WorldWideScience

Sample records for host genetic background

  1. HCV tumor promoting effect is dependent on host genetic background.

    Directory of Open Access Journals (Sweden)

    Naama Klopstock

    Full Text Available BACKGROUND: The hepatitis C virus (HCV is one of the major risk factors for the development of hepatocellular carcinoma (HCC. Nevertheless, transgenic mice which express the whole HCV polyprotein (HCV-Tg do not develop HCC. Whereas chronic HCV infection causes inflammation in patients, in HCV-Tg mice, the host immune reaction against viral proteins is lacking. We aimed to test the role of HCV proteins in HCC development on the background of chronic inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: We crossed HCV-Tg mice that do not develop HCC with the Mdr2-knockout (Mdr2-KO mice which develop inflammation-associated HCC, to generate Mdr2-KO/HCV-Tg mice. We studied the effect of the HCV transgene on tumor incidence, hepatocyte mitosis and apoptosis, and investigated the potential contributing factors for the generated phenotype by gene expression and protein analyses. The Mdr2-KO/HCV-Tg females from the N2 generation of this breeding (having 75% of the FVB/N genome and 25% of the C57BL/6 genome produced significantly larger tumors in comparison with Mdr2-KO mice. In parallel, the Mdr2-KO/HCV-Tg females had an enhanced inflammatory gene expression signature. However, in the N7 generation (having 99.2% of the FVB/N genome and 0.8% of the C57BL/6 genome there was no difference in tumor development between Mdr2-KO/HCV-Tg and Mdr2-KO animals of both sexes. The HCV transgene was similarly expressed in the livers of Mdr2-KO/HCV-Tg females of both generations, as revealed by detection of the HCV transcript and the core protein. CONCLUSION: These findings suggest that the HCV transgene accelerated inflammation-associated hepatocarcinogenesis in a host genetic background-dependent manner.

  2. Selection for increased spore efficacy by host genetic background in a wheat powdery mildew population.

    Science.gov (United States)

    Villaréal, L M; Lannou, C

    2000-12-01

    ABSTRACT A field experiment was designed to test the hypothesis of for increased reproductive ability on different host genetic backgrounds within a wheat powdery mildew population. Studies have suggested that, in host mixtures, such selection could increase the reproduction rate of simple patho-types that always develop on the same host genetic background, whereas complex pathotypes should not be affected because they infect different host genotypes. In our experiment, the Erysiphe graminis population reproduced for successive generations on cvs. Orkis and Etecho, either grown as pure stands or in a mixture. In an additional treatment, the host cultivar changed after each generation. Isolates were sampled in April and, after seven pathogen generations, in July. At the second sampling date and for pure stands only, mean spore efficacy was greater on the host from which isolates were sampled than on the other one. This was attributed to selection within the pathogen population for better spore efficacy on the host genetic background. This selection was independent of the virulence genes carried by the isolates. The possibility of a phenotypic plasticity effect was tested and rejected.

  3. Impact of CCR5delta32 Host Genetic Background and Disease Progression on HIV-1 Intrahost Evolutionary Processes: Efficient Hypothesis Testing through Hierarchical Phylogenetic Models

    NARCIS (Netherlands)

    Edo-Matas, Diana; Lemey, Philippe; Tom, Jennifer A.; Serna-Bolea, Cèlia; van den Blink, Agnes E.; van 't Wout, Angélique B.; Schuitemaker, Hanneke; Suchard, Marc A.

    2011-01-01

    The interplay between C-C chemokine receptor type 5 (CCR5) host genetic background, disease progression, and intrahost HIV-1 evolutionary dynamics remains unclear because differences in viral evolution between hosts limit the ability to draw conclusions across hosts stratified into clinically

  4. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds.

    Directory of Open Access Journals (Sweden)

    Daniel P Depledge

    2009-07-01

    Full Text Available Genome sequencing of Leishmania species that give rise to a range of disease phenotypes in the host has revealed highly conserved gene content and synteny across the genus. Only a small number of genes are differentially distributed between the three species sequenced to date, L. major, L. infantum and L. braziliensis. It is not yet known how many of these genes are expressed in the disease-promoting intracellular amastigotes of these species or whether genes conserved between the species are differentially expressed in the host.We have used customised oligonucleotide microarrays to confirm that all of the differentially distributed genes identified by genome comparisons are expressed in intracellular amastigotes, with only a few of these subject to regulation at the RNA level. In the first large-scale study of gene expression in L. braziliensis, we show that only approximately 9% of the genes analysed are regulated in their RNA expression during the L. braziliensis life cycle, a figure consistent with that observed in other Leishmania species. Comparing amastigote gene expression profiles between species confirms the proposal that Leishmania transcriptomes undergo little regulation but also identifies conserved genes that are regulated differently between species in the host. We have also investigated whether host immune competence influences parasite gene expression, by comparing RNA expression profiles in L. major amastigotes derived from either wild-type (BALB/c or immunologically compromised (Rag2(-/- gamma(c (-/- mice. While parasite dissemination from the site of infection is enhanced in the Rag2(-/- gamma(c (-/- genetic background, parasite RNA expression profiles are unperturbed.These findings support the hypothesis that Leishmania amastigotes are pre-adapted for intracellular survival and undergo little dynamic modulation of gene expression at the RNA level. Species-specific parasite factors contributing to virulence and pathogenicity

  5. Genetical background of intelligence

    Directory of Open Access Journals (Sweden)

    Anna Junkiert-Czarnecka

    2016-06-01

    Full Text Available Intelligence as an ability to reason, think abstractly and adapt effectively to the environment is a subject of research in the field of psychology, neurobiology, and in the last twenty years genetics as well. Genetical testing of twins carried out from XX century indicated heritebility of intelligence, therefore confirmed an influence of genetic factor on cognitive processes. Studies on genetic background of intelligence focus on dopaminergic (DRD2, DRD4, COMT, SLC6A3, DAT1, CCKAR and adrenergic system (ADRB2, CHRM2 genes as well as, neutrofins (BDNF and oxidative stress genes (LTF, PRNP. Positive effect of investigated gene polymorphism was indicated by variation c.957C>T DRD2 gene (if in polymorphic site is thymine, polymorphism c.472G>A COMT gene (presence of adenine and also gene ADRB2 c.46A->G (guanine, CHRM2 (thymine in place c.1890A>T and BDNF (guanine in place c.472G>A Obtained results indicate that intelligence is a feature dependent not only on genetic but also an environmental factor.

  6. Genetical background of intelligence.

    Science.gov (United States)

    Junkiert-Czarnecka, Anna; Haus, Olga

    2016-06-13

    Intelligence as an ability to reason, think abstractly and adapt effectively to the environment is a subject of research in the field of psychology, neurobiology, and in the last twenty years genetics as well. Genetical testing of twins carried out from XX century indicated heritebility of intelligence, therefore confirmed an influence of genetic factor on cognitive processes. Studies on genetic background of intelligence focus on dopaminergic (DRD2, DRD4, COMT, SLC6A3, DAT1, CCKAR) and adrenergic system (ADRB2, CHRM2) genes as well as, neutrofins (BDNF) and oxidative stress genes (LTF, PRNP). Positive effect of investigated gene polymorphism was indicated by variation c.957C>T DRD2 gene (if in polymorphic site is thymine), polymorphism c.472G>A COMT gene (presence of adenine) and also gene ADRB2 c.46A->G (guanine), CHRM2 (thymine in place c.1890A>T) and BDNF (guanine in place c.472G>A) Obtained results indicate that intelligence is a feature dependent not only on genetic but also an environmental factor.

  7. Mycoviruses in the Plant Pathogen Ustilaginoidea virens Are Not Correlated with the Genetic Backgrounds of Its Hosts.

    Science.gov (United States)

    Zhong, Jie; Cheng, Chuan Yuan; Gao, Bi Da; Zhou, Qian; Zhu, Hong Jian

    2017-05-03

    Ustilaginoidea virens, the causal agent of rice false smut, is one of the most devastating grain diseases that causes loss of yield in most rice-growing areas worldwide. In this study, we performed a dsRNA screen to isolate mycoviruses from 35 U. virens strains. The results revealed that 34 of the tested isolates were infected by various dsRNA elements, displaying highly viral diversity and mixed infections. We characterized a 5.3 kbp dsRNA from a typical isolate containing dsRNA segments with sizes ranging from 0.5 to 5.3 kbp. Sequence analysis of its genomic properties indicated that it is a novel victorivirus, named Ustilaginoidea virens RNA virus 5 (UvRV5), that belongs to the family Totiviridae. RT-PCR detection was performed and indicated that not all the dsRNA bands that were 5.3 kbp in size contained UvRV5. Moreover, the genetic relatedness of all the U. virens strains was estimated according to phylogenetic analysis of the partial intergenic spacer region (IGS) sequences. However, concordance was not found between the dsRNA profiles and the IGS-based genetic relatedness of their host fungi.

  8. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Directory of Open Access Journals (Sweden)

    Maura De Simone

    Full Text Available Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s may have a role in the reduction of cell-mediated immunity playing a critical role in

  9. A possible correlation between the host genetic background in the epidemiology of Hepatitis B virus in the Amazon region of Brazil

    Directory of Open Access Journals (Sweden)

    A. K. C. R. Santos

    1995-08-01

    Full Text Available The Amazon region of Brazil is an area of great interest because of the large distribution of hepatitis B virus in specific Western areas. Seven urban communities and 24 Indian groups were visited in a total of 4,244 persons. Each individual was interviewed in order to obtain demographic and familial information. Whole blood was collected for serology and genetic determinations. Eleven genetic markers and three HBV markers were tested. Among the most relevant results it was possible to show that (i there was a large variation of previous exposure to HBV in both urban and non-urban groups ranging from 0 to 59.2%; (ii there was a different pattern of epidemiological distribution of HBV that was present even among a same linguistic Indian group, with mixed patterns of correlation between HBsAg and anti-HBs and (iii the prevalence of HBV markers (HBsAg and anti-HBs were significantly higher (P=0.0001 among the Indian population (18.8% than the urban groups (12.5%. Its possible that the host genetic background could influence and modulate the replication of the virus in order to generate HB carrier state.

  10. Primary alveolar echinococcosis: course of larval development and antibody responses in intermediate host rodents with different genetic backgrounds after oral infection with eggs of Echinococcus multilocularis.

    Science.gov (United States)

    Matsumoto, Jun; Kouguchi, Hirokazu; Oku, Yuzaburo; Yagi, Kinpei

    2010-09-01

    We investigated parasite establishment, subsequent larval development and antibody responses in gerbils, cotton rats and 4 inbred mouse strains until 16 weeks post inoculation (p.i.) with 200 eggs of Echinococcus multilocularis. The rate of parasite establishment in the liver determined at 4 weeks p.i. was highest in DBA/2, followed by AKR/N, C57BL/10 and C57BL/6 mice, whereas gerbils harboured few parasite foci. The accurate number of liver lesions in cotton rats could not be determined due to rapid growth and advanced multivesiculation of the parasite observed at 2 weeks p.i. The course of larval development was most advanced in DBA/2 mice with mature protoscolex formation at 16 weeks p.i., followed by AKR/N harbouring metacestodes with sparsely distributed immature protoscoleces. On the other hand, C57BL/6 and C57BL/10 mice had infertile metacestodes without any protoscolex formation. The parasite growth in mice was totally slower than those in gerbils and cotton rats. Specific IgG and IgM responses against 3 types of native crude antigens of larval E. multilocularis were evaluated using somatic extracts of and vesicle fluid of metacestode, and somatic extracts from purified protoscoleces. The 4 mouse strains demonstrated basically similar kinetics with apparent IgG and IgM increases at 9 weeks p.i. and thereafter, except C57BL/10, exhibited higher levels of IgM against crude antigens at some time point of infection. On the other hand, a follow-up determination of specific IgG and IgM levels against recombinant antigens from larval E. multilocularis revealed that each mouse strain showed different antibody-level kinetics. The findings in the present study demonstrate that the course of host-parasite interactions in primary alveolar echinococcosis, caused by larval E. multilocularis, clearly varies among intermediate host rodents with different genetic backgrounds.

  11. HCV genetic heterogeneity and its host genetics

    Directory of Open Access Journals (Sweden)

    NIE Yonghong

    2013-10-01

    Full Text Available Hepatitis C represents a major worldwide public health problem. Studies have shown that both genetic diversity of hepatitis C virus (HCV and genetic polymorphisms of IL-28B, ITPA, and IP-10 in the host are implicated in the progression of hepatitis C, treatment response, and adverse effects. The research advances in the molecular epidemiology and clinical and therapeutic interventions of HCV genetic heterogeneity and single nucleotide polymorphisms in its host are reviewed. It is suggested that there is a pressing need for reliable data on the molecular epidemiology of HCV and its host, which will assist in the decision making of public health issues and reduce the morbidity and mortality of hepatitis C worldwide.

  12. Host genetics and dengue fever.

    Science.gov (United States)

    Xavier-Carvalho, Caroline; Cardoso, Cynthia Chester; de Souza Kehdy, Fernanda; Pacheco, Antonio Guilherme; Moraes, Milton Ozório

    2017-12-01

    Dengue is a major worldwide problem in tropical and subtropical areas; it is caused by four different viral serotypes, and it can manifest as asymptomatic, mild, or severe. Many factors interact to determine the severity of the disease, including the genetic profile of the infected patient. However, the mechanisms that lead to severe disease and eventually death have not been determined, and a great challenge is the early identification of patients who are more likely to progress to a worse health condition. Studies performed in regions with cyclic outbreaks such as Cuba, Brazil, and Colombia have demonstrated that African ancestry confers protection against severe dengue. Highlighting the host genetics as an important factor in infectious diseases, a large number of association studies between genetic polymorphisms and dengue outcomes have been published in the last two decades. The most widely used approach involves case-control studies with candidate genes, such as the HLA locus and genes for receptors, cytokines, and other immune mediators. Additionally, a Genome-Wide Association Study (GWAS) identified SNPs associated with African ethnicity that had not previously been identified in case-control studies. Despite the increasing number of publications in America, Africa, and Asia, the results are quite controversial, and a meta-analysis is needed to assess the consensus among the studies. SNPs in the MICB, TNF, CD209, FcγRIIA, TPSAB1, CLEC5A, IL10 and PLCE1 genes are associated with the risk or protection of severe dengue, and the findings have been replicated in different populations. A thorough understanding of the viral, human genetic, and immunological mechanisms of dengue and how they interact is essential for effectively preventing dengue, but also managing and treating patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Correlations of host genetic and gut microbiome composition

    Directory of Open Access Journals (Sweden)

    Krystyna Dabrowska

    2016-08-01

    Full Text Available The human gut microbiome has a considerable impact on host health. The long list of microbiome-related health disorders raises the question of what in fact determines microbiome composition. In this review we sought to understand how the host itself impacts the structure of the gut microbiota population, specifically by correlations of host genetics and gut microbiome composition.Host genetic profile has been linked to differences in microbiome composition, thus suggesting that host genetics can shape the gut microbiome of the host. However, cause-consequence mechanisms behind these links are still unclear. A survey of the possible mechanisms allowing host genetics to shape microbiota composition in the gut demonstrated the major role of metabolic functions and the immune system. A considerable impact of other factors, such as diet, may outweigh the effects of host genetic background. More studies are necessary for good understanding of the relations between the host genetic profile, gut microbiome composition, and host health. According to the idea of personalized medicine, patient-tailored management of microbiota content remains a fascinating area for further inquiry.

  14. Complex host genetics influence the microbiome in inflammatory bowel disease

    NARCIS (Netherlands)

    Knights, Dan; Silverberg, Mark S.; Weersma, Rinse K.; Gevers, Dirk; Dijkstra, Gerard; Huang, Hailiang; Tyler, Andrea D.; van Sommeren, Suzanne; Imhann, Floris; Stempak, Joanne M.; Huang, Hu; Vangay, Pajau; Al-Ghalith, Gabriel A.; Russell, Caitlin; Sauk, Jenny; Knight, Jo; Daly, Mark J.; Huttenhower, Curtis; Xavier, Ramnik J.

    2014-01-01

    Background: Human genetics and host-associated microbial communities have been associated independently with a wide range of chronic diseases. One of the strongest associations in each case is inflammatory bowel disease (IBD), but disease risk cannot be explained fully by either factor individually.

  15. Genetic background of aggressive behaviour in dogs

    Directory of Open Access Journals (Sweden)

    Witold Stanisław Proskura

    2013-01-01

    Full Text Available The background of aggression is very complicated and the basis of its occurrence has not been well explained yet. It is thought that tendency to aggressiveness is an effect of both environmental and genetic factors. Aggression is a very undesirable behavioural trait in dogs living with humans. The aim of this study was to determine the relationship between two polymorphisms: DRD4 intron II VNTR and C/T substitution in exon I HTR2B genes and aggressive behaviour in dogs. The VNTR polymorphism in the DRD4 gene was detected by agarose gel electrophoresis following PCR amplification, whereas C/T substitution in the HTR2B gene was analysed using amplification created restriction site-polymerase chain reaction (ACRS-PCR. A total of 121 dogs of several breeds were analyzed. All animals were classified based on a veterinary interview and observation in two groups: aggressive (n = 21 and non-aggressive (n = 100. Significant differences in DRD4 genotype frequencies between aggressive and non-aggressive dogs were observed (P DRD4 gene with the occurrence of aggressive behaviour in dogs. Moreover, the findings give good justification for further research aimed at evaluation of the possibility of using this genetic marker in Marker-assisted Selection.

  16. Genetic backgrounds determine brown remodeling of white fat in rodents

    Directory of Open Access Journals (Sweden)

    Giulia Ferrannini

    2016-10-01

    Conclusion: Rodent genetic background determines the brown remodeling of different white fat depots. This study provides new insights into the role of genetic variation in fat remodeling in susceptibility to metabolic diseases.

  17. Genetic testing in asymptomatic minors: background considerations towards ESHG Recommendations

    DEFF Research Database (Denmark)

    Borry, Pascal; Evers-Kiebooms, Gerry; Cornel, Martina C

    2009-01-01

    Although various guidelines and position papers have discussed, in the past, the ethical aspects of genetic testing in asymptomatic minors, the European Society of Human Genetics had not earlier endorsed any set of guidelines exclusively focused on this issue. This paper has served as a background...... of best interests, participation of minors in health-care decisions, parents' responsibilities to share genetic information, the role of clinical genetics and the health-care system in communication within the family. Second, it discusses, respectively, the presymptomatic and predictive genetic testing...

  18. Genetic backgrounds determine brown remodeling of white fat in rodents

    OpenAIRE

    Ferrannini, Giulia; Namwanje, Maria; Fang, Bin; Damle, Manashree; Li, Dylan; Liu, Qiongming; Lazar, Mitchell A.; Qiang, Li

    2016-01-01

    Objective: Genetic background largely contributes to the complexity of metabolic responses and dysfunctions. Induction of brown adipose features in white fat, known as brown remodeling, has been appreciated as a promising strategy to offset the positive energy balance in obesity and further to improve metabolism. Here we address the effects of genetic background on this process. Methods: We investigated browning remodeling in a depot-specific manner by comparing the response of C57BL/6J, 1...

  19. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    Directory of Open Access Journals (Sweden)

    Bisgaard Magne

    2011-02-01

    Full Text Available Abstract Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprising strains isolated from horses and infected wounds of humans bitten by horses and another consisting of strains isolated from bovine and ovine hosts. The present data indicate a comparatively higher degree of genetic diversity among strains isolated from equine hosts and confirm the existence of a separate genomospecies for A. lignieresi-like isolates from horses. Among the isolates from bovine and ovine hosts some clonal lines appear to be genetically stable over time and could be detected at very distant geographic localities. Although all ovine strains investigated grouped in a single cluster, the existence of distinct genetic lineages that have evolved specificity for ovine hosts is not obvious and needs to be confirmed in other studies.

