WorldWideScience

Sample records for host matrix based

  1. Dentin matrix degradation by host Matrix Metalloproteinases: inhibition and clinical perspectives towards regeneration.

    Directory of Open Access Journals (Sweden)

    Catherine eChaussain

    2013-11-01

    Full Text Available Bacterial enzymes have long been considered solely accountable for the degradation of the dentin matrix during the carious process. However, the emerging literature suggests that host-derived enzymes, and in particular the matrix metalloproteinases (MMPs contained in dentin and saliva can play a major role in this process by their ability to degrade the dentin matrix from within. These findings are important since they open new therapeutic options for caries prevention and treatment. The possibility of using MMP inhibitors to interfere with dentin caries progression is discussed. Furthermore, the potential release of bioactive peptides by the enzymatic cleavage of dentin matrix proteins by MMPs during the carious process is discussed. These peptides, once identified, may constitute promising therapeutical tools for tooth and bone regeneration.

  2. A Pyrene- and Phosphonate-Containing Fluorescent Probe as Guest Molecule in a Host Polymer Matrix

    Directory of Open Access Journals (Sweden)

    Jacqueline Marchand-Brynaert

    2013-02-01

    Full Text Available New host-guest materials have been prepared by incorporation of a home-made organic probe displaying a pyrene motif and a phosphonate function into a regular amphiphilic copolymer. Using powder X-Ray diffraction, photoluminescence and FT-IR spectroscopy, we have been able to study the non-covalent interactions between the host matrix and the guest molecule in the solid state. Interestingly, we have shown that the matrix directs the guest spatial localization and alters its properties. Thanks to the comparison of pyrene vs. N-pyrenylmaleimide derivatives, the influence of the chemical nature of the guest molecules on the non-covalent interactions with the host have been studied. In addition, using polyethylene glycol as a reference host, we have been able to evidence a true matrix effect within our new insertion materials. The phosphonated guest molecule appears to be a novel probe targeting the hydrophilic domain of the host copolymer.

  3. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Carolina Piña-Vázquez

    2012-01-01

    Full Text Available Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina. The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.

  4. Cloud-Based DDoS HTTP Attack Detection Using Covariance Matrix Approach

    Directory of Open Access Journals (Sweden)

    Abdulaziz Aborujilah

    2017-01-01

    Full Text Available In this era of technology, cloud computing technology has become essential part of the IT services used the daily life. In this regard, website hosting services are gradually moving to the cloud. This adds new valued feature to the cloud-based websites and at the same time introduces new threats for such services. DDoS attack is one such serious threat. Covariance matrix approach is used in this article to detect such attacks. The results were encouraging, according to confusion matrix and ROC descriptors.

  5. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  6. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  7. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions

    Directory of Open Access Journals (Sweden)

    Debora B. Petropolis

    2014-04-01

    Full Text Available Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D environment mainly composed of Collagen I (COL I. This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.

  8. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  9. Effective Factors in Severity of Traffic Accident-Related Traumas; an Epidemiologic Study Based on the Haddon Matrix.

    Science.gov (United States)

    Masoumi, Kambiz; Forouzan, Arash; Barzegari, Hassan; Asgari Darian, Ali; Rahim, Fakher; Zohrevandi, Behzad; Nabi, Somayeh

    2016-01-01

    Traffic accidents are the 8(th) cause of mortality in different countries and are expected to rise to the 3(rd) rank by 2020. Based on the Haddon matrix numerous factors such as environment, host, and agent can affect the severity of traffic-related traumas. Therefore, the present study aimed to evaluate the effective factors in severity of these traumas based on Haddon matrix. In the present 1-month cross-sectional study, all the patients injured in traffic accidents, who were referred to the ED of Imam Khomeini and Golestan Hospitals, Ahvaz, Iran, during March 2013 were evaluated. Based on the Haddon matrix, effective factors in accident occurrence were defined in 3 groups of host, agent, and environment. Demographic data of the patients and data regarding Haddon risk factors were extracted and analyzed using SPSS version 20. 700 injured people with the mean age of 29.66 ± 12.64 years (3-82) were evaluated (92.4% male). Trauma mechanism was car-pedestrian in 308 (44%) of the cases and car-motorcycle in 175 (25%). 610 (87.1%) cases were traffic accidents and 371 (53%) occurred in the time between 2 pm and 8 pm. Violation of speed limit was the most common violation with 570 (81.4%) cases, followed by violation of right-of-way in 57 (8.1%) patients. 59.9% of the severe and critical injuries had occurred on road accidents, while 61.3% of the injuries caused by traffic accidents were mild to moderate (p accidents (p severity of traffic accident-related traumas were age over 50, not using safety tools, and undertaking among host-related factors; insufficient environment safety, road accidents and time between 2 pm and 8 pm among environmental factors; and finally, rollover, car-pedestrian, and motorcycle-pedestrian accidents among the agent factors.

  10. A MAM7 peptide-based inhibitor of Staphylococcus aureus adhesion does not interfere with in vitro host cell function.

    Directory of Open Access Journals (Sweden)

    Catherine Alice Hawley

    Full Text Available Adhesion inhibitors that block the attachment of pathogens to host tissues may be used synergistically with or as an alternative to antibiotics. The wide-spread bacterial adhesin Multivalent Adhesion Molecule (MAM 7 has recently emerged as a candidate molecule for a broad-spectrum adhesion inhibitor which may be used to prevent bacterial colonization of wounds. Here we have tested if the antibacterial properties of a MAM-based inhibitor could be used to competitively inhibit adhesion of methicillin-resistant Staphylococcus aureus (MRSA to host cells. Additionally, we analyzed its effect on host cellular functions linked to the host receptor fibronectin, such as migration, adhesion and matrix formation in vitro, to evaluate potential side effects prior to advancing our studies to in vivo infection models. As controls, we used inhibitors based on well-characterized bacterial adhesin-derived peptides from F1 and FnBPA, which are known to affect host cellular functions. Inhibitors based on F1 or FnBPA blocked MRSA attachment but at the same time abrogated important cellular functions. A MAM7-based inhibitor did not interfere with host cell function while showing good efficacy against MRSA adhesion in a tissue culture model. These observations provide a possible candidate for a bacterial adhesion inhibitor that does not cause adverse effects on host cells while preventing bacterial infection.

  11. Stepwise observation and quantification and mixed matrix membrane separation of CO2 within a hydroxy-decorated porous host.

    Science.gov (United States)

    Morris, Christopher G; Jacques, Nicholas M; Godfrey, Harry G W; Mitra, Tamoghna; Fritsch, Detlev; Lu, Zhenzhong; Murray, Claire A; Potter, Jonathan; Cobb, Tom M; Yuan, Fajin; Tang, Chiu C; Yang, Sihai; Schröder, Martin

    2017-04-01

    The identification of preferred binding domains within a host structure provides important insights into the function of materials. State-of-the-art reports mostly focus on crystallographic studies of empty and single component guest-loaded host structures to determine the location of guests. However, measurements of material properties ( e.g. , adsorption and breakthrough of substrates) are usually performed for a wide range of pressure (guest coverage) and/or using multi-component gas mixtures. Here we report the development of a multifunctional gas dosing system for use in X-ray powder diffraction studies on Beamline I11 at Diamond Light Source. This facility is fully automated and enables in situ crystallographic studies of host structures under (i) unlimited target gas loadings and (ii) loading of multi-component gas mixtures. A proof-of-concept study was conducted on a hydroxyl-decorated porous material MFM-300(V III ) under (i) five different CO 2 pressures covering the isotherm range and (ii) the loading of equimolar mixtures of CO 2 /N 2 . The study has successfully captured the structural dynamics underpinning CO 2 uptake as a function of surface coverage. Moreover, MFM-300(V III ) was incorporated in a mixed matrix membrane (MMM) with PIM-1 in order to evaluate the CO 2 /N 2 separation potential of this material. Gas permeation measurements on the MMM show a great improvement over the bare PIM-1 polymer for CO 2 /N 2 separation based on the ideal selectivity.

  12. Large-Scale Investigation of Leishmania Interaction Networks with Host Extracellular Matrix by Surface Plasmon Resonance Imaging

    Science.gov (United States)

    Fatoux-Ardore, Marie; Peysselon, Franck; Weiss, Anthony; Bastien, Patrick; Pratlong, Francine

    2014-01-01

    We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ∼70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania. PMID:24478075

  13. Hessian-based quantitative image analysis of host-pathogen confrontation assays.

    Science.gov (United States)

    Cseresnyes, Zoltan; Kraibooj, Kaswara; Figge, Marc Thilo

    2018-03-01

    Host-fungus interactions have gained a lot of interest in the past few decades, mainly due to an increasing number of fungal infections that are often associated with a high mortality rate in the absence of effective therapies. These interactions can be studied at the genetic level or at the functional level via imaging. Here, we introduce a new image processing method that quantifies the interaction between host cells and fungal invaders, for example, alveolar macrophages and the conidia of Aspergillus fumigatus. The new technique relies on the information content of transmitted light bright field microscopy images, utilizing the Hessian matrix eigenvalues to distinguish between unstained macrophages and the background, as well as between macrophages and fungal conidia. The performance of the new algorithm was measured by comparing the results of our method with that of an alternative approach that was based on fluorescence images from the same dataset. The comparison shows that the new algorithm performs very similarly to the fluorescence-based version. Consequently, the new algorithm is able to segment and characterize unlabeled cells, thus reducing the time and expense that would be spent on the fluorescent labeling in preparation for phagocytosis assays. By extending the proposed method to the label-free segmentation of fungal conidia, we will be able to reduce the need for fluorescence-based imaging even further. Our approach should thus help to minimize the possible side effects of fluorescence labeling on biological functions. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  14. Effective Factors in Severity of Traffic Accident-Related Traumas; an Epidemiologic Study Based on the Haddon Matrix

    Directory of Open Access Journals (Sweden)

    Kambiz Masoumi

    2016-04-01

    Full Text Available Introduction: Traffic accidents are the 8th cause of mortality in different countries and are expected to rise to the 3rd rank by 2020. Based on the Haddon matrix numerous factors such as environment, host, and agent can affect the severity of traffic-related traumas. Therefore, the present study aimed to evaluate the effective factors in severity of these traumas based on Haddon matrix. Methods: In the present 1-month cross-sectional study, all the patients injured in traffic accidents, who were referred to the ED of Imam Khomeini and Golestan Hospitals, Ahvaz, Iran, during March 2013 were evaluated. Based on the Haddon matrix, effective factors in accident occurrence were defined in 3 groups of host, agent, and environment. Demographic data of the patients and data regarding Haddon risk factors were extracted and analyzed using SPSS version 20. Results: 700 injured people with the mean age of 29.66 ± 12.64 years (3-82 were evaluated (92.4% male. Trauma mechanism was car-pedestrian in 308 (44% of the cases and car-motorcycle in 175 (25%. 610 (87.1% cases were traffic accidents and 371 (53% occurred in the time between 2 pm and 8 pm. Violation of speed limit was the most common violation with 570 (81.4% cases, followed by violation of right-of-way in 57 (8.1% patients. 59.9% of the severe and critical injuries had occurred on road accidents, while 61.3% of the injuries caused by traffic accidents were mild to moderate (p < 0.001. The most common mechanisms of trauma for critical injuries were rollover (72.5%, motorcycle-pedestrian (23.8%, and car-motorcycle (13.14% accidents (p < 0.001. Conclusion: Based on the results of the present study, the most important effective factors in severity of traffic accident-related traumas were age over 50, not using safety tools, and undertaking among host-related factors; insufficient environment safety, road accidents and time between 2 pm and 8 pm among environmental factors; and finally, rollover, car

  15. Trigonometric bases for matrix weighted Lp-spaces

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2010-01-01

    We give a complete characterization of 2π-periodic matrix weights W for which the vector-valued trigonometric system forms a Schauder basis for the matrix weighted space Lp(T;W). Then trigonometric quasi-greedy bases for Lp(T;W) are considered. Quasi-greedy bases are systems for which the simple...

  16. OD Matrix Acquisition Based on Mobile Phone Positioning Data

    Directory of Open Access Journals (Sweden)

    Xiaoqing ZUO

    2014-06-01

    Full Text Available Dynamic OD matrix is basic data of traffic travel guidance, traffic control, traffic management and traffic planning, and reflects the basic needs of travelers on the traffic network. With the rising popularity of positioning technology and the communication technology and the generation of huge mobile phone users, the mining and use of mobile phone positioning data, can get more traffic intersections and import and export data. These data will be integrated into obtaining the regional OD matrix, which is bound to bring convenience. In this article, mobile phone positioning data used in the data acquisition of intelligent transportation system, research a kind of regional dynamic OD matrix acquisition method based on the mobile phone positioning data. The method based on purpose of transportation, using time series similarity classification algorithm based on piecewise linear representation of the corner point (CP-PLR, mapping each base station cell to traffic zone of different traffic characteristics, and through a series of mapping optimization of base station cell to traffic zone to realize city traffic zone division based on mobile phone traffic data, on the basis, adjacency matrix chosen as the physical data structure of OD matrix storage, the principle of obtaining regional dynamic OD matrix based on the mobile phone positioning data are expounded, and the algorithm of obtaining regional dynamic OD matrix based on mobile phone positioning data are designed and verified.

  17. Matrix-based introduction to multivariate data analysis

    CERN Document Server

    Adachi, Kohei

    2016-01-01

    This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on ...

  18. In-situ formation of nanoparticles within a silicon-based matrix

    Science.gov (United States)

    Thoma, Steven G [Albuquerque, NM; Wilcoxon, Jess P [Albuquerque, NM; Abrams, Billie L [Albuquerque, NM

    2008-06-10

    A method for encapsulating nanoparticles with an encapsulating matrix that minimizes aggregation and maintains favorable properties of the nanoparticles. The matrix comprises silicon-based network-forming compounds such as ormosils and polysiloxanes. The nanoparticles are synthesized from precursors directly within the silicon-based matrix.

  19. Newborn screening by matrix-assisted laser desorption/ionization mass spectrometry based on parylene-matrix chip.

    Science.gov (United States)

    Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul

    2017-08-01

    Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z  0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Refractive index inversion based on Mueller matrix method

    Science.gov (United States)

    Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao

    2016-03-01

    Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.

  1. Matrix-based image reconstruction methods for tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures

  2. Recurrence quantity analysis based on matrix eigenvalues

    Science.gov (United States)

    Yang, Pengbo; Shang, Pengjian

    2018-06-01

    Recurrence plots is a powerful tool for visualization and analysis of dynamical systems. Recurrence quantification analysis (RQA), based on point density and diagonal and vertical line structures in the recurrence plots, is considered to be alternative measures to quantify the complexity of dynamical systems. In this paper, we present a new measure based on recurrence matrix to quantify the dynamical properties of a given system. Matrix eigenvalues can reflect the basic characteristics of the complex systems, so we show the properties of the system by exploring the eigenvalues of the recurrence matrix. Considering that Shannon entropy has been defined as a complexity measure, we propose the definition of entropy of matrix eigenvalues (EOME) as a new RQA measure. We confirm that EOME can be used as a metric to quantify the behavior changes of the system. As a given dynamical system changes from a non-chaotic to a chaotic regime, the EOME will increase as well. The bigger EOME values imply higher complexity and lower predictability. We also study the effect of some factors on EOME,including data length, recurrence threshold, the embedding dimension, and additional noise. Finally, we demonstrate an application in physiology. The advantage of this measure lies in a high sensitivity and simple computation.

  3. Hardware matrix multiplier/accumulator for lattice gauge theory calculations

    International Nuclear Information System (INIS)

    Christ, N.H.; Terrano, A.E.

    1984-01-01

    The design and operating characteristics of a special-purpose matrix multiplier/accumulator are described. The device is connected through a standard interface to a host PDP11 computer. It provides a set of high-speed, matrix-oriented instructions which can be called from a program running on the host. The resulting operations accelerate the complex matrix arithmetic required for a class of Monte Carlo calculations currently of interest in high energy particle physics. A working version of the device is presently being used to carry out a pure SU(3) lattice gauge theory calculation using a PDP11/23 with a performance twice that obtainable on a VAX11/780. (orig.)

  4. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  5. Immobilization of Mo(IV) complex in hybrid matrix obtained via sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Marques, C.; Sousa, A.M.; Freire, C.; Neves, I.C.; Fonseca, A.M.; Silva, C.J.R

    2003-10-06

    A molybdenum(IV) complex, trans-bis-[1,2-bis(diphenylphosphino)ethane]-fluoro-(diazopropano) -molybdenum tetraphenylborate, [MoF(DIAZO)(dppe){sub 2}][BPh{sub 4}], was prepared and immobilized in a hybrid matrix synthesized by the sol-gel process. The host matrix, designated as U(500), is an organic-inorganic network material, classed as ureasil, that combines a reticulated siliceous backbone linked by short polyether-based segments. Urea bridges make the link between these two components, and the polymerization of silicate substituted terminal groups generates the inorganic network. The free Mo(IV) complex and all new materials were characterized by spectroscopic techniques (FT-IR and UV-Vis) and thermal analysis (DSC). The ionic conductivity of the resulting material was also studied. The results indicate that immobilized Mo(IV) complex has kept its solid-state structure, although there is evidence of inter-molecular interactions between the Mo(IV) complex and some groups/atoms of the hybrid host matrix.

  6. Robust Face Recognition via Multi-Scale Patch-Based Matrix Regression.

    Directory of Open Access Journals (Sweden)

    Guangwei Gao

    Full Text Available In many real-world applications such as smart card solutions, law enforcement, surveillance and access control, the limited training sample size is the most fundamental problem. By making use of the low-rank structural information of the reconstructed error image, the so-called nuclear norm-based matrix regression has been demonstrated to be effective for robust face recognition with continuous occlusions. However, the recognition performance of nuclear norm-based matrix regression degrades greatly in the face of the small sample size problem. An alternative solution to tackle this problem is performing matrix regression on each patch and then integrating the outputs from all patches. However, it is difficult to set an optimal patch size across different databases. To fully utilize the complementary information from different patch scales for the final decision, we propose a multi-scale patch-based matrix regression scheme based on which the ensemble of multi-scale outputs can be achieved optimally. Extensive experiments on benchmark face databases validate the effectiveness and robustness of our method, which outperforms several state-of-the-art patch-based face recognition algorithms.

  7. Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE)

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    2013-01-01

    Thin films of C60 were deposited by matrix-assisted pulsed laser evaporation (MAPLE) from a frozen target of anisole with 0.67 wt% C60. Above a fluence of 1.5 J/cm2 the C60 films are strongly non-uniform and are resulting from transfer of matrix-droplets containing fullerenes. At low fluence...... the fullerene molecules in the films are intact, the surface morphology is substantially improved and there are no measurable traces of the matrix molecules in the film. This may indicate a regime of dominant evaporation at low fluence which merges into the MAPLE regime of liquid ejection of the host matrix...

  8. Spatio-Temporal Audio Enhancement Based on IAA Noise Covariance Matrix Estimates

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    A method for estimating the noise covariance matrix in a mul- tichannel setup is proposed. The method is based on the iter- ative adaptive approach (IAA), which only needs short seg- ments of data to estimate the covariance matrix. Therefore, the method can be used for fast varying signals....... The method is based on an assumption of the desired signal being harmonic, which is used for estimating the noise covariance matrix from the covariance matrix of the observed signal. The noise co- variance estimate is used in the linearly constrained minimum variance (LCMV) filter and compared...

  9. Gradient-based stochastic estimation of the density matrix

    Science.gov (United States)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  10. Detecting peripheral-based attacks on the host memory

    CERN Document Server

    Stewin, Patrick

    2015-01-01

    This work addresses stealthy peripheral-based attacks on host computers and presents a new approach to detecting them. Peripherals can be regarded as separate systems that have a dedicated processor and dedicated runtime memory to handle their tasks. The book addresses the problem that peripherals generally communicate with the host via the host’s main memory, storing cryptographic keys, passwords, opened files and other sensitive data in the process – an aspect attackers are quick to exploit.  Here, stealthy malicious software based on isolated micro-controllers is implemented to conduct an attack analysis, the results of which provide the basis for developing a novel runtime detector. The detector reveals stealthy peripheral-based attacks on the host’s main memory by exploiting certain hardware properties, while a permanent and resource-efficient measurement strategy ensures that the detector is also capable of detecting transient attacks, which can otherwise succeed when the applied strategy only me...

  11. Ontology-based representation and analysis of host-Brucella interactions.

    Science.gov (United States)

    Lin, Yu; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host

  12. The Pathogen-Host Interactions database (PHI-base): additions and future developments.

    Science.gov (United States)

    Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G; Pedro, Helder; Hammond-Kosack, Kim E

    2015-01-01

    Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Host-to-host variation of ecological interactions in polymicrobial infections

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  14. Host-to-host variation of ecological interactions in polymicrobial infections.

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-12-04

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  15. The Exopolysaccharide Matrix

    Science.gov (United States)

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms. PMID:24045647

  16. Host-to-host variation of ecological interactions in polymicrobial infections

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Das, Jayajit; Weimer, Kristin E; Swords, W Edward

    2015-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host–microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. (paper)

  17. Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.

    Science.gov (United States)

    Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication.

  18. QUEUEING DISCIPLINES BASED ON PRIORITY MATRIX

    Directory of Open Access Journals (Sweden)

    Taufik I. Aliev

    2014-11-01

    Full Text Available The paper deals with queueing disciplines for demands of general type in queueing systems with multivendor load. A priority matrix is proposed to be used for the purpose of mathematical description of such disciplines, which represents the priority type (preemptive priority, not preemptive priority or no priority between any two demands classes. Having an intuitive and simple way of priority assignment, such description gives mathematical dependencies of system operation characteristics on its parameters. Requirements for priority matrix construction are formulated and the notion of canonical priority matrix is given. It is shown that not every matrix, constructed in accordance with such requirements, is correct. The notion of incorrect priority matrix is illustrated by an example, and it is shown that such matrixes do not ensure any unambiguousness and determinacy in design of algorithm, which realizes corresponding queueing discipline. Rules governing construction of correct matrixes are given for canonical priority matrixes. Residence time for demands of different classes in system, which is the sum of waiting time and service time, is considered as one of the most important characteristics. By introducing extra event method Laplace transforms for these characteristics are obtained, and mathematical dependencies are derived on their basis for calculation of two first moments for corresponding characteristics of demands queueing

  19. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells

    International Nuclear Information System (INIS)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-01-01

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen’s organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann–Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against

  20. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells.

    Science.gov (United States)

    Perry, Seth W; Schueckler, Jill M; Burke, Kathleen; Arcuri, Giuseppe L; Brown, Edward B

    2013-09-05

    Matrix metalloproteases and collagen are key participants in breast cancer, but their precise roles in cancer etiology and progression remain unclear. MMP13 helps regulate collagen structure and has been ascribed largely harmful roles in cancer, but some studies demonstrate that MMP13 may also protect against tumor pathology. Other studies indicate that collagen's organizational patterns at the breast tumor-host interface influence metastatic potential. Therefore we investigated how MMP13 modulates collagen I, a principal collagen subtype in breast tissue, and affects tumor pathology and metastasis in a mouse model of breast cancer. Tumors were implanted into murine mammary tissues, and their growth analyzed in Wildtype and MMP13 KO mice. Following extraction, tumors were analyzed for collagen I levels and collagen I macro- and micro-structural properties at the tumor-host boundary using immunocytochemistry and two-photon and second harmonic generation microscopy. Lungs were analyzed for metastases counts, to correlate collagen I changes with a clinically significant functional parameter. Statistical analyses were performed by t-test, analysis of variance, or Wilcoxon-Mann-Whitney tests as appropriate. We found that genetic ablation of host stromal MMP13 led to: 1. Increased mammary tumor collagen I content, 2. Marked changes in collagen I spatial organization, and 3. Altered collagen I microstructure at the tumor-host boundary, as well as 4. Increased metastasis from the primary mammary tumor to lungs. These results implicate host MMP13 as a key regulator of collagen I structure and metastasis in mammary tumors, thus making it an attractive potential therapeutic target by which we might alter metastatic potential, one of the chief determinants of clinical outcome in breast cancer. In addition to identifying stromal MMP13 is an important regulator of the tumor microenvironment and metastasis, these results also suggest that stromal MMP13 may protect against breast

  1. A nodal method based on matrix-response method

    International Nuclear Information System (INIS)

    Rocamora Junior, F.D.; Menezes, A.

    1982-01-01

    A nodal method based in the matrix-response method, is presented, and its application to spatial gradient problems, such as those that exist in fast reactors, near the core - blanket interface, is investigated. (E.G.) [pt

  2. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, A. N. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, RJ (Brazil); INMETRO, Av. Nossa Senhora das Graças, 50 25250-020 Duque de Caxias, RJ (Brazil); Li, M. S. [Instituto de Física de São Carlos, Universidade de São Paulo, Ave. Trabalhador São Carlense, 400, 13565-590 São Carlos, SP (Brazil)

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  3. Efficient luminescent materials based on the incorporation of a Eu(III)tris-(bipyridine-carboxylate) complex in mesoporous hybrid silicate hosts

    International Nuclear Information System (INIS)

    Botelho, M.B.S.; Queiroz, T.B. de; Eckert, H.; Camargo, A.S.S. de

    2016-01-01

    The study of the photoluminescent characteristics of host–guest systems based on highly emissive trivalent rare earth complexes such as Eu 3+ – tris-bipyridine-carboxylate, immobilized in solid state host matrices, is motivated by their potential applications in optoelectronic devices and bioanalytical systems. Besides offering the possibility of designing a favorable environment to improve the photophysical properties of the guest molecules, encapsulation in porous solids also serves to protect such molecules, prevents leakage (especially critical for bio-applications) and ultimately leads to more robust and versatile materials. Among the most interesting possible host matrices are mesoporous silica and hybrids (organo-silicates) in the form of powders (MCM-41 like) and transparent bulk or film xerogels. In this work we report the synthesis of highly efficient red emitting materials based on the wet impregnation of such host matrices with the new complex Eu[4-(4′-tert-butyl-biphenyl-4-yl)-2,2′-bipyridine-6-carboxyl] 3 (“[ t Bu–COO] 3 Eu”) whose synthesis and photophysical characterization was recently reported. Prior to the incorporation, the host matrices were thoroughly characterized by solid state 29 Si and 1 H NMR, N 2 adsorption/desorption isotherms, and scanning electron microscopy (SEM). Incorporation and retention of the complex molecules are found to be significantly higher in the phenyl-modified hybrid samples than in the regular mesoporous silica, suggesting efficient immobilization of the complex by π–π interactions. Long excited state lifetimes (up to 1.7 ms comparable to 1.8 ms for the complex in solution), and high quantum yields (up to 65%, versus 85% for the complex in solution) were measured for the bulk xerogel materials, suggesting the potential use of thin films for lighting and bioanalytical applications. - Highlights: • New Eu(III) complex in mesoporous hybrid matrices leads to highly emissive material • Matrix

  4. Efficient luminescent materials based on the incorporation of a Eu(III)tris-(bipyridine-carboxylate) complex in mesoporous hybrid silicate hosts

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, M.B.S. [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Universidade de Brasilia, 70910-900 Brasilia, DF (Brazil); Queiroz, T.B. de [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Eckert, H. [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil); Institut für Physikalische Chemie, Westfälische Wilhelms Universität Münster, D-48149 Münster (Germany); Camargo, A.S.S. de, E-mail: andreasc@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP (Brazil)

    2016-02-15

    The study of the photoluminescent characteristics of host–guest systems based on highly emissive trivalent rare earth complexes such as Eu{sup 3+} – tris-bipyridine-carboxylate, immobilized in solid state host matrices, is motivated by their potential applications in optoelectronic devices and bioanalytical systems. Besides offering the possibility of designing a favorable environment to improve the photophysical properties of the guest molecules, encapsulation in porous solids also serves to protect such molecules, prevents leakage (especially critical for bio-applications) and ultimately leads to more robust and versatile materials. Among the most interesting possible host matrices are mesoporous silica and hybrids (organo-silicates) in the form of powders (MCM-41 like) and transparent bulk or film xerogels. In this work we report the synthesis of highly efficient red emitting materials based on the wet impregnation of such host matrices with the new complex Eu[4-(4′-tert-butyl-biphenyl-4-yl)-2,2′-bipyridine-6-carboxyl]{sub 3} (“[{sup t}Bu–COO]{sub 3}Eu”) whose synthesis and photophysical characterization was recently reported. Prior to the incorporation, the host matrices were thoroughly characterized by solid state {sup 29}Si and {sup 1}H NMR, N{sub 2} adsorption/desorption isotherms, and scanning electron microscopy (SEM). Incorporation and retention of the complex molecules are found to be significantly higher in the phenyl-modified hybrid samples than in the regular mesoporous silica, suggesting efficient immobilization of the complex by π–π interactions. Long excited state lifetimes (up to 1.7 ms comparable to 1.8 ms for the complex in solution), and high quantum yields (up to 65%, versus 85% for the complex in solution) were measured for the bulk xerogel materials, suggesting the potential use of thin films for lighting and bioanalytical applications. - Highlights: • New Eu(III) complex in mesoporous hybrid matrices leads to highly

  5. RBAC-Matrix-based EMR right management system to improve HIPAA compliance.

    Science.gov (United States)

    Lee, Hung-Chang; Chang, Shih-Hsin

    2012-10-01

    Security control of Electronic Medical Record (EMR) is a mechanism used to manage electronic medical records files and protect sensitive medical records document from information leakage. Researches proposed the Role-Based Access Control(RBAC). However, with the increasing scale of medical institutions, the access control behavior is difficult to have a detailed declaration among roles in RBAC. Furthermore, with the stringent specifications such as the U.S. HIPAA and Canada PIPEDA etc., patients are encouraged to have the right in regulating the access control of his EMR. In response to these problems, we propose an EMR digital rights management system, which is a RBAC-based extension to a matrix organization of medical institutions, known as RBAC-Matrix. With the aim of authorizing the EMR among roles in the organization, RBAC-Matrix also allow patients to be involved in defining access rights of his records. RBAC-Matrix authorizes access control declaration among matrix organizations of medical institutions by using XrML file in association with each EMR. It processes XrML rights declaration file-based authorization of behavior in the two-stage design, called master & servant stage, thus makes the associated EMR to be better protected. RBAC-Matrix will also make medical record file and its associated XrML declaration to two different EMRA(EMR Authorization)roles, namely, the medical records Document Creator (DC) and the medical records Document Right Setting (DRS). Access right setting, determined by the DRS, is cosigned by the patient, thus make the declaration of rights and the use of EMR to comply with HIPAA specifications.

  6. Inhibiting host-pathogen interactions using membrane-based nanostructures.

    Science.gov (United States)

    Bricarello, Daniel A; Patel, Mira A; Parikh, Atul N

    2012-06-01

    Virulent strains of bacteria and viruses recognize host cells by their plasma membrane receptors and often exploit the native translocation machinery to invade the cell. A promising therapeutic concept for early interruption of pathogen infection is to subvert this pathogenic trickery using exogenously introduced decoys that present high-affinity mimics of cellular receptors. This review highlights emerging applications of molecularly engineered lipid-bilayer-based nanostructures, namely (i) functionalized liposomes, (ii) supported colloidal bilayers or protocells and (iii) reconstituted lipoproteins, which display functional cellular receptors in optimized conformational and aggregative states. These decoys outcompete host cell receptors by preferentially binding to and neutralizing virulence factors of both bacteria and viruses, thereby promising a new approach to antipathogenic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Near-lossless multichannel EEG compression based on matrix and tensor decompositions.

    Science.gov (United States)

    Dauwels, Justin; Srinivasan, K; Reddy, M Ramasubba; Cichocki, Andrzej

    2013-05-01

    A novel near-lossless compression algorithm for multichannel electroencephalogram (MC-EEG) is proposed based on matrix/tensor decomposition models. MC-EEG is represented in suitable multiway (multidimensional) forms to efficiently exploit temporal and spatial correlations simultaneously. Several matrix/tensor decomposition models are analyzed in view of efficient decorrelation of the multiway forms of MC-EEG. A compression algorithm is built based on the principle of “lossy plus residual coding,” consisting of a matrix/tensor decomposition-based coder in the lossy layer followed by arithmetic coding in the residual layer. This approach guarantees a specifiable maximum absolute error between original and reconstructed signals. The compression algorithm is applied to three different scalp EEG datasets and an intracranial EEG dataset, each with different sampling rate and resolution. The proposed algorithm achieves attractive compression ratios compared to compressing individual channels separately. For similar compression ratios, the proposed algorithm achieves nearly fivefold lower average error compared to a similar wavelet-based volumetric MC-EEG compression algorithm.

  8. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  9. Interval-valued intuitionistic fuzzy matrix games based on Archimedean t-conorm and t-norm

    Science.gov (United States)

    Xia, Meimei

    2018-04-01

    Fuzzy game theory has been applied in many decision-making problems. The matrix game with interval-valued intuitionistic fuzzy numbers (IVIFNs) is investigated based on Archimedean t-conorm and t-norm. The existing matrix games with IVIFNs are all based on Algebraic t-conorm and t-norm, which are special cases of Archimedean t-conorm and t-norm. In this paper, the intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm are employed to aggregate the payoffs of players. To derive the solution of the matrix game with IVIFNs, several mathematical programming models are developed based on Archimedean t-conorm and t-norm. The proposed models can be transformed into a pair of primal-dual linear programming models, based on which, the solution of the matrix game with IVIFNs is obtained. It is proved that the theorems being valid in the exiting matrix game with IVIFNs are still true when the general aggregation operator is used in the proposed matrix game with IVIFNs. The proposed method is an extension of the existing ones and can provide more choices for players. An example is given to illustrate the validity and the applicability of the proposed method.

  10. Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries

    Science.gov (United States)

    Jia, Min; Lu, Shiyu; Chen, Yuming; Liu, Ting; Han, Jin; Shen, Bolei; Wu, Xiaoshuai; Bao, Shu-Juan; Jiang, Jian; Xu, Maowen

    2017-11-01

    Lithium-selenium (Li-Se) batteries are of great interest as a representative family of electrochemical energy storage systems because of their high theoretical volumetric capacity and considerable electronic conductivity. However, the main drawback of Se electrodes is the rapid capacity fading caused by the dissolution of polyselenides upon cycling. Here, we report a simple, economical, and effective method for the synthesis of three-dimensional (3D) hierarchical porous carbon with a hollow tubular structure as a host matrix for loading Se and trapping polyselenides. The as-obtained porous tubular carbon shows a superior specific surface area of 1786 m2 g-1, a high pore volume of 0.79 cm3 g-1, and many nanostructured pores. Benefiting from the unique structural characteristics, the resulting hierarchical porous carbon/Se composite exhibits a high capacity of 515 mAh g-1 at 0.2 C. More importantly, a remarkable cycling stability over 900 cycles at 2 C with a capacity fading rate of merely 0.02% per cycle can be achieved. The 3D hollow porous tubular carbon can be also used for other high-performance electrodes of electrochemical energy storage.

  11. Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems.

    Science.gov (United States)

    Wang, An; Cao, Yang; Shi, Quan

    2018-01-01

    In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.

  12. A Spreadsheet-Based, Matrix Formulation Linear Programming Lesson

    DEFF Research Database (Denmark)

    Harrod, Steven

    2009-01-01

    The article focuses on the spreadsheet-based, matrix formulation linear programming lesson. According to the article, it makes a higher level of theoretical mathematics approachable by a wide spectrum of students wherein many may not be decision sciences or quantitative methods majors. Moreover...

  13. Reduced density matrix functional theory via a wave function based approach

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Robert; Bloechl, Peter [Institute for Theoretical Physics, Clausthal University of Technology, Clausthal (Germany); Pruschke, Thomas [Institute for Theoretical Physics, University of Goettingen, Goettingen (Germany)

    2016-07-01

    We propose a new method for the calculation of the electronic and atomic structure of correlated electron systems based on reduced density matrix functional theory (rDMFT). The density-matrix functional is evaluated on the fly using Levy's constrained search formalism. The present implementation rests on a local approximation of the interaction reminiscent to that of dynamical mean field theory (DMFT). We focus here on additional approximations to the exact density-matrix functional in the local approximation and evaluate their performance.

  14. Structure and assembly of a paramyxovirus matrix protein.

    Science.gov (United States)

    Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G

    2012-08-28

    Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

  15. MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion

    Science.gov (United States)

    Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong

    This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.

  16. Quantum Chemical Calculations Using Accelerators: Migrating Matrix Operations to the NVIDIA Kepler GPU and the Intel Xeon Phi.

    Science.gov (United States)

    Leang, Sarom S; Rendell, Alistair P; Gordon, Mark S

    2014-03-11

    Increasingly, modern computer systems comprise a multicore general-purpose processor augmented with a number of special purpose devices or accelerators connected via an external interface such as a PCI bus. The NVIDIA Kepler Graphical Processing Unit (GPU) and the Intel Phi are two examples of such accelerators. Accelerators offer peak performances that can be well above those of the host processor. How to exploit this heterogeneous environment for legacy application codes is not, however, straightforward. This paper considers how matrix operations in typical quantum chemical calculations can be migrated to the GPU and Phi systems. Double precision general matrix multiply operations are endemic in electronic structure calculations, especially methods that include electron correlation, such as density functional theory, second order perturbation theory, and coupled cluster theory. The use of approaches that automatically determine whether to use the host or an accelerator, based on problem size, is explored, with computations that are occurring on the accelerator and/or the host. For data-transfers over PCI-e, the GPU provides the best overall performance for data sizes up to 4096 MB with consistent upload and download rates between 5-5.6 GB/s and 5.4-6.3 GB/s, respectively. The GPU outperforms the Phi for both square and nonsquare matrix multiplications.

  17. Batched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression

    KAUST Repository

    Halim Boukaram, Wajih

    2017-09-14

    We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic efficiently on GPUs.

  18. Batched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression

    KAUST Repository

    Halim Boukaram, Wajih; Turkiyyah, George; Ltaief, Hatem; Keyes, David E.

    2017-01-01

    We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic efficiently on GPUs.

  19. Matrix-based system reliability method and applications to bridge networks

    International Nuclear Information System (INIS)

    Kang, W.-H.; Song Junho; Gardoni, Paolo

    2008-01-01

    Using a matrix-based system reliability (MSR) method, one can estimate the probabilities of complex system events by simple matrix calculations. Unlike existing system reliability methods whose complexity depends highly on that of the system event, the MSR method describes any general system event in a simple matrix form and therefore provides a more convenient way of handling the system event and estimating its probability. Even in the case where one has incomplete information on the component probabilities and/or the statistical dependence thereof, the matrix-based framework enables us to estimate the narrowest bounds on the system failure probability by linear programming. This paper presents the MSR method and applies it to a transportation network consisting of bridge structures. The seismic failure probabilities of bridges are estimated by use of the predictive fragility curves developed by a Bayesian methodology based on experimental data and existing deterministic models of the seismic capacity and demand. Using the MSR method, the probability of disconnection between each city/county and a critical facility is estimated. The probability mass function of the number of failed bridges is computed as well. In order to quantify the relative importance of bridges, the MSR method is used to compute the conditional probabilities of bridge failures given that there is at least one city disconnected from the critical facility. The bounds on the probability of disconnection are also obtained for cases with incomplete information

  20. Constructing HVS-Based Optimal Substitution Matrix Using Enhanced Differential Evolution

    Directory of Open Access Journals (Sweden)

    Shu-Fen Tu

    2013-01-01

    Full Text Available Least significant bit (LSB substitution is a method of information hiding. The secret message is embedded into the last k bits of a cover-image in order to evade the notice of hackers. The security and stego-image quality are two main limitations of the LSB substitution method. Therefore, some researchers have proposed an LSB substitution matrix to address these two issues. Finding the optimal LSB substitution matrix can be conceptualized as a problem of combinatorial optimization. In this paper, we adopt a different heuristic method based on other researchers’ method, called enhanced differential evolution (EDE, to construct an optimal LSB substitution matrix. Differing from other researchers, we adopt an HVS-based measurement as a fitness function and embed the secret by modifying the pixel to a closest value rather than simply substituting the LSBs. Our scheme extracts the secret by modular operations as simple LSB substitution does. The experimental results show that the proposed embedding algorithm indeed improves imperceptibility of stego-images substantially.

  1. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    Science.gov (United States)

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  2. Theoretical treatment of molecular photoionization based on the R-matrix method

    International Nuclear Information System (INIS)

    Tashiro, Motomichi

    2012-01-01

    The R-matrix method was implemented to treat molecular photoionization problem based on the UK R-matrix codes. This method was formulated to treat photoionization process long before, however, its application has been mostly limited to photoionization of atoms. Application of the method to valence photoionization as well as inner-shell photoionization process will be presented.

  3. Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series

    DEFF Research Database (Denmark)

    Davis, Richard A.; Mikosch, Thomas Valentin; Pfaffel, Olivier

    2016-01-01

    In this paper we give an asymptotic theory for the eigenvalues of the sample covariance matrix of a multivariate time series. The time series constitutes a linear process across time and between components. The input noise of the linear process has regularly varying tails with index α∈(0,4) in...... particular, the time series has infinite fourth moment. We derive the limiting behavior for the largest eigenvalues of the sample covariance matrix and show point process convergence of the normalized eigenvalues. The limiting process has an explicit form involving points of a Poisson process and eigenvalues...... of a non-negative definite matrix. Based on this convergence we derive limit theory for a host of other continuous functionals of the eigenvalues, including the joint convergence of the largest eigenvalues, the joint convergence of the largest eigenvalue and the trace of the sample covariance matrix...

  4. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    Science.gov (United States)

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  5. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    Science.gov (United States)

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.

    Science.gov (United States)

    Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2014-08-13

    Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.

  7. Associate host in single-layer co-host polymer electrophosphorescent devices

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Feng Bin; Wang Yongsheng; Xu Xurong

    2006-01-01

    The definition and role of 'host' in polymer LED materials are studied in the present work. 'Primary host' and 'associate host' have been proposed and the rules of how to select an associate host are reported. Based on our experiments and the analysis of the energy scheme of the devices, we suggest that the values of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) are critical determinant in selecting a suitable associate host. On one hand, the associate host should be a hole-blocking material. This can confine the excitons in the active layer. On the other hand, the associate host should have a suitable LUMO that is convenient for electrons to transport

  8. Carbon Nano tubes Based Mixed Matrix Membrane for Gas Separation

    International Nuclear Information System (INIS)

    Sanip, S.M.; Ismail, A.F.; Goh, P.S.; Norrdin, M.N.A.; Soga, T.; Tanemura, M.; Yasuhiko, H.

