave consistent electroantennogram activity and was behaviorally active in flight tunnel tests. In other flight tunnel assays, snowberry flies from two sites in Washington state, USA, displayed significantly greater levels of upwind oriented flight to sources with the snowberry volatile blend compared with previously identified volatile blends from domestic apple (Malus domestica) and downy hawthorn (Crataegus mollis) fruit from the eastern USA, and domestic apple, black hawthorn (C. douglasii) and ornamental hawthorn (C. monogyna) from Washington state. Selected subtraction assays showed that whereas removal of DMNT or 1-octen-3-ol significantly reduced the level of upwind flight, removal of myrcene and β-caryophyllene, or dimethyl trisulfide alone did not significantly affect the proportion of upwind flights. Our findings add to previous studies showing that populations of Rhagoletis flies infesting different host fruit are attracted to unique mixtures of volatile compounds specific to their respective host plants. Taken together, the results support the hypothesis that differences among flies in their behavioral responses to host fruit odors represent key adaptations involved in sympatric host plant shifts, contributing to host specific mating and generating prezygotic reproductive isolation among members of the R. pomonella sibling species complex.

  4. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora.

    Science.gov (United States)

    Lutz, Adrian; Raina, Jean-Baptiste; Motti, Cherie A; Miller, David J; van Oppen, Madeleine J H

    2015-01-01

    Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS) that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ) and symbiont plastoquinone (PQ) pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS) was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities). The results show that the responses of the two antioxidant systems occur on different timescales: (i) the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii) by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.

  5. Fluid Spatial Dynamics of West Nile Virus in the United States: Rapid Spread in a Permissive Host Environment.

    Science.gov (United States)

    Di Giallonardo, Francesca; Geoghegan, Jemma L; Docherty, Douglas E; McLean, Robert G; Zody, Michael C; Qu, James; Yang, Xiao; Birren, Bruce W; Malboeuf, Christine M; Newman, Ruchi M; Ip, Hon S; Holmes, Edward C

    2015-10-28

    The introduction of West Nile virus (WNV) into North America in 1999 is a classic example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics, and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology, we sequenced the complete genomes of approximately 300 avian isolates sampled across the United States between 2001 and 2012. Phylogenetic analysis revealed a relatively star-like tree structure, indicative of explosive viral spread in the United States, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well-sampled avian species. The genome sequence data analyzed here also contain relatively little evidence for adaptive evolution, particularly of structural proteins, suggesting that most viral lineages are of similar fitness and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the United States. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers. How viruses spread in new host and geographic environments is central to understanding the emergence and evolution of novel infectious diseases and for predicting their likely impact. The emergence of the vector-borne West Nile virus (WNV) in North America in 1999

  6. De novo transcriptome sequencing and analysis of Coccinella septempunctata L. in non-diapause, diapause and diapause-terminated states to identify diapause-associated genes.

    Science.gov (United States)

    Qi, Xiaoyang; Zhang, Lisheng; Han, Yanhua; Ren, Xiaoyun; Huang, Jian; Chen, Hongyin

    2015-12-21

    The most common ladybird beetle, Coccinella septempunctata L., is an excellent predator of crop pests such as aphids and white flies, and it shows a wide range of adaptability, a large appetite and a high reproductive ability. Diapause research plays an important role in the artificial propagation and shelf-life extension of insect products. Although this lady beetle's regulatory, physiological and biochemical characteristics in the diapause period are well understood, the molecular mechanism of diapause remains unknown. Therefore, we collected female adults in three different states, i.e., non-diapause, diapause and diapause termination, for transcriptome sequencing. After transcriptome sequencing using the Illumina HiSeq 2500 platform with pretreatment, a total of 417.6 million clean reads from nine samples were filtered using the program FASTX (version 0.0). Additionally, 106,262 contigs were assembled into 82,820 unigenes with an average length of 921 bp and an N50 of 1,241 bp. All of the unigenes were annotated through BLASTX alignment against the Nr or UniProt database, and 37,872 unigenes were matched. We performed further analysis of these unigenes using the Clusters of Orthologous Groups of proteins (COG), Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Through pairwise comparisons of the non-diapause (ND), diapause (D), and diapause-terminated (DT) groups, 3,501 and 1,427 differentially expressed genes (DEGs) were identified between D and ND and between DT and D, respectively. Moreover, 443 of the DEGs were specifically expressed during the diapause period (i.e., DEGs that were expressed at the highest or lowest levels during diapause compared with the other stages). GO function and KEGG pathway enrichment were performed on all DEGs and showed that RNA-directed DNA polymerase activity and fatty acid metabolism were significantly affected. Furthermore, eight specific expressed genes were selected for validation using q

  7. Identification and characterization of the merozoite surface protein 1 (msp1) gene in a host-generalist avian malaria parasite, Plasmodium relictum (lineages SGS1 and GRW4) with the use of blood transcriptome.

    Science.gov (United States)

    Hellgren, Olof; Kutzer, Megan; Bensch, Staffan; Valkiūnas, Gediminas; Palinauskas, Vaidas

    2013-10-30

    The merozoite surface protein 1 (msp1) is one of the most studied vaccine candidate genes in mammalian Plasmodium spp. to have been used for investigations of epidemiology, population structures, and immunity to infections. However methodological difficulties have impeded the use of nuclear markers such as msp1 in Plasmodium parasites causing avian malaria. Data from an infection transcriptome of the host generalist avian malaria parasite Plasmodium relictum was used to identify and characterize the msp1 gene from two different isolates (mtDNA lineages SGS1 and GRW4). The aim was to investigate whether the msp1 gene in avian malaria species shares the properties of the msp1 gene in Plasmodium falciparum in terms of block variability, conserved anchor points and repeat motifs, and further to investigate the degree to which the gene might be informative in avian malaria parasites for population and epidemiological studies. Reads from 454 sequencing of birds infected with avian malaria was used to develop Sanger sequencing protocols for the msp1 gene of P. relictum. Genetic variability between variable and conserved blocks of the gene was compared within and between avian malaria parasite species, including P. falciparum. Genetic variability of the msp1 gene in P. relictum was compared with six other nuclear genes and the mtDNA gene cytochrome b. The msp1 gene of P. relictum shares the same general pattern of variable and conserved blocks as found in P. falciparum, although the variable blocks exhibited less variability than P. falciparum. The variation across the gene blocks in P. falciparum spanned from being as conserved as within species variation in P. relictum to being as variable as between the two avian malaria species (P. relictum and Plasmodium gallinaceum) in the variable blocks. In P. relictum the highly conserved p19 region of the peptide was identified, which included two epidermal growth factor-like domains and a fully conserved GPI anchor point. This

  8. Mastitis associated transcriptomic disruptions in cattle

    Science.gov (United States)

    Mastitis is ranked as the top disease for dairy cattle based on traditional cost analysis. Greater than 100 organisms from a broad phylogenetic spectrum are able to cause bovine mastitis. Transcriptomic characterization facilitates our understanding of host-pathogen relations and provides mechanisti...

  9. Host Ranges of Listeria-Specific Bacteriophages from the Turkey Processing Plant Environment in the United States

    Science.gov (United States)

    Kim, Jae-Won; Siletzky, Robin M.; Kathariou, Sophia

    2008-01-01

    Even though at least 400 Listeria phages have been isolated from various sources, limited information is available on phages from the food processing plant environment. Phages in the processing plant environment may play critical roles in determining the Listeria population that becomes established in the plant. In this study, we pursued the isolation of Listeria-specific phages from environmental samples from four turkey processing plants in the United States. These environmental samples were also utilized to isolate Listeria spp. Twelve phages were isolated and classified into three groups in terms of their host range. Of these, nine (group 1) showed a wide host range, including multiple serotypes of Listeria monocytogenes, as well as other Listeria spp. (L. innocua, L. welshimeri, L. seeligeri, and L. ivanovii). The remaining phages mostly infected L. monocytogenes serotype 4b as well as L. innocua, L. ivanovii, and/or L. welshimeri. All but one of the strains of the serotype 4b complex (4b, 4d, 4e) from the processing plant environment could be readily infected by the wide-host-range phages isolated from the environment of the processing plants. However, many strains of other serotypes (1/2a [or 3a] and 1/2b [or 3b]), which represented the majority of L. monocytogenes strains isolated from the environmental samples, were resistant to infection by these phages. Experiments with two phage-resistant strains showed reduced phage adsorption onto the host cells. These findings suggest that phage resistance may be an important component of the ecology of L. monocytogenes in the turkey processing plants. PMID:18791016

  10. Host ranges of Listeria-specific bacteriophages from the turkey processing plant environment in the United States.

    Science.gov (United States)

    Kim, Jae-Won; Siletzky, Robin M; Kathariou, Sophia

    2008-11-01

    Even though at least 400 Listeria phages have been isolated from various sources, limited information is available on phages from the food processing plant environment. Phages in the processing plant environment may play critical roles in determining the Listeria population that becomes established in the plant. In this study, we pursued the isolation of Listeria-specific phages from environmental samples from four turkey processing plants in the United States. These environmental samples were also utilized to isolate Listeria spp. Twelve phages were isolated and classified into three groups in terms of their host range. Of these, nine (group 1) showed a wide host range, including multiple serotypes of Listeria monocytogenes, as well as other Listeria spp. (L. innocua, L. welshimeri, L. seeligeri, and L. ivanovii). The remaining phages mostly infected L. monocytogenes serotype 4b as well as L. innocua, L. ivanovii, and/or L. welshimeri. All but one of the strains of the serotype 4b complex (4b, 4d, 4e) from the processing plant environment could be readily infected by the wide-host-range phages isolated from the environment of the processing plants. However, many strains of other serotypes (1/2a [or 3a] and 1/2b [or 3b]), which represented the majority of L. monocytogenes strains isolated from the environmental samples, were resistant to infection by these phages. Experiments with two phage-resistant strains showed reduced phage adsorption onto the host cells. These findings suggest that phage resistance may be an important component of the ecology of L. monocytogenes in the turkey processing plants.

  11. Phylogenetic diversity and host specialization of Corynespora cassiicola responsible for emerging target spot disease of cotton and other crops in the southeastern United States.

    Science.gov (United States)

    Sumabat, Leilani; Kemerait, Robert C; Brewer, Marin Talbot

    2018-02-13

    Corynespora cassiicola is a ubiquitous fungus causing emerging plant diseases worldwide, including target spot of cotton, soybean, and tomato, which have rapidly increased in incidence and severity throughout the southeastern United States. The objectives of this study were to understand the causes for the emerging target spot epidemics in the U.S. by comparing phylogenetic relationships of isolates from cotton, tomato, soybean, and other crop plants and ornamental hosts, and through the determination of the host range of isolates from emerging populations. Fifty-three isolates were sampled from plants in the southeastern U.S. and 1,380 nucleotides from four nuclear loci were sequenced. Additionally, sequences of the same loci from twenty-three isolates representing each of the distinct lineages of C. cassiicola described from previous studies were included. Isolates clustered based on host of origin, irrespective of the geographic location of sampling. There was no genetic diversity detected among isolates from cotton, which were genetically distinct from isolates from other host species. Furthermore, pathogenicity and virulence assays of 40 isolates from various hosts onto cotton, soybean, tomato, and cucumber showed that isolates from cotton were more aggressive to cotton than those from other hosts. Soybean and tomato were most susceptible to isolates that originated from the same host, providing evidence of host specialization. These results suggest that emerging target spot epidemics in the U.S. are caused by either the introduction of host-specific isolates or the evolution of more aggressive lineages on each host.

  12. First report of Nocardia beijingensis infection in an immunocompetent host in the United States.

    Science.gov (United States)

    Crozier, Jennifer A; Andhavarapu, Swati; Brumble, Lisa M; Sher, Taimur

    2014-07-01

    Here we describe the first reported case of Nocardia beijingensis infection in the United States, made rarer by its presence in an immunocompetent patient. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Fruit flies (Diptera: Tephritidae and their hosts in the municipality of Quixeré, state of Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Marcia Mayara de Sousa

    2017-07-01

    Full Text Available The state of Ceará is one of the main producers and exporters of tropical fruits in Brazil. However, the farmers have some problems related with the fruit flies (Diptera: Tephritidae, because these tefritids cause damages to the fruits and the simple presence of some species makes difficult the export of fruits in natura. In the state of Ceará, information about fruit flies and their hosts in fruit producing regions are scarce, such as in the region of Baixo Jaguaribe. This region is located in the Brazilian semiarid and is composed of ten municipalities, among them the municipality of Quixeré. Therefore, the objective of this study was to know the species of fruit flies, their hosts and respective infestation index, in different places of the municipality of Quixeré. For this, fruits were randomly collected in different fruit trees (native and exotic, in the rural and urban area of Quixeré. The collected fruits were transported to the laboratory, where they were counted, weighed and stored in plastic trays on a layer of vermiculite. After seven days, the vermiculite was sieved and the pupae obtained were stored in plastic containers until the emergence of adults. Fruits of 21 species were sampled and only five were infested by fruit flies. The species obtained were Ceratitis capitata (Wiedemann, Anastrepha zenildae Zucchi, Anastrepha sororcula Zucchi and Anastrepha obliqua (Macquart. Guava Psidium guajava L. was the fruit that presented the highest rates of infestation.

  14. Drosophila Microbiota Modulates Host Metabolic Gene Expression via IMD/NF-κB Signaling

    Science.gov (United States)

    Bozonnet, Noémie; Puthier, Denis; Royet, Julien; Leulier, François

    2014-01-01

    Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome. Our results demonstrate that Drosophila microbiota has a marked impact on the midgut transcriptome and promotes the expression of genes involved in host digestive functions and primary metabolism. We identify the IMD/Relish signaling pathway as a central regulator of this microbiota-mediated transcriptional response and we reveal a marked transcriptional trade-off between the midgut response to its beneficial microbiota and to bacterial pathogens. Taken together our results indicate that microbiota association potentiates host nutrition and host metabolic state, two key physiological parameters influencing host fitness. Our work paves the way to subsequent mechanistic studies to reveal how these microbiota-dependent transcriptional signatures translate into host physiological benefits. PMID:24733183

  15. Prevalence, population dynamics and host preferences of Culicoides spp. (Diptera: Ceratopogonidae of livestock in Marathwada region of Maharashtra State

    Directory of Open Access Journals (Sweden)

    B. W. Narladkar

    2014-09-01

    Full Text Available Aim: The present study is a part of a research project on integrated pest management of livestock pests with reference to Culicoides spp. Study of prevalence, population dynamics and host preferences are the important benchmarks essential for chalking out the strategies of integrated pest management of Culicoides, thus the study was aimed. Materials and Methods: Light trap collections of Culicoides midges and other tiny flies from animal shed from seventeen centers representing entire Maharashtra state were conducted. Similarly, year round collections from host sheds were envisaged to work out host preferences and population dynamics of Culicoides spp. locally prevalent. Multiple regression analysis was employed to define the environmental predictors responsible for ups and downs during different seasons occurring in the geographic region of the present study. Results: Study revealed the prevalence of Culicoides spp., Phlebotomus spp. and Simulium spp. Simultaneous study undertaken by the aid of hand net, collections of fly species from Marathwada region of Maharashtra state yielded additionally, Tabanus spp., Pangonia spp., mosquitoes and other cyclorrhaphan flies. Some of the species are vectors of livestock diseases hence map of the distribution of these pest species is for to reckon risk areas. Population dynamics study on Culicoides spp. in Marathwada region indicated that, (a Culicoides population were persistent throughout the year; (b Two peaks of population, one in the monsoon (August-September and another minor peak occurred during post monsoon/beginning of winter (November of the year. Drastic reduction in the population occurred during the month of May, which is the hottest month in the year. Culicoides collections from the sheds of different host species indicated the preferences for feeding in the ascending order of preference as cattle, sheep, buffaloes and then goats. Conclusion: Prevalence of Culicoides schultzei, Culicoides

  16. Host rock solid-state transformation in a shock-induced melt vein of Tenham L6 chondrite

    Science.gov (United States)

    Xie, Zhidong; Sharp, Thomas G.

    2007-02-01

    The host-rock fragments entrained in a 580-μm-wide melt vein of the Tenham L6 chondrite were investigated using field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) to better understand the solid-state transformation mechanisms and the shock conditions. The melt vein consists of a matrix of silicate plus metal-sulfide that crystallized from immiscible melts, and sub-rounded host-rock fragments that have been entrained in the melt and transformed to polycrystalline high-pressure silicates by solid-state transformation mechanisms. These high-pressure phases include ringwoodite, low-Ca majorite, clinoenstatite, hollandite-structured plagioclase and Ca-rich majorite. The Ca-rich majorite occurs as a symplectitic intergrowth with a Ca-poor amorphous silicate phase in a 200 μm-diameter chondrule in the vein. This intergrowth seems to be the result of a disproportionate breakdown of a Ca-rich clinopyroxene precursor into Ca-rich majorite and (FeMg)SiO 3 perovskite, which subsequently vitrified upon pressure release. The TEM observations suggest that most solid-state transformations in the Tenham are reconstructive. The transformation of olivine to polycrystalline ringwoodite appears to involve incoherent intracrystalline nucleation and interface-controlled growth. Lamellae in partially transformed olivine are not continuous coherent lamellae, but rather lamellae of polycrystalline ringwoodite, which is inconsistent with a coherent lamellar transformation mechanism. Growth rate calculations based on published kinetic data suggest that the time required to grow 1 μm ringwoodite crystal is ˜ 100 ms at 1600 K, suggesting that the minimum shock pulse of approximately 100 ms.

  17. Do the outflow properties in the most luminous quasars correlate with X-ray radiative output and host dynamical state?

    Science.gov (United States)

    Zappacosta, Luca

    2017-08-01

    We are following up the multiwavelength properties of the WISSH sample of hyperluminous MIR-selected Type 1 quasars at z 2-3. In these objects we expect both powerful AGN feedback and galaxy mergers to manifest themselves in full force. We are finding in LBT/LUCI near infrared data that they are composed by two populations showing powerful mutually exclusive outflows in [OIII] and CIV. Interestingly they seem to show a dichotomy in their X-ray luminosities. Furthermore a HST-WFC3 follow-up of a WISSH quasar with [OIII] outflows show no sign of galaxy mergers. We propose here Chandra (280 ks) and HST (6 orbits) observations of WISSH quasars with the aim of establishing whether the two populations are linked to: (i) different quasar X-ray output and (ii) distinct host dynamical state.

  18. Schistosomiasis mansoni in Bananal (State of São Paulo, Brazil: II. Intermediate hosts

    Directory of Open Access Journals (Sweden)

    Horacio Manuel Santana Teles

    2002-10-01

    Full Text Available We conducted monthly snail captures in Bananal, State of São Paulo, Brazil, between March 1998 and February 2001, to identify Schistosoma mansoni vectors, estimate seasonal population changes, and delimit foci. We also evaluated the impact of improvements in city water supply and basic sanitation facilities. We identified 28,651 vector specimens, 28,438 as Biomphalaria tenagophila, 49 of them (0.2% infected with S. mansoni, and 213 as B. straminea, none of the latter infected. Vectors predominated in water bodies having some vegetation along their banks. Neither population density nor local vegetation could be linked to vector infection. We found the first infected snails in 1998 (from March to May. Further captures of infected snails ocurred, without exception, from July to December, when rainfall was least. Irrespective of season, overall temperature ranged from 16.5ºC to 21ºC; pH values, from 6.0 to 6.8. Neither factor was associated with snail population density. Frequent contact of people with the river result from wading across it, extracting sand from its bottom, fishing, washing animals, etc. Despite a marked reduction in contamination, cercaria shedding persists. Whatever the location along its urban course, contact with river Bananal, particularly of the unprotected skin, entails risks of infection.

  19. Human adipose cells in vitro are either refractory or responsive to insulin, reflecting host metabolic state.

    Directory of Open Access Journals (Sweden)

    Vladimir A Lizunov

    Full Text Available While intercellular communication processes are frequently characterized by switch-like transitions, the endocrine system, including the adipose tissue response to insulin, has been characterized by graded responses. Yet here individual cells from adipose tissue biopsies are best described by a switch-like transition between the basal and insulin-stimulated states for the trafficking of the glucose transporter GLUT4. Two statistically-defined populations best describe the observed cellular heterogeneity, representing the fractions of refractive and responsive adipose cells. Furthermore, subjects exhibiting high systemic insulin sensitivity indices (SI have high fractions of responsive adipose cells in vitro, while subjects exhibiting decreasing SI have increasing fractions of refractory cells in vitro. Thus, a two-component model best describes the relationship between cellular refractory fraction and subject SI. Since isolated cells exhibit these different response characteristics in the presence of constant culture conditions and milieu, we suggest that a physiological switching mechanism at the adipose cellular level ultimately drives systemic SI.

  20. RNA-Seq reveals transcriptomic interactions of Bacillus subtilis natto and Bifidobacterium animalis subsp. lactis in whole soybean solid-state co-fermentation.

    Science.gov (United States)

    Wang, Hai Kuan; Ng, Yi Kai; Koh, Eileen; Yao, Lina; Chien, Ang Sze; Lin, Hui Xin; Lee, Yuan Kun

    2015-10-01

    Bifidobacteria are anaerobes and are difficult to culture in conventional fermentation system. It was observed that Bacillus subtilis natto enhanced growth of Bifidobacterium animalis subsp. lactis v9 by about 3-fold in a whole soybean solid-state co-fermentation, in a non-anaerobic condition. For the purpose of understanding the metabolic interactions between Bif. animalis subsp. lactis v9 and Ba. subtilis natto, the transcriptome of Bif. animalis subsp. lactis v9 and Ba. subtilis natto was analyzed in single and mixed cultures using RNA-Seq. Compared with the single culture, 459 genes of Bif. animalis subsp. lactis v9 were up regulated and 21 were down regulated in the mixed culture with Ba. subtilis natto, with more than 2-fold difference. Predictive metagenomic analyses suggested that Ba. subtilis natto up regulated transport functions, complex carbohydrates and amino acid metabolism, DNA repair, oxydative stress-related functions, and cell growth of Bif. animalis subsp. lactis v9. In the mixed culture with Bif. animalis subsp. lactis v9, only 3 transcripts of Ba. subtilis natto were over-expressed and 3115 were under-expressed with more than 2-fold difference. The highest down-regulated genes were those involved in carbohydrate and amino acid metabolism. The data presented here demonstrated a parasitic-like interaction regulated at the transcription level, between Ba. subtilis natto and Bif. animalis subsp. lactis in the mixed culture. The over-expression of genes involved in substrate uptake and metabolism in Bif. animalis subsp. lactis in the mixed culture nevertheless, led to its higher cell concentration in the nutrient rich whole soybean medium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Confined Synthesis of Carbon Nitride in a Layered Host Matrix with Unprecedented Solid-State Quantum Yield and Stability.

    Science.gov (United States)

    Liu, Wendi; Xu, Simin; Guan, Shanyue; Liang, Ruizheng; Wei, Min; Evans, David G; Duan, Xue

    2018-01-01

    Fluorescent carbon nanomaterials have drawn tremendous attention for their intriguing optical performances, but their employment in solid-state luminescent devices is rather limited as a result of aggregation-induced photoluminescence quenching. Herein, ultrathin carbon nitride (CN) is synthesized within the 2D confined region of layered double hydroxide (LDH) via triggering the interlayer condensation reaction of citric acid and urea. The resulting CN/LDH phosphor emits strong cyan light under UV-light irradiation with an absolute solid-state quantum yield (SSQY) of 95.9 ± 2.2%, which is, to the best of our knowledge, the highest value of carbon-based fluorescent materials ever reported. Furthermore, it exhibits a strong luminescence stability toward temperature, environmental pH, and photocorrosion. Both experimental studies and theoretical calculations reveal that the host-guest interactions between the rigid LDH matrix and interlayer carbon nitride give the predominant contribution to the unprecedented SSQY and stability. In addition, prospective applications of the CN/LDH material are demonstrated in both white light-emitting diodes and upconversion fluorescence imaging of cancer cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Role of constitutive behavior and tumor-host mechanical interactions in the state of stress and growth of solid tumors.

    Directory of Open Access Journals (Sweden)

    Chrysovalantis Voutouri

    Full Text Available Mechanical forces play a crucial role in tumor patho-physiology. Compression of cancer cells inhibits their proliferation rate, induces apoptosis and enhances their invasive and metastatic potential. Additionally, compression of intratumor blood vessels reduces the supply of oxygen, nutrients and drugs, affecting tumor progression and treatment. Despite the great importance of the mechanical microenvironment to the pathology of cancer, there are limited studies for the constitutive modeling and the mechanical properties of tumors and on how these parameters affect tumor growth. Also, the contribution of the host tissue to the growth and state of stress of the tumor remains unclear. To this end, we performed unconfined compression experiments in two tumor types and found that the experimental stress-strain response is better fitted to an exponential constitutive equation compared to the widely used neo-Hookean and Blatz-Ko models. Subsequently, we incorporated the constitutive equations along with the corresponding values of the mechanical properties - calculated by the fit - to a biomechanical model of tumor growth. Interestingly, we found that the evolution of stress and the growth rate of the tumor are independent from the selection of the constitutive equation, but depend strongly on the mechanical interactions with the surrounding host tissue. Particularly, model predictions - in agreement with experimental studies - suggest that the stiffness of solid tumors should exceed a critical value compared with that of the surrounding tissue in order to be able to displace the tissue and grow in size. With the use of the model, we estimated this critical value to be on the order of 1.5. Our results suggest that the direct effect of solid stress on tumor growth involves not only the inhibitory effect of stress on cancer cell proliferation and the induction of apoptosis, but also the resistance of the surrounding tissue to tumor expansion.

  3. The dawning era of comprehensive transcriptome analysis in cellular microbiology

    Directory of Open Access Journals (Sweden)

    Chihiro eAikawa

    2010-11-01

    Full Text Available Bacteria rapidly change their transcriptional patterns during infection in order to adapt to the host environment. To investigate host-bacteria interactions, various strategies including the use of animal infection models, in vitro assay systems and microscopic observations have been used. However, these studies primarily focused on a few specific genes and molecules in bacteria. High-density tiling arrays and massively parallel sequencing analyses are rapidly improving our understanding of the complex host-bacterial interactions through identification and characterization of bacterial transcriptomes. Information resulting from these high-throughput techniques will continue to provide novel information on the complexity, plasticity and regulation of bacterial transcriptomes as well as their adaptive responses relative to pathogenecity. Here we summarize recent studies using these new technologies and discuss the utility of transcriptome analysis.

  4. Intersubspecific Recombination in Xylella fastidiosa Strains Native to the United States: Infection of Novel Hosts Associated with an Unsuccessful Invasion

    OpenAIRE

    Nunney, Leonard; Hopkins, Donald L.; Morano, Lisa D.; Russell, Stephanie E.; Stouthamer, Richard

    2014-01-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates...

  5. Transcriptome analysis of Anopheles stephensi embryo using ...

    Indian Academy of Sciences (India)

    Anopheles stephensi; cDNA library; germ band retraction; mosquito; transcriptome ... National Centre for Cell Science, Ganeshkhind, Pune 411 007; School of Life Sciences, Arizona State University, Tempe, AZ USA; Center for RNA Biology, The Ohio State University, Columbus 43202 OH USA; National Institute of Malaria ...

  6. Web services for transcriptomics

    NARCIS (Netherlands)

    Neerincx, P.

    2009-01-01

    Transcriptomics is part of a family of disciplines focussing on high throughput molecular biology experiments. In the case of transcriptomics, scientists study the expression of genes resulting in transcripts. These transcripts can either perform a biological function themselves or function as

  7. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    Science.gov (United States)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Radiation Facility, in Grenoble/France). Polymetallic chalcogenide minerals and various model compounds displaying distinct bonding situations of indium to other ligands (oxygen and halides) were studied. Encouraging results from a first experiment [5] showed the presence of a "white line" in the XANES spectra collected from InF3 and from In-hosting bornite; however, the impossibility of clearly identifying the nanoscale phase hosting indium in sulphide ore samples has hindered a full interpretation of X-ray absorption data. The crystal chemistry of indium in natural chalcogenides is now reanalysed and XANES results obtained so far for polymetallic sulphides are accordingly re-evaluated, disclosing a challenging clue for indium binding state in these host minerals within sulphide ores. [1] M.O. Figueiredo et al. (2007) Procd. 9th Biennial SGA Mtg., Dublin/Ireland, edt. C. Andrew et al., 1355-1357. [2] O.C. Gaspar (2002) Canad. Miner. 40, 611-636. [3] M.O. Figueiredo & T.P. Silva (2009) ICANS 23, 23rd Int. Conf. Amorphous & Nano-crystalline Semiconductors, Netherlands, August 23-28. Poster ID 229 (abstract). [4] T. Seifert & D. Sandmann (2002) Ore Geol. Reviews 28, 1-31. [5] M.O. Figueiredo & T.P. Silva (2009) XVIII Int. Mater. Res. Congr., Mexico, August 16-20. Symp. 20, Poster nr. 1 (abstract). * Work developed within the research project PTDC/CTE-GIN/67027/2006 financed by the Portuguese Foundation for Science & Technology (FCT/MCTES). The financial support from EU to perform the experiments at the ESRF is also acknowledged.

  8. Coccidian parasites (Apicomplexa) from snakes in the southcentral and southwestern United States: new host and geographic records.

    Science.gov (United States)

    McAllister, C T; Upton, S J; Trauth, S E; Dixon, J R

    1995-02-01

    Four hundred thirty-five leptotyphlopid, colubrid, elapid, and viperid snakes were collected from various localities in Arkansas, New Mexico, Oklahoma, and Texas, and their feces were examined for coccidian parasites. Of these, 131 (30%) were passing oocysts or sporocysts of at least 1 coccidian; 88 (67%) of the infected snakes had only 1 species of coccidian when they were examined. Aquatic and semiaquatic snakes accounted for 48% of the infections, whereas strictly terrestrial snakes comprised the other 52%. There was more than a 2-fold difference in prevalence among these 2 groups as 63 of 129 (49%) of the aquatic and semiaquatic snakes versus 68 of 306 (22%) of the terrestrial snakes harbored coccidia. Most terrestrial snakes were infected by species of Caryospora and Sarcocystis that are either facultatively or obligatorily heteroxenous. The aquatic and semiaquatic species most often harbored eimerians. Attempts to transmit some of the Sarcocystis spp. experimentally from Crotalus atrox to Mus musculus, Peromyscus leucopus, Peromyscus maniculatus, or Microtus ochrogaster were unsuccessful. This report documents 27 new host and several distributional records for coccidians from snakes in the southcentral and southwestern United States.

  9. Behavioral evidence for fruit odor discrimination and sympatric host races of Rhagoletis pomonella flies in the western United States

    Science.gov (United States)

    The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern U.S. is a model for sympatric host race formation. However, the fly is also present in the western U.S. where it ma...

  10. First report of the Armillaria root-disease pathogen, Armillaria gallica, associated with several woody hosts in three states of Mexico

    Science.gov (United States)

    N. B. Klopfenstein; J. W. Hanna; P. G. Cannon; R. Medel-Ortiz; D. Alvarado-Rosales; F. Lorea-Hernandez; R. D. Elias-Roman; M. -S. Kim

    2014-01-01

    In September 2007, rhizomorphs with morphological characteristics of Armillaria were collected from woody hosts in forests of Mexico State, Veracruz, and Oaxaca, Mexico. Based on pairing tests, isolates were assigned to five somatically compatible genets or clones (MEX7R, MEX11R, MEX23R, MEX28R, and MEX30R). These genets were all identified as Armillaria gallica based...

  11. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.

    Science.gov (United States)

    Visser, Erik A; Wegrzyn, Jill L; Steenkmap, Emma T; Myburg, Alexander A; Naidoo, Sanushka

    2015-12-12

    Pines are the most important tree species to the international forestry industry, covering 42 % of the global industrial forest plantation area. One of the most pressing threats to cultivation of some pine species is the pitch canker fungus, Fusarium circinatum, which can have devastating effects in both the field and nursery. Investigation of the Pinus-F. circinatum host-pathogen interaction is crucial for development of effective disease management strategies. As with many non-model organisms, investigation of host-pathogen interactions in pine species is hampered by limited genomic resources. This was partially alleviated through release of the 22 Gbp Pinus taeda v1.01 genome sequence ( http://pinegenome.org/pinerefseq/ ) in 2014. Despite the fact that the fragmented state of the genome may hamper comprehensive transcriptome analysis, it is possible to leverage the inherent redundancy resulting from deep RNA sequencing with Illumina short reads to assemble transcripts in the absence of a completed reference sequence. These data can then be integrated with available genomic data to produce a comprehensive transcriptome resource. The aim of this study was to provide a foundation for gene expression analysis of disease response mechanisms in Pinus patula through transcriptome assembly. Eighteen de novo and two reference based assemblies were produced for P. patula shoot tissue. For this purpose three transcriptome assemblers, Trinity, Velvet/OASES and SOAPdenovo-Trans, were used to maximise diversity and completeness of assembled transcripts. Redundancy in the assembly was reduced using the EvidentialGene pipeline. The resulting 52 Mb P. patula v1.0 shoot transcriptome consists of 52 112 unigenes, 60 % of which could be functionally annotated. The assembled transcriptome will serve as a major genomic resource for future investigation of P. patula and represents the largest gene catalogue produced to date for this species. Furthermore, this assembly can help detect

  12. Effect of physiological and experiential state ofBactrocera tryoni flies on intra-tree foraging behavior for food (bacteria) and host fruit.

    Science.gov (United States)

    Prokopy, Ronald J; Drew, Richard A I; Sabine, Bruce N E; Lloyd, Annice C; Hamacek, Edward

    1991-09-01

    Using caged host trees on which we manipulated food and oviposition sites, we investigated the foraging behavior of individually-releasedBactrocera tryoni (Diptera: Tephritidae) females in relation to state of fly hunger for protein, presence or absence of bacteria as a source of protein, degree of prior experience with host fruit, and quality of host fruit for oviposition. One aim was to evaluate whether it is immature or matureB. tryoni females that are responsible for initially inoculating host fruit surfaces with "fruit-fly-type" bacteria, the odor of which is known to attractB. tryoni females. We found that 3-week-old immature females provided with sucrose but deprived of protein from eclosion had a much greater propensity than 3-week-old protein-fed mature females to visit vials containing fruit-fly-type bacteria, irrespective of whether vials were associated with adjacent host fruit or not. In the absence of associated bacteria in vials, immature females had a much lower propensity than mature females to visit host fruit. In the presence of bacteria in vials, however, propensity of immature and mature females to visit fruit was about equal. Mature (but not immature) females were more inclined to visit fruit that ranked higher for oviposition (nectarines) than fruit that ranked lower (sweet oranges). Mature females that attempted oviposition during a single 3-min exposure period to a nectarine prior to release were much more likely to find a nectarine than were mature females naive to fruit or immature females with or without prior contact with fruit. Exposure to a nectarine before release did not affect the propensity of either mature or immature females to alight on an odorless visual model of a nectarine, however. As judged by numbers of leaves visited, protein-deprived immature females were more active than protein-fed mature females, irrespective of the sorts of resources on a tree. Together, our findings lead us to conclude that (1) the firstB. tryoni

  13. Transcriptome 2002 Conference

    Energy Technology Data Exchange (ETDEWEB)

    Quackenbush, John

    2002-01-01

    The Transcriptome 2002 meeting was held March 11-13, 2002 in Seattle, Washington with attendance by more than 300 scientists representing the international community. The scientific program was developed by an international organizing committee. In association with the main meeting, an Image Consortium invitational meeting was organized by Charles Auffray of CNRS and held with approximately 40 participants immediately following the conclusion of the Transcriptome meeting.

  14. Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses

    DEFF Research Database (Denmark)

    Shukla, Neha; Yadav, Rachita; Kaur, Pritam

    2017-01-01

    plants and two infection time intervals from resistant plants, grown under soil conditions. Differentially expressed genes during susceptible (1827-tomato, 462-RKN) and resistance (25-tomato, 160-RKN) interactions were identified. In susceptible responses, tomato genes involved in cell wall structure......, development, primary and secondary metabolites and defense signalling pathways along with RKN genes involved in host parasitism, development and defense are discussed. In resistance responses, tomato genes involved in secondary metabolite and hormone-mediated defense responses along with RKN genes involved...

  15. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  16. Peach is an occasional host for Rhagoletis pomonella (Walsh, 1867) (Diptera: Tephritidae) larvae in Western Washington State, USA

    Science.gov (United States)

    Peach, Prunus persica (L.) Batsch (Rosaceae), has been reported to be a host of the apple maggot fly, Rhagoletis pomonella (Walsh), 1867 (Diptera: Tephritidae), an important quarantine pest of apple (Malus domestica Borkhausen) (Rosaceae) in the western U.S.A. However, all reports of peach as a hos...

  17. Relationships between PrPSc stability and incubation time for United States scrapie isolates in a natural host system.