  20. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Angen, Øystein; Bisgaard, Magne

    2011-01-01

    strains isolated from horses and infected wounds of humans bitten by horses and another consisting of strains isolated from bovine and ovine hosts. The present data indicate a comparatively higher degree of genetic diversity among strains isolated from equine hosts and confirm the existence of a separate...

  1. Genetic backgrounds determine brown remodeling of white fat in rodents.

    Science.gov (United States)

    Ferrannini, Giulia; Namwanje, Maria; Fang, Bin; Damle, Manashree; Li, Dylan; Liu, Qiongming; Lazar, Mitchell A; Qiang, Li

    2016-10-01

    Genetic background largely contributes to the complexity of metabolic responses and dysfunctions. Induction of brown adipose features in white fat, known as brown remodeling, has been appreciated as a promising strategy to offset the positive energy balance in obesity and further to improve metabolism. Here we address the effects of genetic background on this process. We investigated browning remodeling in a depot-specific manner by comparing the response of C57BL/6J, 129/Sv and FVB/NJ mouse strains to cold. Surprisingly, 129/Sv and FVB/NJ mice showed distinct brown remodeling features despite their similar resistance to metabolic disorders in comparison to the obesity-prone C57BL/6J mice. FVB/NJ mice demonstrated a preference of brown remodeling in inguinal subcutaneous white adipose tissue (iWAT), whereas 129/Sv mice displayed robust brown remodeling in visceral epididymal fat (eWAT). We further compared gene expression in different depots by RNA-sequencing and identified Hoxc10 as a novel "brake" of brown remodeling in iWAT. Rodent genetic background determines the brown remodeling of different white fat depots. This study provides new insights into the role of genetic variation in fat remodeling in susceptibility to metabolic diseases.

  2. The effect of host genetics on the gut microbiome

    NARCIS (Netherlands)

    Bonder, Marc Jan; Kurilshchikov, Aleksandr; Tigchelaar-Feenstra, Ettje; Mujagic, Zlatan; Imhann, Floris; Vila, Arnau Vich; Deelen, Patrick; Vatanen, Tommi; Schirmer, Melanie; Smeekens, Sanne P; Zhernakova, Daria V; Jankipersadsing, Soesma A; Jaeger, Martin; Oosting, Marije; Cenit, Maria Carmen; Masclee, Ad A M; Swertz, Morris A; Li, Yang; Kumar, Vinod; Joosten, Leo; Harmsen, Hermie; Weersma, Rinse K; Franke, Lude; Hofker, Marten H; Xavier, Ramnik J; Jonkers, Daisy; Netea, Mihai G; Wijmenga, Cisca; Fu, Jingyuan; Zhernakova, Alexandra

    2016-01-01

    The gut microbiome is affected by multiple factors, including genetics. In this study, we assessed the influence of host genetics on microbial species, pathways and gene ontology categories, on the basis of metagenomic sequencing in 1,514 subjects. In a genome-wide analysis, we identified

  3. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James H [ORNL; Foster, Carmen M [ORNL; Vishnivetskaya, Tatiana A [ORNL; Campbell, Alisha G [ORNL; Yang, Zamin Koo [ORNL; Wymore, Ann [ORNL; Palumbo, Anthony Vito [ORNL; Podar, Mircea [ORNL

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived from a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.

  4. Host genetic and epigenetic factors in toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Sarra E Jamieson

    2009-03-01

    Full Text Available Analysing human genetic variation provides a powerful tool in understanding risk factors for disease. Toxoplasma gondii acquired by the mother can be transmitted to the fetus. Infants with the most severe clinical signs in brain and eye are those infected early in pregnancy when fetal immunity is least well developed. Genetic analysis could provide unique insight into events in utero that are otherwise difficult to determine. We tested the hypothesis that propensity for T. gondii to cause eye disease is associated with genes previously implicated in congenital or juvenile onset ocular disease. Using mother-child pairs from Europe (EMSCOT and child/parent trios from North America (NCCCTS, we demonstrated that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4 previously associated with juvenile onset retinal dystrophies including Stargardt's disease. Polymorphisms at COL2A1 encoding type II collagen, previously associated with Stickler syndrome, associated only with ocular disease in congenital toxoplasmosis. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting, which provided an explanation for the patterns of inheritance observed. These genetic and epigenetic risk factors provide unique insight into molecular pathways in the pathogenesis of disease.

  5. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  6. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Science.gov (United States)

    Taft, Robert A; Low, Benjamin E; Byers, Shannon L; Murray, Stephen A; Kutny, Peter; Wiles, Michael V

    2013-01-01

    There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs). We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH) that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium). ESC germline transmission was observed in 9/11 (82%) lines using PH blastocysts, compared to 6/11 (55%) when conventional host blastocysts were used. Furthermore, less than 35% (83/240) of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137) of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the production

  7. Pilot Study on the Genetic Background of an Active Matrix Metalloproteinase-8 Test in Finnish Adolescents.

    Science.gov (United States)

    Heikkinen, Anna Maria; Raivisto, Teija; Kettunen, Kaisa; Kovanen, Leena; Haukka, Jari; Pakbaznejad Esmaeili, Elmira; Elg, Jessica; Gieselmann, Dirk-Rolf; Rathnayake, Nilminie; Ruokonen, Hellevi; Tervahartiala, Taina; Sorsa, Timo

    2017-05-01

    In periodontitis, genetics and smoking play important roles in host immune system response. The aim of this study is to determine whether the genetic background of initial periodontitis and caries could be detected using an active matrix metalloproteinase (aMMP)-8 chairside test in Finnish adolescents. Forty-seven participants gave approval for analysis of both oral fluid collection and DNA. An aMMP-8 chairside test was performed on participants (adolescents aged 15 to 17 years), and full-mouth clinical parameters of oral health were assessed including periodontal, oral mucosal, and caries status in Eastern Finland from 2014 to 2015. DNA was extracted from oral fluid samples and genotyped for 71 polymorphisms in 29 candidate genes for periodontitis. Results were analyzed using a logistic regression model. P values were corrected for multiple testing using false discovery rate (background.

  8. The Role of Host Genetics (and Genomics) in Tuberculosis.

    Science.gov (United States)

    Naranbhai, Vivek

    2016-10-01

    Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to Mycobacterium tuberculosis infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.

  9. The genetic predisposition and the interplay of host genetics and gut microbiome in Crohn disease.

    Science.gov (United States)

    Jianzhong, Hu

    2014-12-01

    Extensive genetic studies have identified more than 140 loci predisposing to Crohn disease (CD). Several major CD susceptibility genes have been shown to impair biological function with regard to immune response to recognizing and clearance of bacterial infection. Recent human microbiome studies suggest that the gut microbiome composition is differentiated in carriers of many risk variants of major CD susceptibility genes. This interplay between host genetics and its associated gut microbiome may play an essential role in the pathogenesis of CD. The ongoing microbiome research is aimed to investigate the detailed host genetics-microbiome interacting mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The evolution of genetic architecture. I. Diversification of genetic backgrounds by genetic drift.

    Science.gov (United States)

    de Brito, Reinaldo A; Pletscher, L Susan; Cheverud, James M

    2005-11-01

    The genetic architecture of a phenotype plays a critical role in determining phenotypic evolution through its effects on patterns of genetic variation. Genetic architecture is often considered to be constant in evolutionary quantitative genetic models. However, genetic architecture may be variable and itself evolve when there are dominance and epistatic interactions among alleles at the same and different loci, respectively. The evolution of genetic architecture by genetic drift is examined here by testing the breeding value of four standard inbred mouse strains mated across a set of 26 related recombinant quasi-inbred (RqI) lines generated from the intercross of the Large (LG/J) and Small (SM/J) inbred mouse strains. Phenotypes of interest include age-specific body weights, growth, and adult body composition. If the genetic architecture of these traits has differentiated by genetic drift during the production of the RqI strains, we should observe interactions between tester strain and RqI strain. The breeding values of the tester strains will change relative to one another depending on which RqI strain they are crossed to. The study included an average of 15.1 offspring per cross, over a total of 100 different crosses. Multivariate and univariate analyses of variance indicate that there is strongly significant interaction for all traits. Interaction is more pronounced in males than in females and accounted for an average of about 40% of the explained variation in males and 30% in females. These results indicate that the genetic architecture of these traits has differentiated by genetic drift in the RqI strains since their isolation from a common founder population. Further analysis indicates that this differentiation results in changes in the order of tester strain effects so that common patterns of selection in these differentiated populations could result in the fixation of different alleles.

  11. Host Genetic Variants in the Pathogenesis of Hepatitis C

    Directory of Open Access Journals (Sweden)

    Monika Rau

    2012-11-01

    Full Text Available Direct-acting antiviral drugs (DAAs are currently replacing antiviral therapy for Hepatitis C infection. Treatment related side effects are even worse and the emergence of resistant viruses must be avoided because of the direct-antiviral action. Altogether it remains a challenge to take treatment decisions in a clinical setting with cost restrictions. Genetic host factors are hereby essential to implement an individualized treatment concept. In recent years results on different genetic variants have been published with a strong association with therapy response, fibrosis and treatment-related side effects. Polymorphisms of the IL28B gene were identified as accurate predictors for therapy response and spontaneous clearance of HCV infection and are already used for diagnostic decisions. For RBV-induced side effects, such as hemolytic anemia, associations to genetic variants of inosine triphosphatase (ITPA were described and different SLC28 transporters for RBV-uptake have been successfully analyzed. Fibrosis progression has been associated with variants of Vitamin D receptor (VDR and ABCB11 (bile salt export pump. Cirrhotic patients especially have a high treatment risk and low therapy response, so that personalized antiviral treatment is mandatory. This review focuses on different host genetic variants in the pathogenesis of Hepatitis C at the beginning of a new area of treatment.

  12. Genetic Markers of the Host in Persons Living with HTLV-1, HIV and HCV Infections

    Directory of Open Access Journals (Sweden)

    Tatiane Assone

    2016-02-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1, hepatitis C virus (HCV and human immunodeficiency virus type 1 (HIV-1 are prevalent worldwide, and share similar means of transmission. These infections may influence each other in evolution and outcome, including cancer or immunodeficiency. Many studies have reported the influence of genetic markers on the host immune response against different persistent viral infections, such as HTLV-1 infection, pointing to the importance of the individual genetic background on their outcomes. However, despite recent advances on the knowledge of the pathogenesis of HTLV-1 infection, gaps in the understanding of the role of the individual genetic background on the progress to disease clinically manifested still remain. In this scenario, much less is known regarding the influence of genetic factors in the context of dual or triple infections or their influence on the underlying mechanisms that lead to outcomes that differ from those observed in monoinfection. This review describes the main factors involved in the virus–host balance, especially for some particular human leukocyte antigen (HLA haplotypes, and other important genetic markers in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP and other persistent viruses, such as HIV and HCV.

  13. Distinguishing pathogenic mutations from background genetic noise in cardiology

    DEFF Research Database (Denmark)

    Ghouse, J; Skov, M W; Bigseth, R S

    2018-01-01

    Advances in clinical genetic testing have led to increased insight into the human genome, including how challenging it is to interpret rare genetic variation. In some cases, the ability to detect genetic mutations exceeds the ability to understand their clinical impact, limiting the advantage...

  14. Predominant role of host genetics in controlling the composition of gut microbiota.

    Directory of Open Access Journals (Sweden)

    Zaruhi A Khachatryan

    Full Text Available BACKGROUND: The human gastrointestinal tract is inhabited by a very diverse symbiotic microbiota, the composition of which depends on host genetics and the environment. Several studies suggested that the host genetics may influence the composition of gut microbiota but no genes involved in host control were proposed. We investigated the effects of the wild type and mutated alleles of the gene, which encodes the protein called pyrin, one of the regulators of innate immunity, on the composition of gut commensal bacteria. Mutations in MEFV lead to the autoinflammatory disorder, familial Mediterranean fever (FMF, MIM249100, which is characterized by recurrent self-resolving attacks of fever and polyserositis, with no clinical signs of disease in remission. METHODOLOGY/PRINCIPAL FINDINGS: A total of 19 FMF patients and eight healthy individuals were genotyped for mutations in the MEFV gene and gut bacterial diversity was assessed by sequencing 16S rRNA gene libraries and FISH analysis. These analyses demonstrated significant changes in bacterial community structure in FMF characterized by depletion of total numbers of bacteria, loss of diversity, and major shifts in bacterial populations within the Bacteroidetes, Firmicutes and Proteobacteria phyla in attack. In remission with no clinical signs of disease, bacterial diversity values were comparable with control but still, the bacterial composition was substantially deviant from the norm. Discriminant function analyses of gut bacterial diversity revealed highly specific, well-separated and distinct grouping, which depended on the allele carrier status of the host. CONCLUSIONS/SIGNIFICANCE: This is the first report that clearly establishes the link between the host genotype and the corresponding shifts in the gut microbiota (the latter confirmed by two independent techniques. It suggests that the host genetics is a key factor in host-microbe interaction determining a specific profile of commensal

  15. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts

    KAUST Repository

    Huang, Chao-Li

    2015-03-15

    Background: Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Results: Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Conclusion: Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification. © Huang et al.

  16. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    Directory of Open Access Journals (Sweden)

    Geir K. Knudsen

    2017-12-01

    Full Text Available Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear or unrelated to the host (Pinaceae, spruce and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E-4

  17. Ticks elicit variable fibrinogenolytic activities upon feeding on hosts with different immune backgrounds.

    Science.gov (United States)

    Vora, Ashish; Taank, Vikas; Dutta, Sucharita M; Anderson, John F; Fish, Durland; Sonenshine, Daniel E; Catravas, John D; Sultana, Hameeda; Neelakanta, Girish

    2017-03-16

    Ticks secrete several anti-hemostatic factors in their saliva to suppress the host innate and acquired immune defenses against infestations. Using Ixodes scapularis ticks and age-matched mice purchased from two independent commercial vendors with two different immune backgrounds as a model, we show that ticks fed on immunodeficient animals demonstrate decreased fibrinogenolytic activity in comparison to ticks fed on immunocompetent animals. Reduced levels of D-dimer (fibrin degradation product) were evident in ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Increased engorgement weights were noted for ticks fed on immunodeficient animals in comparison to ticks fed on immunocompetent animals. Furthermore, the LC-MS/MS and quantitative real-time-PCR analysis followed by inhibitor and antibody-blocking assays revealed that the arthropod HSP70-like molecule contributes to differential fibrinogenolysis during tick feeding. Collectively, these results not only indicate that ticks elicit variable fibrinogenolysis upon feeding on hosts with different immune backgrounds but also provide insights for the novel role of arthropod HSP70-like molecule in fibrinogenolysis during blood feeding.

  18. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster.

    OpenAIRE

    Reynolds, K. Tracy; Thomson, Linda J; Ary A Hoffmann

    2003-01-01

    Because of their obligate endosymbiotic nature, Wolbachia strains by necessity are defined by their phenotypic effects upon their host. Nevertheless, studies on the influence of host background and environmental conditions upon the manifestation of Wolbachia effects are relatively uncommon. Here we examine the behavior of the overreplicating Wolbachia strain popcorn in four different Drosophila melanogaster backgrounds at two temperatures. Unlike other strains of Wolbachia in Drosophila, popc...

  19. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster.

    Science.gov (United States)

    Reynolds, K Tracy; Thomson, Linda J; Hoffmann, Ary A

    2003-07-01

    Because of their obligate endosymbiotic nature, Wolbachia strains by necessity are defined by their phenotypic effects upon their host. Nevertheless, studies on the influence of host background and environmental conditions upon the manifestation of Wolbachia effects are relatively uncommon. Here we examine the behavior of the overreplicating Wolbachia strain popcorn in four different Drosophila melanogaster backgrounds at two temperatures. Unlike other strains of Wolbachia in Drosophila, popcorn has a major fitness impact upon its hosts. The rapid proliferation of popcorn causes cells to rupture, resulting in the premature death of adult hosts. Apart from this effect, we found that popcorn delayed development time, and host background influenced both this trait and the rate of mortality associated with infection. Temperature influenced the impact of popcorn upon host mortality, with no reduction in life span occurring in flies reared at 19 degrees. No effect upon fecundity was found. Contrary to earlier reports, popcorn induced high levels of incompatibility when young males were used in tests, and CI levels declined rapidly with male age. The population dynamics of popcorn-type infections will therefore depend on environmental temperature, host background, and the age structure of the population.

  20. Lactate production yield from engineered yeasts is dependent from the host background, the lactate dehydrogenase source and the lactate export

    Directory of Open Access Journals (Sweden)

    Valli Minoska

    2006-01-01

    Full Text Available Abstract Background Metabolic pathway manipulation for improving the properties and the productivity of microorganisms is becoming a well established concept. For the production of important metabolites, but also for a better understanding of the fundamentals of cell biology, detailed studies are required. In this work we analysed the lactate production from metabolic engineered Saccharomyces cerevisiae cells expressing a heterologous lactate dehydrogenase (LDH gene. The LDH gene expression in a budding yeast cell introduces a novel and alternative pathway for the NAD+ regeneration, allowing a direct reduction of the intracellular pyruvate to lactate, leading to a simultaneous accumulation of lactate and ethanol. Results Four different S. cerevisiae strains were transformed with six different wild type and one mutagenised LDH genes, in combination or not with the over-expression of a lactate transporter. The resulting yield values (grams of lactate produced per grams of glucose consumed varied from as low as 0,0008 to as high as 0.52 g g-1. In this respect, and to the best of our knowledge, higher redirections of the glycolysis flux have never been obtained before without any disruption and/or limitation of the competing biochemical pathways. Conclusion In the present work it is shown that the redirection of the pathway towards the lactate production can be strongly modulated by the genetic background of the host cell, by the source of the heterologous Ldh enzyme, by improving its biochemical properties as well as by modulating the export of lactate in the culture media.

  1. DMPD: The Lps locus: genetic regulation of host responses to bacteriallipopolysaccharide. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10669111 The Lps locus: genetic regulation of host responses to bacteriallipopolysa...ccharide. Qureshi ST, Gros P, Malo D. Inflamm Res. 1999 Dec;48(12):613-20. (.png) (.svg) (.html) (.csml) Show The Lps locus: genetic... regulation of host responses to bacteriallipopolysaccharide. PubmedID 10669111 Title The Lps locus: genetic

  2. The genetics of non-host resistance to the lettuce pathogen Bremia lactucae in Lactuca saligna

    NARCIS (Netherlands)

    Jeuken, M.J.W.

    2002-01-01

    Plants are continuously exposed to a wide variety of pathogens. However, all plant species are non-hosts for the majority of the potential plant pathogens. The genetic dissection of non-host resistance is hampered by the lack of segregating population from crosses between host and non-host

  3. Associations between dietary intake and body fat independent of genetic and familial environmental background

    DEFF Research Database (Denmark)

    Hasselbalch, Ann Louise; Heitmann, B L; Kyvik, Kirsten Ohm

    2010-01-01

    To determine whether habitual dietary intake was associated with body fat mass and body fat distribution, independently of possible confounding by the genetic and shared environmental background.......To determine whether habitual dietary intake was associated with body fat mass and body fat distribution, independently of possible confounding by the genetic and shared environmental background....

  4. [Genetic and molecular background in autoimmune diabetes mellitus].