    2011-01-01

    Carbon nano tubes based mixed matrix membrane (MMM) was prepared by the solution casting method in which the functionalized multi walled carbon nano tubes (f-MWNTs) were embedded into the polyimide membrane and the resulting membranes were characterized. The effect of nominal MWNTs content between 0.5 and 1.0 wt % on the gas separation properties were looked into. The morphologies of the MMM also indicated that at 0.7 % loading of f- MWNTs, the structures of the MMM showed uniform finger-like structures which have facilitated the fast gas transport through the polymer matrix. It may also be concluded that addition of open ended and shortened MWNTs to the polymer matrix can improve its permeability by increasing diffusivity through the MWNTs smooth cavity. (author)

  9. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  10. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  11. Fluorescence-Based Comparative Binding Studies of the Supramolecular Host Properties of PAMAM Dendrimers Using Anilinonaphthalene Sulfonates: Unusual Host-Dependent Fluorescence Titration Behavior

    Directory of Open Access Journals (Sweden)

    Natasa Stojanovic

    2010-04-01

    Full Text Available This work describes the fluorescence enhancement of the anilinonaphthalene sulfonate probes 1,8-ANS, 2,6-ANS, and 2,6-TNS via complexation with PAMAM dendrimer hosts of Generation 4, 5 and 6. The use of this set of three very closely related probes allows for comparative binding studies, with specific pairs of probes differing only in shape (1,8-ANS and 2,6-ANS, or in the presence of a methyl substituent (2,6-TNS vs. 2,6-ANS. The fluorescence of all three probes was significantly enhanced upon binding with PAMAM dendrimers, however in all cases except one, a very unusual spike was consistently observed in the host fluorescence titration plots (fluorescence enhancement vs. host concentration at low dendrimer concentration. This unprecedented fluorescence titration curve shape makes fitting the data to a simple model such as 1:1 or 2:1 host: guest complexation very difficult; thus only qualitative comparisons of the relative binding of the three guests could be made based on host titrations. In the case of G4 and G5 dendrimers, the order of binding strength was qualitatively determined to be 1,8-ANS < 2,6-ANS indicating that the more streamlined 2,6-substituted probes are a better match for the dendrimer cavity shape than the bulkier 1,8-substituted probe. This order of binding strength was also indicated by double fluorometric titration experiments, involving both host and guest titrations. Further double fluorometric titration experiments on 2,6-ANS in G4 dendrimer revealed a host concentration-dependent change in the nature of the host: guest complexation, with multiple guests complexed per host molecule at very low host concentrations, but less than one guest per host at higher concentrations.

  12. Fast matrix factorization algorithm for DOSY based on the eigenvalue decomposition and the difference approximation focusing on the size of observed matrix

    International Nuclear Information System (INIS)

    Tanaka, Yuho; Uruma, Kazunori; Furukawa, Toshihiro; Nakao, Tomoki; Izumi, Kenya; Utsumi, Hiroaki

    2017-01-01

    This paper deals with an analysis problem for diffusion-ordered NMR spectroscopy (DOSY). DOSY is formulated as a matrix factorization problem of a given observed matrix. In order to solve this problem, a direct exponential curve resolution algorithm (DECRA) is well known. DECRA is based on singular value decomposition; the advantage of this algorithm is that the initial value is not required. However, DECRA requires a long calculating time, depending on the size of the given observed matrix due to the singular value decomposition, and this is a serious problem in practical use. Thus, this paper proposes a new analysis algorithm for DOSY to achieve a short calculating time. In order to solve matrix factorization for DOSY without using singular value decomposition, this paper focuses on the size of the given observed matrix. The observed matrix in DOSY is also a rectangular matrix with more columns than rows, due to limitation of the measuring time; thus, the proposed algorithm transforms the given observed matrix into a small observed matrix. The proposed algorithm applies the eigenvalue decomposition and the difference approximation to the small observed matrix, and the matrix factorization problem for DOSY is solved. The simulation and a data analysis show that the proposed algorithm achieves a lower calculating time than DECRA as well as similar analysis result results to DECRA. (author)

  13. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E.

    2017-01-01

    The pathogen–host interactions database (PHI-base) is available at www.phi-base.org. PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen–host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. PMID:27915230

  14. A minimal SATA III Host Controller based on FPGA

    Science.gov (United States)

    Liu, Hailiang

    2018-03-01

    SATA (Serial Advanced Technology Attachment) is an advanced serial bus which has a outstanding performance in transmitting high speed real-time data applied in Personal Computers, Financial Industry, astronautics and aeronautics, etc. In this express, a minimal SATA III Host Controller based on Xilinx Kintex 7 serial FPGA is designed and implemented. Compared to the state-of-art, registers utilization are reduced 25.3% and LUTs utilization are reduced 65.9%. According to the experimental results, the controller works precisely and steady with the reading bandwidth of up to 536 MB per second and the writing bandwidth of up to 512 MB per second, both of which are close to the maximum bandwidth of the SSD(Solid State Disk) device. The host controller is very suitable for high speed data transmission and mass data storage.

  15. Implementation of biological tissue Mueller matrix for polarization-sensitive optical coherence tomography based on LabVIEW

    Science.gov (United States)

    Lin, Yongping; Zhang, Xiyang; He, Youwu; Cai, Jianyong; Li, Hui

    2018-02-01

    The Jones matrix and the Mueller matrix are main tools to study polarization devices. The Mueller matrix can also be used for biological tissue research to get complete tissue properties, while the commercial optical coherence tomography system does not give relevant analysis function. Based on the LabVIEW, a near real time display method of Mueller matrix image of biological tissue is developed and it gives the corresponding phase retardant image simultaneously. A quarter-wave plate was placed at 45 in the sample arm. Experimental results of the two orthogonal channels show that the phase retardance based on incident light vector fixed mode and the Mueller matrix based on incident light vector dynamic mode can provide an effective analysis method of the existing system.

  16. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation

    OpenAIRE

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-01-01

    Background Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host...

  17. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  18. PHI-base: a new interface and further additions for the multi-species pathogen-host interactions database.

    Science.gov (United States)

    Urban, Martin; Cuzick, Alayne; Rutherford, Kim; Irvine, Alistair; Pedro, Helder; Pant, Rashmi; Sadanadan, Vidyendra; Khamari, Lokanath; Billal, Santoshkumar; Mohanty, Sagar; Hammond-Kosack, Kim E

    2017-01-04

    The pathogen-host interactions database (PHI-base) is available at www.phi-base.org PHI-base contains expertly curated molecular and biological information on genes proven to affect the outcome of pathogen-host interactions reported in peer reviewed research articles. In addition, literature that indicates specific gene alterations that did not affect the disease interaction phenotype are curated to provide complete datasets for comparative purposes. Viruses are not included. Here we describe a revised PHI-base Version 4 data platform with improved search, filtering and extended data display functions. A PHIB-BLAST search function is provided and a link to PHI-Canto, a tool for authors to directly curate their own published data into PHI-base. The new release of PHI-base Version 4.2 (October 2016) has an increased data content containing information from 2219 manually curated references. The data provide information on 4460 genes from 264 pathogens tested on 176 hosts in 8046 interactions. Prokaryotic and eukaryotic pathogens are represented in almost equal numbers. Host species belong ∼70% to plants and 30% to other species of medical and/or environmental importance. Additional data types included into PHI-base 4 are the direct targets of pathogen effector proteins in experimental and natural host organisms. The curation problems encountered and the future directions of the PHI-base project are briefly discussed. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. The response-matrix based AFEN method for the hexagonal geometry

    International Nuclear Information System (INIS)

    Noh, Jae Man; Kim, Keung Koo; Zee, Sung Quun; Joo, Hyung Kook; Cho, Byng Oh; Jeong, Hyung Guk; Cho, Jin Young

    1998-03-01

    The analytic function expansion nodal (AFEN) method, developed to overcome the limitations caused by the transverse integration, has been successfully to predict the neutron behavior in the hexagonal core as well as rectangular core. In the hexagonal node, the transverse leakage resulted from the transverse integration has some singular terms such as delta-function and step-functions near the node center line. In most nodal methods using the transverse integration, the accuracy of nodal method is degraded because the transverse leakage is approximated as a smooth function across the node center line by ignoring singular terms. However, the AFEN method in which there is no transverse leakage term in deriving nodal coupling equations keeps good accuracy for hexagonal node. In this study, the AFEN method which shows excellent accuracy in the hexagonal core analyses is reformulated as a response matrix form. This form of the AFEN method can be implemented easily to nodal codes based on the response matrix method. Therefore, the Coarse Mesh Rebalance (CMR) acceleration technique which is one of main advantages of the response matrix method can be utilized for the AFEN method. The response matrix based AFEN method has been successfully implemented into the MASTER code and its accuracy and computational efficiency were examined by analyzing the two- and three- dimensional benchmark problem of VVER-440. Based on the results, it can be concluded that the newly formulated AFEN method predicts accurately the assembly powers (within 0.2% average error) as well as the effective multiplication factor (within 0.2% average error) as well as the effective multiplication factor (within 20 pcm error). In addition, the CMR acceleration technique is quite efficient in reducing the computation time of the AFEN method by 8 to 10 times. (author). 22 refs., 1 tab., 4 figs

  20. Instant OSSEC host-based intrusion detection system

    CERN Document Server

    Lhotsky, Brad

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A fast-paced, practical guide to OSSEC-HIDS that will help you solve host-based security problems.This book is great for anyone concerned about the security of their servers-whether you are a system administrator, programmer, or security analyst, this book will provide you with tips to better utilize OSSEC-HIDS. Whether you're new to OSSEC-HIDS or a seasoned veteran, you'll find something in this book you can apply today!This book assumes some knowledge of basic security concepts an

  1. Matrix completion by deep matrix factorization.

    Science.gov (United States)

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. 3,3′-Bicarbazole-Based Host Molecules for Solution-Processed Phosphorescent OLEDs

    Directory of Open Access Journals (Sweden)

    Jungwoon Kim

    2018-04-01

    Full Text Available Solution-processed organic light-emitting diodes (OLEDs are attractive due to their low-cost, large area displays, and lighting features. Small molecules as well as polymers can be used as host materials within the solution-processed emitting layer. Herein, we report two 3,3′-bicarbazole-based host small molecules, which possess a structural isomer relationship. 9,9′-Di-4-n-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-nBuPh and 9,9′-di-4-t-butylphenyl-9H,9′H-3,3′-bicarbazole (BCz-tBuPh exhibited similar optical properties within solutions but different photoluminescence within films. A solution-processed green phosphorescent OLED with the BCz-tBuPh host exhibited a high maximum current efficiency and power efficiency of 43.1 cd/A and 40.0 lm/W, respectively, compared to the device with the BCz-nBuPh host.

  3. NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.

    Science.gov (United States)

    Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan

    2015-05-17

    Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.

  4. Distance matrix-based approach to protein structure prediction.

    Science.gov (United States)

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the

  5. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  6. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    Science.gov (United States)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  7. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  8. NEW METHODS FOR IMPLANT MATRIX FORMATION BASED ON ELECTROSPINNING AND BIOPRINTING TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. N. Vasilets

    2009-01-01

    Full Text Available New implant materials for regenerative and replacement surgery based on biodegradable polymers like collagens and polyoxybutirates are developed. Porous structures with controllable morphology were formed from biodegradable polymers using electrospinning and bioprinting technologies. The matrixes were studied by visible and electron scanning microscopy as well as INTEGRA Tomo scanning probe platform making possible the restoration of inner 3D structure of polymer matrix

  9. Anorthite glass: a potential host matrix for 90Sr pencil

    International Nuclear Information System (INIS)

    Sengupta, Pranesh; Dey, G.K.; Fanara, Sara; Chakraborty, Sumit; Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    With rising global concerns over health hazards, environmental pollution and possible malicious applications of radioactive materials, there is an increasing consciousness among public and Governmental agencies for its better control, accounting and security. Investigations carried out by International Atomic Energy Agency and other monitoring bodies reveal that among various radioactive materials, the easily dispersible ones are high activity sealed sources (generally called radioactive pencils) used for various peaceful applications. Ideally, these sealed sources should be safely secured within specialized facilities, but in practice, it is not always done. Hence, there is a need to take an extra precautionary measure to ensure that the matrices currently used for hosting the radionuclides within sealed sources are durable enough under harsh service conditions and situations arising due to possible mishaps (accidents, misplaced, stolen etc). Among the variety of useful radionuclides, 90 Sr is one which is regularly used to (i) combat bone cancer, (ii) destroy unwanted tissue on the surface of eye/skin, (iii) light up/provide energy to remotely accessible areas etc. However, due to its (i) toxicity, (ii) mobility, (iii) easy incorporation within human body, (iv) considerable half-life (∼ 29 years), (v) emission of beta (β - ) particles along with high energy gamma ( γ)-rays, and (vi) retention of significant toxicity within sources even after service life, release of 90 Sr poses a serious threat to the biosphere. Hence, there is a need to ensure that existing 90 Sr host matrices are capable of withstanding all sorts of adversity that may arise during service and under storage/disposal

  10. A nodal method based on the response-matrix method

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Rocamora Junior, F.D.

    1983-02-01

    A nodal approach based on the Response-Matrix method is presented with the purpose of investigating the possibility of mixing two different allocations in the same problem. It is found that the use of allocation of albedo combined with allocation of direct reflection produces good results for homogeneous fast reactor configurations. (Author) [pt

  11. Efficient Hybrid Genetic Based Multi Dimensional Host Load Aware Algorithm for Scheduling and Optimization of Virtual Machines

    OpenAIRE

    Thiruvenkadam, T; Karthikeyani, V

    2014-01-01

    Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...

  12. Aroma behaviour during steam cooking within a potato starch-based model matrix.

    Science.gov (United States)

    Descours, Emilie; Hambleton, Alicia; Kurek, Mia; Debeaufort, Fréderic; Voilley, Andrée; Seuvre, Anne-Marie

    2013-06-05

    To help understand the organoleptic qualities of steam cooked foods, the kinetics of aroma release during cooking in a potato starch based model matrix was studied. Behaviour of components having a major impact in potato flavour were studied using solid phase micro extraction-gas chromatography (SPME-GC). Evolution of microstructure of potato starch model-matrix during steam cooking process was analyzed using environmental scanning electron microscopy (ESEM). Both aroma compounds that are naturally present in starch matrix and those that were added were analyzed. Both the aroma compounds naturally presented and those added had different behaviour depending on their physico-chemical properties (hydrophobicity, saturation vapour pressure, molecular weight, etc.). The physical state of potato starch influences of the retention of aromatized matrix with Starch gelatinization appearing to be the major phenomenon influencing aroma release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. PET image reconstruction with rotationally symmetric polygonal pixel grid based highly compressible system matrix

    International Nuclear Information System (INIS)

    Yu Yunhan; Xia Yan; Liu Yaqiang; Wang Shi; Ma Tianyu; Chen Jing; Hong Baoyu

    2013-01-01

    To achieve a maximum compression of system matrix in positron emission tomography (PET) image reconstruction, we proposed a polygonal image pixel division strategy in accordance with rotationally symmetric PET geometry. Geometrical definition and indexing rule for polygonal pixels were established. Image conversion from polygonal pixel structure to conventional rectangular pixel structure was implemented using a conversion matrix. A set of test images were analytically defined in polygonal pixel structure, converted to conventional rectangular pixel based images, and correctly displayed which verified the correctness of the image definition, conversion description and conversion of polygonal pixel structure. A compressed system matrix for PET image recon was generated by tap model and tested by forward-projecting three different distributions of radioactive sources to the sinogram domain and comparing them with theoretical predictions. On a practical small animal PET scanner, a compress ratio of 12.6:1 of the system matrix size was achieved with the polygonal pixel structure, comparing with the conventional rectangular pixel based tap-mode one. OS-EM iterative image reconstruction algorithms with the polygonal and conventional Cartesian pixel grid were developed. A hot rod phantom was detected and reconstructed based on these two grids with reasonable time cost. Image resolution of reconstructed images was both 1.35 mm. We conclude that it is feasible to reconstruct and display images in a polygonal image pixel structure based on a compressed system matrix in PET image reconstruction. (authors)

  14. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    International Nuclear Information System (INIS)

    Smellie, John A.T.; Waber, H. Niklaus; Frape, Shaun K.

    2003-06-01

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10 -14 -10 -13 m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales ∼4 years) solute transport through the rock matrix

  15. Matrix fluid chemistry experiment. Final report June 1998 - March 2003

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, John A.T. [Conterra AB, Luleaa (Sweden); Waber, H. Niklaus [Univ. of Bern (Switzerland). Inst. of Geology; Frape, Shaun K. [Univ. of Waterloo (Canada). Dept. of Earth Sciences

    2003-06-01

    The Matrix Fluid Chemistry Experiment set out to determine the composition and evolution of matrix pore fluids/waters in low permeable rock located at repository depths in the Aespoe Hard Rock Laboratory (HRL). Matrix pore fluids/waters can be highly saline in composition and, if accessible, may influence the near-field groundwater chemistry of a repository system. Characterising pore fluids/waters involved in-situ borehole sampling and analysis integrated with laboratory studies and experiments on rock matrix drill core material. Relating the rate of in-situ pore water accumulation during sampling to the measured rock porosity indicated a hydraulic conductivity of 10{sup -14}-10{sup -13} m/s for the rock matrix. This was in accordance with earlier estimated predictions. The sampled matrix pore water, brackish in type, mostly represents older palaeo- groundwater mixtures preserved in the rock matrix and dating back to at least the last glaciation. A component of matrix pore 'fluid' is also present. One borehole section suggests a younger groundwater component which has accessed the rock matrix during the experiment. There is little evidence that the salinity of the matrix pore waters has been influenced significantly by fluid inclusion populations hosted by quartz. Crush/leach, cation exchange, pore water diffusion and pore water displacement laboratory experiments were carried out to compare extracted/calculated matrix pore fluids/waters with in-situ sampling. Of these the pore water diffusion experiments appear to be the most promising approach and a recommended site characterisation protocol has been formulated. The main conclusions from the Matrix Fluid Chemistry Experiment are: Groundwater movement within the bedrock hosting the experimental site has been enhanced by increased hydraulic gradients generated by the presence of the tunnel, and to a much lesser extent by the borehole itself. Over experimental timescales {approx}4 years) solute transport

  16. Homecare-based motor rehabilitation in musculoskeletal chronic graft versus host disease

    Directory of Open Access Journals (Sweden)

    A Tendas

    2011-01-01

    Full Text Available Chronic graft versus host disease (cGVHD is a frequent complication of allogeneic stem cell transplantation. Extensive musculoskeletal and skin involvement may induce severe functional impairment, disability and quality of life deterioration. Physical rehabilitation is recommended as ancillary therapy in these forms, but experiences are sparse. A 39-year-old man affected by musculoskeletal and skin chronic graft versus host disease (cGVHD was treated with a homecare-based motor rehabilitation program during palliation for disease progression. Significant functional improvement was obtained. Motor rehabilitation should be strongly considered for patients with musculoskeletal cGVHD, both in the palliative and in the curative phase of disease.

  17. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response.

    Science.gov (United States)

    Heppner, K. J.; Matrisian, L. M.; Jensen, R. A.; Rodgers, W. H.

    1996-01-01

    Matrix metalloproteinase (MMP) family members have been associated with advanced-stage cancer and contribute to tumor progression, invasion, and metastasis as determined by inhibitor studies. In situ hybridization was performed to analyze the expression and localization of all known MMPs in a series of human breast cancer biopsy specimens. Most MMPs were localized to tumor stroma, and all MMPs had very distinct expression patterns. Matrilysin was expressed by morphologically normal epithelial ducts within tumors and in tissue from reduction mammoplasties, and by epithelial-derived tumor cells. Many family members, including stromelysin-3, gelatinase A, MT-MMP, interstitial collagenase, and stromelysin-1 were localized to fibroblasts of tumor stroma of invasive cancers but in quite distinct, and generally widespread, patterns. Gelatinase B, collagenase-3, and metalloelastase expression were more focal; gelatinase B was primarily localized to endothelial cells, collagenase-3 to isolated tumor cells, and metalloelastase to cytokeratin-negative, macrophage-like cells. The MMP inhibitor, TIMP-1, was expressed in both stromal and tumor components in most tumors, and neither stromelysin-2 nor neutrophil collagenase were detected in any of the tumors. These results indicate that there is very tight and complex regulation in the expression of MMP family members in breast cancer that generally represents a host response to the tumor and emphasize the need to further evaluate differential functions for MMP family members in breast tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8686751

  18. Data Hiding Based on a Two-Layer Turtle Shell Matrix

    Directory of Open Access Journals (Sweden)

    Xiao-Zhu Xie

    2018-02-01

    Full Text Available Data hiding is a technology that embeds data into a cover carrier in an imperceptible way while still allowing the hidden data to be extracted accurately from the stego-carrier, which is one important branch of computer science and has drawn attention of scholars in the last decade. Turtle shell-based (TSB schemes have become popular in recent years due to their higher embedding capacity (EC and better visual quality of the stego-image than most of the none magic matrices based (MMB schemes. This paper proposes a two-layer turtle shell matrix-based (TTSMB scheme for data hiding, in which an extra attribute presented by a 4-ary digit is assigned to each element of the turtle shell matrix with symmetrical distribution. Therefore, compared with the original TSB scheme, two more bits are embedded into each pixel pair to obtain a higher EC up to 2.5 bits per pixel (bpp. The experimental results reveal that under the condition of the same visual quality, the EC of the proposed scheme outperforms state-of-the-art data hiding schemes.

  19. High performance matrix inversion based on LU factorization for multicore architectures

    KAUST Repository

    Dongarra, Jack

    2011-01-01

    The goal of this paper is to present an efficient implementation of an explicit matrix inversion of general square matrices on multicore computer architecture. The inversion procedure is split into four steps: 1) computing the LU factorization, 2) inverting the upper triangular U factor, 3) solving a linear system, whose solution yields inverse of the original matrix and 4) applying backward column pivoting on the inverted matrix. Using a tile data layout, which represents the matrix in the system memory with an optimized cache-aware format, the computation of the four steps is decomposed into computational tasks. A directed acyclic graph is generated on the fly which represents the program data flow. Its nodes represent tasks and edges the data dependencies between them. Previous implementations of matrix inversions, available in the state-of-the-art numerical libraries, are suffer from unnecessary synchronization points, which are non-existent in our implementation in order to fully exploit the parallelism of the underlying hardware. Our algorithmic approach allows to remove these bottlenecks and to execute the tasks with loose synchronization. A runtime environment system called QUARK is necessary to dynamically schedule our numerical kernels on the available processing units. The reported results from our LU-based matrix inversion implementation significantly outperform the state-of-the-art numerical libraries such as LAPACK (5x), MKL (5x) and ScaLAPACK (2.5x) on a contemporary AMD platform with four sockets and the total of 48 cores for a matrix of size 24000. A power consumption analysis shows that our high performance implementation is also energy efficient and substantially consumes less power than its competitors. © 2011 ACM.

  20. Paramagnetic NMR investigation of dendrimer-based host-guest interactions.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available In this study, the host-guest behavior of poly(amidoamine (PAMAM dendrimers bearing amine, hydroxyl, or carboxylate surface functionalities were investigated by paramagnetic NMR studies. 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO derivatives were used as paramagnetic guest molecules. The results showed that TEMPO-COOH significantly broaden the ¹H NMR peaks of amine- and hydroxyl-terminated PAMAM dendrimers. In comparison, no paramagnetic relaxation enhancement (PRE was observed between TEMPO-NH₂, TEMPO-OH and the three types of PAMAM dendrimers. The PRE phenomenon observed is correlated with the encapsulation of TEMPO-COOH within dendrimer pockets. Protonation of the tertiary amine groups within PAMAM dendrimers plays an important role during this process. Interestingly, the absence of TEMPO-COOH encapsulation within carboxylate-terminated PAMAM dendrimer is observed due to the repulsion of TEMPO-COO- anion and anionic dendrimer surface. The combination of paramagnetic probes and ¹H NMR linewidth analysis can be used as a powerful tool in the analysis of dendrimer-based host-guest systems.

  1. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    Science.gov (United States)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  2. A Predictive-Control-Based Over-Modulation Method for Conventional Matrix Converters

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Yang, Jian; Sun, Yao

    2018-01-01

    To increase the voltage transfer ratio of the matrix converter and improve the input/output current performance simultaneously, an over-modulation method based on predictive control is proposed in this paper, where the weighting factor is selected by an automatic adjusting mechanism, which is able...... to further enhance the system performance promptly. This method has advantages like the maximum voltage transfer ratio can reach 0.987 in the experiments; the total harmonic distortion of the input and output current are reduced, and the losses in the matrix converter are decreased. Moreover, the specific...

  3. Rudder Based Roll Control via host-computer of A Robotic Boat

    OpenAIRE

    Bao, Xinping; Yu, Zhenyu; Nonami, Kenzo

    2009-01-01

    Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H control method design is sele...

  4. Computations between metallocalix(4)arene host and a series of four oil-based fuel pollutant guests

    International Nuclear Information System (INIS)

    Pathak, D.A.; Street, N.C.

    2006-01-01

    Calculations using PM3 and mechanics methods on metallocalix(4)arene hosts (1-10) and substituted dibenzothiophene guests (A-D), which are generally known as oil-based fuel pollutants, show that host-guest formation is energetically favored. Calculations have been carried out for both 1/1 and 1/4 ratios of host/guest. There is no direct bonding between the metal center of the host and the sulfur of the guest in the host-guest complex. Sterically hundered dibenzothiophene guests show similar energies to the unhindered analogs. For calix(4)arenas (5-10) in partial cone conformations and having hydrogen rather than p-tert-butyl groups on the wide rim, host-guest formation occurs within the narrow rim rather than the wide rim. Host-guest association appears to occur via Pie-Pie interactions between host and guest phenyl groups rather than via metal-sulfur bonding. The study has importance especially in oil refining to obtain environmentally safe fuel oils and help supramolecular chemists in designing and synthesizing more sophisticated host molecules for the removal of sulfur from crude oil / refinery oil. (author)

  5. Gamma-ray solid laser: variety of work nuclei and host matrixes in Mendeleev Table screened with use of system of criteria based on joint GG&RH theory

    Science.gov (United States)

    Karyagin, Stanislav V.

    2001-03-01

    The hosts and nuclei-candidates (mass approximately 46 - 243, transition energy approximately 1 - 200 keV, decay's time 10-7 - 10+2 s) for gamma-laser (GL) realization are represented over Mendeleev Table. The choice of active media (nuclei-candidates, hosts) for GL is based on the joint theory of (gamma) -generation and radiation-heat regime which accounts a big complex of hindrances against GL and thus discards many tentative candidates. Nuclei- candidates are screened at the analyzing of data banks for nuclear transitions. Chosen candidates (approximately 20) could be used due to author's method SPTEN (Soft Prompt Transplantation of Excited Nuclei). The discarded tentative nuclei (approximately 80) with the life-times 10-6 - 10+2 are represented too. All analyzed long-lived (approximately 0.5 - 10+2 s) isomers are turned to be not fit for GL without use of very strong multi-wave Borrman effect even at the supposition of natural line's width. The application of the revealed candidates in two different (gamma) -laser's categories (residential and non- residential) is discussed.

  6. A Matrix-Free Posterior Ensemble Kalman Filter Implementation Based on a Modified Cholesky Decomposition

    Directory of Open Access Journals (Sweden)

    Elias D. Nino-Ruiz

    2017-07-01

    Full Text Available In this paper, a matrix-free posterior ensemble Kalman filter implementation based on a modified Cholesky decomposition is proposed. The method works as follows: the precision matrix of the background error distribution is estimated based on a modified Cholesky decomposition. The resulting estimator can be expressed in terms of Cholesky factors which can be updated based on a series of rank-one matrices in order to approximate the precision matrix of the analysis distribution. By using this matrix, the posterior ensemble can be built by either sampling from the posterior distribution or using synthetic observations. Furthermore, the computational effort of the proposed method is linear with regard to the model dimension and the number of observed components from the model domain. Experimental tests are performed making use of the Lorenz-96 model. The results reveal that, the accuracy of the proposed implementation in terms of root-mean-square-error is similar, and in some cases better, to that of a well-known ensemble Kalman filter (EnKF implementation: the local ensemble transform Kalman filter. In addition, the results are comparable to those obtained by the EnKF with large ensemble sizes.

  7. Reactive fillers based on SWCNTs functionalized with matrix-based moieties for the production of epoxy composites with superior and tunable properties

    International Nuclear Information System (INIS)

    González-Domínguez, Jose M; Ansón-Casaos, A; Martínez, M Teresa; Martínez-Rubí, Yadienka; Simard, Benoit; Díez-Pascual, Ana M; Gómez-Fatou, Marian

    2012-01-01

    Composite materials based on epoxy matrix and single-walled carbon nanotubes (SWCNTs) are able to exhibit outstanding improvements in physical properties when using a tailored covalent functionalization with matrix-based moieties containing terminal amines or epoxide rings. The proper choice of grafted moiety and integration protocol makes it feasible to tune the composite physical properties. At 0.5 wt% SWCNT loading, these composites exhibit up to 65% improvement in storage modulus, 91% improvement in tensile strength, and 65% improvement in toughness. A 15 °C increase in the glass transition temperature relative to the parent matrix was also achieved. This suggests that a highly improved interfacial bonding between matrix and filler, coupled to improved dispersion, are achieved. The degradation temperatures show an upshift in the range of 40–60 °C, which indicates superior thermal performance. Electrical conductivity ranges from ∼10 −13 to ∼10 −3 S cm −1 , which also shows the possibility of tuning the insulating or conductive behaviour of the composites. The chemical affinity of the functionalization moieties with the matrix and the unchanged molecular structure at the SWCNT/matrix interface are responsible for such improvements. (paper)

  8. Hypergraph partitioning implementation for parallelizing matrix-vector multiplication using CUDA GPU-based parallel computing

    Science.gov (United States)

    Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.

    2017-07-01

    Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).

  9. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix

    International Nuclear Information System (INIS)

    Kochetov, R; Andritsch, T; Morshuis, P H F; Smit, J J; Korobko, A V; Picken, S J

    2011-01-01

    In this paper the thermal conductivity of epoxy-based composite materials is analysed. Two- and three-phase Lewis-Nielsen models are proposed for fitting the experimental values of the thermal conductivity of epoxy-based polymer composites. Various inorganic nano- and micro- particles were used, namely aluminium oxide, aluminium nitride, magnesium oxide and silicon dioxide with average particle size between 20 nm and 20 μm. It is shown that the filler-matrix interface plays a dominant role in the thermal conduction process of the nanocomposites. The two-phase model was proposed as an initial step for describing systems containing 2 constituents, i.e. an epoxy matrix and an inorganic filler. The three-phase model was introduced to specifically address the properties of the interfacial zone between the host polymer and the surface modified nanoparticles.

  10. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity.

    Science.gov (United States)

    Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho

    2017-08-08

    Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.

  11. Wear behaviour of Zr-based in situ bulk metallic glass matrix ...

    Indian Academy of Sciences (India)

    based bulk metallic glass (BMG) and its in situ BMG matrix composites with diameter of 3 mm were fabricated by conventional Cu-mould casting method and ... The composites showed lower friction coefficient and wear rate than the pure BMG.

  12. [The genetic diversity and homology of Anabaena azollae and its host plant (Azolla) based on rapd analysis].

    Science.gov (United States)

    Chen, Jian; Zheng, Wei-wen; Xu, Guo-zhong; Song, Tie-ying; Tang, Long-fei

    2002-01-01

    Symbiotic Anabeana azollae and its host plant Anabeana-free Azolla were isolated from 16 Azolla accessions representing different Azolla species or geographic origins.DNA polymorphic fragments were obtained by simultaneous RAPD amplification of both symbiont and host. The UPGMA clusters of Anabeana azollae and its host Azolla were established separately based on Dice coefficient caculation and a coordinated relationship was shown between Anabeana azollae and its Azolla host along both individual genetic divergence,but this genetic homology was reduced among different strains within Azolla species while the obvious mutants of Anabeana azollae were detected in some Azolla tested strains collected from different geographic area in the same host species.

  13. Novel Direction Of Arrival Estimation Method Based on Coherent Accumulation Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Li Lei

    2015-04-01

    Full Text Available Based on coherent accumulation matrix reconstruction, a novel Direction Of Arrival (DOA estimation decorrelation method of coherent signals is proposed using a small sample. First, the Signal to Noise Ratio (SNR is improved by performing coherent accumulation operation on an array of observed data. Then, according to the structure characteristics of the accumulated snapshot vector, the equivalent covariance matrix, whose rank is the same as the number of array elements, is constructed. The rank of this matrix is proved to be determined just by the number of incident signals, which realize the decorrelation of coherent signals. Compared with spatial smoothing method, the proposed method performs better by effectively avoiding aperture loss with high-resolution characteristics and low computational complexity. Simulation results demonstrate the efficiency of the proposed method.

  14. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    Science.gov (United States)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  15. Use of Comparative Genomics-Based Markers for Discrimination of Host Specificity in Fusarium oxysporum.

    Science.gov (United States)

    van Dam, Peter; de Sain, Mara; Ter Horst, Anneliek; van der Gragt, Michelle; Rep, Martijn

    2018-01-01

    The polyphyletic nature of many formae speciales of Fusarium oxysporum prevents molecular identification of newly encountered strains based on conserved, vertically inherited genes. Alternative molecular detection methods that could replace labor- and time-intensive disease assays are therefore highly desired. Effectors are functional elements in the pathogen-host interaction and have been found to show very limited sequence diversity between strains of the same forma specialis , which makes them potential markers for host-specific pathogenicity. We therefore compared candidate effector genes extracted from 60 existing and 22 newly generated genome assemblies, specifically targeting strains affecting cucurbit plant species. Based on these candidate effector genes, a total of 18 PCR primer pairs were designed to discriminate between each of the seven Cucurbitaceae-affecting formae speciales When tested on a collection of strains encompassing different clonal lineages of these formae speciales , nonpathogenic strains, and strains of other formae speciales , they allowed clear recognition of the host range of each evaluated strain. Within Fusarium oxysporum f. sp. melonis more genetic variability exists than anticipated, resulting in three F. oxysporum f. sp. melonis marker patterns that partially overlapped with the cucurbit-infecting Fusarium oxysporum f. sp. cucumerinum , Fusarium oxysporum f. sp. niveum , Fusarium oxysporum f. sp. momordicae , and/or Fusarium oxysporum f. sp. lagenariae For F. oxysporum f. sp. niveum , a multiplex TaqMan assay was evaluated and was shown to allow quantitative and specific detection of template DNA quantities as low as 2.5 pg. These results provide ready-to-use marker sequences for the mentioned F. oxysporum pathogens. Additionally, the method can be applied to find markers distinguishing other host-specific forms of F. oxysporum IMPORTANCE Pathogenic strains of Fusarium oxysporum are differentiated into formae speciales based on

  16. Optimal control issues in plant disease with host demographic factor and botanical fungicides

    Science.gov (United States)

    Anggriani, N.; Mardiyah, M.; Istifadah, N.; Supriatna, A. K.

    2018-03-01

    In this paper, we discuss a mathematical model of plant disease with the effect of fungicide. We assume that the fungicide is given as a preventive treatment to infectious plants. The model is constructed based on the development of the disease in which the monomolecular is monocyclic. We show the value of the Basic Reproduction Number (BRN) ℛ0 of the plant disease transmission. The BRN is computed from the largest eigenvalue of the next generation matrix of the model. The result shows that in the region where ℛ0 greater than one there is a single stable endemic equilibrium. However, in the region where ℛ0 less than one this endemic equilibrium becomes unstable. The dynamics of the model is highly sensitive to changes in contact rate and infectious period. We also discuss the optimal control of the infected plant host by considering a preventive treatment aimed at reducing the infected host plant. The obtaining optimal control shows that it can reduce the number of infected hosts compared to that without control. Some numerical simulations are also given to illustrate our analytical results.

  17. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    Science.gov (United States)

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  18. Dealing with project complexity by matrix-based propagation modelling for project risk analysis

    OpenAIRE

    Fang , Chao; Marle , Franck

    2012-01-01

    International audience; Engineering projects are facing a growing complexity and are thus exposed to numerous and interdependent risks. In this paper, we present a quantitative method for modelling propagation behaviour in the project risk network. The construction of the network requires the involvement of the project manager and related experts using the Design Structure Matrix (DSM) method. A matrix-based risk propagation model is introduced to calculate risk propagation and thus to re-eva...

  19. Structure of matrix metalloproteinase-3 with a platinum-based inhibitor.

    Science.gov (United States)

    Belviso, Benny Danilo; Caliandro, Rocco; Siliqi, Dritan; Calderone, Vito; Arnesano, Fabio; Natile, Giovanni

    2013-06-18

    An X-ray investigation has been performed with the aim of characterizing the binding sites of a platinum-based inhibitor (K[PtCl3(DMSO)]) of matrix metalloproteinase-3 (stromelysin-1). The platinum complex targets His224 in the S1' specificity loop, representing the first step in the selective inhibition process (PDB ID code 4JA1).

  20. Whole genome-based phylogeny of reptile-associated Helicobacter indicates independent niche adaptation followed by diversification in a poikilothermic host.

    Science.gov (United States)

    Gilbert, Maarten J; Duim, Birgitta; Timmerman, Arjen J; Zomer, Aldert L; Wagenaar, Jaap A

    2017-08-21

    Reptiles have been shown to host a significant Helicobacter diversity. In order to survive, reptile-associated Helicobacter lineages need to be adapted to the thermally dynamic environment encountered in a poikilothermic host. The whole genomes of reptile-associated Helicobacter lineages can provide insights in Helicobacter host adaptation and coevolution. These aspects were explored by comparing the genomes of reptile-, bird-, and mammal-associated Helicobacter lineages. Based on average nucleotide identity, all reptile-associated Helicobacter lineages in this study could be considered distinct species. A whole genome-based phylogeny showed two distinct clades, one associated with chelonians and one associated with lizards. The phylogeny indicates initial adaptation to an anatomical niche, which is followed by an ancient host jump and subsequent diversification. Furthermore, the ability to grow at low temperatures, which might reflect thermal adaptation to a reptilian host, originated at least twice in Helicobacter evolution. A putative tricarballylate catabolism locus was specifically present in Campylobacter and Helicobacter isolates from reptiles. The phylogeny of reptile-associated Helicobacter parallels host association, indicating a high level of host specificity. The high diversity and deep branching within these clades supports long-term coevolution with, and extensive radiation within the respective reptilian host type.

  1. Linear Matrix Inequality Based Fuzzy Synchronization for Fractional Order Chaos

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available This paper investigates fuzzy synchronization for fractional order chaos via linear matrix inequality. Based on generalized Takagi-Sugeno fuzzy model, one efficient stability condition for fractional order chaos synchronization or antisynchronization is given. The fractional order stability condition is transformed into a set of linear matrix inequalities and the rigorous proof details are presented. Furthermore, through fractional order linear time-invariant (LTI interval theory, the approach is developed for fractional order chaos synchronization regardless of the system with uncertain parameters. Three typical examples, including synchronization between an integer order three-dimensional (3D chaos and a fractional order 3D chaos, anti-synchronization of two fractional order hyperchaos, and the synchronization between an integer order 3D chaos and a fractional order 4D chaos, are employed to verify the theoretical results.

  2. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    Science.gov (United States)

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. High performance matrix inversion based on LU factorization for multicore architectures

    KAUST Repository

    Dongarra, Jack; Faverge, Mathieu; Ltaief, Hatem; Luszczek, Piotr R.

    2011-01-01

    on the available processing units. The reported results from our LU-based matrix inversion implementation significantly outperform the state-of-the-art numerical libraries such as LAPACK (5x), MKL (5x) and ScaLAPACK (2.5x) on a contemporary AMD platform with four

  4. The Visual Matrix Method: Imagery and Affect in a Group-Based Research Setting

    Directory of Open Access Journals (Sweden)

    Lynn Froggett

    2015-07-01

    Full Text Available The visual matrix is a method for researching shared experience, stimulated by sensory material relevant to a research question. It is led by imagery, visualization and affect, which in the matrix take precedence over discourse. The method enables the symbolization of imaginative and emotional material, which might not otherwise be articulated and allows "unthought" dimensions of experience to emerge into consciousness in a participatory setting. We describe the process of the matrix with reference to the study "Public Art and Civic Engagement" (FROGGETT, MANLEY, ROY, PRIOR & DOHERTY, 2014 in which it was developed and tested. Subsequently, examples of its use in other contexts are provided. Both the matrix and post-matrix discussions are described, as is the interpretive process that follows. Theoretical sources are highlighted: its origins in social dreaming; the atemporal, associative nature of the thinking during and after the matrix which we describe through the Deleuzian idea of the rhizome; and the hermeneutic analysis which draws from object relations theory and the Lorenzerian tradition of scenic understanding. The matrix has been conceptualized as a "scenic rhizome" to account for its distinctive quality and hybrid origins in research practice. The scenic rhizome operates as a "third" between participants and the "objects" of contemplation. We suggest that some of the drawbacks of other group-based methods are avoided in the visual matrix—namely the tendency for inter-personal dynamics to dominate the event. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs150369

  5. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    Science.gov (United States)

    Kothari, Kunal B.

    -sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was

  6. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Krishnendu [Ohio Medical Physics Consulting, Dublin, Ohio 43017 (United States); Straus, Kenneth J.; Glick, Stephen J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Chen, Yu. [Department of Radiation Oncology, Columbia University, New York, New York 10032 (United States)

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  7. A Practical Method ‘Discussion using Matrix Diagram’ , ConnectingHuman Base-Liberal-and Engineering Base-Professional-

    Science.gov (United States)

    Shimada, Wataru

    In order to bring up talented people, it is a most important subject how to awake ‘Emotional Human Power’ , which is the origin of Autonomy and Creativity. A Practical Method ‘Discussion using Matrix Diagram’ developed for improving ‘Emotional Human Power’ including ‘Communication Skill’ , is confirmed to be useful for connecting Human Base-Liberal-and Engineering Base-Professional-.

  8. Electroluminescence efficiencies of erbium in silicon-based hosts

    Energy Technology Data Exchange (ETDEWEB)

    Cueff, Sébastien, E-mail: sebastien-cueff@brown.edu, E-mail: christophe.labbe@ensicaen.fr [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CNRS/CEA/Ensicaen/UCBN, Caen 14050 (France); School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Manel Ramírez, Joan; Berencén, Yonder; Garrido, Blas [MIND-IN2UB, Department Electrònica, Universitat de Barcelona, Martí i Franquès 1, Barcelona 08028 (Spain); Kurvits, Jonathan A.; Zia, Rashid [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States); Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Rizk, Richard; Labbé, Christophe, E-mail: sebastien-cueff@brown.edu, E-mail: christophe.labbe@ensicaen.fr [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CNRS/CEA/Ensicaen/UCBN, Caen 14050 (France)

    2013-11-04

    We report on room-temperature 1.5 μm electroluminescence from trivalent erbium (Er{sup 3+}) ions embedded in three different CMOS-compatible silicon-based hosts: SiO{sub 2}, Si{sub 3}N{sub 4}, and SiN{sub x}. We show that although the insertion of either nitrogen or excess silicon helps enhance electrical conduction and reduce the onset voltage for electroluminescence, it drastically decreases the external quantum efficiency of Er{sup 3+} ions from 2% in SiO{sub 2} to 0.001% and 0.0004% in SiN{sub x} and Si{sub 3}N{sub 4}, respectively. Furthermore, we present strong evidence that hot carrier injection is significantly more efficient than defect-assisted conduction for the electrical excitation of Er{sup 3+} ions. These results suggest strategies to optimize the engineering of on-chip electrically excited silicon-based nanophotonic light sources.