    Science.gov (United States)

    Vrentas, Catherine E; Greenlee, Justin J; Tatum, Trudy L; Nicholson, Eric M

    2012-01-01

    Transmissible spongiform encephalopathies (TSEs), including scrapie in sheep (Ovis aries), are fatal neurodegenerative diseases caused by the misfolding of the cellular prion protein (PrP(C)) into a â-rich conformer (PrP(Sc)) that accumulates into higher-order structures in the brain and other tissues. Distinct strains of TSEs exist, characterized by different pathologic profiles upon passage into rodents and representing distinct conformations of PrP(Sc). One biochemical method of distinguishing strains is the stability of PrP(Sc) as determined by unfolding in guanidine hydrochloride (GdnHCl), which is tightly and positively correlated with the incubation time of disease upon passage into mice. Here, we utilize a rapid, protease-free version of the stability assay to characterize naturally occurring scrapie samples, including a fast-acting scrapie inoculum for which incubation time is highly dependent on the amino acid at codon 136 of the prion protein. We utilize the stability methodology to identify the presence of two distinct isolates in the inoculum, and compare isolate properties to those of a host-stabilized reference scrapie isolate (NADC 13-7) in order to assess the stability/incubation time correlation in a natural host system. We demonstrate the utility of the stability methodology in characterizing TSE isolates throughout serial passage in livestock, which is applicable to a range of natural host systems, including strains of bovine spongiform encephalopathy and chronic wasting disease.

  18. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta) and its microbiome.

    Science.gov (United States)

    de Oliveira, Louisi Souza; Gregoracci, Gustavo Bueno; Silva, Genivaldo Gueiros Zacarias; Salgado, Leonardo Tavares; Filho, Gilberto Amado; Alves-Ferreira, Marcio; Pereira, Renato Crespo; Thompson, Fabiano L

    2012-09-17

    Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L. dendroidea in the primary production of the holobiont and the

  19. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta and its microbiome

    Directory of Open Access Journals (Sweden)

    de Oliveira Louisi

    2012-09-01

    Full Text Available Abstract Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L

  20. Host-ectoparasite specificity in a small mammal community in an area of Atlantic Rain Forest (Ilha Grande, State of Rio de Janeiro, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Emerson Brum Bittencourt

    2003-09-01

    Full Text Available The analyses of the ectoparasite species associated with a small mammal community on Ilha Grande, a coastal island in southern of the state of Rio de Janeiro, Brazil, evaluated the level of host-ectoparasite specificity. Was used the Jaccard index for qualitative data to analyse the similarity. The lowest value of similarity occurred between Proechimys iheringi and Marmosops incanus and between Sciurus aestuans and Nectomys squamipes (Cj = 0.08 and the highest between P. iheringi and Oxymycterus sp. (Cj = 0.33. This index showed a low value of similarity across the ectoparasite community. The only exception from this pattern of high host specificity occurred with P. iheringi and Oxymycterus sp., which shared five species of ectoparasites. The similarity values, for most of the cases, is smaller than 0.2.

  1. Foodomics as part of the host-microbiota-exposome interplay.

    Science.gov (United States)

    Putignani, Lorenza; Dallapiccola, Bruno

    2016-09-16

    The functional complexity of human gut microbiota and its relationship with host physiology and environmental modulating factors, offers the opportunity to investigate (i) the host and microbiota role in organism-environment relationship; (ii) the individual functional diversity and response to environmental stimuli (exposome); (iii) the host genome and microbiota metagenomes' modifications by diet-mediated epigenomic controls (nutriepigenomics); and (iv) the genotype-phenotype "trajectories" under physiological and disease constraints. Systems biology-based approaches aim at integrating biological data at cellular, tissue and organ organization levels, using computational modeling to interpret diseases' physiopathological mechanisms (i.e., onset and progression). Proteomics improves the existing gene models by profiling molecular phenotypes at protein abundance level, by analyzing post-translational modifications and protein-protein interactions and providing specific pathway information, hence contributing to functional molecular networks. Transcriptomics and metabolomics may determine host ad microbiota changes induced by food ingredients at molecular level, complementing functional genomics and proteomics data. Since foodomics is an -omic wide methodology may feed back all integrative data to foster the omics-based systems medicine field. Hence, coupled to ecological genomics of gut microbial communities, foodomics may highlight health benefits from nutrients, dissecting diet-induced gut microbiota eubiosis mechanisms and significantly contributing to understand and prevent complex disease phenotypes. Besides transcriptomics and proteomics there is a growing interest in applying metabolic profiling to food science for the development of functional foods. Indeed, one of the biggest challenges of modern nutrition is to propose a healthy diet to populations worldwide, intrinsically respecting the high inter-individual variability, driven by complex host

  2. A review of the ticks (Acari, Ixodida of Brazil, their hosts and geographic distribution - 1. The State of Rio Grande do Sul, Southern Brazil

    Directory of Open Access Journals (Sweden)

    Evans DE

    2000-01-01

    Full Text Available A review of the ticks (Acari, Ixodida of the State of Rio Grande do Sul, southern Brazil, was completed as a step towards a definitive list (currently indicated as 12 of such species, their hosts and distribution. The ticks: Argas miniatus (poultry, Ixodes loricatus (opossums, Amblyomma aureolatum (dogs, A. calcaratum (anteaters, A. cooperi (capybaras, A. nodosum (anteaters, A. tigrinum (dogs (Neotropical and Rhipicephalus sanguineus (dogs (introduced, cosmopolitan, Afrotropical were confirmed as present, in addition to the predominant, Boophilus microplus (cattle (introduced, pan-tropical, Oriental. Of the further 18 species thus far reported in the literature as present in the state, but unavailable for examination: only Ornithodoros brasiliensis (humans and their habitations (Neotropical, Ixodes affinis (deer (Nearctic/Neotropical and I. auritulus (birds (Nearctic/Neotropical/Afrotropical/ Australasian are considered likely; 13 species would benefit from corroborative local data but the majority appear unlikely; reports of A. maculatum (Nearctic/Neotropical, but circum-Caribbean are considered erroneous; the validity of A. fuscum is in doubt. The very recent, first known report of the tropical Anocentor nitens (horses(Nearctic/Neotropical, but still apparent absence of the tropical A. cajennense (catholic (Nearctic/Neotropical and the sub-tropical/temperate Ixodes pararicinus (cattle (Neotropical in Rio Grande do Sul are important for considerations on their current biogeographical distribution and its dynamics in South America. The state has relatively long established, introduced ("exotic", Old World tick species (B. microplus, R. sanguineus that continue to represent significant pests and disease vectors to their traditional, introduced domestic animal hosts, cattle and urban dogs. There are also indigenous, New World ticks (A. miniatus, O. brasiliensis, A. aureolatum, A. nitens, as both long established and possibly newly locally

  3. Repositioning of Memantine as a Potential Novel Therapeutic Agent against Meningitic E. coli–Induced Pathogenicities through Disease-Associated Alpha7 Cholinergic Pathway and RNA Sequencing-Based Transcriptome Analysis of Host Inflammatory Responses

    Science.gov (United States)

    Peng, Liang; Wu, Chun-Hua; Cao, Hong; Zhong, John F.; Hoffman, Jill; Huang, Sheng-He

    2015-01-01

    Neonatal sepsis and meningitis (NSM) remains a leading cause worldwide of mortality and morbidity in newborn infants despite the availability of antibiotics over the last several decades. E. coli is the most common gram-negative pathogen causing NSM. Our previous studies show that α7 nicotinic receptor (α7 nAChR), an essential regulator of inflammation, plays a detrimental role in the host defense against NSM. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat this disease. Using the in vitro/in vivo models of the blood-brain barrier (BBB) and RNA-seq, we undertook a drug repositioning study to identify unknown antimicrobial activities for known drugs. We have demonstrated for the first time that memantine (MEM), a FDA-approved drug for treatment of Alzheimer’s disease, could very efficiently block E. coli-caused bacteremia and meningitis in a mouse model of NSM in a manner dependent on α7 nAChR. MEM was able to synergistically enhance the antibacterial activity of ampicillin in HBMEC infected with E. coli K1 (E44) and in neonatal mice with E44-caused bacteremia and meningitis. Differential gene expression analysis of RNA-Seq data from mouse BMEC infected with E. coli K1 showed that several E44-increased inflammatory factors, including IL33, IL18rap, MMP10 and Irs1, were significantly reduced by MEM compared to the infected cells without drug treatment. MEM could also significantly up-regulate anti-inflammatory factors, including Tnfaip3, CISH, Ptgds and Zfp36. Most interestingly, these factors may positively and negatively contribute to regulation of NF-κB, which is a hallmark feature of bacterial meningitis. Furthermore, we have demonstrated that circulating BMEC (cBMEC) are the potential novel biomarkers for NSM. MEM could significantly reduce E44-increased blood level of cBMEC in mice. Taken together, our data suggest that memantine can efficiently block host inflammatory responses to bacterial

  4. Repositioning of Memantine as a Potential Novel Therapeutic Agent against Meningitic E. coli-Induced Pathogenicities through Disease-Associated Alpha7 Cholinergic Pathway and RNA Sequencing-Based Transcriptome Analysis of Host Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Jing-Yi Yu

    Full Text Available Neonatal sepsis and meningitis (NSM remains a leading cause worldwide of mortality and morbidity in newborn infants despite the availability of antibiotics over the last several decades. E. coli is the most common gram-negative pathogen causing NSM. Our previous studies show that α7 nicotinic receptor (α7 nAChR, an essential regulator of inflammation, plays a detrimental role in the host defense against NSM. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat this disease. Using the in vitro/in vivo models of the blood-brain barrier (BBB and RNA-seq, we undertook a drug repositioning study to identify unknown antimicrobial activities for known drugs. We have demonstrated for the first time that memantine (MEM, a FDA-approved drug for treatment of Alzheimer's disease, could very efficiently block E. coli-caused bacteremia and meningitis in a mouse model of NSM in a manner dependent on α7 nAChR. MEM was able to synergistically enhance the antibacterial activity of ampicillin in HBMEC infected with E. coli K1 (E44 and in neonatal mice with E44-caused bacteremia and meningitis. Differential gene expression analysis of RNA-Seq data from mouse BMEC infected with E. coli K1 showed that several E44-increased inflammatory factors, including IL33, IL18rap, MMP10 and Irs1, were significantly reduced by MEM compared to the infected cells without drug treatment. MEM could also significantly up-regulate anti-inflammatory factors, including Tnfaip3, CISH, Ptgds and Zfp36. Most interestingly, these factors may positively and negatively contribute to regulation of NF-κB, which is a hallmark feature of bacterial meningitis. Furthermore, we have demonstrated that circulating BMEC (cBMEC are the potential novel biomarkers for NSM. MEM could significantly reduce E44-increased blood level of cBMEC in mice. Taken together, our data suggest that memantine can efficiently block host inflammatory responses to

  5. [Fruit flies (Diptera: Tephritidae) and their parasitoids (Hymenoptera: Braconidae) associated to host plants in the southern region of Bahia State].

    Science.gov (United States)

    Bittencourt, M A L; da Silva, A C M; Silva, V E S; Bomfim, Z V; Guimarães, J A; de Souza Filho, M F; Araujo, E L

    2011-01-01

    The association among Anastrepha species, braconid parasitoids and host fruits in southern Bahia is recorded. Doryctobracon areolatus (Szépligeti) was associated with A. serpentina (Wied.) in Pouteria caimito, A. bahiensis Lima in Helicostylis tomentosa, A. sororcula Zucchi in Eugenia uniflora, and A. obliqua (Macquart) in Spondias purpurea. Anatrepha obliqua was unique in fruits of Averrhoa carambola, but associated with D. areolatus, Asobara anastrephae (Muesebeck) and Utetes anastrephae (Viereck). In Achras sapota, A. serpentina was associated with A. anastrephae and D. areolatus, while in Psidium guajava, A. fraterculus (Wied.) and A. sororcula were associated with D. areolatus and U. anastrephae.

  6. Anguillid herpesvirus 1 transcriptome

    NARCIS (Netherlands)

    Beurden, van S.J.; Gatherer, D.; Kerr, K.; Galbraith, J.; Herzyk, P.; Peeters, B.P.H.; Rottier, P.J.M.; Engelsma, M.Y.; Davidson, A.J.

    2012-01-01

    We used deep sequencing of poly(A) RNA to characterize the transcriptome of an economically important eel virus, anguillid herpesvirus 1 (AngHV1), at a stage during the lytic life cycle when infectious virus was being produced. In contrast to the transcription of mammalian herpesviruses, the overall

  7. Transcriptomics in ecotoxicology

    Science.gov (United States)

    Fischer, Beat B.; Madureira, Danielle J.; Pillai, Smitha

    2010-01-01

    The emergence of analytical tools for high-throughput screening of biomolecules has revolutionized the way in which toxicologists explore the impact of chemicals or other stressors on organisms. One of the most developed and routinely applied high-throughput analysis approaches is transcriptomics, also often referred to as gene expression profiling. The transcriptome represents all RNA molecules, including the messenger RNA (mRNA), which constitutes the building blocks for translating DNA into amino acids to form proteins. The entirety of mRNA is a mirror of the genes that are actively expressed in a cell or an organism at a given time. This in turn allows one to deduce how organisms respond to changes in the external environment. In this article we explore how transcriptomics is currently applied in ecotoxicology and highlight challenges and trends. Figure The transcriptome (RNA) is a mirror of the genes that are actively expressed in a cell or organism at a given time, providing information on how organisms respond to chemicals or other stressors in the environment PMID:20369230

  8. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii.

    Science.gov (United States)

    Schmid, Jochen; Müller-Hagen, Dirk; Bekel, Thomas; Funk, Laura; Stahl, Ulf; Sieber, Volker; Meyer, Vera

    2010-05-26

    The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 --> 3)-beta-linked glucose with a (1 --> 6)-beta-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding approximately 350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified approximately 800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and oxalate synthesis and to

  9. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Stahl Ulf

    2010-05-01

    Full Text Available Abstract Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3-β-linked glucose with a (1 → 6-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and

  10. Transcriptomic and functional resources for the small hive beetle Aethina tumida, a worldwide parasite of honey bees

    Directory of Open Access Journals (Sweden)

    Matthew R. Tarver

    2016-09-01

    Full Text Available The small hive beetle (SHB, Aethina tumida, is a major pest of managed honey bee (Apis mellifera colonies in the United States and Australia, and an emergent threat in Europe. While strong honey bee colonies generally keep SHB populations in check, weak or stressed colonies can succumb to infestations. This parasite has spread from a sub-Saharan Africa to three continents, leading to immense management and regulatory costs. We performed a transcriptomic analysis involving deep sequencing of multiple life stages and both sexes of this species. The assembled transcriptome appears to be nearly complete, as judged by conserved insect orthologs and the ability to find plausible homologs for 11,952 proteins described from the genome of the red flour beetle. Expressed genes include each of the major metabolic, developmental and sensory groups, along with genes for proteins involved with immune defenses and insecticide resistance. We also present a total of 23,085 high-quality SNP's for the assembled contigs. We highlight potential differences between this beetle and its honey bee hosts, and suggest mechanisms of future research into the biology and control of this species. SNP resources will allow functional genetic analyses and analyses of dispersal for this invasive pest. All resources are posted as Supplemental Tables at https://data.nal.usda.gov/dataset/data-transcriptomic-and-functional-resources-small-hive-beetle-aethina-tumida-worldwide, and at NCBI under Bioproject PRJNA256171.

  11. Cross-Tissue Transcriptomic Analysis of Human Secondary Lymphoid Organ-Residing ILC3s Reveals a Quiescent State in the Absence of Inflammation

    Directory of Open Access Journals (Sweden)

    Yotam E. Bar-Ephraim

    2017-10-01

    Full Text Available A substantial number of human and mouse group 3 innate lymphoid cells (ILC3s reside in secondary lymphoid organs, yet the phenotype and function of these ILC3s is incompletely understood. Here, we employed an unbiased cross-tissue transcriptomic approach to compare human ILC3s from non-inflamed lymph nodes and spleen to their phenotypic counterparts in inflamed tonsils and from circulation. These analyses revealed that, in the absence of inflammation, lymphoid organ-residing ILC3s lack transcription of cytokines associated with classical ILC3 functions. This was independent of expression of the natural cytotoxicity receptor NKp44. However, and in contrast to ILC3s from peripheral blood, lymphoid organ-residing ILC3s express activating cytokine receptors and have acquired the ability to be recruited into immune responses by inflammatory cytokines. This comprehensive cross-tissue dataset will allow for identification of functional changes in human lymphoid organ ILC3s associated with human disease.

  12. TCW: transcriptome computational workbench.

    Science.gov (United States)

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R

    2013-01-01

    The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.

  13. Strategies for Wheat Stripe Rust Pathogenicity Identified by Transcriptome Sequencing.

    Directory of Open Access Journals (Sweden)

    Diana P Garnica

    Full Text Available Stripe rust caused by the fungus Puccinia striiformis f.sp. tritici (Pst is a major constraint to wheat production worldwide. The molecular events that underlie Pst pathogenicity are largely unknown. Like all rusts, Pst creates a specialized cellular structure within host cells called the haustorium to obtain nutrients from wheat, and to secrete pathogenicity factors called effector proteins. We purified Pst haustoria and used next-generation sequencing platforms to assemble the haustorial transcriptome as well as the transcriptome of germinated spores. 12,282 transcripts were assembled from 454-pyrosequencing data and used as reference for digital gene expression analysis to compare the germinated uredinospores and haustoria transcriptomes based on Illumina RNAseq data. More than 400 genes encoding secreted proteins which constitute candidate effectors were identified from the haustorial transcriptome, with two thirds of these up-regulated in this tissue compared to germinated spores. RT-PCR analysis confirmed the expression patterns of 94 effector candidates. The analysis also revealed that spores rely mainly on stored energy reserves for growth and development, while haustoria take up host nutrients for massive energy production for biosynthetic pathways and the ultimate production of spores. Together, these studies substantially increase our knowledge of potential Pst effectors and provide new insights into the pathogenic strategies of this important organism.

  14. Dissemination of Aleurocanthus woglumi in citrus plants, its natural enemies and new host plants in the state of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Rodrigo Garcia Alvim

    Full Text Available ABSTRACT: Aleurocanthus woglumi is an exotic pest, widely disseminated in Brazil, with a high preference for citrus plants, but with a polyphagous feeding habit. The contribution of the state of Rio de Janeiro in the Brazilian production of citrus fruits is small; however, there are still public policies that encourage citrus production in the state. In 2010, the appearance of this pest in Rio de Janeiro was confirmed in the municipality of Cachoeiras de Macacu. The objectives of this research were to evaluate the dissemination of A. woglumi in this state, conduct a survey of new species of host plants, identify and evaluate the population of natural enemies present at two orchards that grow 'Tahiti' limes ( Citrus latifolia infested by the pest in Cachoeiras de Macacu, RJ, Brazil. In 19 municipalities, leaves of citrus and other species of plants presenting aleyrodid nymphs were collected, and yellow sticky traps were installed to capture adults for subsequent identification. At the 'Tahiti' lime orchards, the leaf collections were done to confirm the species of Aleyrodidae , and regarding A. woglumi , the natural enemies associated with this pest were collected directly from the infested plants. The results showed that A. woglumi is wide-spread in 12 municipalities. Three new host plants for A. woglumi were identified: Artocarpus heterophyllus ( Moraceae , Pouteria caimito ( Sapotaceae and Struthanthus flexicaulis ( Loranthaceae . In Cachoeiras de Macacu, a new species of parasitoid of A. woglumi nymphs was named: Encarsia pergandiella (Hymenoptera: Aphelinidae , while the insects in the Coccinellidae (Coleoptera family have stood out as predators of this pest.

  15. Host Ranges of Listeria-Specific Bacteriophages from the Turkey Processing Plant Environment in the United States

    OpenAIRE

    Kim, Jae-Won; Siletzky, Robin M.; Kathariou, Sophia

    2008-01-01

    Even though at least 400 Listeria phages have been isolated from various sources, limited information is available on phages from the food processing plant environment. Phages in the processing plant environment may play critical roles in determining the Listeria population that becomes established in the plant. In this study, we pursued the isolation of Listeria-specific phages from environmental samples from four turkey processing plants in the United States. These environmental samples wer...

  16. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis

    OpenAIRE

    Ping Hu; Jingzhen Wang; Mingming Cui; Jing Tao; Youqing Luo

    2016-01-01

    Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CS...

  17. Proteomics informed by transcriptomics identifies novel secreted proteins in Dermacentor andersoni saliva

    Energy Technology Data Exchange (ETDEWEB)

    Mudenda, Lwiindi; Aguilar Pierle, Sebastian; Turse, Joshua E.; Scoles, Glen A.; Purvine, Samuel O.; Nicora, Carrie D.; Clauss, Therese RW; Ueti, Massaro W.; Brown, Wendy C.; Brayton, Kelly A.

    2014-08-07

    Dermacentor andersoni, known as the Rocky Mountain wood tick, is found in the western United States and transmits pathogens that cause diseases of veterinary and public health importance including Rocky Mountain spotted fever, tularemia, Colorado tick fever and bovine anaplasmosis. Tick saliva is known to modulate both innate and acquired immune responses, enabling ticks to feed for several days without detection. During feeding ticks subvert host defences such as hemostasis and inflammation, which would otherwise result in coagulation, wound repair and rejection of the tick. Molecular characterization of the proteins and pharmacological molecules secreted in tick saliva offers an opportunity to develop tick vaccines as an alternative to the use of acaricides, as well as new anti-inflammatory drugs. We performed proteomics informed by transcriptomics to identify D. andersoni saliva proteins that are secreted during feeding. The transcript data generated a database of 21,797 consensus sequences, which we used to identify 677 proteins secreted in the saliva of D. andersoni ticks fed for 2 and 5 days, following proteomic investigations of whole saliva using mass spectrometry. Salivary gland transcript levels of unfed ticks were compared with 2 and 5 day fed ticks to identify genes upregulated early during tick feeding. We cross-referenced the proteomic data with the transcriptomic data to identify 157 proteins of interest for immunomodulation and blood feeding. Proteins of unknown function as well as known immunomodulators were identified.

  18. Brain transcriptomes of harbor seals demonstrate gene expression patterns of animals undergoing a metabolic disease and a viral infection

    Directory of Open Access Journals (Sweden)

    Stephanie M. Rosales

    2016-12-01

    Full Text Available Diseases of marine mammals can be difficult to diagnose because of their life history and protected status. Stranded marine mammals have been a particularly useful resource to discover and comprehend the diseases that plague these top predators. Additionally, advancements in high-throughput sequencing (HTS has contributed to the discovery of novel pathogens in marine mammals. In this study, we use a combination of HTS and stranded harbor seals (Phoca vitulina to better understand a known and unknown brain disease. To do this, we used transcriptomics to evaluate brain tissues from seven neonatal harbor seals that expired from an unknown cause of death (UCD and compared them to four neonatal harbor seals that had confirmed phocine herpesvirus (PhV-1 infections in the brain. Comparing the two disease states we found that UCD animals showed a significant abundance of fatty acid metabolic transcripts in their brain tissue, thus we speculate that a fatty acid metabolic dysregulation contributed to the death of these animals. Furthermore, we were able to describe the response of four young harbor seals with PhV-1 infections in the brain. PhV-1 infected animals showed a significant ability to mount an innate and adaptive immune response, especially to combat viral infections. Our data also suggests that PhV-1 can hijack host pathways for DNA packaging and exocytosis. This is the first study to use transcriptomics in marine mammals to understand host and viral interactions and assess the death of stranded marine mammals with an unknown disease. Furthermore, we show the value of applying transcriptomics on stranded marine mammals for disease characterization.

  19. Brain transcriptomes of harbor seals demonstrate gene expression patterns of animals undergoing a metabolic disease and a viral infection.

    Science.gov (United States)

    Rosales, Stephanie M; Vega Thurber, Rebecca L

    2016-01-01

    Diseases of marine mammals can be difficult to diagnose because of their life history and protected status. Stranded marine mammals have been a particularly useful resource to discover and comprehend the diseases that plague these top predators. Additionally, advancements in high-throughput sequencing (HTS) has contributed to the discovery of novel pathogens in marine mammals. In this study, we use a combination of HTS and stranded harbor seals (Phoca vitulina) to better understand a known and unknown brain disease. To do this, we used transcriptomics to evaluate brain tissues from seven neonatal harbor seals that expired from an unknown cause of death (UCD) and compared them to four neonatal harbor seals that had confirmed phocine herpesvirus (PhV-1) infections in the brain. Comparing the two disease states we found that UCD animals showed a significant abundance of fatty acid metabolic transcripts in their brain tissue, thus we speculate that a fatty acid metabolic dysregulation contributed to the death of these animals. Furthermore, we were able to describe the response of four young harbor seals with PhV-1 infections in the brain. PhV-1 infected animals showed a significant ability to mount an innate and adaptive immune response, especially to combat viral infections. Our data also suggests that PhV-1 can hijack host pathways for DNA packaging and exocytosis. This is the first study to use transcriptomics in marine mammals to understand host and viral interactions and assess the death of stranded marine mammals with an unknown disease. Furthermore, we show the value of applying transcriptomics on stranded marine mammals for disease characterization.

  20. TCW: transcriptome computational workbench.

    Directory of Open Access Journals (Sweden)

    Carol Soderlund

    Full Text Available BACKGROUND: The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. METHODOLOGY: The Transcriptome Computational Workbench (TCW provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms. The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina or assembling long sequences (e.g. Sanger, 454, transcripts, annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. CONCLUSION: It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the

  1. Review of potential host rocks for radioactive waste disposal in the southeast United States-Southern Piedmont subregion

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    A literature study was conducted on the geology of the Southern Piedmont province in the states of Maryland, Virginia, North Carolina, South Carolina, and Georgia. The purpose was to identify geologic areas potentially suitable for containment of a repository for the long-term isolation of solidified radioactive waste. The crystalline rocks of the Southern Piedmont province range in age from Precambrian to Paleozoic, and are predominantly slates, phyllites, argillites, schists, metavolcanics, gneisses, gabbros, and granites. These rock units were classified as either favorable, potentially favorable, or unfavorable as potential study areas based on an evaluation of the geologic, hydrologic, and geotechnical characteristics. No socio-economic factors were considered. Rocks subjected to multiple periods of deformation and metamorphism, or described as highly fractured, or of limited areal extent were generally ranked as unfavorable. Potentially favorable rocks are primarily the high-grade metamorphic gneisses and granites. Sixteen areas were classified as being favorable for additional study. These areas are primarily large igneous granite plutons as follows: the Petersburg granite in Virginia; the Rolesville-Castallia, Churchland, and Landis plutons in North Carolina; the Liberty Hill, Winnsboro, and Ogden plutons in South Carolina; and the Siloam, Elberton, and six unnamed granite plutons in Georgia.

  2. New Frontiers in Schistosoma Genomics and Transcriptomics

    Science.gov (United States)

    Nahum, Laila A.; Mourão, Marina M.; Oliveira, Guilherme

    2012-01-01

    Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies. PMID:23227308

  3. Pyricularia grisea Isolates Causing Gray Leaf Spot on Perennial Ryegrass (Lolium perenne) in the United States: Relationship to P. grisea Isolates from Other Host Plants.

    Science.gov (United States)

    Farman, Mark L

    2002-03-01

    ABSTRACT Gray leaf spot of perennial ryegrass (prg) (Lolium perenne), caused by the fungus Pyricularia grisea (teleomorph = Magnaporthe grisea), has rapidly become the most destructive of all turf grass diseases in the United States. Fungal isolates from infected prg were analyzed with several molecular markers to investigate their relationship to P. grisea strains found on other hosts. All of the molecular markers used in this study revealed that isolates from prg are very distantly related to those found on crabgrass. Fingerprinting with MGR586 (Pot3) revealed zero to three copies of this transposon in the prg pathogens, distinguishing them from isolates pathogenic to rice, which typically have more than 50 copies of this element. RETRO5, a newly identified retroelement in P. grisea, was present at a copy number of >50 in isolates from rice and Setaria spp. but only six to eight copies were found in the isolates from prg. The MAGGY retrotransposon was unevenly distributed in the prg pathogens, with some isolates lacking this element, some possessing six to eight copies, and others having 10 to 30 copies. These results indicated that the P. grisea isolates causing gray leaf spot are distinct from those found on crabgrass, rice, or Setaria spp. This conclusion was supported by an unweighted pair-group method with arithmetic average cluster analysis of single-copy restriction fragment length polymorphism haplo-types. Fingerprints obtained with probes from the Pot2 and MGR583 transposons revealed that the prg pathogens are very closely related to isolates from tall fescue, and that they share similarity with isolates from wheat. However, the wheat pathogens had fewer copies of these elements than those found on prg. Therefore, I conclude that P. grisea isolates commonly found on other host plant species did not cause gray leaf spot epidemics on prg. Instead, the disease appears to be caused by a P. grisea population that is specific to prg and tall fescue.

  4. Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomic approach.

    Science.gov (United States)

    Capozzi, Vittorio; Di Toro, Maria Rosaria; Grieco, Francesco; Michelotti, Vania; Salma, Mohammad; Lamontanara, Antonella; Russo, Pasquale; Orrù, Luigi; Alexandre, Hervé; Spano, Giuseppe

    2016-10-01

    The spoilage potential of Brettanomyces bruxellensis in wine is strongly connected with the aptitude of this yeast to enter in a Viable But Non Culturable (VBNC) state when exposed to the harsh wine conditions. In this work, we characterized the VBNC behaviour of seven strains of B. bruxellensis representing a regional intraspecific biodiversity, reporting conclusive evidence for the assessment of VBNC as a strain-dependent character. The VBNC behaviour was monitored by fluorescein diacetate staining/flow cytometry for eleven days after addition of 0.4, 0.6, 0.8, 1 and 1.2 mg/L of molecular SO2 (entrance in the VBNC state) and after SO2 removal (exit from the VBNC state). Furthermore, one representative strain was selected and RNA-seq analysis performed after exposure to 1.2 mg/L SO2 and during the recovery phase. 30 and 1634 genes were identified as differentially expressed following VBNC entrance and 'resuscitation', respectively. The results reported strongly suggested that the entrance in the SO2-induced VBNC state in B. bruxellensis is associated with both, sulfite toxicity and oxidative stress response, confirming the crucial role of genes/proteins involved in redox cell homeostasis. Among the genes induced during recovery, the expression of genes involved in carbohydrate metabolism and encoding heat shock proteins, as well as enriched categories including amino acid transport and transporter activity was observed. The evidences of a general repression of genes involved in DNA replication suggest the occurrence of a true resuscitation of cell rather than a simple regrowth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dermal wound transcriptomic responses to Infection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a rabbit ear wound model

    OpenAIRE

    Leung, Kai P.; D’Arpa, Peter; Seth, Akhil K; Geringer, Matthew R.; Jett, Marti; Xu, Wei; Hong, Seok J; Galiano, Robert D.; Chen, Tsute; Mustoe, Thomas A.

    2014-01-01

    Background Bacterial infections of wounds impair healing and worsen scarring. We hypothesized that transcriptome analysis of wounds infected with Klebsiella pneumoniae (K.p.) or Pseudomonas aeruginosa (P.a.) would indicate host-responses associated with the worse healing of P.a.- than K.p.-infected wounds. Methods Wounds created on post-operative day (POD) 0 were infected during the inflammatory phase of healing on POD3 and were harvested on POD4 for microarray and transcriptome analysis. Oth...

  6. Comparative ORESTES-sampling of transcriptomes of immune-challenged Biomphalaria glabrata snails

    OpenAIRE

    Hanelt, Ben; Lun, Cheng Man; Adema, Coen M.

    2008-01-01

    The snail Biomphalaria glabrata (Gastropoda, Mollusca) is an important intermediate host for the human parasite Schistosoma mansoni (Digenea, Trematoda). Anti-pathogen responses of B. glabrata were studied towards a better understanding of snail immunity and host-parasite compatibility. Open reading frame ESTs (ORESTES) were sampled from different transcriptomes of M line strain B. glabrata, 12 hours post challenge with Escherichia coli (Gram-negative), Micrococcus luteus (Gram-positive) bact...

  7. Transcriptomic Analysis on Responses of Murine Lungs to Pasteurella multocida Infection

    OpenAIRE

    Chenlu Wu; Xiaobin Qin; Pan Li; Tingting Pan; Wenkai Ren; Nengzhang Li; Yuanyi Peng

    2017-01-01

    Pasteurella multocida infection in cattle causes serious epidemic diseases and leads to great economic losses in livestock industry; however, little is known about the interaction between host and P. multocida in the lungs. To explore a fully insight into the host responses in the lungs during P. multocida infection, a mouse model of Pasteurella pneumonia was established by intraperitoneal infection, and then transcriptomic analysis of infected lungs was performed. P. multocida localized and ...

  8. Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms.

    Science.gov (United States)

    Iraola, Gregorio; Spangenberg, Lucía; Lopes Bastos, Bruno; Graña, Martín; Vasconcelos, Larissa; Almeida, Áurea; Greif, Gonzalo; Robello, Carlos; Ristow, Paula; Naya, Hugo

    2016-01-01

    The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth

  9. Transcriptomic microarray analysis of BoMac cells after infection with bovine foamy virus

    NARCIS (Netherlands)

    Rola-Luszczak, M.; Materniak, M.; Pluta, A.; Hulst, M.M.; Kuz'mak, J.

    2014-01-01

    Bovine foamy virus (BFV) infections are highly prevalent among cattle worldwide. However, relatively little is known about the impact of this virus on the host immune system. In our study, we focused on a bovine macrophage cell line (BoMac) and examined changes in the BoMac transcriptome after in

  10. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

    NARCIS (Netherlands)

    Huang, Y.; Li, Y.; Burt, D.W.; Chen, H.; Groenen, M.A.M.; Crooijmans, R.P.M.A.; Kraus, R.H.S.

    2013-01-01

    The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken

  11. Detailed transcriptome description of the neglected cestode Taenia multiceps.

    Directory of Open Access Journals (Sweden)

    Xuhang Wu

    Full Text Available BACKGROUND: The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a total of 31,282 unigenes (mean length 920 bp using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam. We identified 26,110 (83.47% unigenes and inferred 20,896 (66.8% coding sequences (CDS. Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. CONCLUSIONS/SIGNIFICANCE: This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of

  12. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    Science.gov (United States)

    Stafford-Banks, Candice A; Rotenberg, Dorith; Johnson, Brian R; Whitfield, Anna E; Ullman, Diane E

    2014-01-01

    Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they

  13. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Candice A Stafford-Banks

    Full Text Available Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande (the western flower thrips is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6 to known proteins, whereas a high percentage (61.24% of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the

  14. Transcriptomics in toxicology.

    Science.gov (United States)

    Joseph, Pius

    2017-11-01

    Xenobiotics, of which many are toxic, may enter the human body through multiple routes. Excessive human exposure to xenobiotics may exceed the body's capacity to defend against the xenobiotic-induced toxicity and result in potentially fatal adverse health effects. Prevention of the adverse health effects, potentially associated with human exposure to the xenobiotics, may be achieved by detecting the toxic effects at an early, reversible and, therefore, preventable stage. Additionally, an understanding of the molecular mechanisms underlying the toxicity may be helpful in preventing and/or managing the ensuing adverse health effects. Human exposures to a large number of xenobiotics are associated with hepatotoxicity or pulmonary toxicity. Global gene expression changes taking place in biological systems, in response to exposure to xenobiotics, may represent the early and mechanistically relevant cellular events contributing to the onset and progression of xenobiotic-induced adverse health outcomes. Hepatotoxicity and pulmonary toxicity resulting from exposure to xenobiotics are discussed as specific examples to demonstrate the potential application of transcriptomics or global gene expression analysis in the prevention of adverse health effects associated with exposure to xenobiotics. Published by Elsevier Ltd.

  15. A comparison of the Giardia lamblia trophozoite and cyst transcriptome using microarrays

    Directory of Open Access Journals (Sweden)

    Widmer Giovanni

    2011-05-01

    Full Text Available Abstract Background Compared with many protists, Giardia lamblia has a simple life cycle alternating between cyst and trophozoite. Most research on the molecular biology of Giardia parasites has focused on trophozoites and the processes of excystation and encystation, whereas cysts have attracted less interest. The striking morphological differences between the dormant cyst and the rapidly dividing and motile trophozoite implies profound changes in the metabolism as the parasite encysts in the host's intestine and excysts upon ingestion by a new host. Results To investigate the magnitude of the transcriptional changes occurring during the G. lamblia life cycle we compared the transcriptome of G. lamblia trophozoites and cysts using single-color oligonucleotide microarrays. Cysts were found to possess a much smaller transcriptome, both in terms of mRNA diversity and abundance. Genes encoding proteins related to ribosomal functions are highly over-represented. The comparison of the transcriptome of cysts generated in culture or extracted from feces revealed little overlap, raising the possibility of significant biological differences between the two types of cysts. Conclusions The comparison of the G. lamblia cyst and trophozoite transcriptome showed that transcripts of most genes are present at a lower level in cysts. This global view of the cyst and trophozoite transcriptome complements studies focused on the expression of selected genes during trophozoite multiplication, encystation and excystation.