    Science.gov (United States)

    Kantárová, D; Prídavková, D; Ságová, I; Vrlík, M; Mikler, J; Buc, M

    2015-09-01

    Type 1 diabetes mellitus (T1 DM) is caused by autoimmune-mediated and idiopathic beta-cell destruction of the pancreatic islets of Langerhans resulting in absolute insulin deficiency. Susceptibility to T1 DM is influenced by both genetic and environmental factors. It is generally believed that in genetically susceptible individuals, the disease is triggered by environmental agents, such as viral infections, dietary factors in early infancy, or climatic influences. Many candidate genes for diabetes have been reported; those within the Major Histocompatibility Complex being among the most important. The most common autoantigens are insulin, glutamic acid decarboxylase 65, insuloma-associated antigen 2, and zinc transporter ZnT8. The destruction of beta-cells is mediated mainly by cellular mechanisms; antibodies only seem to reflect the ongoing autoimmune processes and are not directly involved in the tissue damage. They, however, appear prior to the onset of insulin deficiency which makes them suitable for use in the prevention of the disease.

  5. Distinguishing Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia-Associated Mutations From Background Genetic Noise

    NARCIS (Netherlands)

    Kapplinger, Jamie D.; Landstrom, Andrew P.; Salisbury, Benjamin A.; Callis, Thomas E.; Pollevick, Guido D.; Tester, David J.; Cox, Moniek G. P. J.; Bhuiyan, Zahir; Bikker, Hennie; Wiesfeld, Ans C. P.; Hauer, Richard N. W.; van Tintelen, J. Peter; Jongbloed, Jan D. H.; Calkins, Hugh; Judge, Daniel P.; Wilde, Arthur A. M.; Ackerman, Michael J.

    2011-01-01

    Objectives The aims of this study were to determine the spectrum and prevalence of "background genetic noise" in the arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC) genetic test and to determine genetic associations that can guide the interpretation of a positive test result.

  6. Genetic background of resistance to gall mite in Ribes species

    Directory of Open Access Journals (Sweden)

    Ingrida Mazeikiene

    2017-06-01

    Full Text Available Resistance to gall mite is an important genetic trait of Ribes. P and Ce genes, responsible for gall mite resistance, were established in Ribes species and interspecific hybrids using molecular markers. Resistance in R. americanum is determined by P gene and in R. sanguineum by Ce gene. Both molecular markers were absent in R. dikuscha genome. Molecular markers related to P and Ce genes were identified in the genome of R. aureum. Resistance to gall mite in the field conditions in R. nigrum x R. americanum, R. nigrum x R. aureum and R. nigrum x R. sanguineum F3 hybrids fitted an expected Mendelian segregation ratio of 1:1, 3:1 and 1:1, respectively. 75.0% of hybrids with a pyramidal resistance to gall mite carrying markers related to Ce and P genes were obtained in the cross combination R. nigrum x R. aureum and will be included in the future breeding programs.

  7. Premature birth and diseases in premature infants: common genetic background?

    Science.gov (United States)

    Hallman, Mikko

    2012-04-01

    It has been proposed that during human evolution, development of obligate bipedalism, narrow birth canal cross-sectional area and the large brain have forced an adjustment in duration of pregnancy (scaling of gestational age; Plunkett 2011). Children compared to other mammals are born with proportionally small brains (compared to adult brains), suggesting shortening of pregnancy duration during recent evolution. Prevalence of both obstructed delivery and premature birth is still exceptionally high. In near term infants, functional maturity and viability is high, and gene variants predisposing to respiratory distress syndrome (RDS) are rare. Advanced antenatal and neonatal treatment practices during the new era of medicine allowed survival of also very preterm infants (gestation premature birth. Specific genes associating with diseases in preterm infants may also contribute to the susceptibility to preterm birth. Understanding and applying the knowledge of genetic interactions in normal and abnormal perinatal-neonatal development requires large, well-structured population cohorts, studies involving the whole genome and international interdisciplinary collaboration.

  8. Exploring background mutational processes to decipher cancer genetic heterogeneity.

    Science.gov (United States)

    Goncearenco, Alexander; Rager, Stephanie L; Li, Minghui; Sang, Qing-Xiang; Rogozin, Igor B; Panchenko, Anna R

    2017-05-04

    Much remains unknown about the progression and heterogeneity of mutational processes in different cancers and their diagnostic and clinical potential. A growing body of evidence supports mutation rate dependence on the local DNA sequence context for various types of mutations. We propose several tools for the analysis of cancer context-dependent mutations, which are implemented in an online computational framework MutaGene. The framework explores DNA context-dependent mutational patterns and underlying somatic cancer mutagenesis, analyzes mutational profiles of cancer samples, identifies the combinations of underlying mutagenic processes including those related to infidelity of DNA replication and repair machinery, and various other endogenous and exogenous mutagenic factors. As a result, the combination of mutagenic processes can be identified in any query sample with subsequent comparison to mutational profiles derived from malignant and benign samples. In addition, mutagen or cancer-specific mutational background models are applied to calculate expected DNA and protein site mutability to decouple relative contributions of mutagenesis and selection in carcinogenesis, thus elucidating the site-specific driving events in cancer. MutaGene is freely available at https://www.ncbi.nlm.nih.gov/projects/mutagene/. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  9. Eimeria Species and Genetic Background Influence the Serum Protein Profile of Broilers with Coccidiosis

    Science.gov (United States)

    Gilbert, Elizabeth R.; Cox, Chasity M.; Williams, Patricia M.; McElroy, Audrey P.; Dalloul, Rami A.; Ray, W. Keith; Barri, Adriana; Emmerson, Derek A.; Wong, Eric A.; Webb, Kenneth E.

    2011-01-01

    Background Coccidiosis is an intestinal disease caused by protozoal parasites of the genus Eimeria. Despite the advent of anti-coccidial drugs and vaccines, the disease continues to result in substantial annual economic losses to the poultry industry. There is still much unknown about the host response to infection and to date there are no reports of protein profiles in the blood of Eimeria-infected animals. The objective of this study was to evaluate the serum proteome of two genetic lines of broiler chickens after infection with one of three species of Eimeria. Methodology/Principal Findings Birds from lines A and B were either not infected or inoculated with sporulated oocysts from one of the three Eimeria strains at 15 d post-hatch. At 21 d (6 d post-infection), whole blood was collected and lesion scoring was performed. Serum was harvested and used for 2-dimensional gel electrophoresis. A total of 1,266 spots were quantitatively assessed by densitometry. Protein spots showing a significant effect of coccidia strain and/or broiler genetic line on density at P<0.05−0.01 (250 spots), P<0.01−0.001 (248 spots), and P<0.001 (314 spots) were excised and analyzed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified in 172 spots. A total of 46 different proteins were identified. Of the spots with a corresponding protein identification, 57 showed a main effect of coccidia infection and/or 2-way interaction of coccidia infection×broiler genetic line at P<0.001. Conclusions/Significance Several of the metabolic enzymes identified in this study are potential candidates for early diagnostic markers of E. acervulina infection including malate dehydrogenase 2, NADH dehydrogenase 1 alpha subcomplex 9, and an ATP synthase. These proteins were detected only in Line A birds that were inoculated with E. acervulina. Results from this study provide a basic framework for future research aimed at uncovering the complex

  10. Influence of Host Genetics and Environment on Nasal Carriage of Staphylococcus aureus in Danish Middle-Aged and Elderly Twins

    DEFF Research Database (Denmark)

    Andersen, Paal Skytt; Pedersen, Jacob Krabbe; Fode, Peder

    2012-01-01

    Background. Nasal carriage is a major risk factor for Staphylococcus aureus infection. Approximately, one-quarter of adults carry S. aureus. However, the role of host genetics on S. aureus nasal carriage is unknown. Methods. Nasal swabs were obtained from a national cohort of middle-aged and elde......Background. Nasal carriage is a major risk factor for Staphylococcus aureus infection. Approximately, one-quarter of adults carry S. aureus. However, the role of host genetics on S. aureus nasal carriage is unknown. Methods. Nasal swabs were obtained from a national cohort of middle...... exhibited only a modest influence on the S. aureus carrier state of middle-aged and elderly individuals....

  11. Differences in Genetic Background Between Active Smokers, Passive Smokers, and Non-Smokers With Crohn's Disease

    NARCIS (Netherlands)

    van der Heide, Frans; Nolte, Ilja M.; Kleibeuker, Jan H.; Wijmenga, Cisca; Dijkstra, Gerard; Weersma, Rinse K.

    OBJECTIVES: Smoking behavior and genetic variations are important factors for the development of Crohn's disease (CD), but studies investigating the interaction between smoking and genetic background are scarce. We studied allelic associations of 19 confirmed variants located in 14 CD-associated

  12. The host, the parasite and their environment : how parasitism and environmental variation can maintain host genetic diversity

    NARCIS (Netherlands)

    Gsell, A.S.

    2013-01-01

    Host and parasite populations live in highly variable natural environments. This thesis explores how the population dynamics and genetic population structure of an important spring-bloom phytoplankton species, the diatom Asterionella formosa, are affected by such environmental variation and by

  13. No influence of Indy on lifespan in Drosophila after correction for genetic and cytoplasmic background effects.

    Directory of Open Access Journals (Sweden)

    Janne M Toivonen

    2007-06-01

    Full Text Available To investigate whether alterations in mitochondrial metabolism affect longevity in Drosophila melanogaster, we studied lifespan in various single gene mutants, using inbred and outbred genetic backgrounds. As positive controls we included the two most intensively studied mutants of Indy, which encodes a Drosophila Krebs cycle intermediate transporter. It has been reported that flies heterozygous for these Indy mutations, which lie outside the coding region, show almost a doubling of lifespan. We report that only one of the two mutants lowers mRNA levels, implying that the lifespan extension observed is not attributable to the Indy mutations themselves. Moreover, neither Indy mutation extended lifespan in female flies in any genetic background tested. In the original genetic background, only the Indy mutation associated with altered RNA expression extended lifespan in male flies. However, this effect was abolished by backcrossing into standard outbred genetic backgrounds, and was associated with an unidentified locus on the X chromosome. The original Indy line with long-lived males is infected by the cytoplasmic symbiont Wolbachia, and the longevity of Indy males disappeared after tetracycline clearance of this endosymbiont. These findings underscore the critical importance of standardisation of genetic background and of cytoplasm in genetic studies of lifespan, and show that the lifespan extension previously claimed for Indy mutants was entirely attributable to confounding variation from these two sources. In addition, we saw no effects on lifespan of expression knockdown of the Indy orthologues nac-2 and nac-3 in the nematode Caenorhabditis elegans.

  14. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  15. Host-related genetic differentiation in the anther smut fungus Microbotryum violaceum in sympatric, parapatric and allopatric populations of two host species Silene latifolia and S-dioica

    NARCIS (Netherlands)

    Van Putten, WF; Biere, A; Van Damme, JMM

    We investigated genetic diversity in West European populations of the fungal pathogen Microbotryum violaceum in sympatric, parapatric and allopatric populations of the host species Silene latifolia and S. dioica, using four polymorphic microsatellite loci. In allopatric host populations, the fungus

  16. Host-related genetic differentiation in the anther smut fungus Microbotryum violaceum in sympatric, parapatric and allopatric populations of two host species Silene latifolia and S. dioica

    NARCIS (Netherlands)

    Van Putten, W.F.; Biere, A.; Van Damme, J.M.M.

    2005-01-01

    We investigated genetic diversity in West European populations of the fungal pathogen Microbotryum violaceum in sympatric, parapatric and allopatric populations of the host species Silene latifolia and S. dioica, using four polymorphic microsatellite loci. In allopatric host populations, the fungus

  17. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Ussar, Siegfried; Griffin, Nicholas W; Bezy, Olivier; Fujisaka, Shiho; Vienberg, Sara; Softic, Samir; Deng, Luxue; Bry, Lynn; Gordon, Jeffrey I; Kahn, C Ronald

    2015-09-01

    Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Sex and Genetic Background Influence Superoxide Dismutase (cSOD-Related Phenotypic Variation in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Courtney E. Lessel

    2017-08-01

    Full Text Available Mutations often have drastically different effects in different genetic backgrounds; understanding a gene’s biological function then requires an understanding of its interaction with genetic diversity. The antioxidant enzyme cytosolic copper/zinc superoxide dismutase (cSOD catalyzes the dismutation of the superoxide radical, a molecule that can induce oxidative stress if its concentration exceeds cellular control. Accordingly, Drosophila melanogaster lacking functional cSOD exhibit a suite of phenotypes including decreased longevity, hypersensitivity to oxidative stress, impaired locomotion, and reduced NADP(H enzyme activity in males. To date, cSOD-null phenotypes have primarily been characterized using males carrying one allele, cSodn108red, in a single genetic background. We used ANOVA, and the effect size partial eta squared, to partition the amount of variation attributable to cSOD activity, sex, and genetic background across a series of life history, locomotor, and biochemical phenotypes associated with the cSOD-null condition. Overall, the results demonstrate that the cSOD-null syndrome is largely consistent across sex and genetic background, but also significantly influenced by both. The sex-specific effects are particularly striking and our results support the idea that phenotypes cannot be considered to be fully defined if they are examined in limited genetic contexts.

  19. Referral to cancer genetic counseling: do migrant status and patients' educational background matter?

    Science.gov (United States)

    van der Giessen, J A M; van Riel, E; Velthuizen, M E; van Dulmen, A M; Ausems, M G E M

    2017-10-01

    Participation rates in cancer genetic counseling differ among populations, as patients with a lower educational background and migrant patients seem to have poorer access to it. We conducted a study to determine the present-day educational level and migrant status of counselees referred to cancer genetic counseling. We assessed personal characteristics and demographics of 731 newly referred counselees. Descriptive statistics were used to describe these characteristics. The results show that about 40% of the counselees had a high educational level and 89% were Dutch natives. Compared to the Dutch population, we found a significant difference in educational level (p = counseling and as a result of that, suboptimal care for vulnerable groups. Limited health literacy is likely to pose a particular challenge to cancer genetic counseling for counselees with a lower education or a migrant background. Our study points to considerable scope for improvement in referring vulnerable groups of patients for cancer genetic counseling.

  20. Murine Gut Microbiota Is Defined by Host Genetics and Modulates Variation of Metabolic Traits

    NARCIS (Netherlands)

    McKnite, A.M.; Lu, L.; Williams, E.; Bastiaansen, J.W.M.

    2012-01-01

    The gastrointestinal tract harbors a complex and diverse microbiota that has an important role in host metabolism. Microbial diversity is influenced by a combination of environmental and host genetic factors and is associated with several polygenic diseases. In this study we combined next-generation

  1. Host plant-associated genetic differentiation in the snakeweed grasshopper, Hesperotettix viridis (Orthoptera: Acrididae).

    Science.gov (United States)

    Sword, G A; Joern, A; Senior, L B

    2005-06-01

    Studies of herbivorous insects have played a major role in understanding how ecological divergence can facilitate genetic differentiation. In contrast to the majority of herbivorous insects, grasshoppers as a group are largely polyphagous. Due to this relative lack of intimate grasshopper-plant associations, grasshopper-plant systems have not played a large part in the study of host-associated genetic differentiation. The oligophagous grasshopper, Hesperotettix viridis (Thomas), is endemic to North America and feeds on composites (Asteraceae) within the tribe Astereae. Previous work has shown both preference and performance differences between H. viridis individuals feeding on either Solidago mollis or Gutierrezia sarothrae. Using 222 AFLP markers, we examined the genetic relationships among 38 H. viridis individuals feeding on these plants both in sympatry and allopatry. Neighbour-joining analysis resulted in two distinct host-associated clades with 71% bootstrap support for host-associated monophyly. Analyses of molecular variation (amova) revealed significant genetic structuring with host plant accounting for 20% of the total genetic variance while locality accounted for 0%. Significant genetic differentiation was detected between S. mollis-feeders and G. sarothrae-feeders even when the two were present at the same locality. These results are consistent with observed differences in preference and performance between H. viridis grasshoppers feeding on either G. sarothrae or S. mollis and indicate that H. viridis is comprised of at least two genetically distinct host plant-associated lineages.

  2. The role of the immunological background of mice in the genetic variability of Schistosoma mansoni as detected by random amplification of polymorphic DNA.

    Science.gov (United States)

    Cossa-Moiane, I L; Mendes, T; Ferreira, T M; Mauricio, I; Calado, M; Afonso, A; Belo, S

    2015-11-01

    Schistosomiasis is a parasitic disease caused by flatworms of the genus Schistosoma. Among the Schistosoma species known to infect humans, S. mansoni is the most frequent cause of intestinal schistosomiasis in sub-Saharan Africa and South America: the World Health Organization estimates that about 200,000 deaths per year result from schistosomiasis in sub-Saharan Africa alone. The Schistosoma life cycle requires two different hosts: a snail as intermediate host and a mammal as definitive host. People become infected when they come into contact with water contaminated with free-living larvae (e.g. when swimming, fishing, washing). Although S. mansoni has mechanisms for escaping the host immune system, only a minority of infecting larvae develop into adults, suggesting that strain selection occurs at the host level. To test this hypothesis, we compared the Belo Horizonte (BH) strain of S. mansoni recovered from definitive hosts with different immunological backgrounds using random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR). Schistosoma mansoni DNA profiles of worms obtained from wild-type (CD1 and C57BL/6J) and mutant (Jα18- / - and TGFβRIIdn) mice were analysed. Four primers produced polymorphic profiles, which can therefore potentially be used as reference biomarkers. All male worms were genetically distinct from females isolated from the same host, with female worms showing more specific fragments than males. Of the four host-derived schistosome populations, female and male adults recovered from TGFβRIIdn mice showed RAPD-PCR profiles that were most similar to each other. Altogether, these data indicate that host immunological backgrounds can influence the genetic diversity of parasite populations.

  3. Host genetic factors in susceptibility to HIV-1 infection and ...

    Indian Academy of Sciences (India)

    to influence the rate of AIDS progression in HIV-1 infected individuals. The candidate host genes suspected to influence the rate of progression from HIV to AIDS can be divided into three categories: (i) genes encoding cell-surface receptors or lig- ands for these proteins; (ii) genes within human leukocyte antigens (HLA) that ...

  4. Comparative host-parasite population genetic structures: obligate fly ectoparasites on Galapagos seabirds.

    Science.gov (United States)

    Levin, Iris I; Parker, Patricia G

    2013-08-01

    Parasites often have shorter generation times and, in some cases, faster mutation rates than their hosts, which can lead to greater population differentiation in the parasite relative to the host. Here we present a population genetic study of two ectoparasitic flies, Olfersia spinifera and Olfersia aenescens compared with their respective bird hosts, great frigatebirds (Fregata minor) and Nazca boobies (Sula granti). Olfersia spinifera is the vector of a haemosporidian parasite, Haemoproteus iwa, which infects frigatebirds throughout their range. Interestingly, there is no genetic differentiation in the haemosporidian parasite across this range despite strong genetic differentiation between Galapagos frigatebirds and their non-Galapagos conspecifics. It is possible that the broad distribution of this one H. iwa lineage could be facilitated by movement of infected O. spinifera. Therefore, we predicted more gene flow in both fly species compared with the bird hosts. Mitochondrial DNA sequence data from three genes per species indicated that despite marked differences in the genetic structure of the bird hosts, gene flow was very high in both fly species. A likely explanation involves non-breeding movements of hosts, including movement of juveniles, and movement by adult birds whose breeding attempt has failed, although we cannot rule out the possibility that closely related host species may be involved.

  5. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo; Brislawn, Colin J.; Noecker, Cecilia; Zink, Erika M.; Fansler, Sarah J.; Casey, Cameron P.; Miller, Darla R.; Huang, Yurong; Karpen, Gary H.; Celniker, Susan E.; Brown, James B.; Borenstein, Elhanan; Jansson, Janet K.; Metz, Thomas O.; Mao, Jian-Hua

    2016-11-28

    Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes in the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.