  9. Effects of triclosan on host response and microbial biomarkers during experimental gingivitis.

    Science.gov (United States)

    Pancer, Brooke A; Kott, Diana; Sugai, James V; Panagakos, Fotinos S; Braun, Thomas M; Teles, Ricardo P; Giannobile, William V; Kinney, Janet S

    2016-05-01

    This exploratory randomized, controlled clinical trial sought to evaluate anti-inflammatory and -microbial effects of triclosan during experimental gingivitis as assessed by host response biomarkers and biofilm microbial pathogens. Thirty participants were randomized to triclosan or control dentifrice groups who ceased homecare for 21 days in an experimental gingivitis (EG) protocol. Plaque and gingival indices and saliva, plaque, and gingival crevicular fluid (GCF) were assessed/collected at days 0, 14, 21 and 35. Levels and proportions of 40 bacterial species from plaque samples were determined using checkerboard DNA-DNA hybridization. Ten biomarkers associated with inflammation, matrix degradation, and host protection were measured from GCF and saliva and analysed using a multiplex array. Participants were stratified as "high" or "low" responders based on gingival index and GCF biomarkers and bacterial biofilm were combined to generate receiver operating characteristic curves and predict gingivitis susceptibility. No differences in mean PI and GI values were observed between groups and non-significant trends of reduction of host response biomarkers with triclosan treatment. Triclosan significantly reduced levels of A. actinomycetemcomitans and P. gingivalis during induction of gingivitis. Triclosan reduced microbial levels during gingivitis development (ClinicalTrials.gov NCT01799226). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    Science.gov (United States)

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  11. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  12. Rhabdovirus matrix protein structures reveal a novel mode of self-association.

    Directory of Open Access Journals (Sweden)

    Stephen C Graham

    2008-12-01

    Full Text Available The matrix (M proteins of rhabdoviruses are multifunctional proteins essential for virus maturation and budding that also regulate the expression of viral and host proteins. We have solved the structures of M from the vesicular stomatitis virus serotype New Jersey (genus: Vesiculovirus and from Lagos bat virus (genus: Lyssavirus, revealing that both share a common fold despite sharing no identifiable sequence homology. Strikingly, in both structures a stretch of residues from the otherwise-disordered N terminus of a crystallographically adjacent molecule is observed binding to a hydrophobic cavity on the surface of the protein, thereby forming non-covalent linear polymers of M in the crystals. While the overall topology of the interaction is conserved between the two structures, the molecular details of the interactions are completely different. The observed interactions provide a compelling model for the flexible self-assembly of the matrix protein during virion morphogenesis and may also modulate interactions with host proteins.

  13. Configuration control based on risk matrix for radiotherapy treatment

    International Nuclear Information System (INIS)

    Montes de Oca Quinnones, Joe; Torres Valle, Antonio

    2015-01-01

    The incorporation of the science and technique breakthroughs in the application of the radiotherapy represents a challenge so that, the appearance of equipment failure or human mistakes that triggers unfavorable consequences for patients, public, or the occupationally exposed workers; it is also diversified forcing to incorporate besides, as part of the efforts, new techniques for the evaluation of risk and the detection of the weak points that can lead to these consequences. In order to evaluate the risks of the radiotherapy practices there is the SEVRRA code, based on the method of Risk Matrix. The system SEVRRA is the most frequently used code in the applications of risk studies in radiotherapy treatment. On the other hand, starting from the development of tools to control the dangerous configurations in nuclear power plants, it has been developed the SECURE code, which in its application variant of Risk Matrix, has gain a comfortable interface man-machine to make risk analyses to the radiotherapy treatment, molding in this way a lot of combinations of scenarios. These capacities outstandingly facilitate the studies and risk optimization applications in these practices. In the system SECURE-Risk Matrix are incorporated graphic and analytical capacities, which make more flexible the analyses and the subsequent documentation of all the results. The paper shows the the application of the proposed system to an integral risk study for the process of radiotherapy treatment with linear accelerator. (Author)

  14. Characterization of membrane association of Rinderpest virus matrix protein

    International Nuclear Information System (INIS)

    Subhashri, R.; Shaila, M.S.

    2007-01-01

    Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M protein gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein

  15. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    International Nuclear Information System (INIS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A.R.; Breitling, Frank

    2016-01-01

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm"2. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm"2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  16. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  17. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.

    Science.gov (United States)

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak

    2008-08-01

    A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.

  18. Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise.

    Science.gov (United States)

    Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu

    2017-09-01

    Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.

  19. Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland

    Science.gov (United States)

    Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur

    2017-05-01

    Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison

  20. Ecological risk assessment of agricultural soils for the definition of soil screening values: A comparison between substance-based and matrix-based approaches.

    Science.gov (United States)

    Pivato, Alberto; Lavagnolo, Maria Cristina; Manachini, Barbara; Vanin, Stefano; Raga, Roberto; Beggio, Giovanni

    2017-04-01

    The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA) and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i) one based on the "substance-based" approach and (ii) a second based on the "matrix-based" approach. In the former the soil screening values (SVs) for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity. The results indicate that the "matrix-based" approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized "substance based" approach is (i) comparable in economic terms and in testing time, (ii) is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii) accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv) can be considered sufficiently conservative.

  1. Atomic structure of embedded Fe nanoclusters as a function of host matrix material: a synchrotron radiation study

    International Nuclear Information System (INIS)

    Baker, S H; Roy, M; Gurman, S J; Louch, S; Bleloch, A; Binns, C

    2004-01-01

    The atomic structure of Fe nanoclusters embedded in a range of matrix materials has been studied using synchrotron radiation. In particular, the effect of embedding the clusters in Ag, amorphous carbon (a-C) and a porous C 60 matrix is investigated. The embedded cluster samples were prepared by co-deposition using a gas aggregation cluster source. Samples with both dilute and high-volume-filling fraction of clusters, at 4 and 40% respectively, were prepared. Fe K edge EXAFS measurements were used to probe the structure within the clusters. In a Ag matrix, the Fe clusters retain the b.c.c. structure of bulk Fe while in a-C there is evidence for both b.c.c. and f.c.c. structures in the clusters. These results are independent of cluster volume-filling fraction over the range investigated. When embedded in a porous C 60 matrix, the Fe clusters oxidize to Fe 2 O 3

  2. A Matrix-Based Proactive Data Relay Algorithm for Large Distributed Sensor Networks.

    Science.gov (United States)

    Xu, Yang; Hu, Xuemei; Hu, Haixiao; Liu, Ming

    2016-08-16

    In large-scale distributed sensor networks, sensed data is required to be relayed around the network so that one or few sensors can gather adequate relative data to produce high quality information for decision-making. In regards to very high energy-constraint sensor nodes, data transmission should be extremely economical. However, traditional data delivery protocols are potentially inefficient relaying unpredictable sensor readings for data fusion in large distributed networks for either overwhelming query transmissions or unnecessary data coverage. By building sensors' local model from their previously transmitted data in three matrixes, we have developed a novel energy-saving data relay algorithm, which allows sensors to proactively make broadcast decisions by using a neat matrix computation to provide balance between transmission and energy-saving. In addition, we designed a heuristic maintenance algorithm to efficiently update these three matrices. This can easily be deployed to large-scale mobile networks in which decisions of sensors are based on their local matrix models no matter how large the network is, and the local models of these sensors are updated constantly. Compared with some traditional approaches based on our simulations, the efficiency of this approach is manifested in uncertain environment. The results show that our approach is scalable and can effectively balance aggregating data with minimizing energy consumption.

  3. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Falah, Mahroo [MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington (New Zealand); MacKenzie, Kenneth J.D., E-mail: Kenneth.mackenzie@vuw.ac.nz [MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington (New Zealand); Knibbe, Ruth [Robinson Research Institute, Victoria University of Wellington (New Zealand); Page, Samuel J.; Hanna, John V. [Department of Physics, Warwick University, Coventry CV4 7AL (United Kingdom)

    2016-11-15

    Highlights: • Synthesis reported of new photoactive nano-oxide composites in a geopolymer matrix. • The novel aluminosilicate matrix is expanded with cetyltrimethylammonium bromide. • The photoactive component consists of a Cu(I) oxide and titania heterostructure. • Composites remove the model pollutant by both adsorption and photodegradation. • These new photocatalysts are extremely efficient and ecologically friendly. - Abstract: New photoactive composites to efficiently remove organic dyes from water are reported. These consist of Cu{sub 2}O/TiO{sub 2} nanoparticles in a novel inorganic geopolymer matrix modified by a large tertiary ammonium species (cetyltrimethylammonium bromide, CTAB) whose presence in the matrix is demonstrated by FTIR spectroscopy. The CTAB does not disrupt the tetrahedral geopolymer structural silica and alumina units as demonstrated by {sup 29}Si and {sup 27}Al MAS NMR spectroscopy. SEM/EDS, TEM and BET measurements suggest that the Cu{sub 2}O/TiO{sub 2} nanoparticles are homogenously distributed on the surface and within the geopolymer pores. The mechanism of removal of methylene blue (MB) dye from solution consists of a combination of adsorption (under dark conditions) and photodegradation (under UV radiation). MB adsorption in the dark follows pseudo second-order kinetics and is described by Freundlich-Langmuir type isotherms. The performance of the CTAB-modified geopolymer based composites is superior to composites based on unmodified geopolymer hosts, the most effective composite containing 5 wt% Cu{sub 2}O/TiO{sub 2} in a CTAB-modified geopolymer host. These composites constitute a new class of materials with excellent potential in environmental protection applications.

  5. An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Jianping Liu

    2016-01-01

    Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.

  6. Early matrix change of a nanostructured bone grafting substitute in the rat.

    Science.gov (United States)

    Xu, Weiguo; Holzhüter, Gerd; Sorg, Heiko; Wolter, Daniel; Lenz, Solvig; Gerber, Thomas; Vollmar, Brigitte

    2009-11-01

    A nanocrystalline bone substitute embedded in a highly porous silica gel matrix (NanoBone) has previously been shown to bridge bone defects by an organic matrix. As the initial host response on the bone graft substitute might be a determinant for subsequent bone formation, our present purpose was to characterize the early tissue reaction on this biomaterial. After implantation of 80 mg of NanoBone into the adipose neck tissue of a total of 35 rats, grafts were harvested for subsequent analysis at days 3, 6, 9, 12, and 21. The biomaterial was found encapsulated by granulation tissue which partly penetrated the implant at day 3 and completely pervaded the graft at day 12 on implantation. Histology revealed tartrate-resistant acid phosphatase (TRAP)-positive giant cells covering the biomaterial. ED1 (CD68) immunopositivity of these cells further indicated their osteoclast-like phenotype. Scanning electron microscopy revealed organic tissue components within the periphery of the graft already at day 9, whereas the central hematoma region still presented the silica-surface of the biomaterial. Energy dispersive X-ray spectroscopy further demonstrated that the silica gel was degraded faster in the peripheral granulation tissue than in the central hematoma and was replaced by organic host components by day 12. In conclusion, the silica gel matrix is rapidly replaced by carbohydrate macromolecules. This might represent a key step in the process of graft degradation on its way toward induction of bone formation. The unique composition and structure of this nanoscaled biomaterial seem to support its degradation by host osteoclast-like giant cells.

  7. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  8. Rudder Based Roll Control via host-computer of A Robotic Boat

    Directory of Open Access Journals (Sweden)

    Xinping Bao

    2009-03-01

    Full Text Available Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H control method design is selected since yaw and roll motion are posed in different frequency domains. Computer simulations and experiments carried out show that successful results are achieved.

  9. Rudder Based Roll Control via Host-Computer of a Robotic Boat

    Directory of Open Access Journals (Sweden)

    Xinping Bao

    2009-03-01

    Full Text Available Rudder based roll control of a small-sized robotic boat is a key technique for the devices on board to achieve good performance. This paper introduces a host-based robotic boat capable of performing basic movement operations. The course keeping and roll reduction are studied via rudder based method in simulations and sea trials. The boat dynamic model is built with the combination of mathematical analysis and system identification technique. A mixed sensitivity H∞ control method design is selected since yaw and roll motion are posed in different frequency domains. Computer simulations and experiments carried out show that successful results are achieved.

  10. VirHostNet 2.0: surfing on the web of virus/host molecular interactions data.

    Science.gov (United States)

    Guirimand, Thibaut; Delmotte, Stéphane; Navratil, Vincent

    2015-01-01

    VirHostNet release 2.0 (http://virhostnet.prabi.fr) is a knowledgebase dedicated to the network-based exploration of virus-host protein-protein interactions. Since the previous VirhostNet release (2009), a second run of manual curation was performed to annotate the new torrent of high-throughput protein-protein interactions data from the literature. This resource is shared publicly, in PSI-MI TAB 2.5 format, using a PSICQUIC web service. The new interface of VirHostNet 2.0 is based on Cytoscape web library and provides a user-friendly access to the most complete and accurate resource of virus-virus and virus-host protein-protein interactions as well as their projection onto their corresponding host cell protein interaction networks. We hope that the VirHostNet 2.0 system will facilitate systems biology and gene-centered analysis of infectious diseases and will help to identify new molecular targets for antiviral drugs design. This resource will also continue to help worldwide scientists to improve our knowledge on molecular mechanisms involved in the antiviral response mediated by the cell and in the viral strategies selected by viruses to hijack the host immune system. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. D-Glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery.

    Science.gov (United States)

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H

    2014-05-01

    Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Host range, host ecology, and distribution of more than 11800 fish parasite species

    Science.gov (United States)

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  13. Transformation Matrix for Time Discretization Based on Tustin’s Method

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2014-01-01

    Full Text Available This paper studies rules in transformation of transfer function through time discretization. A method of using transformation matrix to realize bilinear transform (also known as Tustin’s method is presented. This method can be described as the conversion between the coefficients of transfer functions, which are expressed as transform by certain matrix. For a polynomial of degree n, the corresponding transformation matrix of order n exists and is unique. Furthermore, the transformation matrix can be decomposed into an upper triangular matrix multiplied with another lower triangular matrix. And both have obvious regularity. The proposed method can achieve rapid bilinear transform used in automatic design of digital filter. The result of numerical simulation verifies the correctness of the theoretical results. Moreover, it also can be extended to other similar problems. Example in the last throws light on this point.

  14. Long-distance dispersal of non-native pine bark beetles from host resources

    Science.gov (United States)

    Kevin Chase; Dave Kelly; Andrew M. Liebhold; Martin K.-F. Bader; Eckehard G. Brockerhoff

    2017-01-01

    Dispersal and host detection are behaviours promoting the spread of invading populations in a landscape matrix. In fragmented landscapes, the spatial arrangement of habitat structure affects the dispersal success of organisms. The aim of the present study was to determine the long distance dispersal capabilities of two non-native pine bark beetles (Hylurgus...

  15. Doubly Nonparametric Sparse Nonnegative Matrix Factorization Based on Dependent Indian Buffet Processes.

    Science.gov (United States)

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Xu, Richard Yi Da; Luo, Xiangfeng

    2018-05-01

    Sparse nonnegative matrix factorization (SNMF) aims to factorize a data matrix into two optimized nonnegative sparse factor matrices, which could benefit many tasks, such as document-word co-clustering. However, the traditional SNMF typically assumes the number of latent factors (i.e., dimensionality of the factor matrices) to be fixed. This assumption makes it inflexible in practice. In this paper, we propose a doubly sparse nonparametric NMF framework to mitigate this issue by using dependent Indian buffet processes (dIBP). We apply a correlation function for the generation of two stick weights associated with each column pair of factor matrices while still maintaining their respective marginal distribution specified by IBP. As a consequence, the generation of two factor matrices will be columnwise correlated. Under this framework, two classes of correlation function are proposed: 1) using bivariate Beta distribution and 2) using Copula function. Compared with the single IBP-based NMF, this paper jointly makes two factor matrices nonparametric and sparse, which could be applied to broader scenarios, such as co-clustering. This paper is seen to be much more flexible than Gaussian process-based and hierarchial Beta process-based dIBPs in terms of allowing the two corresponding binary matrix columns to have greater variations in their nonzero entries. Our experiments on synthetic data show the merits of this paper compared with the state-of-the-art models in respect of factorization efficiency, sparsity, and flexibility. Experiments on real-world data sets demonstrate the efficiency of this paper in document-word co-clustering tasks.

  16. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    Science.gov (United States)

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  17. A Matrix-Based Proactive Data Relay Algorithm for Large Distributed Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Xu

    2016-08-01

    Full Text Available In large-scale distributed sensor networks, sensed data is required to be relayed around the network so that one or few sensors can gather adequate relative data to produce high quality information for decision-making. In regards to very high energy-constraint sensor nodes, data transmission should be extremely economical. However, traditional data delivery protocols are potentially inefficient relaying unpredictable sensor readings for data fusion in large distributed networks for either overwhelming query transmissions or unnecessary data coverage. By building sensors’ local model from their previously transmitted data in three matrixes, we have developed a novel energy-saving data relay algorithm, which allows sensors to proactively make broadcast decisions by using a neat matrix computation to provide balance between transmission and energy-saving. In addition, we designed a heuristic maintenance algorithm to efficiently update these three matrices. This can easily be deployed to large-scale mobile networks in which decisions of sensors are based on their local matrix models no matter how large the network is, and the local models of these sensors are updated constantly. Compared with some traditional approaches based on our simulations, the efficiency of this approach is manifested in uncertain environment. The results show that our approach is scalable and can effectively balance aggregating data with minimizing energy consumption.

  18. Evaluation criteria for uranium potential of sedimentary basins based on analysis of host sand body and structurally reworking pattern host sand body has been subject to

    International Nuclear Information System (INIS)

    Chen Zuyi; Guo Qingyin; Liu Hongxu

    2005-01-01

    On the basis of the introduction and the analysis of regional evaluation criteria for sandstone-type uranium deposits summarized by uranium geologists of USA and former Soviet Union, and by introducing new scientific progress in the field of sedimentology of clastic rocks, and basin geodynamics, main evaluation criteria composed of host sand body criterion and the criterion of structurally reworking pattern the host sand body has been subject to, are proposed, and the evaluation model based on analyzing the regional tectonic history and the evolution of prototype basin is set up. Finally, taking the Chaoshui basin as an example, the possibility for hosting epigenetic uranium mineralization in each horizon of the basin cover is discussed, then the main prospecting target horizon is discriminated, and potential ore-formation areas are proposed. (authors)

  19. Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix

    Directory of Open Access Journals (Sweden)

    Xin-Wei Zha

    Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation

  20. Towards a single host phase ceramic formulation for UK plutonium disposition

    International Nuclear Information System (INIS)

    Stennett, M. C.; Hyatt, N. C.; Gilbert, M.; Livens, F. R.; Maddrell, E. R.

    2008-01-01

    The UK has a considerable stockpile of separated plutonium; a legacy of over 50 years of civilian nuclear programmes. This material has been considered both as an asset for future energy generation and a liability due to the proliferation threat. A proportion of the PuO 2 stocks may be consumed by nuclear fission, in mixed oxide (MOx) or inert matrix (IMF) fuels but a quantity of waste PuO 2 will remain which is unsuitable for fuel manufacture and will require immobilisation. A research program is currently underway to investigate the potential of various single phase ceramic formulations for the immobilisation of this waste PuO 2 fraction. In this work a number of synthetic mineral systems have been considered including titanate, zirconate, phosphate and silicate based matrices. Although a wealth of information on plutonium disposition in some of the systems exists in the literature, the data is not always directly comparable which hinders comparison between different ceramic hosts. The crux of this research has been to compile a database of information on the proposed hosts to allow impartial comparison of the relative merits and shortcomings in each system. (authors)

  1. A network-based Macintosh serial host interface program

    International Nuclear Information System (INIS)

    Wight, J.

    1991-03-01

    A program has been written for the Apple Macintosh to replace conventional host RS232 terminals with customizable user interfaces. Serial port NuBus cards in the Macintosh allow many simultaneous sessions to be maintained. A powerful system is attained by connecting multiple Macintoshes on a network, each running this program. Each is then able to share incoming data from any of its serial ports with any other Macintosh, as well as accept data from any other Macintosh for output to any of its serial ports. The program has been used to eliminate multiple host terminals, modernize the user interface, and to centralize operation of a complex control system. Minimal changes to host software have been required. By making extensive use of Macintosh resources, the same executable code serves in a variety of roles. An object oriented C language with a class library made the development straightforward and easy to modify. This program is used to control a 2 MW neutral beam system on the DIII-D magnetic fusion tokamak. 7 figs

  2. The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm.

    Science.gov (United States)

    Koo, H; Falsetta, M L; Klein, M I

    2013-12-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzymes present in the pellicle and on microbial surfaces (including non-mutans) provide binding sites for cariogenic and other organisms. The polymers formed in situ enmesh the microorganisms while forming a matrix facilitating the assembly of three-dimensional (3D) multicellular structures that encompass a series of microenvironments and are firmly attached to teeth. The metabolic activity of microbes embedded in this exopolysaccharide-rich and diffusion-limiting matrix leads to acidification of the milieu and, eventually, acid-dissolution of enamel. Here, we discuss recent advances concerning spatio-temporal development of the exopolysaccharide matrix and its essential role in the pathogenesis of dental caries. We focus on how the matrix serves as a 3D scaffold for biofilm assembly while creating spatial heterogeneities and low-pH microenvironments/niches. Further understanding on how the matrix modulates microbial activity and virulence expression could lead to new approaches to control cariogenic biofilms.

  3. ORTHOGONAL REPRESENTATION OF THE PROPER TRANSFORMATION OF A PERSYMMETRIC MATRIX BASED ON ROTATION OPERATORS

    Directory of Open Access Journals (Sweden)

    V. M. Demko

    2018-01-01

    Full Text Available The mathematical substantiation of the algorithm for synthesis of the proper transformation and finding the eigenvalue formulae of a persymmetric matrix of dimension N = 2 k ( k =1, 4 based on orthogonal rotation operators is given. The proposed algorithm made it possible to improve the author's approach to calculating eigenvalues based on numerical examples for the maximal dimension of matrices 64×64, resulting the possibility to obtain analytical relations for calculating the eigenvalues of the persymmetric matrix. It is shown that the proper transformation has a factorized structure in the form of a product of rotation operators, each of which is a direct sum of elementary Givens and Jacobian rotation matrices. 

  4. SENSITIVITY TEMPERATURE DEPENDENCE RESEARCH OF TV-CAMERAS BASED ON SILICON MATRIXES

    Directory of Open Access Journals (Sweden)

    Alexey N. Starchenko

    2017-07-01

    Full Text Available Subject of Research. The research is dedicated to the analysis of sensitivity change patterns of the cameras based on silicon CMOS-matrixes in various ambient temperatures. This information is necessary for the correct camera application for photometric measurements in-situ. The paper deals with studies of sensitivity variations of two digital cameras with different silicon CMOS matrixes in visible and near IR regions of the spectrum at temperature change. Method. Due to practical restrictions the temperature changes were recorded in separate spectral intervals important for practical use of the cameras. The experiments were carried out with the use of a climatic chamber, providing change and keeping the temperature range from minus 40 to plus 50 °C at a pitch of 10 о С. Two cameras were chosen for research: VAC-135-IP with OmniVision OV9121 matrix and VAC-248-IP with OnSemiconductor VITA2000 matrix. The two tested devices were placed in a climatic chamber at the same time and illuminated by one radiation source with a color temperature about 3000 K in order to eliminate a number of methodological errors. Main Results. The temperature dependence of the signals was shown to be linear and the matrixes sensitivities were determined. The results obtained are consistent with theoretical views, in general. The coefficients of thermal sensitivity were computed by these dependencies. It is shown that the greatest affect of temperature on the sensitivity occurs in the area (0.7–1.1 mkm. Temperature coefficients of sensitivity increase with the downward radiation wavelength increase. The experiments carried out have shown that it is necessary to take into account the changes in temperature sensitivity of silicon matrixes in the red and near in IR regions of the spectrum. The effect reveals itself in a clearly negative way in cameras with an amplitude resolution of 10-12 bits used for aerospace and space spectrozonal photography. Practical Relevance

  5. The Performance Analysis Based on SAR Sample Covariance Matrix

    Directory of Open Access Journals (Sweden)

    Esra Erten

    2012-03-01

    Full Text Available Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given.

  6. Spatial and thematic assessment of object-based forest stand delineation using an OFA-matrix

    Science.gov (United States)

    Hernando, A.; Tiede, D.; Albrecht, F.; Lang, S.

    2012-10-01

    The delineation and classification of forest stands is a crucial aspect of forest management. Object-based image analysis (OBIA) can be used to produce detailed maps of forest stands from either orthophotos or very high resolution satellite imagery. However, measures are then required for evaluating and quantifying both the spatial and thematic accuracy of the OBIA output. In this paper we present an approach for delineating forest stands and a new Object Fate Analysis (OFA) matrix for accuracy assessment. A two-level object-based orthophoto analysis was first carried out to delineate stands on the Dehesa Boyal public land in central Spain (Avila Province). Two structural features were first created for use in class modelling, enabling good differentiation between stands: a relational tree cover cluster feature, and an arithmetic ratio shadow/tree feature. We then extended the OFA comparison approach with an OFA-matrix to enable concurrent validation of thematic and spatial accuracies. Its diagonal shows the proportion of spatial and thematic coincidence between a reference data and the corresponding classification. New parameters for Spatial Thematic Loyalty (STL), Spatial Thematic Loyalty Overall (STLOVERALL) and Maximal Interfering Object (MIO) are introduced to summarise the OFA-matrix accuracy assessment. A stands map generated by OBIA (classification data) was compared with a map of the same area produced from photo interpretation and field data (reference data). In our example the OFA-matrix results indicate good spatial and thematic accuracies (>65%) for all stand classes except for the shrub stands (31.8%), and a good STLOVERALL (69.8%). The OFA-matrix has therefore been shown to be a valid tool for OBIA accuracy assessment.

  7. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  8. SKILLS-BASED ECLECTIC TECHNIQUES MATRIX FOR ELT MICROTEACHINGS

    Directory of Open Access Journals (Sweden)

    İskender Hakkı Sarıgöz

    2016-10-01

    Full Text Available Foreign language teaching undergoes constant changes due to the methodological improvement. This progress may be examined in two parts. They are the methods era and the post-methods era. It is not pragmatic today to propose a particular language teaching method and its techniques for all purposes. The holistic inflexibility of mid-century methods has long gone. In the present day, constructivist foreign language teaching trends attempt to see the learner as a whole person and an individual who may be different from the other students in many respects. At the same time, the individual differences should not keep the learners away from group harmony. For this reason, current teacher training programs require eclectic teaching matrixes for unit design considering the mixed ability student groups. These matrixes can be prepared in a multidimensional fashion because there are many functional techniques in different methods and other new techniques to be created by instructors freely in accordance with the teaching aims. The hypothesis in this argument is that the collection of foreign language teaching techniques compiled in ELT microteachings for a particular group of learners has to be arranged eclectically in order to update the teaching process. Nevertheless, designing a teaching format of this sort is a demanding and highly criticized task. This study briefly argues eclecticism in language-skills based methodological struggle from the perspective of ELT teacher education.

  9. Homoplastic evolution and host association of Eriophyoidea (Acari, Prostigmata) conflict with the morphological-based taxonomic system.

    Science.gov (United States)

    Li, Hao-Sen; Xue, Xiao-Feng; Hong, Xiao-Yue

    2014-09-01

    The superfamily Eriophyoidea is exceptionally diverse and its members are highly host-specific. Currently, the taxonomy of this group is based on morphology only. However, phylogenetic relationships in this group could be incorrect if the diagnostic morphological characters are homoplastic. Therefore, the phylogeny of 112 representative taxa of Eriophyoidea from China was determined using 18S, 28S D2-5 and D9-10 rRNA. Phylogenetic relationships were inferred through Bayesian, maximum likelihood and maximum parsimony methods, and then a number of clades or major clades were defined according to robust phylogenetic topologies combined with morphological comparison. Tests of monophyly showed that two of three families of Eriophyoidea as well as one subfamily and four tribes were not monophyletic. Ancestral character state reconstruction (ACSR) showed that five diagnostic morphological characters evolved several times, confounding the current taxonomy. Additionally, reconstruction of the history of host plant colonization suggested host switching occurred in a limited range of host plants. The host association data made it possible to determine taxonomic relationships more accurately. These results show that by integrating morphological and molecular information and host plant choice, it is possible to obtain a more accurate taxonomy and a deeper phylogenetic understanding of Eriophyoidea. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk.

  11. Extracellular DNA as matrix component in microbial biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown...... that extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  12. Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.

    Energy Technology Data Exchange (ETDEWEB)

    Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.

  13. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida), a new zoonotic parasite from China.

    Science.gov (United States)

    Chen, Shao-Hong; Liu, Qin; Zhang, Yong-Nian; Chen, Jia-Xu; Li, Hao; Chen, Ying; Steinmann, Peter; Zhou, Xiao-Nong

    2010-04-06

    Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus) as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  14. The Exopolysaccharide Matrix: A Virulence Determinant of Cariogenic Biofilm

    OpenAIRE

    Koo, H.; Falsetta, M.L.; Klein, M.I.

    2013-01-01

    Many infectious diseases in humans are caused or exacerbated by biofilms. Dental caries is a prime example of a biofilm-dependent disease, resulting from interactions of microorganisms, host factors, and diet (sugars), which modulate the dynamic formation of biofilms on tooth surfaces. All biofilms have a microbial-derived extracellular matrix as an essential constituent. The exopolysaccharides formed through interactions between sucrose- (and starch-) and Streptococcus mutans-derived exoenzy...

  15. Altered Liver Proteoglycan/Glycosaminoglycan Structure as a Manifestation of Extracellular Matrix Remodeling upon BCG-induced Granulomatosis in Mice.

    Science.gov (United States)

    Kim, L B; Shkurupy, V A; Putyatina, A N

    2017-01-01

    Experimental BCG-induced granulomatosis in mice was used to study changes in the dynamics of individual liver proteoglycan components reflecting phasic extracellular matrix remodeling, determined by the host-parasite interaction and associated with granuloma development. In the early BCG-granulomatosis period, the increase in individual proteoglycan components promotes granuloma formation, providing conditions for mycobacteria adhesion to host cells, migration of phagocytic cells from circulation, and cell-cell interaction leading to granuloma development and fibrosis. Later, reduced reserve capacity of the extracellular matrix, development of interstitial fibrosis and granuloma fibrosis can lead to trophic shortage for cells within the granulomas, migration of macrophages out of them, and development of spontaneous necrosis and apoptosis typical of tuberculosis.

  16. Flexible host choice and common host switches in the evolution of generalist and specialist cuckoo bees (Anthophila: Sphecodes.

    Directory of Open Access Journals (Sweden)

    Jana Habermannová

    Full Text Available Specialization makes resource use more efficient and should therefore be a common process in animal evolution. However, this process is not as universal in nature as one might expect. Our study shows that Sphecodes (Halictidae cuckoo bees frequently change their host over the course of their evolution. To test the evolutionary scenario of host specialization in cuckoo bees, we constructed well-supported phylogenetic trees based on partial sequences of five genes for subtribe Sphecodina (Halictini. We detected up to 17 host switches during Sphecodes evolution based on 37 ingroup species subject to mapping analysis of the hosts associated with the cuckoo bee species. We also examine the direction of evolution of host specialization in Sphecodes using the likelihood ratio test and obtain results to support the bidirectional evolutionary scenario in which specialists can arise from generalists, and vice versa. We explain the existence of generalist species in Sphecodes based on their specialization at the individual level, which is recently known in two species. Our findings suggest flexible host choice and frequent host switches in the evolution of Sphecodes cuckoo bees. This scenario leads us to propose an individual choice constancy hypothesis based on the individual specialization strategy in cuckoo bees. Choice constancy has a close relationship to flower constancy in bees and might be an extension of the latter. Our analysis also shows relationships among the genera Microsphecodes, Eupetersia, Sphecodes and Austrosphecodes, a formerly proposed Sphecodes subgenus. Austrosphecodes species form a basal lineage of the subtribe, and Microsphecodes makes it paraphyletic.

  17. H∞ Control of Coronary Artery Input Time-Delay System via the Free-Matrix-Based Integral Inequality

    Directory of Open Access Journals (Sweden)

    Sha-sha Li

    2018-01-01

    Full Text Available The issue of H∞ control for the coronary artery input time-delay system with external disturbance is of concern. To further reduce conservation, we utilize the free-matrix-based integral inequality, Wirtinger-based integral inequality, and reciprocal convex combination approach to construct Lyapunov-Krasovskii function (LKF. Then a sufficient condition for controller design which can guarantee robust synchronization the coronary artery system is represented in terms of linear matrix inequality (LMI. Finally, a numerical example is exploited to show the effectiveness of the proposed methods.

  18. Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique

    International Nuclear Information System (INIS)

    Feng Yi-Fu; Zhang Qing-Ling; Feng De-Zhi

    2012-01-01

    The global stability problem of Takagi—Sugeno (T—S) fuzzy Hopfield neural networks (FHNNs) with time delays is investigated. Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism. Firstly, using both Finsler's lemma and an improved homogeneous matrix polynomial technique, and applying an affine parameter-dependent Lyapunov—Krasovskii functional, we obtain the convergent LMI-based stability criteria. Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique. Secondly, to further reduce the conservatism, a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs, which is suitable to the homogeneous matrix polynomials setting. Finally, two illustrative examples are given to show the efficiency of the proposed approaches

  19. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    contained higher numbers of eosinophils, mast cells and basophils with up-regulated proteases, cathepsins, keratins, collagens and extracellular matrix proteins in response to feeding ticks. Here we review immunological and molecular determinants that explore the cattle tick Rhipicephalus microplus-host resistance phenomenon as well as contemplating new insights and future directions to study tick resistance and susceptibility, in order to facilitate interventions for tick control.

  20. Matrix Information Geometry

    CERN Document Server

    Bhatia, Rajendra

    2013-01-01

    This book is an outcome of the Indo-French Workshop on Matrix Information Geometries (MIG): Applications in Sensor and Cognitive Systems Engineering, which was held in Ecole Polytechnique and Thales Research and Technology Center, Palaiseau, France, in February 23-25, 2011. The workshop was generously funded by the Indo-French Centre for the Promotion of Advanced Research (IFCPAR).  During the event, 22 renowned invited french or indian speakers gave lectures on their areas of expertise within the field of matrix analysis or processing. From these talks, a total of 17 original contribution or state-of-the-art chapters have been assembled in this volume. All articles were thoroughly peer-reviewed and improved, according to the suggestions of the international referees. The 17 contributions presented  are organized in three parts: (1) State-of-the-art surveys & original matrix theory work, (2) Advanced matrix theory for radar processing, and (3) Matrix-based signal processing applications.  

  1. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    Science.gov (United States)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  2. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    International Nuclear Information System (INIS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-01-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM -1 cm -2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  3. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    Energy Technology Data Exchange (ETDEWEB)

    Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.

  4. The anchorless adhesin Eap (extracellular adherence protein) from Staphylococcus aureus selectively recognizes extracellular matrix aggregates but binds promiscuously to monomeric matrix macromolecules.

    Science.gov (United States)

    Hansen, Uwe; Hussain, Muzaffar; Villone, Daniela; Herrmann, Mathias; Robenek, Horst; Peters, Georg; Sinha, Bhanu; Bruckner, Peter

    2006-05-01

    Besides a number of cell wall-anchored adhesins, the majority of Staphylococcus aureus strains produce anchorless, cell wall-associated proteins, such as Eap (extracellular adherence protein). Eap contains four to six tandem repeat (EAP)-domains. Eap mediates diverse biological functions, including adherence and immunomodulation, thus contributing to S. aureus pathogenesis. Eap binding to host macromolecules is unusually promiscuous and includes matrix or matricellular proteins as well as plasma proteins. The structural basis of this promiscuity is poorly understood. Here, we show that in spite of the preferential location of the binding epitopes within triple helical regions in some collagens there is a striking specificity of Eap binding to different collagen types. Collagen I, but not collagen II, is a binding substrate in monomolecular form. However, collagen I is virtually unrecognized by Eap when incorporated into banded fibrils. By contrast, microfibrils containing collagen VI as well as basement membrane-associated networks containing collagen IV, or aggregates containing fibronectin bound Eap as effectively as the monomeric proteins. Therefore, Eap-binding to extracellular matrix ligands is promiscuous at the molecular level but not indiscriminate with respect to supramolecular structures containing the same macromolecules. In addition, Eap bound to banded fibrils after their partial disintegration by matrix-degrading proteinases, including matrix metalloproteinase 1. Therefore, adherence to matrix suprastructures by S. aureus can be supported by inflammatory reactions.

  5. Multi-host model-based identification of Armillifer agkistrodontis (Pentastomida, a new zoonotic parasite from China.

    Directory of Open Access Journals (Sweden)

    Shao-Hong Chen

    Full Text Available BACKGROUND: Pentastomiasis is a rare parasitic infection of humans. Pentastomids are dioecious obligate parasites requiring multiple hosts to complete their lifecycle. Despite their worm-like appearance, they are commonly placed into a separate sub-class of the subphylum Crustacea, phylum Arthropoda. However, their systematic position is not uncontested and historically, they have been considered as a separate phylum. METHODOLOGY/PRINCIPAL FINDINGS: An appraisal of Armillifer agkistrodontis was performed in terms of morphology and genetic identification after its lifecycle had been established in a multi-host model, i.e., mice and rats as intermediate hosts, and snakes (Agkistrodon acutus and Python molurus as definitive hosts. Different stages of the parasite, including eggs, larvae and adults, were isolated and examined morphologically using light and electron microscopes. Phylogenetic and cluster analysis were also undertaken, focusing on the 18S rRNA and the Cox1 gene. The time for lifecycle completion was about 14 months, including 4 months for the development of eggs to infectious larvae in the intermediate host and 10 months for infectious larvae to mature in the final host. The main morphological difference between A. armillatus and Linguatula serrata is the number of abdominal annuli. Based on the 18S rRNA sequence, the shortest hereditary distance was found between A. agkistrodontis and Raillietiella spp. The highest degree of homology in the Cox 1 nucleic acid sequences and predicted amino acid sequences was found between A. agkistrodontis and A. armillatus. CONCLUSION: This is the first time that a multi-host model of the entire lifecycle of A. agkistrodontis has been established. Morphologic and genetic analyses supported the notion that pentastomids should be placed into the phylum Arthropoda.

  6. Validation-based insertional mutagenesis for identification of Nup214 as a host factor for EV71 replication in RD cells

    International Nuclear Information System (INIS)

    Wang, Bei; Zhang, XiaoYu; Zhao, Zhendong

    2013-01-01

    Highlights: •We introduced a new mutagenesis strategy named VBIM to the viral research. •This method can identify either host factors or host restriction factors. •Using VBIM system, we identified Nup214 as a host factor for EV71 replication in RD cells. -- Abstract: Lentiviral validation-based insertional mutagenesis (VBIM) is a sophisticated, forward genetic approach that is used for the investigation of signal transduction in mammalian cells. Using VBIM, we conducted function-based genetic screening for host genes that affect enterovirus 71 (EV71) viral replication. This included host factors that are required for the life cycle of EV71 and host restriction factors that inhibit EV71 replication. Several cell clones, resistant to EV71, were produced using EV71 infection as a selection pressure and the nuclear pore protein 214 (Nup214) was identified as a host factor required for EV71 replication. In SD2-2, the corresponding VBIM lentivirus transformed clone, the expression of endogenous Nup214 was significantly down-regulated by the reverse inserted VBIM promoter. After Cre recombinase-mediated excision of the VBIM promoter, the expression of Nup214 recovered and the clone regained sensitivity to the EV71 infection. Furthermore, over-expression of Nup214 in the cells suggested that Nup214 was promoting EV71 replication. Results of this study indicate that a successful mutagenesis strategy has been established for screening host genes related to viral replication

  7. Validation-based insertional mutagenesis for identification of Nup214 as a host factor for EV71 replication in RD cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Zhang, XiaoYu; Zhao, Zhendong, E-mail: timjszzd@163.com

    2013-08-02

    Highlights: •We introduced a new mutagenesis strategy named VBIM to the viral research. •This method can identify either host factors or host restriction factors. •Using VBIM system, we identified Nup214 as a host factor for EV71 replication in RD cells. -- Abstract: Lentiviral validation-based insertional mutagenesis (VBIM) is a sophisticated, forward genetic approach that is used for the investigation of signal transduction in mammalian cells. Using VBIM, we conducted function-based genetic screening for host genes that affect enterovirus 71 (EV71) viral replication. This included host factors that are required for the life cycle of EV71 and host restriction factors that inhibit EV71 replication. Several cell clones, resistant to EV71, were produced using EV71 infection as a selection pressure and the nuclear pore protein 214 (Nup214) was identified as a host factor required for EV71 replication. In SD2-2, the corresponding VBIM lentivirus transformed clone, the expression of endogenous Nup214 was significantly down-regulated by the reverse inserted VBIM promoter. After Cre recombinase-mediated excision of the VBIM promoter, the expression of Nup214 recovered and the clone regained sensitivity to the EV71 infection. Furthermore, over-expression of Nup214 in the cells suggested that Nup214 was promoting EV71 replication. Results of this study indicate that a successful mutagenesis strategy has been established for screening host genes related to viral replication.

  8. MATLAB matrix algebra

    CERN Document Server

    Pérez López, César

    2014-01-01

    MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. MATLAB Matrix Algebra introduces you to the MATLAB language with practical hands-on instructions and results, allowing you to quickly achieve your goals. Starting with a look at symbolic and numeric variables, with an emphasis on vector and matrix variables, you will go on to examine functions and operations that support vectors and matrices as arguments, including those based on analytic parent functions. Computational methods for finding eigenvalues and eigenvectors of matrices are detailed, leading to various matrix decompositions. Applications such as change of bases, the classification of quadratic forms and ...

  9. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri.

    Science.gov (United States)

    Nyholm, S V; McFall-Ngai, M J

    1998-10-01

    The symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri has a pronounced diel rhythm, one component of which is the venting of the contents of the light organ into the surrounding seawater each day at dawn. In this study, we explored the use of this behavior to sample the microenvironment of the light-organ crypts. Intact crypt contents, which emerge from the lateral pores of the organ as a thick paste-like exudate, were collected from anesthetized host animals that had been exposed to a light cue. Microscopy revealed that the expelled material is composed of a conspicuous population of host cells in association with the bacterial symbionts, all of which are embedded in a dense acellular matrix that strongly resembles the bacteria-based biofilms described in other systems. Assays of the viability of expelled crypt cells revealed no dead bacterial symbionts and a mixture of live and dead host cells. Analyses of the ultrastructure, biochemistry, and phagocytic activity of a subset of the host cell population suggested that some of these cells are macrophage-like molluscan hemocytes.

  10. Swelling, erosion and drug release characteristics of salbutamol sulfate from hydroxypropyl methylcellulose-based matrix tablets.

    Science.gov (United States)

    Chaibva, Faith A; Khamanga, Sandile M M; Walker, Roderick B

    2010-12-01

    Hydrophilic matrix formulations are important and simple technologies that are used to manufacture sustained release dosage forms. Hydroxypropyl methylcellulose-based matrix tablets, with and without additives, were manufactured to investigate the rate of hydration, rate of erosion, and rate and mechanism of drug release. Scanning electron microscopy was used to assess changes in the microstructure of the tablets during drug release testing and whether these changes could be related to the rate of drug release from the formulations. The results revealed that the rate of hydration and erosion was dependent on the polymer combination(s) used, which in turn affected the rate and mechanism of drug release from these formulations. It was also apparent that changes in the microstructure of matrix tablets could be related to the different rates of drug release that were observed from the test formulations. The use of scanning electron microscopy provides useful information to further understand drug release mechanisms from matrix tablets.