  16. High Throughput Transcriptomics @ USEPA (Toxicology ...

    Science.gov (United States)

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  17. Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species.

    Science.gov (United States)

    Ballesteros, Gabriel I; Gadau, Jürgen; Legeai, Fabrice; Gonzalez-Gonzalez, Angelica; Lavandero, Blas; Simon, Jean-Christophe; Figueroa, Christian C

    2017-01-01

    The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes

  18. Transcriptome assembly and quantification from Ion Torrent RNA-Seq data.

    Science.gov (United States)

    Mangul, Serghei; Caciula, Adrian; Al Seesi, Sahar; Brinza, Dumitru; Mӑndoiu, Ion; Zelikovsky, Alex

    2014-01-01

    High throughput RNA sequencing (RNA-Seq) can generate whole transcriptome information at the single transcript level providing a powerful tool with multiple interrelated applications including transcriptome reconstruction and quantification. The sequences of novel transcripts can be reconstructed from deep RNA-Seq data, but this is computationally challenging due to sequencing errors, uneven coverage of expressed transcripts, and the need to distinguish between highly similar transcripts produced by alternative splicing. Another challenge in transcriptomic analysis comes from the ambiguities in mapping reads to transcripts. We present MaLTA, a method for simultaneous transcriptome assembly and quantification from Ion Torrent RNA-Seq data. Our approach explores transcriptome structure and incorporates a maximum likelihood model into the assembly and quantification procedure. A new version of the IsoEM algorithm suitable for Ion Torrent RNA-Seq reads is used to accurately estimate transcript expression levels. The MaLTA-IsoEM tool is publicly available at: http://alan.cs.gsu.edu/NGS/?q=malta Experimental results on both synthetic and real datasets show that Ion Torrent RNA-Seq data can be successfully used for transcriptome analyses. Experimental results suggest increased transcriptome assembly and quantification accuracy of MaLTA-IsoEM solution compared to existing state-of-the-art approaches.

  19. The Anopheles gambiae transcriptome - a turning point for malaria control.

    Science.gov (United States)

    Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J

    2017-04-01

    Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.

  20. Massively parallel sequencing and analysis of the Necator americanus transcriptome.

    Science.gov (United States)

    Cantacessi, Cinzia; Mitreva, Makedonka; Jex, Aaron R; Young, Neil D; Campbell, Bronwyn E; Hall, Ross S; Doyle, Maria A; Ralph, Stuart A; Rabelo, Elida M; Ranganathan, Shoba; Sternberg, Paul W; Loukas, Alex; Gasser, Robin B

    2010-05-11

    The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses. A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%), proteinase inhibitors (7.8%) or calcium-binding EF-hand proteins (6.7%). Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%), oxidative phosphorylation (63%) and/or proteases (60%); most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins) were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins) or amino acid metabolism (e.g., asparagine t-RNA synthetase). This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human hookworm, A

  1. Massively parallel sequencing and analysis of the Necator americanus transcriptome.

    Directory of Open Access Journals (Sweden)

    Cinzia Cantacessi

    2010-05-01

    Full Text Available The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses.A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%, proteinase inhibitors (7.8% or calcium-binding EF-hand proteins (6.7%. Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%, oxidative phosphorylation (63% and/or proteases (60%; most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins or amino acid metabolism (e.g., asparagine t-RNA synthetase.This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human

  2. Impact of the Respiratory Microbiome on Host Responses to Respiratory Viral Infection

    Directory of Open Access Journals (Sweden)

    Maxime Pichon

    2017-11-01

    Full Text Available Viruses are responsible for most of both upper and lower acute respiratory infections (ARIs. The microbiome—the ecological community of microorganisms sharing the body space, which has gained considerable interest over the last decade—is modified in health and disease states. Even if most of these disturbances have been previously described in relation to chronic disorders of the gastrointestinal microbiome, after a short reminder of microbiome characteristics and methods of characterization, this review will describe the impact of the microbiome (mainly respiratory on host responses to viral ARIs. The microbiome has a direct environmental impact on the host cells but also an indirect impact on the immune system, by enhancing innate or adaptive immune responses. In microbial infections, especially in viral infections, these dramatic modifications could lead to a dramatic impact responsible for severe clinical outcomes. Studies focusing on the microbiome associated with transcriptomic analyses of the host response and deep characterization of the pathogen would lead to a better understanding of viral pathogenesis and open avenues for biomarker development and innovative therapeutics.

  3. Proteinaceous Molecules Mediating Bifidobacterium-Host Interactions

    Science.gov (United States)

    Ruiz, Lorena; Delgado, Susana; Ruas-Madiedo, Patricia; Margolles, Abelardo; Sánchez, Borja

    2016-01-01

    Bifidobacteria are commensal microoganisms found in the gastrointestinal tract. Several strains have been attributed beneficial traits at local and systemic levels, through pathogen exclusion or immune modulation, among other benefits. This has promoted a growing industrial and scientific interest in bifidobacteria as probiotic supplements. However, the molecular mechanisms mediating this cross-talk with the human host remain unknown. High-throughput technologies, from functional genomics to transcriptomics, proteomics, and interactomics coupled to the development of both in vitro and in vivo models to study the dynamics of the intestinal microbiota and their effects on host cells, have eased the identification of key molecules in these interactions. Numerous secreted or surface-associated proteins or peptides have been identified as potential mediators of bifidobacteria-host interactions and molecular cross-talk, directly participating in sensing environmental factors, promoting intestinal colonization, or mediating a dialogue with mucosa-associated immune cells. On the other hand, bifidobacteria induce the production of proteins in the intestine, by epithelial or immune cells, and other gut bacteria, which are key elements in orchestrating interactions among bifidobacteria, gut microbiota, and host cells. This review aims to give a comprehensive overview on proteinaceous molecules described and characterized to date, as mediators of the dynamic interplay between bifidobacteria and the human host, providing a framework to identify knowledge gaps and future research needs. PMID:27536282

  4. Colitis-inducing potency of CD4+ T cells in immunodeficient, adoptive hosts depends on their state of activation, IL-12 responsiveness, and CD45RB surface phenotype

    DEFF Research Database (Denmark)

    Claesson, M H; Bregenholt, S; Bonhagen, K

    1999-01-01

    ) fractionated, peripheral, small, or large, CD45RBhigh or CD45RBlow CD4+ T cells; and 3) peripheral IL-12-unresponsive CD4+ T cells from STAT-4-deficient mice. The adoptive transfer into SCID host of comparable numbers of CD4+ T cells was used to assess the colitis-inducing potency of these subsets. Small CD45......RBlow, IL-12-responsive and IL-12-unresponsive CD4+ T lymphocytes and lymphoblasts have IBD-inducing potential though of varying potency....

  5. Nuclear RNA sequencing of the mouse erythroid cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Jennifer A Mitchell

    Full Text Available In addition to protein coding genes a substantial proportion of mammalian genomes are transcribed. However, most transcriptome studies investigate steady-state mRNA levels, ignoring a considerable fraction of the transcribed genome. In addition, steady-state mRNA levels are influenced by both transcriptional and posttranscriptional mechanisms, and thus do not provide a clear picture of transcriptional output. Here, using deep sequencing of nuclear RNAs (nucRNA-Seq in parallel with chromatin immunoprecipitation sequencing (ChIP-Seq of active RNA polymerase II, we compared the nuclear transcriptome of mouse anemic spleen erythroid cells with polymerase occupancy on a genome-wide scale. We demonstrate that unspliced transcripts quantified by nucRNA-seq correlate with primary transcript frequencies measured by RNA FISH, but differ from steady-state mRNA levels measured by poly(A-enriched RNA-seq. Highly expressed protein coding genes showed good correlation between RNAPII occupancy and transcriptional output; however, genome-wide we observed a poor correlation between transcriptional output and RNAPII association. This poor correlation is due to intergenic regions associated with RNAPII which correspond with transcription factor bound regulatory regions and a group of stable, nuclear-retained long non-coding transcripts. In conclusion, sequencing the nuclear transcriptome provides an opportunity to investigate the transcriptional landscape in a given cell type through quantification of unspliced primary transcripts and the identification of nuclear-retained long non-coding RNAs.

  6. Unique transcriptomic response to sepsis is observed among patients of different age groups.

    Science.gov (United States)

    Raymond, Steven L; López, María Cecilia; Baker, Henry V; Larson, Shawn D; Efron, Philip A; Sweeney, Timothy E; Khatri, Purvesh; Moldawer, Lyle L; Wynn, James L

    2017-01-01

    Sepsis is a major cause of morbidity and mortality, especially at the extremes of age. To understand the human age-specific transcriptomic response to sepsis, a multi-cohort, pooled analysis was conducted on adults, children, infants, and neonates with and without sepsis. Nine public whole-blood gene expression datasets (636 patients) were employed. Age impacted the transcriptomic host response to sepsis. Gene expression from septic neonates and adults was more dissimilar whereas infants and children were more similar. Neonates showed reductions in inflammatory recognition and signaling pathways compared to all other age groups. Likewise, adults demonstrated decreased pathogen sensing, inflammation, and myeloid cell function, as compared to children. This may help to explain the increased incidence of sepsis-related organ failure and death in adults. The number of dysregulated genes in septic patients was proportional to age and significantly differed among septic adults, children, infants, and neonates. Overall, children manifested a greater transcriptomic intensity to sepsis as compared to the other age groups. The transcriptomic magnitude for adults and neonates was dramatically reduced as compared to children and infants. These findings suggest that the transcriptomic response to sepsis is age-dependent, and diagnostic and therapeutic efforts to identify and treat sepsis will have to consider age as an important variable.

  7. Tricks to translating TB transcriptomics.

    Science.gov (United States)

    Deffur, Armin; Wilkinson, Robert J; Coussens, Anna K

    2015-05-01

    Transcriptomics and other high-throughput methods are increasingly applied to questions relating to tuberculosis (TB) pathogenesis. Whole blood transcriptomics has repeatedly been applied to define correlates of TB risk and has produced new insight into the late stage of disease pathogenesis. In a novel approach, authors of a recently published study in Science Translational Medicine applied complex data analysis of existing TB transcriptomic datasets, and in vitro models, in an attempt to identify correlates of protection in TB, which are crucially required for the development of novel TB diagnostics and therapeutics to halt this global epidemic. Utilizing latent TB infection (LTBI) as a surrogate of protection, they identified IL-32 as a mediator of interferon gamma (IFNγ)-vitamin D dependent antimicrobial immunity and a marker of LTBI. Here, we provide a review of all TB whole-blood transcriptomic studies to date in the context of identifying correlates of protection, discuss potential pitfalls of combining complex analyses originating from such studies, the importance of detailed metadata to interpret differential patient classification algorithms, the effect of differing circulating cell populations between patient groups on the interpretation of resulting biomarkers and we decipher weighted gene co-expression network analysis (WGCNA), a recently developed systems biology tool which holds promise of identifying novel pathway interactions in disease pathogenesis. In conclusion, we propose the development of an integrated OMICS platform and open access to detailed metadata, in order for the TB research community to leverage the vast array of OMICS data being generated with the aim of unraveling the holy grail of TB research: correlates of protection.

  8. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors

    OpenAIRE

    Evangelisti, Edouard; Gogleva, Anna; Hainaux, Thomas; Doumane, Mehdi; Tulin, Frej; Quan, Clément; Yunusov, Temur; Floch, Kévin; Schornack, Sebastian

    2017-01-01

    Abstract Background Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated micr...

  9. Characterization of the Pratylenchus penetrans transcriptome including data mining of putative nematode genes involved in plant parasitism

    Science.gov (United States)

    The root lesion nematode Pratylenchus penetrans is considered one of the most economically important species within the genus. Host range studies have shown that nearly 400 plant species can be parasitized by this species. To obtain insight into the transcriptome of this migratory plant-parasitic ne...

  10. Transcriptomic Analysis on Responses of Murine Lungs to Pasteurella multocida Infection

    Directory of Open Access Journals (Sweden)

    Chenlu Wu

    2017-06-01

    Full Text Available Pasteurella multocida infection in cattle causes serious epidemic diseases and leads to great economic losses in livestock industry; however, little is known about the interaction between host and P. multocida in the lungs. To explore a fully insight into the host responses in the lungs during P. multocida infection, a mouse model of Pasteurella pneumonia was established by intraperitoneal infection, and then transcriptomic analysis of infected lungs was performed. P. multocida localized and grew in murine lungs, and induced inflammation in the lungs, as well as mice death. With transcriptomic analysis, approximately 107 clean reads were acquired. 4236 differently expressed genes (DEGs were detected during P. multocida infection, of which 1924 DEGs were up-regulated. By gene ontology (GO and Kyoto encyclopedia of genes and genomes (KEGG enrichments, 5,303 GO enrichments and 116 KEGG pathways were significantly enriched in the context of P. multocida infection. Interestingly, genes related to immune responses, such as pattern recognition receptors (PRRs, chemokines and inflammatory cytokines, were significantly up-regulated, suggesting the key roles of these genes in P. multocida infection. Transcriptomic data showed that IFN-γ/IL-17-related genes were increased, which were validated by qRT-PCR, ELISA, and immunoblotting. Our study characterized the transcriptomic profile of the lungs in mice upon Pasteurella infection, and our findings could provide valuable information with respect to better understanding the responses in mice during P. multocida infection.

  11. Transcriptomic Analysis on Responses of Murine Lungs to Pasteurella multocida Infection.

    Science.gov (United States)

    Wu, Chenlu; Qin, Xiaobin; Li, Pan; Pan, Tingting; Ren, Wenkai; Li, Nengzhang; Peng, Yuanyi

    2017-01-01

    Pasteurella multocida infection in cattle causes serious epidemic diseases and leads to great economic losses in livestock industry; however, little is known about the interaction between host and P. multocida in the lungs. To explore a fully insight into the host responses in the lungs during P. multocida infection, a mouse model of Pasteurella pneumonia was established by intraperitoneal infection, and then transcriptomic analysis of infected lungs was performed. P. multocida localized and grew in murine lungs, and induced inflammation in the lungs, as well as mice death. With transcriptomic analysis, approximately 107 clean reads were acquired. 4236 differently expressed genes (DEGs) were detected during P. multocida infection, of which 1924 DEGs were up-regulated. By gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichments, 5,303 GO enrichments and 116 KEGG pathways were significantly enriched in the context of P. multocida infection. Interestingly, genes related to immune responses, such as pattern recognition receptors (PRRs), chemokines and inflammatory cytokines, were significantly up-regulated, suggesting the key roles of these genes in P. multocida infection. Transcriptomic data showed that IFN-γ/IL-17-related genes were increased, which were validated by qRT-PCR, ELISA, and immunoblotting. Our study characterized the transcriptomic profile of the lungs in mice upon Pasteurella infection, and our findings could provide valuable information with respect to better understanding the responses in mice during P. multocida infection.

  12. Computer vision for image-based transcriptomics.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Herrmann, Markus D; Yakimovich, Yauhen; Pelkmans, Lucas

    2015-09-01

    Single-cell transcriptomics has recently emerged as one of the most promising tools for understanding the diversity of the transcriptome among single cells. Image-based transcriptomics is unique compared to other methods as it does not require conversion of RNA to cDNA prior to signal amplification and transcript quantification. Thus, its efficiency in transcript detection is unmatched by other methods. In addition, image-based transcriptomics allows the study of the spatial organization of the transcriptome in single cells at single-molecule, and, when combined with superresolution microscopy, nanometer resolution. However, in order to unlock the full power of image-based transcriptomics, robust computer vision of single molecules and cells is required. Here, we shortly discuss the setup of the experimental pipeline for image-based transcriptomics, and then describe in detail the algorithms that we developed to extract, at high-throughput, robust multivariate feature sets of transcript molecule abundance, localization and patterning in tens of thousands of single cells across the transcriptome. These computer vision algorithms and pipelines can be downloaded from: https://github.com/pelkmanslab/ImageBasedTranscriptomics. Copyright © 2015. Published by Elsevier Inc.

  13. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  14. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance.

    Directory of Open Access Journals (Sweden)

    Maëlle Jaouannet

    2015-05-01

    Full Text Available Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants.

  15. Transcriptome coexpression map of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Mattson Mark P

    2006-05-01

    Full Text Available Abstract Background Human embryonic stem (ES cells hold great promise for medicine and science. The transcriptome of human ES cells has been studied in detail in recent years. However, no systematic analysis has yet addressed whether gene expression in human ES cells may be regulated in chromosomal domains, and no chromosomal domains of coexpression have been identified. Results We report the first transcriptome coexpression map of the human ES cell and the earliest stage of ES differentiation, the embryoid body (EB, for the analysis of how transcriptional regulation interacts with genomic structure during ES self-renewal and differentiation. We determined the gene expression profiles from multiple ES and EB samples and identified chromosomal domains showing coexpression of adjacent genes on the genome. The coexpression domains were not random, with significant enrichment in chromosomes 8, 11, 16, 17, 19, and Y in the ES state, and 6, 11, 17, 19 and 20 in the EB state. The domains were significantly associated with Giemsa-negative bands in EB, yet showed little correlation with known cytogenetic structures in ES cells. Different patterns of coexpression were revealed by comparative transcriptome mapping between ES and EB. Conclusion The findings and methods reported in this investigation advance our understanding of how genome organization affects gene expression in human ES cells and help to identify new mechanisms and pathways controlling ES self-renewal or differentiation.

  16. Transcriptomic analysis of persistent infection with foot-and-mouth disease virus in cattle suggests impairment of cell-mediated immunity in the nasopharynx

    Science.gov (United States)

    In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vac...

  17. Genome-wide Mapping of Transcriptional Start Sites Defines an Extensive Leaderless Transcriptome in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Teresa Cortes

    2013-11-01

    Full Text Available Deciphering physiological changes that mediate transition of Mycobacterium tuberculosis between replicating and nonreplicating states is essential to understanding how the pathogen can persist in an individual host for decades. We have combined RNA sequencing (RNA-seq of 5′ triphosphate-enriched libraries with regular RNA-seq to characterize the architecture and expression of M. tuberculosis promoters. We identified over 4,000 transcriptional start sites (TSSs. Strikingly, for 26% of the genes with a primary TSS, the site of transcriptional initiation overlapped with the annotated start codon, generating leaderless transcripts lacking a 5′ UTR and, hence, the Shine-Dalgarno sequence commonly used to initiate ribosomal engagement in eubacteria. Genes encoding proteins with active growth functions were markedly depleted from the leaderless transcriptome, and there was a significant increase in the overall representation of leaderless mRNAs in a starvation model of growth arrest. The high percentage of leaderless genes may have particular importance in the physiology of nonreplicating M. tuberculosis.

  18. Strategic and Operational Plan for Integrating Transcriptomics ...

    Science.gov (United States)

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  19. Shaping and Reshaping Transcriptome Plasticity during Evolution.

    Science.gov (United States)

    Hussain, Shobbir

    2017-09-01

    Transcriptome plasticity, usually associated with alternative isoform generation, is recognised as a key mechanism driving proteomic diversity and biological complexity. Recent findings of Liscovitch-Brauer et al. and Ma et al. suggest that RNA base modifications are an additional central mode of transcriptome malleability that have the potential to determine evolutionary outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fundamental host range of Pseudophilothrips ichini s.l. (Thysanoptera: Phlaeothripidae): a candidate biological control agent of Schinus terebinthifolius (Sapindales: Anacardiaceae) in the United States.

    Science.gov (United States)

    Cuda, J P; Medal, J C; Gillmore, J L; Habeck, D H; Pedrosa-Macedo, J H

    2009-12-01

    Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) is a non-native perennial woody plant that is one of the most invasive weeds in Florida, Hawaii, and more recently California and Texas. This plant was introduced into Florida from South America as a landscape ornamental in the late 19th century, eventually escaped cultivation, and now dominates entire ecosystems in south-central Florida. Recent DNA studies have confirmed two separate introductions of S. terebinthifolius in Florida, and there is evidence of hybridization. A thrips, Pseudophilothrips ichini s.l. (Hood) (Thysanoptera: Phlaeothripidae), is commonly found attacking shoots and flowers of S. terebinthifolius in Brazil. Immatures and occasionally adults form large aggregations on young terminal growth (stems and leaves) of the plant. Feeding damage by P. ichini s.l. frequently kills new shoots, which reduces vigor and restricts growth of S. terebinthifolius. Greenhouse and laboratory host range tests with 46 plant species in 18 families and 10 orders were conducted in Paraná, Brazil, and Florida. Results of no-choice, paired-choice, and multiple-choice tests indicated that P. ichini s.l. is capable of reproducing only on S. terebinthifolius and possibly Schinus molle L., an ornamental introduced into California from Peru that has escaped cultivation and is considered invasive. Our results showed that P. ichini s.l. posed minimal risk to mature S. molle plants or the Florida native Metopium toxiferum L. Krug and Urb. In May 2007, the federal interagency Technical Advisory Group for Biological Control Agents of Weeds (TAG) concluded P. ichini s.l. was sufficiently host specific to recommend its release from quarantine.

  1. Integration of transcriptomics and metabonomics

    DEFF Research Database (Denmark)

    Bjerrum, Jacob Tveiten; Rantalainen, Mattias; Wang, Yulan

    2014-01-01

    profiles were generated using (1)H Nuclear magnetic resonance spectroscopy (Bruker 600 MHz, Bruker BioSpin, Rheinstetten, Germany). Data were analyzed with the use of orthogonal-projection to latent structure-discriminant analysis and a multivariate logistic regression model fitted by lasso. Prediction...... with or without steroid dependency, as well as between early or late disease onset. Consequently, this study demonstrates that the novel approach of integrating metabonomics and transcriptomics combines the better of the two worlds, and provides us with clinical applicable candidate biomarker panels...

  2. Insight into the Salivary Gland Transcriptome of Lygus lineolaris (Palisot de Beauvois.

    Directory of Open Access Journals (Sweden)

    Kurt C Showmaker

    Full Text Available The tarnished plant bug (TPB, Lygus lineolaris (Palisot de Beauvois is a polyphagous, phytophagous insect that has emerged as a major pest of cotton, alfalfa, fruits, and vegetable crops in the eastern United States and Canada. Using its piercing-sucking mouthparts, TPB employs a "lacerate and flush" feeding strategy in which saliva injected into plant tissue degrades cell wall components and lyses cells whose contents are subsequently imbibed by the TPB. It is known that a major component of TPB saliva is the polygalacturonase enzymes that degrade the pectin in the cell walls. However, not much is known about the other components of the saliva of this important pest. In this study, we explored the salivary gland transcriptome of TPB using Illumina sequencing. After in silico conversion of RNA sequences into corresponding polypeptides, 25,767 putative proteins were discovered. Of these, 19,540 (78.83% showed significant similarity to known proteins in the either the NCBI nr or Uniprot databases. Gene ontology (GO terms were assigned to 7,512 proteins, and 791 proteins in the sialotranscriptome of TPB were found to collectively map to 107 Kyoto Encyclopedia of Genes and Genomes (KEGG database pathways. A total of 3,653 Pfam domains were identified in 10,421 sialotranscriptome predicted proteins resulting in 12,814 Pfam annotations; some proteins had more than one Pfam domain. Functional annotation revealed a number of salivary gland proteins that potentially facilitate degradation of host plant tissues and mitigation of the host plant defense response. These transcripts/proteins and their potential roles in TPB establishment are described.

  3. Transcriptome profiling and comparative analysis of Panax ginseng adventitious roots

    Directory of Open Access Journals (Sweden)

    Murukarthick Jayakodi

    2014-10-01

    Conclusion: This study will provide a comprehensive insight into the transcriptome of ginseng adventitious roots, and a way for successful transcriptome analysis and profiling of resource plants with less genomic information. The transcriptome profiling data generated in this study are available in our newly created adventitious root transcriptome database (http://im-crop.snu.ac.kr/transdb/index.php for public use.

  4. Identification of host fruit volatiles from three mayhaw species (Crataegus series Aestivales) attractive to mayhaw-origin Rhagoletis pomonella flies in the southern United States.

    Science.gov (United States)

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula

  5. Longitudinal Transcriptome Analysis Reveals a Sustained Differential Gene Expression Signature in Patients Treated for Acute Lyme Disease.

    Science.gov (United States)

    Bouquet, Jerome; Soloski, Mark J; Swei, Andrea; Cheadle, Chris; Federman, Scot; Billaud, Jean-Noel; Rebman, Alison W; Kabre, Beniwende; Halpert, Richard; Boorgula, Meher; Aucott, John N; Chiu, Charles Y

    2016-02-12

    Lyme disease is a tick-borne illness caused by the bacterium Borrelia burgdorferi, and approximately 10 to 20% of patients report persistent symptoms lasting months to years despite appropriate treatment with antibiotics. To gain insights into the molecular basis of acute Lyme disease and the ensuing development of post-treatment symptoms, we conducted a longitudinal transcriptome study of 29 Lyme disease patients (and 13 matched controls) enrolled at the time of diagnosis and followed for up to 6 months. The differential gene expression signature of Lyme disease following the acute phase of infection persisted for at least 3 weeks and had fewer than 44% differentially expressed genes (DEGs) in common with other infectious or noninfectious syndromes. Early Lyme disease prior to antibiotic therapy was characterized by marked upregulation of Toll-like receptor signaling but lack of activation of the inflammatory T-cell apoptotic and B-cell developmental pathways seen in other acute infectious syndromes. Six months after completion of therapy, Lyme disease patients were found to have 31 to 60% of their pathways in common with three different immune-mediated chronic diseases. No differential gene expression signature was observed between Lyme disease patients with resolved illness to those with persistent symptoms at 6 months post-treatment. The identification of a sustained differential gene expression signature in Lyme disease suggests that a panel of selected human host-based biomarkers may address the need for sensitive clinical diagnostics during the "window period" of infection prior to the appearance of a detectable antibody response and may also inform the development of new therapeutic targets. Lyme disease is the most common tick-borne infection in the United States, and some patients report lingering symptoms lasting months to years despite antibiotic treatment. To better understand the role of the human host response in acute Lyme disease and the

  6. The Role of Host Genetics (and Genomics) in Tuberculosis.

    Science.gov (United States)

    Naranbhai, Vivek

    2016-10-01

    Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to Mycobacterium tuberculosis infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.

  7. Transcriptome map of mouse isochores

    Directory of Open Access Journals (Sweden)

    Pissis Solon P

    2011-10-01

    Full Text Available Abstract Background The availability of fully sequenced genomes and the implementation of transcriptome technologies have increased the studies investigating the expression profiles for a variety of tissues, conditions, and species. In this study, using RNA-seq data for three distinct tissues (brain, liver, and muscle, we investigate how base composition affects mammalian gene expression, an issue of prime practical and evolutionary interest. Results We present the transcriptome map of the mouse isochores (DNA segments with a fairly homogeneous base composition for the three different tissues and the effects of isochores' base composition on their expression activity. Our analyses also cover the relations between the genes' expression activity and their localization in the isochore families. Conclusions This study is the first where next-generation sequencing data are used to associate the effects of both genomic and genic compositional properties to their corresponding expression activity. Our findings confirm previous results, and further support the existence of a relationship between isochores and gene expression. This relationship corroborates that isochores are primarily a product of evolutionary adaptation rather than a simple by-product of neutral evolutionary processes.

  8. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas

    2010-12-06

    Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages-many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization-a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. © 2010 Wiley-Liss, Inc., A Wiley Company.

  9. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis.

    Science.gov (United States)

    Hu, Ping; Wang, Jingzhen; Cui, Mingming; Tao, Jing; Luo, Youqing

    2016-05-25

    Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers.

  10. High-throughput sequencing of black pepper root transcriptome.

    Science.gov (United States)

    Gordo, Sheila M C; Pinheiro, Daniel G; Moreira, Edith C O; Rodrigues, Simone M; Poltronieri, Marli C; de Lemos, Oriel F; da Silva, Israel Tojal; Ramos, Rommel T J; Silva, Artur; Schneider, Horacio; Silva, Wilson A; Sampaio, Iracilda; Darnet, Sylvain

    2012-09-17

    Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

  11. Comparative Transcriptome Analysis between the Fungal Plant Pathogens Sclerotinia sclerotiorum and S. trifoliorum Using RNA Sequencing.

    Science.gov (United States)

    Qiu, Dan; Xu, Liangsheng; Vandemark, George; Chen, Weidong

    2016-03-01

    The fungal plant pathogens Sclerotinia sclerotiorum and S. trifoliorum are morphologically similar, but differ considerably in host range. In an effort to elucidate mechanisms of the host range difference, transcriptomes of the 2 species at vegetative growth stage were compared to gain further insight into commonality and uniqueness in gene expression and pathogenic mechanisms of the 2 closely related pathogens. A total of 23133 and 21043 unique transcripts were obtained from S. sclerotiorum and S. trifoliorum, respectively. Approximately 43% of the transcripts were genes with known functions for both species. Among 1411 orthologous contigs, about 10% (147) were more highly (>3-fold) expressed in S. trifoliorum than in S. sclerotiorum, and about 12% (173) of the orthologs were more highly (>3-fold) expressed in S. sclerotiorum than in S. trifoliorum. The expression levels of genes on the supercontig 30 have the highest correlation coefficient value between the 2 species. Twenty-seven contigs were found to be new and unique for S. trifoliorum. Additionally, differences in expressed genes involved in pathogenesis like oxalate biosynthesis and endopolygalacturonases were detected between the 2 species. The analyses of the transcriptomes not only discovered similarities and uniqueness in gene expression between the 2 closely related species, providing additional information for annotation the S. sclerotiorum genome, but also provided foundation for comparing the transcriptomes with host-infecting transcriptomes. Published by Oxford University Press on behalf of the American Genetic Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Zhu

    Full Text Available BACKGROUND: Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS: In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26% showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. CONCLUSIONS/SIGNIFICANCE: obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular

  13. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    Science.gov (United States)

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.

  14. Host associations and incidence of Diuraphis spp. in the Rocky Mountain region of the United States, and pictorial key for their identification

    Science.gov (United States)

    The Russian wheat aphid, Diuraphis noxia Kurd. was introduced into the United States in 1986 and has since become a major pest of wheat and other small grains in the western Great Plains. Biotypes of this aphid have occurred which have overcome resistance in wheat in the field in 2004. Three other...

  15. Barriers to and Correlates of Retention in Behavioral Health Treatment Among Latinos in 2 Different Host Countries: The United States and Spain.

    Science.gov (United States)

    Falgas, Irene; Ramos, Zorangeli; Herrera, Lizbeth; Qureshi, Adil; Chavez, Ligia; Bonal, Covadonga; McPeck, Samantha; Wang, Ye; Cook, Benjamin; Alegría, Margarita

    Latino immigrants constitute a large portion of the Spanish and US immigrant populations, yet a dearth of research exists regarding barriers to retention in behavioral health care. To identify and compare perceived barriers related to behavioral health care among first- and second-generation Latinos in Boston, Madrid, and Barcelona, and evaluate whether the frequency of behavioral health care use in the last year was related to these barriers. Data were obtained from the International Latino Research Partnership project. First- or second-generation self-identified Latino immigrants aged 18 years and more who resided more than 1 year in the host country were recruited from community agencies and primary care, mental health, substance abuse, and HIV clinics. Eleven barriers were assessed and compared across sites. The relationship between barriers and behavioral services visits within the last year was evaluated, adjusting for sociodemographics, clinical measures, degree of health literacy, cultural, and social factors. Wanting to handle the problem on one's own, thinking that treatment would not work, and being unsure of where to go or who to see were the most frequently reported barriers for Latino immigrants. Previous treatment failure, difficulties in transportation or scheduling, and linguistic barriers were more likely to be reported in Boston; trying to deal with mental health problems on one's own was more commonly reported in Barcelona and Madrid. Two barriers associated with the number of visits were concerns about the cost of services and uncertainty about where to go or who to see. After adjusting for sociodemographics, clinical measures, degree of health literacy, cultural, and social factors, barriers still differed significantly across sites. Efforts to improve behavioral health services must be tailored to immigrants' context, with attention to changing attitudes of self-reliance and outreach to improve access to and retention in care.

  16. Comparative transcriptomics in the Triticeae

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2009-06-01

    Full Text Available Abstract Background Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. Results We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring. For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. Conclusion While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able

  17. Novel transcriptome resources for three scleractinian coral species from the Indo-Pacific.

    Science.gov (United States)

    Kenkel, Carly D; Bay, Line K

    2017-09-01

    Transcriptomic resources for coral species can provide insight into coral evolutionary history and stress-response physiology. Goniopora columna, Galaxea astreata, and Galaxea acrhelia are scleractinian corals of the Indo-Pacific, representing a diversity of morphologies and life-history traits. G. columna and G. astreata are common and cosmopolitan, while G. acrhelia is largely restricted to the coral triangle and Great Barrier Reef. Reference transcriptomes for these species were assembled from replicate colony fragments exposed to elevated (31°C) and ambient (27°C) temperatures. Trinity was used to create de novo assemblies for each species from 92-102 million raw Illumina Hiseq 2 × 150 bp reads. Host-specific assemblies contained 65 460-72 405 contigs, representing 26 693-37 894 isogroups (∼genes) with an average N50 of 2254. Gene name and/or gene ontology annotations were possible for 58% of isogroups on average. Transcriptomes contained 93.1-94.3% of EuKaryotic Orthologous Groups comprising the core eukaryotic gene set, and 89.98-91.92% of the single-copy metazoan core gene set orthologs were complete, indicating fairly comprehensive assemblies. This work expands the complement of transcriptomic resources available for scleractinian coral species, including the first reference for a representative of Goniopora spp. as well as species with novel morphology. © The Authors 2017. Published by Oxford University Press.

  18. Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling.

    Directory of Open Access Journals (Sweden)

    Stinus Lindgreen

    2014-10-01

    Full Text Available Noncoding RNAs are integral to a wide range of biological processes, including translation, gene regulation, host-pathogen interactions and environmental sensing. While genomics is now a mature field, our capacity to identify noncoding RNA elements in bacterial and archaeal genomes is hampered by the difficulty of de novo identification. The emergence of new technologies for characterizing transcriptome outputs, notably RNA-seq, are improving noncoding RNA identification and expression quantification. However, a major challenge is to robustly distinguish functional outputs from transcriptional noise. To establish whether annotation of existing transcriptome data has effectively captured all functional outputs, we analysed over 400 publicly available RNA-seq datasets spanning 37 different Archaea and Bacteria. Using comparative tools, we identify close to a thousand highly-expressed candidate noncoding RNAs. However, our analyses reveal that capacity to identify noncoding RNA outputs is strongly dependent on phylogenetic sampling. Surprisingly, and in stark contrast to protein-coding genes, the phylogenetic window for effective use of comparative methods is perversely narrow: aggregating public datasets only produced one phylogenetic cluster where these tools could be used to robustly separate unannotated noncoding RNAs from a null hypothesis of transcriptional noise. Our results show that for the full potential of transcriptomics data to be realized, a change in experimental design is paramount: effective transcriptomics requires phylogeny-aware sampling.

  19. Transcriptome analysis of bacteriophage communities in periodontal health and disease.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Naidu, Mayuri; Abeles, Shira R; Boehm, Tobias K; Ly, Melissa; Pride, David T

    2015-07-28

    The role of viruses as members of the human microbiome has gained broader attention with the discovery that human body surfaces are inhabited by sizeable viral communities. The majority of the viruses identified in these communities have been bacteriophages that predate upon cellular microbiota rather than the human host. Phages have the capacity to lyse their hosts or provide them with selective advantages through lysogenic conversion, which could help determine the structure of co-existing bacterial communities. Because conditions such as periodontitis are associated with altered bacterial biota, phage mediated perturbations of bacterial communities have been hypothesized to play a role in promoting periodontal disease. Oral phage communities also differ significantly between periodontal health and disease, but the gene expression of oral phage communities has not been previously examined. Here, we provide the first report of gene expression profiles from the oral bacteriophage community using RNA sequencing, and find that oral phages are more highly expressed in subjects with relative periodontal health. While lysins were highly expressed, the high proportion of integrases expressed suggests that prophages may account for a considerable proportion of oral phage gene expression. Many of the transcriptome reads matched phages found in the oral cavities of the subjects studied, indicating that phages may account for a substantial proportion of oral gene expression. Reads homologous to siphoviruses that infect Firmicutes were amongst the most prevalent transcriptome reads identified in both periodontal health and disease. Some genes from the phage lytic module were significantly more highly expressed in subjects with periodontal disease, suggesting that periodontitis may favor the expression of some lytic phages. As we explore the contributions of viruses to the human microbiome, the data presented here suggest varying expression of bacteriophage communities in oral

  20. Host transcript accumulation during lytic KSHV infection reveals several classes of host responses.

    Directory of Open Access Journals (Sweden)

    Sanjay Chandriani

    Full Text Available Lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV is associated with an extensive shutoff of host gene expression, mediated chiefly by accelerated mRNA turnover due to expression of the viral SOX protein. We have previously identified a small number of host mRNAs that can escape SOX-mediated degradation. Here we present a detailed, transcriptome-wide analysis of host shutoff, with careful microarray normalization to allow rigorous determination of the magnitude and extent of transcript loss. We find that the extent of transcript reduction represents a continuum of susceptibilities of transcripts to virus-mediated shutoff. Our results affirm that the levels of over 75% of host transcripts are substantially reduced during lytic infection, but also show that another approximately 20% of cellular mRNAs declines only slightly (less than 2-fold during the course of infection. Approximately 2% of examined cellular genes are strongly upregulated during lytic infection, most likely due to transcriptional induction of mRNAs that display intrinsic SOX-resistance.