  6. Candidate genes detected in transcriptome studies are strongly dependent on genetic background.

    Directory of Open Access Journals (Sweden)

    Pernille Sarup

    Full Text Available Whole genome transcriptomic studies can point to potential candidate genes for organismal traits. However, the importance of potential candidates is rarely followed up through functional studies and/or by comparing results across independent studies. We have analysed the overlap of candidate genes identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same genetic backgrounds. Putative candidates found using transcriptomics therefore appear very sensitive to genetic background and this can mask or override effects of treatments. The functional importance of putative candidate genes emerging from transcriptome studies needs to be validated through additional experiments and in future studies we suggest a focus on the genes, networks and pathways affecting traits in a consistent manner across backgrounds.

  7. Childbearing among first- and second-generation Russians in Estonia against the background of the sending and host countries

    Directory of Open Access Journals (Sweden)

    Allan Puur

    2017-04-01

    Full Text Available Background: An expanding literature documents the childbearing patterns of migrants and their descendants in contemporary Europe. The existing evidence pertains mainly to the northern, western, and southern regions of the continent, while less is known about the fertility of migrants who have moved between the countries of Eastern Europe. Objective: The aim of this study is to examine the fertility patterns of first- and second-generation Russians in Estonia, relative to the sending and host populations. Methods: The study draws on the Estonian and Russian Generations and Gender Surveys. Proportional hazards models are estimated for the transitions to first, second, and third births. Results: Russian migrants in Estonia exhibit greater similarity to the sending population, with a lower propensity for having a second and third birth than the host population. This pattern extends to the descendants of migrants. However, mixed Estonian-Russian parentage, enrolment in Estonian-language schools, and residence among the host population are associated with the convergence of Russians' childbearing behaviour with the host-country patterns. The findings support the cultural maintenance and adaptation perspectives; selectivity was found to be less important. Contribution: The study focuses on a previously under-researched context and underscores the importance of contextual factors in shaping migrants' fertility patterns. It raises the possibility that, depending on the childbearing trends and levels among the sending and receiving populations, large-scale migration may reduce rather than increase aggregate fertility in the host country. With the advancement of the fertility transition in sending countries, this situation may become more common in Europe in the future.

  8. The Effects of Genetic Background of Mouse Models of Cancer: Friend or Foe?

    Science.gov (United States)

    Reilly, Karlyne M

    2016-03-01

    Over the past century, mice have been selectively bred to give rise to the strains used in biomedical research today. Mouse models of cancer allow researchers to control variables of diet, environment, and genetic heterogeneity to better dissect the role of these factors in cancer in humans. Because of the important role of genetic background in cancer, the strain of the mouse can introduce confounding results in studies of mouse models if not properly controlled. Conversely, genetic variation between strains can also provide important new insights into cancer mechanisms. Here, the sources of genetic heterogeneity in mouse models are reviewed, with an explanation of how heterogeneity modifies cancer phenotypes. © 2016 Cold Spring Harbor Laboratory Press.

  9. On the importance of skewed offspring distributions and background selection in virus population genetics.

    Science.gov (United States)

    Irwin, K K; Laurent, S; Matuszewski, S; Vuilleumier, S; Ormond, L; Shim, H; Bank, C; Jensen, J D

    2016-12-01

    Many features of virus populations make them excellent candidates for population genetic study, including a very high rate of mutation, high levels of nucleotide diversity, exceptionally large census population sizes, and frequent positive selection. However, these attributes also mean that special care must be taken in population genetic inference. For example, highly skewed offspring distributions, frequent and severe population bottleneck events associated with infection and compartmentalization, and strong purifying selection all affect the distribution of genetic variation but are often not taken into account. Here, we draw particular attention to multiple-merger coalescent events and background selection, discuss potential misinference associated with these processes, and highlight potential avenues for better incorporating them into future population genetic analyses.

  10. Evolution of microparasites in spatially and genetically structured host populations: the example of RHDV infecting rabbits.

    Science.gov (United States)

    Fouchet, David; Le Pendu, Jacques; Guitton, Jean-Sébastien; Guiserix, Micheline; Marchandeau, Stéphane; Pontier, Dominique

    2009-03-21

    Several studies have shown that classical results of microparasite evolution could not extend to the case where the host species shows an important spatial structure. Rabbit haemorrhagic disease virus (RHDV), responsible for rabbit haemorrhagic disease (RHD), which recently emerged in rabbits, has strains within a wide range of virulence, thus providing an interesting example of competition between strains infecting a host species with a metapopulation structure. In addition, rabbits may show a genetic diversity regarding RHDV susceptibility. In the present paper we use the example of the rabbit-RHDV interaction to study the competition between strains of a same microparasite in a host population that is both spatially and genetically structured. Using metapopulation models we show that the evolution of the microparasite is guided by a trade-off between its capacity to invade subpopulations potentially infected by other strains and its capacity to persist within the subpopulation. In such a context, host genetic diversity acts by reducing the number of hosts susceptible to each strain, often favouring more persistent-and generally less virulent-strains. We also show that even in a stochastic context where host genes regularly go locally extinct, the microparasite pressure helps maintain the genetic diversity in the long term while reinforcing gene loss risk in the short term. Finally, we study how different demographic and epidemiologic parameters affect the coevolution between the rabbit and RHDV.

  11. Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species.

    Science.gov (United States)

    Sheppard, Samuel K; Colles, Frances M; McCarthy, Noel D; Strachan, Norval J C; Ogden, Iain D; Forbes, Ken J; Dallas, John F; Maiden, Martin C J

    2011-08-01

    Bacterial populations can display high levels of genetic structuring but the forces that influence this are incompletely understood. Here, by combining modelling approaches with multilocus sequence data for the zoonotic pathogen Campylobacter, we investigated how ecological factors such as niche (host) separation relate to population structure. We analysed seven housekeeping genes from published C. jejuni and C. coli isolate collections from a range of food and wild animal sources as well as abiotic environments. By reconstructing genetic structure and the patterns of ancestry, we quantified C. jejuni host association, inferred ancestral populations, investigated genetic admixture in different hosts and determined the host origin of recombinant C. jejuni alleles found in hybrid C. coli lineages. Phylogenetically distinct C. jejuni lineages were associated with phylogenetically distinct wild birds. However, in the farm environment, phylogenetically distant host animals shared several C. jejuni lineages that could not be segregated according to host origin using these analyses. Furthermore, of the introgressed C. jejuni alleles found in C. coli lineages, 73% were attributed to genotypes associated with food animals. Our results are consistent with an evolutionary scenario where distinct Campylobacter lineages are associated with different host species but the ecological factors that maintain this are different in domestic animals such that phylogenetically distant animals can harbour closely related strains. © 2011 Blackwell Publishing Ltd.

  12. The influence of genetic background versus commercial breeding programs on chicken immunocompetence.

    Science.gov (United States)

    Emam, Mehdi; Mehrabani-Yeganeh, Hassan; Barjesteh, Neda; Nikbakht, Gholamreza; Thompson-Crispi, Kathleen; Charkhkar, Saeid; Mallard, Bonnie

    2014-01-01

    Immunocompetence of livestock plays an important role in farm profitability because it directly affects health maintenance. Genetics significantly influences the immune system, and the genotypic structure of modern fast-growing chickens has been changed, particularly after decades of breeding for higher production. Therefore, this study was designed to help determine if intensive breeding programs have adversely affected immunocompetence or whether the immune response profiles are controlled to greater extent by genetic background. Thus, 3 indigenous chicken populations from different genetic backgrounds and 2 globally available modern broiler strains, Ross 308 and Cobb 500, were evaluated for various aspects of immune response. These included antibody responses against sheep red blood cells and Brucella abortus antigen, as well as some aspects of cell-mediated immunocompetence by toe web swelling test and in vitro blood mononuclear cell proliferation. Significant differences (P Cobb 500 were similar to the indigenous populations, but varied compared with the other commercial strain. In addition, considerable variation was recorded between indigenous populations for all responses measured in this study. The results of this study suggest that the variation observed in immune responses between these strains of chickens is most likely due to differences in the genetic background between each strain of chicken rather than by commercial selection programs for high production.

  13. Genetic relationship between the Echinococcus granulosus sensu stricto cysts located in lung and liver of hosts.

    Science.gov (United States)

    Oudni-M'rad, Myriam; Cabaret, Jacques; M'rad, Selim; Chaâbane-Banaoues, Raja; Mekki, Mongi; Zmantar, Sofien; Nouri, Abdellatif; Mezhoud, Habib; Babba, Hamouda

    2016-10-01

    G1 genotype of Echinococcus granulosus sensu stricto is the major cause of hydatidosis in Northern Africa, Tunisia included. The genetic relationship between lung and liver localization were studied in ovine, bovine and human hydatid cysts in Tunisia. Allozyme variation and single strand conformation polymorphism were used for genetic differentiation. The first cause of genetic differentiation was the host species and the second was the localization (lung or liver). The reticulated genetic relationship between the liver or the lung human isolates and isolates from bovine lung, is indicative of recombination (sexual reproduction) or lateral genetic transfer. The idea of two specialized populations (one for the lung one for the liver) that are more or less successful according to host susceptibility is thus proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Genetic engineering alveolar macrophages for host resistance to PRRSV.

    Science.gov (United States)

    Prather, Randall S; Whitworth, Kristin M; Schommer, Susan K; Wells, Kevin D

    2017-09-01

    Standard strategies for control of porcine reproductive and respiratory syndrome virus (PRRSV) have not been effective, as vaccines have not reduced the prevalence of disease and many producers depopulate after an outbreak. Another method of control would be to prevent the virus from infecting the pig. The virus was thought to infect alveolar macrophages by interaction with a variety of cell surface molecules. One popular model had PRRSV first interacting with heparin sulfate followed by binding to sialoadhesin and then being internalized into an endosome. Within the endosome, PRRSV was thought to interact with CD163 to uncoat the virus so the viral genome could be released into the cytosol and infect the cell. Other candidate receptors have included vimentin, CD151 and CD209. By using genetic engineering, it is possible to test the importance of individual entry mediators by knocking them out. Pigs engineered by knockout of sialoadhesin were still susceptible to infection, while CD163 knockout resulted in pigs that were resistant to infection. Genetic engineering is not only a valuable tool to determine the role of specific proteins in infection by PRRSV (in this case), but also provides a means to create animals resistant to disease. Genetic engineering of alveolar macrophages can also illuminate the role of other proteins in response to infection. We suggest that strategies to prevent infection be pursued to reduce the reservoir of virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Host-parasite coevolutionary dynamics with generalized success/failure infection genetics.

    Science.gov (United States)

    Engelstädter, Jan

    2015-05-01

    Host-parasite infection genetics can be more complex than envisioned by classic models such as the gene-for-gene or matching-allele models. By means of a mathematical model, I investigate the coevolutionary dynamics arising from a large set of generalized models of infection genetics in which hosts are either fully resistant or fully susceptible to a parasite, depending on the genotype of both individuals. With a single diploid interaction locus in the hosts, many of the infection genetic models produce stable or neutrally stable genotype polymorphisms. However, only a few models, which are all different versions of the matching-allele model, lead to sustained cycles of genotype frequency fluctuations in both interacting species ("Red Queen" dynamics). By contrast, with two diploid interaction loci in the hosts, many infection genetics models that cannot be classified as one of the standard infection genetics models produce Red Queen dynamics. Sexual versus asexual reproduction and, in the former case, the rate of recombination between the interaction loci have a large impact on whether Red Queen dynamics arise from a given infection genetics model. This may have interesting but as yet unexplored implications with respect to the Red Queen hypothesis for the evolution of sex.

  16. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    Directory of Open Access Journals (Sweden)

    Marocchi Alessandro

    2008-05-01

    Full Text Available Abstract Background Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Results Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31% and from 69.1 to 86.2% (average 76.6% respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%. This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg

  17. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  18. The joint effects of background selection and genetic recombination on local gene genealogies.

    Science.gov (United States)

    Zeng, Kai; Charlesworth, Brian

    2011-09-01

    Background selection, the effects of the continual removal of deleterious mutations by natural selection on variability at linked sites, is potentially a major determinant of DNA sequence variability. However, the joint effects of background selection and genetic recombination on the shape of the neutral gene genealogy have proved hard to study analytically. The only existing formula concerns the mean coalescent time for a pair of alleles, making it difficult to assess the importance of background selection from genome-wide data on sequence polymorphism. Here we develop a structured coalescent model of background selection with recombination and implement it in a computer program that efficiently generates neutral gene genealogies for an arbitrary sample size. We check the validity of the structured coalescent model against forward-in-time simulations and show that it accurately captures the effects of background selection. The model produces more accurate predictions of the mean coalescent time than the existing formula and supports the conclusion that the effect of background selection is greater in the interior of a deleterious region than at its boundaries. The level of linkage disequilibrium between sites is elevated by background selection, to an extent that is well summarized by a change in effective population size. The structured coalescent model is readily extendable to more realistic situations and should prove useful for analyzing genome-wide polymorphism data.

  19. Genetic Background of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy: Time to Start Asian Registry!

    Directory of Open Access Journals (Sweden)

    Minoru Horie, MD

    2008-01-01

    Full Text Available Arrhythmogenic right venticular dysplasia/cardiomyopathy (ARVD/C is an inherited cardiomyopathy with a very low penetrance affecting the right ventricle (RV and presenting palpitation and syncope due to ventricular tachycardia (VT originating from RV. The VT can degenerate into ventricular fibrillation and sudden cardiac death. The genetic background of ARVD/C has recently been found to be heterogeneous, mainly resulting from cell adhesion abnormalities due to mutations in five different genes encoding members of the desmosome complex. In Asian countries, however, the genetic aspect of the disease has not been fully studied, although the clinical features of Asian ARVD/C patients are different from those in Western countries in the penetrance of phenotypes, relation to Brugada syndrome and link to RV outflow tract ventricular tachycardia. It is of urgent need to have a registry of Asian ARVD/C patients and to conduct a more detailed genetic survey on the candidate genes, including desomosomal ones.

  20. Cognitive, Noncognitive, and Family Background Contributions to College Attainment: A Behavioral Genetic Perspective.

    Science.gov (United States)

    McGue, Matt; Rustichini, Aldo; Iacono, William G

    2017-02-01

    There is considerable evidence that college attainment is associated with family background and cognitive and noncognitive skills. Behavioral genetic methods are used to determine whether the family background effect is mediated through cognitive and noncognitive skill development. We analyze data from two longitudinal behavioral genetic studies: the Minnesota Twin Family Study, consisting of 1,382 pairs of like-sex twins and their parents, and the Sibling Interaction and Behavior Study, consisting of 409 adoptive and 208 nonadoptive families with two offspring and their rearing parents. Cognitive ability, noncognitive skills, and family background are all associated with offspring college attainment. Biometric analysis shows that the intergenerational transmission of college attainment owes to both genetic and shared environmental factors. The shared environmental influence was not due to highly educated parents fostering noncognitive skill development in their children, and there was limited evidence that they foster cognitive skill development. The environmental transmission of educational attainment does not appear to be a consequence of highly educated parents fostering cognitive and noncognitive skill development. Alternative mechanisms are needed to explain the strong shared environmental influence on college attainment. Possibilities include academic expectations, social network effects, and the economic benefits of having wealthy parents. © 2015 Wiley Periodicals, Inc.

  1. Gene interaction at seed-awning loci in the genetic background of wild rice.

    Science.gov (United States)

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  2. Novel methods for quantifying individual host response to infectious pathogens for genetic analyses

    Directory of Open Access Journals (Sweden)

    Andrea B Doeschl-Wilson

    2012-12-01

    Full Text Available Here we propose two novel approaches for describing and quantifying the response of individual hosts to pathogen challenge in terms of infection severity and impact on host performance. The first approach is a direct extension of the methodology for estimating group tolerance – the change in performance with respect to changes in pathogen burden in a host population – to the level of individuals. The second approach aims to capturethe dynamic aspects of individual resistance and tolerance over the entire time course of infections. In contrast to the first approach, which provides a means to disentangle host resistance from tolerance, the second approach considers the combined effects of host resistance and tolerance. Both approaches provide new individual phenotypes for subsequent genetic analyses and come with specific data requirements. Consideration of individual tolerance also highlights some of the assumptions hidden within the concept of group tolerance, indicating where care needs to be taken in trait definition and measurement.

  3. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    Science.gov (United States)

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.

    Science.gov (United States)

    Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel

    2016-01-01

    Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability

  5. Genetic analysis of larval host-plant preference in two sibling species of Helicoverpa

    NARCIS (Netherlands)

    Tang, Q.B.; Jiang, J.W.; Yan, Y.H.; Loon, van J.J.A.; Wang, C.Z.

    2006-01-01

    The genetic basis of larval host-plant preference was investigated in reciprocal F1, F2, and backcrossed generations derived from hybrid crosses between the generalist species Helicoverpa armigera (Hu¿bner) and the closely related specialist species Helicoverpa assulta (Guene¿e) (Lepidoptera:

  6. Temporal Dependence of Chromosomal Aberration on Radiation Quality and Cellular Genetic Background

    Science.gov (United States)

    Lu, Tao; Zhang, Ye; Krieger, Stephanie; Yeshitla, Samrawit; Goss, Rosalin; Bowler, Deborah; Kadhim, Munira; Wilson, Bobby; Wu, Honglu

    2017-01-01

    Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative

  7. Respiratory syncytial virus-induced acute and chronic airway disease is independent of genetic background: An experimental murine model

    Directory of Open Access Journals (Sweden)

    Ramilo Octavio

    2005-05-01

    Full Text Available Abstract Background Respiratory syncytial virus (RSV is the leading respiratory viral pathogen in young children worldwide. RSV disease is associated with acute airway obstruction (AO, long-term airway hyperresponsiveness (AHR, and chronic lung inflammation. Using two different mouse strains, this study was designed to determine whether RSV disease patterns are host-dependent. C57BL/6 and BALB/c mice were inoculated with RSV and followed for 77 days. RSV loads were measured by plaque assay and polymerase chain reaction (PCR in bronchoalveolar lavage (BAL and whole lung samples; cytokines were measured in BAL samples. Lung inflammation was evaluated with a histopathologic score (HPS, and AO and AHR were determined by plethysmography. Results Viral load dynamics, histopathologic score (HPS, cytokine concentrations, AO and long-term AHR were similar in both strains of RSV-infected mice, although RSV-infected C57BL/6 mice developed significantly greater AO compared with RSV-infected BALB/c mice on day 5. PCR detected RSV RNA in BAL samples of RSV infected mice until day 42, and in whole lung samples through day 77. BAL concentrations of cytokines TNF-α, IFN-γ, and chemokines MIG, RANTES and MIP-1α were significantly elevated in both strains of RSV-infected mice compared with their respective controls. Viral load measured by PCR significantly correlated with disease severity on days 14 and 21. Conclusion RSV-induced acute and chronic airway disease is independent of genetic background.