  11. Theoretical and experimental investigation of wear characteristics of aluminum based metal matrix composites using RSM

    International Nuclear Information System (INIS)

    Selvi, S.; Rajasekar, E.

    2015-01-01

    The tribological properties such as wear rate, hardness of the aluminum-fly ash composite synthesized by stir casting were investigated by varying the weight % of fly ash from 5 to 20 with constant weight % of zinc and magnesium metal powder. A mathematical model was developed to predict the wear rate of aluminum metal matrix composites and the adequacy of the model was verified using analysis of variance. Scanning electron microscopy was used for the microstructure analysis which showed a uniform distribution of fly ash in the metal matrix. Energy - dispersive X-ray spectroscopy was used for the elemental analysis or chemical characterization of a sample. The results showed that addition of fly ash to aluminum based metal matrix improved both the mechanical and tribological properties of the composites. The fly ash particles improved the wear resistance of the metal matrix composites because the hardness of the samples taken increased as the fly ash content was increased.

  12. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.

    Science.gov (United States)

    Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri

    2017-11-01

    Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Host location by ichneumonid parasitoids is associated with nest dimensions of the host bee species.

    Science.gov (United States)

    Flores-Prado, L; Niemeyer, H M

    2012-08-01

    Parasitoid fitness depends on the ability of females to locate a host. In some species of Ichneumonoidea, female parasitoids detect potential hosts through vibratory cues emanating from them or through vibrational sounding produced by antennal tapping on the substrate. In this study, we (1) describe host location behaviors in Grotea gayi Spinola (Hymenoptera: Ichneumonidae) and Labena sp. on nests of Manuelia postica Spinola (Hymenoptera: Apidae), (2) compare nest dimensions between parasitized and unparasitized nests, (3) correlate the length of M. postica nests with the number of immature individuals developing, and (4) establish the relative proportion of parasitized nests along the breeding period of M. postica. Based on our results, we propose that these parasitoids use vibrational sounding as a host location mechanism and that they are able to assess host nest dimensions and choose those which may provide them with a higher fitness. Finally, we discuss an ancestral host-parasitoid relationship between Manuelia and ichneumonid species.

  14. Fluorescence resonance energy transfer (FRET-based subcellular visualization of pathogen-induced host receptor signaling

    Directory of Open Access Journals (Sweden)

    Zimmermann Timo

    2009-11-01

    Full Text Available Abstract Background Bacteria-triggered signaling events in infected host cells are key elements in shaping the host response to pathogens. Within the eukaryotic cell, signaling complexes are spatially organized. However, the investigation of protein-protein interactions triggered by bacterial infection in the cellular context is technically challenging. Here, we provide a methodological approach to exploit fluorescence resonance energy transfer (FRET to visualize pathogen-initiated signaling events in human cells. Results Live-cell microscopy revealed the transient recruitment of the Src family tyrosine kinase Hck upon bacterial engagement of the receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3. In cells expressing a CEACAM3 variant lacking the cytoplasmic domain, the Src homology 2 (SH2 domain of Hck (Hck-SH2 was not recruited, even though bacteria still bound to the receptor. FRET measurements on the basis of whole cell lysates revealed intimate binding between Hck-SH2 (using enhanced yellow fluorescent protein (YPet-Hck-SH2 and the tyrosine-phosphorylated enhanced cyan fluorescent protein-labeled cytoplasmic domain of wild-type CEACAM3 (CEACAM3 WT-CyPet and a flow cytometry-based FRET approach verified this association in intact cells. Using confocal microscopy and acceptor photobleaching, FRET between Hck-SH2 and CEACAM3 was localized to the sites of bacteria-host cell contact. Conclusion These data demonstrate not only the intimate binding of the SH2 domain of Hck to the tyrosine-phosphorylated cytoplasmic domain of CEACAM3 in intact cells, but furthermore, FRET measurements allow the subcellular localization of this process during bacterial infection. FRET-based assays are valuable tools to resolve bacteria-induced protein-protein interactions in the context of the intact host cell.

  15. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  16. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  17. Road MAPs to engineer host microbiomes.

    Science.gov (United States)

    Oyserman, Ben O; Medema, Marnix H; Raaijmakers, Jos M

    2017-12-02

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the MAPs-first approach, a theoretical and experimental roadmap that involves quantitative profiling of MAPs across genetically variable hosts and subsequent identification of the underlying mechanisms. We outline strategies for developing 'modular microbiomes'-synthetic microbial consortia that are engineered in concert with the host genotype to confer different but mutually compatible MAPs to a single host or host population. By integrating host and microbial traits, these strategies will facilitate targeted engineering of microbiomes to the benefit of agriculture, human/animal health and biotechnology. Copyright © 2017. Published by Elsevier Ltd.

  18. Synthesis, properties and host effects of rare-earth doped silica nanopowders for photonic applications

    Science.gov (United States)

    Halpern, Susan B.

    In this study, SiO2/Al2O3/Er2O 3 (SAE) nanopowders were fabricated by the CF-CVC technique with average primary particle sizes ranging from 10--30 nm. Fluorescence and lifetime measurements were made both on as-prepared powders, as well as heat treated powders, with the latter exhibiting significantly higher emission intensities. At ˜1000°C, the SAE became partially devitrified with extremely broad (FWHM ≈ 78 nm) and flat emission spectra, which is highly desirable for Wavelength Division Multiplexing (WDM) in optical amplifiers. The unique optical properties of the powders are attributed to the formation of a metastable phase consisting of an uniform nano-scale dispersion of a metastable intermediate SiO2 (Al,Er)2O3 phase in an amorphous SiO 2 matrix. At higher heat treatments (1400°C), a dual-phase equilibrium structure was formed, consisting of a pyrochlore phase in a crystobalite matrix. The SAE nanopowders were incorporated into various optical hybrid glass hosts for active planar waveguide applications. Host selection was dependent on transparency in the wavelength region of interest (900 nm--1600 nm), index matching (n ˜ 1.5), chemical/thermal stability, and ease of processing. Furthermore, the inorganic-organic glasses were hydrophobic, resulting in a minimal level of residual OH- which can quench fluorescence emission. Four separate groups of host materials were studied: Perfluoro-alkyl Hybrid Glass (n ≈ 1.42), Alumina-Silica Hybrid Glass (n ≈ 1.49), Polyurethane-Silica Hybrid Glass (n ≈ 1.44), and Methyl/Epoxy Group Hybrid Glass (n ≈ 1.48). All hosts showed high spectral transparency, uniform dispersion of the nanopowder in the host, and minimal surface quenching of emission, and therefore represent excellent candidates for fabrication of next generation nanophotonic planar devices.

  19. Sensitivity Modulation of Upconverting Thermometry through Engineering Phonon Energy of a Matrix.

    Science.gov (United States)

    Suo, Hao; Guo, Chongfeng; Zheng, Jiming; Zhou, Bo; Ma, Chonggeng; Zhao, Xiaoqi; Li, Ting; Guo, Ping; Goldys, Ewa M

    2016-11-09

    Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed using a controllable method. Uniform truncated octahedral YF 3 :Er 3+ /Yb 3+ microcrystals were prepared by a hydrothermal approach, and phase transformation from YF 3 to YOF and Y 2 O 3 with nearly unchanged morphology and size was successfully realized by controlling the annealing temperature. The phonon energies of blank matrixes were determined by FT-IR spectra and Raman scattering. Upon 980 nm excitation, phonon energy-dependent UC emitting color was finely tuned from green to yellow for three samples, and the mechanisms were proposed. Thermal sensing behaviors based on the TCLs ( 2 H 11/2 / 4 S 3/2 ) were evaluated, and the sensitivities gradually grew with the increase in the matrix's phonon energy. According to chemical bond theory and first-principle calculations, the most intrinsic factors associated with thermometric ability were qualitatively demonstrated through analyzing the inner relation between the phonon energy and bond covalency. The exciting results provide guiding insights into employing appropriate host materials with desired thermometric ability while offering the possibility of highly accurate measurement of temperature.

  20. Technique for information retrieval using enhanced latent semantic analysis generating rank approximation matrix by factorizing the weighted morpheme-by-document matrix

    Science.gov (United States)

    Chew, Peter A; Bader, Brett W

    2012-10-16

    A technique for information retrieval includes parsing a corpus to identify a number of wordform instances within each document of the corpus. A weighted morpheme-by-document matrix is generated based at least in part on the number of wordform instances within each document of the corpus and based at least in part on a weighting function. The weighted morpheme-by-document matrix separately enumerates instances of stems and affixes. Additionally or alternatively, a term-by-term alignment matrix may be generated based at least in part on the number of wordform instances within each document of the corpus. At least one lower rank approximation matrix is generated by factorizing the weighted morpheme-by-document matrix and/or the term-by-term alignment matrix.

  1. A parton shower based on factorization of the quantum density matrix

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2014-01-01

    We present rst results from a new parton shower event generator, DEDUCTOR. Anticipating a need for an improved treatment of parton color and spin, the structure of the generator is based on the quantum density matrix in color and spin space. So far, DEDUCTOR implements only a standard spin-averaged treatment of spin in parton splittings. Although DEDUCTOR implements an improved treatment of color, in this paper we present results in the standard leading color approximation so that we can compare to the generator PYTHIA. The algorithms used incorporate a virtuality based shower ordering parameter and massive initial state bottom and charm quarks.

  2. Link predication based on matrix factorization by fusion of multi class organizations of the network.

    Science.gov (United States)

    Jiao, Pengfei; Cai, Fei; Feng, Yiding; Wang, Wenjun

    2017-08-21

    Link predication aims at forecasting the latent or unobserved edges in the complex networks and has a wide range of applications in reality. Almost existing methods and models only take advantage of one class organization of the networks, which always lose important information hidden in other organizations of the network. In this paper, we propose a link predication framework which makes the best of the structure of networks in different level of organizations based on nonnegative matrix factorization, which is called NMF 3 here. We first map the observed network into another space by kernel functions, which could get the different order organizations. Then we combine the adjacency matrix of the network with one of other organizations, which makes us obtain the objective function of our framework for link predication based on the nonnegative matrix factorization. Third, we derive an iterative algorithm to optimize the objective function, which converges to a local optimum, and we propose a fast optimization strategy for large networks. Lastly, we test the proposed framework based on two kernel functions on a series of real world networks under different sizes of training set, and the experimental results show the feasibility, effectiveness, and competitiveness of the proposed framework.

  3. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  4. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  5. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  6. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  7. Detection of LSB+/-1 steganography based on co-occurrence matrix and bit plane clipping

    Science.gov (United States)

    Abolghasemi, Mojtaba; Aghaeinia, Hassan; Faez, Karim; Mehrabi, Mohammad Ali

    2010-01-01

    Spatial LSB+/-1 steganography changes smooth characteristics between adjoining pixels of the raw image. We present a novel steganalysis method for LSB+/-1 steganography based on feature vectors derived from the co-occurrence matrix in the spatial domain. We investigate how LSB+/-1 steganography affects the bit planes of an image and show that it changes more least significant bit (LSB) planes of it. The co-occurrence matrix is derived from an image in which some of its most significant bit planes are clipped. By this preprocessing, in addition to reducing the dimensions of the feature vector, the effects of embedding were also preserved. We compute the co-occurrence matrix in different directions and with different dependency and use the elements of the resulting co-occurrence matrix as features. This method is sensitive to the data embedding process. We use a Fisher linear discrimination (FLD) classifier and test our algorithm on different databases and embedding rates. We compare our scheme with the current LSB+/-1 steganalysis methods. It is shown that the proposed scheme outperforms the state-of-the-art methods in detecting the LSB+/-1 steganographic method for grayscale images.

  8. Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.

    Science.gov (United States)

    Ma, Yuanyuan; Hu, Xiaohua; He, Tingting; Jiang, Xingpeng

    2016-12-01

    Nonnegative matrix factorization (NMF) has received considerable attention due to its interpretation of observed samples as combinations of different components, and has been successfully used as a clustering method. As an extension of NMF, Symmetric NMF (SNMF) inherits the advantages of NMF. Unlike NMF, however, SNMF takes a nonnegative similarity matrix as an input, and two lower rank nonnegative matrices (H, H T ) are computed as an output to approximate the original similarity matrix. Laplacian regularization has improved the clustering performance of NMF and SNMF. However, Laplacian regularization (LR), as a classic manifold regularization method, suffers some problems because of its weak extrapolating ability. In this paper, we propose a novel variant of SNMF, called Hessian regularization based symmetric nonnegative matrix factorization (HSNMF), for this purpose. In contrast to Laplacian regularization, Hessian regularization fits the data perfectly and extrapolates nicely to unseen data. We conduct extensive experiments on several datasets including text data, gene expression data and HMP (Human Microbiome Project) data. The results show that the proposed method outperforms other methods, which suggests the potential application of HSNMF in biological data clustering. Copyright © 2016. Published by Elsevier Inc.

  9. Strategy BMT Al-Ittihad Using Matrix IE, Matrix SWOT 8K, Matrix SPACE and Matrix TWOS

    Directory of Open Access Journals (Sweden)

    Nofrizal Nofrizal

    2018-03-01

    Full Text Available This research aims to formulate and select BMT Al-Ittihad Rumbai strategy to face the changing of business environment both from internal environment such as organization resources, finance, member and external business such as competitor, economy, politics and others. This research method used Analysis of EFAS, IFAS, IE Matrix, SWOT-8K Matrix, SPACE Matrix and TWOS Matrix. our hope from this research it can assist BMT Al-Ittihad in formulating and selecting strategies for the sustainability of BMT Al-Ittihad in the future. The sample in this research is using purposive sampling technique that is the manager and leader of BMT Al-IttihadRumbaiPekanbaru. The result of this research shows that the position of BMT Al-Ittihad using IE Matrix, SWOT-8K Matrix and SPACE Matrix is in growth position, stabilization and aggressive. The choice of strategy after using TWOS Matrix is market penetration, market development, vertical integration, horizontal integration, and stabilization (careful.

  10. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Praveen, E-mail: pmalik100@yahoo.co [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Raina, K.K. [Liquid Crystal Group, Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala 147004, Punjab (India)

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that approx1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  11. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    International Nuclear Information System (INIS)

    Malik, Praveen; Raina, K.K.

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that ∼1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  12. Windows Based Data Sets for Evaluation of Robustness of Host Based Intrusion Detection Systems (IDS to Zero-Day and Stealth Attacks

    Directory of Open Access Journals (Sweden)

    Waqas Haider

    2016-07-01

    Full Text Available The Windows Operating System (OS is the most popular desktop OS in the world, as it has the majority market share of both servers and personal computing necessities. However, as its default signature-based security measures are ineffectual for detecting zero-day and stealth attacks, it needs an intelligent Host-based Intrusion Detection System (HIDS. Unfortunately, a comprehensive data set that reflects the modern Windows OS’s normal and attack surfaces is not publicly available. To fill this gap, in this paper two open data sets generated by the cyber security department of the Australian Defence Force Academy (ADFA are introduced, namely: Australian Defence Force Academy Windows Data Set (ADFA-WD; and Australian Defence Force Academy Windows Data Set with a Stealth Attacks Addendum (ADFA-WD: SAA. Statistical analysis results based on these data sets show that, due to the low foot prints of modern attacks and high similarity of normal and attacked data, both these data sets are complex, and highly intelligent Host based Anomaly Detection Systems (HADS design will be required.

  13. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants.

    Science.gov (United States)

    Duque, Luisa; Körber, Martin; Bodmeier, Roland

    2018-05-30

    The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired. Copyright © 2018. Published by Elsevier B.V.

  14. Membrane and inclusion body targeting of lyssavirus matrix proteins.

    Science.gov (United States)

    Pollin, Reiko; Granzow, Harald; Köllner, Bernd; Conzelmann, Karl-Klaus; Finke, Stefan

    2013-02-01

    Lyssavirus matrix proteins (M) support virus budding and have accessory functions that may contribute to host cell manipulation and adaptation to specific hosts. Here, we show that rabies virus (RABV) and European Bat Lyssavirus Type 1 (EBLV-1) M proteins differ in targeting and accumulation at cellular membranes. In contrast to RABV M, EBLV-1 M expressed from authentic EBLV-1 or chimeric RABV accumulated at the Golgi apparatus. Chimeric M proteins revealed that Golgi association depends on the integrity of the entire EBLV-1 M protein. Since RABV and EBLV-1 M differ in the use of cellular membranes for particle formation, differential membrane targeting and transport of M might determine the site of virus production. Moreover, both RABV and EBLV-1 M were for the first time detected within the nucleus and in Negri body-like inclusions bodies. Whereas nuclear M may imply hitherto unknown functions of lyssavirus M in host cell manipulation, the presence of M in inclusion bodies may correlate with regulatory functions of M in virus RNA synthesis. The data strongly support a model in which targeting of lyssavirus M proteins to distinctintracellular sites is a key determinant of diverse features in lyssavirus replication, host adaptation and pathogenesis. © 2012 Blackwell Publishing Ltd.

  15. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  16. Optical properties of BaTiO3 nanoparticles and silver nanoprisms in polymer host matrices

    Science.gov (United States)

    Requena, Sebastian

    Nanocomposites are materials comprised of a host matrix, such as glass or polymer, with embedded nanoparticles. Embedding nanoparticles into the host makes it possible to create materials with properties that are distinctly unique from those of their host and nanoparticle constituents. Nanocomposites can have superior mechanical, thermal, and optical properties compared to their host materials. We characterized the photoluminescent properties of BaTiO3 polymer nanocomposites and the effects of chemically modifying the nanoparticles surface on said properties. BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (3APTS) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposites films morphology and chemical structure were studied via AFM and FTIR. The photoluminescence spectrum of the pure nanoparticles was composed of an emission at ˜3.0 eV and multiple bands centered at ˜2.5 eV. Surface functionalization of the BaTiO3 nanoparticles via 3APTS increased overall luminescence at room temperature while only enhancing the ˜3.0 eV emission at low-temperature. On the other hand, polymer coating of the functionalized nanoparticles significantly enhances ˜3.0 eV emissions while decreasing emissions associated with near-surface lattice distortions at ˜2.5 eV. Chemical modification of the surface with 3APTS and PMMA presents a pathway to tune and control the photoluminescent properties of BTO nanoparticles. We also present optical studies of two different size distributions of silver triangular nanoprisms, one with a dipole resonance at ˜520 nm and the other with a dipole resonance at ˜650 nm, placed in different media. The silver nanoprisms were embedded in a polyvinyl alcohol (PVA) polymer matrix and oriented by stretching the polymer/nanoprism nanocomposite films. We observe significantly increased linear dichroism in the region associated with the plasmonic in-plane dipole mode upon

  17. Construction of the Dependence Matrix Based on the TRIZ Contradiction Matrix in OOD

    Science.gov (United States)

    Ma, Jianhong; Zhang, Quan; Wang, Yanling; Luo, Tao

    In the Object-Oriented software design (OOD), design of the class and object, definition of the classes’ interface and inheritance levels and determination of dependent relations have a serious impact on the reusability and flexibility of the system. According to the concrete problems of design, how to select the right solution from the hundreds of the design schemas which has become the focus of attention of designers. After analyzing lots of software design schemas in practice and Object-Oriented design patterns, this paper constructs the dependence matrix of Object-Oriented software design filed, referring to contradiction matrix of TRIZ (Theory of Inventive Problem Solving) proposed by the former Soviet Union innovation master Altshuller. As the practice indicates, it provides a intuitive, common and standardized method for designers to choose the right design schema. Make research and communication more effectively, and also improve the software development efficiency and software quality.

  18. Endodontic Periodontic Lesions and Host Modulation – Case Series

    Directory of Open Access Journals (Sweden)

    Afaf Zia

    2015-07-01

    Full Text Available Host modulation, includes inhibition of matrix metalloproteinases, blocking production of proinflammatory cytokines and inhibition of osteoclastic activity, has therapeutic value as adjunctive therapy in treating chronic periodontitis. This case series presented three patients with chief complaint of teeth mobility where endo perio involvement was diagnosed. The endo perio combined lesions generally shows the communication between pulp and periodontal tissues with the same origin of dental infection. Diagnosis in such cases is difficult and generally raising problem in the management. All of the cases were managed by non surgical endodontic therapy combined with host modulation. All local factors causing the lesion were removed. Clinical outcome after six and nine months were quite satisfactory. Combined endo perio cases are challenging to the dentists and involve multidisciplinary involvement. To manage such cases, dentists have to rely on the unconventional techniques.DOI: 10.14693/jdi.v22i1.378

  19. Leakage localisation method in a water distribution system based on sensitivity matrix: methodology and real test

    OpenAIRE

    Pascual Pañach, Josep

    2010-01-01

    Leaks are present in all water distribution systems. In this paper a method for leakage detection and localisation is presented. It uses pressure measurements and simulation models. Leakage localisation methodology is based on pressure sensitivity matrix. Sensitivity is normalised and binarised using a common threshold for all nodes, so a signatures matrix is obtained. A pressure sensor optimal distribution methodology is developed too, but it is not used in the real test. To validate this...

  20. Determination of trace amounts of cerium in silicate rocks based on its candoluminescence in a calcium oxide based matrix

    International Nuclear Information System (INIS)

    Belcher, R.; Nasser, T.A.K.; Polo-Diez, L.; Townshend, A.

    1977-01-01

    A very sensitive method for the determination of cerium (above 10 ng ml -1 ) has been developed (Belcher et al., Analyst;100:415(1975)), based on the measurement of the green candoluminescence produced by cerium in a calcium oxide-calcium sulphate matrix, with sulphuric acid as a coactivator, when the matrix is inserted into a hydrogen-nitrogen-air flame. This paper describes the application of this method to the determination of trace amounts of cerium in rocks. It involves the fusion of the sample with lithium metaborate, and does not require the isolation of cerium from other components of the rock, before measuring the candoluminescence intensity of the cerium. (author)

  1. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence.

    Science.gov (United States)

    Xie, Yicheng; Wahab, Laith; Gill, Jason J

    2018-04-12

    Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.

  2. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence

    Directory of Open Access Journals (Sweden)

    Yicheng Xie

    2018-04-01

    Full Text Available Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6% of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.

  3. Conformational plasticity of the Ebola virus matrix protein.

    Science.gov (United States)

    Radzimanowski, Jens; Effantin, Gregory; Weissenhorn, Winfried

    2014-11-01

    Filoviruses are the causative agents of a severe and often fatal hemorrhagic fever with repeated outbreaks in Africa. They are negative sense single stranded enveloped viruses that can cross species barriers from its natural host bats to primates including humans. The small size of the genome poses limits to viral adaption, which may be partially overcome by conformational plasticity. Here we review the different conformational states of the Ebola virus (EBOV) matrix protein VP40 that range from monomers, to dimers, hexamers, and RNA-bound octamers. This conformational plasticity that is required for the viral life cycle poses a unique opportunity for development of VP40 specific drugs. Furthermore, we compare the structure to homologous matrix protein structures from Paramyxoviruses and Bornaviruses and we predict that they do not only share the fold but also the conformational flexibility of EBOV VP40. © 2014 The Protein Society.

  4. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2007-01-01

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... with working Matlab code and applications in speech processing....

  5. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    Science.gov (United States)

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  6. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts

    Directory of Open Access Journals (Sweden)

    Lucas Tirloni

    2017-12-01

    Full Text Available Understanding the molecular basis of how ticks adapt to feed on different animal hosts is central to understanding tick and tick-borne disease (TBD epidemiology. There is evidence that ticks differentially express specific sets of genes when stimulated to start feeding. This study was initiated to investigate if ticks such as Ixodes scapularis and Amblyomma americanum that are adapted to feed on multiple hosts utilized the same sets of proteins to prepare for feeding. We exposed I. scapularis and A. americanum to feeding stimuli of different hosts (rabbit, human, and dog by keeping unfed adult ticks enclosed in a perforated microfuge in close contact with host skin, but not allowing ticks to attach on host. Our data suggest that ticks of the same species differentially express tick saliva proteins (TSPs when stimulated to start feeding on different hosts. SDS-PAGE and silver staining analysis revealed unique electrophoretic profiles in saliva of I. scapularis and A. americanum that were stimulated to feed on different hosts: rabbit, human, and dog. LC-MS/MS sequencing and pairwise analysis demonstrated that I. scapularis and A. americanum ticks expressed unique protein profiles in their saliva when stimulated to start feeding on different hosts: rabbit, dog, or human. Specifically, our data revealed TSPs that were unique to each treatment and those that were shared between treatments. Overall, we identified a total of 276 and 340 non-redundant I. scapularis and A. americanum TSPs, which we have classified into 28 functional classes including: secreted conserved proteins (unknown functions, proteinase inhibitors, lipocalins, extracellular matrix/cell adhesion, heme/iron metabolism, signal transduction and immunity-related proteins being the most predominant in saliva of unfed ticks. With exception of research on vaccines against Rhipicephalus microplus, which its natural host, cattle, research on vaccine against other ticks relies feeding ticks

  7. Matrix Factorisation-based Calibration For Air Quality Crowd-sensing

    Science.gov (United States)

    Dorffer, Clement; Puigt, Matthieu; Delmaire, Gilles; Roussel, Gilles; Rouvoy, Romain; Sagnier, Isabelle

    2017-04-01

    sensors share some information using the APISENSE® crowdsensing platform and we aim to calibrate the sensor responses from the data directly. For that purpose, we express the sensor readings as a low-rank matrix with missing entries and we revisit self-calibration as a Matrix Factorization (MF) problem. In our proposed framework, one factor matrix contains the calibration parameters while the other is structured by the calibration model and contains some values of the sensed phenomenon. The MF calibration approach also uses the precise measurements from ATMO—the French public institution—to drive the calibration of the mobile sensors. MF calibration can be improved using, e.g., the mean calibration parameters provided by the sensor manufacturers, or using sparse priors or a model of the physical phenomenon. All our approaches are shown to provide a better calibration accuracy than matrix-completion-based and robust-regression-based methods, even in difficult scenarios involving a lot of missing data and/or very few accurate references. When combined with a dictionary of air quality patterns, our experiments suggest that MF is not only able to perform sensor network calibration but also to provide detailed maps of air quality.

  8. A parton shower based on factorization of the quantum density matrix

    OpenAIRE

    Nagy, Zoltan; Soper, Davison E.

    2014-01-01

    We present first results from a new parton shower event generator, D eductor . Anticipating a need for an improved treatment of parton color and spin, the structure of the generator is based on the quantum density matrix in color and spin space. So far, D eductor implements only a standard spin-averaged treatment of spin in parton splittings. Although D eductor implements an improved treatment of color, in this paper we present results in the standard leading color approximation so that we ca...

  9. A Biofilm Matrix-Associated Protease Inhibitor Protects Pseudomonas aeruginosa from Proteolytic Attack.

    Science.gov (United States)

    Tseng, Boo Shan; Reichhardt, Courtney; Merrihew, Gennifer E; Araujo-Hernandez, Sophia A; Harrison, Joe J; MacCoss, Michael J; Parsek, Matthew R

    2018-04-10

    Pseudomonas aeruginosa produces an extracellular biofilm matrix that consists of nucleic acids, exopolysaccharides, lipid vesicles, and proteins. In general, the protein component of the biofilm matrix is poorly defined and understudied relative to the other major matrix constituents. While matrix proteins have been suggested to provide many functions to the biofilm, only proteins that play a structural role have been characterized thus far. Here we identify proteins enriched in the matrix of P. aeruginosa biofilms. We then focused on a candidate matrix protein, the serine protease inhibitor ecotin (PA2755). This protein is able to inhibit neutrophil elastase, a bactericidal enzyme produced by the host immune system during P. aeruginosa biofilm infections. We show that ecotin binds to the key biofilm matrix exopolysaccharide Psl and that it can inhibit neutrophil elastase when associated with Psl. Finally, we show that ecotin protects both planktonic and biofilm P. aeruginosa cells from neutrophil elastase-mediated killing. This may represent a novel mechanism of protection for biofilms to increase their tolerance against the innate immune response. IMPORTANCE Proteins associated with the extracellular matrix of bacterial aggregates called biofilms have long been suggested to provide many important functions to the community. To date, however, only proteins that provide structural roles have been described, and few matrix-associated proteins have been identified. We developed a method to identify matrix proteins and characterized one. We show that this protein, when associated with the biofilm matrix, can inhibit a bactericidal enzyme produced by the immune system during infection and protect biofilm cells from death induced by the enzyme. This may represent a novel mechanism of protection for biofilms, further increasing their tolerance against the immune response. Together, our results are the first to show a nonstructural function for a confirmed matrix

  10. Random Correlation Matrix and De-Noising

    OpenAIRE

    Ken-ichi Mitsui; Yoshio Tabata

    2006-01-01

    In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...

  11. Synthesis and Characterization of Pine Needles Reinforced RF Matrix Based Biocomposites

    Directory of Open Access Journals (Sweden)

    A. S. Singha

    2008-01-01

    Full Text Available Synthesis and characterization of pine needles reinforced thermosetting resin (Resorcinol-Formaldehyde which is most suitable as composite matrix has been reported. The polycondensation reaction between resorcinol and formaldehyde (RF in different molar ratios has been applied to the synthesis of RF polymer matrix. A thermosetting resin based composite, containing approximately 10, 20, 30 and 40% of natural fiber by weight, has been obtained by adding pine needles to the Resorcinol-Formaldehyde (RF resin. The mechanical properties of randomly oriented intimately mixed particle reinforced (Pine needles composites were determined. Effect of fiber loading in terms of weight % on mechanical properties such as tensile, compressive, and flexural and wear properties have also been evaluated. The reinforcing of the resin with Pine needles was accomplished in particle size of 200 micron by employing optimized resin. Present work reveals that mechanical properties of the RF resin increases to extensive extent when reinforced with Pine needles. Thermal (TGA/DTA and morphological studies (SEM of the resin, fiber and polymer composites thus synthesized have also been carried out.

  12. Improved Asymmetric Cipher Based on Matrix Power Function with Provable Security

    Directory of Open Access Journals (Sweden)

    Eligijus Sakalauskas

    2017-01-01

    Full Text Available The improved version of the author’s previously declared asymmetric cipher protocol based on matrix power function (MPF is presented. Proposed modification avoids discrete logarithm attack (DLA which could be applied to the previously declared protocol. This attack allows us to transform the initial system of MPF equations to so-called matrix multivariate quadratic (MMQ system of equations, which is a system representing a subclass of multivariate quadratic (MQ systems of equations. We are making a conjecture that avoidance of DLA in protocol, presented here, should increase its security, since an attempt to solve the initial system of MPF equations would appear to be no less complex than solving the system of MMQ equations. No algorithms are known to solve such a system of equations. Security parameters and their secure values are defined. Security analysis against chosen plaintext attack (CPA and chosen ciphertext attack (CCA is presented. Measures taken to prevent DLA attack increase the security of this protocol with respect to the previously declated protocol.

  13. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  14. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  15. Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Makoto Yoshida

    2009-01-01

    Full Text Available This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.

  16. Disturbance Observer-Based Simple Nonlinearity Compensation for Matrix Converter Drives

    Directory of Open Access Journals (Sweden)

    Kyo-Beum Lee

    2009-01-01

    Full Text Available This paper presents a new method to compensate the nonlinearity for matrix converter drives using disturbance observer. The nonlinearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modeled by disturbance observer and compensated. The proposed method does not need any additional hardware and offline experimental measurements. The proposed compensation method is applied for high-performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Simulation and experimental results show that the proposed method using disturbance observer provides good compensating characteristics.

  17. Host-bacterial interplay in periodontal disease

    Directory of Open Access Journals (Sweden)

    Rudrakshi Chickanna

    2015-01-01

    Full Text Available A literature search was performed using MEDLINE (PubMed and other electronic basis from 1991 to 2014. Search included books and journals based on the systematic and critical reviews, in vitro and in vivo clinical studies on molecular basis of host microbial interactions. Clearly, an understanding of the host susceptibility factor in addition to microbial factors by elucidating the molecular basis offers opportunity for therapeutic manipulation of advancing periodontal destruction. One of the hallmarks of pathogenesis is the ability of pathogenic organisms to invade surrounding tissues and to evade the host defence. This paper focuses the general overview of molecular mechanisms involved in the microbiota and host response to bacterial inimical behavior in periodontics.

  18. Development of antifriction composites based on polypyromellitimide matrix

    Energy Technology Data Exchange (ETDEWEB)

    Olifirov, L.K., E-mail: M80786@yandex.ru [National University of Science and Technology «MISIS» (Russian Federation); Kaloshkin, S.D.; Tcherdyntsev, V.V. [National University of Science and Technology «MISIS» (Russian Federation); Danilov, V.D. [Blagonravov Institute of Machines Science of Russian Academy of Sciences (Russian Federation)

    2014-02-15

    Highlights: • Polypyromellitimide powder from waste of production polyimide films were obtained. • Structure of polypyromellitimide strongly changes after high energy ball milling. • Addition of commercial polyimide powder improve moldability of polypyromellitimide. • Polypyromellitimide based composites show good tribological properties in dry friction mode. -- Abstract: A method of polypyromellitimide powder production from PM-A film was proposed and a possibility of fabricating bulk composites based on polypyromellitimide matrix was investigated. The powders were prepared by the treatment of PM-A films in a planetary ball mill. The compositions based on polypyromellitimide containing additives of Al{sub 65}Cu{sub 23}Fe{sub 12} quasicrystals, graphite, polytetrafluoroethylene and PI-PR-20 polyimide were prepared by the solid-state mixing in an IKA M20 batch mill. The bulk samples were fabricated by the compression molding technique. Thus produced materials were characterized by using the methods of sieve analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, dynamo-mechanical analysis and tribological tests. It was found that the PM-A polypyromellitimide powder had a low sinterability and, therefore, the bulk samples of unfilled PM-A and also the composites based on PM-A containing additives of Al{sub 65}Cu{sub 23}Fe{sub 12} quasicrystals, graphite and polytetrafluoroethylene exhibited a high brittleness and show unstable behavior in the tribological tests. It was found that an addition of 15 wt.% PI-PR-20 polyimide improved the sinterability of PM-A and also provides excellent antifriction properties.

  19. Multimedia Matrix: A Cognitive Strategy for Designers.

    Science.gov (United States)

    Sherry, Annette C.

    This instructional development project evaluates the effect of a matrix-based strategy to assist multimedia authors in acquiring and applying principles for effective multimedia design. The Multimedia Matrix, based on the Park and Hannafin "Twenty Principles and Implications for Interactive Multimedia" design, displays a condensed…

  20. Extracellular Matrix in Plants and Animals: Hooks and Locks for Viruses

    Directory of Open Access Journals (Sweden)

    Livia Stavolone

    2017-09-01

    Full Text Available The extracellular matrix (ECM of animal and plants cells plays important roles in viral diseases. While in animal cells extracellular matrix components can be exploited by viruses for recognition, attachment and entry, the plant cell wall acts as a physical barrier to viral entry and adds a higher level of difficulty to intercellular movement of viruses. Interestingly, both in plant and animal systems, ECM can be strongly remodeled during virus infection, and the understanding of remodeling mechanisms and molecular players offers new perspectives for therapeutic intervention. This review focuses on the different roles played by the ECM in plant and animal hosts during virus infection with special emphasis on the similarities and differences. Possible biotechnological applications aimed at improving viral resistance are discussed.

  1. Cultivation of Keratinocytes and Fibroblasts in a Three-Dimensional Bovine Collagen-Elastin Matrix (Matriderm® and Application for Full Thickness Wound Coverage in Vivo

    Directory of Open Access Journals (Sweden)

    Jasper Killat

    2013-07-01

    Full Text Available New skin substitutes for burn medicine or reconstructive surgery pose an important issue in plastic surgery. Matriderm® is a clinically approved three-dimensional bovine collagen-elastin matrix which is already used as a dermal substitute of full thickness burn wounds. The drawback of an avital matrix is the limited integration in full thickness skin defects, depending on the defect size. To further optimize this process, Matriderm® has also been studied as a matrix for tissue engineering of skin albeit long-term cultivation of the matrix with cells has been difficult. Cells have generally been seeded onto the matrix with high cell loss and minimal time-consuming migration. Here we developed a cell seeded skin equivalent after microtransfer of cells directly into the matrix. First, cells were cultured, and microinjected into Matriderm®. Then, cell viability in the matrix was determined by histology in vitro. As a next step, the skin substitute was applied in vivo into a full thickness rodent wound model. The wound coverage and healing was observed over a period of two weeks followed by histological examination assessing cell viability, proliferation and integration into the host. Viable and proliferating cells could be found throughout the entire matrix. The presented skin substitute resembles healthy skin in morphology and integrity. Based on this study, future investigations are planned to examine behaviour of epidermal stem cells injected into a collagen-elastin matrix under the aspects of establishment of stem cell niches and differentiation.

  2. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  3. The link between employee attitudes and employee effectiveness: Data matrix of meta-analytic estimates based on 1161 unique correlations

    Directory of Open Access Journals (Sweden)

    Michael M. Mackay

    2016-09-01

    Full Text Available This article offers a correlation matrix of meta-analytic estimates between various employee job attitudes (i.e., Employee engagement, job satisfaction, job involvement, and organizational commitment and indicators of employee effectiveness (i.e., Focal performance, contextual performance, turnover intention, and absenteeism. The meta-analytic correlations in the matrix are based on over 1100 individual studies representing over 340,000 employees. Data was collected worldwide via employee self-report surveys. Structural path analyses based on the matrix, and the interpretation of the data, can be found in “Investigating the incremental validity of employee engagement in the prediction of employee effectiveness: a meta-analytic path analysis” (Mackay et al., 2016 [1]. Keywords: Meta-analysis, Job attitudes, Job performance, Employee, Engagement, Employee effectiveness

  4. Analysis of a wavelength selectable cascaded DFB laser based on the transfer matrix method

    International Nuclear Information System (INIS)

    Xie Hongyun; Chen Liang; Shen Pei; Sun Botao; Wang Renqing; Xiao Ying; You Yunxia; Zhang Wanrong

    2010-01-01

    A novel cascaded DFB laser, which consists of two serial gratings to provide selectable wavelengths, is presented and analyzed by the transfer matrix method. In this method, efficient facet reflectivity is derived from the transfer matrix built for each serial section and is then used to simulate the performance of the novel cascaded DFB laser through self-consistently solving the gain equation, the coupled wave equation and the current continuity equations. The simulations prove the feasibility of this kind of wavelength selectable laser and a corresponding designed device with two selectable wavelengths of 1.51 μm and 1.53 μm is realized by experiments on InP-based multiple quantum well structure. (semiconductor devices)

  5. Effects of matrix metallproteinases on dentin bonding and strategies to increase durability of dentin adhesion

    Directory of Open Access Journals (Sweden)

    Jung-Hyun Lee

    2012-02-01

    Full Text Available The limited durability of resin-dentin bonds severely compromises the longevity of composite resin restorations. Resin-dentin bond degradation might occur via degradation of water-rich and resin sparse collagen matrices by host-derived matrix metalloproteinases (MMPs. This review article provides overview of current knowledge of the role of MMPs in dentin matrix degradation and four experimental strategies for extending the longevity of resin-dentin bonds. They include: (1 the use of broad-spectrum inhibitors of MMPs, (2 the use of cross-linking agents for silencing the activities of MMPs, (3 ethanol wet-bonding with hydrophobic resin, (4 biomimetic remineralization of water-filled collagen matrix. A combination of these strategies will be able to overcome the limitations in resin-dentin adhesion.

  6. Elucidating Host-Pathogen Interactions Based on Post-Translational Modifications Using Proteomics Approaches

    DEFF Research Database (Denmark)

    Ravikumar, Vaishnavi; Jers, Carsten; Mijakovic, Ivan

    2015-01-01

    can be efficiently applied to gain an insight into the molecular mechanisms involved. The measurement of the proteome and post-translationally modified proteome dynamics using mass spectrometry, results in a wide array of information, such as significant changes in protein expression, protein...... display host specificity through a complex network of molecular interactions that aid their survival and propagation. Co-infection states further lead to complications by increasing the microbial burden and risk factors. Quantitative proteomics based approaches and post-translational modification analysis...... pathogen interactions....

  7. The Extracellular Matrix Regulates Granuloma Necrosis in Tuberculosis.

    Science.gov (United States)

    Al Shammari, Basim; Shiomi, Takayuki; Tezera, Liku; Bielecka, Magdalena K; Workman, Victoria; Sathyamoorthy, Tarangini; Mauri, Francesco; Jayasinghe, Suwan N; Robertson, Brian D; D'Armiento, Jeanine; Friedland, Jon S; Elkington, Paul T

    2015-08-01

    A central tenet of tuberculosis pathogenesis is that caseous necrosis leads to extracellular matrix destruction and bacterial transmission. We reconsider the underlying mechanism of tuberculosis pathology and demonstrate that collagen destruction may be a critical initial event, causing caseous necrosis as opposed to resulting from it. In human tuberculosis granulomas, regions of extracellular matrix destruction map to areas of caseous necrosis. In mice, transgenic expression of human matrix metalloproteinase 1 causes caseous necrosis, the pathological hallmark of human tuberculosis. Collagen destruction is the principal pathological difference between humanised mice and wild-type mice with tuberculosis, whereas the release of proinflammatory cytokines does not differ, demonstrating that collagen breakdown may lead to cell death and caseation. To investigate this hypothesis, we developed a 3-dimensional cell culture model of tuberculosis granuloma formation, using bioelectrospray technology. Collagen improved survival of Mycobacterium tuberculosis-infected cells analyzed on the basis of a lactate dehydrogenase release assay, propidium iodide staining, and measurement of the total number of viable cells. Taken together, these findings suggest that collagen destruction is an initial event in tuberculosis immunopathology, leading to caseous necrosis and compromising the immune response, revealing a previously unappreciated role for the extracellular matrix in regulating the host-pathogen interaction. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. The improved Apriori algorithm based on matrix pruning and weight analysis

    Science.gov (United States)

    Lang, Zhenhong

    2018-04-01

    This paper uses the matrix compression algorithm and weight analysis algorithm for reference and proposes an improved matrix pruning and weight analysis Apriori algorithm. After the transactional database is scanned for only once, the algorithm will construct the boolean transaction matrix. Through the calculation of one figure in the rows and columns of the matrix, the infrequent item set is pruned, and a new candidate item set is formed. Then, the item's weight and the transaction's weight as well as the weight support for items are calculated, thus the frequent item sets are gained. The experimental result shows that the improved Apriori algorithm not only reduces the number of repeated scans of the database, but also improves the efficiency of data correlation mining.