  1. Helicobacter pylori: Genomic Insight into the Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Kathryn P. Haley

    2015-01-01

    Full Text Available The advent of genomic analyses has revolutionized the study of human health. Infectious disease research in particular has experienced an explosion of bacterial genomic, transcriptomic, and proteomic data complementing the phenotypic methods employed in traditional bacteriology. Together, these techniques have revealed novel virulence determinants in numerous pathogens and have provided information for potential chemotherapeutics. The bacterial pathogen, Helicobacter pylori, has been recognized as a class 1 carcinogen and contributes to chronic inflammation within the gastric niche. Genomic analyses have uncovered remarkable coevolution between the human host and H. pylori. Perturbation of this coevolution results in dysregulation of the host-pathogen interaction, leading to oncogenic effects. This review discusses the relationship of H. pylori with the human host and environment and the contribution of each of these factors to disease progression, with an emphasis on features that have been illuminated by genomic tools.

  2. Transcriptome

    Science.gov (United States)

    ... New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for Teachers Genomic Careers National DNA Day Online Education Kit ...

  3. Comparative sequence analyses of genome and transcriptome ...

    Indian Academy of Sciences (India)

    /fulltext/jbsc/040/05/0891-0907. Keywords. Asian elephant; comparative genomics; gene prediction; transcriptome. Abstract. The Asian elephant Elephas maximus and the African elephant Loxodonta africana that diverged 5-7 million years ...

  4. The floral transcriptome of Eucalyptus grandis

    CSIR Research Space (South Africa)

    Vining, KJ

    2015-10-01

    Full Text Available As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages...

  5. Enhanced detection of explosives by turn-on resonance Raman upon host-guest complexation in solution and the solid state

    DEFF Research Database (Denmark)

    Witlicki, Edward H.; Bähring, Steffen; Johnsen, Carsten

    2017-01-01

    complexation occur via a mechanism of resonance between the 785 nm laser line and the strongly absorbing charge-transfer chromophore arising from the complex between electron-donating TTF-C[4]P and electron-accepting nitroaromatic explosives. The addition of chloride forms the Cl-·TTF-C[4]P complex resetting......The recognition of nitroaromatic explosives by a tetrakis-tetrathiafulvalene-calix[4]pyrrole receptor (TTF-C[4]P) yields a "turn on" and fingerprinting response in the resonance Raman scattering observed in solution and the solid state. Intensity changes in nitro vibrations with analyte...

  6. Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis.

    Directory of Open Access Journals (Sweden)

    Timothy I Shaw

    Full Text Available The Jamaican fruit bat (Artibeus jamaicensis is one of the most common bats in the tropical Americas. It is thought to be a potential reservoir host of Tacaribe virus, an arenavirus closely related to the South American hemorrhagic fever viruses. We performed transcriptome sequencing and annotation from lung, kidney and spleen tissues using 454 and Illumina platforms to develop this species as an animal model. More than 100,000 contigs were assembled, with 25,000 genes that were functionally annotated. Of the remaining unannotated contigs, 80% were found within bat genomes or transcriptomes. Annotated genes are involved in a broad range of activities ranging from cellular metabolism to genome regulation through ncRNAs. Reciprocal BLAST best hits yielded 8,785 sequences that are orthologous to mouse, rat, cattle, horse and human. Species tree analysis of sequences from 2,378 loci was used to achieve 95% bootstrap support for the placement of bat as sister to the clade containing horse, dog, and cattle. Through substitution rate estimation between bat and human, 32 genes were identified with evidence for positive selection. We also identified 466 immune-related genes, which may be useful for studying Tacaribe virus infection of this species. The Jamaican fruit bat transcriptome dataset is a resource that should provide additional candidate markers for studying bat evolution and ecology, and tools for analysis of the host response and pathology of disease.

  7. Transcriptomic analysis of mouse liver reveals a potential hepato-enteric pathogenic mechanism in acute Toxoplasma gondii infection.

    Science.gov (United States)

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M; Song, Hui-Qun; Huang, Si-Yang; Zhu, Xing-Quan

    2016-08-03

    Toxoplasma gondii is a worldwide spread pathogen which can infect all tissues of its host. The transcriptomic responses of infected brain and spleen have been reported. However, our knowledge of the global transcriptomic change in infected liver is limited. Additionally, T. gondii infection represents a highly dynamic process involving complex biological responses of the host at many levels. Herein, we describe such processes at a global level by discovering gene expression changes in mouse livers after acute infection with T. gondii ToxoDB#9 strain. Global transcriptomic analysis identified 2,758 differentially expressed transcripts in infected liver, of which 1,356 were significantly downregulated and 1,402 upregulated. GO and KEGG database analyses showed that host immune responses were upregulated, while the metabolic-related processes/pathways were downregulated, especially xenobiotic metabolism, fatty acid metabolism, energy metabolism, and bile biosynthesis and secretion. The metabolism of more than 800 chemical compounds including anti-Toxoplasma prescribed medicines were predicted to be modulated during acute T. gondii infection due to the downregulation of enzymes involved in xenobiotic metabolism. To the best of our knowledge, this is the first global transcriptomic analysis of mouse liver infected by T. gondii. The present data indicate that during the early stage of liver infection, T. gondii can induce changes in liver xenobiotic metabolism, upregulating inflammatory response and downregulating hepatocellular PPAR signaling pathway, altering host bile biosynthesis and secretion pathway; these changes could enhance host intestinal dysbacteriosis and thus contribute to the pathological changes of both liver and intestine of infected mice. These findings describe the biological changes in infected liver, providing a potential mechanistic pathway that links hepatic and intestinal pathologies to T. gondii infection.

  8. Comparative transcriptomics of early dipteran development

    Science.gov (United States)

    2013-01-01

    Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies). PMID:23432914

  9. Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing

    Science.gov (United States)

    Wang, Bin; Guo, Guangwu; Wang, Chao; Lin, Ying; Wang, Xiaoning; Zhao, Mouming; Guo, Yong; He, Minghui; Zhang, Yong; Pan, Li

    2010-01-01

    Aspergillus oryzae, an important filamentous fungus used in food fermentation and the enzyme industry, has been shown through genome sequencing and various other tools to have prominent features in its genomic composition. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA-sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions. With the high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons and upstream open reading frames, which provide remarkable insight into the A. oryzae transcriptome. We were also able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes and pathways that might be involved in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae is much more complex than previously anticipated, and these results may provide a blueprint for further study of the A. oryzae transcriptome. PMID:20392818

  10. Differential producibility analysis (DPA of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bhushan K Bonde

    2011-06-01

    Full Text Available A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for

  11. Host age modulates within-host parasite competition

    OpenAIRE

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-01-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts...

  12. Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States

    Directory of Open Access Journals (Sweden)

    Michael Walsh

    2015-12-01

    Full Text Available Plague has been established in the western United States (US since 1900 following the West Coast introduction of commensal rodents infected with Yersinia pestis via early industrial shipping. Over the last century, plague ecology has transitioned through cycles of widespread human transmission, urban domestic transmission among commensal rodents, and ultimately settled into the predominantly sylvan foci that remain today where it is maintained alternatively by enzootic and epizootic transmission. While zoonotic transmission to humans is much less common in modern times, significant plague risk remains in parts of the western US. Moreover, risk to some threatened species that are part of the epizootic cycle can be quite substantive. This investigation attempted to predict the risk of plague across the western US by modeling the ecologic niche of plague in sylvan and domestic animals identified between 2000 and 2015. A Maxent machine learning algorithm was used to predict this niche based on climate, altitude, land cover, and the presence of an important enzootic species, Peromyscus maniculatus. This model demonstrated good predictive ability (AUC = 86% and identified areas of high risk in central Colorado, north-central New Mexico, and southwestern and northeastern California. The presence of P. maniculatus, altitude, precipitation during the driest and wettest quarters, and distance to artificial surfaces, all contributed substantively to maximizing the gain function. These findings add to the known landscape epidemiology and infection ecology of plague in the western US and may suggest locations of particular risk to be targeted for wild and domestic animal intervention.

  13. Novel inorganic borate host phosphor K2Al2B2O7:Dy3+ for LED based solid state lighting

    Science.gov (United States)

    Palaspagar, R. S.; Sonekar, R. P.; Omanwar, S. K.

    2013-06-01

    In the present work we report the preparation and photoluminescence characteristics of Dy3+ doped borate phosphor K2Al2B2O7:Dy3+. The fine polycrystalline powder samples of K2Al2B2O7:Dy3+ has been prepared by a novel combustion technique. This method is based on the exothermic redox reaction involves, metal nitrates and organic fuel (urea). The formation of samples was confirmed by powder XRD technique. The photoluminescence properties of borate phosphors have been investigated on fluorescence spectrometer (F-7000). The PL excitation spectra of K2Al2B2O7:Dy3+ consists of several bands peaking at 241 nm, 297 nm, 324 nm, 350 nm, 364 nm and 387 nm. Since the prominent excitation peaks are above 360nm, the phosphor may useful for solid state lighting application. The emission spectrum monitored at 351 nm excitation consists of blue emission band peaking at 481 nm and yellow emission band peaking at 574nm.

  14. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2010-01-01

    BACKGROUND: Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary history...... was analysed for both full-length LTR retrotransposons and solitary LTRs. RESULTS: Two independent sets of transcriptome data reveal the presence of full-length, polyadenylated transcripts from LTR retrotransposons in S. pombe during growth phase in rich medium. The redundancy of retrotransposon sequences...... of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription of solitary LTRs is correlated with the transcription of nearby protein-coding genes. CONCLUSIONS: Presumably, the host organism negatively regulates...

  15. Comparative transcriptome analysis of PBMC from HIV patients pre- and post-antiretroviral therapy

    DEFF Research Database (Denmark)

    Zhao, Fang-Jie; Ma, Jinmin; Huang, Lihua

    2017-01-01

    . To understand HIV interactions with host immune cells during HAART, the transcriptomes of peripheral blood mononuclear cells (PBMC) from HIV patients and HIV negative volunteers before and two weeks after HAART initiation were analyzed using RNA sequencing (RNA-Seq) technology. Differentially expressed genes......-associated hypertensions, providing new insights into HIV pathology and novel strategies for developing anti-HIV target. More importantly, we demonstrated that comparative transcriptome analysis is a very powerful tool to identify infection related DEGs using a very small number of samples. This approach could be easily...... to HIV infections in the literature, which demonstrates the credibility of the method. The newly identified HIV-related genes (up-regulated: ACSL1, GPR84, GPR97, ADM, LRG1; down-regulated: RASSF1, PATL2) were empirically validated using qRT-PCR. The Gene Set Enrichment Analysis (GSEA) was also used...

  16. Pas de deux: An Intricate Dance of Anther Smut and Its Host

    Directory of Open Access Journals (Sweden)

    Su San Toh

    2018-02-01

    Full Text Available The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host Silene latifolia serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response, and several agamous-like MADS-box genes (AGL61 and AGL80, predicted to interact and be involved in male gametophyte development.

  17. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    Science.gov (United States)

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  18. Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Jayne S Sutherland

    Full Text Available Tuberculosis (TB remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb, which are relevant to protective immunity in high-endemic areas.We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda. We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens together with novel resuscitation-promoting factors (rpf, reactivation proteins, latency (Mtb DosR regulon-encoded antigens, starvation-induced antigens and secreted antigens.There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(- and TST(+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737 and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC, PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+ contacts (LTBI compared to TB and TST(- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen.Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine

  19. The gut transcriptome of a gall midge, Mayetiola destructor.

    Science.gov (United States)

    Zhang, Shize; Shukle, Richard; Mittapalli, Omprakash; Zhu, Yu Cheng; Reese, John C; Wang, Haiyan; Hua, Bao-Zhen; Chen, Ming-Shun

    2010-09-01

    The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut physiology and may also lead to the identification of critical molecules for Hessian fly-host plant interactions. Over 10,000 Expressed Sequence Tags (ESTs) were generated and assembled into 2007 clusters. The most striking feature of the Hessian fly larval transcriptome is the existence of a large number of transcripts coding for so-called small secretory proteins (SSP) with amino acids less than 250. Eleven of the 30 largest clusters were SSP transcripts with the largest cluster containing 11.3% of total ESTs. Transcripts coding for diverse digestive enzymes and detoxification proteins were also identified. Putative digestive enzymes included trypsins, chymotrypsins, cysteine proteases, aspartic protease, endo-oligopeptidase, aminopeptidases, carboxypeptidases, and alpha-amylases. Putative detoxification proteins included cytochrome P450s, glutathione S-transferases, peroxidases, ferritins, a catalase, peroxiredoxins, and others. This study represents the first global analysis of gut transcripts from a gall midge. The identification of a large number of transcripts coding for SSPs, digestive enzymes, detoxification proteins in the Hessian fly larval gut provides a foundation for future studies on the functions of these genes.

  20. Blood transcriptomics: applications in toxicology

    Science.gov (United States)

    Joseph, Pius; Umbright, Christina; Sellamuthu, Rajendran

    2015-01-01

    The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article. PMID:23456664

  1. Time-resolved dual transcriptomics reveal early induced Nicotiana benthamiana root genes and conserved infection-promoting Phytophthora palmivora effectors.

    Science.gov (United States)

    Evangelisti, Edouard; Gogleva, Anna; Hainaux, Thomas; Doumane, Mehdi; Tulin, Frej; Quan, Clément; Yunusov, Temur; Floch, Kévin; Schornack, Sebastian

    2017-05-11

    Plant-pathogenic oomycetes are responsible for economically important losses in crops worldwide. Phytophthora palmivora, a tropical relative of the potato late blight pathogen, causes rotting diseases in many tropical crops including papaya, cocoa, oil palm, black pepper, rubber, coconut, durian, mango, cassava and citrus. Transcriptomics have helped to identify repertoires of host-translocated microbial effector proteins which counteract defenses and reprogram the host in support of infection. As such, these studies have helped in understanding how pathogens cause diseases. Despite the importance of P. palmivora diseases, genetic resources to allow for disease resistance breeding and identification of microbial effectors are scarce. We employed the model plant Nicotiana benthamiana to study the P. palmivora root infections at the cellular and molecular levels. Time-resolved dual transcriptomics revealed different pathogen and host transcriptome dynamics. De novo assembly of P. palmivora transcriptome and semi-automated prediction and annotation of the secretome enabled robust identification of conserved infection-promoting effectors. We show that one of them, REX3, suppresses plant secretion processes. In a survey for early transcriptionally activated plant genes we identified a N. benthamiana gene specifically induced at infected root tips that encodes a peptide with danger-associated molecular features. These results constitute a major advance in our understanding of P. palmivora diseases and establish extensive resources for P. palmivora pathogenomics, effector-aided resistance breeding and the generation of induced resistance to Phytophthora root infections. Furthermore, our approach to find infection-relevant secreted genes is transferable to other pathogen-host interactions and not restricted to plants.

  2. Dermal Wound Transcriptomic Responses to Infection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a Rabbit Ear Wound Model

    Science.gov (United States)

    2014-05-02

    Dermal wound transcriptomic responses to Infection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a rabbit ear wound model Kai P Leung Pt...with Klebsiella pneumoniae (Kp.) or Pseudomonas aeruginosa (P.o.) would indicate host responses associated with the worse healing of P.o. than Kp...responses to injection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a rabbit ear wound model 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  3. Comparative transcriptome analysis of four prymnesiophyte algae.

    Directory of Open Access Journals (Sweden)

    Amy E Koid

    Full Text Available Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists.

  4. Comparative transcriptome analysis of four prymnesiophyte algae.

    Science.gov (United States)

    Koid, Amy E; Liu, Zhenfeng; Terrado, Ramon; Jones, Adriane C; Caron, David A; Heidelberg, Karla B

    2014-01-01

    Genomic studies of bacteria, archaea and viruses have provided insights into the microbial world by unveiling potential functional capabilities and molecular pathways. However, the rate of discovery has been slower among microbial eukaryotes, whose genomes are larger and more complex. Transcriptomic approaches provide a cost-effective alternative for examining genetic potential and physiological responses of microbial eukaryotes to environmental stimuli. In this study, we generated and compared the transcriptomes of four globally-distributed, bloom-forming prymnesiophyte algae: Prymnesium parvum, Chrysochromulina brevifilum, Chrysochromulina ericina and Phaeocystis antarctica. Our results revealed that the four transcriptomes possess a set of core genes that are similar in number and shared across all four organisms. The functional classifications of these core genes using the euKaryotic Orthologous Genes (KOG) database were also similar among the four study organisms. More broadly, when the frequencies of different cellular and physiological functions were compared with other protists, the species clustered by both phylogeny and nutritional modes. Thus, these clustering patterns provide insight into genomic factors relating to both evolutionary relationships as well as trophic ecology. This paper provides a novel comparative analysis of the transcriptomes of ecologically important and closely related prymnesiophyte protists and advances an emerging field of study that uses transcriptomics to reveal ecology and function in protists.

  5. Transcriptome analysis in cotton boll weevil (Anthonomus grandis and RNA interference in insect pests.

    Directory of Open Access Journals (Sweden)

    Alexandre Augusto Pereira Firmino

    Full Text Available Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  6. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Fernandes

    2016-05-01

    Full Text Available Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome.

  7. The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families.

    Science.gov (United States)

    Link, Tobias I; Lang, Patrick; Scheffler, Brian E; Duke, Mary V; Graham, Michelle A; Cooper, Bret; Tucker, Mark L; van de Mortel, Martijn; Voegele, Ralf T; Mendgen, Kurt; Baum, Thomas J; Whitham, Steven A

    2014-05-01

    Haustoria of biotrophic rust fungi are responsible for the uptake of nutrients from their hosts and for the production of secreted proteins, known as effectors, which modulate the host immune system. The identification of the transcriptome of haustoria and an understanding of the functions of expressed genes therefore hold essential keys for the elucidation of fungus-plant interactions and the development of novel fungal control strategies. Here, we purified haustoria from infected leaves and used 454 sequencing to examine the haustorial transcriptomes of Phakopsora pachyrhizi and Uromyces appendiculatus, the causal agents of soybean rust and common bean rust, respectively. These pathogens cause extensive yield losses in their respective legume crop hosts. A series of analyses were used to annotate expressed sequences, including transposable elements and viruses, to predict secreted proteins from the assembled sequences and to identify families of candidate effectors. This work provides a foundation for the comparative analysis of haustorial gene expression with further insights into physiology and effector evolution. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  8. Transcriptomics of the bed bug (Cimex lectularius.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    Full Text Available BACKGROUND: Bed bugs (Cimex lectularius are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons. Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST, revealed high transcript levels for the cytochrome P450 (CYP9 in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296 and microsatellite loci (370 were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for

  9. The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    2010-08-01

    Full Text Available The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each thought to be adapted to unique niches within their human host. To systematically investigate their differences, we performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions bound by a master regulator of the white-opaque switch (Wor1. We found that the revised transcriptional landscape considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding transcripts. We also find that 5' and 3' UTRs of mRNAs in the circuit are unusually long and that 5' UTRs often differ in length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit suggest a set of general hallmarks characteristic of

  10. Transcriptome Profiling of the Phaseolus vulgaris - Colletotrichum lindemuthianum Pathosystem.

    Science.gov (United States)

    Padder, Bilal A; Kamfwa, Kelvin; Awale, Halima E; Kelly, James D

    2016-01-01

    Bean (Phaseolus vulgaris) anthracnose caused by the hemi-biotrophic pathogen Colletotrichum lindemuthianum is a major factor limiting production worldwide. Although sources of resistance have been identified and characterized, the early molecular events in the host-pathogen interface have not been investigated. In the current study, we conducted a comprehensive transcriptome analysis using Illumina sequencing of two near isogenic lines (NILs) differing for the presence of the Co-1 gene on chromosome Pv01 during a time course following infection with race 73 of C. lindemuthianum. From this, we identified 3,250 significantly differentially expressed genes (DEGs) within and between the NILs over the time course of infection. During the biotrophic phase the majority of DEGs were up regulated in the susceptible NIL, whereas more DEGs were up-regulated in the resistant NIL during the necrotrophic phase. Various defense related genes, such as those encoding PR proteins, peroxidases, lipoxygenases were up regulated in the resistant NIL. Conversely, genes encoding sugar transporters were up-regulated in the susceptible NIL during the later stages of infection. Additionally, numerous transcription factors (TFs) and candidate genes within the vicinity of the Co-1 locus were differentially expressed, suggesting a global reprogramming of gene expression in and around the Co-1 locus. Through this analysis, we reduced the previous number of candidate genes reported at the Co-1 locus from eight to three. These results suggest the dynamic nature of P. vulgaris-C. lindemuthianum interaction at the transcriptomic level and reflect the role of both pathogen and effector triggered immunity on changes in plant gene expression.

  11. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB, Dendroctonus valens.

    Directory of Open Access Journals (Sweden)

    Xiao-Cui Gu

    Full Text Available The red turpentine beetle (RTB, Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae, is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing.We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP, six chemosensory proteins (CSP, four sensory neuron membrane proteins (SNMP, 22 odorant receptors (OR, four gustatory receptors (GR, three ionotropic receptors (IR, and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis.The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary

  12. Transcriptomic response to differentiation induction

    Directory of Open Access Journals (Sweden)

    Dimitrov DS

    2006-02-01

    Full Text Available Abstract Background Microarrays used for gene expression studies yield large amounts of data. The processing of such data typically leads to lists of differentially-regulated genes. A common terminal data analysis step is to map pathways of potentially interrelated genes. Methods We applied a transcriptomics analysis tool to elucidate the underlying pathways of leukocyte maturation at the genomic level in an established cellular model of leukemia by examining time-course data in two subclones of U-937 cells. Leukemias such as Acute Promyelocytic Leukemia (APL are characterized by a block in the hematopoietic stem cell maturation program at a point when expansion of clones which should be destined to mature into terminally-differentiated effector cells get locked into endless proliferation with few cells reaching maturation. Treatment with retinoic acid, depending on the precise genomic abnormality, often releases the responsible promyelocytes from this blockade but clinically can yield adverse sequellae in terms of potentially lethal side effects, referred to as retinoic acid syndrome. Results Briefly, the list of genes for temporal patterns of expression was pasted into the ABCC GRID Promoter TFSite Comparison Page website tool and the outputs for each pattern were examined for possible coordinated regulation by shared regelems (regulatory elements. We found it informative to use this novel web tool for identifying, on a genomic scale, genes regulated by drug treatment. Conclusion Improvement is needed in understanding the nature of the mutations responsible for controlling the maturation process and how these genes regulate downstream effects if there is to be better targeting of chemical interventions. Expanded implementation of the techniques and results reported here may better direct future efforts to improve treatment for diseases not restricted to APL.

  13. Blood transcriptomics: applications in toxicology.

    Science.gov (United States)

    Joseph, Pius; Umbright, Christina; Sellamuthu, Rajendran

    2013-11-01

    The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article. Copyright © 2013 John Wiley & Sons, Ltd.

  14. EXTRACTIVE INDUSTRIES, THE STATE AND HOST ...

    African Journals Online (AJOL)

    The authors touch upon a delicate topic which is of vital importance and they go about that task with striking devotion, appropriate methodology and a befitting ... that contributed to make their work possible and less cumbersome to some extent and that is spread on the pages from the 'Acknowledgement to the Table of ...

  15. De novo Transcriptome Analysis in Perennial Ryegrass

    DEFF Research Database (Denmark)

    Farrell, Jacqueline Danielle; Byrne, Stephen; Asp, Torben

    Perennial ryegrass (Lolium perenne L.) is an important grass species for both forage and amenity purposes for temperate regions worldwide. It is envisaged that breeding efforts may be enhanced with the assistance of new breeding technologies such as genomic selection. A major step towards genomic...... of functional markers for improved ryegrass breeding. Therefore, the goal of this study is to analyze a de novo assembly of the perennial ryegrass transcriptome from the same inbred genotype being used for de novo genome assembly. Furthermore, we also conducted de novo transcriptome assembly with other...

  16. Understanding PRRSV infection in porcine lung based on genome-wide transcriptome response identified by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Shuqi Xiao

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS has been one of the most economically important diseases affecting swine industry worldwide and causes great economic losses each year. PRRS virus (PRRSV replicates mainly in porcine alveolar macrophages (PAMs and dendritic cells (DCs and develops persistent infections, antibody-dependent enhancement (ADE, interstitial pneumonia and immunosuppression. But the molecular mechanisms of PRRSV infection still are poorly understood. Here we report on the first genome-wide host transcriptional responses to classical North American type PRRSV (N-PRRSV strain CH 1a infection using Solexa/Illumina's digital gene expression (DGE system, a tag-based high-throughput transcriptome sequencing method, and analyse systematically the relationship between pulmonary gene expression profiles after N-PRRSV infection and infection pathology. Our results suggest that N-PRRSV appeared to utilize multiple strategies for its replication and spread in infected pigs, including subverting host innate immune response, inducing an anti-apoptotic and anti-inflammatory state as well as developing ADE. Upregulation expression of virus-induced pro-inflammatory cytokines, chemokines, adhesion molecules and inflammatory enzymes and inflammatory cells, antibodies, complement activation were likely to result in the development of inflammatory responses during N-PRRSV infection processes. N-PRRSV-induced immunosuppression might be mediated by apoptosis of infected cells, which caused depletion of immune cells and induced an anti-inflammatory cytokine response in which they were unable to eradicate the primary infection. Our systems analysis will benefit for better understanding the molecular pathogenesis of N-PRRSV infection, developing novel antiviral therapies and identifying genetic components for swine resistance/susceptibility to PRRS.

  17. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors.

    Science.gov (United States)

    Chen, Xiao-Ren; Zhang, Bo-Yue; Xing, Yu-Ping; Li, Qi-Yuan; Li, Yan-Peng; Tong, Yun-Hui; Xu, Jing-You

    2014-11-18

    Phytophthora cactorum, a hemibiotrophic oomycete pathogen, can cause destructive diseases on numerous crops worldwide, leading to essential economic losses every year. However, little has been known about its molecular pathogenicity mechanisms. To gain insight into its repertoire of effectors, the P. cactorum transcriptome was investigated using Illumina RNA-seq. We first demonstrated an in vitro inoculation method that can be used to mimic natural cyst germination on host plants. Over 28 million cDNA reads were obtained for five life cycle stages (mycelium, sporangium, zoospore, cyst and germinating cyst) and de novo assembled into 21,662 unique genes. By comparisons with 11 public databases, 88.99% of the unique genes were annotated, including 15,845 mapped to the gene models of the annotated relative Phytophthora infestans. Using TribeMCL, 5,538 gene families conserved across P. cactorum and other three completely sequenced Phytophthora pathogen species were determined. In silico analyses revealed that 620 P. cactorum effector homologues including 94 RXLR effector candidates matched known or putative virulence genes in other oomycetes. About half of the RXLR effector candidates were predicted to share a conserved structure unit, termed the WY-domain fold. A subset of the effector genes were checked and validated by PCR amplification. Transcriptional experiments indicated that effector genes were differentially expressed during the life cycle and host infection stages of P. cactorum. Ectopic expression in Nicotiana benthamiana revealed that RXLR, elicitin and NLP effectors can trigger plant cell death. These effectors are highly conserved across oomycete species. Single nucleotide polymorphisms for RXLR effectors were detected in a collection of P. cactorum isolates from different countries and hosts. This study demonstrates the comprehensive sequencing, de novo assembly, and analyses of the transcriptome of P. cactorum life cycle stages. In the absence of genome

  18. Association and host selectivity in multi-host pathogens.

    Directory of Open Access Journals (Sweden)

    José M Malpica

    2006-12-01

    Full Text Available The distribution of multi-host pathogens over their host range conditions their population dynamics and structure. Also, host co-infection by different pathogens may have important consequences for the evolution of hosts and pathogens, and host-pathogen co-evolution. Hence it is of interest to know if the distribution of pathogens over their host range is random, or if there are associations between hosts and pathogens, or between pathogens sharing a host. To analyse these issues we propose indices for the observed patterns of host infection by pathogens, and for the observed patterns of co-infection, and tests to analyse if these patterns conform to randomness or reflect associations. Applying these tests to the prevalence of five plant viruses on 21 wild plant species evidenced host-virus associations: most hosts and viruses were selective for viruses and hosts, respectively. Interestingly, the more host-selective viruses were the more prevalent ones, suggesting that host specialisation is a successful strategy for multi-host pathogens. Analyses also showed that viruses tended to associate positively in co-infected hosts. The developed indices and tests provide the tools to analyse how strong and common are these associations among different groups of pathogens, which will help to understand and model the population biology of multi-host pathogens.

  19. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  20. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.

    Directory of Open Access Journals (Sweden)

    Seung Chul Shin

    Full Text Available For the past 10 to 13 million years, Antarctic notothenioid fish have undergone extraordinary periods of evolution and have adapted to a cold and highly oxygenated Antarctic marine environment. While these species are considered an attractive model with which to study physiology and evolutionary adaptation, they are poorly characterized at the molecular level, and sequence information is lacking. The transcriptomes of the Antarctic fishes Notothenia coriiceps, Chaenocephalus aceratus, and Pleuragramma antarcticum were obtained by 454 FLX Titanium sequencing of a normalized cDNA library. More than 1,900,000 reads were assembled in a total of 71,539 contigs. Overall, 40% of the contigs were annotated based on similarity to known protein or nucleotide sequences, and more than 50% of the predicted transcripts were validated as full-length or putative full-length cDNAs. These three Antarctic fishes shared 663 genes expressed in the brain and 1,557 genes expressed in the liver. In addition, these cold-adapted fish expressed more Ub-conjugated proteins compared to temperate fish; Ub-conjugated proteins are involved in maintaining proteins in their native state in the cold and thermally stable Antarctic environments. Our transcriptome analysis of Antarctic notothenioid fish provides an archive for future studies in molecular mechanisms of fundamental genetic questions, and can be used in evolution studies comparing other fish.

  1. Parasite host range and the evolution of host resistance

    NARCIS (Netherlands)

    Gorter, F.A.; Hall, A.R.; A., Buckling; P.D., Scanlan

    2015-01-01

    Parasite host range plays a pivotal role in the evolution and ecology of hosts
    and the emergence of infectious disease. Although the factors that promote
    host range and the epidemiological consequences of variation in host range
    are relatively well characterized, the effect of parasite

  2. Data hosting infrastructure for primary biodiversity data

    Science.gov (United States)

    2011-01-01

    Background Today, an unprecedented volume of primary biodiversity data are being generated worldwide, yet significant amounts of these data have been and will continue to be lost after the conclusion of the projects tasked with collecting them. To get the most value out of these data it is imperative to seek a solution whereby these data are rescued, archived and made available to the biodiversity community. To this end, the biodiversity informatics community requires investment in processes and infrastructure to mitigate data loss and provide solutions for long-term hosting and sharing of biodiversity data. Discussion We review the current state of biodiversity data hosting and investigate the technological and sociological barriers to proper data management. We further explore the rescuing and re-hosting of legacy data, the state of existing toolsets and propose a future direction for the development of new discovery tools. We also explore the role of data standards and licensing in the context of data hosting and preservation. We provide five recommendations for the biodiversity community that will foster better data preservation and access: (1) encourage the community's use of data standards, (2) promote the public domain licensing of data, (3) establish a community of those involved in data hosting and archival, (4) establish hosting centers for biodiversity data, and (5) develop tools for data discovery. Conclusion The community's adoption of standards and development of tools to enable data discovery is essential to sustainable data preservation. Furthermore, the increased adoption of open content licensing, the establishment of data hosting infrastructure and the creation of a data hosting and archiving community are all necessary steps towards the community ensuring that data archival policies become standardized. PMID:22373257

  3. Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates

    LENUS (Irish Health Repository)

    Fan, Ben

    2012-06-21

    AbstractBackgroundPlant root exudates have been shown to play an important role in mediating interactions between plant growth-promoting rhizobacteria (PGPR) and their host plants. Most investigations were performed on Gram-negative rhizobacteria, while much less is known about Gram-positive rhizobacteria. To elucidate early responses of PGPR to root exudates, we investigated changes in the transcriptome of a Gram-positive PGPR to plant root exudates.ResultsBacillus amyloliquefaciens FZB42 is a well-studied Gram-positive PGPR. To obtain a comprehensive overview of FZB42 gene expression in response to maize root exudates, microarray experiments were performed. A total of 302 genes representing 8.2% of the FZB42 transcriptome showed significantly altered expression levels in the presence of root exudates. The majority of the genes (261) was up-regulated after incubation of FZB42 with root exudates, whereas only 41 genes were down-regulated. Several groups of the genes which were strongly induced by the root exudates are involved in metabolic pathways relating to nutrient utilization, bacterial chemotaxis and motility, and non-ribosomal synthesis of antimicrobial peptides and polyketides.ConclusionsHere we present a transcriptome analysis of the root-colonizing bacterium Bacillus amyloliquefaciens FZB42 in response to maize root exudates. The 302 genes identified as being differentially transcribed are proposed to be involved in interactions of Gram-positive bacteria with plants.

  4. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection.

    Directory of Open Access Journals (Sweden)

    Weiwen Kong

    Full Text Available Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant-pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs before and after the plant-pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea-cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen-host interaction.

  5. Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection.

    Science.gov (United States)

    Kong, Weiwen; Chen, Nan; Liu, Tingting; Zhu, Jing; Wang, Jingqi; He, Xiaoqing; Jin, Yi

    2015-01-01

    Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant-pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant-pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea-cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen-host interaction.

  6. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  7. Comparative sequence analyses of genome and transcriptome ...

    Indian Academy of Sciences (India)

    2015-12-04

    Dec 4, 2015 ... This work therefore provides a valuable resource to explore the immense research potential of comparative analyses of transcriptome .... species and identified domain architectures that are overrep- resented in elephants. 2. Methods. 2.1 Sample collection, extraction of nucleic acids and next-generation ...

  8. Transcriptome analysis of Anopheles stephensi embryo using ...

    Indian Academy of Sciences (India)

    2013-04-18

    Apr 18, 2013 ... fertilization cDNA library from Anopheles stephensi. The transcriptome consists of several notable transcripts as iden- tified by the GO terms, majorly related to protein synthesis machinery. We also detected an enrichment of diverse tran- scripts active in the insect metabolism and development. The.

  9. The renal transcriptome in experimental hypertension

    NARCIS (Netherlands)

    Wesseling, S.

    2007-01-01

    The renal transcriptome in experimental hypertension The kidneys importantly determine blood pressure. Kidney dysfunction can result in hypertension, which in turn leads to renal damage. In primary hypertension the cause is unknown. The condition is polygenic, however, which genetic defects cause

  10. Scrimer: designing primers from transcriptome data

    Czech Academy of Sciences Publication Activity Database

    Mořkovský, Libor; Pačes, Jan; Rídl, Jakub; Reifová, R.

    2015-01-01

    Roč. 15, č. 6 (2015), s. 1415-1420 ISSN 1755-098X R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 ; RVO:68378050 Keywords : next-generation sequencing * primer design * SNaPshot * SNP genotyping * transcriptome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.298, year: 2015

  11. Characterizing the transcriptome and molecular markers information ...

    Indian Academy of Sciences (India)

    T10r. TGATTTCAGCGATAAGAAG. Success. Table 2. Profiles of repetitive elements residing in the R. rutilus transcriptome identified using RepeatMasker. Number of. Length. Percentage of elements occupied (bp) sequence (%). Retroelements. 5607. 1502681. 1.70. SINEs. 173. 16070. 0.02. Penelope. 0. 0. 0. LINEs. 2635.

  12. Global daily dynamics of the pineal transcriptome

    DEFF Research Database (Denmark)

    Bustos, Diego M; Bailey, Michael J; Sugden, David

    2011-01-01

    Transcriptome profiling of the pineal gland has revealed night/day differences in the expression of a major fraction of the genes active in this tissue, with two-thirds of these being nocturnal increases. A set of over 600 transcripts exhibit two-fold to >100-fold daily differences in abundance...

  13. The transcriptome landscape of early maize meiosis

    Science.gov (United States)

    Meiosis, particularly meiotic recombination, is a major factor affecting yield and breeding of plants. To gain insight into the transcriptome landscape during early initiation steps of meiotic recombination, we profiled early prophase I meiocytes from maize using RNA-seq. Our analyses of genes prefe...