  8. Ecological genomics in Xanthomonas: the nature of genetic adaptation with homologous recombination and host shifts.

    Science.gov (United States)

    Huang, Chao-Li; Pu, Pei-Hua; Huang, Hao-Jen; Sung, Huang-Mo; Liaw, Hung-Jiun; Chen, Yi-Min; Chen, Chien-Ming; Huang, Ming-Ban; Osada, Naoki; Gojobori, Takashi; Pai, Tun-Wen; Chen, Yu-Tin; Hwang, Chi-Chuan; Chiang, Tzen-Yuh

    2015-03-15

    Comparative genomics provides insights into the diversification of bacterial species. Bacterial speciation usually takes place with lasting homologous recombination, which not only acts as a cohering force between diverging lineages but brings advantageous alleles favored by natural selection, and results in ecologically distinct species, e.g., frequent host shift in Xanthomonas pathogenic to various plants. Using whole-genome sequences, we examined the genetic divergence in Xanthomonas campestris that infected Brassicaceae, and X. citri, pathogenic to a wider host range. Genetic differentiation between two incipient races of X. citri pv. mangiferaeindicae was attributable to a DNA fragment introduced by phages. In contrast to most portions of the genome that had nearly equivalent levels of genetic divergence between subspecies as a result of the accumulation of point mutations, 10% of the core genome involving with homologous recombination contributed to the diversification in Xanthomonas, as revealed by the correlation between homologous recombination and genomic divergence. Interestingly, 179 genes were under positive selection; 98 (54.7%) of these genes were involved in homologous recombination, indicating that foreign genetic fragments may have caused the adaptive diversification, especially in lineages with nutritional transitions. Homologous recombination may have provided genetic materials for the natural selection, and host shifts likely triggered ecological adaptation in Xanthomonas. To a certain extent, we observed positive selection nevertheless contributed to ecological divergence beyond host shifting. Altogether, mediated with lasting gene flow, species formation in Xanthomonas was likely governed by natural selection that played a key role in helping the deviating populations to explore novel niches (hosts) or respond to environmental cues, subsequently triggering species diversification.

  9. The Genetic Background Effect on Domesticated Species: A Mouse Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Eli Reuveni

    2011-01-01

    Full Text Available Laboratory mouse strains are known for their large phenotypic diversity and serve as a primary mammalian model in genotype-phenotype association studies. One possible attempt to understand the reason for this diversity could be addressed by careful investigation of the unique evolutionary history of their wild-derived founders and the consequence that it may have on the genetic makeup of the laboratory mouse strains during the history of human fancy breeding. This review will summarize recently published literature that endeavors to unravel the genetic background of laboratory mouse strains, as well as give new insights into novel evolutionary approaches. I will explain basic concepts of molecular evolution and the reason why it is important in order to infer function even among closely related wild and domesticated species. I will also discuss future frontiers in the field and how newly emerging sequencing technologies could help us to better understand the relationship between genotype and phenotype.

  10. Prophage as a genetic reservoir: Promoting diversity and driving innovation in the host community.

    Science.gov (United States)

    Nadeem, A; Wahl, Lindi M

    2017-08-01

    Sequencing of bacterial genomes has revealed an abundance of prophage sequences in many bacterial species. Since these sequences are accessible, through recombination, to infecting phages, bacteria carry an arsenal of genetic material that can be used by these viruses. We develop a mathematical model to isolate the effects of this phenomenon on the coevolution of temperate phage and bacteria. The model predicts that prophage sequences may play a key role in maintaining the phage population in situations that would otherwise favor host cell resistance. In addition, prophage recombination facilitates the existence of multiple phage types, thus promoting diverse co-existence in the phage-host ecosystem. Finally, because the host carries an archive of previous phage strategies, prophage recombination can drive waves of innovation in the host cell population. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  11. Persistence of transmitted HIV-1 drug resistance mutations associated with fitness costs and viral genetic backgrounds.

    Directory of Open Access Journals (Sweden)

    Wan-Lin Yang

    2015-03-01

    Full Text Available Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS. All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V to 2.7/100-person-years;[0.7, 10.9] (for 215D. RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs. When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.

  12. Ethnic background and genetic variation in the evaluation of cancer risk: a systematic review.

    Directory of Open Access Journals (Sweden)

    Lijun Jing

    Full Text Available The clinical use of genetic variation in the evaluation of cancer risk is expanding, and thus understanding how determinants of cancer susceptibility identified in one population can be applied to another is of growing importance. However there is considerable debate on the relevance of ethnic background in clinical genetics, reflecting both the significance and complexity of genetic heritage. We address this via a systematic review of reported associations with cancer risk for 82 markers in 68 studies across six different cancer types, comparing association results between ethnic groups and examining linkage disequilibrium between risk alleles and nearby genetic loci. We find that the relevance of ethnic background depends on the question. If asked whether the association of variants with disease risk is conserved across ethnic boundaries, we find that the answer is yes, the majority of markers show insignificant variability in association with cancer risk across ethnic groups. However if the question is whether a significant association between a variant and cancer risk is likely to reproduce, the answer is no, most markers do not validate in an ethnic group other than the discovery cohort's ancestry. This lack of reproducibility is not attributable to studies being inadequately populated due to low allele frequency in other ethnic groups. Instead, differences in local genomic structure between ethnic groups are associated with the strength of association with cancer risk and therefore confound interpretation of the implied physiologic association tracked by the disease allele. This suggest that a biological association for cancer risk alleles may be broadly consistent across ethnic boundaries, but reproduction of a clinical study in another ethnic group is uncommon, in part due to confounding genomic architecture. As clinical studies are increasingly performed globally this has important implications for how cancer risk stratifiers should be

  13. Evolutionary concepts in ecotoxicology: tracing the genetic background of differential cadmium sensitivities in invertebrate lineages.

    Science.gov (United States)

    Dallinger, Reinhard; Höckner, Martina

    2013-07-01

    In many toxicological and ecotoxicological studies and experimental setups, the investigator is mainly interested in traditional parameters such as toxicity data and effects of toxicants on molecular, cellular or physiological functions of individuals, species or statistical populations. It is clear, however, that such approaches focus on the phenotype level of animal species, whilst the genetic and evolutionary background of reactions to environmental toxicants may remain untold. In ecotoxicological risk assessment, moreover, species sensitivities towards pollutants are often regarded as random variables in a statistical approach. Beyond statistics, however, toxicant sensitivity of every species assumes a biological significance, especially if we consider that sensitivity traits have developed in lineages of species with common evolutionary roots. In this article, the genetic and evolutionary background of differential Cd sensitivities among invertebrate populations and species and their potential of adaptation to environmental Cd exposure will be highlighted. Important evolutionary and population genetic concepts such as genome structure and their importance for evolutionary adaptation, population structure of affected individuals, as well as micro and macroevolutionary mechanisms of Cd resistance in invertebrate lineages will be stressed by discussing examples of work from our own laboratory along with a review of relevant literature data and a brief discussion of open questions along with some perspectives for further research. Both, differences and similarities in Cd sensitivity traits of related invertebrate species can only be understood if we consider the underlying evolutionary processes and genetic (or epigenetic) mechanisms. Keeping in mind this perception can help us to better understand and interpret more precisely why the sensitivity of some species or species groups towards a certain toxicant (or metal) may be ranked in the lower or higher range of

  14. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes

    Science.gov (United States)

    Yengkopiong, Jada Pasquale; Lako, Joseph Daniel Wani

    2013-01-01

    Background Nephronophthisis (NPHP), which affects multiple organs, is a hereditary cystic kidney disease (CKD), characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac–/–) rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats. Methods Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed. Results It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, χ2 = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, χ2 = 0.18, P > 0.05) and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to early pup mortality. Conclusion The genetic background of the nonmutant PVG rats does not influence the genetic and phenotypic inheritance of CKD from mutant Lewis polycystic kidney rats. A single

  15. Genetic background of nonmutant Piebald-Virol-Glaxo rats does not influence nephronophthisis phenotypes

    Directory of Open Access Journals (Sweden)

    Yengkopiong JP

    2013-02-01

    Full Text Available Jada Pasquale Yengkopiong, Joseph Daniel Wani LakoJohn Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Jonglei State, Republic of South SudanBackground: Nephronophthisis (NPHP, which affects multiple organs, is a hereditary cystic kidney disease (CKD, characterized by interstitial fibrosis and numerous fluid-filled cysts in the kidneys. It is caused by mutations in NPHP genes, which encode for ciliary proteins known as nephrocystins. The disorder affects many people across the world and leads to end-stage renal disease. The aim of this study was to determine if the genetic background of the nonmutant female Piebald-Virol-Glaxo (PVG/Seac-/- rat influences phenotypic inheritance of NPHP from mutant male Lewis polycystic kidney rats.Methods: Mating experiments were performed between mutant Lewis polycystic kidney male rats with CKD and nonmutant PVG and Wistar Kyoto female rats without cystic kidney disease to raise second filial and backcross 1 progeny, respectively. Rats that developed cystic kidneys were identified. Systolic blood pressure was determined in each rat at 12 weeks of age using the tail and cuff method. After euthanasia, blood samples were collected and chemistry was determined. Histological examination of the kidneys, pancreas, and liver of rats with and without cystic kidney disease was performed.Results: It was established that the genetic background of nonmutant female PVG rats did not influence the phenotypic inheritance of the CKD from mutant male Lewis polycystic kidney rats. The disease arose as a result of a recessive mutation in a single gene (second filial generation, CKD = 13, non-CKD = 39, Χ2 = 0.00, P ≥ 0.97; backcross 1 generation, CKD = 67, non-CKD = 72, Χ2 = 0.18, P > 0.05 and inherited as NPHP. The rats with CKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia, but there were no extrarenal cysts and disease did not lead to

  16. Brucella Genetic Variability in Wildlife Marine Mammals Populations Relates to Host Preference and Ocean Distribution.

    Science.gov (United States)

    Suárez-Esquivel, Marcela; Baker, Kate S; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R; Moreno, Edgardo; Guzmán-Verri, Caterina

    2017-07-01

    Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97-99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan, as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB, and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.

  18. A Strong Impact of Genetic Background on Gut Microflora in Mice

    Directory of Open Access Journals (Sweden)

    R. Steven Esworthy

    2010-01-01

    Full Text Available Genetic background affects susceptibility to ileocolitis in mice deficient in two intracellular glutathione peroxidases, GPx1 and GPx2. The C57BL/6 (B6 GPx1/2 double-knockout (DKO mice have mild ileocolitis, and 129S1/Sv (129 DKO mice have severe inflammation. We used diet to modulate ileocolitis; a casein-based defined diet with AIN76A micronutrients (AIN attenuates inflammation compared to conventional LabDiets. Because luminal microbiota induce DKO ileocolitis, we assessed bacterial composition with automated ribosomal intergenic-spacer analysis (ARISA on cecal DNA. We found that mouse strain had the strongest impact on the composition of microbiota than diet and GPx genotypes. In comparing AIN and LabDiet, DKO mice were more resistant to change than the non-DKO or WT mice. However, supplementing yeast and inulin to AIN diet greatly altered microflora profiles in the DKO mice. From 129 DKO strictly, we found overgrowth of Escherichia coli. We conclude that genetic background predisposes mice to colonization of potentially pathogenic E. coli.

  19. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background

    Directory of Open Access Journals (Sweden)

    Jinsheng Yu

    2016-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met in PNPLA3 and rs58542926 (Glu167Lys in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression.

  20. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2013-01-01

    The genetic transformation of plants mediated by Agrobacterium tumefaciens represents an essential tool for both fundamental and applied research in plant biology. For a successful infection, culminating in the integration of its transferred DNA (T-DNA) into the host genome, Agrobacterium relies on multiple interactions with host-plant factors. Extensive studies have unraveled many of such interactions at all major steps of the infection process: activation of the bacterial virulence genes, cell-cell contact and macromolecular translocation from Agrobacterium to host cell cytoplasm, intracellular transit of T-DNA and associated proteins (T-complex) to the host cell nucleus, disassembly of the T-complex, T-DNA integration, and expression of the transferred genes. During all these processes, Agrobacterium has evolved to control and even utilize several pathways of host-plant defense response. Studies of these Agrobacterium-host interactions substantially enhance our understanding of many fundamental cellular biological processes and allow improvements in the use of Agrobacterium as a gene transfer tool for biotechnology.

  1. Role of Host Genetic Factors in the Outcome of Hepatitis C Virus Infection

    Directory of Open Access Journals (Sweden)

    Hubert E. Blum

    2009-08-01

    Full Text Available The natural history of hepatitis C virus (HCV infection is determined by a complex interplay between host genetic, immunological and viral factors. This review highlights genes involved in innate and adaptive immune responses associated with different outcomes of HCV infection. For example, an association of HCV clearance with certain HLA alleles has been demonstrated. The mechanisms responsible for these associations have been linked to specific T cell responses for some particular alleles (e.g., HLA-B27. Genetic associations involved in T cell regulation and function further underline the role of the adaptive immune response in the natural history of HCV infection. In addition, some genes involved in innate NK cell responses demonstrate the complex interplay between components of the immune system necessary for a successful host response to HCV infection.

  2. Alteration of Genetic Make-up in Karnal Bunt Pathogen (Tilletia indica of Wheat in Presence of Host Determinants

    Directory of Open Access Journals (Sweden)

    Atul K. Gupta

    2015-06-01

    Full Text Available Alteration of genetic make-up of the isolates and monosporidial strains of Tilletia indica causing Karnal bunt (KB disease in wheat was analyzed using DNA markers and SDS-PAGE. The generation of new variation with different growth characteristics is not a generalized feature and is not only dependant on the original genetic make up of the base isolate/monosporidial strains but also on interaction with host. Host determinant(s plays a significant role in the generation of variability and the effect is much pronounced in monosporidial strains with narrow genetic base as compared to broad genetic base. The most plausible explanation of genetic variation in presence of host determinant(s are the recombination of genetic material from two different mycelial/sporidia through sexual mating as well as through para-sexual means. The morphological and development dependent variability further suggests that the variation in T. indica strains predominantly derived through the genetic rearrangements.

  3. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Lim, Mi Young; You, Hyun Ju; Yoon, Hyo Shin; Kwon, Bomi; Lee, Jae Yoon; Lee, Sunghee; Song, Yun-Mi; Lee, Kayoung; Sung, Joohon; Ko, GwangPyo

    2017-06-01

    Metabolic syndrome (MetS) arises from complex interactions between host genetic and environmental factors. Although it is now widely accepted that the gut microbiota plays a crucial role in host metabolism, current knowledge on the effect of host genetics on specific gut microbes related to MetS status remains limited. Here, we investigated the links among host genetic factors, gut microbiota and MetS in humans. We characterised the gut microbial community composition of 655 monozygotic (n=306) and dizygotic (n=74) twins and their families (n=275), of which approximately 18% (121 individuals) had MetS. We evaluated the association of MetS status with the gut microbiota and estimated the heritability of each taxon. For the MetS-related and heritable taxa, we further investigated their associations with the apolipoprotein A-V gene ( APOA5 ) single nucleotide polymorphism (SNP) rs651821, which is known to be associated with triglyceride levels and MetS. Individuals with MetS had a lower gut microbiota diversity than healthy individuals. The abundances of several taxa were associated with MetS status; Sutterella , Methanobrevibacter and Lactobacillus were enriched in the MetS group, whereas Akkermansia , Odoribacter and Bifidobacterium were enriched in the healthy group. Among the taxa associated with MetS status, the phylum Actinobacteria, to which Bifidobacterium belongs, had the highest heritability (45.7%). Even after adjustment for MetS status, reduced abundances of Actinobacteria and Bifidobacterium were significantly linked to the minor allele at the APOA5 SNP rs651821. Our results suggest that an altered microbiota composition mediated by a specific host genotype can contribute to the development of MetS. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  5. The Behavioral Consequence of Phenylketonuria in Mice Depends on the Genetic Background

    Directory of Open Access Journals (Sweden)

    Vibeke Marijn Bruinenberg

    2016-12-01

    Full Text Available To unravel the role of gene mutations in the healthy and the diseased state, countless studies have tried to link genotype with phenotype. However, over the years, it became clear that the strain of mice can influence these results. Nevertheless, identical gene mutations in different strains are often still considered equals. An example of this, is the research done in phenylketonuria (PKU, an inheritable metabolic disorder. In this field, a PKU mouse model (either on a BTBR or C57Bl/6 background is often used to examine underlying mechanisms of the disease and/or new treatment strategies. Both strains have a point mutation in the gene coding for the enzyme phenylalanine hydroxylase which causes toxic concentrations of the amino acid phenylalanine in blood and brain, as found in PKU patients. Although the mutation is identical and therefore assumed to equally affect physiology and behavior in both strains, no studies directly compared the two genetic backgrounds to test this assumption. Therefore, this study compared the BTBR and C57Bl/6 wild-type and PKU mice on PKU-relevant amino acid- and neurotransmitter levels and at a behavioral level. The behavioral paradigms were selected from previous literature on the PKU mouse model and address four domains, namely 1 activity levels, 2 motor performance, 3 anxiety and/or depression-like behavior, and 4 learning and memory. The results of this study showed comparable biochemical changes in phenylalanine and neurotransmitter concentrations. In contrast, clear differences in behavioral outcome between the strains in all four above-mentioned domains were found, most notably in the learning and memory domain. The outcome in this domain seem to be primarily due to factors inherent to the genetic background of the mouse and much less by differences in PKU-specific biochemical parameters in blood and brain. The difference in behavioral outcome between PKU of both strains emphasizes that the consequence of the

  6. The interplay of host genetic factors and Epstein-Barr virus in the development of nasopharyngeal carcinoma

    Science.gov (United States)

    Lung, Maria Li; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Lung, Hong Lok; Cheng, Yue; Dai, Wei

    2014-01-01

    The interplay between host cell genetics and Epstein-Barr virus (EBV) infection contributes to the development of nasopharyngeal carcinoma (NPC). Understanding the host genetic and epigenetic alterations and the influence of EBV on cell signaling and host gene regulation will aid in understanding the molecular pathogenesis of NPC and provide useful biomarkers and targets for diagnosis and therapy. In this review, we provide an update of the oncogenes and tumor suppressor genes associated with NPC, as well as genes associated with NPC risk including those involved in carcinogen detoxification and DNA repair. We also describe the importance of host genetics that govern the human leukocyte antigen (HLA) complex and immune responses, and we describe the impact of EBV infection on host cell signaling changes and epigenetic regulation of gene expression. High-power genomic sequencing approaches are needed to elucidate the genetic basis for inherited susceptibility to NPC and to identify the genes and pathways driving its molecular pathogenesis. PMID:25367335

  7. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  8. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite.

    Science.gov (United States)

    Schulte, Rebecca D; Makus, Carsten; Hasert, Barbara; Michiels, Nico K; Schulenburg, Hinrich

    2010-04-20

    The coevolution between hosts and parasites is predicted to have complex evolutionary consequences for both antagonists, often within short time periods. To date, conclusive experimental support for the predictions is available mainly for microbial host systems, but for only a few multicellular host taxa. We here introduce a model system of experimental coevolution that consists of the multicellular nematode host Caenorhabditis elegans and the microbial parasite Bacillus thuringiensis. We demonstrate that 48 host generations of experimental coevolution under controlled laboratory conditions led to multiple changes in both parasite and host. These changes included increases in the traits of direct relevance to the interaction such as parasite virulence (i.e., host killing rate) and host resistance (i.e., the ability to survive pathogens). Importantly, our results provide evidence of reciprocal effects for several other central predictions of the coevolutionary dynamics, including (i) possible adaptation costs (i.e., reductions in traits related to the reproductive rate, measured in the absence of the antagonist), (ii) rapid genetic changes, and (iii) an overall increase in genetic diversity across time. Possible underlying mechanisms for the genetic effects were found to include increased rates of genetic exchange in the parasite and elevated mutation rates in the host. Taken together, our data provide comprehensive experimental evidence of the consequences of host-parasite coevolution, and thus emphasize the pace and complexity of reciprocal adaptations associated with these antagonistic interactions.