  9. A Novel Silicon-based Wideband RF Nano Switch Matrix Cell and the Fabrication of RF Nano Switch Structures

    Directory of Open Access Journals (Sweden)

    Yi Xiu YANG

    2011-12-01

    Full Text Available This paper presents the concept of RF nano switch matrix cell and the fabrication of RF nano switch. The nano switch matrix cell can be implemented into complex switch matrix for signal routing. RF nano switch is the decision unit for the matrix cell; in this research, it is fabricated on a tri-layer high-resistivity-silicon substrate using surface micromachining approach. Electron beam lithography is introduced to define the pattern and IC compatible deposition process is used to construct the metal layers. Silicon-based nano switch fabricated by IC compatible process can lead to a high potential of system integration to perform a cost effective system-on-a-chip solution. In this paper, simulation results of the designed matrix cell are presented; followed by the details of the nano structure fabrication and fabrication challenges optimizations; finally, measurements of the fabricated nano structure along with analytical discussions are also discussed.

  10. A Rank-Constrained Matrix Representation for Hypergraph-Based Subspace Clustering

    Directory of Open Access Journals (Sweden)

    Yubao Sun

    2015-01-01

    Full Text Available This paper presents a novel, rank-constrained matrix representation combined with hypergraph spectral analysis to enable the recovery of the original subspace structures of corrupted data. Real-world data are frequently corrupted with both sparse error and noise. Our matrix decomposition model separates the low-rank, sparse error, and noise components from the data in order to enhance robustness to the corruption. In order to obtain the desired rank representation of the data within a dictionary, our model directly utilizes rank constraints by restricting the upper bound of the rank range. An alternative projection algorithm is proposed to estimate the low-rank representation and separate the sparse error from the data matrix. To further capture the complex relationship between data distributed in multiple subspaces, we use hypergraph to represent the data by encapsulating multiple related samples into one hyperedge. The final clustering result is obtained by spectral decomposition of the hypergraph Laplacian matrix. Validation experiments on the Extended Yale Face Database B, AR, and Hopkins 155 datasets show that the proposed method is a promising tool for subspace clustering.

  11. NDMA formation from amine-based pharmaceuticals--impact from prechlorination and water matrix.

    Science.gov (United States)

    Shen, Ruqiao; Andrews, Susan A

    2013-05-01

    The presence of N-nitrosodimethylamine (NDMA) in drinking water is most commonly associated with the chloramination of amine-based precursors. One option to control the NDMA formation is to remove the precursors via pre-oxidation, and prechlorination is among the most effective options in reducing NDMA formation. However, most of the findings to-date are based on single-precursor scenarios using the model precursor dimethylamine (DMA) and natural organic matter (NOM), while few studies have considered the potential interactions between water matrix components and the target precursors when investigating the prechlorination impact. Specifically, little is known for the behaviour of amine-based pharmaceuticals which have recently been reported to contribute to NDMA formation upon chloramination. This work demonstrates that prechlorination can affect both the ultimate NDMA conversion and the reaction kinetics from selected pharmaceuticals, and the nature and extent of the impact was compound-specific and matrix-specific. In the absence of NOM, the NDMA formation from most pharmaceuticals was reduced upon prechlorination, except for sumatriptan which showed a consistent increase in NDMA formation with increasing free chlorine contact time. In the presence of NOM, prechlorination was shown to enhance initial reactions by reducing the binding between NOM and pharmaceuticals, but prolonged prechlorination broke down NOM into smaller products which could then form new bonds with pharmaceuticals and thus inhibit their further conversion into NDMA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Management of investment-construction projects basing on the matrix of key events

    Directory of Open Access Journals (Sweden)

    Morozenko Andrey Aleksandrovich

    2016-11-01

    Full Text Available The article considers the current problematic issues in the management of investment-construction projects, examines the questions of efficiency increase of construction operations on the basis of the formation of a reflex-adaptive organizational structure. The authors analyzed the necessity of forming a matrix of key events in the investment-construction project (ICP, which will create the optimal structure of the project, basing on the work program for its implementation. For convenience of representing programs of the project implementation in time the authors make recommendations to consolidate the works into separate, economically independent functional blocks. It is proposed to use an algorithm of forming the matrix of an investment-construction project, considering the economic independence of the functional blocks and stages of the ICP implementation. The use of extended network model is justified, which is supplemented by organizational and structural constraints at different stages of the project, highlighting key events fundamentally influencing the further course of the ICP implementation.

  13. Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.

    Science.gov (United States)

    Zhang, Jianguang; Jiang, Jianmin

    2018-02-01

    While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.

  14. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) with Silicon-Carbide-Matrix Coated-Particle Fuel

    International Nuclear Information System (INIS)

    Forsberg, C. W.; Snead, Lance Lewis; Katoh, Yutai

    2012-01-01

    The FHR is a new reactor concept that uses coated-particle fuel and a low-pressure liquid-salt coolant. Its neutronics are similar to a high-temperature gas-cooled reactor (HTGR). The power density is 5 to 10 times higher because of the superior cooling properties of liquids versus gases. The leading candidate coolant salt is a mixture of 7 LiF and BeF 2 (FLiBe) possessing a boiling point above 1300 C and the figure of merit ρC p (volumetric heat capacity) for the salt slightly superior to water. Studies are underway to define a near-term base-line concept while understanding longer-term options. Near-term options use graphite-matrix coated-particle fuel where the graphite is both a structural component and the primary neutron moderator. It is the same basic fuel used in HTGRs. The fuel can take several geometric forms with a pebble bed being the leading contender. Recent work on silicon-carbide-matrix (SiCm) coated-particle fuel may create a second longer-term fuel option. SiCm coated-particle fuels are currently being investigated for use in light-water reactors. The replacement of the graphite matrix with a SiCm creates a new family of fuels. The first motivation behind the effort is to take advantage of the superior radiation resistance of SiC compared to graphite in order to provide a stable matrix for hosting coated fuel particles. The second motivation is a much more rugged fuel under accident, repository, and other conditions.

  15. Massively parallel sparse matrix function calculations with NTPoly

    Science.gov (United States)

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  16. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  17. Prepare and characterization of nanocomposite - mixed matrix membranes based on polycarbonate

    International Nuclear Information System (INIS)

    Paranhos, Caio M.; Pessan, Luiz A.; Gomes, Ana C. de O.

    2009-01-01

    Mixed matrix membranes based on polycarbonate with different content of sepiolite were prepared by casting. The obtained membranes were characterized by wide-angle X-ray diffraction, thermal analysis, optical transparency and permeation to oxygen. The presence of sepiolite leads to the formation of a polymer-clay interface. The presence of the interface causes the increase in O 2 permeation. Increasing content of sepiolite results in aggregates of sepiolite, which forms preferential channels to the O 2 molecules. This fact is directly related to the strong increasing observed in O 2 permeability. (author)

  18. Ecological risk assessment of agricultural soils for the definition of soil screening values: A comparison between substance-based and matrix-based approaches

    Directory of Open Access Journals (Sweden)

    Alberto Pivato

    2017-04-01

    Full Text Available The Italian legislation on contaminated soils does not include the Ecological Risk Assessment (ERA and this deficiency has important consequences for the sustainable management of agricultural soils. The present research compares the results of two ERA procedures applied to agriculture (i one based on the “substance-based” approach and (ii a second based on the “matrix-based” approach. In the former the soil screening values (SVs for individual substances were derived according to institutional foreign guidelines. In the latter, the SVs characterizing the whole-matrix were derived originally by the authors by means of experimental activity.The results indicate that the “matrix-based” approach can be efficiently implemented in the Italian legislation for the ERA of agricultural soils. This method, if compared to the institutionalized “substance based” approach is (i comparable in economic terms and in testing time, (ii is site specific and assesses the real effect of the investigated soil on a battery of bioassays, (iii accounts for phenomena that may radically modify the exposure of the organisms to the totality of contaminants and (iv can be considered sufficiently conservative. Keyword: Environmental science

  19. Elastin overexpression by cell-based gene therapy preserves matrix and prevents cardiac dilation

    Science.gov (United States)

    Li, Shu-Hong; Sun, Zhuo; Guo, Lily; Han, Mihan; Wood, Michael F G; Ghosh, Nirmalya; Alex Vitkin, I; Weisel, Richard D; Li, Ren-Ke

    2012-01-01

    After a myocardial infarction, thinning and expansion of the fibrotic scar contribute to progressive heart failure. The loss of elastin is a major contributor to adverse extracellular matrix remodelling of the infarcted heart, and restoration of the elastic properties of the infarct region can prevent ventricular dysfunction. We implanted cells genetically modified to overexpress elastin to re-establish the elastic properties of the infarcted myocardium and prevent cardiac failure. A full-length human elastin cDNA was cloned, subcloned into an adenoviral vector and then transduced into rat bone marrow stromal cells (BMSCs). In vitro studies showed that BMSCs expressed the elastin protein, which was deposited into the extracellular matrix. Transduced BMSCs were injected into the infarcted myocardium of adult rats. Control groups received either BMSCs transduced with the green fluorescent protein gene or medium alone. Elastin deposition in the infarcted myocardium was associated with preservation of myocardial tissue structural integrity (by birefringence of polarized light; P elastin showed the greatest functional improvement (P elastin in the infarcted heart preserved the elastic structure of the extracellular matrix, which, in turn, preserved diastolic function, prevented ventricular dilation and preserved cardiac function. This cell-based gene therapy provides a new approach to cardiac regeneration. PMID:22435995

  20. Matrix analysis and risk management to avert depression and suicide among workers

    Directory of Open Access Journals (Sweden)

    Takeuchi Takeaki

    2010-11-01

    Full Text Available Abstract Suicide is among the most tragic outcomes of all mental disorders, and the prevalence of suicide has risen dramatically during the last decade, particularly among workers. This paper reviews and proposes strategies to avert suicide and depression with regard to the mind body medicine equation hypothesis, metrics analysis of mental health problems from a public health and clinical medicine view. In occupational fields, the mind body medicine hypothesis has to deal with working environment, working condition, and workers' health. These three factors chosen in this paper were based on the concept of risk control, called San-kanri, which has traditionally been used in Japanese companies, and the causation concepts of host, agent, and environment. Working environment and working condition were given special focus with regard to tackling suicide problems. Matrix analysis was conducted by dividing the problem of working conditions into nine cells: three prevention levels (primary, secondary, and tertiary were proposed for each of the three factors of the mind body medicine hypothesis (working environment, working condition, and workers' health. After using these main strategies (mind body medicine analysis and matrix analysis to tackle suicide problems, the paper talks about the versatility of case-method teaching, "Hiyari-Hat activity," routine inspections by professionals, risk assessment analysis, and mandatory health check-up focusing on sleep and depression. In the risk assessment analysis, an exact assessment model was suggested using a formula based on multiplication of the following three factors: (1 severity, (2 frequency, and (3 possibility. Mental health problems, including suicide, are rather tricky to deal with because they involve evaluation of individual cases. The mind body medicine hypothesis and matrix analysis would be appropriate tactics for suicide prevention because they would help the evaluation of this issue as a

  1. Naturally Occurring Extracellular Matrix Scaffolds for Dermal Regeneration: Do They Really Need Cells?

    Directory of Open Access Journals (Sweden)

    A. M. Eweida

    2015-01-01

    Full Text Available The pronounced effect of extracellular matrix (ECM scaffolds in supporting tissue regeneration is related mainly to their maintained 3D structure and their bioactive components. These decellularized matrix scaffolds could be revitalized before grafting via adding stem cells, fibroblasts, or keratinocytes to promote wound healing. We reviewed the online published literature in the last five years for the studies that performed ECM revitalization and discussed the results of these studies and the related literature. Eighteen articles met the search criteria. Twelve studies included adding cells to acellular dermal matrix (ADM, 3 studies were on small intestinal mucosa (SIS, one study was on urinary bladder matrix (UBM, one study was on amniotic membrane, and one study included both SIS and ADM loaded constructs. We believe that, in chronic and difficult-to-heal wounds, revitalizing the ECM scaffolds would be beneficial to overcome the defective host tissue interaction. This belief still has to be verified by high quality randomised clinical trials, which are still lacking in literature.

  2. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Science.gov (United States)

    Verdolotti, Letizia; Liguori, Barbara; Capasso, Ilaria; Caputo, Domenico; Lavorgna, Marino; Iannace, Salvatore

    2014-05-01

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a "meringue" type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (˜500 Kg/m3) with good cellular structure and mechanical properties were obtained by combining the "meringue" approach with the use of the chemical blowing agent based on Si.

  3. Matrix Diffusion for Performance Assessment - Experimental Evidence, Modelling Assumptions and Open Issues

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A

    2004-07-01

    In this report a comprehensive overview on the matrix diffusion of solutes in fractured crystalline rocks is presented. Some examples from observations in crystalline bedrock are used to illustrate that matrix diffusion indeed acts on various length scales. Fickian diffusion is discussed in detail followed by some considerations on rock porosity. Due to the fact that the dual-porosity medium model is a very common and versatile method for describing solute transport in fractured porous media, the transport equations and the fundamental assumptions, approximations and simplifications are discussed in detail. There is a variety of geometrical aspects, processes and events which could influence matrix diffusion. The most important of these, such as, e.g., the effect of the flow-wetted fracture surface, channelling and the limited extent of the porous rock for matrix diffusion etc., are addressed. In a further section open issues and unresolved problems related to matrix diffusion are mentioned. Since matrix diffusion is one of the key retarding processes in geosphere transport of dissolved radionuclide species, matrix diffusion was consequently taken into account in past performance assessments of radioactive waste repositories in crystalline host rocks. Some issues regarding matrix diffusion are site-specific while others are independent of the specific situation of a planned repository for radioactive wastes. Eight different performance assessments from Finland, Sweden and Switzerland were considered with the aim of finding out how matrix diffusion was addressed, and whether a consistent picture emerges regarding the varying methodology of the different radioactive waste organisations. In the final section of the report some conclusions are drawn and an outlook is given. An extensive bibliography provides the reader with the key papers and reports related to matrix diffusion. (author)

  4. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....

  5. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  6. Host gene expression profiles in ferrets infected with genetically distinct henipavirus strains.

    Directory of Open Access Journals (Sweden)

    Alberto J Leon

    2018-03-01

    Full Text Available Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.

  7. Is Host-Based Anomaly Detection + Temporal Correlation = Worm Causality

    National Research Council Canada - National Science Library

    Sekar, Vyas; Xie, Yinglian; Reiter, Michael K; Zhang, Hui

    2007-01-01

    Epidemic-spreading attacks (e.g., worm and botnet propagation) have a natural notion of attack causality - a single network flow causes a victim host to get infected and subsequently spread the attack...

  8. A H2O2 Biosensor Based on Immobilization of HorseradishPeroxidase in a Gelatine Network Matrix

    Directory of Open Access Journals (Sweden)

    Jun-Jie Zhu

    2005-05-01

    Full Text Available A simple and promising H2O2 biosensor has been developed by successfulentrapment of horseradish peroxidase (HRP in a gelatine matrix which was cross-linkedwith formaldehyde. The large microscopic surface area and porous morphology of thegelatine matrix lead to high enzyme loading and the enzyme entrapped in this matrix canretain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogenperoxide (H2O2. The linear range for H2O2 determination was from 2.5×10-5 to2.5×10-3 M, with a detection limit of 2.0×10-6 M based on S / N = 3. This biosensorpossessed very good reproducibility.

  9. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  10. Host-pathogen interactions: A cholera surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  11. On immobilization of high-level waste in an Y–Al garnet-based cermet matrix in SHS conditions

    OpenAIRE

    Konovalov, E.E.; Lastov, A.I.; Nerozin, N.A.

    2015-01-01

    A method of high-level waste (HLW) radionuclide immobilization in a long-life matrix based on Y–Al garnet, a material highly chemically resistant to natural environments, has been developed for the ultimate HLW isolation from the environment. Model systems containing Ce, Nd, Sm, Zr, Mo, 238U, and 241Am were used in the study as simulators of HLW radionuclides. An energy-saving technology of self-propagating high-temperature synthesis (SHS) was employed to synthesize the matrix material with f...

  12. Efficient detection of total cholesterol using (ChEt–ChOx/ZnO/Pt/Si) bioelectrode based on ZnO matrix

    International Nuclear Information System (INIS)

    Batra, Neha; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2014-01-01

    Present study highlights the importance of ZnO matrix prepared by vapour phase transport technique on platinum coated Si platform (ZnO/Pt/Si) as a potential matrix for the realization of highly sensitive and selective bioelectrode for detection of total cholesterol. Bienzymes cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been immobilized onto the surface of ZnO thin film matrix by physical adsorption technique. The prepared bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is utilized for detection of total cholesterol using the cyclic voltammetry technique. The bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is found to exhibit efficient sensing response characteristics with high sensitivity of 190 μA mM −1 cm −2 ; good linearity in the range of 0.5–12 mM total cholesterol concentration, and a very low Michaelis–Menten constant of 0.68 mM which indicates high affinity of bienzymes immobilized on ZnO towards the analyte (total cholesterol). The enhanced response is attributed to the development of ZnO thin film based matrix having good electron transport property and nanoporous morphology for effective loading of enzymes with favourable orientation. - Highlights: • Fabrication of a ZnO nanostructured thin film based efficient matrix • Utilizing prepared matrix for detection of total cholesterol (free + esterified) • Cholesterol oxidase and cholesterol esterase are the corresponding selective enzymes. • Vapour phase transport technique, for the fabrication of nanostructured ZnO matrix • The bioelectrode exhibits enhanced response characteristics towards total cholesterol detection

  13. Efficient detection of total cholesterol using (ChEt–ChOx/ZnO/Pt/Si) bioelectrode based on ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Batra, Neha; Sharma, Anjali [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Tomar, Monika [Department of Physics, Miranda House, University of Delhi, Delhi 110007 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-07-01

    Present study highlights the importance of ZnO matrix prepared by vapour phase transport technique on platinum coated Si platform (ZnO/Pt/Si) as a potential matrix for the realization of highly sensitive and selective bioelectrode for detection of total cholesterol. Bienzymes cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) have been immobilized onto the surface of ZnO thin film matrix by physical adsorption technique. The prepared bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is utilized for detection of total cholesterol using the cyclic voltammetry technique. The bioelectrode (ChEt–ChOx/ZnO/Pt/Si) is found to exhibit efficient sensing response characteristics with high sensitivity of 190 μA mM{sup −1} cm{sup −2}; good linearity in the range of 0.5–12 mM total cholesterol concentration, and a very low Michaelis–Menten constant of 0.68 mM which indicates high affinity of bienzymes immobilized on ZnO towards the analyte (total cholesterol). The enhanced response is attributed to the development of ZnO thin film based matrix having good electron transport property and nanoporous morphology for effective loading of enzymes with favourable orientation. - Highlights: • Fabrication of a ZnO nanostructured thin film based efficient matrix • Utilizing prepared matrix for detection of total cholesterol (free + esterified) • Cholesterol oxidase and cholesterol esterase are the corresponding selective enzymes. • Vapour phase transport technique, for the fabrication of nanostructured ZnO matrix • The bioelectrode exhibits enhanced response characteristics towards total cholesterol detection.

  14. Host ant independent oviposition in the parasitic butterfly Maculinea alcon

    DEFF Research Database (Denmark)

    Fürst, Matthias A; Nash, David Richard

    2010-01-01

    to host-ant nests and non-host-ant nests, and the number and position of eggs attached were assessed. Our results show no evidence for host-ant-based oviposition in M. alcon, but support an oviposition strategy based on plant characteristics. This suggests that careful management of host-ant distribution......Parasitic Maculinea alcon butterflies can only develop in nests of a subset of available Myrmica ant species, so female butterflies have been hypothesized to preferentially lay eggs on plants close to colonies of the correct host ants. Previous correlational investigations of host......-ant-dependent oviposition in this and other Maculinea species have, however, shown equivocal results, leading to a long-term controversy over support for this hypothesis. We therefore conducted a controlled field experiment to study the egg-laying behaviour of M. alcon. Matched potted Gentiana plants were set out close...

  15. Incremental Nonnegative Matrix Factorization for Face Recognition

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Chen

    2008-01-01

    Full Text Available Nonnegative matrix factorization (NMF is a promising approach for local feature extraction in face recognition tasks. However, there are two major drawbacks in almost all existing NMF-based methods. One shortcoming is that the computational cost is expensive for large matrix decomposition. The other is that it must conduct repetitive learning, when the training samples or classes are updated. To overcome these two limitations, this paper proposes a novel incremental nonnegative matrix factorization (INMF for face representation and recognition. The proposed INMF approach is based on a novel constraint criterion and our previous block strategy. It thus has some good properties, such as low computational complexity, sparse coefficient matrix. Also, the coefficient column vectors between different classes are orthogonal. In particular, it can be applied to incremental learning. Two face databases, namely FERET and CMU PIE face databases, are selected for evaluation. Compared with PCA and some state-of-the-art NMF-based methods, our INMF approach gives the best performance.

  16. 2016 MATRIX annals

    CERN Document Server

    Praeger, Cheryl; Tao, Terence

    2018-01-01

    MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: Higher Structures in Geometry and Physics (Chapters 1-5 and 18-21); Winter of Disconnectedness (Chapter 6 and 22-26); Approximation and Optimisation (Chapters 7-8); Refining C*-Algebraic Invariants for Dynamics using KK-theory (Chapters 9-13); Interactions between Topological Recursion, Modularity, Quantum Invariants and Low-dimensional Topology (Chapters 14-17 and 27). The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The artic...

  17. Dynamics Analysis for Hydroturbine Regulating System Based on Matrix Model

    Directory of Open Access Journals (Sweden)

    Jiafu Wei

    2017-01-01

    Full Text Available The hydraulic turbine model is the key factor which affects the analysis precision of the hydraulic turbine governing system. This paper discusses the basic principle of the hydraulic turbine matrix model and gives two methods to realize. Using the characteristic matrix to describe unit flow and torque and their relationship with the opening and unit speed, it can accurately represent the nonlinear characteristics of the turbine, effectively improve the convergence of simulation process, and meet the needs of high precision real-time simulation of power system. Through the simulation of a number of power stations, it indicates that, by analyzing the dynamic process of the hydraulic turbine regulating with 5-order matrix model, the calculation results and field test data will have good consistency, and it can better meet the needs of power system dynamic simulation.

  18. Optimized Projection Matrix for Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Jianping Xu

    2010-01-01

    Full Text Available Compressive sensing (CS is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  19. Influence of pH on extracellular matrix preservation during lung decellularization.

    Science.gov (United States)

    Tsuchiya, Tomoshi; Balestrini, Jenna L; Mendez, Julio; Calle, Elizabeth A; Zhao, Liping; Niklason, Laura E

    2014-12-01

    The creation of decellularized organs for use in regenerative medicine requires the preservation of the organ extracellular matrix (ECM) as a means to provide critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. The purpose of this study was to assess the influence of varying pH levels on the preservation of key ECM components during the decellularization of rat lungs. Herein, we show that the pH of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-based decellularization solution influences ECM retention, cell removal, and also the potential for host response upon implantation of acellular lung tissue. The preservation of ECM components, including elastin, fibronectin, and laminin, were better retained in the lower pH conditions that were tested (pH ranges tested: 8, 10, 12); glycosaminoglycans were preserved to a higher extent in the lower pH groups as well. The DNA content following decellularization of the rat lung was inversely correlated with the pH of the decellularization solution. Despite detectible levels of cyotoskeletal proteins and significant residual DNA, tissues decellularized at pH 8 demonstrated the greatest tissue architecture maintenance and the least induction of host response of all acellular conditions. These results highlight the effect of pH on the results obtained by organ decellularization and suggest that altering the pH of the solutions used for decellularization may influence the ability of cells to properly differentiate and home to appropriate locations within the scaffold, based on the preservation of key ECM components and implantation results.

  20. Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics [corrected].

    Directory of Open Access Journals (Sweden)

    Jeongmin Hong

    Full Text Available This letter describes the use of vertically aligned carbon nanotubes (CNT-based arrays with estimated 2-nm thick cobalt (Co nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray spectroscopy (EDS.

  1. A Generalization of the Alias Matrix

    DEFF Research Database (Denmark)

    Kulahci, Murat; Bisgaard, S.

    2006-01-01

    The investigation of aliases or biases is important for the interpretation of the results from factorial experiments. For two-level fractional factorials this can be facilitated through their group structure. For more general arrays the alias matrix can be used. This tool is traditionally based...... on the assumption that the error structure is that associated with ordinary least squares. For situations where that is not the case, we provide in this article a generalization of the alias matrix applicable under the generalized least squares assumptions. We also show that for the special case of split plot error...... structure, the generalized alias matrix simplifies to the ordinary alias matrix....

  2. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    Science.gov (United States)

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  3. Osteogenic Matrix Cell Sheets Facilitate Osteogenesis in Irradiated Rat Bone

    Directory of Open Access Journals (Sweden)

    Yoshinobu Uchihara

    2015-01-01

    Full Text Available Reconstruction of large bone defects after resection of malignant musculoskeletal tumors is a significant challenge in orthopedic surgery. Extracorporeal autogenous irradiated bone grafting is a treatment option for bone reconstruction. However, nonunion often occurs because the osteogenic capacity is lost by irradiation. In the present study, we established an autogenous irradiated bone graft model in the rat femur to assess whether osteogenic matrix cell sheets improve osteogenesis of the irradiated bone. Osteogenic matrix cell sheets were prepared from bone marrow-derived stromal cells and co-transplanted with irradiated bone. X-ray images at 4 weeks after transplantation showed bridging callus formation around the irradiated bone. Micro-computed tomography images at 12 weeks postoperatively showed abundant callus formation in the whole circumference of the irradiated bone. Histology showed bone union between the irradiated bone and host femur. Mechanical testing showed that the failure force at the irradiated bone site was significantly higher than in the control group. Our study indicates that osteogenic matrix cell sheet transplantation might be a powerful method to facilitate osteogenesis in irradiated bones, which may become a treatment option for reconstruction of bone defects after resection of malignant musculoskeletal tumors.

  4. Non-negative Matrix Factorization for Binary Data

    DEFF Research Database (Denmark)

    Larsen, Jacob Søgaard; Clemmensen, Line Katrine Harder

    We propose the Logistic Non-negative Matrix Factorization for decomposition of binary data. Binary data are frequently generated in e.g. text analysis, sensory data, market basket data etc. A common method for analysing non-negative data is the Non-negative Matrix Factorization, though...... this is in theory not appropriate for binary data, and thus we propose a novel Non-negative Matrix Factorization based on the logistic link function. Furthermore we generalize the method to handle missing data. The formulation of the method is compared to a previously proposed method (Tome et al., 2015). We compare...... the performance of the Logistic Non-negative Matrix Factorization to Least Squares Non-negative Matrix Factorization and Kullback-Leibler (KL) Non-negative Matrix Factorization on sets of binary data: a synthetic dataset, a set of student comments on their professors collected in a binary term-document matrix...

  5. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  6. Codivergence of mycoviruses with their hosts.

    Directory of Open Access Journals (Sweden)

    Markus Göker

    Full Text Available BACKGROUND: The associations between pathogens and their hosts are complex and can result from any combination of evolutionary events such as codivergence, switching, and duplication of the pathogen. Mycoviruses are RNA viruses which infect fungi and for which natural vectors are so far unknown. Thus, lateral transfer might be improbable and codivergence their dominant mode of evolution. Accordingly, mycoviruses are a suitable target for statistical tests of virus-host codivergence, but inference of mycovirus phylogenies might be difficult because of low sequence similarity even within families. METHODOLOGY: We analyzed here the evolutionary dynamics of all mycovirus families by comparing virus and host phylogenies. Additionally, we assessed the sensitivity of the co-phylogenetic tests to the settings for inferring virus trees from their genome sequences and approximate, taxonomy-based host trees. CONCLUSIONS: While sequence alignment filtering modes affected branch support, the overall results of the co-phylogenetic tests were significantly influenced only by the number of viruses sampled per family. The trees of the two largest families, Partitiviridae and Totiviridae, were significantly more similar to those of their hosts than expected by chance, and most individual host-virus links had a significant positive impact on the global fit, indicating that codivergence is the dominant mode of virus diversification. However, in this regard mycoviruses did not differ from closely related viruses sampled from non-fungus hosts. The remaining virus families were either dominated by other evolutionary modes or lacked an apparent overall pattern. As this negative result might be caused by insufficient taxon sampling, the most parsimonious hypothesis still is that host-parasite evolution is basically the same in all mycovirus families. This is the first study of mycovirus-host codivergence, and the results shed light not only on how mycovirus biology

  7. A Fast Reactive Power Optimization in Distribution Network Based on Large Random Matrix Theory and Data Analysis

    Directory of Open Access Journals (Sweden)

    Wanxing Sheng

    2016-05-01

    Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.

  8. Periodic dynamic systems for infected hosts and mosquitoes

    Directory of Open Access Journals (Sweden)

    Oliva W. M.

    1996-01-01

    Full Text Available A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix one can state that either the infection peters out naturally (lambda 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.

  9. Periodic dynamic systems for infected hosts and mosquitoes

    Directory of Open Access Journals (Sweden)

    W. M. Oliva

    1996-06-01

    Full Text Available A mathematical model for the purpose of analysing the dynamic of the populations of infected hosts anf infected mosquitoes when the populations of mosquitoes are periodic in time is here presented. By the computation of a parameter lambda (the spectral radius of a certain monodromy matrix one can state that either the infection peters out naturally (lambda 1 the infection becomes endemic. The model generalizes previous models for malaria by considering the case of periodic coefficients; it is also a variation of that for gonorrhea. The main motivation for the consideration of this present model was the recent studies on mosquitoes at an experimental rice irrigation system, in the South-Eastern region of Brazil.

  10. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays.

    Science.gov (United States)

    Li, Jianfeng; Wang, Feng; Jiang, Defu

    2017-03-20

    A fast direction of arrival (DOA) estimation method using a real-valued cross-correlation matrix (CCM) of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS) method and estimation of signal parameter via rotational invariance (ESPRIT) based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  11. Spectral analysis of the UFBG-based acousto—optical modulator in V-I transmission matrix formalism

    Science.gov (United States)

    Wu, Liang-Ying; Pei, Li; Liu, Chao; Wang, Yi-Qun; Weng, Si-Jun; Wang, Jian-Shuai

    2014-11-01

    In this study, the V-I transmission matrix formalism (V-I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto—optic modulators (UFBG-AOM). The simulation results demonstrate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V-I method is 4 × (2M-1) in addition/subtraction, 8 × (2M - 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V-I method is faster and less complex.

  12. Spectral analysis of the UFBG-based acousto—optical modulator in V–I transmission matrix formalism

    International Nuclear Information System (INIS)

    Wu Liang-Ying; Pei Li; Liu Chao; Wang Yi-Qun; Weng Si-Jun; Wang Jian-Shuai

    2014-01-01

    In this study, the V–I transmission matrix formalism (V–I method) is proposed to analyze the spectrum characteristics of the uniform fiber Bragg grating (FBG)-based acousto—optic modulators (UFBG-AOM). The simulation results demonstrate that both the amplitude of the acoustically induced strain and the frequency of the acoustic wave (AW) have an effect on the spectrum. Additionally, the wavelength spacing between the primary reflectivity peak and the secondary reflectivity peak is proportional to the acoustic frequency with the ratio 0.1425 nm/MHz. Meanwhile, we compare the amount of calculation. For the FBG whose period is M, the calculation of the V–I method is 4 × (2M–1) in addition/subtraction, 8 × (2M – 1) in multiply/division and 2M in exponent arithmetic, which is almost a quarter of the multi-film method and transfer matrix (TM) method. The detailed analysis indicates that, compared with the conventional multi-film method and transfer matrix (TM) method, the V–I method is faster and less complex. (general)

  13. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations

    KAUST Repository

    Zhang, Chen

    2014-05-29

    ZIF-8/6FDA-DAM, a proven mixed-matrix material that demonstrated remarkably enhanced C3H6/C3H8 selectivity in dense film geometry, was extended to scalable hollow fiber geometry in the current work. We successfully formed dual-layer ZIF-8/6FDA-DAM mixed-matrix hollow fiber membranes with ZIF-8 nanoparticle loading up to 30 wt % using the conventional dry-jet/wet-quench fiber spinning technique. The mixed-matrix hollow fibers showed significantly enhanced C3H6/C3H8 selectivity that was consistent with mixed-matrix dense films. Critical variables controlling successful formation of mixed-matrix hollow fiber membranes with desirable morphology and attractive transport properties were discussed. Furthermore, the effects of coating materials on selectivity recovery of partially defective fibers were investigated. To our best knowledge, this is the first article reporting successful formation of high-loading mixed-matrix hollow fiber membranes with significantly enhanced selectivity for separation of condensable olefin/paraffin mixtures. Therefore, it represents a major step in the research area of advanced mixed-matrix membranes. © 2014 American Institute of Chemical Engineers.

  14. Climate change, phenology, and butterfly host plant utilization.

    Science.gov (United States)

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  15. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Ziying Han

    2015-10-01

    Full Text Available Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg and arenaviruses (Lassa and Junín viruses, are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1 and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms.

  16. Predictors of Host Specificity among Behavior-Manipulating Parasites

    DEFF Research Database (Denmark)

    Fredensborg, B. L.

    2014-01-01

    specifically, hosts’ behavioral modification that involves interaction with the central nervous system presumably restricts parasites to more closely related hosts than does manipulation of the host’s behavior via debilitation of the host’s physiology. The results of the analysis suggest that phylogenetic......-specialist that has a restricted ecological niche that it masters. Parasites that manipulate hosts’ behavior are often thought to represent resource-specialists based on a few spectacular examples of manipulation of the host’s behavior. However, the determinants of which, and how many, hosts a manipulating parasite...... of parasites and hosts. Using individual and multivariate analyses, I examined the effect of the host’s and parasite’s taxonomy, location of the parasite in the host, type of behavioral change, and the effect of debilitation on host-specificity, measured as the mean taxonomic relatedness of hosts...

  17. Coordinated Control for Flywheel Energy Storage Matrix Systems for Wind Farm Based on Charging/Discharging Ratio Consensus Algorithms

    DEFF Research Database (Denmark)

    Cao, Qian; Song, Y. D.; Guerrero, Josep M.

    2016-01-01

    This paper proposes a distributed algorithm for coordination of flywheel energy storage matrix system (FESMS) cooperated with wind farm. A simple and distributed ratio consensus algorithm is proposed to solve FESMS dispatch problem. The algorithm is based on average consensus for both undirected...... and unbalanced directed graphs. Average consensus is guaranteed in unbalanced digraphs by updating the weight matrix with both its row sums and column sums being 1. Simulation examples illustrate the effectiveness of the proposed control method....

  18. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review.

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-11-07

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.

  19. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  20. Production and Characterization of WC-Reinforced Co-Based Superalloy Matrix Composites

    Science.gov (United States)

    Özgün, Özgür; Dinler, İlyas

    2018-05-01

    Cobalt-based superalloy matrix composite materials were produced through the powder metallurgy technique using element powders at high purity and nano-sized wolfram carbide (WC) reinforcement in this study. An alloy that had the same chemical composition as the Stellite 6 alloy but not containing carbon was selected as the matrix alloy. The powder mixtures obtained as a result of mixing WC reinforcing member and element powders at the determined ratio were shaped by applying 300 MPa of pressure. The green components were sintered under argon atmosphere at 1240 °C for 120 minutes. The densities of the sintered components were determined by the Archimedes' principle. Microstructural characterization was performed via X-ray diffraction analysis, scanning electron microscope examinations, and energy-dispersive spectrometry. Hardness measurements and tensile tests were performed for determining mechanical characteristics. The relative density values of the sintered components increased by increasing the WC reinforcement ratio and they could almost reach the theoretical density. It was determined from the microstructural examinations that the composite materials consisted of fine and equiaxed grains and coarse carbides demonstrating a homogeneous dispersion along the microstructure at the grain boundaries. As it was the case in the density values, the hardness and strength values of the composites increased by increasing the WC ratio.

  1. Fungal diversity associated with Hawaiian Drosophila host plants.

    Directory of Open Access Journals (Sweden)

    Brian S Ort

    Full Text Available Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation.

  2. De Novo Design of Boron-Based Host Materials for Highly Efficient Blue and White Phosphorescent OLEDs with Low Efficiency Roll-Off.

    Science.gov (United States)

    Xue, Miao-Miao; Huang, Chen-Chao; Yuan, Yi; Cui, Lin-Song; Li, Yong-Xi; Wang, Bo; Jiang, Zuo-Quan; Fung, Man-Keung; Liao, Liang-Sheng

    2016-08-10

    Borane is an excellent electron-accepting species, and its derivatives have been widely used in a variety of fields. However, the use of borane derivatives as host materials in OLEDs has rarely reported because the device performance is generally not satisfactory. In this work, two novel spiro-bipolar hosts with incorporated borane were designed and synthesized. The strategies used in preparing these materials were to increase the spatial separation of the highest occupied molecular orbitals (HOMOs) and lowest unoccupied molecular orbitals (LUMOs) in the molecules, tune the connecting positions of functional groups, and incorporate specific functional groups with desirable thermal stability. Based on these designs, phosphorescent OLEDs with borane derivatives as hosts and with outstanding device performances were obtained. In particular, devices based on SAF-3-DMB/FIrpic exhibited an external quantum efficiency (EQE) of >25%. More encouragingly, the device was found to have quite a low efficiency roll-off, giving an efficiency of >20% even at a high brightness of 10000 cd/m(2). Furthermore, the EQE of the three-color-based (R + G + B) white OLED employing SAF-3-DMB as a host was also as high as 22.9% with CIE coordinates of (x, y) = (0.40, 0.48). At a brightness of 5000 cd/m(2), there was only a 3% decrease in EQE from its maximum value, implying a very low efficiency roll-off.

  3. Nanobody-based enzyme immunoassay for ochratoxin A in cereal with high resistance to matrix interference.

    Science.gov (United States)

    Liu, Xing; Tang, Zongwen; Duan, Zhenhua; He, Zhenyun; Shu, Mei; Wang, Xianxian; Gee, Shirley J; Hammock, Bruce D; Xu, Yang

    2017-03-01

    A sensitive indirect competitive nanobody-based enzyme linked immunosorbent assay (Nb-ELISA) for ochratoxin A (OTA) with high resistance to cereal matrix interference was developed. Nanobodies against OTA (Nb15, Nb28, Nb32, Nb36) were expressed in E. coli cells and their thermal stabilities were compared with that of an OTA-specific monoclonal antibody 6H8. All nanobodies could still retain their antigen-binding activity after exposure to temperature 95°C for 5min or to 90°C for 75min. Nb28 that exhibited the highest sensitivity in ELISA was selected for further research. An indirect competitive ELISA based on Nb28 was developed for OTA, with an IC 50 of 0.64ng/mL and a linear range (IC 20 -IC 80 ) of 0.27-1.47ng/mL. Cereal samples were analyzed following a 2.5 fold dilution of sample extracts, showing the good resistance to matrix interference of the Nb-ELSIA. The recovery of spiked cereal samples (rice, oats, barley) ranged from 80% to 105% and the Nb-ELISA results of OTA content in naturally contamined samples were in good agreement with those determined by a commercial ELISA kit. The results indicated the reliablity of nanobody as a promising immunoassay reagent for detection of mycotoxins in food matrix and its potential in biosensor development. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Response matrix method for large LMFBR analysis

    International Nuclear Information System (INIS)

    King, M.J.

    1977-06-01

    The feasibility of using response matrix techniques for computational models of large LMFBRs is examined. Since finite-difference methods based on diffusion theory have generally found a place in fast-reactor codes, a brief review of their general matrix foundation is given first in order to contrast it to the general strategy of response matrix methods. Then, in order to present the general method of response matrix technique, two illustrative examples are given. Matrix algorithms arising in the application to large LMFBRs are discussed, and the potential of the response matrix method is explored for a variety of computational problems. Principal properties of the matrices involved are derived with a view to application of numerical methods of solution. The Jacobi iterative method as applied to the current-balance eigenvalue problem is discussed

  5. M3: Matrix Multiplication on MapReduce

    DEFF Research Database (Denmark)

    Silvestri, Francesco; Ceccarello, Matteo

    2015-01-01

    M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem.......M3 is an Hadoop library for performing dense and sparse matrix multiplication in MapReduce. The library is based on multi-round algorithms exploiting the 3D decomposition of the problem....

  6. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    DEFF Research Database (Denmark)

    Gannagé, Monique; Dormann, Dorothee; Albrecht, Randy

    2009-01-01

    Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here, we...... demonstrate that influenza A virus inhibits macroautophagy, a cellular process known to be manipulated by diverse pathogens. Influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes, and one viral protein, matrix protein 2, is necessary and sufficient...... for this inhibition of autophagosome degradation. Macroautophagy inhibition by matrix protein 2 compromises survival of influenza virus-infected cells but does not influence viral replication. We propose that influenza A virus, which also encodes proapoptotic proteins, is able to determine the death of its host cell...

  7. Matrix diffusion: heavy-tailed residence time distributions and their influence on radionuclide retention

    International Nuclear Information System (INIS)

    Haggerty, R.

    2002-01-01

    Matrix diffusion in rocks is frequently assumed to be both Fickian and effectively homogeneous over space- and time-scales relevant to radionuclide retention. This paper discusses some cases of rocks where one or both of these assumptions may be invalid and what the consequences may be for modeling and performance assessment: a single pore diffusivity and matrix block size which is not representative of the diffusion process at all time- or space-scales, a scale-dependent diffusion rate coefficient which decreases with time- and space-scales, a retention capacity of host rocks that may be smaller than apparent in laboratory and field tests because all of the pore space is not accessible via diffusion over the performance assessment-scale transport time. (J.S.)

  8. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  9. Image Jacobian Matrix Estimation Based on Online Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Shangqin Mao

    2012-10-01

    Full Text Available Research into robotics visual servoing is an important area in the field of robotics. It has proven difficult to achieve successful results for machine vision and robotics in unstructured environments without using any a priori camera or kinematic models. In uncalibrated visual servoing, image Jacobian matrix estimation methods can be divided into two groups: the online method and the offline method. The offline method is not appropriate for most natural environments. The online method is robust but rough. Moreover, if the images feature configuration changes, it needs to restart the approximating procedure. A novel approach based on an online support vector regression (OL-SVR algorithm is proposed which overcomes the drawbacks and combines the virtues just mentioned.

  10. Robust adaptive multichannel SAR processing based on covariance matrix reconstruction

    Science.gov (United States)

    Tan, Zhen-ya; He, Feng

    2018-04-01

    With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.

  11. Extending injury prevention methodology to chemical terrorism preparedness: the Haddon Matrix and sarin.

    Science.gov (United States)

    Varney, Shawn; Hirshon, Jon Mark; Dischinger, Patricia; Mackenzie, Colin

    2006-01-01

    The Haddon Matrix offers a classic epidemiological model for studying injury prevention. This methodology places the public health concepts of agent, host, and environment within the three sequential phases of an injury-producing incident-pre-event, event, and postevent. This study uses this methodology to illustrate how it could be applied in systematically preparing for a mass casualty disaster such as an unconventional sarin attack in a major urban setting. Nineteen city, state, federal, and military agencies responded to the Haddon Matrix chemical terrorism preparedness exercise and offered feedback in the data review session. Four injury prevention strategies (education, engineering, enforcement, and economics) were applied to the individual factors and event phases of the Haddon Matrix. The majority of factors identified in all phases were modifiable, primarily through educational interventions focused on individual healthcare providers and first responders. The Haddon Matrix provides a viable means of studying an unconventional problem, allowing for the identification of modifiable factors to decrease the type and severity of injuries following a mass casualty disaster such as a sarin release. This strategy could be successfully incorporated into disaster planning for other weapons attacks that could potentially cause mass casualties.