  14. A partial transcriptome of human epidermis

    NARCIS (Netherlands)

    van Ruissen, Fred; Jansen, Bastiaan J. H.; de Jongh, Gys J.; Zeeuwen, Patrick L. J. M.; Schalkwijk, Joost

    2002-01-01

    Serial analysis of gene expression (SAGE) is a powerful technique for global expression profiling without prior knowledge of the genes of interest. We carried out SAGE analysis of purified keratinocytes derived from human skin biopsy specimens, resulting in a partial transcriptome of human

  15. Transcriptomes of Frankia sp. strain CcI3 in growth transitions

    Directory of Open Access Journals (Sweden)

    Bickhart Derek M

    2011-08-01

    Full Text Available Abstract Background Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days and by culture conditions (NH4+ added vs. N2 fixing. Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions The overall pattern of

  16. Transcriptome profiling of buffalograss challenged with the leaf spot pathogen Curvularia inaequalis

    Directory of Open Access Journals (Sweden)

    Bimal Sajeewa Amaradasa

    2016-05-01

    Full Text Available Buffalograss (Bouteloua dactyloides is a low maintenance United States native turfgrass species with exceptional drought, heat and cold tolerance. Leaf spot caused by Curvularia inaequalis negatively impacts buffalograss visual quality. Two leaf spot susceptible and two resistant buffalograss lines were challenged with C. inaequalis. Samples were collected from treated and untreated leaves when susceptible lines showed symptoms. Transcriptome sequencing was done and differentially expressed genes were identified. Approximately 27 million raw sequencing reads were produced per sample. More than 86% of the sequencing reads mapped to an existing buffalograss reference transcriptome. De novo assembly of unmapped reads was merged with the existing reference to produce a more complete transcriptome. There were 461 differentially expressed transcripts between the resistant and susceptible lines when challenged with the pathogen and 1552 in its absence. Previously characterized defense-related genes were identified among the differentially expressed transcripts. Twenty one resistant line transcripts were similar to genes regulating pattern triggered immunity and 20 transcripts were similar to genes regulating effector triggered immunity. There were also nine up-regulated transcripts in resistance lines which showed potential to initiate systemic acquired resistance (SAR and three transcripts encoding pathogenesis-related proteins which are downstream products of SAR. This is the first study characterizing changes in the buffalograss transcriptome when challenged with C. inaequalis.

  17. Transcriptome analysis of the Capra hircus ovary.

    Directory of Open Access Journals (Sweden)

    Zhong Quan Zhao

    Full Text Available Capra hircus is an important economic livestock animal, and therefore, it is necessary to discover transcriptome information about their reproductive performance. In this study, we performed de novo transcriptome sequencing to produce the first transcriptome dataset for the goat ovary using high-throughput sequencing technologies. The result will contribute to research on goat reproductive performance.RNA-seq analysis generated more than 38.8 million clean paired end (PE reads, which were assembled into 80,069 unigenes (mean size = 619 bp. Based on sequence similarity searches, 64,824 (60.6% genes were identified, among which 29,444 and 11,271 unigenes were assigned to Gene Ontology (GO categories and Clusters of Orthologous Groups (COG, respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG showed that 27,766 (63.4% unigenes were mapped to 258 KEGG pathways. Furthermore, we investigated the transcriptome differences of goat ovaries at two different ages using a tag-based digital gene expression system. We obtained a sequencing depth of over 5.6 million and 5.8 million tags for the two ages and identified a large number of genes associated with reproductive hormones, ovulatory cycle and follicle. Moreover, many antisense transcripts and novel transcripts were found; clusters with similar differential expression patterns, enriched GO terms and metabolic pathways were revealed for the first time with regard to the differentially expressed genes.The transcriptome provides invaluable new data for a functional genomic resource and future biological research in Capra hircus, and it is essential for the in-depth study of candidate genes in breeding programs.

  18. Estudo da potencialidade de populações de Biomphalaria straminea do Estado de Minas Gerais, como hospedeiras do Schistosoma mansoni Potentiality of the Biomphalaria straminea populations of the State of Minas Gerais, as hosts of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Cecília Pereira de Souza

    1983-09-01

    Full Text Available Caramujos de Biomphalaria straminea, descendentes de exemplares coletados em nove municípios do Estado de Minas Gerais, foram infectados experimentalmente com três cepas de Schistosoma mansoni: "LE", procedente de Belo Horizonte (MG; "SJ", procedente de São José dos Campos (SP e "AL" procedente do Nordeste (AL. As taxas de infeção variaram de 0,0 a 24,0% com a cepa "LE"; de 0,0 a 16% com a cepa "SJ" e de 2,0 a 9,0% com a cepa "AL". Os índices de infecção experimental obtidos foram semelhantes aos registrados por outros autores, para B. straminea dessa região. Comparou-se o número de cercárias de cepa "LE", eliminadas por oito exemplares de B. straminea de Baldim e oito Biomphalaria glabrata do controle, após 30 minutos de exposição à luz. O número de cercárias eliminadas por B. straminea foi de 4.550, aproximadamente cinco vezes menor que o de B. glabrata, 22.679. Discute-se a potencialidade desses moluscos como hospedeiros do S. mansoni nessa região.The decendents of Biomphalaria straminea snails collected in nine regions from the State of Minas Gerais were experimentally infected with three strains of Schistosoma mansoni: "LE", from Belo Horizonte, Minas Gerais; "SJ", from São José dos Campos, State of São Paulo and "AL", from State of Alagoas. The infection rates obtained were of 0 to 24% (LE strain, 0 to 16% (SJ strain and 2 to 9% (AL strain. These infection rates were similar to those obtained by other authors for B. straminea from this region. Comparation were made between the numbers of cercariae (LE strain shed by eight specimens of B. straminea from Baldim and eight B. glabrata of the control group, after 30 minutes of exposure to light. B. straminea shed 4,550 cercariae, about five times less than B. glabrata (22,679. The authors discuss the potentiality of theses molluscs as hosts of S. mansoni in this region.

  19. Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian.

    Science.gov (United States)

    Stefanik, Derek J; Lubinski, Tristan J; Granger, Brian R; Byrd, Allyson L; Reitzel, Adam M; DeFilippo, Lukas; Lorenc, Allison; Finnerty, John R

    2014-01-28

    The lined sea anemone Edwardsiella lineata is an informative model system for evolutionary-developmental studies of parasitism. In this species, it is possible to compare alternate developmental pathways leading from a larva to either a free-living polyp or a vermiform parasite that inhabits the mesoglea of a ctenophore host. Additionally, E. lineata is confamilial with the model cnidarian Nematostella vectensis, providing an opportunity for comparative genomic, molecular and organismal studies. We generated a reference transcriptome for E. lineata via high-throughput sequencing of RNA isolated from five developmental stages (parasite; parasite-to-larva transition; larva; larva-to-adult transition; adult). The transcriptome comprises 90,440 contigs assembled from >15 billion nucleotides of DNA sequence. Using a molecular clock approach, we estimated the divergence between E. lineata and N. vectensis at 215-364 million years ago. Based on gene ontology and metabolic pathway analyses and gene family surveys (bHLH-PAS, deiodinases, Fox genes, LIM homeodomains, minicollagens, nuclear receptors, Sox genes, and Wnts), the transcriptome of E. lineata is comparable in depth and completeness to N. vectensis. Analyses of protein motifs and revealed extensive conservation between the proteins of these two edwardsiid anemones, although we show the NF-κB protein of E. lineata reflects the ancestral structure, while the NF-κB protein of N. vectensis has undergone a split that separates the DNA-binding domain from the inhibitory domain. All contigs have been deposited in a public database (EdwardsiellaBase), where they may be searched according to contig ID, gene ontology, protein family motif (Pfam), enzyme commission number, and BLAST. The alignment of the raw reads to the contigs can also be visualized via JBrowse. The transcriptomic data and database described here provide a platform for studying the evolutionary developmental genomics of a derived parasitic life cycle. In

  20. SARS Pathogenesis: Host Factors

    NARCIS (Netherlands)

    A. de Lang (Anna)

    2012-01-01

    textabstractWhile it is hypothesized that Sever Acute Respiratory Syndrome (SARS) in humans is caused by a disproportional immune response illustrated by inappropriate induction of inflammatory cytokines, the exact nature of the host response to SARS coronavirus (CoV) infection causing severe

  1. Sequential Delivery of Host-Induced Virulence Effectors by Appressoria and Intracellular Hyphae of the Phytopathogen Colletotrichum higginsianum

    Science.gov (United States)

    Kleemann, Jochen; Neumann, Ulla; van Themaat, Emiel Ver Loren; van der Does, H. Charlotte; Hacquard, Stéphane; Stüber, Kurt; Will, Isa; Schmalenbach, Wolfgang; Schmelzer, Elmon; O'Connell, Richard J.

    2012-01-01

    Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death. PMID:22496661

  2. De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways.

    Science.gov (United States)

    Verbruggen, Bas; Bickley, Lisa K; Santos, Eduarda M; Tyler, Charles R; Stentiford, Grant D; Bateman, Kelly S; van Aerle, Ronny

    2015-06-16

    The European shore crab, Carcinus maenas, is used widely in biomonitoring, ecotoxicology and for studies into host-pathogen interactions. It is also an important invasive species in numerous global locations. However, the genomic resources for this organism are still sparse, limiting research progress in these fields. To address this resource shortfall we produced a C. maenas transcriptome, enabled by the progress in next-generation sequencing technologies, and applied this to assemble information on the innate immune system in this species. We isolated and pooled RNA for twelve different tissues and organs from C. maenas individuals and sequenced the RNA using next generation sequencing on an Illumina HiSeq 2500 platform. After de novo assembly a transcriptome was generated encompassing 212,427 transcripts (153,699 loci). The transcripts were filtered, annotated and characterised using a variety of tools (including BLAST, MEGAN and RSEM) and databases (including NCBI, Gene Ontology and KEGG). There were differential patterns of expression for between 1,223 and 2,741 transcripts across tissues and organs with over-represented Gene Ontology terms relating to their specific function. Based on sequence homology to immune system components in other organisms, we show both the presence of transcripts for a series of known pathogen recognition receptors and response proteins that form part of the innate immune system, and transcripts representing the RNAi, Toll-like receptor signalling, IMD and JAK/STAT pathways. We have produced an assembled transcriptome for C. maenas that provides a significant molecular resource for wide ranging studies in this species. Analysis of the transcriptome has revealed the presence of a series of known targets and functional pathways that form part of their innate immune system and illustrate tissue specific differences in their expression patterns.

  3. Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid.

    Directory of Open Access Journals (Sweden)

    Izabela Sitkiewicz

    Full Text Available BACKGROUND: Streptococcus agalactiae (group B Streptococcus is a bacterial pathogen that causes severe intrauterine infections leading to fetal morbidity and mortality. The pathogenesis of GBS infection in this environment is poorly understood, in part because we lack a detailed understanding of the adaptation of this pathogen to growth in amniotic fluid. To address this knowledge deficit, we characterized the transcriptome of GBS grown in human amniotic fluid (AF and compared it with the transcriptome in rich laboratory medium. METHODS: GBS was grown in Todd Hewitt-yeast extract medium and human AF. Bacteria were collected at mid-logarithmic, late-logarithmic and stationary growth phase. We performed global expression microarray analysis using a custom-made Affymetrix GeneChip. The normalized hybridization values derived from three biological replicates at each growth point were obtained. AF/THY transcript ratios representing greater than a 2-fold change and P-value exceeding 0.05 were considered to be statistically significant. PRINCIPAL FINDINGS: We have discovered that GBS significantly remodels its transcriptome in response to exposure to human amniotic fluid. GBS grew rapidly in human AF and did not exhibit a global stress response. The majority of changes in GBS transcripts in AF compared to THY medium were related to genes mediating metabolism of amino acids, carbohydrates, and nucleotides. The majority of the observed changes in transcripts affects genes involved in basic bacterial metabolism and is connected to AF composition and nutritional requirements of the bacterium. Importantly, the response to growth in human AF included significant changes in transcripts of multiple virulence genes such as adhesins, capsule, and hemolysin and IL-8 proteinase what might have consequences for the outcome of host-pathogen interactions. CONCLUSIONS/SIGNIFICANCE: Our work provides extensive new information about how the transcriptome of GBS responds

  4. cBiT: A transcriptomics database for innovative biomaterial engineering.

    Science.gov (United States)

    Hebels, Dennie G A J; Carlier, Aurélie; Coonen, Maarten L J; Theunissen, Daniël H; de Boer, Jan

    2017-12-01

    Creating biomaterials that are suited for clinical application is still hampered by a lack of understanding of the interaction between a cell and the biomaterial surface it grows on. This surface communication can strongly impact cellular behavior, which in turn affects the chances of a successful interaction between a material and the host tissue. Transcriptomics data have previously been linked to measurements of biomaterial properties in order to explain the biological mechanisms underlying these cell-biomaterial interactions. However, such multi-assay data are highly complex and therefore require careful and unambiguous characterization and storage. Failure to do so may result in loss of valuable data or erroneous data analysis. In order to start a new initiative that tackles these issues and offers a platform for innovative biomaterial development, we have created a publically accessible repository called The Compendium for Biomaterial Transcriptomics (cBiT, https://cbit.maastrichtuniversity.nl). cBiT is a data warehouse that gives users the opportunity to search through biomaterial-based transcriptomics data sets using a web interface. Data of interest can be selected and downloaded, together with associated measurements of material properties. Researchers are also invited to add their data to cBiT in order to further enhance its scientific value. We aim to make cBiT the hub for biomaterial-associated data, thereby enabling major contributions to a more efficient development of new materials with improved body integration. Here, we describe the structure of cBiT and provide a use case with clinically applied materials to demonstrate how cBiT can be used to correlate data across transcriptomics studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies

    Science.gov (United States)

    Schwarz, Alexandra; von Reumont, Björn M.; Erhart, Jan; Chagas, Andrezza C.; Ribeiro, José M. C.; Kotsyfakis, Michalis

    2013-01-01

    Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.—Schwarz, A., von Reumont, B.M., Erhart, J., Chagas, A.C., Ribeiro, J.M.C., Kotsyfakis, M. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. PMID:23964076

  6. Evolution of host specificity in monogeneans parasitizing African cichlid fish.

    Science.gov (United States)

    Mendlová, Monika; Šimková, Andrea

    2014-02-14

    The patterns and processes linked to the host specificity of parasites represent one of the central themes in the study of host-parasite interactions. We investigated the evolution and determinants of host specificity in gill monogeneans of Cichlidogyrus and Scutogyrus species parasitizing African freshwater fish of Cichlidae. We analyzed (1) the link between host specificity and parasite phylogeny, (2) potential morphometric correlates of host specificity (i.e. parasite body size and the morphometrics of the attachment apparatus), and (3) potential determinants of host specificity following the hypothesis of ecological specialization and the hypothesis of specialization on predictable resources (i.e. host body size and longevity were considered as measures of host predictability), and (4) the role of brooding behavior of cichlids in Cichlidogyrus and Scutogyrus diversification. No significant relationships were found between host specificity and phylogeny of Cichlidogyrus and Scutogyrus species. The mapping of host specificity onto the parasite phylogenetic tree revealed that an intermediate specialist parasitizing congeneric cichlid hosts represents the ancestral state for the Cichlidogyrus/Scutogyrus group. Only a weak relationship was found between the morphometry of the parasites' attachment apparatus and host specificity. Our study did not support the specialization on predictable resources or ecological specialization hypotheses. Nevertheless, host specificity was significantly related to fish phylogeny and form of parental care. Our results confirm that host specificity is not a derived condition for Cichlidogyrus/Scutogyrus parasites and may reflect other than historical constraints. Attachment apparatus morphometry reflects only partially (if at all) parasite adaptation to the host species, probably because of the morphological similarity of rapidly evolved cichlids (analyzed in our study). However, we showed that parental care behavior of cichlids may

  7. Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

    Science.gov (United States)

    Martin, Kathleen; Singh, Jugpreet; Hill, John H; Whitham, Steven A; Cannon, Steven B

    2016-08-11

    Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized. We report the transcriptional responses of a widely susceptible variety of common bean (Phaseolus vulgaris L., cultivar 'Stringless green refugee') to two BCMV strains, in a time-course experiment. We also report the genome sequence of a previously unreported BCMV strain. The interaction with the known strain NL1-Iowa causes moderate symptoms and large transcriptional responses, and the newly identified strain (Strain 2 or S2) causes severe symptoms and moderate transcriptional responses. The transcriptional profiles of host plants infected with the two isolates are distinct, and involve numerous differences in splice forms in particular genes, and pathway specific expression patterns. We identified differential host transcriptome response after infection of two different strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris L.). Virus infection initiated a suite of changes in gene expression level and patterns in the host plants. Pathways related to defense, gene regulation, metabolic processes, photosynthesis were specifically altered after virus infection. Results presented in this study can increase the understanding of host-pathogen interactions and provide resources for further investigations of the biological mechanisms in BCMV infection and defense.

  8. Differentiation of Symbiotic Cells and Endosymbionts in Medicago truncatula Nodulation Are Coupled to Two Transcriptome-Switches

    Science.gov (United States)

    Maunoury, Nicolas; Redondo-Nieto, Miguel; Bourcy, Marie; Van de Velde, Willem; Alunni, Benoit; Laporte, Philippe; Durand, Patricia; Agier, Nicolas; Marisa, Laetitia; Vaubert, Danièle; Delacroix, Hervé; Duc, Gérard; Ratet, Pascal; Aggerbeck, Lawrence; Kondorosi, Eva; Mergaert, Peter

    2010-01-01

    The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix− nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this “nodule-specific transcriptome” were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic

  9. Redescription of Temnocephala iheringi (Platyhelminthes: Temnocephalida based on specimens from Pomacea canaliculata (Mollusca: Ampullariidae of the state of Rio Grande do Sul, Brazil: the possible type host and type locality

    Directory of Open Access Journals (Sweden)

    Samantha A. Seixas

    2010-04-01

    Full Text Available The original description of Temnocephala iheringi Haswell, 1893 was based on specimens collected by Hermann von Ihering from undetermined ampullariid apple snails, which at that time were identified as Ampullaria sp., and sent to William H. Haswell, with the type locality simply indicated as Brazil. The type specimens studied by Haswell were not found in the scientific collections of Brazil, Europe or Australia, and should be considered lost. In 1941, Pereira & Cuocolo collected specimens from apple snails, identified as Pomacea lineata (Spix in Wagner, 1827, at two localities (Guaicurús and Salobra in the state of Mato Grosso do Sul, central Brazil. These specimens could not be located either and should, thus, be considered lost as well. Pomacea canaliculata (Lamarck, 1822, the main host of T. iheringi in southern Brazil, is known to have a geographical distribution that reaches Uruguay and 400 km beyond the province of Buenos Aires, Argentina. Three hundred and one mollusks were collected from 1999 to 2007. Temnocephalans found in the pallial cavity presented a greenish body pigmentation (adults and lacked eye pigment of any color, including the red-eye pigment, typical of Neotropical species of Temnocephala Blanchard, 1849; straight cirrus, with a thick band at base of the introvert' swelling; and a single, circular, asymmetric vaginal sphincter, wider in diameter in the posterior portion. As the species occurs concurrently with two other species, at least in P. canaliculata from Rio Grande do Sul, the eggs of T. iheringi could not be reliably distinguished. A redescription of the species is provided. A comparison of data from the present work with those of earlier papers published on T. iheringi from Argentina showed that the Argentinean specimens had the smallest measurements.

  10. Transcriptome Remodeling of Acinetobacter baumannii during Infection and Treatment.

    Science.gov (United States)

    Wright, Meredith S; Jacobs, Michael R; Bonomo, Robert A; Adams, Mark D

    2017-03-07

    -associated structures. In this study, genetic variation was shown to result in transcriptome remodeling at the level of individual patients and across phylogenetic groups. Differentially expressed genes include those related to capsule modification, iron acquisition, type I pili, and antibiotic resistance. Population level transcriptional variation reflects genome dynamics over longer evolutionary time periods, and convergent transcriptional changes support the adaptive significance of these regions. Transcriptional changes can be attributed to multiple types of genomic change, but insertion sequence mobilization had a predominant effect. The transcriptional effects of mutations that arise during infection highlight the rapid adaptation of A. baumannii during host exposure. Copyright © 2017 Wright et al.

  11. Unique intrahepatic transcriptomics profiles discriminate the clinical phases of a chronic HBV infection.

    Directory of Open Access Journals (Sweden)

    Jun Hou

    Full Text Available Chronic hepatitis B is a highly heterogeneous liver disease characterized by phases with fluctuations in viral replication and progressive liver damage in some, but not all infected individuals. Despite four decades of research, insight into host determinants underlying these distinct clinical phases-immunotolerant, immune active, inactive carrier, and HBeAg-negative hepatitis-remains elusive. We performed an in-depth transcriptome analysis of archived FFPE liver biopsies of each clinical phase to address host determinants associated with the natural history. Therefore, we determined, for the first time, intrahepatic global expression profiles of well-characterized chronic HBV patients at different clinical phases. Our data, obtained by microarray, demonstrate that B cells and NK/cytotoxic-related genes in the liver, including CD19, TNFRSF13C, GZMH, and KIR2DS3, were differentially expressed across the clinical HBV phases, which was confirmed by modular analysis and also Nanostring arrays in an independent cohort. Compared to the immunotolerant phase, 92 genes were differentially expressed in the liver during the immune active phase, 46 in the inactive carrier phase, and 71 in the HBeAg-negative phase. Furthermore, our study also revealed distinctive transcription of genes associated with cell cycle activity, NF-κB signaling, cytotoxic function and mitochondrial respiration between clinical phases. Our data define for the first time using microarray unique transcriptomes in the HBV-infected liver during consecutive clinical phases. We demonstrate that fluctuations of viral loads and liver damage coincide with fluctuations in the liver transcriptome and point to functional- immune and non-immune- components contributing to the clinical phenotype in patients.

  12. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae.

    Directory of Open Access Journals (Sweden)

    Feng Wang

    Full Text Available BACKGROUND: The rice white tip nematode Aphelenchoides besseyi, a devastating nematode whose genome has not been sequenced, is distributed widely throughout almost all the rice-growing regions of the world. The aims of the present study were to define the transcriptome of A. besseyi and to identify parasite-related, mortality-related or host resistance-overcoming genes in this nematode. METHODOLOGY AND PRINCIPAL FINDINGS: Using Solexa/Illumina sequencing, we profiled the transcriptome of mixed-stage populations of A. besseyi. A total of 51,270 transcripts without gaps were produced based on high-quality clean reads. Of all the A. besseyi transcripts, 9,132 KEGG Orthology assignments were annotated. Carbohydrate-active enzymes of glycoside hydrolases (GHs, glycosyltransferases (GTs, carbohydrate esterases (CEs and carbohydrate-binding modules (CBMs were identified. The presence of the A. besseyi GH45 cellulase gene was verified by in situ hybridization. Given that 13 unique A. besseyi potential effector genes were identified from 41 candidate effector homologs, further studies of these homologs are merited. Finally, comparative analyses were conducted between A. besseyi contigs and Caenorhabditis elegans genes to look for orthologs of RNAi phenotypes, neuropeptides and peptidases. CONCLUSIONS AND SIGNIFICANCE: The present results provide comprehensive insight into the genetic makeup of A. besseyi. Many of this species' genes are parasite related, nematode mortality-related or necessary to overcome host resistance. The generated transcriptome dataset of A. besseyi reported here lays the foundation for further studies of the molecular mechanisms related to parasitism and facilitates the development of new control strategies for this species.

  13. Pyrosequencing-Based Transcriptome Analysis of the Asian Rice Gall Midge Reveals Differential Response during Compatible and Incompatible Interaction

    Directory of Open Access Journals (Sweden)

    Jagadish S. Bentur

    2012-10-01

    Full Text Available The Asian rice gall midge (Orseolia oryzae is a major pest responsible for immense loss in rice productivity. Currently, very little knowledge exists with regard to this insect at the molecular level. The present study was initiated with the aim of developing molecular resources as well as identifying alterations at the transcriptome level in the gall midge maggots that are in a compatible (SH or in an incompatible interaction (RH with their rice host. Roche 454 pyrosequencing strategy was used to develop both transcriptomics and genomics resources that led to the identification of 79,028 and 85,395 EST sequences from gall midge biotype 4 (GMB4 maggots feeding on a susceptible and resistant rice variety, TN1 (SH and Suraksha (RH, respectively. Comparative transcriptome analysis of the maggots in SH and RH revealed over-representation of transcripts from proteolysis and protein phosphorylation in maggots from RH. In contrast, over-representation of transcripts for translation, regulation of transcription and transcripts involved in electron transport chain were observed in maggots from SH. This investigation, besides unveiling various mechanisms underlying insect-plant interactions, will also lead to a better understanding of strategies adopted by insects in general, and the Asian rice gall midge in particular, to overcome host defense.

  14. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host.

    Directory of Open Access Journals (Sweden)

    Tejas Bouklas

    2017-05-01

    Full Text Available Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and

  15. A portrait of the transcriptome of the neglected trematode, Fasciola gigantica--biological and biotechnological implications.

    Directory of Open Access Journals (Sweden)

    Neil D Young

    Full Text Available Fasciola gigantica (Digenea is an important foodborne trematode that causes liver fluke disease (fascioliasis in mammals, including ungulates and humans, mainly in tropical climatic zones of the world. Despite its socioeconomic impact, almost nothing is known about the molecular biology of this parasite, its interplay with its hosts, and the pathogenesis of fascioliasis. Modern genomic technologies now provide unique opportunities to rapidly tackle these exciting areas. The present study reports the first transcriptome representing the adult stage of F. gigantica (of bovid origin, defined using a massively parallel sequencing-coupled bioinformatic approach. From >20 million raw sequence reads, >30,000 contiguous sequences were assembled, of which most were novel. Relative levels of transcription were determined for individual molecules, which were also characterized (at the inferred amino acid level based on homology, gene ontology, and/or pathway mapping. Comparisons of the transcriptome of F. gigantica with those of other trematodes, including F. hepatica, revealed similarities in transcription for molecules inferred to have key roles in parasite-host interactions. Overall, the present dataset should provide a solid foundation for future fundamental genomic, proteomic, and metabolomic explorations of F. gigantica, as well as a basis for applied outcomes such as the development of novel methods of intervention against this neglected parasite.

  16. Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague.

    Science.gov (United States)

    Comer, Jason E; Sturdevant, Daniel E; Carmody, Aaron B; Virtaneva, Kimmo; Gardner, Donald; Long, Dan; Rosenke, Rebecca; Porcella, Stephen F; Hinnebusch, B Joseph

    2010-12-01

    A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.

  17. In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins.

    Science.gov (United States)

    Daily, Johanna P; Le Roch, Karine G; Sarr, Ousmane; Ndiaye, Daouda; Lukens, Amanda; Zhou, Yingyao; Ndir, Omar; Mboup, Soulyemane; Sultan, Ali; Winzeler, Elizabeth A; Wirth, Dyann F

    2005-04-01

    Infections with the human parasite Plasmodium falciparum continue to present a great challenge to global health. Fundamental questions regarding the molecular basis of virulence and immune evasion in P. falciparum have been only partially answered. Because of the parasite's intracellular location and complex life cycle, standard genetic approaches to the study of the pathogenesis of malaria have been limited. The present study presents a novel approach to the identification of the biological processes involved in host-pathogen interactions, one that is based on the analysis of in vivo P. falciparum transcripts. We demonstrate that a sufficient quantity of P. falciparum RNA transcripts can be derived from a small blood sample from infected patients for whole-genome microarray analysis. Overall, excellent correlation was observed between the transcriptomes derived from in vivo samples and in vitro samples with ring-stage P. falciparum 3D7 reference strain. However, gene families that encode surface proteins are overexpressed in vivo. Moreover, this analysis has identified a new family of hypothetical genes that may encode surface variant antigens. Comparative studies of the transcriptomes derived from in vivo samples and in vitro 3D7 samples may identify important strategies used by the pathogen for survival in the human host and highlight, for vaccine development, new candidate antigens that were not previously identified through the use of in vitro cultures.

  18. Transcriptomic and Innate Immune Responses to Yersinia pestis in the Lymph Node during Bubonic Plague▿ †

    Science.gov (United States)

    Comer, Jason E.; Sturdevant, Daniel E.; Carmody, Aaron B.; Virtaneva, Kimmo; Gardner, Donald; Long, Dan; Rosenke, Rebecca; Porcella, Stephen F.; Hinnebusch, B. Joseph

    2010-01-01

    A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid. PMID:20876291

  19. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    Science.gov (United States)

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  20. Transcriptome analyses to investigate symbiotic relationships between marine protists.

    Science.gov (United States)

    Balzano, Sergio; Corre, Erwan; Decelle, Johan; Sierra, Roberto; Wincker, Patrick; Da Silva, Corinne; Poulain, Julie; Pawlowski, Jan; Not, Fabrice

    2015-01-01

    Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria.

  1. Transcriptome analyses to investigate symbiotic relationships between marine protists.

    Directory of Open Access Journals (Sweden)

    Sergio eBalzano

    2015-03-01

    Full Text Available Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbour eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e. 454, we generated large Expressed Sequence Tag (EST datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata, two polycystines (Collozoum sp. and Spongosphaera streptacantha, and one phaeodarean (Aulacantha scolymantha. We assessed the main genetic features of the host/symbionts consortium (i.e. the holobiont transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp. and S. streptacantha but not in the non-symbiotic one (A. scolymantha. More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria.

  2. Stress-caused Anergy of Leukocytes towards Staphylococcal enterotoxin B and Exposure Transcriptome Signatures

    Science.gov (United States)

    2015-05-28

    ORIGINAL ARTICLE Stress-caused anergy of leukocytes towards Staphylococcal enterotoxin B and exposure transcriptome signatures S Muhie1, R Hammamieh2...immune response.1 Transcript mediators of compromised immunity remained suppressed in post-RASP leukocytes that are ex vivo exposed to Staphylococcal...state of post-RASP leukocytes to SEB.1 The SEB toxin is a category B select agent2 and a potent mitogen3 with affinity to polymorphic major

  3. Transcriptome Analysis of the Barley-Rhynchosporium secalis Interaction

    Directory of Open Access Journals (Sweden)

    Antonious Al-Daoude

    2014-12-01

    Full Text Available Leaf scald caused by the infection of Rhynchosporium secalis, is a worldwide crop disease resulting in significant loss of barley yield. In this study, a systematic sequencing of expressed sequence tags (ESTs was chosen to obtain a global picture of the assembly of genes involved in pathogenesis. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP display of complementary DNA (cDNA was utilized. Transcriptional changes of 140 ESTs were observed, of which 19 have no previously described function. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding classical pathogenesis-related (PR or genes that play a role in the signal transduction pathway. The expression analyses by a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR revealed that Rar1 and Rpg4 are defense inducible genes, and were consistent with the cDNA-AFLP data in their expression patterns. Hence, the here presented transcriptomic approach provides novel global catalogue of genes not currently represented in the EST databases.

  4. Characterization of exoplanet hosts

    Directory of Open Access Journals (Sweden)

    Valenti Jeff A.

    2013-04-01

    Full Text Available Spectroscopic analysis of exoplanet hosts and the stellar sample from which they are drawn provides abundances and other properties that quantitively constrain models of planet formation. The program Spectroscopy Made Easy (SME determines stellar parameters by fitting observed spectra, though line lists must be selected wisely. For giant planets, it is now well established that stars with higher metallicity are more likely to have detected companions. Stellar metallicity does not seem to affect the formation and/or migration of detectable planets less massive than Neptune, especially when considering only the most massive planet in the system. In systems with at least one planet less than 10 times the mass of Earth, the mass of the most massive planet increases dramatically with host star metallicity. This may reflect metallicity dependent timescales for core formation, envelope accretion, and/or migration into the detection zone.

  5. Hosting a Katrina Evacuee.

    Science.gov (United States)

    Hoagland, David

    2008-03-01

    No individual or institution anticipated the impact on the academic research community of hurricane Katrina. When Tulane physicist Wayne Reed asked me to host his research group just a day or two after the disaster, with no authorization or understanding of the commitment, I agreed immediately and then pondered implications. Fortunately, colleagues helped in making the commitment real, only the bureaucracy of my public university posing small hindrances. Industry was remarkably generous in providing Reed with significant ``loaner'' equipment, and amazingly, a suite of custom Reed experiments was running within weeks. At the end, the most productive collaborations for Reed seemed not to have been with my group, with its similar research, but to other groups at my institution, particularly the synthetic chemists, who gained access to methods previously unique to Tulane while offering samples previously unique to UMass. Quickly designed projects exploiting this match turned out remarkably productive. Although begun with trepidation, hosting of Reed had huge positive benefits to me and UMass, and I believe, also to Reed and Tulane. Some key lessons for the future: (i) industry has capacity and willingness to help academic research during disruption (ii) commitment of a host institution must be immediate, without a wait for formal approvals or arrangement of special funding -- delay leads only to discouragement, (iii) continuing academic progress of displaced students must come first, and (iv) intellectual synergy rather than overlap should be the basis for seeking a host. Lastly, NSF or other funding agency should consider a program directly addressing the research needs of unexpectedly disrupted academic scientists, and most particularly, graduate students who face greatly extended studies.

  6. Allergic Host Defenses

    OpenAIRE

    Palm, Noah W.; Rosenstein, Rachel K.; Medzhitov, Ruslan

    2012-01-01

    Allergies are generally thought to be a detrimental outcome of a mistargeted immune response that evolved to provide immunity to macro-parasites. Here we present arguments to suggest that allergic immunity plays an important role in host defense against noxious environmental substances, including venoms, hematophagous fluids, environmental xenobiotics and irritants. We argue that appropriately targeted allergic reactions are beneficial, although they can become detrimental when excessive. Fur...

  7. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  8. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level.

    Directory of Open Access Journals (Sweden)

    Karoline Marisch

    Full Text Available Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM DIGE. Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data

  9. Comparative Genomics and Transcriptomics of Propionibacterium acnes

    OpenAIRE

    Brzuszkiewicz, Elzbieta; Weiner, January; Wollherr, Antje; Thürmer, Andrea; Hüpeden, Jennifer; Lomholt, Hans B.; Kilian, Mogens; Gottschalk, Gerhard; Daniel, Rolf; Mollenkopf, Hans-Joachim; Meyer, Thomas F.; Brüggemann, Holger

    2011-01-01

    The anaerobic Gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced ...

  10. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  11. High-Resolution Transcriptome of Human Macrophages

    Science.gov (United States)

    Xue, Jia; Staratschek-Jox, Andrea; Vorholt, Daniela; Krebs, Wolfgang; Sommer, Daniel; Sander, Jil; Mertens, Christina; Nino-Castro, Andrea; Schmidt, Susanne V.; Schultze, Joachim L.

    2012-01-01

    Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease. PMID:23029029

  12. Spatially resolved and single cell transcriptomics

    OpenAIRE

    Salmén, Fredrik

    2017-01-01

    In recent years, massive parallel sequencing has revolutionized the field of biology and has provided us with a vast number of new discoveries in fields such as neurology, developmental biology and cancer research. A significant area is deciphering gene expression patterns, as well as other aspects of transcriptome information, such as the impact of splice variants and mutations on biological functions and disease development. By applying RNA-sequencing, one can extract this type of informati...

  13. Integrative analysis of the melanoma transcriptome

    OpenAIRE

    Berger, Michael F.; Levin, Joshua Z.; Vijayendran, Krishna; Sivachenko, Andrey; Adiconis, Xian; Maguire, Jared; Johnson, Laura A.; Robinson, James; Verhaak, Roel G.; Sougnez, Carrie; Onofrio, Robert C.; Ziaugra, Liuda; Cibulskis, Kristian; Laine, Elisabeth; Barretina, Jordi

    2010-01-01

    Global studies of transcript structure and abundance in cancer cells enable the systematic discovery of aberrations that contribute to carcinogenesis, including gene fusions, alternative splice isoforms, and somatic mutations. We developed a systematic approach to characterize the spectrum of cancer-associated mRNA alterations through integration of transcriptomic and structural genomic data, and we applied this approach to generate new insights into melanoma biology. Using paired-end massive...

  14. Crx broadly modulates the pineal transcriptome

    Science.gov (United States)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M.; Rohde, Kristian; Coon, Steven L.; Litman, Thomas; Rath, Martin F.; Møller, Morten; Klein, David C.

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. Here, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a >2-fold downregulation of 543 genes and a >2-fold upregulation of 745 genes (p pineal glands of wild-type animals; only eight of these were also day/night expressed in the Crx−/− pineal gland. However, in the Crx−/− pineal gland 41 genes exhibit differential night/day expression that is not seen in wild-type animals. These findings indicate that Crx broadly modulates the pineal transcriptome and also influences differential night/day gene expression in this tissue. Some effects of Crx deletion on the pineal transcriptome might be mediated by Hoxc4 upregulation. PMID:21797868

  15. Transposable elements in the Anopheles funestus transcriptome.

    Science.gov (United States)

    Fernández-Medina, Rita D; Carareto, Claudia M A; Struchiner, Cláudio J; Ribeiro, José M C

    2017-06-01

    Transposable elements (TEs) are present in most of the eukaryotic genomes and their impact on genome evolution is increasingly recognized. Although there is extensive information on the TEs present in several eukaryotic genomes, less is known about the expression of these elements at the transcriptome level. Here we present a detailed analysis regarding the expression of TEs in Anopheles funestus, the second most important vector of human malaria in Africa. Several transcriptionally active TE families belonging both to Class I and II were identified and characterized. Interestingly, we have identified a full-length putative active element (including the presence of full length TIRs in the genomic sequence) belonging to the hAT superfamily, which presents active members in other insect genomes. This work contributes to a comprehensive understanding of the landscape of transposable elements in A. funestus transcriptome. Our results reveal that TEs are abundant and diverse in the mosquito and that most of the TE families found in the genome are represented in the mosquito transcriptome, a fact that could indicate activity of these elements.The vast diversity of TEs expressed in A. funestus suggests that there is ongoing amplification of several families in this organism.