  9. Evidence for Within-Host Genetic Recombination among the Human Pegiviral Strains in HIV Infected Subjects.

    Directory of Open Access Journals (Sweden)

    Haoming Wu

    Full Text Available The non-pathogenic Human Pegivirus (HPgV, formerly GBV-C/HGV, the most prevalent RNA virus worldwide, is known to be associated with reduced morbidity and mortality in HIV-infected individuals. Although previous studies documented its ubiquity and important role in HIV-infected individuals, little is known about the underlying genetic mechanisms that maintain high genetic diversity of HPgV within the HIV-infected individuals. To assess the within-host genetic diversity of HPgV and forces that maintain such diversity within the co-infected hosts, we performed phylogenetic analyses taking into account 229 HPgV partial E1-E2 clonal sequences representing 15 male and 8 female co-infected HIV patients from Hubei province of central China. Our results revealed the presence of eleven strongly supported clades. While nine clades belonged to genotype 3, two clades belonged to genotype 2. Additionally, four clades that belonged to genotype 3 exhibited inter-clade recombination events. The presence of clonal sequences representing multiple clades within the HIV-infected individual provided the evidence of co-circulation of HPgV strains across the region. Of the 23 patients, six patients (i.e., five males and one female were detected to have HPgV recombinant sequences. Our results also revealed that while male patients shared the viral strains with other patients, viral strains from the female patients had restricted dispersal. Taken together, the present study revealed that multiple infections with divergent HPgV viral strains may have caused within-host genetic recombination, predominantly in male patients, and therefore, could be the major driver in shaping genetic diversity of HPgV.

  10. SAP modulates B cell functions in a genetic background-dependent manner.

    Science.gov (United States)

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Accidental genetic engineers: horizontal sequence transfer from parasitoid wasps to their Lepidopteran hosts.

    Directory of Open Access Journals (Sweden)

    Sean E Schneider

    Full Text Available We show here that 105 regions in two Lepidoptera genomes appear to derive from horizontally transferred wasp DNA. We experimentally verified the presence of two of these sequences in a diverse set of silkworm (Bombyx mori genomes. We hypothesize that these horizontal transfers are made possible by the unusual strategy many parasitoid wasps employ of injecting hosts with endosymbiotic polydnaviruses to minimize the host's defense response. Because these virus-like particles deliver wasp DNA to the cells of the host, there has been much interest in whether genetic information can be permanently transferred from the wasp to the host. Two transferred sequences code for a BEN domain, known to be associated with polydnaviruses and transcriptional regulation. These findings represent the first documented cases of horizontal transfer of genes between two organisms by a polydnavirus. This presents an interesting evolutionary paradigm in which host species can acquire new sequences from parasitoid wasps that attack them. Hymenoptera and Lepidoptera diverged ∼300 MYA, making this type of event a source of novel sequences for recipient species. Unlike many other cases of horizontal transfer between two eukaryote species, these sequence transfers can be explained without the need to invoke the sequences 'hitchhiking' on a third organism (e.g. retrovirus capable of independent reproduction. The cellular machinery necessary for the transfer is contained entirely in the wasp genome. The work presented here is the first such discovery of what is likely to be a broader phenomenon among species affected by these wasps.

  12. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome.

    Science.gov (United States)

    Igartua, Catherine; Davenport, Emily R; Gilad, Yoav; Nicolae, Dan L; Pinto, Jayant; Ober, Carole

    2017-02-01

    The degree to which host genetic variation can modulate microbial communities in humans remains an open question. Here, we performed a genetic mapping study of the microbiome in two accessible upper airway sites, the nasopharynx and the nasal vestibule, during two seasons in 144 adult members of a founder population of European decent. We estimated the relative abundances (RAs) of genus level bacteria from 16S rRNA gene sequences and examined associations with 148,653 genetic variants (linkage disequilibrium [LD] r 2 microbiome quantitative trait loci (mbQTLs) that showed evidence of association with the RAs of 22 genera (q < 0.05) and were enriched for genes in mucosal immunity pathways. The most significant association was between the RA of Dermacoccus (phylum Actinobacteria) and a variant 8 kb upstream of TINCR (rs117042385; p = 1.61 × 10-8; q = 0.002), a long non-coding RNA that binds to peptidoglycan recognition protein 3 (PGLYRP3) mRNA, a gene encoding a known antimicrobial protein. A second association was between a missense variant in PGLYRP4 (rs3006458) and the RA of an unclassified genus of family Micrococcaceae (phylum Actinobacteria) (p = 5.10 × 10-7; q = 0.032). Our findings provide evidence of host genetic influences on upper airway microbial composition in humans and implicate mucosal immunity genes in this relationship.

  13. Host genetics role in the pathogenesis of periodontal disease and caries.

    Science.gov (United States)

    Nibali, Luigi; Di Iorio, Anna; Tu, Yu-Kang; Vieira, Alexandre R

    2017-03-01

    This study aimed to produce the latest summary of the evidence for association of host genetic variants contributing to both periodontal diseases and caries. Two systematic searches of the literature were conducted in Ovid Medline, Embase, LILACS and Cochrane Library for large candidate gene studies (CGS), systematic reviews and genome-wide association studies reporting data on host genetic variants and presence of periodontal disease and caries. A total of 124 studies were included in the review (59 for the periodontitis outcome and 65 for the caries outcome), from an initial search of 15,487 titles. Gene variants associated with periodontitis were categorized based on strength of evidence and then compared with gene variants associated with caries. Several gene variants showed moderate to strong evidence of association with periodontitis, although none of them had also been associated with the caries trait. Despite some potential aetiopathogenic similarities between periodontitis and caries, no genetic variants to date have clearly been associated with both diseases. Further studies or comparisons across studies with large sample size and clear phenotype definition could shed light into possible shared genetic risk factors for caries and periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    Science.gov (United States)

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, Pinsects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide the protection and sustainable use of these host

  15. Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae).

    Science.gov (United States)

    Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A

    2017-04-01

    Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    Science.gov (United States)

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event. PMID:26720131

  17. Hosts, distribution and genetic divergence (16S rDNA) of Amblyomma dubitatum (Acari: Ixodidae).

    Science.gov (United States)

    Nava, Santiago; Venzal, José M; Labruna, Marcelo B; Mastropaolo, Mariano; González, Enrique M; Mangold, Atilio J; Guglielmone, Alberto A

    2010-08-01

    We supply information about hosts and distribution of Amblyomma dubitatum. In addition, we carry out an analysis of genetic divergence among specimens of A. dubitatum from different localities and with respect to other Neotropical Amblyomma species, using sequences of 16S rDNA gene. Although specimens of A. dubitatum were collected on several mammal species as cattle horse, Tapirus terrestris, Mazama gouazoubira, Tayassu pecari, Sus scrofa, Cerdocyon thous, Myocastor coypus, Allouata caraya, Glossophaga soricina and man, most records of immature and adult stages of A. dubitatum were made on Hydrochoerus hydrochaeris, making this rodent the principal host for all parasitic stages of this ticks. Cricetidae rodents (Lundomys molitor, Scapteromys tumidus), opossums (Didelphis albiventris) and vizcacha (Lagostomus maximus) also were recorded as hosts for immature stages. All findings of A. dubitatum correspond to localities of Argentina, Brazil, Paraguay and Uruguay, and they were concentrated in the Biogeographical provinces of Pampa, Chaco, Cerrado, Brazilian Atlantic Forest, Parana Forest and Araucaria angustifolia Forest. The distribution of A. dubitatum is narrower than that of its principal host, therefore environmental variables rather than hosts determine the distributional ranges of this tick. The intraspecific genetic divergence among 16S rDNA sequences of A. dubitatum ticks collected in different localities from Argentina, Brazil and Uruguay was in all cases lower than 0.8%, whereas the differences with the remaining Amblyomma species included in the analysis were always bigger than 6.8%. Thus, the taxonomic status of A. dubitatum along its distribution appears to be certain at the specific level.

  18. Comparative Genome Sequencing Reveals Within-Host Genetic Changes in Neisseria meningitidis during Invasive Disease.

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    Full Text Available Some members of the physiological human microbiome occasionally cause life-threatening disease even in immunocompetent individuals. A prime example of such a commensal pathogen is Neisseria meningitidis, which normally resides in the human nasopharynx but is also a leading cause of sepsis and epidemic meningitis. Using N. meningitidis as model organism, we tested the hypothesis that virulence of commensal pathogens is a consequence of within host evolution and selection of invasive variants due to mutations at contingency genes, a mechanism called phase variation. In line with the hypothesis that phase variation evolved as an adaptation to colonize diverse hosts, computational comparisons of all 27 to date completely sequenced and annotated meningococcal genomes retrieved from public databases showed that contingency genes are indeed enriched for genes involved in host interactions. To assess within-host genetic changes in meningococci, we further used ultra-deep whole-genome sequencing of throat-blood strain pairs isolated from four patients suffering from invasive meningococcal disease. We detected up to three mutations per strain pair, affecting predominantly contingency genes involved in type IV pilus biogenesis. However, there was not a single (set of mutation(s that could invariably be found in all four pairs of strains. Phenotypic assays further showed that these genetic changes were generally not associated with increased serum resistance, higher fitness in human blood ex vivo or differences in the interaction with human epithelial and endothelial cells in vitro. In conclusion, we hypothesize that virulence of meningococci results from accidental emergence of invasive variants during carriage and without within host evolution of invasive phenotypes during disease progression in vivo.

  19. Prevotella as a Hub for Vaginal Microbiota under the Influence of Host Genetics and Their Association with Obesity.

    Science.gov (United States)

    Si, Jiyeon; You, Hyun Ju; Yu, Junsun; Sung, Joohon; Ko, GwangPyo

    2017-01-11

    While the vaginal ecosystem is maintained through mutualistic relationships between the host and the vaginal bacteria, the effect of host genetics on the vaginal microbiota has not been well characterized. We examined the heritability of vaginal microbiota and its association with obesity in 542 Korean females, including 222 monozygotic and 56 dizygotic twins. The vaginal microbiota significantly varied depending on host menopausal status and bacterial vaginosis. Lactobacillus and Prevotella, whose relative abundances are strongly associated with bacterial vaginosis, were the most heritable bacteria among the beneficial and potentially pathogenic vaginal microbiota, respectively. Candidate gene analysis revealed an association between genetic variants of interleukin-5 and the abundance of Prevotella sp. Furthermore, host obesity significantly increased the diversity of the vaginal microbiota in association with Prevotella. Our results provide insight into the effect of host genetics on the vaginal microbiota and their association with both vaginal and non-vaginal health. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Toward elucidation of genetic and functional genetic mechanisms in corn host resistance to Aspergillus flavus infection and aflatoxin contamination

    Directory of Open Access Journals (Sweden)

    Xueyan eShan

    2014-07-01

    Full Text Available Aflatoxins are carcinogenic mycotoxins produced by some species in the Aspergillus genus, such as A. flavus and A. parasiticus. Contamination of aflatoxins in corn profusely happens at pre-harvest stage when heat and drought field conditions favor A. flavus colonization. Commercial corn hybrids are generally susceptible to A. flavus infection. An ideal strategy for preventing aflatoxin contamination is through the enhancement of corn host resistance to Aspergillus infection and aflatoxin production. Constant efforts have been made by corn breeders to develop resistant corn genotypes. Significantly low levels of aflatoxin accumulation have been determined in certain resistant corn inbred lines. A number of reports of quantitative trait loci (QTLs have provided compelling evidence supporting the quantitative trait genetic basis of corn host resistance to aflatoxin accumulation. Important findings have also been obtained from the investigation on candidate resistance genes through transcriptomics approach. Elucidation of molecular mechanisms will provide in-depth understanding of the host-pathogen interactions and hence facilitate the breeding of corn with resistance to A. falvus infection and aflatoxin accumulation.

  1. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background.

    Directory of Open Access Journals (Sweden)

    Saskia Decuypere

    Full Text Available The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L. donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread

  2. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    Science.gov (United States)

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  3. Broad-scale Population Genetics of the Host Sea Anemone, Heteractis magnifica

    KAUST Repository

    Emms, Madeleine

    2015-12-01

    Broad-scale population genetics can reveal population structure across an organism’s entire range, which can enable us to determine the most efficient population-wide management strategy depending on levels of connectivity. Genetic variation and differences in genetic diversity on small-scales have been reported in anemones, but nothing is known about their broad-scale population structure, including that of “host” anemone species, which are increasingly being targeted in the aquarium trade. In this study, microsatellite markers were used as a tool to determine the population structure of a sessile, host anemone species, Heteractis magnifica, across the Indo-Pacific region. In addition, two rDNA markers were used to identify Symbiodinium from the samples, and phylogenetic analyses were used to measure diversity and geographic distribution of Symbiodinium across the region. Significant population structure was identified in H. magnifica across the Indo-Pacific, with at least three genetic breaks, possibly the result of factors such as geographic distance, geographic isolation and environmental variation. Symbiodinium associations were also affected by environmental variation and supported the geographic isolation of some regions. These results suggests that management of H. magnifica must be implemented on a local scale, due to the lack of connectivity between clusters. This study also provides further evidence for the combined effects of geographic distance and environmental distance in explaining genetic variance.

  4. Draft genome sequences of 53 genetically distinct isolates of Bordetella bronchiseptica representing 11 terrestrial and aquatic hosts

    Science.gov (United States)

    Bordetella bronchiseptica infects a variety of mammalian and avian hosts. Here we report the genome sequences of 53 genetically distinct isolates, acquired from a broad range of terrestrial and aquatic animals. These data will greatly facilitate ongoing efforts to better understand evolution, host...

  5. Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE

    Directory of Open Access Journals (Sweden)

    Vogiatzi Fotini

    2010-09-01

    Full Text Available Abstract Background Cancer arises from normal cells through the stepwise accumulation of genetic alterations. Cancer development can be studied by direct genetic manipulation within experimental models of tumorigenesis. Thereby, confusion by the genetic heterogeneity of patients can be circumvented. Moreover, identification of the critical changes that convert a pre-malignant cell into a metastatic, therapy resistant tumor cell, however, is one necessary step to develop effective and selective anti-cancer drugs. Thus, for the current study a cell culture model for malignant transformation was used: Primary human fibroblasts of the BJ strain were sequentially transduced with retroviral vectors encoding the genes for hTERT (cell line BJ-T, simian virus 40 early region (SV40 ER, cell line BJ-TE and H-Ras V12 (cell line BJ-TER. Results The stepwise malignant transformation of human fibroblasts was analyzed on the protein level by differential proteome analysis. We observed 39 regulated protein spots and therein identified 67 different proteins. The strongest change of spot patterns was detected due to integration of SV40 ER. Among the proteins being significantly regulated during the malignant transformation process well known proliferating cell nuclear antigen (PCNA as well as the chaperones mitochondrial heat shock protein 75 kDa (TRAP-1 and heat shock protein HSP90 were identified. Moreover, we find out, that TRAP-1 is already up-regulated by means of SV40 ER expression instead of H-Ras V12. Furthermore Peroxiredoxin-6 (PRDX6, Annexin A2 (p36, Plasminogen activator inhibitor 2 (PAI-2 and Keratin type II cytoskeletal 7 (CK-7 were identified to be regulated. For some protein candidates we confirmed our 2D-PAGE results by Western Blot. Conclusion These findings give further hints for intriguing interactions between the p16-RB pathway, the mitochondrial chaperone network and the cytoskeleton. In summary, using a cell culture model for malignant

  6. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice.

    Science.gov (United States)

    Ericsson, Aaron C; Davis, J Wade; Spollen, William; Bivens, Nathan; Givan, Scott; Hagan, Catherine E; McIntosh, Mark; Franklin, Craig L

    2015-01-01

    The commensal gut microbiota has been implicated as a determinant in several human diseases and conditions. There is mounting evidence that the gut microbiota of laboratory mice (Mus musculus) similarly modulates the phenotype of mouse models used to study human disease and development. While differing model phenotypes have been reported using mice purchased from different vendors, the composition and uniformity of the fecal microbiota in mice of various genetic backgrounds from different vendors is unclear. Using culture-independent methods and robust statistical analysis, we demonstrate significant differences in the richness and diversity of fecal microbial populations in mice purchased from two large commercial vendors. Moreover, the abundance of many operational taxonomic units, often identified to the species level, as well as several higher taxa, differed in vendor- and strain-dependent manners. Such differences were evident in the fecal microbiota of weanling mice and persisted throughout the study, to twenty-four weeks of age. These data provide the first in-depth analysis of the developmental trajectory of the fecal microbiota in mice from different vendors, and a starting point from which researchers may be able to refine animal models affected by differences in the gut microbiota and thus possibly reduce the number of animals required to perform studies with sufficient statistical power.

  7. A review on ocular findings in mouse lemurs: potential links to age and genetic background

    Directory of Open Access Journals (Sweden)

    M. Dubicanac

    2017-10-01

    Full Text Available Mouse lemurs, the world's smallest primates, inhabit forests in Madagascar. They are nocturnal, arboreal and dependent on vision for their everyday lives. In the last decades, the grey mouse lemur became increasingly important for biomedical research, in particular aging research. Experiments which require the combination of visual fitness and old age consequently depend on a solid knowledge of ocular pathologies. Although ocular diseases in mouse lemurs have been described as being common, they have not received much attention so far. Yet it is important to know when and why ocular diseases in captive mouse lemurs may occur. This review aims to provide a comprehensive overview of known ocular findings in mouse lemurs. It summarizes the frequency of ocular findings in captive mouse lemur colonies and points to their likely causes and treatment options based on the evidence available from other animals and humans. In addition, it shall be discussed whether age or genetic background may affect their development. This review may be used as a reference for future studies which require an assessment of visual performance in mouse lemurs and help to evaluate observed clinical signs and ocular diseases. Furthermore, the high incidence of specific diseases may provide new perspectives and set the groundwork for a new animal model for ocular research.

  8. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    Directory of Open Access Journals (Sweden)

    DWINITA WIKAN UTAMI

    2011-09-01

    Full Text Available Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufipogon and CT13432 crossing. DNA of five rice lines were amplified using the spesific primer for Pi33, G1010. Amplification results purified through Exonuclease 1 and Shrimp Alkaline Phosphatase protocols. Labelling using fluorescent dyes done before sequencing nucleotide base using CEQ8000 instrument. The results showed that lines number 28 showed introgesion of the three control parent genome (subspecies of Indica, subspecies of Japonica, and O. rufipogon while the Lines number 79, 136, and 143 were identical to Indica genome. Strain number 195 was identical to Japonica genome. These broad genetic background lines promise as durable performance to attack the expansion of the dynamic nature of the pathogen to blast. The result of ortholog sequence analysis found conserved nucleotide base sequence (CAGCAGCC which involved in heterotrimeric G-protein group. This protein has role as plant receptor for recognizing pathogen elicitor in interaction of rice and blast pathogen.

  9. Genetic Background Modulates lncRNA-Coordinated Tissue Response to Low Dose Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Jonathan Tang

    2015-01-01

    Full Text Available Long noncoding RNAs (lncRNAs are emerging as key regulators of diverse cell functions and processes. However, the relevance of lncRNAs in the cell and tissue response to ionizing radiation has not yet been characterized. Here we used microarray profiling to determine lncRNA and mRNA expression in mammary glands of BALB/c and SPRET/EiJ mice after low-dose ionizing radiation (LDIR exposure. We found that unirradiated mammary tissues of these strains differed significantly in baseline expressions of 290 lncRNAs. LDIR exposure (10 cGy induced a significant change in the expression of many lncRNAs. The vast majority of lncRNAs identified to be differentially expressed after LDIR in either BALB/c or SPRET/EiJ had a significantly correlated expression pattern with at least one LDIR responsive mRNA. Functional analysis revealed that the response to LDIR in BALB/c mice is highly dynamic with enrichment for genes involved in tissue injury, inflammatory responses, and mammary gland development at 2, 4, and 8 weeks after LDIR, respectively. Our study demonstrates that genetic background strongly influences the expression of lncRNAs and their response to radiation and that lncRNAs may coordinate the tissue response to LDIR exposure via regulation of coding mRNAs.