  12. Noniterative MAP reconstruction using sparse matrix representations.

    Science.gov (United States)

    Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J

    2009-09-01

    We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.

  13. Zirconia based inert matrix fuel: fabrication concepts and feasibility studies

    International Nuclear Information System (INIS)

    Ingold, F.; Burghartz, M.; Ledergerber, G.

    1999-01-01

    The internal gelation process has traditionally been applied to fabricate standard fuel based on uranium, typically UO2 and MOX. To meet the recent aim to destroy plutonium in the most effective way, a uranium free fuel was evaluated. The fuel development programme at PSI has been redirected toward a fuel based on zirconium oxide or a mixture of zirconia and a conducting material to form ceramic/metal (CERMET) or ceramic/ceramic (CERCER) combinations. A feasibility study was carried out to demonstrate that microspheres based on zirconia and spinel can be fabricated with the required properties. The gelation parameters were investigated to optimise compositions of the starting solutions. Studies to fabricate a composite material (from zirconia and spinel) are ongoing. If the zirconia/spinel ratio is chosen appropriately, the low thermal conductivity of pure zirconia can be compensated by the higher thermal conductivity of spinel. Another solution to offset the low thermal conductivity of zirconia is the development of a CERMET, which consists of fine particles bearing plutonium in a cubic zirconia lattice dispersed in a metallic matrix. The fabrication of such a CERMET is also being studied. (author)

  14. A Novel CSR-Based Sparse Matrix-Vector Multiplication on GPUs

    Directory of Open Access Journals (Sweden)

    Guixia He

    2016-01-01

    Full Text Available Sparse matrix-vector multiplication (SpMV is an important operation in scientific computations. Compressed sparse row (CSR is the most frequently used format to store sparse matrices. However, CSR-based SpMVs on graphic processing units (GPUs, for example, CSR-scalar and CSR-vector, usually have poor performance due to irregular memory access patterns. This motivates us to propose a perfect CSR-based SpMV on the GPU that is called PCSR. PCSR involves two kernels and accesses CSR arrays in a fully coalesced manner by introducing a middle array, which greatly alleviates the deficiencies of CSR-scalar (rare coalescing and CSR-vector (partial coalescing. Test results on a single C2050 GPU show that PCSR fully outperforms CSR-scalar, CSR-vector, and CSRMV and HYBMV in the vendor-tuned CUSPARSE library and is comparable with a most recently proposed CSR-based algorithm, CSR-Adaptive. Furthermore, we extend PCSR on a single GPU to multiple GPUs. Experimental results on four C2050 GPUs show that no matter whether the communication between GPUs is considered or not PCSR on multiple GPUs achieves good performance and has high parallel efficiency.

  15. Matrix effective theories of the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Cappelli, Andrea; Rodriguez, Ivan D

    2009-01-01

    The present understanding of nonperturbative ground states in the fractional quantum Hall effect is based on effective theories of the Jain 'composite fermion' excitations. We review the approach based on matrix variables, i.e. D0 branes, originally introduced by Susskind and Polychronakos. We show that the Maxwell-Chern-Simons matrix gauge theory provides a matrix generalization of the quantum Hall effect, where the composite-fermion construction naturally follows from gauge invariance. The matrix ground states obtained by suitable projections of higher Landau levels are found to be in one-to-one correspondence with the Laughlin and Jain hierarchical states. The matrix theory possesses a physical limit for commuting matrices that could be reachable while staying in the same phase.

  16. Teaching Information Systems Technologies: a New Approach based on Virtualization and Hosting Technologies

    Directory of Open Access Journals (Sweden)

    Carmelo R. García

    2012-11-01

    Full Text Available This paper describes how to provide suitable computing systems for information systems technologies learning using virtualization and hosting technologies. The main functionalities and components of an university learning lab based on these technologies are presented. All the software components used in its development are open source. Also, the use of this lab, providing the computing systems required for the learning activities of different matters related to the information systems technologies, is illustrated. The model of computing lab proposed is a more sustainable and scalable alternative than the traditional academic computing lab.

  17. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    Science.gov (United States)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  18. The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β, Tumor Necrosis Factor-α (TNF-α, and Interleukin-6 (IL-6, which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs. Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties . All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics.

  19. The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?

    Science.gov (United States)

    Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka

    2013-03-01

    Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics.

  20. Quantification of uncertainties in turbulence modeling: A comparison of physics-based and random matrix theoretic approaches

    International Nuclear Information System (INIS)

    Wang, Jian-Xun; Sun, Rui; Xiao, Heng

    2016-01-01

    Highlights: • Compared physics-based and random matrix methods to quantify RANS model uncertainty. • Demonstrated applications of both methods in channel ow over periodic hills. • Examined the amount of information introduced in the physics-based approach. • Discussed implications to modeling turbulence in both near-wall and separated regions. - Abstract: Numerical models based on Reynolds-Averaged Navier-Stokes (RANS) equations are widely used in engineering turbulence modeling. However, the RANS predictions have large model-form uncertainties for many complex flows, e.g., those with non-parallel shear layers or strong mean flow curvature. Quantification of these large uncertainties originating from the modeled Reynolds stresses has attracted attention in the turbulence modeling community. Recently, a physics-based Bayesian framework for quantifying model-form uncertainties has been proposed with successful applications to several flows. Nonetheless, how to specify proper priors without introducing unwarranted, artificial information remains challenging to the current form of the physics-based approach. Another recently proposed method based on random matrix theory provides the prior distributions with maximum entropy, which is an alternative for model-form uncertainty quantification in RANS simulations. This method has better mathematical rigorousness and provides the most non-committal prior distributions without introducing artificial constraints. On the other hand, the physics-based approach has the advantages of being more flexible to incorporate available physical insights. In this work, we compare and discuss the advantages and disadvantages of the two approaches on model-form uncertainty quantification. In addition, we utilize the random matrix theoretic approach to assess and possibly improve the specification of priors used in the physics-based approach. The comparison is conducted through a test case using a canonical flow, the flow past

  1. Pre-form ceramic matrix composite cavity and method of forming and method of forming a ceramic matrix composite component

    Science.gov (United States)

    Monaghan, Philip Harold; Delvaux, John McConnell; Taxacher, Glenn Curtis

    2015-06-09

    A pre-form CMC cavity and method of forming pre-form CMC cavity for a ceramic matrix component includes providing a mandrel, applying a base ply to the mandrel, laying-up at least one CMC ply on the base ply, removing the mandrel, and densifying the base ply and the at least one CMC ply. The remaining densified base ply and at least one CMC ply form a ceramic matrix component having a desired geometry and a cavity formed therein. Also provided is a method of forming a CMC component.

  2. A Numerical Matrix-Based method in Harmonic Studies in Wind Power Plants

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Hjerrild, Jesper; Kocewiak, Łukasz Hubert

    2016-01-01

    In the low frequency range, there are some couplings between the positive- and negative-sequence small-signal impedances of the power converter due to the nonlinear and low bandwidth control loops such as the synchronization loop. In this paper, a new numerical method which also considers...... these couplings will be presented. The numerical data are advantageous to the parametric differential equations, because analysing the high order and complex transfer functions is very difficult, and finally one uses the numerical evaluation methods. This paper proposes a numerical matrix-based method, which...

  3. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    Science.gov (United States)

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  4. Peptide-Based Selective Inhibitors of Matrix Metalloproteinase-Mediated Activities

    Directory of Open Access Journals (Sweden)

    Margaret W. Ndinguri

    2012-11-01

    Full Text Available The matrix metalloproteinases (MMPs exhibit a broad array of activities, some catalytic and some non-catalytic in nature. An overall lack of selectivity has rendered small molecule, active site targeted MMP inhibitors problematic in execution. Inhibitors that favor few or individual members of the MMP family often take advantage of interactions outside the enzyme active site. We presently focus on peptide-based MMP inhibitors and probes that do not incorporate conventional Zn2+ binding groups. In some cases, these inhibitors and probes function by binding only secondary binding sites (exosites, while others bind both exosites and the active site. A myriad of MMP mediated-activities beyond selective catalysis can be inhibited by peptides, particularly cell adhesion, proliferation, motility, and invasion. Selective MMP binding peptides comprise highly customizable, unique imaging agents. Areas of needed improvement for MMP targeting peptides include binding affinity and stability.

  5. DOA Estimation Based on Real-Valued Cross Correlation Matrix of Coprime Arrays

    Directory of Open Access Journals (Sweden)

    Jianfeng Li

    2017-03-01

    Full Text Available A fast direction of arrival (DOA estimation method using a real-valued cross-correlation matrix (CCM of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the relationship between the two subspaces, DOA estimations from the two subarrays are simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the common results from the two subarrays. Compared to partial spectral search (PSS method and estimation of signal parameter via rotational invariance (ESPRIT based method for coprime arrays, the proposed algorithm has lower complexity but achieves better DOA estimation performance and handles more sources. Simulation results verify the effectiveness of the approach.

  6. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  7. Concept for Energy Security Matrix

    International Nuclear Information System (INIS)

    Kisel, Einari; Hamburg, Arvi; Härm, Mihkel; Leppiman, Ando; Ots, Märt

    2016-01-01

    The following paper presents a discussion of short- and long-term energy security assessment methods and indicators. The aim of the current paper is to describe diversity of approaches to energy security, to structure energy security indicators used by different institutions and papers, and to discuss several indicators that also play important role in the design of energy policy of a state. Based on this analysis the paper presents a novel Energy Security Matrix that structures relevant energy security indicators from the aspects of Technical Resilience and Vulnerability, Economic Dependence and Political Affectability for electricity, heat and transport fuel sectors. Earlier publications by different authors have presented energy security assessment methodologies that use publicly available indicators from different databases. Current paper challenges viability of some of these indicators and introduces new indicators that would deliver stronger energy security policy assessments. Energy Security Matrix and its indicators are based on experiences that the authors have gathered as high-level energy policymakers in Estonia, where all different aspects of energy security can be observed. - Highlights: •Energy security should be analysed in technical, economic and political terms; •Energy Security Matrix provides a framework for energy security analyses; •Applicability of Matrix is limited due to the lack of statistical data and sensitivity of output.

  8. AN ALTERNATIVE HOST MATRIX BASED ON IRON PHOSPHATE GLASSES FOR THE VITRIFICATION OF SPECIALIZED WASTE FORMS

    International Nuclear Information System (INIS)

    Day, Delbert D.

    2000-01-01

    As mentioned above, the overall goal of this research project was to collect the scientific information essential to develop iron phosphate glass based nuclear wasteforms. The specific objectives of the project were: (1) Investigate the structure of binary iron phosphate glasses and it's dependence on the composition and melting atmosphere: Understand atomic arrangements and nature of the bonding. Establish structure-property relationships. Determine the compositions and melting conditions which optimize the critical properties of the base glass. (2) Understand the structure of iron phosphate wasteforms and it's dependence on the composition and melting atmosphere: Investigate how the waste elements are bonded and coordinated within the glass structure. Establish structure-property relationships for the waste glasses. Determine the compositions and melting atmosphere for which the critical properties of the waste forms would be optimum. (3) Determine the role(s) played by the valence states of iron ions and it's dependence on the composition and melting atmosphere: Understand the different roles of iron(II) and iron(III) ions in determining the critical properties of the base glass and the waste forms. Investigate how the iron valence and its significance depend on the composition and melting atmosphere. (4) Investigate glass forming and crystallization processes of the iron phosphate glasses and their waste forms: Understand the dependence of the glass forming and crystallization characteristics on overall glass composition and valence states of iron ions. Identify the products of devitrification and investigate the critical properties of these crystalline compounds which may adversely affect the chemical and physical properties of the waste forms

  9. Ultra-high Rates and Reversible Capacity of Li-S Battery with a Nitrogen-doping Conductive Lewis Base Matrix

    International Nuclear Information System (INIS)

    Cao, Yong; Li, Xi-long; Zheng, Ming-sen; Yang, Mao-ping; Yang, Xu-lai; Dong, Quan-feng

    2016-01-01

    Highlights: • A polypyrrole/reduced graphene oxide (PPy/rGO) composite was prepared from in-situ hybridization of graphene oxide and pyrrole without additional oxidant. • Nitrogen doped graphene (NG) was obtained from the calcination of the PPy/rGO composite under 1500 °C and was confirmed with abundant pyridinic type nitrogen doping. • NG was employed as a conductive Lewis base matrix of sulfur cathode and the obtained composite cathode exhibited ultra-high rates and reversible capacity. • The excellent electrochemical performance can be attributed to the efficient adsorption of Li 2 S n (n=4-8) on the pyridinic-N enriched NG surface. - Abstract: To improve the electrochemical performance of lithium sulfur batteries, a conductive Lewis base matrix, nitrogen doped graphene (NG), was prepared here through a facile strategy of annealing a polypyrrole/reduced graphene oxide composite. The obtained NG was demonstrated with enriched pyridinic-N doping and was employed as the matrix of sulfur cathode with ultra-high rates, reversible capacity and high coulombic efficiency. The improved performance can be attributed to the high conductivity of the NG and the enhanced adsorption energy of Li 2 S n (n=4-8) on the NG surface. The NG can act not only as an electronic conductive network but also as a Lewis base “catalyst” matrix that promotes the higher Li 2 S n to be further oxidized completely to S 8 as demonstrated in the cyclic voltammetry curve, which can thus significantly improve the sulfur utilization and cyclic stability even at a high sulfur loading of 75% (w/w) in the S@NG composite.

  10. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Simulation of climate-tick-host-landscape interactions: Effects of shifts in the seasonality of host population fluctuations on tick densities.

    Science.gov (United States)

    Wang, Hsiao-Hsuan; Grant, W E; Teel, P D; Hamer, S A

    2015-12-01

    Tick vector systems are comprised of complex climate-tick-host-landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially-explicit, individual-based model, parameterized to represent ecological conditions typical of the south-central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size-class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host-class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system-level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co-occurrence of actively host-seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host-seeking ticks in the system were due primarily to the degree of co-occurrence of periods of high densities of unfed ticks and periods of high densities

  12. EISPACK, Subroutines for Eigenvalues, Eigenvectors, Matrix Operations

    International Nuclear Information System (INIS)

    Garbow, Burton S.; Cline, A.K.; Meyering, J.

    1993-01-01

    : Driver subroutine for a nonsym. tridiag. matrix; SVD: Singular value decomposition of rectangular matrix; TINVIT: Find some vectors of sym. tridiag. matrix; TQLRAT: Find all values of sym. tridiag. matrix; TQL1: Find all values of sym. tridiag. matrix; TQL2: Find all values/vectors of sym. tridiag. matrix; TRBAK1: Back transform vectors of matrix formed by TRED1; TRBAK3: Back transform vectors of matrix formed by TRED3; TRED1: Reduce sym. matrix to sym. tridiag. matrix; TRED2: Reduce sym. matrix to sym. tridiag. matrix; TRED3: Reduce sym. packed matrix to sym. tridiag. matrix; TRIDIB: Find some values of sym. tridiag. matrix; TSTURM: Find some values/vectors of sym. tridiag. matrix. 2 - Method of solution: Almost all the algorithms used in EISPACK are based on similarity transformations. Similarity transformations based on orthogonal and unitary matrices are particularly attractive from a numerical point of view because they do not magnify any errors present in the input data or introduced during the computation. Most of the techniques employed are constructive realizations of variants of Schur's theorem, 'Any matrix can be triangularized by a unitary similarity transformation'. It is usually not possible to compute Schur's transformation with a finite number of rational arithmetic operations. Instead, the algorithms employ a potentially infinite sequence of similarity transformations in which the resultant matrix approaches an upper triangular matrix. The sequence is terminated when all of the sub-diagonal elements of the resulting matrix are less than the roundoff errors involved in the computation. The diagonal elements are then the desired approximations to the eigenvalues of the original matrix and the corresponding eigenvectors can be calculated. Special algorithms deal with symmetric matrices. QR, LR, QL, rational QR, bisection QZ, and inverse iteration methods are used

  13. DFT-Based Closed-form Covariance Matrix and Direct Waveforms Design for MIMO Radar to Achieve Desired Beampatterns

    KAUST Repository

    Bouchoucha, Taha

    2017-01-23

    In multiple-input multiple-out (MIMO) radar, for desired transmit beampatterns, appropriate correlated waveforms are designed. To design such waveforms, conventional MIMO radar methods use two steps. In the first step, the waveforms covariance matrix, R, is synthesized to achieve the desired beampattern. While in the second step, to realize the synthesized covariance matrix, actual waveforms are designed. Most of the existing methods use iterative algorithms to solve these constrained optimization problems. The computational complexity of these algorithms is very high, which makes them difficult to use in practice. In this paper, to achieve the desired beampattern, a low complexity discrete-Fourier-transform based closed-form covariance matrix design technique is introduced for a MIMO radar. The designed covariance matrix is then exploited to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope waveforms for the desired beampattern. The proposed technique can be used to design waveforms for large antenna array to change the beampattern in real time. It is also shown that the number of transmitted symbols from each antenna depends on the beampattern and is less than the total number of transmit antenna elements.

  14. Vascularization and tissue infiltration of a biodegradable polyurethane matrix

    Science.gov (United States)

    Ganta, Sudhakar R.; Piesco, Nicholas P.; Long, Ping; Gassner, Robert; Motta, Luis F.; Papworth, Glenn D.; Stolz, Donna B.; Watkins, Simon C.; Agarwal, Sudha

    2016-01-01

    Urethanes are frequently used in biomedical applications because of their excellent biocompatibility. However, their use has been limited to bioresistant polyurethanes. The aim of this study was to develop a nontoxic biodegradable polyurethane and to test its potential for tissue compatibility. A matrix was synthesized with pentane diisocyanate (PDI) as a hard segment and sucrose as a hydroxyl group donor to obtain a microtextured spongy urethane matrix. The matrix was biodegradable in an aqueous solution at 37°C in vitro as well as in vivo. The polymer was mechanically stable at body temperatures and exhibited a glass transition temperature (Tg) of 67°C. The porosity of the polymer network was between 10 and 2000 µm, with the majority of pores between 100 and 300 µm in diameter. This porosity was found to be adequate to support the adherence and proliferation of bone-marrow stromal cells (BMSC) and chondrocytes in vitro. The degradation products of the polymer were nontoxic to cells in vitro. Subdermal implants of the PDI–sucrose matrix did not exhibit toxicity in vivo and did not induce an acute inflammatory response in the host. However, some foreign-body giant cells did accumulate around the polymer and in its pores, suggesting its degradation is facilitated by hydrolysis as well as by giant cells. More important, subdermal implants of the polymer allowed marked infiltration of vascular and connective tissue, suggesting the free flow of fluids and nutrients in the implants. Because of the flexibility of the mechanical strength that can be obtained in urethanes and because of the ease with which a porous microtexture can be achieved, this matrix may be useful in many tissue-engineering applications. PMID:12522810

  15. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  16. MS-XANES studies on the interface effect of semiconductor InSb nanoparticles embedded in a-SiO2 matrix

    International Nuclear Information System (INIS)

    Chen Dongliang; Wu Ziyu; Wei Shiqiang

    2006-01-01

    The interface effect of semiconductor InSb nanoparticles (NPs) embedded in a-SiO 2 matrix was investigated via multi-scattering XANES simulations. The results show that the white line increase and broadening to higher energies of InSb NPs embedded in a-SiO 2 host matrix are mainly due to the interaction of InSb NPs and a-SiO 2 matrix. It can be interpreted as both a local single-site effect on μ 0 (E) due to the effect of a-SiO 2 matrix on Sb intra-atomic potential and the increase in 5p-hole population due to 5p-electron depletion in Sb for the InSb NPs embedded in SiO 2 matrix. On the other hand, our result reveals evidently that it is not reasonable to estimate the 5p-hole counts only according to the intensity of the white line due to the interface effect of nanoparticles. (authors)

  17. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  18. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    Science.gov (United States)

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  19. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    Science.gov (United States)

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.

    Science.gov (United States)

    Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R

    2018-06-01

    Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host

  1. R-matrix analysis code (RAC)

    International Nuclear Information System (INIS)

    Chen Zhenpeng; Qi Huiquan

    1990-01-01

    A comprehensive R-matrix analysis code has been developed. It is based on the multichannel and multilevel R-matrix theory and runs in VAX computer with FORTRAN-77. With this code many kinds of experimental data for one nuclear system can be fitted simultaneously. The comparisions between code RAC and code EDA of LANL are made. The data show both codes produced the same calculation results when one set of R-matrix parameters was used. The differential cross section of 10 B (n, α) 7 Li for E n = 0.4 MeV and the polarization of 16 O (n,n) 16 O for E n = 2.56 MeV are presented

  2. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    International Nuclear Information System (INIS)

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-01-01

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFα leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  3. Performance of magnetorheological elastomer based green epoxidized natural rubber/sucrose acetate isobutyrate hybrid matrix

    Science.gov (United States)

    Khairi, Muntaz Hana Ahmad; Amri Mazlan, Saiful; Aziz, Siti Aishah Abdul; Ubaidillah; Tan Shilan, Salihah

    2018-04-01

    This study introduces a sucrose acetate isobutyrate (SAIB) as a novel additive of magnetorheological elastomers (MREs). The MREs utilized an epoxidized natural rubber (ENR) as the matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt%. The viscosity of the compound was observed using a viscometer. Meanwhile, the microstructures were observed by using field emission scanning electron microscope (FESEM). Rheological properties regarding shear storage modulus were measured by using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the MREs-based ENR/SAIB had a decrement in their viscosity by 40% reduction. Moreover, the magnetorheological (MR) effect increased by 23% as the increment of magnetic fields. The morphological photograph showed that the CIPs embedded well within the matrix. The fabricated MREs samples were strain dependent, where all MREs samples exhibit the deteriorating trend when increasing the strain amplitude.

  4. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.

    Science.gov (United States)

    Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S

    2018-02-22

    Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.

  5. Extracellular matrix metalloproteinase inducer enhances host resistance against pseudomonas aeruginosa infection through MAPK signaling pathway

    OpenAIRE

    Li, Yongwei; Chen, Lu; Wang, Chunxia; Chen, Jianshe; Zhang, Xiaoqian; Hu, Yue; Niu, Xiaobin; Pei, Dongxu; He, Zhiqiang; Bi, Yongyi

    2016-01-01

    This study aims to explore the role of extra-cellular matrix metalloproteinase inducer (EMMPRIN) in the drug resistance of the pseudomonas aeruginosa (PA). The BALB/c mice were transfected with PA, then the mice were infected with the siRNA of EMMPRIN to silence the EMMPRIN gene. The EMMPRIN mRNA and protein were detected by using RT-PCR and western blot, respectively. In order to examine the function of EMMPRIN in drug resistance of PA, the BALB/c and C57BL/6 mice were treated with EMMPRIN s...

  6. Genome-wide association study for host response to bovine leukemia virus in Holstein cows.

    Science.gov (United States)

    Brym, P; Bojarojć-Nosowicz, B; Oleński, K; Hering, D M; Ruść, A; Kaczmarczyk, E; Kamiński, S

    2016-07-01

    The mechanisms of leukemogenesis induced by bovine leukemia virus (BLV) and the processes underlying the phenomenon of differential host response to BLV infection still remain poorly understood. The aim of the study was to screen the entire cattle genome to identify markers and candidate genes that might be involved in host response to bovine leukemia virus infection. A genome-wide association study was performed using Holstein cows naturally infected by BLV. A data set included 43 cows (BLV positive) and 30 cows (BLV negative) genotyped for 54,609 SNP markers (Illumina Bovine SNP50 BeadChip). The BLV status of cows was determined by serum ELISA, nested-PCR and hematological counts. Linear Regression Analysis with a False Discovery Rate and kinship matrix (computed on the autosomal SNPs) was calculated to find out which SNP markers significantly differentiate BLV-positive and BLV-negative cows. Nine markers reached genome-wide significance. The most significant SNPs were located on chromosomes 23 (rs41583098), 3 (rs109405425, rs110785500) and 8 (rs43564499) in close vicinity of a patatin-like phospholipase domain containing 1 (PNPLA1); adaptor-related protein complex 4, beta 1 subunit (AP4B1); tripartite motif-containing 45 (TRIM45) and cell division cycle associated 2 (CDCA2) genes, respectively. Furthermore, a list of 41 candidate genes was composed based on their proximity to significant markers (within a distance of ca. 1 Mb) and functional involvement in processes potentially underlying BLV-induced pathogenesis. In conclusion, it was demonstrated that host response to BLV infection involves nine sub-regions of the cattle genome (represented by 9 SNP markers), containing many genes which, based on the literature, could be involved to enzootic bovine leukemia progression. New group of promising candidate genes associated with the host response to BLV infection were identified and could therefore be a target for future studies. The functions of candidate genes

  7. Matrix-isolation FT-IR and DFT theoretical studies of the intramolecular hydrogen bonding in Mannich bases

    International Nuclear Information System (INIS)

    Pajak, J.; Rospenk, M.; Maes, G.; Sobczyk, L.

    2006-01-01

    FT-IR Ar-matrix isolated spectra were studied for dichloro- (Cl 2 -MB) and tetrachloroderivatives (Cl 4 -MB) of the ortho Mannich base. The spectra were analyzed based on the DFT calculated frequencies and intensities and compared with those recorded in CCl 4 solution in the region of the ν(OH) and ν(OD) vibrations. The matrix-isolated spectra are characterized by narrower ν(OH) and ν(OD) bands with much better resolved fine structure than in solution. The fine structure originates from the anharmonic coupling with the low frequency modes as well as from Fermi resonance. The ν(OD) band shapes can be reproduced exclusively by assuming the Fermi resonance with overtones and summation of the frequencies of modes into which the bridge atoms are involved. The frequency isotopic ratio (ISR) is for both compounds 1.33 while the half-width ratios are equal to 1.82 and 1.94, for Cl 2 -MB and Cl 4 -MB, respectively

  8. Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei*

    Science.gov (United States)

    Oberholzer, Michael; Langousis, Gerasimos; Nguyen, HoangKim T.; Saada, Edwin A.; Shimogawa, Michelle M.; Jonsson, Zophonias O.; Nguyen, Steven M.; Wohlschlegel, James A.; Hill, Kent L.

    2011-01-01

    The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling. PMID:21685506

  9. Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.

    Science.gov (United States)

    Doneva, Mariya; Amthor, Thomas; Koken, Peter; Sommer, Karsten; Börnert, Peter

    2017-09-01

    An iterative reconstruction method for undersampled magnetic resonance fingerprinting data is presented. The method performs the reconstruction entirely in k-space and is related to low rank matrix completion methods. A low dimensional data subspace is estimated from a small number of k-space locations fully sampled in the temporal direction and used to reconstruct the missing k-space samples before MRF dictionary matching. Performing the iterations in k-space eliminates the need for applying a forward and an inverse Fourier transform in each iteration required in previously proposed iterative reconstruction methods for undersampled MRF data. A projection onto the low dimensional data subspace is performed as a matrix multiplication instead of a singular value thresholding typically used in low rank matrix completion, further reducing the computational complexity of the reconstruction. The method is theoretically described and validated in phantom and in-vivo experiments. The quality of the parameter maps can be significantly improved compared to direct matching on undersampled data. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Reprocessability of molybdenum and magnesia based inert matrix fuels

    Directory of Open Access Journals (Sweden)

    Ebert Elena L.

    2015-12-01

    Full Text Available This work focuses on the reprocessability of metallic 92Mo and ceramic MgO, which is under investigation for (Pu,MA-oxide (MA = minor actinide fuel within a metallic 92Mo matrix (CERMET and a ceramic MgO matrix (CERCER. Magnesium oxide and molybdenum reference samples have been fabricated by powder metallurgy. The dissolution of the matrices was studied as a function of HNO3 concentration (1-7 mol/L and temperature (25-90°C. The rate of dissolution of magnesium oxide and metallic molybdenum increased with temperature. While the MgO rate was independent of the acid concentration (1-7 mol/L, the rate of dissolution of Mo increased with acid concentration. However, the dissolution of Mo at high temperatures and nitric acid concentrations was accompanied by precipitation of MoO3. The extraction of uranium, americium, and europium in the presence of macro amounts of Mo and Mg was studied by three different extraction agents: tri-n-butylphosphate (TBP, N,Nʹ-dimethyl-N,Nʹ-dioctylhexylethoxymalonamide (DMDOHEMA, and N,N,N’,N’- -tetraoctyldiglycolamide (TODGA. With TBP no extraction of Mo and Mg occurred. Both matrix materials are partly extracted by DMDOHEMA. Magnesium is not extracted by TODGA (D < 0.1, but a weak extraction of Mo is observed at low Mo concentration.

  11. Micromechanical modeling of tungsten-based bulk metallic glass matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)

    2006-08-15

    Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.

  12. Suppression of matrix protein synthesis in endothelial cells by herpes simplex virus is not dependent on viral protein synthesis

    International Nuclear Information System (INIS)

    Kefalides, N.A.

    1986-01-01

    The synthesis of matrix proteins by human endothelial cells (EC) in vitro was studied before and at various times after infection with Herpes Simplex virus Type 1 (HSV-1) or 2 (HSV-2). Monolayers of EC were either mock-infected or infected with virus for 1 hr at a multiplicity infection (MOI) of 5 to 20 at 37 0 C. Control and infected cultures were pulse-labeled for 1 or 2 hrs with either [ 14 C]proline or [ 35 S]methionine. Synthesis of labeled matrix proteins was determined by SDS-gel electrophoresis. Suppression of synthesis of fibronectin, Type IV collagen and thrombospondin began as early as 2 hrs and became almost complete by 10 hrs post-infection. The degree of suppression varied with the protein and the virus dose. Suppression of Type IV collagen occurred first followed by that of fibronectin and then thrombospondin. Infection of EC with UV irradiated HSV-1 or HSV-2 resulted in suppression of host-cell protein synthesis as well as viral protein synthesis. Infection with intact virus in the presence of actinomycin-D resulted in suppression of both host-cell and viral protein synthesis. The data indicate that infection of EC with HSV leads to suppression of matrix protein synthesis which does not depend on viral protein synthesis

  13. Host and parasite morphology influence congruence between host and parasite phylogenies.

    Science.gov (United States)

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  14. HostPhinder: A Phage Host Prediction Tool

    DEFF Research Database (Denmark)

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within...... bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2]....

  15. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations.

    Science.gov (United States)

    Fu, Guangyuan; Wang, Jun; Domeniconi, Carlotta; Yu, Guoxian

    2018-05-01

    Long non-coding RNAs (lncRNAs) play crucial roles in complex disease diagnosis, prognosis, prevention and treatment, but only a small portion of lncRNA-disease associations have been experimentally verified. Various computational models have been proposed to identify lncRNA-disease associations by integrating heterogeneous data sources. However, existing models generally ignore the intrinsic structure of data sources or treat them as equally relevant, while they may not be. To accurately identify lncRNA-disease associations, we propose a Matrix Factorization based LncRNA-Disease Association prediction model (MFLDA in short). MFLDA decomposes data matrices of heterogeneous data sources into low-rank matrices via matrix tri-factorization to explore and exploit their intrinsic and shared structure. MFLDA can select and integrate the data sources by assigning different weights to them. An iterative solution is further introduced to simultaneously optimize the weights and low-rank matrices. Next, MFLDA uses the optimized low-rank matrices to reconstruct the lncRNA-disease association matrix and thus to identify potential associations. In 5-fold cross validation experiments to identify verified lncRNA-disease associations, MFLDA achieves an area under the receiver operating characteristic curve (AUC) of 0.7408, at least 3% higher than those given by state-of-the-art data fusion based computational models. An empirical study on identifying masked lncRNA-disease associations again shows that MFLDA can identify potential associations more accurately than competing models. A case study on identifying lncRNAs associated with breast, lung and stomach cancers show that 38 out of 45 (84%) associations predicted by MFLDA are supported by recent biomedical literature and further proves the capability of MFLDA in identifying novel lncRNA-disease associations. MFLDA is a general data fusion framework, and as such it can be adopted to predict associations between other biological

  16. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    Science.gov (United States)

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  17. Mixing Matrix Estimation of Underdetermined Blind Source Separation Based on Data Field and Improved FCM Clustering

    Directory of Open Access Journals (Sweden)

    Qiang Guo

    2018-01-01

    Full Text Available In modern electronic warfare, multiple input multiple output (MIMO radar has become an important tool for electronic reconnaissance and intelligence transmission because of its anti-stealth, high resolution, low intercept and anti-destruction characteristics. As a common MIMO radar signal, discrete frequency coding waveform (DFCW has a serious overlap of both time and frequency, so it cannot be directly used in the current radar signal separation problems. The existing fuzzy clustering algorithms have problems in initial value selection, low convergence rate and local extreme values which will lead to the low accuracy of the mixing matrix estimation. Consequently, a novel mixing matrix estimation algorithm based on data field and improved fuzzy C-means (FCM clustering is proposed. First of all, the sparsity and linear clustering characteristics of the time–frequency domain MIMO radar signals are enhanced by using the single-source principal value of complex angular detection. Secondly, the data field uses the potential energy information to analyze the particle distribution, thus design a new clustering number selection scheme. Then the particle swarm optimization algorithm is introduced to improve the iterative clustering process of FCM, and finally get the estimated value of the mixing matrix. The simulation results show that the proposed algorithm improves both the estimation accuracy and the robustness of the mixing matrix.

  18. Interaction between clay-based sealing components and crystalline host rock

    Science.gov (United States)

    Priyanto, D. G.; Dixon, D. A.; Man, A. G.

    The results of hydraulic-mechanical (H-M) numerical simulation of a shaft seal installed at a fracture zone (FZ) in a crystalline host rock using the finite element method are presented. The primary function of a shaft seal is to limit short-circuiting of the groundwater flow regime via the shaft in a deep geological repository. Two different stages of system evolution were considered in this numerical modelling. Stage 1 simulates the groundwater flow into an open shaft, prior to seal installation. Stage 2 simulates the groundwater flow into the shaft seal after seal installation. Four different cases were completed to: (i) evaluate H-M response due to the interaction between clay-based sealing material and crystalline host rock in the shaft seal structure; (ii) quantify the effect of the different times between the completion of the shaft excavation and the completion of shaft seal installation on the H-M response; and (iii) define the potential effects of different sealing material configurations. Shaft sealing materials include the bentonite-sand mixture (BSM), dense backfill (DBF), and concrete plug (CP). The BSM has greater swelling capacity and lower hydraulic conductivity ( K) than the DBF. The results of these analyses show that the decrease of the pore water pressure is concentrated along the fracture zone (FZ), which has the greatest K. As the time increases, the greatest decrease in pore water pressure is found around the FZ. Following FZ isolation and the subsequent filling of the shaft with water as it floods, the pore water pressure profile tends to recover back to the initial conditions prior to shaft excavation. The majority of the fluids that ultimately saturate the centre of the shaft seal flow radially inwards from the FZ. The time between the completion of the shaft excavation and the completion of shaft seal installation has a significant effect on the saturation time. A shorter time can reduce the saturation time. Since most of the inflow

  19. Fish, fans and hydroids: host species of pygmy seahorses

    Directory of Open Access Journals (Sweden)

    Bastian Reijnen

    2011-06-01

    Full Text Available An overview of the octocoral and hydrozoa host species of pygmy seahorses is provided, based on recently collected data for H. bargibanti, H. denise and H. pontohi and literature records. Seven new interspecific host-species associations are recognized, and an overview of the so far documented number of host species is given. Detailed re-examination of octocoral type material and a review of the taxonomic history are included, as a baseline for further studies. The host-specificity and colour morphs of pygmy seahorses are discussed, as well as the validity of (previous identifications and conservations issues.

  20. Renewable energy selection Matrix based on multi-attribute analysis for fish preservation

    International Nuclear Information System (INIS)

    Vega-Clavijo, Lili Tatiana; Prías-Caicedo, Omar Fredy; Sierra-Vargas, Fabio Emiro

    2016-01-01

    The article presents the application of the methodology of multi attribute utility theory validated by a matrix system established by researchers, to identify the best alternative of energy supply to 10 kwe in the generation of ice for preservation of fish in coastal and rural areas of the Chocó. The comparison between the potentials of different renewable energy sources and diesel, natural gas and propane fuels took place, based on economic, technological, environmental and social criteria, being validated by experts and the community on field work. It was concluded that the best alternative is diesel followed by biomass. (author)

  1. A Novel Riemannian Metric Based on Riemannian Structure and Scaling Information for Fixed Low-Rank Matrix Completion.

    Science.gov (United States)

    Mao, Shasha; Xiong, Lin; Jiao, Licheng; Feng, Tian; Yeung, Sai-Kit

    2017-05-01

    Riemannian optimization has been widely used to deal with the fixed low-rank matrix completion problem, and Riemannian metric is a crucial factor of obtaining the search direction in Riemannian optimization. This paper proposes a new Riemannian metric via simultaneously considering the Riemannian geometry structure and the scaling information, which is smoothly varying and invariant along the equivalence class. The proposed metric can make a tradeoff between the Riemannian geometry structure and the scaling information effectively. Essentially, it can be viewed as a generalization of some existing metrics. Based on the proposed Riemanian metric, we also design a Riemannian nonlinear conjugate gradient algorithm, which can efficiently solve the fixed low-rank matrix completion problem. By experimenting on the fixed low-rank matrix completion, collaborative filtering, and image and video recovery, it illustrates that the proposed method is superior to the state-of-the-art methods on the convergence efficiency and the numerical performance.

  2. Computing the sparse matrix vector product using block-based kernels without zero padding on processors with AVX-512 instructions

    Directory of Open Access Journals (Sweden)

    Bérenger Bramas

    2018-04-01

    Full Text Available The sparse matrix-vector product (SpMV is a fundamental operation in many scientific applications from various fields. The High Performance Computing (HPC community has therefore continuously invested a lot of effort to provide an efficient SpMV kernel on modern CPU architectures. Although it has been shown that block-based kernels help to achieve high performance, they are difficult to use in practice because of the zero padding they require. In the current paper, we propose new kernels using the AVX-512 instruction set, which makes it possible to use a blocking scheme without any zero padding in the matrix memory storage. We describe mask-based sparse matrix formats and their corresponding SpMV kernels highly optimized in assembly language. Considering that the optimal blocking size depends on the matrix, we also provide a method to predict the best kernel to be used utilizing a simple interpolation of results from previous executions. We compare the performance of our approach to that of the Intel MKL CSR kernel and the CSR5 open-source package on a set of standard benchmark matrices. We show that we can achieve significant improvements in many cases, both for sequential and for parallel executions. Finally, we provide the corresponding code in an open source library, called SPC5.

  3. Phase sensitive control of vibronic guest-host interaction: Br2 in Ar matrix.

    Science.gov (United States)

    Ibrahim, Heide; Héjjas, Mónika; Fushitani, Mizuho; Schwentner, Nikolaus

    2009-07-02

    Vibronic progressions are programmed into a pulse shaper which converts them via the inherent Fourier transformation into a train of femtosecond pulses in time domain for chromophore excitation. Double pulse results agree with phase-sensitive wave packet superposition from a Michelson interferometer which delivers coherence times with high reliability. Spectral resolution of 1 nm and a spacing of around 4 nm within the 20 nm envelope centered at 590 nm delivers a train of seven phase-controlled 40 fs subpulses separated by 250 fs. Combs adjusted to the zero phonon lines (ZPL) and phonon sidebands (PSB) of the B state vibronic progression are reproduced in the chromophore for a coherent subpulse accumulation. B state ZPL wave packet dynamics dominates in pump-probe spectra due to its coherence despite an overwhelming but incoherent A state contribution in absorption. PSB comb accumulation is also phase sensitive and demonstrates coherence within several 100 matrix degrees of freedom in the vicinity.

  4. Large-Scale Land Acquisition and Its Effects on the Water Balance in Investor and Host Countries.

    Science.gov (United States)

    Breu, Thomas; Bader, Christoph; Messerli, Peter; Heinimann, Andreas; Rist, Stephan; Eckert, Sandra

    2016-01-01

    This study examines the validity of the assumption that international large-scale land acquisition (LSLA) is motivated by the desire to secure control over water resources, which is commonly referred to as 'water grabbing'. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources--such as China, India, and all Gulf States except Saudi Arabia--invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.

  5. Large-Scale Land Acquisition and Its Effects on the Water Balance in Investor and Host Countries.

    Directory of Open Access Journals (Sweden)

    Thomas Breu

    Full Text Available This study examines the validity of the assumption that international large-scale land acquisition (LSLA is motivated by the desire to secure control over water resources, which is commonly referred to as 'water grabbing'. This assumption was repeatedly expressed in recent years, ascribing the said motivation to the Gulf States in particular. However, it must be considered of hypothetical nature, as the few global studies conducted so far focused primarily on the effects of LSLA on host countries or on trade in virtual water. In this study, we analyse the effects of 475 intended or concluded land deals recorded in the Land Matrix database on the water balance in both host and investor countries. We also examine how these effects relate to water stress and how they contribute to global trade in virtual water. The analysis shows that implementation of the LSLAs in our sample would result in global water savings based on virtual water trade. At the level of individual LSLA host countries, however, water use intensity would increase, particularly in 15 sub-Saharan states. From an investor country perspective, the analysis reveals that countries often suspected of using LSLA to relieve pressure on their domestic water resources--such as China, India, and all Gulf States except Saudi Arabia--invest in agricultural activities abroad that are less water-intensive compared to their average domestic crop production. Conversely, large investor countries such as the United States, Saudi Arabia, Singapore, and Japan are disproportionately externalizing crop water consumption through their international land investments. Statistical analyses also show that host countries with abundant water resources are not per se favoured targets of LSLA. Indeed, further analysis reveals that land investments originating in water-stressed countries have only a weak tendency to target areas with a smaller water risk.

  6. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  7. GENERALIZED MATRIXES OF GALOIS PROTOCOLS EXCHANGE ENCRYPTION KEYS

    Directory of Open Access Journals (Sweden)

    Anatoly Beletsky

    2016-03-01

    Full Text Available The methods of construction of matrix formation the secret protocols legalized subscribers of public communications networks encryption keys. Based key exchange protocols laid asymmetric cryptography algorithms. The solution involves the calculation of one-way functions and is based on the use of generalized Galois arrays of isomorphism relationship with forming elements, and depending on the selected irreducible polynomial generating matrix. A simple method for constructing generalized Galois matrix by the method of filling the diagonal. In order to eliminate the isomorphism of Galois arrays and their constituent elements, limiting the possibility of building one-way functions, Galois matrix subjected to similarity transformation carried out by means of permutation matrices. The variant of the organization of the algebraic attacks on encryption keys sharing protocols and discusses options for easing the consequences of an attack.