  16. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments.

    Science.gov (United States)

    Gahlan, Parul; Singh, Heikham Russiachand; Shankar, Ravi; Sharma, Niharika; Kumari, Anita; Chawla, Vandna; Ahuja, Paramvir Singh; Kumar, Sanjay

    2012-03-31

    Picrorhiza kurrooa Royle ex Benth. is an endangered plant species of medicinal importance. The medicinal property is attributed to monoterpenoids picroside I and II, which are modulated by temperature. The transcriptome information of this species is limited with the availability of few hundreds of expressed sequence tags (ESTs) in the public databases. In order to gain insight into temperature mediated molecular changes, high throughput de novo transcriptome sequencing and analyses were carried out at 15 °C and 25 °C, the temperatures known to modulate picrosides content. Using paired-end (PE) Illumina sequencing technology, a total of 20,593,412 and 44,229,272 PE reads were obtained after quality filtering for 15 °C and 25 °C, respectively. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 74,336 assembled transcript sequences were obtained, with an average coverage of 76.6 and average length of 439.5. Guanine-cytosine (GC) content was observed to be 44.6%, while the transcriptome exhibited abundance of trinucleotide simple sequence repeat (SSR; 45.63%) markers.Large scale expression profiling through "read per exon kilobase per million (RPKM)", showed changes in several biological processes and metabolic pathways including cytochrome P450s (CYPs), UDP-glycosyltransferases (UGTs) and those associated with picrosides biosynthesis. RPKM data were validated by reverse transcriptase-polymerase chain reaction using a set of 19 genes, wherein 11 genes behaved in accordance with the two expression methods. Study generated transcriptome of P. kurrooa at two different temperatures. Large scale expression profiling through RPKM showed major transcriptome changes in response to temperature reflecting alterations in major biological processes and metabolic pathways, and provided insight of GC content and SSR markers. Analysis also identified putative CYPs and UGTs that

  17. Transcriptome sequencing of Zhikong scallop (Chlamys farreri and comparative transcriptomic analysis with Yesso scallop (Patinopecten yessoensis.

    Directory of Open Access Journals (Sweden)

    Shan Wang

    Full Text Available BACKGROUND: Bivalves play an important role in the ecosystems they inhabit and represent an important food source all over the world. So far limited genetic research has focused on this group of animals largely due to the lack of sufficient genetic or genomic resources. Here, we performed de novo transcriptome sequencing to produce the most comprehensive expressed sequence tag resource for Zhikong scallop (Chlamys farreri, and conducted the first transcriptome comparison for scallops. RESULTS: In a single 454 sequencing run, 1,033,636 reads were produced and then assembled into 26,165 contigs. These contigs were then clustered into 24,437 isotigs and further grouped into 20,056 isogroups. About 47% of the isogroups showed significant matches to known proteins based on sequence similarity. Transcripts putatively involved in growth, reproduction and stress/immune-response were identified through Gene ontology (GO and KEGG pathway analyses. Transcriptome comparison with Yesso scallop (Patinopecten yessoensis revealed similar patterns of GO representation. Moreover, 38 putative fast-evolving genes were identified through analyzing the orthologous gene pairs between the two scallop species. More than 46,000 single nucleotide polymorphisms (SNPs and 350 simple sequence repeats (SSRs were also detected. CONCLUSION: Our study provides the most comprehensive transcriptomic resource currently available for C. farreri. Based on this resource, we performed the first large-scale transcriptome comparison between the two scallop species, C. farreri and P. yessoensis, and identified a number of putative fast-evolving genes, which may play an important role in scallop speciation and/or local adaptation. A large set of single nucleotide polymorphisms and simple sequence repeats were identified, which are ready for downstream marker development. This transcriptomic resource should lay an important foundation for future genetic or genomic studies on C. farreri.

  18. Epidemiology in mixed host populations

    National Research Council Canada - National Science Library

    Garrett, K A; Mundt, C C

    1999-01-01

    ABSTRACT Although plant disease epidemiology has focused on populations in which all host plants have the same genotype, mixtures of host genotypes are more typical of natural populations and offer...

  19. Can host density attenuate parasitism?

    National Research Council Canada - National Science Library

    Magalhães, L; Freitas, R; Dairain, A; De Montaudouin, X

    .... Considering that these parasites infect cockles through filtration activity, our first hypothesis was that high host density will have a dilution effect so that infection intensity decreases with host density...

  20. Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach Us

    Directory of Open Access Journals (Sweden)

    Hélène E. Hirbec

    2017-07-01

    Full Text Available Over the last decade, microglia have been acknowledged to be key players in central nervous system (CNS under both physiological and pathological conditions. They constantly survey the CNS environment and as immune cells, in pathological contexts, they provide the first host defense and orchestrate the immune response. It is well recognized that under pathological conditions microglia have both sequential and simultaneous, beneficial and detrimental effects. Cell-specific transcriptomics recently became popular in Neuroscience field allowing concurrent monitoring of the expression of numerous genes in a given cell population. Moreover, by comparing two or more conditions, these approaches permit to unbiasedly identify deregulated genes and pathways. A growing number of studies have thus investigated microglial transcriptome remodeling over the course of neuropathological conditions and highlighted the molecular diversity of microglial response to different diseases. In the present work, we restrict our review to microglia obtained directly from in vivo samples and not cell culture, and to studies using whole-genome strategies. We first critically review the different methods developed to decipher microglia transcriptome. In particular, we compare advantages and drawbacks of flow cytometry and laser microdissection to isolate pure microglia population as well as identification of deregulated microglial genes obtained via RNA sequencing (RNA-Seq vs. microarrays approaches. Second, we summarize insights obtained from microglia transcriptomes in traumatic brain and spinal cord injuries, pain and more chronic neurological conditions including Amyotrophic lateral sclerosis (ALS, Alzheimer disease (AD and Multiple sclerosis (MS. Transcriptomic responses of microglia in other non-neurodegenerative CNS disorders such as gliomas and sepsis are also addressed. Third, we present a comparison of the most activated pathways in each neuropathological condition

  1. Plantas daninhas hospedeiras alternativas de Colletotrichum guaranicola em cultivos de guaraná no Estado do Amazonas Alternative host weeds of Colletotrichum guaranicola in guarana crops in the State Amazonas

    Directory of Open Access Journals (Sweden)

    L.J. Miléo

    2007-12-01

    Full Text Available As plantas daninhas reduzem a produção de sementes de guaraná e podem hospedar microrganismos patogênicos, tornando-se potenciais fontes de inóculo. Este trabalho identificou espécies de plantas daninhas colonizadas pelo fungo Colletotrichum guaranicola em cultivos de guaranazeiro em quatro municípios do Estado do Amazonas. As plantas daninhas foram identificadas e a presença do fungo foi verificada por meio de isolamentos feitos a partir de fragmentos de folhas lesionadas. As espécies colonizadas por C. guaranicola foram Bidens bipinnata, Chloris sp., Clidemia capitellata, Cyperus flavus, Elephantopus scaber, Euphorbia brasiliensis, Hemidiodia sp., Hyptis lantanifolia, Paspalum conjugatum, Physalis angulata e Synedrella nodiflora, as quais podem representar uma fonte de inóculo do patógeno, além das plantas de guaraná. A diversidade de plantas daninhas, em cultivos de guaranazeiro, reforça a importância de estabelecer práticas de manejo dessas plantas, principalmente em Maués, onde ocorreu maior colonização das espécies de plantas daninhas pelo fungo.Weed infestation may reduce grain guarana crops yield and host plant pathogens becoming potential inoculum sources. This research identified weed species colonized by the fungus Colletotrichum guaranicola in the guarana crop in four counties in the state of Amazon. The weeds were identified fungi presence was observed by isolation from leaf fragments of leaves injured by the fungi. The weed species colonized by Colletotrichum guaranicola were Bidens bipinnata, Chloris sp., Clidemia capitellata, Cyperus flavus, Elephantopus scaber, Euphorbia brasiliensis, Hemidiodia sp., Hyptis lantanifolia, Paspalum conjugatum, Physalis angulata and Synedrella nodiflora,that may represent a strong potential of plant pathogen inoculum, along with the guarana plants. Weed diversity in guarana crop shows the importance of establishing management practices to control these weeds, mainly in the Maues

  2. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut.

    Science.gov (United States)

    Cramaro, Wibke J; Revets, Dominique; Hunewald, Oliver E; Sinner, Regina; Reye, Anna L; Muller, Claude P

    2015-10-28

    In Europe, Ixodes ricinus ticks are the most important vectors of diseases threatening humans, livestock, wildlife and companion animals. Nevertheless, genomic sequence information is missing and functional annotation of transcripts and proteins is limited. This lack of information is restricting studies of the vector and its interactions with pathogens and hosts. Here we present and integrate the first analysis of the I. ricinus genome with the transcriptome and proteome of the unfed I. ricinus midgut. Whole genome sequencing was performed on I. ricinus ticks and the sequences were de novo assembled. In parallel, I. ricinus ticks were dissected and the midgut transcriptome sequenced. Both datasets were integrated by transcript discovery analysis to identify putative genes and genome contigs were screened for homology. An alignment-based and a motif-search-based approach were combined for the annotation of the midgut transcriptome. Additionally, midgut proteins were identified and annotated by mass spectrometry with public databases and the in-house built transcriptome database as references and results were cross-validated. The de novo assembly of 1 billion DNA sequences to a reference genome of 393 Mb length provides an unprecedented insight into the I. ricinus genome. A homology search revealed sequences in the assembled genome contigs homologous to 89% of the I. scapularis genome scaffolds indicating coverage of most genome regions. We identified moreover 6,415 putative genes. More than 10,000 transcripts from naïve midgut were annotated with respect of predicted function and/or cellular localization. By combining an alignment-based with a motif-search-based annotation approach, we doubled the number of annotations throughout all functional categories. In addition, 574 gel spots were significantly identified by mass spectrometry (pricinus, paving the way for further in-depth analysis of the most important European disease vector and its interactions with

  3. Alterations in the host transcriptome in vitro following Rift Valley fever virus infection

    Science.gov (United States)

    2017-08-02

    segments were 121 converted into a multi-FASTA file. Bowtie213 was used to align trimmed paired-end reads to the viral 122 genomes. Counts of reads...intriguing given that our work was done using lung epithelial cells. Furthermore, non-280 muscle myosin heavy chain IIA (NMMHC-IIA), upregulated in our

  4. Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling

    OpenAIRE

    Bo eShu; Weicai eLi; Liqin eLiu; Yongzan eWei; Shengyou eShi

    2016-01-01

    Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate conten...

  5. The Potential for Hosted Payloads at NASA

    Science.gov (United States)

    Andraschko, Mark; Antol, Jeffrey; Baize, Rosemary; Horan, Stephen; Neil, Doreen; Rinsland, Pamela; Zaiceva, Rita

    2012-01-01

    The 2010 National Space Policy encourages federal agencies to actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including...hosting government capabilities on commercial spacecraft. NASA's Science Mission Directorate has taken an important step towards this goal by adding an option for hosted payload responses to its recent Announcement of Opportunity (AO) for Earth Venture-2 missions. Since NASA selects a significant portion of its science missions through a competitive process, it is useful to understand the implications that this process has on the feasibility of successfully proposing a commercially hosted payload mission. This paper describes some of the impediments associated with proposing a hosted payload mission to NASA, and offers suggestions on how these impediments might be addressed. Commercially hosted payloads provide a novel way to serve the needs of the science and technology demonstration communities at a fraction of the cost of a traditional Geostationary Earth Orbit (GEO) mission. The commercial communications industry launches over 20 satellites to GEO each year. By exercising this repeatable commercial paradigm of privately financed access to space with proven vendors, NASA can achieve science goals at a significantly lower cost than the current dedicated spacecraft and launch vehicle approach affords. Commercial hosting could open up a new realm of opportunities for NASA science missions to make measurements from GEO. This paper also briefly describes two GEO missions recommended by the National Academies of Science Earth Science Decadal Survey, the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission and the Precipitation and All-weather Temperature and Humidity (PATH) mission. Hosted payload missions recently selected for implementation by the Office of the Chief Technologist are also discussed. Finally, there are

  6. Comparing mechanisms of host manipulation across host and parasite taxa

    Science.gov (United States)

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  7. Transcriptomic analysis of porcine PBMCs in response to FMDV infection.

    Science.gov (United States)

    Zhao, Fu-Rong; Xie, Yin-Li; Liu, Ze-Zhong; Shao, Jun-Jun; Li, Shi-Fang; Zhang, Yong-Guang; Chang, Hui-Yun

    2017-09-01

    one or more of the three categories: biological process, cellular component, and molecular function. According to KEGG analysis,the main pathway was represented including protein processing in endoplasmic reticulum, phagosome, cell cycle and cytokine-cytokine receptor interaction. Some key DE genes related to immune process and signaling pathways were analyzed and quantified by RT-PCR. This is the first systematical transcriptome analysis of pig PBMCs infected by FMDV. These findings will help us better understand the host Cell-FMDV interaction and its relationship to pathogenesis, as well as contribute to the prevention and control of FMDV. Copyright © 2017. Published by Elsevier B.V.

  8. Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions

    Science.gov (United States)

    Casaburi, Giorgio; Goncharenko-Foster, Irina; Duscher, Alexandrea A.; Foster, Jamie S.

    2017-01-01

    Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity, or microgravity, represents a novel environment that can disrupt homeostasis of many physiological processes. Additionally, it is becoming increasingly clear that an organism’s microbiome is critical for host health and examining its resiliency in microgravity represents a new frontier for space biology research. In this study, we examine the impact of microgravity on the interactions between the squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri, which form a highly specific binary mutualism. First, animals inoculated with V. fischeri aboard the space shuttle showed effective colonization of the host light organ, the site of the symbiosis, during space flight. Second, RNA-Seq analysis of squid exposed to modeled microgravity conditions exhibited extensive differential gene expression in the presence and absence of the symbiotic partner. Transcriptomic analyses revealed in the absence of the symbiont during modeled microgravity there was an enrichment of genes and pathways associated with the innate immune and oxidative stress response. The results suggest that V. fischeri may help modulate the host stress responses under modeled microgravity. This study provides a window into the adaptive responses that the host animal and its symbiont use during modeled microgravity. PMID:28393904

  9. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue.

    Science.gov (United States)

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-09-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  10. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    Directory of Open Access Journals (Sweden)

    Willerslev Eske

    2010-03-01

    of solitary LTRs is correlated with the transcription of nearby protein-coding genes. Conclusions Presumably, the host organism negatively regulates proliferation of LTR retrotransposons. The finding of considerable transcriptional activity of retrotransposons suggests that part of this regulation is likely to take place at a post-transcriptional level. Alternatively, the transcriptional activity may signify a hitherto unrecognized activity level of retrotransposon proliferation. Our findings underline the usefulness of transcriptome data in elucidating dynamics in retrotransposon transcription.

  11. Whitefly genome expression reveals host-symbiont interaction in amino acid biosynthesis.

    Science.gov (United States)

    Upadhyay, Santosh Kumar; Sharma, Shailesh; Singh, Harpal; Dixit, Sameer; Kumar, Jitesh; Verma, Praveen C; Chandrashekar, K

    2015-01-01

    Whitefly (Bemisia tabaci) complex is a serious insect pest of several crop plants worldwide. It comprises several morphologically indistinguishable species, however very little is known about their genetic divergence and biosynthetic pathways. In the present study, we performed transcriptome sequencing of Asia 1 species of B. tabaci complex and analyzed the interaction of host-symbiont genes in amino acid biosynthetic pathways. We obtained about 83 million reads using Illumina sequencing that assembled into 72716 unitigs. A total of 21129 unitigs were annotated at stringent parameters. Annotated unitigs were mapped to 52847 gene ontology (GO) terms and 131 Kyoto encyclopedia of genes and genomes (KEGG) pathways. Expression analysis of the genes involved in amino acid biosynthesis pathways revealed the complementation between whitefly and its symbiont partner Candidatus Portiera aleyrodidarum. Most of the non-essential amino acids and intermediates of essential amino acid pathways were supplied by the host insect to its symbiont. The symbiont expressed the pathways for the essential amino acids arginine, threonine and tryptophan and the immediate precursors of valine, leucine, isoleucine and phenyl-alanine. High level expression of the amino acid transporters in the whitefly suggested the molecular mechanisms for the exchange of amino acids between the host and the symbiont. Our study provides a comprehensive transcriptome data for Asia 1 species of B. tabaci complex that focusses light on integration of host and symbiont genes in amino acid biosynthesis pathways.

  12. Whitefly genome expression reveals host-symbiont interaction in amino acid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Upadhyay

    Full Text Available Whitefly (Bemisia tabaci complex is a serious insect pest of several crop plants worldwide. It comprises several morphologically indistinguishable species, however very little is known about their genetic divergence and biosynthetic pathways. In the present study, we performed transcriptome sequencing of Asia 1 species of B. tabaci complex and analyzed the interaction of host-symbiont genes in amino acid biosynthetic pathways.We obtained about 83 million reads using Illumina sequencing that assembled into 72716 unitigs. A total of 21129 unitigs were annotated at stringent parameters. Annotated unitigs were mapped to 52847 gene ontology (GO terms and 131 Kyoto encyclopedia of genes and genomes (KEGG pathways. Expression analysis of the genes involved in amino acid biosynthesis pathways revealed the complementation between whitefly and its symbiont partner Candidatus Portiera aleyrodidarum. Most of the non-essential amino acids and intermediates of essential amino acid pathways were supplied by the host insect to its symbiont. The symbiont expressed the pathways for the essential amino acids arginine, threonine and tryptophan and the immediate precursors of valine, leucine, isoleucine and phenyl-alanine. High level expression of the amino acid transporters in the whitefly suggested the molecular mechanisms for the exchange of amino acids between the host and the symbiont.Our study provides a comprehensive transcriptome data for Asia 1 species of B. tabaci complex that focusses light on integration of host and symbiont genes in amino acid biosynthesis pathways.

  13. De Novo transcriptome assembly of Zingiber officinale cv. Suruchi of Odisha.

    Science.gov (United States)

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Kar, Basudeba; Nayak, Sanghamitra; Subudhi, Enketeswara

    2016-09-01

    Zingiber officinale Rosc., known as ginger, is an Asian crop, popularly used in every household kitchen and commercially used in bakery, beverage, food and pharmaceutical industries. The present study deals with de novo transcriptome assembly of an elite ginger cultivar Suruchi by next generation sequencing methodology. From the analysis 10.9 GB raw data was obtained which can be available in NCBI accession number SAMN03761185. We identified 41,969 transcripts using Trinity RNA-Seq from ginger rhizome of Suruchi variety from Odisha. The transcript length varied from 300 bp to 8404 bp with a total length of 3,96,40,526 bp and N50 of 1251 bp. To the best of our knowledge, this is the first transcriptome data of an elite ginger cultivar Suruchi released for Odisha state of India which will help molecular biologists to develop genetic markers for identification of cultivars.

  14. Pas de deux: An Intricate Dance of Anther Smut and Its Host.

    Science.gov (United States)

    Toh, Su San; Chen, Zehua; Rouchka, Eric C; Schultz, David J; Cuomo, Christina A; Perlin, Michael H

    2017-12-01

    The successful interaction between pathogen/parasite and host requires a delicate balance between fitness of the former and survival of the latter. To optimize fitness a parasite/pathogen must effectively create an environment conducive to reproductive success, while simultaneously avoiding or minimizing detrimental host defense response. The association between Microbotryum lychnidis-dioicae and its host, Silene latifolia, serves as an excellent model to examine such interactions. This fungus is part of a species complex that infects species of the Caryophyllaceae, replacing pollen with the fungal spores. In the current study, transcriptome analyses of the fungus and its host were conducted during discrete stages of bud development so as to identify changes in fungal gene expression that lead to spore development and to identify changes associated with infection in the host plant. In contrast to early biotrophic phase stages of infection for the fungus, the latter stages involve tissue necrosis and in the case of infected female flowers, further changes in the developmental program in which the ovary aborts and a pseudoanther is produced. Transcriptome analysis via Illumina RNA sequencing revealed enrichment of fungal genes encoding small secreted proteins, with hallmarks of effectors and genes found to be relatively unique to the Microbotryum species complex. Host gene expression analyses also identified interesting sets of genes up-regulated, including those involving stress response, host defense response and several agamous-like MADS-box genes (AGL61 and AGL80), predicted to interact and be involved in male gametophyte development. Copyright © 2017, G3: Genes, Genomes, Genetics.

  15. Weed hosts of cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vennila, S; Prasad, Y G; Prabhakar, M; Agarwal, Meenu; Sreedevi, G; Bambawale, O M

    2013-03-01

    The exotic cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) invaded India during 2006, and caused widespread infestation across all nine cotton growing states. P. solenopsis also infested weeds that aided its faster spread and increased severity across cotton fields. Two year survey carried out to document host plants of P. solenopsis between 2008 and 2010 revealed 27, 83, 59 and 108 weeds belonging to 8, 18, 10 and 32 families serving as alternate hosts at North, Central, South and All India cotton growing zones, respectively. Plant species of four families viz., Asteraceae, Amaranthaceae, Malvaceae and Lamiaceae constituted almost 50% of the weed hosts. While 39 weed species supported P. solenopsis multiplication during the cotton season, 37 were hosts during off season. Higher number of weeds as off season hosts (17) outnumbering cotton season (13) at Central over other zones indicated the strong carryover of the pest aided by weeds between two cotton seasons. Six, two and seven weed hosts had the extreme severity of Grade 4 during cotton, off and cotton + off seasons, respectively. Higher number of weed hosts of P. solenopsis were located at roadside: South (12) > Central (8) > North (3) zones. Commonality of weed hosts was higher between C+S zones, while no weed host was common between N+S zones. Paper furnishes the wide range of weed hosts of P. solenopsis, discusses their significance, and formulated general and specific cultural management strategies for nationwide implementation to prevent its outbreaks.

  16. Annotation of the transcriptome from Taenia pisiformis and its comparative analysis with three Taeniidae species.

    Science.gov (United States)

    Yang, Deying; Fu, Yan; Wu, Xuhang; Xie, Yue; Nie, Huaming; Chen, Lin; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yan, Ning; Zhang, Runhui; Zheng, Wanpeng; Yang, Guangyou

    2012-01-01

    Taenia pisiformis is one of the most common intestinal tapeworms and can cause infections in canines. Adult T. pisiformis (canines as definitive hosts) and Cysticercus pisiformis (rabbits as intermediate hosts) cause significant health problems to the host and considerable socio-economic losses as a consequence. No complete genomic data regarding T. pisiformis are currently available in public databases. RNA-seq provides an effective approach to analyze the eukaryotic transcriptome to generate large functional gene datasets that can be used for further studies. In this study, 2.67 million sequencing clean reads and 72,957 unigenes were generated using the RNA-seq technique. Based on a sequence similarity search with known proteins, a total of 26,012 unigenes (no redundancy) were identified after quality control procedures via the alignment of four databases. Overall, 15,920 unigenes were mapped to 203 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Through analyzing the glycolysis/gluconeogenesis and axonal guidance pathways, we achieved an in-depth understanding of the biochemistry of T. pisiformis. Here, we selected four unigenes at random and obtained their full-length cDNA clones using RACE PCR. Functional distribution characteristics were gained through comparing four cestode species (72,957 unigenes of T. pisiformis, 30,700 ESTs of T. solium, 1,058 ESTs of Eg+Em [conserved ESTs between Echinococcus granulosus and Echinococcus multilocularis]), with the cluster of orthologous groups (COG) and gene ontology (GO) functional classification systems. Furthermore, the conserved common genes in these four cestode species were obtained and aligned by the KEGG database. This study provides an extensive transcriptome dataset obtained from the deep sequencing of T. pisiformis in a non-model whole genome. The identification of conserved genes may provide novel approaches for potential drug targets and vaccinations against cestode infections. Research can now

  17. Annotation of the transcriptome from Taenia pisiformis and its comparative analysis with three Taeniidae species.

    Directory of Open Access Journals (Sweden)

    Deying Yang

    Full Text Available BACKGROUND: Taenia pisiformis is one of the most common intestinal tapeworms and can cause infections in canines. Adult T. pisiformis (canines as definitive hosts and Cysticercus pisiformis (rabbits as intermediate hosts cause significant health problems to the host and considerable socio-economic losses as a consequence. No complete genomic data regarding T. pisiformis are currently available in public databases. RNA-seq provides an effective approach to analyze the eukaryotic transcriptome to generate large functional gene datasets that can be used for further studies. METHODOLOGY/PRINCIPAL FINDINGS: In this study, 2.67 million sequencing clean reads and 72,957 unigenes were generated using the RNA-seq technique. Based on a sequence similarity search with known proteins, a total of 26,012 unigenes (no redundancy were identified after quality control procedures via the alignment of four databases. Overall, 15,920 unigenes were mapped to 203 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. Through analyzing the glycolysis/gluconeogenesis and axonal guidance pathways, we achieved an in-depth understanding of the biochemistry of T. pisiformis. Here, we selected four unigenes at random and obtained their full-length cDNA clones using RACE PCR. Functional distribution characteristics were gained through comparing four cestode species (72,957 unigenes of T. pisiformis, 30,700 ESTs of T. solium, 1,058 ESTs of Eg+Em [conserved ESTs between Echinococcus granulosus and Echinococcus multilocularis], with the cluster of orthologous groups (COG and gene ontology (GO functional classification systems. Furthermore, the conserved common genes in these four cestode species were obtained and aligned by the KEGG database. CONCLUSION: This study provides an extensive transcriptome dataset obtained from the deep sequencing of T. pisiformis in a non-model whole genome. The identification of conserved genes may provide novel approaches for potential drug

  18. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Ludovic Tailleux

    2008-01-01

    Full Text Available Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells.In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria. On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in oxidative stress, intracellular vesicle trafficking and phagosome acidification.This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.

  19. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  20. Analysis of Transcriptomic Dose Response Data in the ...

    Science.gov (United States)

    Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment

  1. Transcriptome complexity in a genome-reduced bacterium

    DEFF Research Database (Denmark)

    Güell, Marc; van Noort, Vera; Yus, Eva

    2009-01-01

    To study basic principles of transcriptome organization in bacteria, we analyzed one of the smallest self-replicating organisms, Mycoplasma pneumoniae. We combined strand-specific tiling arrays, complemented by transcriptome sequencing, with more than 252 spotted arrays. We detected 117 previousl...

  2. Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae.

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    Full Text Available The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia.

  3. Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae) Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae).

    Science.gov (United States)

    Wang, Yingying; Xiao, Da; Wang, Ran; Li, Fei; Zhang, Fan; Wang, Su

    2016-01-01

    The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes) were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia.

  4. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice.

    Directory of Open Access Journals (Sweden)

    Olusegun Oshota

    Full Text Available Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported.

  5. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection.

    Science.gov (United States)

    Zimmermann, Michael; Kogadeeva, Maria; Gengenbacher, Martin; McEwen, Gayle; Mollenkopf, Hans-Joachim; Zamboni, Nicola; Kaufmann, Stefan Hugo Ernst; Sauer, Uwe

    2017-01-01

    Nutrient acquisition from the host environment is crucial for the survival of intracellular pathogens, but conceptual and technical challenges limit our knowledge of pathogen diets. To overcome some of these technical roadblocks, we exploited an experimentally accessible model for early infection of human macrophages by Mycobacterium tuberculosis, the etiological agent of tuberculosis, to study host-pathogen interactions with a multi-omics approach. We collected metabolomics and complete transcriptome RNA sequencing (dual RNA-seq) data of the infected macrophages, integrated them in a genome-wide reaction pair network, and identified metabolic subnetworks in host cells and M. tuberculosis that are modularly regulated during infection. Up- and downregulation of these metabolic subnetworks suggested that the pathogen utilizes a wide range of host-derived compounds, concomitant with the measured metabolic and transcriptional changes in both bacteria and host. To quantify metabolic interactions between the host and intracellular pathogen, we used a combined genome-scale model of macrophage and M. tuberculosis metabolism constrained by the dual RNA-seq data. Metabolic flux balance analysis predicted coutilization of a total of 33 different carbon sources and enabled us to distinguish between the pathogen's substrates directly used as biomass precursors and the ones further metabolized to gain energy or to synthesize building blocks. This multiple-substrate fueling confers high robustness to interventions with the pathogen's metabolism. The presented approach combining multi-omics data as a starting point to simulate system-wide host-pathogen metabolic interactions is a useful tool to better understand the intracellular lifestyle of pathogens and their metabolic robustness and resistance to metabolic interventions. IMPORTANCE The nutrients consumed by intracellular pathogens are mostly unknown. This is mainly due to the challenge of disentangling host and pathogen

  6. Host language, integration language

    Directory of Open Access Journals (Sweden)

    Maria José dos Reis Grosso

    2011-12-01

    Full Text Available With the development of language research within the Council of Europe and in a context of a stronger multilingual and multicultural Europe, we are witnessing the emergence of terms that are imposed by the frequency of their usage or that (recreate and set re-interpreted concepts according to new social and educational situations. Such is the case of the host language, a concept which is object of analysis in this paper. The relevance of the issue is preceded by other issues related to concepts like native language, second language and foreign language, already comprised in Applied Linguistics and the Teaching of Modern Languages. Nowadays, the indispensability of studying these concepts is fundamental to the pedagogic practice as well as to the language syllabus and its planning. This idea is totally supported by the proposal of the "Common European Framework of Reference for Languages: Learning, Teaching Assessment (CEFR", which provides the appropriate guidelines at the discourse level.

  7. Host preference of the crapemyrtle aphid (Hemiptera: Aphididae) and host suitability of crapemyrtle cultivars.

    Science.gov (United States)

    Herbert, John J; Mizell, R F; McAuslane, H J

    2009-08-01

    Crapemyrtle aphids, Sarucallis kahawaluokalani (Kirkaldy), are a common pest of crapemyrtle (Lagerstroemia spp.) throughout the southeastern United States. Breeding programs have produced >100 crapemyrtle cultivars that vary in floral color, plant height, and disease resistance, but these programs did not evaluate insect resistance as part of the selection process. In this study, the host suitability of crapemyrtle cultivars and host preference of the crapemyrtle aphid were tested using the following seven crapemyrtle cultivars: 'Carolina Beauty', 'Byers Wonderful White', 'Apalachee', 'Lipan', 'Tuscarora', 'Sioux', and 'Natchez'. Host suitability or aphid preference may be affected by cultivar attributes of plant parentage, source of Lagerstroemia fauriei Koehne germplasm, and mature plant height. Host suitability was evaluated by measuring daily and total fecundity under no-choice conditions. Host preference of the crapemyrtle aphid was tested in a choice experiment that used eight crapemyrtle cultivars; the seven used in the no-choice experiment plus Lagerstroemia speciosa L. In the no-choice experiment, aphid daily fecundity was not different among the crapemyrtle cultivars, but aphid total fecundity was different for the factors cultivar, plant parentage, source of germplasm, and mature plant height. Crapemyrtle aphid host preference in the choice experiment indicated that there were differences among cultivar, parentage, source of germplasm, and mature plant height. Results from this study are useful for plant breeding programs that have the objective of producing aphid resistant cultivars.

  8. Transcriptome profiles of the protoscoleces of Echinococcus granulosus reveal that excretory-secretory products are essential to metabolic adaptation.

    Directory of Open Access Journals (Sweden)

    Wei Pan

    2014-12-01

    Full Text Available Cystic hydatid disease (CHD is caused by the larval stages of the cestode and affects humans and domestic animals worldwide. Protoscoleces (PSCs are one component of the larval stages that can interact with both definitive and intermediate hosts. Previous genomic and transcriptomic data have provided an overall snapshot of the genomics of the growth and development of this parasite. However, our understanding of how PSCs subvert the immune response of hosts and maintains metabolic adaptation remains unclear. In this study, we used Roche 454 sequencing technology and in silico secretome analysis to explore the transcriptome profiles of the PSCs from E. granulosus and elucidate the potential functions of the excretory-secretory proteins (ESPs released by the parasite.A large number of nonredundant sequences as unigenes were generated (26,514, of which 22,910 (86.4% were mapped to the newly published E. granulosus genome and 17,705 (66.8% were distributed within the coding sequence (CDS regions. Of the 2,280 ESPs predicted from the transcriptome, 138 ESPs were inferred to be involved in the metabolism of carbohydrates, while 124 ESPs were inferred to be involved in the metabolism of protein. Eleven ESPs were identified as intracellular enzymes that regulate glycolysis/gluconeogenesis (GL/GN pathways, while a further 44 antigenic proteins, 25 molecular chaperones and four proteases were highly represented. Many proteins were also found to be significantly enriched in development-related signaling pathways, such as the TGF-β receptor pathways and insulin pathways.This study provides valuable information on the metabolic adaptation of parasites to their hosts that can be used to aid the development of novel intervention targets for hydatid treatment and control.

  9. Comparing human and macaque placental transcriptomes to disentangle preterm birth pathology from gestational age effects.

    Science.gov (United States)

    Eidem, Haley R; Rinker, David C; Ackerman, William E; Buhimschi, Irina A; Buhimschi, Catalin S; Dunn-Fletcher, Caitlin; Kallapur, Suhas G; Pavličev, Mihaela; Muglia, Louis J; Abbot, Patrick; Rokas, Antonis

    2016-05-01

    comparing human sPTB and term transcriptomes with GA-matched control transcriptomes from a closely related species, this study disentangled the confounding effects of sPTB pathology and GA, leading to the identification of 29 promising sPTB-specific candidate genes and 37 genes potentially related to GA effects. The apparent similarity in functions of the sPTB and GA candidates may suggest that the effects of sPTB and GA do not correspond to biologically distinct processes. Alternatively, it may reflect the poor state of knowledge of the transcriptional landscape underlying placental development and disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Transcriptome analysis of embryo maturation in maize.

    Science.gov (United States)

    Teoh, Keat Thomas; Requesens, Deborah Vicuna; Devaiah, Shivakumar P; Johnson, Daniel; Huang, Xiuzhen; Howard, John A; Hood, Elizabeth E

    2013-02-04

    Maize is one of the most important crops in the world. With the exponentially increasing population and the need for ever increased food and feed production, an increased yield of maize grain (as well as rice, wheat and other grains) will be critical. Maize grain development is understood from the perspective of morphology, hormone responses, and storage reserve accumulation. This includes various studies on gene expression during embryo development and maturation but a global study of gene expression of the embryo has not been possible until recently. Transcriptome analysis is a powerful new tool that can be used to understand the genetic basis of embryo maturation. We undertook a transcriptomic analysis of normal maturing embryos at 15, 21 and 27 days after pollination (DAP), of one elite maize germplasm line that was utilized in crosses to transgenic plants. More than 19,000 genes were analyzed by this method and the challenge was to select subsets of genes that are vitally important to embryo development and maturation for the initial analysis. We describe the changes in expression for genes relating to primary metabolic pathways, DNA synthesis, late embryogenesis proteins and embryo storage proteins, shown through transcriptome analysis and confirmed levels of transcription for some genes in the transcriptome using qRT-PCR. Numerous genes involved in embryo maturation have been identified, many of which show changes in expression level during the progression from 15 to 27 DAP. An expected array of genes involved in primary metabolism was identified. Moreover, more than 30% of transcripts represented un-annotated genes, leaving many functions to be discovered. Of particular interest are the storage protein genes, globulin-1, globulin-2 and an unidentified cupin family gene. When expressing foreign proteins in maize, the globulin-1 promoter is most often used, but this cupin family gene has much higher expression and may be a better candidate for foreign gene

  11. The adult boar testicular and epididymal transcriptomes

    Directory of Open Access Journals (Sweden)

    Guyonnet Benoît

    2009-08-01

    Full Text Available Abstract Background Mammalians gamete production takes place in the testis but when they exit this organ, although spermatozoa have acquired a specialized and distinct morphology, they are immotile and infertile. It is only after their travel in the epididymis that sperm gain their motility and fertility. Epididymis is a crescent shaped organ adjacent to the testis that can be divided in three gross morphological regions, head (caput, body (corpus and tail (cauda. It contains a long and unique convoluted tubule connected to the testis via the efferent ducts and finished by joining the vas deferens in its caudal part. Results In this study, the testis, the efferent ducts (vas efferens, VE, nine distinct successive epididymal segments and the deferent duct (vas deferens, VD of four adult boars of known fertility were isolated and their mRNA extracted. The gene expression of each of these samples was analyzed using a pig generic 9 K nylon microarray (AGENAE program; GEO accession number: GPL3729 spotted with 8931 clones derived from normalized cDNA banks from different pig tissues including testis and epididymis. Differentially expressed transcripts were obtained with moderated t-tests and F-tests and two data clustering algorithms based either on partitioning around medoid (top down PAM or hierarchical clustering (bottom up HCL were combined for class discovery and gene expression analysis. Tissue clustering defined seven transcriptomic units: testis, vas efferens and five epididymal transcriptomic units. Meanwhile transcripts formed only four clusters related to the tissues. We have then used a specific statistical method to sort out genes specifically over-expressed (markers in testis, VE or in each of the five transcriptomic units of the epididymis (including VD. The specific regional expression of some of these genes was further validated by PCR and Q-PCR. We also searched for specific pathways and functions using available gene ontology

  12. Crx broadly modulates the pineal transcriptome

    DEFF Research Database (Denmark)

    Rovsing, Louise; Clokie, Samuel; Bustos, Diego M

    2011-01-01

    Cone-rod homeobox (Crx) encodes Crx, a transcription factor expressed selectively in retinal photoreceptors and pinealocytes, the major cell type of the pineal gland. In this study, the influence of Crx on the mammalian pineal gland was studied by light and electron microscopy and by use...... of microarray and qRTPCR technology, thereby extending previous studies on selected genes (Furukawa et al. 1999). Deletion of Crx was not found to alter pineal morphology, but was found to broadly modulate the mouse pineal transcriptome, characterized by a > 2-fold down-regulation of 543 genes and a > 2-fold up......-regulation of 745 genes (p pineal glands of wild...