  10. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization.

    Science.gov (United States)

    Randles, Michael J; Woolf, Adrian S; Huang, Jennifer L; Byron, Adam; Humphries, Jonathan D; Price, Karen L; Kolatsi-Joannou, Maria; Collinson, Sophie; Denny, Thomas; Knight, David; Mironov, Aleksandr; Starborg, Toby; Korstanje, Ron; Humphries, Martin J; Long, David A; Lennon, Rachel

    2015-12-01

    Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.

  11. History, geography and host use shape genomewide patterns of genetic variation in the redheaded pine sawfly (Neodiprion lecontei).

    Science.gov (United States)

    Bagley, Robin K; Sousa, Vitor C; Niemiller, Matthew L; Linnen, Catherine R

    2017-02-01

    Divergent host use has long been suspected to drive population differentiation and speciation in plant-feeding insects. Evaluating the contribution of divergent host use to genetic differentiation can be difficult, however, as dispersal limitation and population structure may also influence patterns of genetic variation. In this study, we use double-digest restriction-associated DNA (ddRAD) sequencing to test the hypothesis that divergent host use contributes to genetic differentiation among populations of the redheaded pine sawfly (Neodiprion lecontei), a widespread pest that uses multiple Pinus hosts throughout its range in eastern North America. Because this species has a broad range and specializes on host plants known to have migrated extensively during the Pleistocene, we first assess overall genetic structure using model-based and model-free clustering methods and identify three geographically distinct genetic clusters. Next, using a composite-likelihood approach based on the site frequency spectrum and a novel strategy for maximizing the utility of linked RAD markers, we infer the population topology and date divergence to the Pleistocene. Based on existing knowledge of Pinus refugia, estimated demographic parameters and patterns of diversity among sawfly populations, we propose a Pleistocene divergence scenario for N. lecontei. Finally, using Mantel and partial Mantel tests, we identify a significant relationship between genetic distance and geography in all clusters, and between genetic distance and host use in two of three clusters. Overall, our results indicate that Pleistocene isolation, dispersal limitation and ecological divergence all contribute to genomewide differentiation in this species and support the hypothesis that host use is a common driver of population divergence in host-specialized insects. © 2016 John Wiley & Sons Ltd.

  12. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome.

    Science.gov (United States)

    Knights, Dan; Lassen, Kara G; Xavier, Ramnik J

    2013-10-01

    Studies of the genetics underlying inflammatory bowel diseases have increased our understanding of the pathways involved in both ulcerative colitis and Crohn's disease and focused attention on the role of the microbiome in these diseases. Full understanding of pathogenesis will require a comprehensive grasp of the delicate homeostasis between gut bacteria and the human host. In this review, we present current evidence of microbiome-gene interactions in the context of other known risk factors and mechanisms, and describe the next steps necessary to pair genetic variant and microbiome sequencing data from patient cohorts. We discuss the concept of dysbiosis, proposing that the functional composition of the gut microbiome may provide a more consistent definition of dysbiosis and may more readily provide evidence of genome-microbiome interactions in future exploratory studies.

  13. Right on Q: genetics begin to unravel Coxiella burnetii host cell interactions.

    Science.gov (United States)

    Larson, Charles L; Martinez, Eric; Beare, Paul A; Jeffrey, Brendan; Heinzen, Robert A; Bonazzi, Matteo

    2016-07-01

    Invasion of macrophages and replication within an acidic and degradative phagolysosome-like vacuole are essential for disease pathogenesis by Coxiella burnetii, the bacterial agent of human Q fever. Previous experimental constraints imposed by the obligate intracellular nature of Coxiella limited knowledge of pathogen strategies that promote infection. Fortunately, new genetic tools facilitated by axenic culture now allow allelic exchange and transposon mutagenesis approaches for virulence gene discovery. Phenotypic screens have illuminated the critical importance of Coxiella's type 4B secretion system in host cell subversion and discovered genes encoding translocated effector proteins that manipulate critical infection events. Here, we highlight the cellular microbiology and genetics of Coxiella and how recent technical advances now make Coxiella a model organism to study macrophage parasitism.

  14. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages.

    Science.gov (United States)

    Duplessis, M; Moineau, S

    2001-07-01

    Phage-host interactions remain poorly understood in lactic acid bacteria and essentially in all Gram-positive bacteria. The aim of this study was to identify the phage genetic determinant (anti-receptor) involved in the recognition of Streptococcus thermophilus hosts. The complete genomic sequence of the lytic S. thermophilus phage DT1 was determined previously, and bioinformatic analysis indicated that orf18 might be the anti-receptor gene. The orf18 of six additional S. thermophilus phages was determined (DT2, DT4, MD1, MD2, MD4 and Q5) and compared with the orf18 of DT1. The deduced ORF18 was divided into three domains. The first domain, which contains the N-terminal part of the protein, was conserved in all seven phages. The second domain was detected in only two phages and flanked by a motif called collagen-like repeats. The second domain also contained a variable region (VR1). All seven phages had a third domain that consisted of the C-terminal section of the protein as well as another variable region (VR2). Chimeric DT1 phages were constructed by recombination; a portion of its orf18 was replaced by the corresponding section in orf18 of the phage MD4. All DT1 chimeric phages acquired the host range of phage MD4. Analysis of the orf18 in the chimeric phages revealed that host specificity in phages DT1 and MD4 resulted from VR2. This is the first report on the identification and characterization of a phage gene involved in the host recognition process of Gram-positive bacteria.

  15. The amyR-deletion strain of Aspergillus niger CICC2462 is a suitable host strain to express secreted protein with a low background.

    Science.gov (United States)

    Zhang, Hui; Wang, Shuang; Zhang, Xiang Xiang; Ji, Wei; Song, Fuping; Zhao, Yue; Li, Jie

    2016-04-28

    The filamentous fungus Aspergillus niger is widely exploited as an important expression host for industrial production. The glucoamylase high-producing strain A. niger CICC2462 has been used as a host strain for the establishment of a secretion expression system. It expresses recombinant xylanase, mannase and asparaginase at a high level, but some high secretory background proteins in these recombinant strains still remain, such as alpha-amylase and alpha-glucosidase; lead to a low-purity of fermentation products. The aim was to construct an A. niger host strain with a low background of protein secretion. The transcription factor amyR was deleted in A. niger CICC2462, and the results from enzyme activity assays and SDS-PAGE analysis showed that the glucoamylase and amylase activities of the ∆amyR strains were significantly lower than those of the wild-type strain. High-throughput RNA-sequencing and shotgun LC-MS/MS proteomic technology analysis demonstrated that the expression of amylolytic enzymes was decreased at both the transcriptional and translational levels in the ∆amyR strain. Interestingly, the ∆amyR strain growth rate better than the wild-type strain. Our findings clearly indicated that the ∆amyR strain of A. niger CICC2462 can be used as a host strain with a low background of protein secretion.

  16. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  17. Genome Analyses of Icelandic Strains of Sulfolobus islandicus, Model Organisms for Genetic and Virus-Host Interaction Studies

    DEFF Research Database (Denmark)

    Guo, Li; Brügger, Kim; Liu, Chao

    2011-01-01

    The genomes of two Sulfolobus islandicus strains obtained from Icelandic solfataras were sequenced and analyzed. Strain REY15A is a host for a versatile genetic toolbox. It exhibits a genome of minimal size, is stable genetically, and is easy to grow and manipulate. Strain HVE10/4 shows a broad h...

  18. Differential Host Plant-Associated Genetic Variation Between Sympatric Mite Species of the Genus Oligonychus (Acari: Tetranychidae).

    Science.gov (United States)

    Guzman-Valencia, Stephanie; Santillán-Galicia, Ma Teresa; Guzmán-Franco, Ariel W; Vega-Muñoz, Ricardo

    2017-04-01

    Adaptation to different host plants can lead to host-associated differentiation (HAD). The mites Oligonychus perseae and Oligonychus punicae have a broad range of host plants, but, to date, records of them coexisting sympatrically had only been reported on avocado. However, our field observations showed both species coexisting on host plants other than avocado. The lack of previous records of these mites on the host plants studied here suggests only recent divergence to new host plant species. Previous studies showed that O. punicae had a limited migration capacity compared with O. perseae, suggesting that O. punicae is more likely to develop a close host plant relationship leading to HAD. Adults of both species were collected from trees hosting both mite species. Three genera of host plants considered were Persea, Salix, and Alnus; two species within one genus were Alnus jorullensis and Alnus acuminata; and three varieties within one species were Persea americana var. Fuerte, var. Hass, and var. Criollo, a noncommercial variety. Using sequence data from a segment of the mitochondrial cytochrome oxidase subunit I, the phylogenetic relationships and genetic population structure of both mite species in relation to the host plant were determined. Oligonychus perseae populations showed a significant population structure in relation to host plant at the species and genus level, but there was no effect of variety. In contrast, host plant explained none of the genetic variation among O. punicae populations. The potential role of coexistence mechanisms in the contrasting genetic population structure of both mite species is discussed. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Genetic variability and identification of the intermediate snail hosts of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Teofânia HDA Vidigal

    1998-01-01

    Full Text Available Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.

  20. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects.

    Directory of Open Access Journals (Sweden)

    Christopher H Chandler

    2017-11-01

    Full Text Available For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis.

  1. How well do you know your mutation? Complex effects of genetic background on expressivity, complementation, and ordering of allelic effects.

    Science.gov (United States)

    Chandler, Christopher H; Chari, Sudarshan; Kowalski, Alycia; Choi, Lin; Tack, David; DeNieu, Michael; Pitchers, William; Sonnenschein, Anne; Marvin, Leslie; Hummel, Kristen; Marier, Christian; Victory, Andrew; Porter, Cody; Mammel, Anna; Holms, Julie; Sivaratnam, Gayatri; Dworkin, Ian

    2017-11-01

    For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis.

  2. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  3. Inter individual variations of the fish skin microbiota: host genetics basis of mutualism?

    Directory of Open Access Journals (Sweden)

    Sébastien Boutin

    Full Text Available The commensal microbiota of fish skin is suspected to provide a protection against opportunist infections. The skin of fish harbors a complex and diverse microbiota that closely interacts with the surrounding water microbial communities. Up to now there is no clear evidence as to whether the host regulates the recruitment of environmental bacteria to build a specific skin microbiota. To address this question, we detected Quantitative Trait Loci (QTL associated with the abundance of specific skin microbiota bacterial strains in brook charr (Salvelinus fontinalis, combining 16S RNA tagged-amplicon 454 pyrosequencing with genetic linkage analysis. Skin microbiota analysis revealed high inter-individual variation among 86 F2 fish progeny based upon the relative abundance of bacterial operational taxonomic units (OTUs. Out of those OTUs, the pathogenic strain Flavobacterium psychrophilum and the non-pathogenic strain Methylobacterium rhodesianum explained the majority of inter-individual distances. Furthermore, a strong negative correlation was found between Flavobacterium and Methylobacterium, suggesting a mutually competitive relationship. Finally, after considering a total of 266 markers, genetic linkage analysis highlighted three major QTL associated with the abundance of Lysobacter, Rheinheimera and Methylobacterium. All these three genera are known for their beneficial antibacterial activity. Overall, our results provide evidence that host genotype may regulate the abundance of specific genera among their surface microbiota. They also indicate that Lysobacter, Rheinheimera and Methylobacterium are potentially important genera in providing protection against pathogens.

  4. Resistance to early-life stress in mice: effects of genetic background and stress duration

    Directory of Open Access Journals (Sweden)

    Helene M. Savignac

    2011-04-01

    Full Text Available Early-life stress can induce marked behavioural and physiological impairments in adulthood including cognitive deficits, depression, anxiety and gastrointestinal dysfunction. Although robust rat models of early-life stress exist there are few established effective paradigms in the mouse. Genetic background and protocol parameters used are two critical variables in such model development.Thus we investigated the impact of two different early-life stress protocols in two commonly used inbred mouse strains. C57BL/6 and innately anxious BALB/c male mice were maternally deprived 3 hrs daily, either from postnatal day 1 to 14 (Protocol 1 or 6 to 10 (Protocol 2. Animals were assessed in adulthood for cognitive performance (spontaneous alternation behaviour test, anxiety (open field, light/dark box and elevated plus maze tests and depression-related behaviours (forced swim test in addition to stress-sensitive physiological changes. Overall, the results showed that early-life stressed mice from both strains displayed good cognitive ability and no elevations in anxiety. However, paradoxical changes occurred in C57BL/6 mice as the longer protocol (protocol 1 decreased anxiety in the light-dark box and increased exploration in the elevated plus maze. In BALB/c mice there were also limited effects of maternal separation with both separation protocols inducing reductions in stress-induced defecation and protocol 1 reducing the colon length. These data suggest that, independent of stress duration, mice from both strains were on the whole resilient to the maladaptive effects of early-life stress. Thus maternal-separation models of brain-gut axis dysfunction should rely on either different stressor protocols or other strains of mice.

  5. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: an overview

    Science.gov (United States)

    Pinheiro, Roberta Olmo; de Souza Salles, Jorgenilce; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2011-01-01

    Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae in which susceptibility to the mycobacteria and its clinical manifestations are attributed to the host immune response. Even though leprosy prevalence has decreased dramatically, the high number of new cases indicates active transmission. Owing to its singular features, M. leprae infection is an attractive model for investigating the regulation of human immune responses to pathogen-induced disease. Leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The proportion of patients with disabilities is affected by the type of leprosy and delay in diagnosis. This article briefly reviews the clinical features as well as the immunopathological mechanisms related to the establishment of the different polar forms of leprosy, the mechanisms related to M. leprae–host cell interactions and prophylaxis and diagnosis of this complex disease. Host genetic factors are summarized and the impact of the development of interventions that prevent, reverse or limit leprosy-related nerve impairments are discussed. PMID:21366421

  6. Exploring the genetic background of parasite resistance in selected lines of black and white cattle

    OpenAIRE

    Brügemann, Kerstin; May, Katharina; Scheper, Carsten; Strube, Christina; König, Sven

    2016-01-01

    Regaining importance of keeping dairy cows in grassland systems implies a detailed evaluation of breeding strategies on genetic resistances against endoparasite infections. The present study aimed on i) a comparison of different black and white cattle selection lines for three endoparasite traits, and ii) the estimation of genetic parameters for parasite resistances. A research design was implemented to create three different genetic lines within herds on the basis of a German Holstein cow (G...

  7. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  8. Genetic Manipulation of Helicobacter pylori Virulence Function by Host Carcinogenic Phenotypes.

    Science.gov (United States)

    Suarez, Giovanni; Romero-Gallo, Judith; Sierra, Johanna C; Piazuelo, M Blanca; Krishna, Uma S; Gomez, Martin A; Wilson, Keith T; Peek, Richard M

    2017-05-01

    Helicobacter pylori is the strongest risk factor for gastric adenocarcinoma, yet only a minority of infected persons ever develop this malignancy. One cancer-linked locus is the cag type 4 secretion system (cagT4SS), which translocates an oncoprotein into host cells. A structural component of the cagT4SS is CagY, which becomes rapidly altered during in vivo adaptation in mice and rhesus monkeys, rendering the cagT4SS nonfunctional; however, these models rarely develop gastric cancer. We previously demonstrated that the H. pylori cag+ strain 7.13 rapidly induces gastric cancer in Mongolian gerbils. We now use this model, in conjunction with samples from patients with premalignant lesions, to define the effects of a carcinogenic host environment on the virulence phenotype of H. pylori to understand how only a subset of infected individuals develop cancer. H. pylori cagY sequence differences and cagT4SS function were directly related to the severity of inflammation in human gastric mucosa in either a synchronous or metachronous manner. Serial infections of Mongolian gerbils with H. pylori strain 7.13 identified an oscillating pattern of cagT4SS function. The development of dysplasia or cancer selected for attenuated virulence phenotypes, but robust cagT4SS function could be restored upon infection of new hosts. Changes in the genetic composition of cagY mirrored cagT4SS function, although the mechanisms of cagY alterations differed in human isolates (mutations) versus gerbil isolates (addition/deletion of motifs). These results indicate that host carcinogenic phenotypes modify cagT4SS function via altering cagY, allowing the bacteria to persist and induce carcinogenic consequences in the gastric niche. Cancer Res; 77(9); 2401-12. ©2017 AACR. ©2017 American Association for Cancer Research.

  9. Temporal stability in the genetic structure of Sarcoptes scabiei under the host-taxon law: empirical evidences from wildlife-derived Sarcoptes mite in Asturias, Spain

    Directory of Open Access Journals (Sweden)

    Rossi Luca

    2011-07-01

    Full Text Available Abstract Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica in Asturias (Spain, using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus, roe deer (Capreolus capreolus and red fox (Vulpes vulpes. Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity. The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species.

  10. Different genetic structures revealed resident populations of a specialist parasitoid wasp in contrast to its migratory host.

    Science.gov (United States)

    Wei, Shu-Jun; Zhou, Yuan; Fan, Xu-Lei; Hoffmann, Ary A; Cao, Li-Jun; Chen, Xue-Xin; Xu, Zai-Fu

    2017-07-01

    Genetic comparisons of parasitoids and their hosts are expected to reflect ecological and evolutionary processes that influence the interactions between species. The parasitoid wasp, Cotesia vestalis, and its host diamondback moth (DBM), Plutella xylostella, provide opportunities to test whether the specialist natural enemy migrates seasonally with its host or occurs as resident population. We genotyped 17 microsatellite loci and two mitochondrial genes for 158 female adults of C. vestalis collected from 12 geographical populations, as well as nine microsatellite loci for 127 DBM larvae from six separate sites. The samplings covered both the likely source (southern) and immigrant (northern) areas of DBM from China. Populations of C. vestalis fell into three groups, pointing to isolation in northwestern and southwestern China and strong genetic differentiation of these populations from others in central and eastern China. In contrast, DBM showed much weaker genetic differentiation and high rates of gene flow. TESS analysis identified the immigrant populations of DBM as showing admixture in northern China. Genetic disconnect between C. vestalis and its host suggests that the parasitoid did not migrate yearly with its host but likely consisted of resident populations in places where its host could not survive in winter.

  11. Nineteenth century French rose (Rosa sp.) germplasm shows a shift over time from a European to an Asian genetic background.

    Science.gov (United States)

    Liorzou, Mathilde; Pernet, Alix; Li, Shubin; Chastellier, Annie; Thouroude, Tatiana; Michel, Gilles; Malécot, Valéry; Gaillard, Sylvain; Briée, Céline; Foucher, Fabrice; Oghina-Pavie, Cristiana; Clotault, Jérémy; Grapin, Agnès

    2016-08-01

    Hybridization with introduced genetic resources is commonly practiced in ornamental plant breeding to introgress desired traits. The 19th century was a golden age for rose breeding in France. The objective here was to study the evolution of rose genetic diversity over this period, which included the introduction of Asian genotypes into Europe. A large sample of 1228 garden roses encompassing the conserved diversity cultivated during the 18th and 19th centuries was genotyped with 32 microsatellite primer pairs. Its genetic diversity and structure were clarified. Wide diversity structured in 16 genetic groups was observed. Genetic differentiation was detected between ancient European and Asian accessions, and a temporal shift from a European to an Asian genetic background was observed in cultivated European hybrids during the 19th century. Frequent crosses with Asian roses throughout the 19th century and/or selection for Asiatic traits may have induced this shift. In addition, the consistency of the results with respect to a horticultural classification is discussed. Some horticultural groups, defined according to phenotype and/or knowledge of their pedigree, seem to be genetically more consistent than others, highlighting the difficulty of classifying cultivated plants. Therefore, the horticultural classification is probably more appropriate for commercial purposes rather than genetic relatedness, especially to define preservation and breeding strategies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective.