  8. Effect of the green/blue flicker matrix for P300-based brain–computer interface: an EEG–fMRI study.

    Directory of Open Access Journals (Sweden)

    Shiro eIkegami

    2012-07-01

    Full Text Available The visual P300 brain–computer interface (BCI, a popular system for EEG-based BCI, utilizes the P300 event-related potential to select an icon arranged in a flicker matrix. In the conventional P300 BCI speller paradigm, white/gray luminance intensification of each row/column in the matrix is used. In an earlier study, we applied green/blue luminance and chromatic change in the P300 BCI system and reported that this luminance and chromatic flicker matrix was associated with better performance and greater subject comfort compared with the conventional white/gray luminance flicker matrix. In this study, we used simultaneous EEG-fMRI recordings to identify brain areas that were more enhanced in the green/blue flicker matrix than in the white/gray flicker matrix, as these may highlight areas devoted to improved P300-BCI performance. The peak of the positive wave in the EEG data was detected under both conditions, and the peak amplitudes were larger at the parietal and occipital electrodes, particularly in the late components, under the green/blue condition than under the white/gray condition. fMRI data showed activation in the bilateral parietal and occipital cortices, and these areas, particularly those in the right hemisphere, were more activated under the green/blue condition than under the white/gray condition. The parietal and occipital regions more involved in the green/blue condition were part of the areas devoted to conventional P300s. These results suggest that the green/blue flicker matrix was useful for enhancing the so-called P300 responses.

  9. A structure-based extracellular matrix expansion mechanism of fibrous tissue growth.

    Science.gov (United States)

    Kalson, Nicholas S; Lu, Yinhui; Taylor, Susan H; Starborg, Tobias; Holmes, David F; Kadler, Karl E

    2015-05-20

    Embryonic growth occurs predominately by an increase in cell number; little is known about growth mechanisms later in development when fibrous tissues account for the bulk of adult vertebrate mass. We present a model for fibrous tissue growth based on 3D-electron microscopy of mouse tendon. We show that the number of collagen fibrils increases during embryonic development and then remains constant during postnatal growth. Embryonic growth was explained predominately by increases in fibril number and length. Postnatal growth arose predominately from increases in fibril length and diameter. A helical crimp structure was established in embryogenesis, and persisted postnatally. The data support a model where the shape and size of tendon is determined by the number and position of embryonic fibroblasts. The collagen fibrils that these cells synthesise provide a template for postnatal growth by structure-based matrix expansion. The model has important implications for growth of other fibrous tissues and fibrosis.

  10. Matrix analysis of electrical machinery

    CERN Document Server

    Hancock, N N

    2013-01-01

    Matrix Analysis of Electrical Machinery, Second Edition is a 14-chapter edition that covers the systematic analysis of electrical machinery performance. This edition discusses the principles of various mathematical operations and their application to electrical machinery performance calculations. The introductory chapters deal with the matrix representation of algebraic equations and their application to static electrical networks. The following chapters describe the fundamentals of different transformers and rotating machines and present torque analysis in terms of the currents based on the p

  11. Modeling cometary photopolarimetric characteristics with Sh-matrix method

    Science.gov (United States)

    Kolokolova, L.; Petrov, D.

    2017-12-01

    Cometary dust is dominated by particles of complex shape and structure, which are often considered as fractal aggregates. Rigorous modeling of light scattering by such particles, even using parallelized codes and NASA supercomputer resources, is very computer time and memory consuming. We are presenting a new approach to modeling cometary dust that is based on the Sh-matrix technique (e.g., Petrov et al., JQSRT, 112, 2012). This method is based on the T-matrix technique (e.g., Mishchenko et al., JQSRT, 55, 1996) and was developed after it had been found that the shape-dependent factors could be separated from the size- and refractive-index-dependent factors and presented as a shape matrix, or Sh-matrix. Size and refractive index dependences are incorporated through analytical operations on the Sh-matrix to produce the elements of T-matrix. Sh-matrix method keeps all advantages of the T-matrix method, including analytical averaging over particle orientation. Moreover, the surface integrals describing the Sh-matrix elements themselves can be solvable analytically for particles of any shape. This makes Sh-matrix approach an effective technique to simulate light scattering by particles of complex shape and surface structure. In this paper, we present cometary dust as an ensemble of Gaussian random particles. The shape of these particles is described by a log-normal distribution of their radius length and direction (Muinonen, EMP, 72, 1996). Changing one of the parameters of this distribution, the correlation angle, from 0 to 90 deg., we can model a variety of particles from spheres to particles of a random complex shape. We survey the angular and spectral dependencies of intensity and polarization resulted from light scattering by such particles, studying how they depend on the particle shape, size, and composition (including porous particles to simulate aggregates) to find the best fit to the cometary observations.

  12. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  13. Prevention of the disrupted enamel phenotype in Slc4a4-null mice using explant organ culture maintained in a living host kidney capsule.

    Directory of Open Access Journals (Sweden)

    Xin Wen

    Full Text Available Slc4a4-null mice are a model of proximal renal tubular acidosis (pRTA. Slc4a4 encodes the electrogenic sodium base transporter NBCe1 that is involved in transcellular base transport and pH regulation during amelogenesis. Patients with mutations in the SLC4A4 gene and Slc4a4-null mice present with dysplastic enamel, amongst other pathologies. Loss of NBCe1 function leads to local abnormalities in enamel matrix pH regulation. Loss of NBCe1 function also results in systemic acidemic blood pH. Whether local changes in enamel pH and/or a decrease in systemic pH are the cause of the abnormal enamel phenotype is currently unknown. In the present study we addressed this question by explanting fetal wild-type and Slc4a4-null mandibles into healthy host kidney capsules to study enamel formation in the absence of systemic acidemia. Mandibular E11.5 explants from NBCe1-/- mice, maintained in host kidney capsules for 70 days, resulted in teeth with enamel and dentin with morphological and mineralization properties similar to cultured NBCe1+/+ mandibles grown under identical conditions. Ameloblasts express a number of proteins involved in dynamic changes in H+/base transport during amelogenesis. Despite the capacity of ameloblasts to dynamically modulate the local pH of the enamel matrix, at least in the NBCe1-/- mice, the systemic pH also appears to contribute to the enamel phenotype. Extrapolating these data to humans, our findings suggest that in patients with NBCe1 mutations, correction of the systemic metabolic acidosis at a sufficiently early time point may lead to amelioration of enamel abnormalities.

  14. Nonnegative Matrix Factorizations Performing Object Detection and Localization

    Directory of Open Access Journals (Sweden)

    G. Casalino

    2012-01-01

    Full Text Available We study the problem of detecting and localizing objects in still, gray-scale images making use of the part-based representation provided by nonnegative matrix factorizations. Nonnegative matrix factorization represents an emerging example of subspace methods, which is able to extract interpretable parts from a set of template image objects and then to additively use them for describing individual objects. In this paper, we present a prototype system based on some nonnegative factorization algorithms, which differ in the additional properties added to the nonnegative representation of data, in order to investigate if any additional constraint produces better results in general object detection via nonnegative matrix factorizations.

  15. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  16. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  17. Quantization of an electromagnetic field in two-dimensional photonic structures based on the scattering matrix formalism ( S-quantization)

    Science.gov (United States)

    Ivanov, K. A.; Nikolaev, V. V.; Gubaydullin, A. R.; Kaliteevski, M. A.

    2017-10-01

    Based on the scattering matrix formalism, we have developed a method of quantization of an electromagnetic field in two-dimensional photonic nanostructures ( S-quantization in the two-dimensional case). In this method, the fields at the boundaries of the quantization box are expanded into a Fourier series and are related with each other by the scattering matrix of the system, which is the product of matrices describing the propagation of plane waves in empty regions of the quantization box and the scattering matrix of the photonic structure (or an arbitrary inhomogeneity). The quantization condition (similarly to the onedimensional case) is formulated as follows: the eigenvalues of the scattering matrix are equal to unity, which corresponds to the fact that the set of waves that are incident on the structure (components of the expansion into the Fourier series) is equal to the set of waves that travel away from the structure (outgoing waves). The coefficients of the matrix of scattering through the inhomogeneous structure have been calculated using the following procedure: the structure is divided into parallel layers such that the permittivity in each layer varies only along the axis that is perpendicular to the layers. Using the Fourier transform, the Maxwell equations have been written in the form of a matrix that relates the Fourier components of the electric field at the boundaries of neighboring layers. The product of these matrices is the transfer matrix in the basis of the Fourier components of the electric field. Represented in a block form, it is composed by matrices that contain the reflection and transmission coefficients for the Fourier components of the field, which, in turn, constitute the scattering matrix. The developed method considerably simplifies the calculation scheme for the analysis of the behavior of the electromagnetic field in structures with a two-dimensional inhomogeneity. In addition, this method makes it possible to obviate

  18. Using the Pathogen-Host Interactions database (PHI-base to investigate plant pathogen genomes and genes implicated in virulence

    Directory of Open Access Journals (Sweden)

    Martin eUrban

    2015-08-01

    Full Text Available New pathogen-host interaction mechanisms can be revealed by integrating mutant phenotype data with genetic information. PHI-base is a multi-species manually curated database combining peer-reviewed published phenotype data from plant and animal pathogens and gene/protein information in a single database.

  19. Synchrotron X-ray diffraction measurements of internal stresses during loading of steel-based metal matrix composites reinforced with TiB2 particles

    International Nuclear Information System (INIS)

    Bacon, D.H.; Edwards, L.; Moffatt, J.E.; Fitzpatrick, M.E.

    2011-01-01

    Highlights: → Synchrotron X-ray diffraction was used to measure internal stresses in Fe-TiB 2 MMCs. → Samples of the MMCs were loaded to failure in situ in the X-ray beam. → The results show good elastic load transfer from the matrix to the reinforcement. → There is good agreement with the predicted elastic stresses from Eshelby modeling. → During plastic deformation there is increasing load transfer to the reinforcement. - Abstract: High-energy synchrotron X-ray diffraction was used to measure the internal strain evolution in the matrix and reinforcement of steel-based metal matrix composites reinforced with particulate titanium diboride (TiB 2 ). Two systems were studied: a 316L matrix with 25% TiB 2 by volume and a W1.4418 matrix with 10% reinforcement. In situ loading experiments were performed, where the materials were loaded uniaxially in the X-ray beam. The results show the strain partitioning between the phases in the elastic regime, and the evolution of the strain partitioning once plasticity occurs. The results are compared with results from Eshelby modelling, and very good agreement is seen between the measured and modelled response for elastic loading of the material. Heat treatment of the 316-based material did not affect the elastic internal strain response.

  20. An Alternative Theory of the Universe Based Upon a Balanced Particulate-Ethereal, Tri-Based, Ten-Dimensional, Self-Propagating Matrix

    Science.gov (United States)

    Cogley, Thomas

    2010-02-01

    A model of the Universe of man designated ``MU'' is proposed. Based upon 10 working and 1 generating dimension or firmament the makeup of MU will be described. The balance of the Universe and the position form of time space and gravity will be described. The particulate physical and ethereal nature is one that departs from previous theories but is of the utmost importance in balancing the Universe and accounting for the shortfalls of the proposed theories of the day. The ten-dimensional +1 matrix will be described along with its sub-parts each distinct and closely bound to a separate dimensional level. The connections or doors between the firmaments and the methods by which they stay open close and remain separated from each other is described. Of great importance is the propagation of a firmament within the Matrix. Each firmament is itself independent and distinctly wrapped by a unique layer of the matrix. Yet each firmament is itself a separate image or part of the next larger firmament as can be thought of a subunit of that firmament. Thus each is separate yet still a part of the greater sized firmament that follows. The sizes of the dimensions are in a repeatable and constant multiple of the previous dimension. Sizes of the dimensions will be discussed. The function, form, and structural layout of the universe will be shown to have a fractal relationship to natural systems on earth and even to the image of man. )

  1. Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction.

    Science.gov (United States)

    Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang

    2018-05-08

    When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.

  2. Importance of host feeding for parasitoids that attack honeydew-producing hosts

    NARCIS (Netherlands)

    Burger, J.M.S.; Komany, A.; Lenteren, van J.C.; Vet, L.E.M.

    2005-01-01

    Insect parasitoids lay their eggs in arthropods. Some parasitoid species not only use their arthropod host for oviposition but also for feeding. Host feeding provides nutrients to the adult female parasitoid. However, in many species, host feeding destroys an opportunity to oviposit. For parasitoids

  3. Discriminatory Data Mapping by Matrix-Based Supervised Learning Metrics

    NARCIS (Netherlands)

    Strickert, M.; Schneider, P.; Keilwagen, J.; Villmann, T.; Biehl, M.; Hammer, B.

    2008-01-01

    Supervised attribute relevance detection using cross-comparisons (SARDUX), a recently proposed method for data-driven metric learning, is extended from dimension-weighted Minkowski distances to metrics induced by a data transformation matrix Ω for modeling mutual attribute dependence. Given class

  4. Hyper-systolic matrix multiplication

    NARCIS (Netherlands)

    Lippert, Th.; Petkov, N.; Palazzari, P.; Schilling, K.

    A novel parallel algorithm for matrix multiplication is presented. It is based on a 1-D hyper-systolic processor abstraction. The procedure can be implemented on all types of parallel systems. (C) 2001 Elsevier Science B,V. All rights reserved.

  5. Matrix removal in state of the art sample preparation methods for serum by charged aerosol detection and metabolomics-based LC-MS.

    Science.gov (United States)

    Schimek, Denise; Francesconi, Kevin A; Mautner, Anton; Libiseller, Gunnar; Raml, Reingard; Magnes, Christoph

    2016-04-07

    Investigations into sample preparation procedures usually focus on analyte recovery with no information provided about the fate of other components of the sample (matrix). For many analyses, however, and particularly those using liquid chromatography-mass spectrometry (LC-MS), quantitative measurements are greatly influenced by sample matrix. Using the example of the drug amitriptyline and three of its metabolites in serum, we performed a comprehensive investigation of nine commonly used sample clean-up procedures in terms of their suitability for preparing serum samples. We were monitoring the undesired matrix compounds using a combination of charged aerosol detection (CAD), LC-CAD, and a metabolomics-based LC-MS/MS approach. In this way, we compared analyte recovery of protein precipitation-, liquid-liquid-, solid-phase- and hybrid solid-phase extraction methods. Although all methods provided acceptable recoveries, the highest recovery was obtained by protein precipitation with acetonitrile/formic acid (amitriptyline 113%, nortriptyline 92%, 10-hydroxyamitriptyline 89%, and amitriptyline N-oxide 96%). The quantification of matrix removal by LC-CAD showed that the solid phase extraction method (SPE) provided the lowest remaining matrix load (48-123 μg mL(-1)), which is a 10-40 fold better matrix clean-up than the precipitation- or hybrid solid phase extraction methods. The metabolomics profiles of eleven compound classes, comprising 70 matrix compounds showed the trends of compound class removal for each sample preparation strategy. The collective data set of analyte recovery, matrix removal and matrix compound profile was used to assess the effectiveness of each sample preparation method. The best performance in matrix clean-up and practical handling of small sample volumes was showed by the SPE techniques, particularly HLB SPE. CAD proved to be an effective tool for revealing the considerable differences between the sample preparation methods. This detector can

  6. Breaking Megrelishvili protocol using matrix diagonalization

    Science.gov (United States)

    Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio

    2018-03-01

    In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.

  7. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  8. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  9. Towards host-directed therapies for tuberculosis.

    Science.gov (United States)

    Zumla, Alimuddin; Maeurer, Markus; Chakaya, Jeremiah; Hoelscher, Michael; Ntoumi, Francine; Rustomjee, Roxana; Vilaplana, Cristina; Yeboah-Manu, Dorothy; Rasolof, Voahangy; Munderi, Paula; Singh, Nalini; Aklillu, Eleni; Padayatchi, Nesri; Macete, Eusebio; Kapata, Nathan; Mulenga, Modest; Kibiki, Gibson; Mfinanga, Sayoki; Nyirenda, Thomas; Maboko, Leonard; Garcia-Basteiro, Alberto; Rakotosamimanana, Niaina; Bates, Matthew; Mwaba, Peter; Reither, Klaus; Gagneux, Sebastien; Edwards, Sarah; Mfinanga, Elirehema; Abdulla, Salim; Cardona, Pere-Joan; Russell, James B W; Gant, Vanya; Noursadeghi, Mahdad; Elkington, Paul; Bonnet, Maryline; Menendez, Clara; Dieye, Tandakha N; Diarra, Bassirou; Maiga, Almoustapha; Aseffa, Abraham; Parida, Shreemanta; Wejse, Christian; Petersen, Eskild; Kaleebu, Pontiano; Oliver, Matt; Craig, Gill; Corrah, Tumena; Tientcheu, Leopold; Antonio, Martin; Rao, Martin; McHugh, Timothy D; Sheikh, Aziz; Ippolito, Giuseppe; Ramjee, Gita; Kaufmann, Stefan H E; Churchyard, Gavin; Steyn, Andrie; Grobusch, Martin; Sanne, Ian; Martinson, Neil; Madansein, Rajhmun; Wilkinson, Robert J; Mayosi, Bongani; Schito, Marco; Wallis, Robert S

    2015-08-01

    The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies.

  10. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  11. Crash sequence based risk matrix for motorcycle crashes.

    Science.gov (United States)

    Wu, Kun-Feng; Sasidharan, Lekshmi; Thor, Craig P; Chen, Sheng-Yin

    2018-04-05

    Considerable research has been conducted related to motorcycle and other powered-two-wheeler (PTW) crashes; however, it always has been controversial among practitioners concerning with types of crashes should be first targeted and how to prioritize resources for the implementation of mitigating actions. Therefore, there is a need to identify types of motorcycle crashes that constitute the greatest safety risk to riders - most frequent and most severe crashes. This pilot study seeks exhibit the efficacy of a new approach for prioritizing PTW crash causation sequences as they relate to injury severity to better inform the application of mitigating countermeasures. To accomplish this, the present study constructed a crash sequence-based risk matrix to identify most frequent and most severe motorcycle crashes in an attempt to better connect causes and countermeasures of PTW crashes. Although the frequency of each crash sequence can be computed from crash data, a crash severity model is needed to compare the levels of crash severity among different crash sequences, while controlling for other factors that also have effects on crash severity such drivers' age, use of helmet, etc. The construction of risk matrix based on crash sequences involve two tasks: formulation of crash sequence and the estimation of a mixed-effects (ME) model to adjust the levels of severities for each crash sequence to account for other crash contributing factors that would have an effect on the maximum level of crash severity in a crash. Three data elements from the National Automotive Sampling System - General Estimating System (NASS-GES) data were utilized to form a crash sequence: critical event, crash types, and sequence of events. A mixed-effects model was constructed to model the severity levels for each crash sequence while accounting for the effects of those crash contributing factors on crash severity. A total of 8039 crashes involving 8208 motorcycles occurred during 2011 and 2013 were

  12. Optimization of Multiresonant Wireless Power Transfer Network Based on Generalized Coupled Matrix

    Directory of Open Access Journals (Sweden)

    Qiang Zhao

    2017-01-01

    Full Text Available Magnetic coupling resonant wireless power transfer network (MCRWPTN system can realize wireless power transfer for some electrical equipment real-time and high efficiency in a certain spatial scale, which resolves the contradiction between power transfer efficiency and the power transfer distance of the wireless power transfer. A fully coupled resonant energy transfer model for multirelay coils and ports is established. A dynamic adaptive impedance matching control based on fully coupling matrix and particle swarm optimization algorithm based on annealing is developed for the MCRWPTN. Furthermore, as an example, the network which has twenty nodes is analyzed, and the best transmission coefficient which has the highest power transfer efficiency is found using the optimization algorithm, and the coupling constraints are considered simultaneously. Finally, the effectiveness of the proposed method is proved by the simulation results.

  13. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer.

    Science.gov (United States)

    Rankin, Keegan; Mabury, Scott A

    2015-05-19

    The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.

  14. Automated flow quantification in valvular heart disease based on backscattered Doppler power analysis: implementation on matrix-array ultrasound imaging systems.

    Science.gov (United States)

    Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A

    2008-06-01

    Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.

  15. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  16. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  17. Does host complement kill Borrelia burgdorferi within ticks?

    Science.gov (United States)

    Rathinavelu, Sivaprakash; Broadwater, Anne; de Silva, Aravinda M

    2003-02-01

    The Lyme disease spirochete, Borrelia burgdorferi, inhabits the gut lumen of the tick vector. At this location the spirochete is exposed to host blood when a tick feeds. We report here on studies that were done with normal and complement-deficient (C3-knockout) mice to determine if the host complement system killed spirochetes within the vector. We found that spirochete numbers within feeding nymphs were not influenced by complement, most likely because host complement was inactivated within the vector. The Lyme disease outer surface protein A (OspA) vaccine is a transmission-blocking vaccine that targets spirochetes in the vector. In experiments with mice hyperimmunized with OspA, complement was not required to kill spirochetes within nymphs and to block transmission from nymphs to the vaccinated host. However, host complement did enhance the ability of OspA antibody to block larvae from acquiring spirochetes. Thus, the effects of OspA antibody on nymphal transmission and larval acquisition appear to be based on different mechanisms.

  18. Localized eigenvectors of the non-backtracking matrix

    International Nuclear Information System (INIS)

    Kawamoto, Tatsuro

    2016-01-01

    In the case of graph partitioning, the emergence of localized eigenvectors can cause the standard spectral method to fail. To overcome this problem, the spectral method using a non-backtracking matrix was proposed. Based on numerical experiments on several examples of real networks, it is clear that the non-backtracking matrix does not exhibit localization of eigenvectors. However, we show that localized eigenvectors of the non-backtracking matrix can exist outside the spectral band, which may lead to deterioration in the performance of graph partitioning. (paper: interdisciplinary statistical mechanics)

  19. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  20. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Directory of Open Access Journals (Sweden)

    Yongsheng Wang

    2014-04-01

    Full Text Available The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass–matrix composite (MGMC were investigated by using an in-situ tensile test under transmission electron microscopy (TEM. It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  1. Improvement of characteristics of diffraction gratings in Dot-matrix holograms

    International Nuclear Information System (INIS)

    ZHUMALIEV, K.M.; ISMAILOV, D.A.; ZHEENBEKOV, A.A.; SARYBAEVA, A.A.; KAZAKBAEVA, Z.M.

    2014-01-01

    This paper describes the results of research of the formation and recording of matrix hologram by Dot-matrix (dot-matrix hologram) technology on the photosensitive material of the photoresist. The principle of creating and modifying the characteristics of diffraction gratings of each pixel based on the diffraction efficiency, and recovery of colors and dynamic visual effects in dot-matrix holograms are discussed. An optical schematic diagram of the device and the process of recording dot-matrix holograms are presented. (authors)

  2. Two different strategies of host manipulation allow parasites to persist in intermediate-definitive host systems

    NARCIS (Netherlands)

    Vries, de L.J.; Langevelde, van F.

    2018-01-01

    Trophically transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate-definitive host systems, two strategies of host manipulation have been evolved:

  3. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    Science.gov (United States)

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    International Nuclear Information System (INIS)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-01-01

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  5. A Unique Mathematical Derivation of the Fundamental Laws of Nature Based on a New Algebraic-Axiomatic (Matrix Approach ‡

    Directory of Open Access Journals (Sweden)

    Ramin Zahedi

    2017-09-01

    Full Text Available In this article, as a new mathematical approach to origin of the laws of nature, using a new basic algebraic axiomatic (matrix formalism based on the ring theory and Clifford algebras (presented in Section 2, “it is shown that certain mathematical forms of fundamental laws of nature, including laws governing the fundamental forces of nature (represented by a set of two definite classes of general covariant massive field equations, with new matrix formalisms, are derived uniquely from only a very few axioms.” In agreement with the rational Lorentz group, it is also basically assumed that the components of relativistic energy-momentum can only take rational values. In essence, the main scheme of this new mathematical axiomatic approach to the fundamental laws of nature is as follows: First, based on the assumption of the rationality of D-momentum and by linearization (along with a parameterization procedure of the Lorentz invariant energy-momentum quadratic relation, a unique set of Lorentz invariant systems of homogeneous linear equations (with matrix formalisms compatible with certain Clifford and symmetric algebras is derived. Then by an initial quantization (followed by a basic procedure of minimal coupling to space-time geometry of these determined systems of linear equations, a set of two classes of general covariant massive (tensor field equations (with matrix formalisms compatible with certain Clifford, and Weyl algebras is derived uniquely as well.

  6. Improving Conductivity Image Quality Using Block Matrix-based Multiple Regularization (BMMR Technique in EIT: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Bera

    2011-06-01

    Full Text Available A Block Matrix based Multiple Regularization (BMMR technique is proposed for improving conductivity image quality in EIT. The response matrix (JTJ has been partitioned into several sub-block matrices and the highest eigenvalue of each sub-block matrices has been chosen as regularization parameter for the nodes contained by that sub-block. Simulated boundary data are generated for circular domain with circular inhomogeneity and the conductivity images are reconstructed in a Model Based Iterative Image Reconstruction (MoBIIR algorithm. Conductivity images are reconstructed with BMMR technique and the results are compared with the Single-step Tikhonov Regularization (STR and modified Levenberg-Marquardt Regularization (LMR methods. It is observed that the BMMR technique reduces the projection error and solution error and improves the conductivity reconstruction in EIT. Result show that the BMMR method also improves the image contrast and inhomogeneity conductivity profile and hence the reconstructed image quality is enhanced. ;doi:10.5617/jeb.170 J Electr Bioimp, vol. 2, pp. 33-47, 2011

  7. Radiologic-Pathologic Correlation: Acellular Dermal Matrix (Alloderm®) Used in Breast Reconstructive Surgery.

    Science.gov (United States)

    Lee, Christine U; Bobr, Aleh; Torres-Mora, Jorge

    2017-01-01

    Acellular dermal matrix (ADM) such as Alloderm ® is sometimes used in tissue reconstruction in primary and reconstructive breast surgeries. As ADM is incorporated into the native tissues, the evolving imaging findings that would correlate with varying degrees of host migration and neoangiogenesis into the matrix can be challenging to recognize. In the setting of a palpable or clinical area of concern after breast reconstructive surgery following breast cancer, confident diagnosis of a mass representing ADM rather than recurring or developing disease can be challenging. Such diagnostic imaging uncertainties generally result in short-term imaging and clinical follow-up, but occasionally, biopsy is performed for histopathological confirmation of benignity. A case of biopsy-proven Alloderm ® is described. To the best of our knowledge, this is the first radiologic-pathologic correlation of ADM in the literature.

  8. Host sensitized novel red phosphor CaZrSi{sub 2}O{sub 7} : Eu{sup 3+} for near UV and blue LED-based white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Jeong, Junho; Jang, Kiwan; Lee, Ho Sueb [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jayasimhadri, M [Department of Applied Physics, Delhi Technological University, Delhi (India); Yi, Soung-Soo [Department of Photonics, Silla University, Busan (Korea, Republic of); Jeong, Jung-Hyun, E-mail: kwjang@changwon.ac.k [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2010-10-06

    A series of red phosphors Ca{sub 1-x}ZrSi{sub 2}O{sub 7} : Eu{sub x} (x = 0.5,1,5,10,12 mol%) were prepared by a solid-state reaction technique at various temperatures and their structural and optical properties were investigated. The x-ray diffraction profiles showed that all peaks could be attributed to the monoclinic phase CaZrSi{sub 2}O{sub 7} doped with Eu{sup 3+}. SEM, FTIR, TG and DTA profiles have also been characterized to explore their structural properties. The luminescence properties of these resulting phosphors have been characterized by photoluminescence spectra. The host matrix itself has shown a strong blue emission which has its maximum intensity at 470 nm. The excitation spectra of CaZrSi{sub 2}O{sub 7} : Eu{sup 3+} revealed two excitation bands at 395 and 464 nm which correspond to the sharp {sup 7}F{sub 0}-{sup 5}L{sub 6} and {sup 7}F{sub 0}-{sup 5}D{sub 2} transitions of Eu{sup 3+} and matches well with the two popular emissions from n-UV/blue GaN-based LEDs. The prominent red emission was obtained at 615 nm by the excitation transitions {sup 5}L{sub 6}, {sup 5}D{sub 2} of Eu{sup 3+} through the non-radiative energy transfer process from the host to the Eu{sup 3+} ion. The effects of charge compensation by monovalent ions on the luminescence behaviour of a red emitting phosphor CaZrSi{sub 2}O{sub 7} : Eu{sup 3+} were investigated. The high colour saturation and the low thermal quenching effect of these phosphors make it a potential red component for white light emitting diodes (w-LEDs).

  9. Membrane-type-3 matrix metalloproteinase (MT3-MMP functions as a matrix composition-dependent effector of melanoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Olga Tatti

    Full Text Available In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.

  10. Development of an integrated system for activity-based profiling of matrix metallo-proteases

    NARCIS (Netherlands)

    Freije, Jan Robert

    2006-01-01

    Matrix metallo-proteases constitute a family of extracellular zinc-dependent endopeptidases that are involved in degradation of extracellular matrix (ECM) components and other bioactive non-ECM molecules. A plethora of studies have implicated important roles for MMPs in many diseases (including

  11. Improved power efficiency of blue fluorescent organic light-emitting diode with intermixed host structure

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Shouzhen; Zhang, Shiming; Zhang, Zhensong; Wu, Yukun; Wang, Peng; Guo, Runda; Chen, Yu; Qu, Dalong; Wu, Qingyang; Zhao, Yi, E-mail: yizhao@jlu.edu.cn; Liu, Shiyong

    2013-11-15

    High power efficiency (PE) p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-ph) based fluorescent blue organic light-emitting diode (OLED) is demonstrated by utilizing intermixed host (IH) structure. The PE outperforms those devices based on single host (SH), mixed host (MH), and double emitting layers (DELs). By further optimizing the intermixed layer, peak PE of the IH device is increased up to 8.7 lm/W (1.7 times higher than conventional SH device), which is the highest value among the DSA-ph based blue device reported so far. -- Highlights: • DSA-ph based blue fluorescent OLEDs are fabricated. • The intermixed host structure is first introduced into the blue devices. • Blue device with the highest power efficiency based on DSA-ph is obtained.

  12. Modulation and control of matrix converter for aerospace application

    Science.gov (United States)

    Kobravi, Keyhan

    In the context of modern aircraft systems, a major challenge is power conversion to supply the aircraft's electrical instruments. These instruments are energized through a fixed-frequency internal power grid. In an aircraft, the available sources of energy are a set of variable-speed generators which provide variable-frequency ac voltages. Therefore, to energize the internal power grid of an aircraft, the variable-frequency ac voltages should be converted to a fixed-frequency ac voltage. As a result, an ac to ac power conversion is required within an aircraft's power system. This thesis develops a Matrix Converter to energize the aircraft's internal power grid. The Matrix Converter provides a direct ac to ac power conversion. A major challenge of designing Matrix Converters for aerospace applications is to minimize the volume and weight of the converter. These parameters are minimized by increasing the switching frequency of the converter. To design a Matrix Converter operating at a high switching frequency, this thesis (i) develops a scheme to integrate fast semiconductor switches within the current available Matrix Converter topologies, i.e., MOSFET-based Matrix Converter, and (ii) develops a new modulation strategy for the Matrix Converter. This Matrix Converter and the new modulation strategy enables the operation of the converter at a switching-frequency of 40kHz. To provide a reliable source of energy, this thesis also develops a new methodology for robust control of Matrix Converter. To verify the performance of the proposed MOSFET-based Matrix Converter, modulation strategy, and control design methodology, various simulation and experimental results are presented. The experimental results are obtained under operating condition present in an aircraft. The experimental results verify the proposed Matrix Converter provides a reliable power conversion in an aircraft under extreme operating conditions. The results prove the superiority of the proposed Matrix

  13. Role of the Co-based microwires/polymer matrix interface on giant magneto impedance response

    International Nuclear Information System (INIS)

    Estévez, Diana; Li, Jiawei; Liu, Gang; Man, Qikui; Chang, Chuntao; Wang, Xinmin; Li, Run-Wei

    2015-01-01

    Highlights: • Co-based microwires-epoxy interface was modified with silane and GMI was evaluated. • XPS confirmed the adhesion of silane onto the wires by Si–O–Si and Fe–O–Si bonds. • GMI curves for treated samples exhibited two-peak behavior and higher GMI ratio. • GMI variation was explained by the change of the surface magnetic anisotropy. • GMI could potentially be used as a surface scanning technique. - Abstract: The interface of Co-based microwires-epoxy composites was modified by applying silane treatment on the surface of the wires and their magneto impedance (MI) response was evaluated. The aim of the surface treatment was to modify the residual stresses that coexist at the microwires/polymer matrix interface and hence the magnetic anisotropy. X-ray Photoelectron Spectroscopy confirmed the covalent attachment of silane molecule onto the wires surface by the presence of Si–O–Si and Fe–O–Si. The MI curve changed from single peak for untreated samples to double peak behavior for treated samples with a significant improvement of MI ratio. Additionally, the magnitude of the anisotropy field increased with the frequency, which may imply a strongly non-uniform stress distribution towards the surface. The MI variation was explained by the change of the surface magnetic anisotropy owing to the modification of the microwires/polymer matrix interface

  14. Effects of host nutrition on virulence and fitness of entomopathogenic nematodes: Lipid- and protein-based supplements in Tenebrio molitor diets

    Science.gov (United States)

    Shapiro-Ilan, David; Rojas, M. Guadalupe; Morales-Ramos, Juan A.; Lewis, Edwin E.; Tedders, W. Louis

    2008-01-01

    Entomopathogenic nematodes, Heterorhabditis indica and Steinernema riobrave, were tested for virulence and reproductive yield in Tenebrio molitor that were fed wheat bran diets with varying lipid- and protein-based supplements. Lipid supplements were based on 20% canola oil, peanut, pork or salmon, or a low lipid control (5% canola). Protein treatments consisted of basic supplement ingredients plus 0, 10, or 20% egg white; a bran-only control was also included. Some diet supplements had positive effects on nematode quality, whereas others had negative or neutral effects. All supplements with 20% lipids except canola oil caused increased T. molitor susceptibility to H. indica, whereas susceptibility to S. riobrave was not affected. Protein supplements did not affect host susceptibility, and neither lipid nor protein diet supplements affected reproductive capacity of either nematode species. Subsequently, we determined the pest control efficacy of progeny of nematodes that had been reared through T. molitor from different diets against Diaprepes abbreviatus and Otiorhynchus sulcatus. All nematode treatments reduced insect survival relative to the control (water only). Nematodes originating from T. molitor diets with the 0% or 20% protein exhibited lower efficacy versus D. abbreviatus than the intermediate level of protein (10%) or bran-only treatments. Nematodes originating from T. molitor lipid or control diets did not differ in virulence. Our research indicates that nutritional content of an insect host diet can affect host susceptibility to entomopathogenic nematodes and nematode fitness; therefore, host media could conceivably be optimized to increase in vivo nematode production efficiency. PMID:19259513

  15. Development of 10×10 Matrix-anode MCP-PMT

    Science.gov (United States)

    Yang, Jie; Li, Yongbin; Xu, Pengxiao; Zhao, Wenjin

    2018-02-01

    10×10 matrix-anode is developed by high-temperature co-fired ceramics (HTCC) technology. Based on the new matrix-anode, a new kind of photon counting imaging detector - 10×10 matrix-anode MCP-PMT is developed, and its performance parameters are tested. HTCC technology is suitable for the MCP-PMT's air impermeability and its baking process. Its response uniformity is better than the metal-ceramic or metal-glass sealing anode, and it is also a promising method to realize a higher density matrix-anode.

  16. MCDM based evaluation and ranking of commercial off-the-shelf using fuzzy based matrix method

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2017-04-01

    Full Text Available In today’s scenario, software has become an essential component in all kinds of systems. The size and the complexity of the software increases with a corresponding increase in its functionality, hence leads to the development of the modular software systems. Software developers emphasize on the concept of component based software engineering (CBSE for the development of modular software systems. The CBSE concept consists of dividing the software into a number of modules; selecting Commercial Off-the-Shelf (COTS for each module; and finally integrating the modules to develop the final software system. The selection of COTS for any module plays a vital role in software development. To address the problem of selection of COTS, a framework for ranking and selection of various COTS components for any software system based on expert opinion elicitation and fuzzy-based matrix methodology is proposed in this research paper. The selection problem is modeled as a multi-criteria decision making (MCDM problem. The evaluation criteria are identified through extensive literature study and the COTS components are ranked based on these identified and selected evaluation criteria using the proposed methods according to the value of a permanent function of their criteria matrices. The methodology is explained through an example and is validated by comparing with an existing method.

  17. Multi-view clustering via multi-manifold regularized non-negative matrix factorization.

    Science.gov (United States)

    Zong, Linlin; Zhang, Xianchao; Zhao, Long; Yu, Hong; Zhao, Qianli

    2017-04-01

    Non-negative matrix factorization based multi-view clustering algorithms have shown their competitiveness among different multi-view clustering algorithms. However, non-negative matrix factorization fails to preserve the locally geometrical structure of the data space. In this paper, we propose a multi-manifold regularized non-negative matrix factorization framework (MMNMF) which can preserve the locally geometrical structure of the manifolds for multi-view clustering. MMNMF incorporates consensus manifold and consensus coefficient matrix with multi-manifold regularization to preserve the locally geometrical structure of the multi-view data space. We use two methods to construct the consensus manifold and two methods to find the consensus coefficient matrix, which leads to four instances of the framework. Experimental results show that the proposed algorithms outperform existing non-negative matrix factorization based algorithms for multi-view clustering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Teaching Improvement Model Designed with DEA Method and Management Matrix

    Science.gov (United States)

    Montoneri, Bernard

    2014-01-01

    This study uses student evaluation of teachers to design a teaching improvement matrix based on teaching efficiency and performance by combining management matrix and data envelopment analysis. This matrix is designed to formulate suggestions to improve teaching. The research sample consists of 42 classes of freshmen following a course of English…

  19. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Landmark matching based retinal image alignment by enforcing sparsity in correspondence matrix.

    Science.gov (United States)

    Zheng, Yuanjie; Daniel, Ebenezer; Hunter, Allan A; Xiao, Rui; Gao, Jianbin; Li, Hongsheng; Maguire, Maureen G; Brainard, David H; Gee, James C

    2014-08-01

    Retinal image alignment is fundamental to many applications in diagnosis of eye diseases. In this paper, we address the problem of landmark matching based retinal image alignment. We propose a novel landmark matching formulation by enforcing sparsity in the correspondence matrix and offer its solutions based on linear programming. The proposed formulation not only enables a joint estimation of the landmark correspondences and a predefined transformation model but also combines the benefits of the softassign strategy (Chui and Rangarajan, 2003) and the combinatorial optimization of linear programming. We also introduced a set of reinforced self-similarities descriptors which can better characterize local photometric and geometric properties of the retinal image. Theoretical analysis and experimental results with both fundus color images and angiogram images show the superior performances of our algorithms to several state-of-the-art techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Single-particle density matrix of liquid 4He

    International Nuclear Information System (INIS)

    Vakarchuk, I.A.

    2008-01-01

    The density single-particle matrix in the coordinate notation was calculated based on the expression for the interacting Bose-particle N system density matrix. Under the low temperatures the mentioned matrix in the first approximation enables to reproduce the Bogoliubov theory results. In the classical terms the mentioned theory enables to reproduce the results of the theory of the classical fluids in the approximation of the chaotic phases. On the basis of the density single-particle matrix one managed to obtain the function of the pulse distribution of the particles, the Bose-liquid average kinetic energy, and to study the Bose-Einstein condensation phenomenon [ru

  2. Addressing the use of cloud computing for web hosting providers

    OpenAIRE

    Fitó, Josep Oriol; Guitart Fernández, Jordi

    2009-01-01

    Nobody doubts about cloud computing is and will be a sea change for the Information Tech nology. Specifically, we address an application of this emerging paradigm into the web hosting providers. We create the Cloud Hosting Provider (CHP): a web hosting provider that uses the outsourcing technique in order to take advantage of cloud computing infrastructures (i.e. cloud-based outsourcing) for providing scalability and availability capabilities to the web applications deployed. Hence, the...

  3. Ceramic matrix and resin matrix composites - A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  4. Ceramic matrix and resin matrix composites: A comparison

    Science.gov (United States)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  5. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  6. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    Science.gov (United States)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  7. Host density and competency determine the effects of host diversity on trematode parasite infection.

    Directory of Open Access Journals (Sweden)

    Jeremy M Wojdak

    Full Text Available Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other's densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans, in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1 replace the focal host species so that the total number of individuals remains constant (substitution or (2 add to total host density (addition. For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.

  8. User authentication based on the NFC host-card-emulation technology

    Science.gov (United States)

    Kološ, Jan; Kotyrba, Martin

    2017-11-01

    This paper deals with implementation of algorithms for data exchange between mobile devices supporting NFC HCE (Host-Card-Emulation) and a contactless NFC reader communicating in a read/write mode. This solution provides multiplatform architecture for data exchange between devices with a focus on safe and simple user authentication.

  9. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  10. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites.

    Science.gov (United States)

    Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2015-09-08

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.

  11. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission.

    Science.gov (United States)

    Pucciarelli, M Graciela; García-Del Portillo, Francisco

    2017-07-01

    More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella -containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.

  12. Generalized canonical analysis based on optimizing matrix correlations and a relation with IDIOSCAL

    NARCIS (Netherlands)

    Kiers, Henk A.L.; Cléroux, R.; Ten Berge, Jos M.F.

    1994-01-01

    Carroll's method for generalized canonical analysis of two or more sets of variables is shown to optimize the sum of squared inner-product matrix correlations between a consensus matrix and matrices with canonical variates for each set of variables. In addition, the method that analogously optimizes

  13. Advances in biomimetic regeneration of elastic matrix structures

    Science.gov (United States)

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  14. Vibrational relaxation of matrix-isolated CH3F and HCl

    International Nuclear Information System (INIS)

    Young, L.

    1981-08-01

    Kinetic and spectroscopic studies have been performed on CH 3 F and HCl as a function of host matrix and temperature. Temporally and spectrally resolved infrared fluorescence was used to monitor the populations of both the initially excited state and the lower lying levels which participate in the relaxation process. For CH 3 F, relaxation from any of the levels near 3.5 μ, i.e. the CH stretching fundamentals or bend overtones, occurs via rapid ( 3 with subsequent relaxation of the ν 3 (CF stretch) manifold. Lifetimes of 2ν 3 and ν 3 were determined through overtone, ΔV = 2, and fundamental fluorescence. These lifetimes show a dramatic dependence on host lattice, an increase of two orders of magnitude in going from Xe and Ar matrices. Lifetimes depend only weakly on temperature. The relaxation of 2ν 3 and ν 3 is consistent with a model in which production of a highly rotationally excited guest via collisions with the repulsive wall of the host is the rate limiting step. For HCl, lifetimes of v = 1,2,3 have been determined. In all hosts, the relaxation is non-radiative. For a given vibrational state, v, the relaxation rate increases in the series k(Ar) < k(Kr) < k(Xe). The dependence of the relaxation rate; on v is superlinear in all matrices, the deviation from linearity increasng in the order Ar < Kr < Xe. The relaxation rates become more strongly temperature dependent with increasing vibrational excitation. The results are consistent with a mechanism in which complex formation introduces the anisotropy necessary to induce a near resonant V → R transition in the rate limiting step

  15. A reduced-scaling density matrix-based method for the computation of the vibrational Hessian matrix at the self-consistent field level

    International Nuclear Information System (INIS)

    Kussmann, Jörg; Luenser, Arne; Beer, Matthias; Ochsenfeld, Christian

    2015-01-01

    An analytical method to calculate the molecular vibrational Hessian matrix at the self-consistent field level is presented. By analysis of the multipole expansions of the relevant derivatives of Coulomb-type two-electron integral contractions, we show that the effect of the perturbation on the electronic structure due to the displacement of nuclei decays at least as r −2 instead of r −1 . The perturbation is asymptotically local, and the computation of the Hessian matrix can, in principle, be performed with O(N) complexity. Our implementation exhibits linear scaling in all time-determining steps, with some rapid but quadratic-complexity steps remaining. Sample calculations illustrate linear or near-linear scaling in the construction of the complete nuclear Hessian matrix for sparse systems. For more demanding systems, scaling is still considerably sub-quadratic to quadratic, depending on the density of the underlying electronic structure

  16. Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix.