  13. Multi-Omics Studies towards Novel Modulators of Influenza A Virus–Host Interaction

    Directory of Open Access Journals (Sweden)

    Sandra Söderholm

    2016-09-01

    Full Text Available Human influenza A viruses (IAVs cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.

  14. Transcriptome-Wide Analysis of Hepatitis B Virus-Mediated Changes to Normal Hepatocyte Gene Expression.

    Directory of Open Access Journals (Sweden)

    Jason Lamontagne

    2016-02-01

    Full Text Available Globally, a chronic hepatitis B virus (HBV infection remains the leading cause of primary liver cancer. The mechanisms leading to the development of HBV-associated liver cancer remain incompletely understood. In part, this is because studies have been limited by the lack of effective model systems that are both readily available and mimic the cellular environment of a normal hepatocyte. Additionally, many studies have focused on single, specific factors or pathways that may be affected by HBV, without addressing cell physiology as a whole. Here, we apply RNA-seq technology to investigate transcriptome-wide, HBV-mediated changes in gene expression to identify single factors and pathways as well as networks of genes and pathways that are affected in the context of HBV replication. Importantly, these studies were conducted in an ex vivo model of cultured primary hepatocytes, allowing for the transcriptomic characterization of this model system and an investigation of early HBV-mediated effects in a biologically relevant context. We analyzed differential gene expression within the context of time-mediated gene-expression changes and show that in the context of HBV replication a number of genes and cellular pathways are altered, including those associated with metabolism, cell cycle regulation, and lipid biosynthesis. Multiple analysis pipelines, as well as qRT-PCR and an independent, replicate RNA-seq analysis, were used to identify and confirm differentially expressed genes. HBV-mediated alterations to the transcriptome that we identified likely represent early changes to hepatocytes following an HBV infection, suggesting potential targets for early therapeutic intervention. Overall, these studies have produced a valuable resource that can be used to expand our understanding of the complex network of host-virus interactions and the impact of HBV-mediated changes to normal hepatocyte physiology on viral replication.

  15. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    Full Text Available The cereal cyst nematode (CCN, Heterodera avenae is a major pest of wheat (Triticum spp that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy revealed fewer glycoside hydrolases (GHs but more glycosyl transferases (GTs and carbohydrate esterases (CEs when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  16. The Transcriptome of Leishmania major Developmental Stages in Their Natural Sand Fly Vector

    Directory of Open Access Journals (Sweden)

    Ehud Inbar

    2017-04-01

    Full Text Available The life cycle of the Leishmania parasite in the sand fly vector involves differentiation into several distinctive forms, each thought to represent an adaptation to specific microenvironments in the midgut of the fly. Based on transcriptome sequencing (RNA-Seq results, we describe the first high-resolution analysis of the transcriptome dynamics of four distinct stages of Leishmania major as they develop in a natural vector, Phlebotomus duboscqi. The early transformation from tissue amastigotes to procyclic promastigotes in the blood-fed midgut was accompanied by the greatest number of differentially expressed genes, including the downregulation of amastins, and upregulation of multiple cell surface proteins, sugar and amino acid transporters, and genes related to glucose metabolism and cell cycle progression. The global changes accompanying post-blood meal differentiation of procyclic promastigotes to the nectomonad and metacyclic stages were less extensive, though each displayed a unique signature. The transcriptome of nectomonads, which has not been studied previously, revealed changes consistent with cell cycle arrest and the upregulation of genes associated with starvation and stress, including autophagic pathways of protein recycling. Maturation to the infective, metacyclic stage was accompanied by changes suggesting preadaptation to the intracellular environment of the mammalian host, demonstrated by the amastigote-like profiles of surface proteins and metabolism-related genes. Finally, a direct comparison between sand fly-derived and culture-derived metacyclics revealed a reassuring similarity between the two forms, with the in vivo forms distinguished mainly by a stronger upregulation of transcripts associated with nutrient stress.

  17. Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics

    Science.gov (United States)

    Wittekindt, Nicola E.; Padhi, Abinash; Schuster, Stephan C.; Qi, Ji; Zhao, Fangqing; Tomsho, Lynn P.; Kasson, Lindsay R.; Packard, Michael; Cross, Paul C.; Poss, Mary

    2010-01-01

    The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals.

  18. Nodeomics: pathogen detection in vertebrate lymph nodes using meta-transcriptomics.

    Directory of Open Access Journals (Sweden)

    Nicola E Wittekindt

    Full Text Available The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals.

  19. Colorectal cancer stages transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Tianyao Huo

    Full Text Available Colorectal cancer (CRC is the third most common cancer and the second leading cause of cancer-related deaths in the United States. The purpose of this study was to evaluate the gene expression differences in different stages of CRC. Gene expression data on 433 CRC patient samples were obtained from The Cancer Genome Atlas (TCGA. Gene expression differences were evaluated across CRC stages using linear regression. Genes with p≤0.001 in expression differences were evaluated further in principal component analysis and genes with p≤0.0001 were evaluated further in gene set enrichment analysis. A total of 377 patients with gene expression data in 20,532 genes were included in the final analysis. The numbers of patients in stage I through IV were 59, 147, 116 and 55, respectively. NEK4 gene, which encodes for NIMA related kinase 4, was differentially expressed across the four stages of CRC. The stage I patients had the highest expression of NEK4 genes, while the stage IV patients had the lowest expressions (p = 9*10-6. Ten other genes (RNF34, HIST3H2BB, NUDT6, LRCh4, GLB1L, HIST2H4A, TMEM79, AMIGO2, C20orf135 and SPSB3 had p value of 0.0001 in the differential expression analysis. Principal component analysis indicated that the patients from the 4 clinical stages do not appear to have distinct gene expression pattern. Network-based and pathway-based gene set enrichment analyses showed that these 11 genes map to multiple pathways such as meiotic synapsis and packaging of telomere ends, etc. Ten of these 11 genes were linked to Gene Ontology terms such as nucleosome, DNA packaging complex and protein-DNA interactions. The protein complex-based gene set analysis showed that four genes were involved in H2AX complex II. This study identified a small number of genes that might be associated with clinical stages of CRC. Our analysis was not able to find a molecular basis for the current clinical staging for CRC based on the gene expression patterns.

  20. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome.

    Science.gov (United States)

    Wenger, Yvan; Galliot, Brigitte

    2013-03-25

    Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48'909 unique sequences including splice variants, representing approximately 24'450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10'597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11'270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events.

  1. Transcriptome profiling of citrus fruit response to huanglongbing disease.

    Directory of Open Access Journals (Sweden)

    Federico Martinelli

    Full Text Available Huanglongbing (HLB or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB-affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of photosynthesis and in ATP synthesis. Activation of protein degradation and misfolding processes were observed at the transcriptomic level. Transcripts for heat shock proteins were down-regulated at all disease stages, resulting in further protein misfolding. HLB strongly affected pathways involved in source-sink communication, including sucrose and starch metabolism and hormone synthesis and signaling. Transcription of several genes involved in the synthesis and signal transduction of cytokinins and gibberellins was repressed while that of genes involved in ethylene pathways was induced. CaLas infection triggered a response via both the salicylic acid and jasmonic acid pathways and increased the transcript abundance of several members of the WRKY family of transcription factors. Findings focused on the fruit provide valuable insight to understanding the mechanisms of the HLB-induced fruit disorder and eventually developing methods based on small molecule applications to mitigate its devastating effects on fruit production.

  2. Transcriptomic Study on Ovine Immune Responses to Fasciola hepatica Infection.

    Directory of Open Access Journals (Sweden)

    Yan Fu

    2016-09-01

    Full Text Available Fasciola hepatica is not only responsible for major economic losses in livestock farming, but is also a major food-borne zoonotic agent, with 180 million people being at risk of infection worldwide. This parasite is sophisticated in manipulating the hosts' immune system to benefit its own survival. A better understanding of the mechanisms underpinning this immunomodulation is crucial for the development of control strategies such as vaccines.This in vivo study investigated the global gene expression changes of ovine peripheral blood mononuclear cells (PBMC response to both acute & chronic infection of F. hepatica, and revealed 6490 and 2364 differential expressed genes (DEGS, respectively. Several transcriptional regulators were predicted to be significantly inhibited (e.g. IL12 and IL18 or activated (e.g. miR155-5p in PBMC during infection. Ingenuity Pathway Analysis highlighted a series of immune-associated pathways involved in the response to infection, including 'Transforming Growth Factor Beta (TGFβ signaling', 'Production of Nitric Oxide in Macrophages', 'Toll-like Receptor (TLRs Signaling', 'Death Receptor Signaling' and 'IL17 Signaling'. We hypothesize that activation of pathways relevant to fibrosis in ovine chronic infection, may differ from those seen in cattle. Potential mechanisms behind immunomodulation in F. hepatica infection are a discussed.In conclusion, the present study performed global transcriptomic analysis of ovine PBMC, the primary innate/adaptive immune cells, in response to infection with F. hepatica, using deep-sequencing (RNAseq. This dataset provides novel information pertinent to understanding of the pathological processes in fasciolosis, as well as a base from which to further refine development of vaccines.

  3. Mistletoes as parasites: Host specificity and speciation.

    Science.gov (United States)

    Norton, D A; Carpenter, M A

    1998-03-01

    Recent research on parasite evolution has highlighted the importance of host specialization in speciation, either through host-switching or cospeciation. Many parasites show common patterns of host specificity, with higher host specificity where host abundance is high and reliable, phylogenetically conservative host specificity, and formation of races on or in different host species. Recent advances in our understanding of host specificity and speciation patterns in a variety of animal parasites provides valuable insights into the evolutionary biology of mistletoes.

  4. Identification of fruit volatiles from green hawthorn (Crataegus viridis) and blueberry hawthorn (Crataegus brachyacantha) host plants attractive to different phenotypes of Rhagoletis pomonella flies in the southern United States.

    Science.gov (United States)

    Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2011-09-01

    The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. In a companion paper, we showed that R. pomonella flies infesting two different mayhaw species (Crataegus opaca and C. aestivalis) can discriminate between volatile blends developed for each host fruit, and that these blends are different from previously constructed blends for northern fly populations that infest domestic apple (Malus domestica), downy hawthorn (Crataegus mollis), and flowering dogwood (Cornus florida). Here, we show by using coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays, that two additional southern hawthorn fly populations infesting C. viridis (green hawthorn) and C. brachyacantha (blueberry hawthorn) also can discriminate between volatile blends for each host fruit type. A 9-component blend was developed for C. viridis (3-methylbutan-1-ol [5%], butyl butanoate [19.5%], propyl hexanoate [1.5%], butyl hexanoate [24%], hexyl butanoate [24%], pentyl hexanoate [2.5%], 1-octen-3-ol [0.5%], pentyl butanoate [2.5%], and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) [20.5%]) and an 8-component blend for C. brachyacantha (3-methylbutan-1-ol [0.6%], butyl acetate [50%], pentyl acetate [3.5%], butyl butanoate [9%], butyl hexanoate [16.8%], hexyl butanoate [16.8%], 1-octen-3-ol [0.3%], and pentyl butanoate [3%]). Crataegus viridis and C. brachyacantha-origin flies showed significantly higher levels of upwind oriented flight to their natal blend in flight tunnel assays compared to the alternate, non-natal blend and previously developed northern host plant blends. The presence of DMNT in C. viridis and butyl acetate in C. brachyacantha appeared to be largely responsible for driving the differential response. This sharp behavioral distinction underscores the diversity of odor response phenotypes in the southern USA, points to possible host race formation in these

  5. Parallel short sequence assembly of transcriptomes.

    Science.gov (United States)

    Jackson, Benjamin G; Schnable, Patrick S; Aluru, Srinivas

    2009-01-30

    The de novo assembly of genomes and transcriptomes from short sequences is a challenging problem. Because of the high coverage needed to assemble short sequences as well as the overhead of modeling the assembly problem as a graph problem, the methods for short sequence assembly are often validated using data from BACs or small sized prokaryotic genomes. We present a parallel method for transcriptome assembly from large short sequence data sets. Our solution uses a rigorous graph theoretic framework and tames the computational and space complexity using parallel computers. First, we construct a distributed bidirected graph that captures overlap information. Next, we compact all chains in this graph to determine long unique contigs using undirected parallel list ranking, a problem for which we present an algorithm. Finally, we process this compacted distributed graph to resolve unique regions that are separated by repeats, exploiting the naturally occurring coverage variations arising from differential expression. We demonstrate the validity of our method using a synthetic high coverage data set generated from the predicted coding regions of Zea mays. We assemble 925 million sequences consisting of 40 billion nucleotides in a few minutes on a 1024 processor Blue Gene/L. Our method is the first fully distributed method for assembling a non-hierarchical short sequence data set and can scale to large problem sizes.

  6. The Human Blood Metabolome-Transcriptome Interface.

    Directory of Open Access Journals (Sweden)

    Jörg Bartel

    2015-06-01

    Full Text Available Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the 'human blood metabolome-transcriptome interface' (BMTI. Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease.

  7. Single-species microarrays and comparative transcriptomics.

    Directory of Open Access Journals (Sweden)

    Frédéric J J Chain

    Full Text Available BACKGROUND: Prefabricated expression microarrays are currently available for only a few species but methods have been proposed to extend their application to comparisons between divergent genomes. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that the hybridization intensity of genomic DNA is a poor basis on which to select unbiased probes on Affymetrix expression arrays for studies of comparative transcriptomics, and that doing so produces spurious results. We used the Affymetrix Xenopus laevis microarray to evaluate expression divergence between X. laevis, X. borealis, and their F1 hybrids. When data are analyzed with probes that interrogate only sequences with confirmed identity in both species, we recover results that differ substantially analyses that use genomic DNA hybridizations to select probes. CONCLUSIONS/SIGNIFICANCE: Our findings have implications for the experimental design of comparative expression studies that use single-species microarrays, and for our understanding of divergent expression in hybrid clawed frogs. These findings also highlight important limitations of single-species microarrays for studies of comparative transcriptomics of polyploid species.

  8. The floral transcriptome of Eucalyptus grandis.

    Science.gov (United States)

    Vining, Kelly J; Romanel, Elisson; Jones, Rebecca C; Klocko, Amy; Alves-Ferreira, Marcio; Hefer, Charles A; Amarasinghe, Vindhya; Dharmawardhana, Palitha; Naithani, Sushma; Ranik, Martin; Wesley-Smith, James; Solomon, Luke; Jaiswal, Pankaj; Myburg, Alexander A; Strauss, Steven H

    2015-06-01

    As a step toward functional annotation of genes required for floral initiation and development within the Eucalyptus genome, we used short read sequencing to analyze transcriptomes of floral buds from early and late developmental stages, and compared these with transcriptomes of diverse vegetative tissues, including leaves, roots, and stems. A subset of 4807 genes (13% of protein-coding genes) were differentially expressed between floral buds of either stage and vegetative tissues. A similar proportion of genes were differentially expressed among all tissues. A total of 479 genes were differentially expressed between early and late stages of floral development. Gene function enrichment identified 158 gene ontology classes that were overrepresented in floral tissues, including 'pollen development' and 'aromatic compound biosynthetic process'. At least 40 floral-dominant genes lacked functional annotations and thus may be novel floral transcripts. We analyzed several genes and gene families in depth, including 49 putative biomarkers of floral development, the MADS-box transcription factors, 'S-domain'-receptor-like kinases, and selected gene family members with phosphatidylethanolamine-binding protein domains. Expanded MADS-box gene subfamilies in Eucalyptus grandis included SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), SEPALLATA (SEP) and SHORT VEGETATIVE PHASE (SVP) Arabidopsis thaliana homologs. These data provide a rich resource for functional and evolutionary analysis of genes controlling eucalypt floral development, and new tools for breeding and biotechnology. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  10. Integrative analysis of the melanoma transcriptome.

    Science.gov (United States)

    Berger, Michael F; Levin, Joshua Z; Vijayendran, Krishna; Sivachenko, Andrey; Adiconis, Xian; Maguire, Jared; Johnson, Laura A; Robinson, James; Verhaak, Roel G; Sougnez, Carrie; Onofrio, Robert C; Ziaugra, Liuda; Cibulskis, Kristian; Laine, Elisabeth; Barretina, Jordi; Winckler, Wendy; Fisher, David E; Getz, Gad; Meyerson, Matthew; Jaffe, David B; Gabriel, Stacey B; Lander, Eric S; Dummer, Reinhard; Gnirke, Andreas; Nusbaum, Chad; Garraway, Levi A

    2010-04-01

    Global studies of transcript structure and abundance in cancer cells enable the systematic discovery of aberrations that contribute to carcinogenesis, including gene fusions, alternative splice isoforms, and somatic mutations. We developed a systematic approach to characterize the spectrum of cancer-associated mRNA alterations through integration of transcriptomic and structural genomic data, and we applied this approach to generate new insights into melanoma biology. Using paired-end massively parallel sequencing of cDNA (RNA-seq) together with analyses of high-resolution chromosomal copy number data, we identified 11 novel melanoma gene fusions produced by underlying genomic rearrangements, as well as 12 novel readthrough transcripts. We mapped these chimeric transcripts to base-pair resolution and traced them to their genomic origins using matched chromosomal copy number information. We also used these data to discover and validate base-pair mutations that accumulated in these melanomas, revealing a surprisingly high rate of somatic mutation and lending support to the notion that point mutations constitute the major driver of melanoma progression. Taken together, these results may indicate new avenues for target discovery in melanoma, while also providing a template for large-scale transcriptome studies across many tumor types.

  11. An American mink (Neovison vison) transcriptome.

    Science.gov (United States)

    Christensen, Knud; Anistoroaei, Razvan

    2014-04-01

    HiSeq2000 Illumina pair-end sequenced transcript data originating from a pool of four different tissues of a wild-type American mink yielded approximately 90 Gb of raw data. Subsequently, unique contigs were assembled by a combined approach using velvet and phrap. Of these assembled contigs, about 136 000 match the dog genome and nearly 30 000 contigs match the human transcriptome at more than 17 000 unique gene locations. Gene annotation for these contigs was performed employing custom-made scripts run in combination with comparative sequence similarity search and alignment in the dog and human genome using blast algorithms. Transcripts representing five genes known to be associated with pigmentation were reliably aligned against large mink genomic contigs derived from BAC clones. Sequence comparison between transcript and genomic data revealed seven SNPs. In this study, we generated and annotated mink transcript sequences representing more than 16 000 known genes. This is the first comprehensive transcriptome for the American mink genome, which will facilitate further development in mink expression profiling studies and provide a good annotation basis in the perspectives of a whole genome sequencing project. The project was deposited at EMBL database with the accession number PRJEB1260. © 2014 Stichting International Foundation for Animal Genetics.

  12. De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments

    Directory of Open Access Journals (Sweden)

    Gahlan Parul

    2012-03-01

    Full Text Available Abstract Background Picrorhiza kurrooa Royle ex Benth. is an endangered plant species of medicinal importance. The medicinal property is attributed to monoterpenoids picroside I and II, which are modulated by temperature. The transcriptome information of this species is limited with the availability of few hundreds of expressed sequence tags (ESTs in the public databases. In order to gain insight into temperature mediated molecular changes, high throughput de novo transcriptome sequencing and analyses were carried out at 15°C and 25°C, the temperatures known to modulate picrosides content. Results Using paired-end (PE Illumina sequencing technology, a total of 20,593,412 and 44,229,272 PE reads were obtained after quality filtering for 15°C and 25°C, respectively. Available (e.g., De-Bruijn/Eulerian graph and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 74,336 assembled transcript sequences were obtained, with an average coverage of 76.6 and average length of 439.5. Guanine-cytosine (GC content was observed to be 44.6%, while the transcriptome exhibited abundance of trinucleotide simple sequence repeat (SSR; 45.63% markers. Large scale expression profiling through "read per exon kilobase per million (RPKM", showed changes in several biological processes and metabolic pathways including cytochrome P450s (CYPs, UDP-glycosyltransferases (UGTs and those associated with picrosides biosynthesis. RPKM data were validated by reverse transcriptase-polymerase chain reaction using a set of 19 genes, wherein 11 genes behaved in accordance with the two expression methods. Conclusions Study generated transcriptome of P. kurrooa at two different temperatures. Large scale expression profiling through RPKM showed major transcriptome changes in response to temperature reflecting alterations in major biological processes and metabolic pathways, and provided insight of GC content and SSR markers

  13. TRAM (Transcriptome Mapper: database-driven creation and analysis of transcriptome maps from multiple sources

    Directory of Open Access Journals (Sweden)

    Danieli Gian

    2011-02-01

    Full Text Available Abstract Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays, implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile, useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene

  14. TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources.

    Science.gov (United States)

    Lenzi, Luca; Facchin, Federica; Piva, Francesco; Giulietti, Matteo; Pelleri, Maria Chiara; Frabetti, Flavia; Vitale, Lorenza; Casadei, Raffaella; Canaider, Silvia; Bortoluzzi, Stefania; Coppe, Alessandro; Danieli, Gian Antonio; Principato, Giovanni; Ferrari, Sergio; Strippoli, Pierluigi

    2011-02-18

    Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input. TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during

  15. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  16. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds).

    Science.gov (United States)

    Shrestha, Anita; Champagne, Donald E; Culbreath, Albert K; Rotenberg, Dorith; Whitfield, Anna E; Srinivasan, Rajagopalbabu

    2017-08-01

    Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.

  17. LocustDB: a relational database for the transcriptome and biology of the migratory locust (Locusta migratoria

    Directory of Open Access Journals (Sweden)

    Kang Le

    2006-01-01

    Full Text Available Abstract Background The migratory locust (Locusta migratoria is an orthopteran pest and a representative member of hemimetabolous insects for biological studies. Its transcriptomic data provide invaluable information for molecular entomology and pave a way for the comparative research of other medically, agronomically, and ecologically relevant insects. We developed the first transcriptomic database of the locust (LocustDB, building necessary infrastructures to integrate, organize, and retrieve data that are either currently available or to be acquired in the future. Description LocustDB currently hosts 45,474 high-quality EST sequences from the locust, which were assembled into 12,161 unigenes. It, through user-friendly web interfaces, allows investigators to freely access sequence data, including homologous/orthologous sequences, functional annotations, and pathway analysis, based on conserved orthologous groups (COG, gene ontology (GO, protein domain (InterPro, and functional pathways (KEGG. It also provides information from comparative analysis based on data from the migratory locust and five other invertebrate species, including the silkworm, the honeybee, the fruitfly, the mosquito and the nematode. The website address of LocustDB is http://locustdb.genomics.org.cn/. Conclusion LocustDB starts with the first transcriptome information for an orthopteran and hemimetabolous insect and will be extended to provide a framework for incorporating in-coming genomic data of relevant insect groups and a workbench for cross-species comparative studies.

  18. Transcriptome analysis of Pseudomonas aeruginosa PAO1 grown at both body and elevated temperatures

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2016-07-01

    Full Text Available Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.

  19. Talaromyces marneffei Genomic, Transcriptomic, Proteomic and Metabolomic Studies Reveal Mechanisms for Environmental Adaptations and Virulence

    Directory of Open Access Journals (Sweden)

    Susanna K. P. Lau

    2017-06-01

    Full Text Available Talaromyces marneffei is a thermally dimorphic fungus causing systemic infections in patients positive for HIV or other immunocompromised statuses. Analysis of its ~28.9 Mb draft genome and additional transcriptomic, proteomic and metabolomic studies revealed mechanisms for environmental adaptations and virulence. Meiotic genes and genes for pheromone receptors, enzymes which process pheromones, and proteins involved in pheromone response pathway are present, indicating its possibility as a heterothallic fungus. Among the 14 Mp1p homologs, only Mp1p is a virulence factor binding a variety of host proteins, fatty acids and lipids. There are 23 polyketide synthase genes, one for melanin and two for mitorubrinic acid/mitorubrinol biosynthesis, which are virulence factors. Another polyketide synthase is for biogenesis of the diffusible red pigment, which consists of amino acid conjugates of monascorubin and rubropunctatin. Novel microRNA-like RNAs (milRNAs and processing proteins are present. The dicer protein, dcl-2, is required for biogenesis of two milRNAs, PM-milR-M1 and PM-milR-M2, which are more highly expressed in hyphal cells. Comparative transcriptomics showed that tandem repeat-containing genes were overexpressed in yeast phase, generating protein polymorphism among cells, evading host’s immunity. Comparative proteomics between yeast and hyphal cells revealed that glyceraldehyde-3-phosphate dehydrogenase, up-regulated in hyphal cells, is an adhesion factor for conidial attachment.

  20. High-confidence coding and noncoding transcriptome maps

    Science.gov (United States)

    2017-01-01

    The advent of high-throughput RNA sequencing (RNA-seq) has led to the discovery of unprecedentedly immense transcriptomes encoded by eukaryotic genomes. However, the transcriptome maps are still incomplete partly because they were mostly reconstructed based on RNA-seq reads that lack their orientations (known as unstranded reads) and certain boundary information. Methods to expand the usability of unstranded RNA-seq data by predetermining the orientation of the reads and precisely determining the boundaries of assembled transcripts could significantly benefit the quality of the resulting transcriptome maps. Here, we present a high-performing transcriptome assembly pipeline, called CAFE, that significantly improves the original assemblies, respectively assembled with stranded and/or unstranded RNA-seq data, by orienting unstranded reads using the maximum likelihood estimation and by integrating information about transcription start sites and cleavage and polyadenylation sites. Applying large-scale transcriptomic data comprising 230 billion RNA-seq reads from the ENCODE, Human BodyMap 2.0, The Cancer Genome Atlas, and GTEx projects, CAFE enabled us to predict the directions of about 220 billion unstranded reads, which led to the construction of more accurate transcriptome maps, comparable to the manually curated map, and a comprehensive lncRNA catalog that includes thousands of novel lncRNAs. Our pipeline should not only help to build comprehensive, precise transcriptome maps from complex genomes but also to expand the universe of noncoding genomes. PMID:28396519

  1. Pseudo-Reference-Based Assembly of Vertebrate Transcriptomes

    Directory of Open Access Journals (Sweden)

    Kyoungwoo Nam

    2016-02-01

    Full Text Available High-throughput RNA sequencing (RNA-seq provides a comprehensive picture of the transcriptome, including the identity, structure, quantity, and variability of expressed transcripts in cells, through the assembly of sequenced short RNA-seq reads. Although the reference-based approach guarantees the high quality of the resulting transcriptome, this approach is only applicable when the relevant reference genome is present. Here, we developed a pseudo-reference-based assembly (PRA that reconstructs a transcriptome based on a linear regression function of the optimized mapping parameters and genetic distances of the closest species. Using the linear model, we reconstructed transcriptomes of four different aves, the white leg horn, turkey, duck, and zebra finch, with the Gallus gallus genome as a pseudo-reference, and of three primates, the chimpanzee, gorilla, and macaque, with the human genome as a pseudo-reference. The resulting transcriptomes show that the PRAs outperformed the de novo approach for species with within about 10% mutation rate among orthologous transcriptomes, enough to cover distantly related species as far as chicken and duck. Taken together, we suggest that the PRA method can be used as a tool for reconstructing transcriptome maps of vertebrates whose genomes have not yet been sequenced.

  2. [Tuberculosis in compromised hosts].

    Science.gov (United States)

    2003-11-01

    Recent development of tuberculosis in Japan tends to converge on a specific high risk group. The proportion of tuberculosis developing particularly from the compromised hosts in the high risk group is especially high. At this symposium, therefore, we took up diabetes mellitus, gastrectomy, dialysis, AIDS and the elderly for discussion. Many new findings and useful reports for practical medical treatment are submitted; why these compromised hosts are predisposed to tuberculosis, tuberculosis diagnostic and remedial notes of those compromised hosts etc. It is an important question for the future to study how to prevent tuberculosis from these compromised hosts. 1. Tuberculosis in diabetes mellitus: aggravation and its immunological mechanism: Kazuyoshi KAWAKAMI (Department of Internal Medicine, Division of Infectious Diseases, Graduate School and Faculty of Medicine, University of the Ryukyus). It has been well documented that diabetes mellitus (DM) is a major aggravating factor in tuberculosis. The onset of this disease is more frequent in DM patients than in individuals with any underlying diseases. However, the precise mechanism of this finding remains to be fully understood. Earlier studies reported that the migration, phagocytosis and bactericidal activity of neutrophils are all impaired in DM patients, which is related to their reduced host defense to infection with extracellular bacteria, such as S. aureus and E. colli. Host defense to mycobacterial infection is largely mediated by cellular immunity, and Th1-related cytokines, such as IFN-gamma and IL-12, play a central role in this response. It is reported that serum level of these cytokines and their production by peripheral blood mononuclear cells (PBMC) are reduced in tuberculosis patients with DM, and this is supposed to be involved in the high incidence of tuberculosis in DM. Our study observed similar findings and furthermore indicated that IFN-gamma and IL-12 production by BCG-stimulated PBMC was lower

  3. Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (Oryza sativa) coleoptiles under anoxia and re-oxygenation.

    Science.gov (United States)

    Narsai, Reena; Secco, David; Schultz, Matthew D; Ecker, Joseph R; Lister, Ryan; Whelan, James

    2017-02-01

    Detailed molecular profiling of Oryza sativa (rice) was carried out to uncover the features that are essential for germination and early seedling growth under anoxic conditions. Temporal analysis of the transcriptome and methylome from germination to young seedlings under aerobic and anaerobic conditions revealed 82% similarity in the transcriptome and no differences in the epigenome up to 24 h. Following germination, significant changes in the transcriptome and DNA methylation were observed between 4-day aerobically and anaerobically grown coleoptiles. A link between the epigenomic state and cell division versus cell elongation is suggested, as no differences in DNA methylation were observed between 24-h aerobically and anaerobically germinating embryos, when there is little cell division. After that, epigenetic changes appear to correlate with differences between cell elongation (anaerobic conditions) versus cell division (aerobic conditions) in the coleoptiles. Re-oxygenation of 3-day anaerobically grown seedlings resulted in rapid transcriptomic changes in DNA methylation in these coleoptiles. Unlike the transcriptome, changes in DNA methylation upon re-oxygenation did not reflect those seen in aerobic coleoptiles, but instead, reverted to a pattern similar to dry seeds. Reversion to the 'dry seed' state of DNA methylation upon re-oxygenation may act to 'reset the clock' for the rapid molecular changes and cell division that result upon re-oxygenation. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  4. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum transcriptome.

    Directory of Open Access Journals (Sweden)

    Silvan Oulion

    Full Text Available BACKGROUND: The basally divergent phylogenetic position of amphioxus (Cephalochordata, as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. RESULTS: Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode. Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp. Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. CONCLUSION: We obtained a high-quality amphioxus (B. lanceolatum reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation

  5. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    Directory of Open Access Journals (Sweden)

    Xiang Li-xin

    2010-08-01

    Full Text Available Abstract Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host

  6. Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Koskenniemi, Kerttu; Laakso, Kati; Koponen, Johanna; Kankainen, Matti; Greco, Dario; Auvinen, Petri; Savijoki, Kirsi; Nyman, Tuula A; Surakka, Anu; Salusjärvi, Tuomas; de Vos, Willem M; Tynkkynen, Soile; Kalkkinen, Nisse; Varmanen, Pekka

    2011-02-01

    Lactobacillus rhamnosus GG (GG) is a widely used and intensively studied probiotic bacterium. Although the health benefits of strain GG are well documented, the systematic exploration of mechanisms by which this strain exerts probiotic effects in the host has only recently been initiated. The ability to survive the harsh conditions of the gastrointestinal tract, including gastric juice containing bile salts, is one of the vital characteristics that enables a probiotic bacterium to transiently colonize the host. Here we used gene expression profiling at the transcriptome and proteome levels to investigate the cellular response of strain GG toward bile under defined bioreactor conditions. The analyses revealed that in response to growth of strain GG in the presence of 0.2% ox gall the transcript levels of 316 genes changed significantly (p GG cells of gut entrance. Notably, the surfome analyses demonstrated significant reduction in the abundance of a protein catalyzing the synthesis of exopolysaccharides, whereas a protein dedicated for active removal of bile compounds from the cells was up-regulated. These findings suggest a role for these proteins in facilitating the well founded interaction of strain GG with the host mucus in the presence of sublethal doses of bile. The significance of these findings in terms of the functionality of a probiotic bacterium is discussed.

  7. Proteomics and Transcriptomics Characterization of Bile Stress Response in Probiotic Lactobacillus rhamnosus GG*

    Science.gov (United States)

    Koskenniemi, Kerttu; Laakso, Kati; Koponen, Johanna; Kankainen, Matti; Greco, Dario; Auvinen, Petri; Savijoki, Kirsi; Nyman, Tuula A.; Surakka, Anu; Salusjärvi, Tuomas; de Vos, Willem M.; Tynkkynen, Soile; Kalkkinen, Nisse; Varmanen, Pekka

    2011-01-01

    Lactobacillus rhamnosus GG (GG) is a widely used and intensively studied probiotic bacterium. Although the health benefits of strain GG are well documented, the systematic exploration of mechanisms by which this strain exerts probiotic effects in the host has only recently been initiated. The ability to survive the harsh conditions of the gastrointestinal tract, including gastric juice containing bile salts, is one of the vital characteristics that enables a probiotic bacterium to transiently colonize the host. Here we used gene expression profiling at the transcriptome and proteome levels to investigate the cellular response of strain GG toward bile under defined bioreactor conditions. The analyses revealed that in response to growth of strain GG in the presence of 0.2% ox gall the transcript levels of 316 genes changed significantly (p GG cells of gut entrance. Notably, the surfome analyses demonstrated significant reduction in the abundance of a protein catalyzing the synthesis of exopolysaccharides, whereas a protein dedicated for active removal of bile compounds from the cells was up-regulated. These findings suggest a role for these proteins in facilitating the well founded interaction of strain GG with the host mucus in the presence of sublethal doses of bile. The significance of these findings in terms of the functionality of a probiotic bacterium is discussed. PMID:21078892

  8. Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea.

    Directory of Open Access Journals (Sweden)

    Yanni Zhao

    Full Text Available Chouioia cunea Yang is an endoparasitic wasp that attacks pupae of Hyphantria cunea (Drury, an invasive moth species that severely damages forests in China. Chemosensory systems of insects are used to detect volatile chemical odors such as female sex pheromones and host plant volatiles. The antennae of parasite wasps are important for host detection and other sensory-mediated behaviors. We identified and documented differential expression profiles of chemoreception genes in C. cunea antennae. A total of 25 OBPs, 80 ORs, 10 IRs, 11 CSP, 1 SNMPs, and 17 GRs were annotated from adult male and female C. cunea antennal transcriptomes. The expression profiles of 25 OBPs, 16 ORs, and 17 GRs, 5 CSP, 5 IRs and 1 SNMP were determined by RT-PCR and RT-qPCR for the antenna, head, thorax, and abdomen of male and female C. cunea. A total of 8 OBPs, 14 ORs, and 8 GRs, 1 CSP, 4 IRs and 1 SNMPs were exclusively or primarily expressed in female antennae. These female antennal-specific or dominant expression profiles may assist in locating suitable host and oviposition sites. These genes will provide useful targets for advanced study of their biological functions.

  9. The Intraperitoneal Transcriptome of the Opportunistic Pathogen Enterococcus faecalis in Mice.

    Directory of Open Access Journals (Sweden)

    Cécile Muller

    Full Text Available Enterococcus faecalis is a Gram-positive lactic acid intestinal opportunistic bacterium with virulence potential. For a better understanding of the adapation of this bacterium to the host conditions, we performed a transcriptome analysis of bacteria isolated from an infection site (mouse peritonitis by RNA-sequencing. We identified a total of 211 genes with significantly higher transcript levels and 157 repressed genes. Our in vivo gene expression database reflects well the infection process since genes encoding important virulence factors like cytolysin, gelatinase or aggregation substance as well as stress response proteins, are significantly induced. Genes encoding metabolic activities are the second most abundant in vivo induced genes demonstrating that the bacteria are metabolically active and adapt to the special nutrient conditions of the host. α- and β- glucosides seem to be important substrates for E. faecalis inside the host. Compared to laboratory conditions, the flux through the upper part of glycolysis seems to be reduced and more carbon may enter the pentose phosphate pathway. This may reflect the need of the bacteria under infection conditions to produce more reducing power for biosynthesis. Another important substrate is certainly glycerol since both pathways of glycerol catabolism are strongly induced. Strongly in vivo induced genes should be important for the infection process. This assumption has been verified in a virulence test using well characterized mutants affected in glycerol metabolism. This showed indeed that mutants unable to metabolize this sugar alcohol are affected in organ colonisation in a mouse model.

  10. Zika virus infection reprograms global transcription of host cells to allow sustained infection.

    Science.gov (United States)

    Tiwari, Shashi Kant; Dang, Jason; Qin, Yue; Lichinchi, Gianluigi; Bansal, Vikas; Rana, Tariq M

    2017-04-26

    Zika virus (ZIKV) is an emerging virus causally linked to neurological disorders, including congenital microcephaly and Guillain-Barré syndrome. There are currently no targeted therapies for ZIKV infection. To identify novel antiviral targets and to elucidate the mechanisms by which ZIKV exploits the host cell machinery to support sustained replication, we analyzed the transcriptomic landscape of human microglia, fibroblast, embryonic kidney and monocyte-derived macrophage cell lines before and after ZIKV infection. The four cell types differed in their susceptibility to ZIKV infection, consistent with differences in their expression of viral response genes before infection. Clustering and network analyses of genes differentially expressed after ZIKV infection revealed changes related to the adaptive immune system, angiogenesis and host metabolic processes that are conducive to sustained viral production. Genes related to the adaptive immune response were downregulated in microglia cells, suggesting that ZIKV effectively evades the immune response after reaching the central nervous system. Like other viruses, ZIKV diverts host cell resources and reprograms the metabolic machinery to support RNA metabolism, ATP production and glycolysis. Consistent with these transcriptomic analyses, nucleoside metabolic inhibitors abrogated ZIKV replication in microglia cells.

  11. Transcriptome changes in STSV2-infected Sulfolobus islandicus REY15A undergoing continuous CRISPR spacer acquisition

    DEFF Research Database (Denmark)

    León-Sobrino, Carlos; Kot, Witold P; Garrett, Roger A

    2016-01-01

    A transcriptome study was performed on Sulfolobus islandicus REY15A actively undergoing CRISPR spacer acquisition from the crenarchaeal monocaudavirus STSV2 in rich and basal media over a 6 day period. Spacer acquisition preceded strong host growth retardation, altered transcriptional activity...... of four different CRISPR-Cas modules and changes in viral copy numbers, and with significant differences in the two media. Transcript levels of proteins involved in the cell cycle were reduced, while those of DNA replication, DNA repair, transcriptional regulation, and some antitoxin-toxin pairs...... and transposases were unchanged or enhanced. Antisense RNAs were implicated in the transcriptional regulation of adaptation and interference modules of the type I-A CRISPR-Cas system and evidence was found for the occurrence of functional coordination between the single CRISPR-Cas adaptation module...

  12. Identification of host fruit volatiles from domestic apple (Malus domestica), native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (C. monogyna) attractive to Rhagoletis pomonella flies from the western United States.

    Science.gov (United States)

    Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E

    2012-03-01

    The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.

  13. Stennis hosts 2010 Special Olympics

    Science.gov (United States)

    2010-01-01

    Sarah Johnson, 28, of Gulfport, carries in the Olympic torch to signal the start of the 2010 Area III Special Olympic games at NASA's John C. Stennis Space Center on March 27. Stennis volunteers hosted special needs athletes from across the area for the event. Stennis is an annual host of the games.

  14. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer...... a reduction in size, caused by crowding, virtually nothing is known about longer-lasting effects after transmission to the definitive host. This study is the first to use in vitro cultivation with feeding of adult trematodes to investigate how numbers of parasites in the intermediate host affect the size...... and fecundity of adult parasites. For this purpose, we examined two different infracommunities of parasites in crustacean hosts. Firstly, we used experimental infections of Maritrema novaezealandensis in the amphipod, Paracalliope novizealandiae, to investigate potential density-dependent effects in single...

  15. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake.

    Science.gov (United States)

    Kong, Rebecca S G; Liang, Guanxiang; Chen, Yanhong; Stothard, Paul; Guan, Le Luo

    2016-08-09

    Feed efficient cattle consume less feed and produce less environmental waste than inefficient cattle. Many factors are known to contribute to differences in feed efficiency, however the underlying molecular mechanisms are largely unknown. Our study aimed to understand how host gene expression in the rumen epithelium contributes to differences in residual feed intake (RFI), a measure of feed efficiency, using a transcriptome profiling based approach. The rumen epithelial transcriptome from highly efficient (low (L-) RFI, n = 9) and inefficient (high (H-) RFI, n = 9) Hereford x Angus steers was obtained using RNA-sequencing. There were 122 genes differentially expressed between the rumen epithelial tissues of L- and H- RFI steers (p energy generating pathways such as glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. Further qPCR analysis of steers with different RFI (L-RFI, n = 35; M-RFI, n = 34; H-RFI, n = 35) revealed that the relative mitochondrial genome copy number per cell of the epithelium was positively correlated with RFI (r = 0.21, p = 0.03). Our results suggest that the rumen epithelium of L-RFI (efficient) steers may have increased tissue morphogenesis that possibly increases paracellular permeability for the absorption of nutrients and increased energy production to support the energetic demands of increased tissue morphogenesis compared to those of H-RFI (inefficient) animals. Greater expression of mitochondrial genes and lower relative mitochondrial genome copy numbers suggest a greater rate of transcription in the rumen epithelial mitochondria of L-RFI steers. Understanding how host gene expression profiles are associated with RFI could potentially lead to identification of mechanisms behind this trait, which are vital to develop strategies for the improvement of cattle feed efficiency.

  16. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii.

    Directory of Open Access Journals (Sweden)

    John Fosu-Nyarko

    Full Text Available The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668 with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.. Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.

  17. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury.

    Directory of Open Access Journals (Sweden)

    Long-Wa Zhang

    Full Text Available Hyphantria cunea (Drury (Lepidoptera: Arctiidae is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs, 17 chemosensory proteins (CSPs, 52 odorant receptors (ORs, 14 ionotropic receptors (IRs, nine gustatory receptors (GRs and two sensory neuron membrane proteins (SNMPs. We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest.

  18. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury).

    Science.gov (United States)

    Zhang, Long-Wa; Kang, Ke; Jiang, Shi-Chang; Zhang, Ya-Nan; Wang, Tian-Tian; Zhang, Jing; Sun, Long; Yang, Yun-Qiu; Huang, Chang-Chun; Jiang, Li-Ya; Ding, De-Gui

    2016-01-01

    Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO) annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs), 17 chemosensory proteins (CSPs), 52 odorant receptors (ORs), 14 ionotropic receptors (IRs), nine gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs). We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR) with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest.

  19. Differential gene expression according to race and host plant in the pea aphid.

    Science.gov (United States)

    Eyres, Isobel; Jaquiéry, Julie; Sugio, Akiko; Duvaux, Ludovic; Gharbi, Karim; Zhou, Jing-Jiang; Legeai, Fabrice; Nelson, Michaela; Simon, Jean-Christophe; Smadja, Carole M; Butlin, Roger; Ferrari, Julia

    2016-09-01

    Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change. © 2016 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

  20. From Many Hosts, One Accidental Pathogen: The Diverse Protozoan Hosts of Legionella

    Directory of Open Access Journals (Sweden)

    David K. Boamah

    2017-11-01

    Full Text Available The 1976 outbreak of Legionnaires' disease led to the discovery of the intracellular bacterial pathogen Legionella pneumophila. Given their impact on human health, Legionella species and the mechanisms responsible for their replication within host cells are often studied in alveolar macrophages, the primary human cell type associated with disease. Despite the potential severity of individual cases of disease, Legionella are not spread from person-to-person. Thus, from the pathogen's perspective, interactions with human cells are accidents of time and space—evolutionary dead ends with no impact on Legionella's long-term survival or pathogenic trajectory. To understand Legionella as a pathogen is to understand its interaction with its natural hosts: the polyphyletic protozoa, a group of unicellular eukaryotes with a staggering amount of evolutionary diversity. While much remains to be understood about these enigmatic hosts, we summarize the current state of knowledge concerning Legionella's natural host range, the diversity of Legionella-protozoa interactions, the factors influencing these interactions, the importance of avoiding the generalization of protozoan-bacterial interactions based on a limited number of model hosts and the central role of protozoa to the biology, evolution, and persistence of Legionella in the environment.

  1. Action and reaction of host and pathogen during Fusarium head blight disease

    DEFF Research Database (Denmark)

    Walter, Stephanie; Nicholson, Paul; Doohan, Fiona M

    2010-01-01

    The Fusarium species Fusarium graminearum and Fusarium culmorum, Which are responsible for Fusarium head blight (FHB) disease, reduced world-wide cereal crop yield and, as a consequence of their mycotoxin production in cereal grain, impact on both human and animal health. Their study is greatly...... promoted by the availability of the genomic sequence of F. graminearum and transcriptomic resources for both F. graminearum and its cereal hosts. Functional genomics, proteomics and metabolomics studies, in combination with targeted mutagenesis or Transgenic studies, are unravelling the complex mechanisms...

  2. Shaping the Arabidopsis Transcriptome through Alternative Splicing

    Directory of Open Access Journals (Sweden)

    Dorothee Staiger

    2015-01-01

    Full Text Available Alternative splicing is a molecular tool of the cell to generate more than one messenger RNA from the same gene. Through variable combinations of exons blueprints for different proteins are assembled from one and the same pre-messenger RNA, thus increasing the complexity of the proteome. Moreover, through alternative splicing different transcript variants with different stabilities and different regulatory motifs can be generated, leading to variation in the transcriptome. The importance of alternative splicing in plants has been increasingly recognized in the last decade. Alternative splicing has been found during abiotic and biotic stress and during development. Here, recent advancements in the understanding of alternative splicing in higher plants are presented. Mechanistic details and functional consequences of alternative splicing are discussed with a focus on the model plant Arabidopsis thaliana.

  3. In silico evaluation of the Eucalyptus transcriptome

    Directory of Open Access Journals (Sweden)

    Renato Vicentini

    2005-01-01

    Full Text Available The expressed sequence tags (ESTs produced in the Forests project provide an invaluable opportunity to assess the Eucalyptus transcriptome. Besides providing information on the different proteins produced by this plant, it is possible to infer gene expression profiles because non-normalized cDNA libraries were used. The EST frequency from any gene is correlated to the transcript levels in the tissues from which the cDNA libraries were constructed. The goal of this work was to identify Eucalyptus genes that showed either differential expression pattern or were ubiquitously expressed in the tissues sampled in the Forests project. Six robust statistical tests and very restrictive rules were applied to gain confidence in the in silico data aiming to avoid false positives. Several genes with interesting expression profiles were identified and some of them were validated by RT-PCR.

  4. Transcriptome changes during intestinal cell differentiation

    DEFF Research Database (Denmark)

    Tadjali, Mehrdad; Seidelin, Jakob B; Olsen, Jørgen Lillelund

    2002-01-01

    The expression of 18149 genes have been analysed during the differentiation of the human intestinal cell line Caco-2. cDNA probes from undifferentiated and differentiated Caco-2 cells were separately hybridised to EST DNAs spotted in an array on a nylon membrane. A remarkable change...... cells by performing reverse transcriptase-polymerase chain reaction on RNA extracted from laser dissected intestinal crypt and villi. In a screen of eight transcripts one - SART3 - was identified as a marker for human colonic crypts....... in the transcriptome was observed during the differentiation of the Caco-2 cells. 8762 of the 18149 genes analysed were expressed above background level in the undifferentiated Caco-2 cells, whereas only 5767 genes were expressed above background in differentiated Caco-2 cells. This pattern of expression was caused...

  5. Transcriptomic analyses of Hand2 transgenic embryos

    Directory of Open Access Journals (Sweden)

    Noriko Funato

    2016-09-01

    Full Text Available In this article, we further provide the data generated for the previously published research article “Specification of jaw identity by the Hand2 transcription factor.” To better understand the downstream genes of the basic helix-loop-helix transcription factor Hand2, we generated double-transgenic mice (Hand2NC by intercrossing CAG-floxed CAT-Hand2 mice with Wnt1-Cre mice for conditional activation of Hand2 expression in the neural crest. Altered expression of Hand2 induces transformation of the upper jaw to the lower jaw in Hand2NC mutant mice. This data article provides Tables detailing the differentially expressed genes between wild-type and Hand2NC mutant embryos. The raw array data of our transcriptomes as generated using Affymetrix microarrays are available on the NCBI Gene Expression Omnibus (GEO browser (Reference number GSE75805.

  6. Transcriptomic characterization of fibrolamellar hepatocellular carcinoma

    Science.gov (United States)

    Simon, Elana P.; Freije, Catherine A.; Farber, Benjamin A.; Lalazar, Gadi; Darcy, David G.; Honeyman, Joshua N.; Chiaroni-Clarke, Rachel; Dill, Brian D.; Molina, Henrik; Bhanot, Umesh K.; La Quaglia, Michael P.; Rosenberg, Brad R.; Simon, Sanford M.

    2015-01-01

    Fibrolamellar hepatocellular carcinoma (FLHCC) tumors all carry a deletion of ∼400 kb in chromosome 19, resulting in a fusion of the genes for the heat shock protein, DNAJ (Hsp40) homolog, subfamily B, member 1, DNAJB1, and the catalytic subunit of protein kinase A, PRKACA. The resulting chimeric transcript produces a fusion protein that retains kinase activity. No other recurrent genomic alterations have been identified. Here we characterize the molecular pathogenesis of FLHCC with transcriptome sequencing (RNA sequencing). Differential expression (tumor vs. adjacent normal tissue) was detected for more than 3,500 genes (log2 fold change ≥1, false discovery rate ≤0.01), many of which were distinct from those found in hepatocellular carcinoma. Expression of several known oncogenes, such as ErbB2 and Aurora Kinase A, was increased in tumor samples. These and other dysregulated genes may serve as potential targets for therapeutic intervention. PMID:26489647

  7. A transcriptome anatomy of human colorectal cancers

    Directory of Open Access Journals (Sweden)

    Zhang Hao

    2006-02-01

    Full Text Available Abstract Background Accumulating databases in human genome research have enabled integrated genome-wide study on complicated diseases such as cancers. A practical approach is to mine a global transcriptome profile of disease from public database. New concepts of these diseases might emerge by landscaping this profile. Methods In this study, we clustered human colorectal normal mucosa (N, inflammatory bowel disease (IBD, adenoma (A and cancer (T related expression sequence tags (EST into UniGenes via an in-house GetUni software package and analyzed the transcriptome overview of these libraries by GOTree Machine (GOTM. Additionally, we downloaded UniGene based cDNA libraries of colon and analyzed them by Xprofiler to cross validate the efficiency of GetUni. Semi-quantitative RT-PCR was used to validate the expression of β-catenin and. 7 novel genes in colorectal cancers. Results The efficiency of GetUni was successfully validated by Xprofiler and RT-PCR. Genes in library N, IBD and A were all found in library T. A total of 14,879 genes were identified with 2,355 of them having at least 2 transcripts. Differences in gene enrichment among these libraries were statistically significant in 50 signal transduction pathways and Pfam protein domains by GOTM analysis P Conclusion Colorectal cancers are genetically heterogeneous. Transcription variants are common in them. Aberrations of ribosome and glycolysis pathway might be early indicators of precursor lesions in colon cancers. The electronic gene expression profile could be used to highlight the integral molecular events in colorectal cancers.

  8. Comparative genomics and transcriptomics of Propionibacterium acnes.

    Science.gov (United States)

    Brzuszkiewicz, Elzbieta; Weiner, January; Wollherr, Antje; Thürmer, Andrea; Hüpeden, Jennifer; Lomholt, Hans B; Kilian, Mogens; Gottschalk, Gerhard; Daniel, Rolf; Mollenkopf, Hans-Joachim; Meyer, Thomas F; Brüggemann, Holger

    2011-01-01

    The anaerobic gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced the genome of the P. acnes strain 266, a type I-1a strain. Comparative genome analysis of strain 266 and four other P. acnes strains revealed that overall genome plasticity is relatively low; however, a number of island-like genomic regions, encoding a variety of putative virulence-associated and fitness traits differ between phylotypes, as judged from PCR analysis of a collection of P. acnes strains. Comparative transcriptome analysis of strains KPA171202 (type I-2) and 266 during exponential growth revealed inter-strain differences in gene expression of transport systems and metabolic pathways. In addition, transcript levels of genes encoding possible virulence factors such as dermatan-sulphate adhesin, polyunsaturated fatty acid isomerase, iron acquisition protein HtaA and lipase GehA were upregulated in strain 266. We investigated differential gene expression during exponential and stationary growth phases. Genes encoding components of the energy-conserving respiratory chain as well as secreted and virulence-associated factors were transcribed during the exponential phase, while the stationary growth phase was characterized by upregulation of genes involved in stress responses and amino acid metabolism. Our data highlight the genomic basis for strain diversity and identify, for the first time, the actively transcribed part of the genome, underlining the important role growth status plays in the inflammation-inducing activity of P. acnes. We argue that the disease-causing potential of

  9. Comparative genomics and transcriptomics of Propionibacterium acnes.

    Directory of Open Access Journals (Sweden)

    Elzbieta Brzuszkiewicz

    Full Text Available The anaerobic gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced the genome of the P. acnes strain 266, a type I-1a strain. Comparative genome analysis of strain 266 and four other P. acnes strains revealed that overall genome plasticity is relatively low; however, a number of island-like genomic regions, encoding a variety of putative virulence-associated and fitness traits differ between phylotypes, as judged from PCR analysis of a collection of P. acnes strains. Comparative transcriptome analysis of strains KPA171202 (type I-2 and 266 during exponential growth revealed inter-strain differences in gene expression of transport systems and metabolic pathways. In addition, transcript levels of genes encoding possible virulence factors such as dermatan-sulphate adhesin, polyunsaturated fatty acid isomerase, iron acquisition protein HtaA and lipase GehA were upregulated in strain 266. We investigated differential gene expression during exponential and stationary growth phases. Genes encoding components of the energy-conserving respiratory chain as well as secreted and virulence-associated factors were transcribed during the exponential phase, while the stationary growth phase was characterized by upregulation of genes involved in stress responses and amino acid metabolism. Our data highlight the genomic basis for strain diversity and identify, for the first time, the actively transcribed part of the genome, underlining the important role growth status plays in the inflammation-inducing activity of P. acnes. We argue that the disease

  10. De novo transcriptome assembly of heavy metal tolerant Silene dioica

    Czech Academy of Sciences Publication Activity Database

    Čegan, R.; Hudzieczek, V.; Hobza, Roman

    2017-01-01

    Roč. 11, MAR (2017), s. 118-119 ISSN 2213-5960 Institutional support: RVO:61389030 Keywords : genome * Silene dioica * RNA-Seq * Transcriptome * Heavy metal tolerance * Sex chromosomes Subject RIV: EB - Genetics ; Molecular Biology

  11. Vernalization mediated changes in the Lolium perenne transcriptome

    DEFF Research Database (Denmark)

    Paina, Cristiana; Byrne, Stephen; Asp, Torben

    2014-01-01

    Vernalization is a key requirement for the induction of flowering in perennial ryegrass (Lolium perenne L.). The transcriptome of two genotypes with contrasting vernalization requirement was studied during primary (vernalization and short day conditions) and secondary induction (higher temperature...

  12. New insights into domestication of carrot from root transcriptome analyses

    NARCIS (Netherlands)

    Rong, J.; Lammers, Y.; Strasburg, J.L.; Schidlo, N.S.; Ariyurek, Y.; Jong, de T.J.; Klinkhamer, P.G.L.; Smulders, M.J.M.; Vrieling, K.

    2014-01-01

    Background - Understanding the molecular basis of domestication can provide insights into the processes of rapid evolution and crop improvement. Here we demonstrated the processes of carrot domestication and identified genes under selection based on transcriptome analyses. Results - The root

  13. Toxicogenomics of bromobenzene hepatotoxicity: A combined transcriptomics and proteomics approach

    NARCIS (Netherlands)

    Heijne, W.H.M.; Stierum, R.H.; Slijper, M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    Toxicogenomics is a novel approach integrating the expression analysis of thousands of genes (transcriptomics) or proteins (proteomics) with classical methods in toxicology. Effects at the molecular level are related to pathophysiological changes of the organisms, enabling detailed comparison of

  14. The Escherichia coli transcriptome linked to growth fitness

    Directory of Open Access Journals (Sweden)

    Bei-Wen Ying

    2016-03-01

    Full Text Available A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739 are also provided for reference.

  15. Influence of Wolbachia on host gene expression in an obligatory symbiosis

    Directory of Open Access Journals (Sweden)

    Kremer Natacha

    2012-01-01

    Full Text Available Abstract Background Wolbachia are intracellular bacteria known to be facultative reproductive parasites of numerous arthropod hosts. Apart from these reproductive manipulations, recent findings indicate that Wolbachia may also modify the host’s physiology, notably its immune function. In the parasitoid wasp, Asobara tabida, Wolbachia is necessary for oogenesis completion, and aposymbiotic females are unable to produce viable offspring. The absence of egg production is also associated with an increase in programmed cell death in the ovaries of aposymbiotic females, suggesting that a mechanism that ensures the maintenance of Wolbachia in the wasp could also be responsible for this dependence. In order to decipher the general mechanisms underlying host-Wolbachia interactions and the origin of the dependence, we developed transcriptomic approaches to compare gene expression in symbiotic and aposymbiotic individuals. Results As no genetic data were available on A. tabida, we constructed several Expressed Sequence Tags (EST libraries, and obtained 12,551 unigenes from this species. Gene expression was compared between symbiotic and aposymbiotic ovaries through in silico analysis and in vitro subtraction (SSH. As pleiotropic functions involved in immunity and development could play a major role in the establishment of dependence, the expression of genes involved in oogenesis, programmed cell death (PCD and immunity (broad sense was analyzed by quantitative RT-PCR. We showed that Wolbachia might interfere with these numerous biological processes, in particular some related to oxidative stress regulation. We also showed that Wolbachia may interact with immune gene expression to ensure its persistence within the host. Conclusions This study allowed us to constitute the first major dataset of the transcriptome of A. tabida, a species that is a model system for both host/Wolbachia and host/parasitoid interactions. More specifically, our results

  16. A comparative genomics approach to identifying the plasticity transcriptome

    Directory of Open Access Journals (Sweden)

    Schwartz Russell

    2007-03-01

    Full Text Available Abstract Background Neuronal activity regulates gene expression to control learning and memory, homeostasis of neuronal function, and pathological disease states such as epilepsy. A great deal of experimental evidence supports the involvement of two particular transcription factors in shaping the genomic response to neuronal activity and mediating plasticity: CREB and zif268 (egr-1, krox24, NGFI-A. The gene targets of these two transcription factors are of considerable interest, since they may help develop hypotheses about how neural activity is coupled to changes in neural function. Results We have developed a computational approach for identifying binding sites for these transcription factors within the promoter regions of annotated genes in the mouse, rat, and human genomes. By combining a robust search algorithm to identify discrete binding sites, a comparison of targets across species, and an analysis of binding site locations within promoter regions, we have defined a group of candidate genes that are strong CREB- or zif268 targets and are thus regulated by neural activity. Our analysis revealed that CREB and zif268 share a disproportionate number of targets in common and that these common targets are dominated by transcription factors. Conclusion These observations may enable a more detailed understanding of the regulatory networks that are induced by neural activity and contribute to the plasticity transcriptome. The target genes identified in this study will be a valuable resource for investigators who hope to define the functions of specific genes that underlie activity-dependent changes in neuronal properties.

  17. Dynamics of the Saccharomyces cerevisiae Transcriptome during Bread Dough Fermentation

    Science.gov (United States)

    Aslankoohi, Elham; Zhu, Bo; Rezaei, Mohammad Naser; Voordeckers, Karin; De Maeyer, Dries; Marchal, Kathleen; Dornez, Emmie

    2013-01-01

    The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation. PMID:24056467

  18. Deciphering transcriptome profiles of peripheral blood mononuclear cells in response to PRRSV vaccination in pigs.

    Science.gov (United States)

    Islam, Md Aminul; Große-Brinkhaus, Christine; Pröll, Maren Julia; Uddin, Muhammad Jasim; Rony, Sharmin Aqter; Tesfaye, Dawit; Tholen, Ernst; Hölker, Michael; Schellander, Karl; Neuhoff, Christiane

    2016-08-15

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important viral diseases affecting swine industry worldwide. Despite routine farm vaccination, effective control strategies for PRRS remained elusive which underscores the need for in-depth studies to gain insight into the host immune response to vaccines. The current study aimed to investigate transcriptional responses to PRRS Virus (PRRSV) vaccine in the peripheral blood mononuclear cells (PBMCs) within 3 days following vaccination in German Landrace pigs. Transcriptome profiling of PBMCs from PRRSV vaccinated and age-matched unvaccinated pigs at right before (0 h), and at 6, 24 and 72 h after PRRSV vaccination was performed using the Affymetrix gene chip porcine gene 1.0 st array. Comparison of PBMCs transcriptome profiles between vaccinated and unvaccinated pigs revealed a distinct host innate immune transcriptional response to PRRSV vaccine. There was a significant temporal variation in transcriptional responses of PRRSV vaccine in PBMCs accounting 542, 2,263 and 357 differentially expressed genes (DEGs) at 6, 24 and 72 h post vaccination, respectively compared to the time point before vaccination (controls). Gene ontology analysis revealed the involvement of these DEGs in various biological process including innate immune response, signal transduction, positive regulation of MAP kinase activity, TRIF-dependent toll-like receptor signaling pathway, T cell differentiation and apoptosis. Immune response specific pathways such as cytokine-cytokine receptor interaction, chemokine signaling pathway, signal transduction, JAK-STAT pathway and regulation, TRAF6 mediated induction of NF-kB and MAPK, the NLRP3 inflammasome, endocytosis and interferon signaling were under regulation during the early stage of PRRSV vaccination. Network enrichment analysis revealed APP, TRAF6, PIN1, FOS, CTNNB1, TNFAIP3, TIP1, CDKN1, SIRT1, ESR1 and HDAC5 as the highly interconnected hubs of the

  19. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection

    Directory of Open Access Journals (Sweden)

    Rhen Mikael

    2011-02-01

    Full Text Available Abstract Background Mucosal infections elicit inflammatory responses via regulated signaling pathways. Infection outcome depends strongly on early events occurring immediately when bacteria start interacting with cells in the mucosal membrane. Hitherto reported transcription profiles on host-pathogen interactions are strongly biased towards in vitro studies. To detail the local in vivo genetic response to infection, we here profiled host gene expression in a recent experimental model that assures high spatial and temporal control of uropathogenic Escherichia coli (UPEC infection within the kidney of a live rat. Results Transcriptional profiling of tissue biopsies from UPEC-infected kidney tissue revealed 59 differentially expressed genes 8 h post-infection. Their relevance for the infection process was supported by a Gene Ontology (GO analysis. Early differential expression at 3 h and 5 h post-infection was of low statistical significance, which correlated to the low degree of infection. Comparative transcriptomics analysis of the 8 h data set and online available studies of early local infection and inflammation defined a core of 80 genes constituting a "General tissue response to early local bacterial infections". Among these, 25% were annotated as interferon-γ (IFN-γ regulated. Subsequent experimental analyses confirmed a systemic increase of IFN-γ in rats with an ongoing local kidney infection, correlating to splenic, rather than renal Ifng induction and suggested this inter-organ communication to be mediated by interleukin (IL-23. The use of comparative transcriptomics allowed expansion of the statistical data handling, whereby relevant data could also be extracted from the 5 h data set. Out of the 31 differentially expressed core genes, some represented specific 5 h responses, illustrating the value of comparative transcriptomics when studying the dynamic nature of gene regulation in response to infections. Conclusion Our hypothesis

  20. A transcriptomic insight into the infective juvenile stage of the insect parasitic nematode, Heterorhabditis indica.

    Science.gov (United States)

    Somvanshi, Vishal S; Gahoi, Shachi; Banakar, Prakash; Thakur, Prasoon Kumar; Kumar, Mukesh; Sajnani, Manisha; Pandey, Priyatama; Rao, Uma

    2016-03-01

    Nematodes are the most numerous animals in the soil. Insect parasitic nematodes of the genus Heterorhabditis are capable of selectively seeking, infecting and killing their insect-hosts in the soil. The infective juvenile (IJ) stage of the Heterorhabditis nematodes is analogous to Caenorhabditis elegans dauer juvenile stage, which remains in 'arrested development' till it finds and infects a new insect-host in the soil. H. indica is the most prevalent species of Heterorhabditis in India. To understand the genes and molecular processes that govern the biology of the IJ stage, and to create a resource to facilitate functional genomics and genetic exploration, we sequenced the transcriptome of H. indica IJs. The de-novo sequence assembly using Velvet-Oases pipeline resulted in 13,593 unique transcripts at N50 of 1,371 bp, of which 53 % were annotated by blastx. H. indica transcripts showed higher orthology with parasitic nematodes as compared to free living nematodes. In-silico expression analysis showed 30 % of transcripts expressing with ≥100 FPKM value. All the four canonical dauer formation pathways like cGMP-PKG, insulin, dafachronic acid and TGF-β were active in the IJ stage. Several other signaling pathways were highly represented in the transcriptome. Twenty-four orthologs of C. elegans RNAi pathway effector genes were discovered in H. indica, including nrde-3 that is reported for the first time in any of the parasitic nematodes. An ortholog of C. elegans tol-1 was also identified. Further, 272 kinases belonging to 137 groups, and several previously unidentified members of important gene classes were identified. We generated high-quality transcriptome sequence data from H. indica IJs for the first time. The transcripts showed high similarity with the parasitic nematodes, M. hapla, and A. suum as opposed to C. elegans, a species to which H. indica is more closely related. The high representation of transcripts from several signaling pathways in the IJs

  1. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.

    Science.gov (United States)

    Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M

    2016-05-10

    Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in

  2. Towards host-to-host meeting scheduling negotiation

    Directory of Open Access Journals (Sweden)

    Rani Megasari

    2015-03-01

    Full Text Available This paper presents a different scheme of meeting scheduling negotiation among a large number of personnel in a heterogeneous community. This scheme, named Host-to-Host Negotiation, attempts to produce a stable schedule under uncertain personnel preferences. By collecting information from hosts’ inter organizational meeting, this study intends to guarantee personnel availability. As a consequence, personnel’s and meeting’s profile in this scheme are stored in a centralized manner. This study considers personnel preferences by adapting the Clarke Tax Mechanism, which is categorized as a non manipulated mechanism design. Finally, this paper introduces negotiation strategies based on the conflict handling mode. A host-to-host scheme can give notification if any conflict exist and lead to negotiation process with acceptable disclosed information. Nevertheless, a complete negotiation process will be more elaborated in the future works.

  3. Sequencing and de novo analysis of the hemocytes transcriptome in Litopenaeus vannamei response to white spot syndrome virus infection.

    Directory of Open Access Journals (Sweden)

    Shuxia Xue

    Full Text Available BACKGROUND: White spot syndrome virus (WSSV is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei were compared using a short-read deep sequencing method (Illumina. RESULTS: RNA-seq analysis generated more than 25.81 million clean pair end (PE reads, which were assembled into 52,073 unigenes (mean size = 520 bp. Based on sequence similarity searches, 23,568 (45.3% genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO categories and clusters of orthologous groups (COG, respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG mapped 14,941 (63.4% unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection of the virus, while large transcriptional differences were identified in the late infection (48 hpi of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. CONCLUSIONS: This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.

  4. LuxS signaling in Porphyromonas gingivalis-host interactions.

    Science.gov (United States)

    Scheres, Nina; Lamont, Richard J; Crielaard, Wim; Krom, Bastiaan P

    2015-10-01

    Dental plaque is a multispecies biofilm in the oral cavity that significantly influences oral health. The presence of the oral anaerobic pathogen Porphyromonas gingivalis is an important determinant in the development of periodontitis. Direct and indirect interactions between P. gingivalis and the host play a major role in disease development. Transcriptome analysis recently revealed that P. gingivalis gene-expression is regulated by LuxS in both an AI-2-dependent and an AI-2 independent manner. However, little is known about the role of LuxS-signaling in P. gingivalis-host interactions. Here, we investigated the effect of a luxS mutation on the ability of P. gingivalis to induce an inflammatory response in human oral cells in vitro. Primary periodontal ligament (PDL) fibroblasts were challenged with P. gingivalis ΔluxS or the wild-type parental strain and gene-expression of pro-inflammatory mediators IL-1β, IL-6 and MCP-1 was determined by real-time PCR. The ability of P. gingivalis ΔluxS to induce an inflammatory response was severely impaired in PDL-fibroblasts. This phenotype could be restored by providing of LuxS in trans, but not by addition of the AI-2 precursor DPD. A similar phenomenon was observed in a previous transcriptome study showing that expression of PGN_0482 was reduced in the luxS mutant independently of AI-2. We therefore also analyzed the effect of a mutation in PGN_0482, which encodes an immuno-reactive, putative outer-membrane protein. Similar to P. gingivalis ΔluxS, the P. gingivalis Δ0482 mutant had an impaired ability to induce an inflammatory response in PDL fibroblasts. LuxS thus appears to influence the pro-inflammatory responses of host cells to P. gingivalis, likely through regulation of PGN_0482. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The Parkinson Transcriptome Project: Roadmap to Personalized Care

    Science.gov (United States)

    2015-08-01

    AWARD NUMBER: W81XWH-13-0115 TITLE: The Parkinson Transcriptome Project: Roadmap to Personalized Care PRINCIPAL INVESTIGATOR: Clemens R...5a. CONTRACT NUMBER The Parkinson Transcriptome Project: Roadmap to Personalized Care 5b. GRANT NUMBER W81XWH-13-1-0115 5c. PROGRAM ELEMENT NUMBER 6...Factor = 10) 5. Motor impulsivity in Parkinson disease: Associations with COMT and DRD2 polymorphisms. Ziegler DA, Ashourian P, Wonderlick JS

  6. De novo transcriptome assembly of heavy metal tolerant Silene dioica

    OpenAIRE

    Cegan, Radim; Hudzieczek, Vojtech; Hobza, Roman

    2017-01-01

    Silene dioica is a dioecious plant of the family Caryophyllaceae. In the present study, we used Illumina sequencing technology (MiSeq) to sequence, de novo assembly and annotate the transcriptomes of male and female copper tolerant S. dioica individuals. We sequenced the normalized mRNA of roots, shoots, flower buds and flowers for each sex. Raw reads of the transcriptome assembly project for S. dioica male and female individual have been deposited in NCBI's Sequence Read Archive (SRA) databa...

  7. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    OpenAIRE

    Ergen, Zahide Neslihan; Thimmapuram, Jyothi; Bohnert, Hans J; Budak, Hikmet

    2009-01-01

    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expr...

  8. Shigella hacks host immune responses by reprogramming the host epigenome.

    Science.gov (United States)

    Ashida, Hiroshi; Sasakawa, Chihiro

    2014-11-18

    Bacterial pathogens alter host transcriptional programs to promote infection. Shigella OspF is an essential virulence protein with a unique phosphothreonine lyase activity. A new study in The EMBO Journal (Harouz et al, 2014) reveals a novel function of OspF: targeting of heterochromatin protein 1γ (HP1γ) and downregulation of a subset of immune genes. These results illustrate how bacterial pathogens exploit epigenetic modifications to counteract host immune responses.

  9. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance

    DEFF Research Database (Denmark)

    Fort, Alexandre; Hashimoto, Kosuke; Yamada, Daisuke

    2014-01-01

    The importance of microRNAs and long noncoding RNAs in the regulation of pluripotency has been documented; however, the noncoding components of stem cell gene networks remain largely unknown. Here we investigate the role of noncoding RNAs in the pluripotent state, with particular emphasis...... on nuclear and retrotransposon-derived transcripts. We have performed deep profiling of the nuclear and cytoplasmic transcriptomes of human and mouse stem cells, identifying a class of previously undetected stem cell-specific transcripts. We show that long terminal repeat (LTR)-derived transcripts contribute...

  10. Identification of Putative Olfactory Genes from the Oriental Fruit Moth Grapholita molesta via an Antennal Transcriptome Analysis.

    D