    Directory of Open Access Journals (Sweden)

    Stéphane Chiron

    Full Text Available Anchorage of muscle cells to the extracellular matrix is crucial for a range of fundamental biological processes including migration, survival and differentiation. Three-dimensional (3D culture has been proposed to provide a more physiological in vitro model of muscle growth and differentiation than routine 2D cultures. However, muscle cell adhesion and cell-matrix interplay of engineered muscle tissue remain to be determined. We have characterized cell-matrix interactions in 3D muscle culture and analyzed their consequences on cell differentiation. Human myoblasts were embedded in a fibrin matrix cast between two posts, cultured until confluence, and then induced to differentiate. Myoblasts in 3D aligned along the longitudinal axis of the gel. They displayed actin stress fibers evenly distributed around the nucleus and a cortical mesh of thin actin filaments. Adhesion sites in 3D were smaller in size than in rigid 2D culture but expression of adhesion site proteins, including α5 integrin and vinculin, was higher in 3D compared with 2D (p<0.05. Myoblasts and myotubes in 3D exhibited thicker and ellipsoid nuclei instead of the thin disk-like shape of the nuclei in 2D (p<0.001. Differentiation kinetics were faster in 3D as demonstrated by higher mRNA concentrations of α-actinin and myosin. More important, the elastic modulus of engineered muscle tissues increased significantly from 3.5 ± 0.8 to 7.4 ± 4.7 kPa during proliferation (p<0.05 and reached 12.2 ± 6.0 kPa during differentiation (p<0.05, thus attesting the increase of matrix stiffness during proliferation and differentiation of the myocytes. In conclusion, we reported modulations of the adhesion complexes, the actin cytoskeleton and nuclear shape in 3D compared with routine 2D muscle culture. These findings point to complex interactions between muscle cells and the surrounding matrix with dynamic regulation of the cell-matrix stiffness.

  17. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis

    Science.gov (United States)

    Ong, Catherine W. M.; Elkington, Paul T.; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T.; Tezera, Liku B.; Pabisiak, Przemyslaw J.; Moores, Rachel C.; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H.; Porter, Joanna C.; Friedland, Jon S.

    2015-01-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  18. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Science.gov (United States)

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  19. Viscoplastic Matrix Materials for Embedded 3D Printing.

    Science.gov (United States)

    Grosskopf, Abigail K; Truby, Ryan L; Kim, Hyoungsoo; Perazzo, Antonio; Lewis, Jennifer A; Stone, Howard A

    2018-03-16

    Embedded three-dimensional (EMB3D) printing is an emerging technique that enables free-form fabrication of complex architectures. In this approach, a nozzle is translated omnidirectionally within a soft matrix that surrounds and supports the patterned material. To optimize print fidelity, we have investigated the effects of matrix viscoplasticity on the EMB3D printing process. Specifically, we determine how matrix composition, print path and speed, and nozzle diameter affect the yielded region within the matrix. By characterizing the velocity and strain fields and analyzing the dimensions of the yielded regions, we determine that scaling relationships based on the Oldroyd number, Od, exist between these dimensions and the rheological properties of the matrix materials and printing parameters. Finally, we use EMB3D printing to create complex architectures within an elastomeric silicone matrix. Our methods and findings will both facilitate future characterization of viscoplastic matrices and motivate the development of new materials for EMB3D printing.

  20. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  1. An asynchronous, pipelined, electronic acquisition system for Active Matrix Flat-Panel Imagers (AMFPIs)

    CERN Document Server

    Huang, W; Berry, J; Maolinbay, M; Martelli, C; Mody, P; Nassif, S; Yeakey, M

    1999-01-01

    The development of a full-custom electronic acquisition system designed for readout of large-area active matrix flat-panel imaging arrays is reported. The arrays, which comprise two-dimensional matrices of pixels utilizing amorphous silicon thin-film transistors, are themselves under development for a wide variety of X-ray imaging applications. The acquisition system was specifically designed to facilitate detailed, quantitative investigations of the properties of these novel imaging arrays and contains significant enhancements compared to a previously developed acquisition system. These enhancements include pipelined preamplifier circuits to allow faster readout speed, expanded addressing capabilities allowing a maximum of 4096 array data lines, and on-board summing of image frames. The values of many acquisition system parameters, including timings and voltages, may be specified and downloaded from a host computer. Once acquisition is enabled, the system operates asynchronously of its host computer. The sys...

  2. Spectro-photometric study of the GRB 030329 host galaxy

    International Nuclear Information System (INIS)

    Gorosabel, J.; Ramirez, D. Perez

    2005-01-01

    In this study we present optical/near-infrared (NIR) broad band photometry and optical spectroscopic observations of the GRB 030329 host galaxy. The Spectral Energy Distribution (SED) of the host is consistent with a starburst galaxy template with a dominant stellar population age of ∼ 150 Myr and an extinction A ν ∼ 0.6. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy. Two independent diagnostics, based on the restframe UV continuum and the [OII] line flux, provide a consistent unextincted star formation rate of SFRN ∼ 0.6 Myr -1 . The low absolute magnitude of the host (M B ∼ -16.5) implies a high specific star formation rate value, SSFR ≅ 34 Myr -1 (L/L) -1

  3. A multiple criteria decision making for raking alternatives using preference relation matrix based on intuitionistic fuzzy sets

    Directory of Open Access Journals (Sweden)

    Mehdi Bahramloo

    2013-10-01

    Full Text Available Ranking various alternatives has been under investigation and there are literally various methods and techniques for making a decision based on various criteria. One of the primary concerns on ranking methodologies such as analytical hierarchy process (AHP is that decision makers cannot express his/her feeling in crisp form. Therefore, we need to use linguistic terms to receive the relative weights for comparing various alternatives. In this paper, we discuss ranking different alternatives based on the implementation of preference relation matrix based on intuitionistic fuzzy sets.

  4. International Conference on Matrix Analysis and its Applications 2015

    CERN Document Server

    2017-01-01

    This volume presents recent advances in the field of matrix analysis based on contributions at the MAT-TRIAD 2015 conference. Topics covered include interval linear algebra and computational complexity, Birkhoff polynomial basis, tensors, graphs, linear pencils, K-theory and statistic inference, showing the ubiquity of matrices in different mathematical areas. With a particular focus on matrix and operator theory, statistical models and computation, the International Conference on Matrix Analysis and its Applications 2015, held in Coimbra, Portugal, was the sixth in a series of conferences. Applied and Computational Matrix Analysis will appeal to graduate students and researchers in theoretical and applied mathematics, physics and engineering who are seeking an overview of recent problems and methods in matrix analysis.

  5. Matrix method for acoustic levitation simulation.

    Science.gov (United States)

    Andrade, Marco A B; Perez, Nicolas; Buiochi, Flavio; Adamowski, Julio C

    2011-08-01

    A matrix method is presented for simulating acoustic levitators. A typical acoustic levitator consists of an ultrasonic transducer and a reflector. The matrix method is used to determine the potential for acoustic radiation force that acts on a small sphere in the standing wave field produced by the levitator. The method is based on the Rayleigh integral and it takes into account the multiple reflections that occur between the transducer and the reflector. The potential for acoustic radiation force obtained by the matrix method is validated by comparing the matrix method results with those obtained by the finite element method when using an axisymmetric model of a single-axis acoustic levitator. After validation, the method is applied in the simulation of a noncontact manipulation system consisting of two 37.9-kHz Langevin-type transducers and a plane reflector. The manipulation system allows control of the horizontal position of a small levitated sphere from -6 mm to 6 mm, which is done by changing the phase difference between the two transducers. The horizontal position of the sphere predicted by the matrix method agrees with the horizontal positions measured experimentally with a charge-coupled device camera. The main advantage of the matrix method is that it allows simulation of non-symmetric acoustic levitators without requiring much computational effort.

  6. Single-channel source separation using non-negative matrix factorization

    DEFF Research Database (Denmark)

    Schmidt, Mikkel Nørgaard

    -determined and its solution relies on making appropriate assumptions concerning the sources. This dissertation is concerned with model-based probabilistic single-channel source separation based on non-negative matrix factorization, and consists of two parts: i) three introductory chapters and ii) five published...... papers. The first part introduces the single-channel source separation problem as well as non-negative matrix factorization and provides a comprehensive review of existing approaches, applications, and practical algorithms. This serves to provide context for the second part, the published papers......, in which a number of methods for single-channel source separation based on non-negative matrix factorization are presented. In the papers, the methods are applied to separating audio signals such as speech and musical instruments and separating different types of tissue in chemical shift imaging....

  7. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  8. Road MAPs to engineer host microbiomes

    NARCIS (Netherlands)

    Oyserman, B. O.; Medema, Marnix H; Raaijmakers, J.M.

    2018-01-01

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the

  9. Matrix analysis

    CERN Document Server

    Bhatia, Rajendra

    1997-01-01

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu­ ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe­ matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to...

  10. M(atrix) theory: matrix quantum mechanics as a fundamental theory

    International Nuclear Information System (INIS)

    Taylor, Washington

    2001-01-01

    This article reviews the matrix model of M theory. M theory is an 11-dimensional quantum theory of gravity that is believed to underlie all superstring theories. M theory is currently the most plausible candidate for a theory of fundamental physics which reconciles gravity and quantum field theory in a realistic fashion. Evidence for M theory is still only circumstantial -- no complete background-independent formulation of the theory exists as yet. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, it has appeared in a different guise as the discrete light-cone quantization of M theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory that reduces to a supersymmetric theory of gravity at low energies. Although its fundamental degrees of freedom are essentially pointlike, higher-dimensional fluctuating objects (branes) arise through the non-Abelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed

  11. A Note on Inclusion Intervals of Matrix Singular Values

    Directory of Open Access Journals (Sweden)

    Shu-Yu Cui

    2012-01-01

    Full Text Available We establish an inclusion relation between two known inclusion intervals of matrix singular values in some special case. In addition, based on the use of positive scale vectors, a known inclusion interval of matrix singular values is also improved.

  12. A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation.

    Science.gov (United States)

    Edgar, Lowell T; Sibole, Scott C; Underwood, Clayton J; Guilkey, James E; Weiss, Jeffrey A

    2013-01-01

    Recent interest in the process of vascularisation within the biomedical community has motivated numerous new research efforts focusing on the process of angiogenesis. Although the role of chemical factors during angiogenesis has been well documented, the role of mechanical factors, such as the interaction between angiogenic vessels and the extracellular matrix, remains poorly understood. In vitro methods for studying angiogenesis exist; however, measurements available using such techniques often suffer from limited spatial and temporal resolutions. For this reason, computational models have been extensively employed to investigate various aspects of angiogenesis. This paper outlines the formulation and validation of a simple and robust computational model developed to accurately simulate angiogenesis based on length, branching and orientation morphometrics collected from vascularised tissue constructs. Microvessels were represented as a series of connected line segments. The morphology of the vessels was determined by a linear combination of the collagen fibre orientation, the vessel density gradient and a random walk component. Excellent agreement was observed between computational and experimental morphometric data over time. Computational predictions of microvessel orientation within an anisotropic matrix correlated well with experimental data. The accuracy of this modelling approach makes it a valuable platform for investigating the role of mechanical interactions during angiogenesis.

  13. Study on the Seismic Response of a Portal Frame Structure Based on the Transfer Matrix Method of Multibody System

    Directory of Open Access Journals (Sweden)

    Jianguo Ding

    2014-11-01

    Full Text Available Portal frame structures are widely used in industrial building design but unfortunately are often damaged during an earthquake. As a result, a study on the seismic response of this type of structure is important to both human safety and future building designs. Traditionally, finite element methods such as the ANSYS and MIDAS have been used as the primary methods of computing the response of such a structure during an earthquake; however, these methods yield low calculation efficiencies. In this paper, the mechanical model of a single-story portal frame structure with two spans is constructed based on the transfer matrix method of multibody system (MS-TMM; both the transfer matrix of the components in the model and the total transfer matrix equation of the structure are derived, and the corresponding MATLAB program is compiled to determine the natural period and seismic response of the structure. The results show that the results based on the MS-TMM are similar to those obtained by ANSYS, but the calculation time of the MS-TMM method is only 1/20 of that of the ANSYS method. Additionally, it is shown that the MS-TMM method greatly increases the calculation efficiency while maintaining accuracy.

  14. Reduction of multipartite qubit density matrixes to bipartite qubit density matrixes and criteria of partial separability of multipartite qubit density matrixes

    OpenAIRE

    Zhong, Zai-Zhe

    2004-01-01

    The partial separability of multipartite qubit density matrixes is strictly defined. We give a reduction way from N-partite qubit density matrixes to bipartite qubit density matrixes, and prove a necessary condition that a N-partite qubit density matrix to be partially separable is its reduced density matrix to satisfy PPT condition.

  15. Effect of γ-dose on the crystal structure and leaching behavior of TiO2 matrix labeled with 181Hf/181Ta tracer

    International Nuclear Information System (INIS)

    Banerjee, D.; Guin, R.; Das, S.K.; Thakare, S.V.

    2011-01-01

    A new method for the possible incorporation of nuclear wastes has been attempted here by using ceramic matrix of TiO 2 as a host precursor for confinement. Hafnium is used as a simulant for actinide high-level waste. After incorporating 181 Hf tracer into TiO 2 matrix, the leaching property of the resulting matrix was studied in water, sodium chloride and humic acid solutions. The leaching was measured in each of the case by following the radioactivity of 181 Hf. TiO 2 matrix has also been exposed to γ-radiation in order to simulate the radiation field for nuclear waste. It has been investigated with a nuclear technique called time differential perturbed Angular Correlation (TDPAC) that the lattice structure of titania remains undisturbed even under a strong radiation field. The leaching of 181 Hf has also been studied after irradiating the TiO 2 matrix with ?-radiation and the leaching behavior was observed not to change from that before irradiation. (author)

  16. A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments

    Directory of Open Access Journals (Sweden)

    Ayşe Betül Koç

    2014-01-01

    Full Text Available A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method. Then, the numerical results are compared with other methods.

  17. Matrix Failure Modes and Effects Analysis as a Knowledge Base for a Real Time Automated Diagnosis Expert System

    Science.gov (United States)

    Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.

  18. Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host.

    Science.gov (United States)

    Huang, Manli; Jiang, Bei; Xie, Guohua; Yang, Chuluo

    2017-10-19

    With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ) 2 Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.

  19. Study of theophylline stability on polymer matrix

    International Nuclear Information System (INIS)

    Rodrigues, Kiriaki M.S.; Parra, Duclerc F.; Oliveira, Maria Jose A.; Bustillos, Oscar V.; Lugao, Ademar B.

    2007-01-01

    Theophylline is a bronchodilator, commonly known and used as a drug model in the development of pharmaceutical formulations. The stability of the drug and the matrix, scope of this study, was evaluated in the solid formulation. Polymeric matrix based on PHB containing the drug (theophylline) was prepared and submitted to radiation sterilization at different doses of: 5, 10, 20 and 25 kGy using a Cobalt- 60 source. The modified drug release of theophylline sterilized tablets has been studied. Modern techniques of HPLC (High Pressure Liquid Chromatography), DSC (Differential scanning calorimetry) and TGA (Thermogravimetry analysis) were employed. The results have shown the influence of sterilization by radiation process in both the theophylline and the polymeric drug delivery matrix samples. The increasing of polymeric matrix crosslinking under radiation conditions retards the drug release while the theophylline structure is stable under the radiation (author)

  20. Fast GPU-based computation of the sensitivity matrix for a PET list-mode OSEM algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, Moulay Ali; Carrier, Jean-Francois [Montreal Univ., QC (Canada). Dept. de Radio-Oncologie; Hissoiny, Sami [Ecole Polytechnique de Montreal, QC (Canada). Dept. de Genie Informatique et Genie Logiciel; Despres, Philippe [Quebec Univ. (Canada). Dept. de Radio-Oncologie

    2011-07-01

    One of the obstacle in introducing a list-mode PET reconstruction algorithm for routine clinical use is the long computation time required for the sensitivity matrix calculation. This matrix must be computed for each study because it depends on the object attenuation map. During the last decade, studies have shown that 3D list-mode OSEM reconstruction algorithms could be effectively performed and considerably accelerated by GPU devices. However, most of that preliminary work (1) was done for pre-clinical PET systems in which the number of LORs is small compared to modern human PET systems and (2) supposed that the sensitivity matrix is pre-calculated. The time required to compute this matrix can however be longer than the reconstruction time itself. The objective of this work is to investigate the performance of sensitivity matrix calculations in terms of computation time with modern GPUs, for clinical fully 3D LM-OSEM for modern PET scanners. For this purpose, sensitivity matrix calculations and full list-mode OSEM reconstruction for human PET systems were implemented on GPUs using the CUDA framework. The system matrices were built on-the-fly by using the multi-ray Siddon algorithm. The time to compute the sensitivity matrix for 288 x 288 x 57 arrays using 3 tangential LORs was 29 seconds. The 3D LM-OSEM algorithm, including the sensitivity matrix calculation, was performed for the same LORs in 71 seconds for 62 millions events, 6 frames and 1 iterations. This work let envision fast reconstructions for advanced PET application such as dynamic studies and parametric image reconstruction. (orig.)

  1. Fish, fans and hydroids: host species of pygmy seahorses.

    Science.gov (United States)

    Reijnen, Bastian T; van der Meij, Sancia E T; van Ofwegen, Leen P

    2011-01-01

    An overview of the octocoral and hydrozoan host species of pygmy seahorses is provided based on literature records and recently collected field data for Hippocampus bargibanti, Hippocampus denise and Hippocampus pontohi. Seven new associations are recognized and an overview of the so far documented host species is given. A detailed re-examination of octocoral type material and a review of the taxonomic history of the alcyonacean genera Annella (Subergorgiidae) and Muricella (Acanthogorgiidae) are included as baseline for future revisions. The host specificity and colour morphs of pygmy seahorses are discussed, as well as the reliability of (previous) identifications and conservation issues.

  2. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Science.gov (United States)

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  3. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  4. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  5. Experiences of interprofessional implementation of a healthcare matrix.

    Science.gov (United States)

    Lee, Su-Shin; Chiang, Hung-Che; Chen, Meng-Chum; Chen, Ling-Sui; Hsu, Pei-Ling; Sun, I-Feng; Lai, Chung-Sheng

    2008-12-01

    The Taiwan Joint Commission on Hospital Accreditation endorsed the Institute of Medicine (IOM) dimensions of health care quality as safe, timely, effective, efficient, equitable, and patient-centered. The Taiwan Association of Medical Education has also adopted the Accreditation Council for Graduate Medical Education (ACGME) outcome project and core competencies for Taiwan physicians in training. These schemes focus on patient care, medical knowledge and skills, interpersonal and communication skills, professionalism, system-based practice and practice-based learning and improvement. Bingham (2004) described a Healthcare Matrix that links to the ACGME Core Competencies and the IOM Dimensions of Quality as a tool to improve health care. The matrix provides a blueprint to help residents learn the core competencies in patient care, and to help the faculty to link mastery of the competencies with improvements in quality of care. However, the "six-by-six" framework was too complicated to fill in. Furthermore, the translation of the IOM aims and ACGME core competencies into the Chinese language seemed incoherent and difficult to remember. We simplified the matrix by merging some columns of the original Healthcare Matrix, and reduced the 6 x 6 form into a 4 x 5 framework. The matrix was applied in case conferences, mortality and morbidity conferences, combined meetings and nursing quality assurance meetings in different departments. This format organizes the presentation and discussion, highlighting strengths or deficiencies in key aspects of patient care. With interprofessional collaboration, the matrix has been used in the departments of Plastic Surgery, and Nursing and Performance Management in our hospital. The achievements are encouraging. The Taiwan Edition Healthcare Matrix is worthy of consideration, having been used in a Mandarin-speaking region of Asia.

  6. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    Science.gov (United States)

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  7. Phenomenological model of nanocluster in polymer matrix

    International Nuclear Information System (INIS)

    Oksengendler, B.L.; Turaeva, N.N.; Azimov, J.; Rashidova, S.Sh.

    2010-01-01

    The phenomenological model of matrix nanoclusters is presented based on the Wood-Saxon potential used in nuclear physics. In frame of this model the following problems have been considered: calculation of width of diffusive layer between nanocluster and matrix, definition of Tamm surface electronic state taking into account the diffusive layer width, receiving the expression for specific magnetic moment of nanoclusters taking into account the interface width. (authors)

  8. Host Range Specificity in Verticillium dahliae.

    Science.gov (United States)

    Bhat, R G; Subbarao, K V

    1999-12-01

    ABSTRACT Verticillium dahliae isolates from artichoke, bell pepper, cabbage, cauliflower, chili pepper, cotton, eggplant, lettuce, mint, potato, strawberry, tomato, and watermelon and V. albo-atrum from alfalfa were evaluated for their pathogenicity on all 14 hosts. One-month-old seedlings were inoculated with a spore suspension of about 10(7) conidia per ml using a root-dip technique and incubated in the greenhouse. Disease incidence and severity, plant height, and root and shoot dry weights were recorded 6 weeks after inoculation. Bell pepper, cabbage, cauliflower, cotton, eggplant, and mint isolates exhibited host specificity and differential pathogenicity on other hosts, whereas isolates from artichoke, lettuce, potato, strawberry, tomato, and watermelon did not. Bell pepper was resistant to all Verticillium isolates except isolates from bell pepper and eggplant. Thus, host specificity exists in some isolates of V. dahliae. The same isolates were characterized for vegetative compatibility groups (VCGs) through complementation of nitrate nonutilizing (nit) mutants. Cabbage and cauliflower isolates did not produce nit mutants. The isolate from cotton belonged to VCG 1; isolates from bell pepper, eggplant, potato, and tomato, to VCG 4; and the remaining isolates, to VCG 2. These isolates were also analyzed using the random amplified polymorphic DNA (RAPD) method. Forty random primers were screened, and eighteen of them amplified DNA from Verticillium. Based on RAPD banding patterns, cabbage and cauliflower isolates formed a unique group, distinct from other V. dahliae and V. albo-atrum groups. Minor genetic variations were observed among V. dahliae isolates from other hosts, regardless of whether they were host specific or not. There was no correlation among pathogenicity, VCGs, and RAPD banding patterns. Even though the isolates belonged to different VCGs, they shared similar RAPD profiles. These results suggest that management of Verticillium wilt in some crops

  9. Link predication based on matrix factorization by fusion of multi class organizations of the network

    OpenAIRE

    Jiao, Pengfei; Cai, Fei; Feng, Yiding; Wang, Wenjun

    2017-01-01

    Link predication aims at forecasting the latent or unobserved edges in the complex networks and has a wide range of applications in reality. Almost existing methods and models only take advantage of one class organization of the networks, which always lose important information hidden in other organizations of the network. In this paper, we propose a link predication framework which makes the best of the structure of networks in different level of organizations based on nonnegative matrix fac...

  10. A methodology for developing high-integrity knowledge base using document analysis and ECPN matrix analysis with backward simulation

    International Nuclear Information System (INIS)

    Park, Joo Hyun

    1999-02-01

    When transitions occur in large systems such as nuclear power plants (NPPs) or industrial process plants, it is often difficult to diagnose them. Various computer-based operator-aiding systems have been developed in order to help operators diagnose the transitions of the plants. In procedures for developing knowledge base system like operator-aiding systems, the knowledge acquisition and the knowledge base verification are core activities. This dissertation describes a knowledge acquisition method and a knowledge base verification method for developing high-integrity knowledge base system of NPP expert systems. The knowledge acquisition is one of the most difficult and time-consuming activities in developing knowledge base systems. There are two kinds of knowledge acquisition methods in view of knowledge sources. One is an acquisition method from human expert. This method, however, is not adequate to acquire the knowledge of NPP expert systems because the number of experts is not sufficient. In this work, we propose a novel knowledge acquisition method through documents analysis. The knowledge base can be built correctly, rapidly, and partially automatically through this method. This method is especially useful when it is difficult to find domain experts. Reliability of knowledge base systems depends on the quality of their knowledge base. Petri Net has been used to verify knowledge bases due to their formal outputs. The methods using Petri Net however are difficult to apply to large and complex knowledge bases because the Net becomes very large and complex. Also, with Petri Net, it is difficult to find proper input patterns that make anomalies occur. In order to overcome this difficulty, in this work, the anomaly candidates detection methods are developed based on Extended CPN (ECPN) matrix analysis. This work also defines the backward simulation of CPN to find compact input patterns for anomaly detection, which starts simulation from the anomaly candidates

  11. Milling of Nanoparticles Reinforced Al-Based Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Alokesh Pramanik

    2018-03-01

    Full Text Available This study investigated the face milling of nanoparticles reinforced Al-based metal matrix composites (nano-MMCs using a single insert milling tool. The effects of feed and speed on machined surfaces in terms of surface roughness, surface profile, surface appearance, chip surface, chip ratio, machining forces, and force signals were analyzed. It was found that surface roughness of machined surfaces increased with the increase of feed up to the speed of 60 mm/min. However, at the higher speed (100–140 mm/min, the variation of surface roughness was minor with the increase of feed. The machined surfaces contained the marks of cutting tools, lobes of material flow in layers, pits and craters. The chip ratio increased with the increase of feed at all speeds. The top chip surfaces were full of wrinkles in all cases, though the bottom surfaces carried the evidence of friction, adhesion, and deformed material layers. The effect of feed on machining forces was evident at all speeds. The machining speed was found not to affect machining forces noticeably at a lower feed, but those decreased with the increase of speed for the high feed scenario.

  12. Fabrication of Ceramic Matrix Composite Tubes Using a Porous Mullite/Alumina Matrix and Alumina/Mullite Fiber

    National Research Council Canada - National Science Library

    Radsick, Timothy

    2001-01-01

    ... or from inadequate oxide-based ones. A porous mullite/alumina matrix combined with alumina/mullite fiber reinforcement eliminates the need for an interface coating while producing a strong, tough and oxidation resistant composite...

  13. Prevention of Bacterial Contamination of a Silica Matrix Containing Entrapped β-Galactosidase through the Action of Covalently Bound Lysozymes

    Directory of Open Access Journals (Sweden)

    Heng Li

    2017-02-01

    Full Text Available β-galactosidase was successfully encapsulated within an amino-functionalised silica matrix using a “fish-in-net” approach and molecular imprinting technique followed by covalent binding of lysozyme via a glutaraldehyde-based method. Transmission electron microscopy (TEM, X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared (FTIR spectroscopy were used to characterise the silica matrix hosting the two enzymes. Both encapsulated β-galactosidase and bound lysozyme exhibited high enzymatic activities and outstanding operational stability in model reactions. Moreover, enzyme activities of the co-immobilised enzymes did not obviously change relative to enzymes immobilised separately. In antibacterial tests, bound lysozyme exhibited 95.5% and 89.6% growth inhibition of Staphylococcus aureus ATCC (American type culture collection 653 and Escherichia coli ATCC 1122, respectively. In milk treated with co-immobilised enzymes, favourable results were obtained regarding reduction of cell viability and high lactose hydrolysis rate. In addition, when both co-immobilised enzymes were employed to treat milk, high operational and storage stabilities were observed. The results demonstrate that the use of co-immobilised enzymes holds promise as an industrial strategy for producing low lactose milk to benefit people with lactose intolerance.

  14. Simulating quantum systems on classical computers with matrix product states

    International Nuclear Information System (INIS)

    Kleine, Adrian

    2010-01-01

    In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of

  15. Simulating quantum systems on classical computers with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Kleine, Adrian

    2010-11-08

    In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of

  16. Identification of host response signatures of infection.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Sinha, Anupama; Bent, Zachary

    2013-02-01

    Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to the pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation for

  17. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    Science.gov (United States)

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  18. Studies on the immobilization of simulated HLW in NaTi2(PO4)3 (NTP) matrix

    International Nuclear Information System (INIS)

    Raja Madhavan, R.; Govindan Kutty, K.V.; Gandhi, A.S.

    2015-01-01

    Immobilization of high level nuclear waste (HLW) is a big challenge faced by the nuclear industry today. The HLW has to be contained and isolated from the biosphere for geological timescales. NZP family of compounds is very versatile monophasic hosts for HLW immobilization. Their crystal structure can accommodate nearly all the cations known to be present in HLW due to its open structure with voids of different size. In the present study a systematic investigation on NaTi 2 (PO 4 ) 3 belonging to the NZP family; as a potential host for HLW immobilization was carried out. A simulated HLW expected from Fast Breeder Test Reactor, India (FBTR) (150Gwd/T burnup, 1 year cooling) was used. Simulated NTP waste forms with 5, 10, 15 wt. % waste loading were prepared by employing a wet chemical method and characterized. Single phase simulated NTP waste forms with up to 5 wt.% waste loading could be prepared for samples sintered in air and above 5 wt.% waste loading, monazite phase is observed as a minor secondary phase. It was found that when sintering is done in Ar/10%H 2 , NTP matrix accepts up to 10 wt.% waste loading without formation of any second phase. From the SEM studies, it was observed that samples sintered in air as well as Ar/10%H 2 palladium segregated as a metal phase and uniformly distributed throughout the waste matrix. The elemental mapping revealed retention of some of the fission products like Ru, Mo, Cs that are volatile during sintering above 1173 K and are homogenously distributed in the matrix. (author)

  19. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Science.gov (United States)

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  20. Approximate Solution of LR Fuzzy Sylvester Matrix Equations

    Directory of Open Access Journals (Sweden)

    Xiaobin Guo

    2013-01-01

    Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.

  1. Toward transparent nanocomposites based on polystyrene matrix and PMMA-grafted CeO2 nanoparticles.

    Science.gov (United States)

    Parlak, Onur; Demir, Mustafa M

    2011-11-01

    The association of transparent polymer and nanosized pigment particles offers attractive optical materials for various potential and existing applications. However, the particles embedded into polymers scatter light due to refractive index (RI) mismatch and reduce transparency of the resulting composite material. In this study, optical composites based on polystyrene (PS) matrix and poly(methyl methacrylate) (PMMA)-grafted CeO(2) hybrid particles were prepared. CeO(2) nanoparticles with an average diameter of 18 ± 8 nm were precipitated by treating Ce(NO(3))·6H(2)O with urea in the presence of a polymerizable surfactant, 3-methacyloxypropyltrimethoxy silane. PMMA chains were grafted on the surface of the nanoparticles upon free radical in situ solution polymerization. While blending of unmodified CeO(2) particles with PS resulted in opaque films, the transparency of the composite films was remarkably enhanced when prepared by PMMA-grafted CeO(2) hybrid particles, particularly those having a PMMA thickness of 9 nm. The improvement in transparency is presumably due to the reduction in RI mismatch between CeO(2) particles and the PS matrix when using PMMA chains at the interface.

  2. Matrix theory

    CERN Document Server

    Franklin, Joel N

    2003-01-01

    Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.

  3. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  4. Unified continuum damage model for matrix cracking in composite rotor blades

    International Nuclear Information System (INIS)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-01-01

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load

  5. Data from: Two different strategies of host manipulation allow parasites to persist in intermediate-definitive host systems

    NARCIS (Netherlands)

    Vries, de Lana; Langevelde, van F.

    2017-01-01

    Trophically-transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate-definitive host systems, two strategies of host manipulation have been evolved:

  6. Robust estimation of the correlation matrix of longitudinal data

    KAUST Repository

    Maadooliat, Mehdi

    2011-09-23

    We propose a double-robust procedure for modeling the correlation matrix of a longitudinal dataset. It is based on an alternative Cholesky decomposition of the form Σ=DLL⊤D where D is a diagonal matrix proportional to the square roots of the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely the correlation matrix. The first robustness is with respect to model misspecification for the innovation variances in D, and the second is robustness to outliers in the data. The latter is handled using heavy-tailed multivariate t-distributions with unknown degrees of freedom. We develop a Fisher scoring algorithm for computing the maximum likelihood estimator of the parameters when the nonredundant and unconstrained entries of (L,D) are modeled parsimoniously using covariates. We compare our results with those based on the modified Cholesky decomposition of the form LD2L⊤ using simulations and a real dataset. © 2011 Springer Science+Business Media, LLC.

  7. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    Science.gov (United States)

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Case for GEO Hosted SSA Payloads

    Science.gov (United States)

    Welsch, C.; Armand, B.; Repp, M.; Robinson, A.

    2014-09-01

    Space situational awareness (SSA) in the geosynchronous earth orbit (GEO) belt presents unique challenges, and given the national importance and high value of GEO satellites, is increasingly critical as space becomes more congested and contested. Space situational awareness capabilities can serve as an effective deterrent against potential adversaries if they provide accurate, timely, and persistent information and are resilient to the threat environment. This paper will demonstrate how simple optical SSA payloads hosted on GEO commercial and government satellites can complement the SSA mission and data provided by Space-Based Space Surveillance (SBSS) and the Geosynchronous Space Situational Awareness Program (GSSAP). GSSAP is built by Orbital Sciences Corporation and launched on July 28, 2014. Analysis performed for this paper will show how GEO hosted SSA payloads, working in combination with SBSS and GSSAP, can increase persistence and timely coverage of high value assets in the GEO belt. The potential to further increase GEO object identification and tracking accuracy by integrating SSA data from multiple sources across different viewing angles including GEO hosted SSA sources will be addressed. Hosting SSA payloads on GEO platforms also increases SSA mission architecture resiliency as the sensors are by distributed across multiple platforms including commercial platforms. This distributed architecture presents a challenging target for an adversary to attempt to degrade or disable. We will present a viable concept of operations to show how data from hosted SSA sensors could be integrated with SBSS and GSSAP data to present a comprehensive and more accurate data set to users. Lastly, we will present an acquisition approach using commercial practices and building on lessons learned from the Commercially Hosted Infra Red Payload CHIRP to demonstrate the affordability of GEO hosted SSA payloads.

  9. Host feeding in insect parasitoids: why destructively feed upon a host that excretes an alternative?

    NARCIS (Netherlands)

    Burger, J.S.M.; Reijnen, T.M.; Van Lenteren, J.C.; Vet, L.E.M.

    2004-01-01

    Host feeding is the consumption of host tissue by the adult female parasitoid. We studied the function of destructive host feeding and its advantage over non-destructive feeding on host-derived honeydew in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We allowed

  10. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram; Barbeck, Mike; Kirkpatrick, C James [REPAIR-Lab, Institute of Pathology, Johannes Gutenberg University, Mainz (Germany); Schlee, Markus [Bayreuther Strasse 39, D-91301, Forchheim (Germany); Webber, Matthew J [Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States); Willershausen, Ines [Institute for Dental Material Sciences and Technology, University Medical Center of the Johannes Gutenberg University, Mainz (Germany); Balic, Ela; Goerlach, Christoph [Geistlich Pharma AG, Wolhusen (Switzerland); Stupp, Samuel I [Department of Materials Science and Engineering, Chemistry, and Medicine, Northwestern University, Evanston, IL 60208 (United States); Sader, Robert A, E-mail: ghanaati@uni-mainz.de [Clinic for Maxillofacial and Plastic Surgery, Johann Wolfgang Goethe University, Frankfurt Am Main (Germany)

    2011-02-15

    This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.

  11. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic

    International Nuclear Information System (INIS)

    Ghanaati, Shahram; Barbeck, Mike; Kirkpatrick, C James; Schlee, Markus; Webber, Matthew J; Willershausen, Ines; Balic, Ela; Goerlach, Christoph; Stupp, Samuel I; Sader, Robert A

    2011-01-01

    This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.

  12. Fuzzy vulnerability matrix

    International Nuclear Information System (INIS)

    Baron, Jorge H.; Rivera, S.S.

    2000-01-01

    The so-called vulnerability matrix is used in the evaluation part of the probabilistic safety assessment for a nuclear power plant, during the containment event trees calculations. This matrix is established from what is knows as Numerical Categories for Engineering Judgement. This matrix is usually established with numerical values obtained with traditional arithmetic using the set theory. The representation of this matrix with fuzzy numbers is much more adequate, due to the fact that the Numerical Categories for Engineering Judgement are better represented with linguistic variables, such as 'highly probable', 'probable', 'impossible', etc. In the present paper a methodology to obtain a Fuzzy Vulnerability Matrix is presented, starting from the recommendations on the Numerical Categories for Engineering Judgement. (author)

  13. Green's matrix for a second-order self-adjoint matrix differential operator

    International Nuclear Information System (INIS)

    Sisman, Tahsin Cagri; Tekin, Bayram

    2010-01-01

    A systematic construction of the Green's matrix for a second-order self-adjoint matrix differential operator from the linearly independent solutions of the corresponding homogeneous differential equation set is carried out. We follow the general approach of extracting the Green's matrix from the Green's matrix of the corresponding first-order system. This construction is required in the cases where the differential equation set cannot be turned to an algebraic equation set via transform techniques.

  14. Binding of matrix metalloproteinase inhibitors to extracellular matrix: 3D-QSAR analysis.

    Science.gov (United States)

    Zhang, Yufen; Lukacova, Viera; Bartus, Vladimir; Nie, Xiaoping; Sun, Guorong; Manivannan, Ethirajan; Ghorpade, Sandeep R; Jin, Xiaomin; Manyem, Shankar; Sibi, Mukund P; Cook, Gregory R; Balaz, Stefan

    2008-10-01

    Binding to the extracellular matrix, one of the most abundant human protein complexes, significantly affects drug disposition. Specifically, the interactions with extracellular matrix determine the free concentrations of small molecules acting in tissues, including signaling peptides, inhibitors of tissue remodeling enzymes such as matrix metalloproteinases, and other drug candidates. The nature of extracellular matrix binding was elucidated for 63 matrix metalloproteinase inhibitors, for which the association constants to an extracellular matrix mimic were reported here. The data did not correlate with lipophilicity as a common determinant of structure-nonspecific, orientation-averaged binding. A hypothetical structure of the binding site of the solidified extracellular matrix surrogate was analyzed using the Comparative Molecular Field Analysis, which needed to be applied in our multi-mode variant. This fact indicates that the compounds bind to extracellular matrix in multiple modes, which cannot be considered as completely orientation-averaged and exhibit structural dependence. The novel comparative molecular field analysis models, exhibiting satisfactory descriptive and predictive abilities, are suitable for prediction of the extracellular matrix binding for the untested chemicals, which are within applicability domains. The results contribute to a better prediction of the pharmacokinetic parameters such as the distribution volume and the tissue-blood partition coefficients, in addition to a more imminent benefit for the development of more effective matrix metalloproteinase inhibitors.

  15. Local host adaptation and use of a novel host in the seed beetle Megacerus eulophus.

    Directory of Open Access Journals (Sweden)

    Gisela C Stotz

    Full Text Available Spatial variation in host plant availability may lead to specialization in host use and local host adaptation in herbivorous insects, which may involve a cost in performance on other hosts. We studied two geographically separated populations of the seed beetle Megacerus eulophus (Coleoptera: Bruchidae in central Chile: a population from the host Convolvulus chilensis (in Aucó and a population from C. bonariensis (in Algarrobo. In Aucó C. chilensis is the only host plant, while in Algarrobo both C. bonariensis and C. chilensis are available. We tested local adaptation to these native host plants and its influence on the use of another, exotic host plant. We hypothesized that local adaptation would be verified, particularly for the one-host population (Aucó, and that the Aucó population would be less able to use an alternative, high-quality host. We found evidence of local adaptation in the population from C. chilensis. Thus, when reared on C. chilensis, adults from the C. chilensis population were larger and lived longer than individuals from the C. bonariensis population, while bruchids from the two populations had the same body size and longevity when reared on C. bonariensis. Overall, bruchids from the C. chilensis population showed greater performance traits than those from the C. bonariensis population. There were no differences between the bruchid populations in their ability to use the alternative, exotic host Calystegia sepium, as shown by body size and longevity patterns. Results suggest that differences in local adaptation might be explained by differential host availability in the study populations.

  16. Agent-based dynamic knowledge representation of Pseudomonas aeruginosa virulence activation in the stressed gut: Towards characterizing host-pathogen interactions in gut-derived sepsis.

    Science.gov (United States)

    Seal, John B; Alverdy, John C; Zaborina, Olga; An, Gary

    2011-09-19

    There is a growing realization that alterations in host-pathogen interactions (HPI) can generate disease phenotypes without pathogen invasion. The gut represents a prime region where such HPI can arise and manifest. Under normal conditions intestinal microbial communities maintain a stable, mutually beneficial ecosystem. However, host stress can lead to changes in environmental conditions that shift the nature of the host-microbe dialogue, resulting in escalation of virulence expression, immune activation and ultimately systemic disease. Effective modulation of these dynamics requires the ability to characterize the complexity of the HPI, and dynamic computational modeling can aid in this task. Agent-based modeling is a computational method that is suited to representing spatially diverse, dynamical systems. We propose that dynamic knowledge representation of gut HPI with agent-based modeling will aid in the investigation of the pathogenesis of gut-derived sepsis. An agent-based model (ABM) of virulence regulation in Pseudomonas aeruginosa was developed by translating bacterial and host cell sense-and-response mechanisms into behavioral rules for computational agents and integrated into a virtual environment representing the host-microbe interface in the gut. The resulting gut milieu ABM (GMABM) was used to: 1) investigate a potential clinically relevant laboratory experimental condition not yet developed--i.e. non-lethal transient segmental intestinal ischemia, 2) examine the sufficiency of existing hypotheses to explain experimental data--i.e. lethality in a model of major surgical insult and stress, and 3) produce behavior to potentially guide future experimental design--i.e. suggested sample points for a potential laboratory model of non-lethal transient intestinal ischemia. Furthermore, hypotheses were generated to explain certain discrepancies between the behaviors of the GMABM and biological experiments, and new investigatory avenues proposed to test those

  17. Definition of a matrix of the generalized parameters asymmetrical multiphase transmission lines

    Directory of Open Access Journals (Sweden)

    Suslov V.M.

    2005-12-01

    Full Text Available Idle time, without introduction of wave characteristics, algorithm of definition of a matrix of the generalized parameters asymmetrical multiphase transmission lines is offered. Definition of a matrix of parameters is based on a matrix primary specific of parameters of line and simple iterative procedure. The amount of iterations of iterative procedure is determined by a set error of performance of the resulted matrix ratio between separate blocks of a determined matrix. The given error is connected by close image of with a margin error determined matrix.

  18. Some remarks on unilateral matrix equations

    International Nuclear Information System (INIS)

    Cerchiai, Bianca L.; Zumino, Bruno

    2001-01-01

    We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials

  19. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    Science.gov (United States)

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  20. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.

    Science.gov (United States)

    Cipollini, Don; Peterson, Donnie L

    2018-02-27

    The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.