    Science.gov (United States)

    Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng

    2016-10-01

    The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. No Major Host Genetic Risk Factor Contributed to A(H1N12009 Influenza Severity.

    Directory of Open Access Journals (Sweden)

    Koldo Garcia-Etxebarria

    Full Text Available While most patients affected by the influenza A(H1N1 pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10-8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course.

  14. Genetic structure in the seabuckthorn carpenter moth (Holcocerus hippophaecolus in China: the role of outbreak events, geographical and host factors.

    Directory of Open Access Journals (Sweden)

    Jing Tao

    Full Text Available Understanding factors responsible for structuring genetic diversity is of fundamental importance in evolutionary biology. The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. We assessed the influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus by using Amplified Fragment Length Polymorphism (AFLP markers. We rejected the hypothesis that outbreak-associated genetic divergence exist, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. Although a small number of markers (4 of 933 loci were identified as candidates under selection in response to population densities. H. hippophaecolus also did not follow an isolation-by-distance pattern. We rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors. There were detectable genetic differences between H. hippophaecolus occupying different host trees from within the same geographic location. Host-associated genetic divergence should be confirmed by further investigation.

  15. Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice.

    Directory of Open Access Journals (Sweden)

    Susanna Pietropaolo

    Full Text Available BACKGROUND: No animal models of autism spectrum disorders (ASD with good construct validity are currently available; using genetic models of pathologies characterized by ASD-like deficits, but with known causes, may be therefore a promising strategy. The Fmr1-KO mouse is an example of this approach, modeling Fragile X syndrome, a well-known genetic disorder presenting ASD symptoms. The Fmr1-KO is available on different genetic backgrounds (FVB versus C57BL/6, which may explain some of the conflicting results that have been obtained with these mutants up till now. METHODS: Fmr1 KO and their wild-type littermates on both the FVB and C57BL/6 genetic backgrounds were examined on a battery of tests modeling the clinical symptoms of ASD, including the triad of core symptoms (alterations in social interaction and communication, presence of repetitive behaviors, as well as the secondary symptoms (disturbances in sensori-motor reactivity and in circadian patterns of activity, epileptic events. RESULTS: Fmr1-KO mice displayed autistic-like core symptoms of altered social interaction and occurrence of repetitive behaviors with additional hyperactivity. The genetic background modulated the effects of the Fmr1 deletion and it appears that the C57BL/6 background may be more suitable for further research on core autistic-like symptoms. CONCLUSIONS: The Fmr1-mouse line does not recapitulate all of the main core and secondary ASD symptoms, but still can be useful to elucidate the neurobiological mechanisms underlying specific ASD-like endophenotypes.

  16. Elucidation of Genetic Backgrounds Necessary for Chlorophyll a Biosynthesis Toward Artificial Creation of Oxygenic Photosynthesis

    Science.gov (United States)

    Tsukatani, Yusuke; Masuda, Shinji

    2015-09-01

    We succeeded to create the genetically modified purple photosynthetic bacterium capable of synthesizing chlorophyll a. The results indicate that not only chlorophyll synthase, but also an enzyme for galactolipid synthesis and reaction center proteins are required for accumulating chlorophyll a.

  17. The gut microbiota composition in dichorionic triplet sets suggests a role for host genetic factors.

    Science.gov (United States)

    Murphy, Kiera; O' Shea, Carol Anne; Ryan, C Anthony; Dempsey, Eugene M; O' Toole, Paul W; Stanton, Catherine; Ross, R Paul

    2015-01-01

    Monozygotic and dizygotic twin studies investigating the relative roles of host genetics and environmental factors in shaping gut microbiota composition have produced conflicting results. In this study, we investigated the gut microbiota composition of a healthy dichorionic triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal sibling, with similar pre- and post-natal environmental conditions including feeding regime. V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota composition, and the species and strain diversity of the culturable bifidobacterial population was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to the fraternal sibling. By month 12 however, the profile was more uniform between the three infants. Principal coordinate analysis (PCoA) of the microbiota composition revealed strong clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered separately from the fraternal infant. Pulse field gel electrophoresis (PFGE) analysis of the bifidobacterial population revealed a lack of strain diversity, with identical strains identified in all three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic administration appeared to be a major determinant of microbiota composition at month 1, irrespective of zygosity. By month 12, early antibiotic administration appeared to no longer exert such a strong influence on gut microbiota composition. We hypothesize that initially host genetics play a significant role in the composition of an individual's gut microbiota, unless an antibiotic intervention is given, but by month 12 environmental

  18. Host specificity and genetic differentiation of Melampsora epitea (rust on willows)

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado Pasten, Sergio [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Plant Pathology and Biocontrol Unit

    2001-07-01

    Rust caused by Melampsora epitea is considered the most serious and widespread disease on willows. When severe, rust can defoliate willows prematurely leading to serious yield losses and rootstock death. Studying the infection process, we found that M. epitea requires no specific recognition signals to germinate, grow, or penetrate the host stomata, regardless of whether interaction with the host plant is compatible or incompatible; instead, plant defense mechanisms are determined by substomatal events. Isolates of the Swedish rust population were classified (pathotyped) by their virulence patterns on a standard set of willow clones (willow differential). Thirty-seven pathotypes of M. epitea were identified and grouped into three formae speciales. For global monitoring of the virulence of M. epitea, an internationally useful naming system was proposed. Partly to confirm the value of such a naming system, the pathotype compositions of two distant M. epitea populations (from Sweden and Chile) were compared using the willow differential. The results indicated that long-distance inocula exchange likely plays an active role in the population dynamics and evolution of pathotype structure for M. epitea. To study the genetics underlying pathotype dynamics, molecular tools, such as AFLP, were used. The resulting dendrogram revealed no clustering based on geographic origin, and because geographic distance among pathogen populations correlated poorly with genetic distance, apparently geographically distant populations have developed collectively as a metapopulation instead of separately. However, the result shows that M. epitea has high levels of gene and genotypic variation within populations, which is consistent with the occurrence of sexual reproduction. The low between-population variation, despite variation in local selection pressures, accords with massive long-distance migration of rust spores.

  19. Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance.

    Science.gov (United States)

    Vogwill, Tom; Kojadinovic, Mila; Furió, Victoria; MacLean, R Craig

    2014-12-01

    Parallel evolution is the independent evolution of the same phenotype or genotype in response to the same selection pressure. There are examples of parallel molecular evolution across divergent genetic backgrounds, suggesting that genetic background may not play an important role in determining the outcome of adaptation. Here, we measure the influence of genetic background on phenotypic and molecular adaptation by combining experimental evolution with comparative analysis. We selected for resistance to the antibiotic rifampicin in eight strains of bacteria from the genus Pseudomonas using a short term selection experiment. Adaptation occurred by 47 mutations at conserved sites in rpoB, the target of rifampicin, and due to the high diversity of possible mutations the probability of within-strain parallel evolution was low. The probability of between-strain parallel evolution was only marginally lower, because different strains substituted similar rpoB mutations. In contrast, we found that more than 30% of the phenotypic variation in the growth rate of evolved clones was attributable to among-strain differences. Parallel molecular evolution across strains resulted in divergent phenotypic evolution because rpoB mutations had different effects on growth rate in different strains. This study shows that genetic divergence between strains constrains parallel phenotypic evolution, but had little detectable impact on the molecular basis of adaptation in this system. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Genetic evidence confirms polygamous mating system in a crustacean parasite with multiple hosts.

    Directory of Open Access Journals (Sweden)

    Quentin Jossart

    Full Text Available Mating systems are diverse in animals, notably in crustaceans, but can be inferred from a limited set of parameters. Baeza and Thiel (2007 proposed a model predicting mating systems of symbiotic crustaceans with three host characteristics and the risk of predation. These authors proposed five mating systems, ranging from monogamy to polygynandry (where multiple mating occurs for both genders. Using microsatellite loci, we tested the putatively mating system of the ectoparasite crab Dissodactylus primitivus. We determined the mating frequencies of males and females, parentage assignment (COLONY & GERUD software as well as the contents of female spermathecae. Our results are globally consistent with the model of Baeza and Thiel and showed, together with previous aquarium experiments, that this ectoparasite evolved a polygamous mating system where males and females move between hosts for mate search. Parentage analyses revealed that polyandry is frequent and concerns more than 60% of clutches, with clutches being fertilized by up to 6 different fathers. Polygyny is supported by the detection of eight males having sired two different broods. We also detected a significant paternity skew in 92% of the multipaternal broods. Moreover, this skew is probably higher than the estimation from the brood because additional alleles were detected in most of spermathecae. This high skew could be explained by several factors as sperm competition or cryptic female choice. Our genetic data, combined with previous anatomic analyses, provide consistent arguments to suggest sperm precedence in D. primitivus.

  1. Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus.

    Science.gov (United States)

    Vassilakos, Nikon; Simon, Vincent; Tzima, Aliki; Johansen, Elisabeth; Moury, Benoît

    2016-02-01

    In spite of their widespread occurrence, only few host jumps by plant viruses have been evidenced and the molecular bases of even fewer have been determined. A combination of three independent approaches, 1) experimental evolution followed by reverse genetics analysis, 2) positive selection analysis, and 3) locus-by-locus analysis of molecular variance (AMOVA) allowed reconstructing the Potato virus Y (PVY; genus Potyvirus, family Potyviridae) jump to pepper (Capsicum annuum), probably from other solanaceous plants. Synthetic chimeras between infectious cDNA clones of two PVY isolates with contrasted levels of adaptation to C. annuum showed that the P3 and, to a lower extent, the CI cistron played important roles in infectivity toward C. annuum. The three analytical approaches pinpointed a single nonsynonymous substitution in the P3 and P3N-PIPO cistrons that evolved several times independently and conferred adaptation to C. annuum. In addition to increasing our knowledge of host jumps in plant viruses, this study illustrates also the efficiency of locus-by-locus AMOVA and combined approaches to identify adaptive mutations in the genome of RNA viruses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Effects of Genetic Variation on the E. coli Host-Circuit Interface

    Directory of Open Access Journals (Sweden)

    Stefano Cardinale

    2013-07-01

    Full Text Available Predictable operation of engineered biological circuitry requires the knowledge of host factors that compete or interfere with designed function. Here, we perform a detailed analysis of the interaction between constitutive expression from a test circuit and cell-growth properties in a subset of genetic variants of the bacterium Escherichia coli. Differences in generic cellular parameters such as ribosome availability and growth rate are the main determinants (89% of strain-specific differences of circuit performance in laboratory-adapted strains but are responsible for only 35% of expression variation across 88 mutants of E. coli BW25113. In the latter strains, we identify specific cell functions, such as nitrogen metabolism, that directly modulate circuit behavior. Finally, we expose aspects of carbon metabolism that act in a strain- and sequence-specific manner. This method of dissecting interactions between host factors and heterologous circuits enables the discovery of mechanisms of interference necessary for the development of design principles for predictable cellular engineering.

  3. Genetic diversity and host range variation of Ralstonia solanacearum strains entering North America.

    Science.gov (United States)

    Norman, David J; Zapata, Mildred; Gabriel, Dean W; Duan, Y P; Yuen, Jeanne M F; Mangravita-Novo, Arianna; Donahoo, Ryan S

    2009-09-01

    Each year, large volumes of ornamental and food plant propagative stock are imported into the North America; occasionally, Ralstonia solanacearum is found systemically infecting this plant material. In this study, 107 new R. solanacearum strains were collected over a 10-year period from imported propagative stock and compared with 32 previously characterized R. solanacearum strains using repetitive polymerase chain reaction (rep-PCR) element (BOX, ERIC, and REP) primers. Additional strain comparisons were made by sequencing the endoglucanase and the cytochrome b561 genes. Using rep-PCR primers, populations could be distinguished by biovar and, to a limited extent, country of origin and original host. Similarity coefficients among rep-PCR clusters within biovars were relatively low in many cases, indicating that disease outbreaks over time may have been caused by different clonal populations. Similar population differentiations of R. solanacearum were obtained when comparing strain sequences using either the endoglucanase or cytochrome b561 genes. We found that most of the new biovar 1 strains of R. solanacearum entering the United States were genetically distinct from the biovar 1 strains currently found infecting vegetable production. These introduced biovar 1 strains also had a broader host range and could infect not only tomato, tobacco, and potato but also anthurium and pothos and cause symptoms on banana. All introductions into North America of race 3, biovar 2 strains in the last few years have been linked to geranium production and appeared to be clonal.

  4. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy.

    Science.gov (United States)

    Lewis, Michael D; Francisco, Amanda Fortes; Taylor, Martin C; Jayawardhana, Shiromani; Kelly, John M

    2016-10-01

    Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi infection dynamics and quantify tissue-specific parasite loads, with minimal sampling bias. We used this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in the gut and was followed by widespread dissemination. These data indicate that differential immune control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide permissive niches for active infection. The end-point frequency of heart-specific infections ranged from 0% in TcVI-CLBR-infected C57BL/6 to 88% in TcI-JR-infected C3H/HeN mice. Nevertheless, infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with the model-dependent frequency of dissemination outside the gut and inferred cumulative heart-specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of parasites into the heart, occurring at a frequency determined by host and parasite genetics. © 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.

  5. The mammalian complement system as an epitome of host-pathogen genetic conflicts.

    Science.gov (United States)

    Cagliani, Rachele; Forni, Diego; Filippi, Giulia; Mozzi, Alessandra; De Gioia, Luca; Pontremoli, Chiara; Pozzoli, Uberto; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2016-03-01

    The complement system is an innate immunity effector mechanism; its action is antagonized by a wide array of pathogens and complement evasion determines the virulence of several infections. We investigated the evolutionary history of the complement system and of bacterial-encoded complement-interacting proteins. Complement components targeted by several pathogens evolved under strong selective pressure in primates, with selection acting on residues at the contact interface with microbial/viral proteins. Positively selected sites in CFH and C4BPA account for the human specificity of gonococcal infection. Bacterial interactors, evolved adaptively as well, with selected sites located at interaction surfaces with primate complement proteins. These results epitomize the expectation under a genetic conflict scenario whereby the host's and the pathogen's genes evolve within binding avoidance-binding seeking dynamics. In silico mutagenesis and protein-protein docking analyses supported this by showing that positively selected sites, both in the host's and in the pathogen's interacting partner, modulate binding. © 2016 John Wiley & Sons Ltd.

  6. Using host-associated genetic markers to investigate sources of fecal contamination in two Vermont streams

    Science.gov (United States)

    Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.

    2011-01-01

    The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans

  7. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach☆

    Science.gov (United States)

    Catalano, Sarah R.; Whittington, Ian D.; Donnellan, Stephen C.; Gillanders, Bronwyn M.

    2013-01-01

    We review the use of parasites as biological tags of marine fishes and cephalopods in host population structure studies. The majority of the work published has focused on marine fish and either single parasite species or more recently, whole parasite assemblages, as biological tags. There is representation of host organisms and parasites from a diverse range of taxonomic groups, although focus has primarily been on host species of commercial importance. In contrast, few studies have used parasites as tags to assess cephalopod population structure, even though records of parasites infecting cephalopods are well-documented. Squid species are the only cephalopod hosts for which parasites as biological tags have been applied, with anisakid nematode larvae and metacestodes being the parasite taxa most frequently used. Following a brief insight into the importance of accurate parasite identification, the population studies that have used parasites as biological tags for marine fishes and cephalopods are reviewed, including comments on the dicyemid mesozoans. The advancement of molecular genetic techniques is discussed in regards to the new ways parasite genetic data can be incorporated into population structure studies, alongside host population genetic analyses, followed by an update on the guidelines for selecting a parasite species as a reliable tag candidate. As multiple techniques and methods can be used to assess the population structure of marine organisms (e.g. artificial tags, phenotypic characters, biometrics, life history, genetics, otolith microchemistry and parasitological data), we conclude by commenting on a holistic approach to allow for a deeper insight into population structuring. PMID:25197624

  8. Genetic background of the hereditary spastic paraplegia phenotypes in Hungary - An analysis of 58 probands.

    Science.gov (United States)

    Balicza, Peter; Grosz, Zoltan; Gonzalez, Michael A; Bencsik, Renata; Pentelenyi, Klara; Gal, Aniko; Varga, Edina; Klivenyi, Peter; Koller, Julia; Züchner, Stephan; Molnar, Judit Maria

    2016-05-15

    Hereditary spastic paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative diseases with progressive lower limb spasticity and weakness. The aim of this study is to determine the frequency of different SPG mutations in Hungarian patients, and to provide further genotype-phenotype correlations for the known HSP causing genes. We carried out genetic testing for 58 probands with clinical characteristics of HSP. For historical reasons, three different approaches were followed in different patients: 1) Sanger sequencing of ATL1 and SPAST genes, 2) whole exome, and 3) targeted panel sequencing by next generation sequencing. Genetic diagnosis was established for 20 probands (34.5%). We detected nine previously unreported mutations with high confidence for pathogenicity. The most frequently affected gene was SPAST with pathogenic or likely pathogenic mutations in 10 probands. The most frequently detected variant in our cohort was the SPG7 p.Leu78*, observed in four probands. Altogether five probands were diagnosed with SPG7. Additional mutations were detected in SPG11, ATL1, NIPA1, and ABCD1. This is the first comprehensive genetic epidemiological study of patients with HSP in Hungary. Next generation sequencing improved the yield of genetic diagnostics in this disease group even when the phenotype was atypical. However, considering the frequency of the HSP-causing gene defects, SPG4, the most common form of the disease, should be tested first to be cost effective in this economic region. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Papillon-Lefevre syndrome, Genetic aspects of host susceptibility & treatment modalities- A case report

    Directory of Open Access Journals (Sweden)

    Rad Afshar G.

    2002-08-01

    Full Text Available Diagnosis and treatment of patients with periodontitis as a manifestation of systemic diseases"nis of especial concern to the periodontist, especially those associated with genetic disorders, which have"npoor prognosis. With aggressive progression of periodontal bone and attachment loss, a patient could be"na partial or total edentulous early in life."nThe aim of this article was to report a case of Papillon-Lefevre syndrome (PLS with generalized"nprepubertal periodontitis (GPPP. A ten-year old boy for whom active periodontal treatment and"nsubsequent maintenance recalls was performed for five years since the diagnosis of PLS. Treatment"nprocedures included: precise mechanical instrumentation at several visits, periodontal surgery, adjunctive"nserial systemic antibiotic therapy, professional irrigation of pockets with 0/2% chlorhexidine solution and"nperiodic maintenance recall visits. In spite of all of these, progressive course of the disease continued"nuntil the patient was fifteen and edentulous. Unfortunately association of GPPP with systemic"nunmanageable condition or diseases has caused refractory periodontitis, which yet has no proven and"nreliable treatment protocol. Besides, this article has discussed more successful treatment modalities for"nPLS with GPPP and the genetic aspects of host susceptibility, which is a complicated and challenging"nfield.

  10. Genetic factors influencing the development of chronic graft-versus-host disease in a murine model.

    Science.gov (United States)

    Slayback, D L; Dobkins, J A; Harper, J M; Allen, R D

    2000-11-01

    Graft-versus-host disease (GVHD) is a major complication of bone marrow transplantation that can occur in either acute or chronic forms. Much of the long-term pathology seen in chronic GVHD is a result of autoantibody production. In the DBA/2-->B6D2F1 murine model of chronic GVHD, anti-ssDNA autoantibodies can be detected by 14 days post cell transfer. These autoantibodies are not observed in B6D2F1 recipients of cells from C57BL/6 or B10.D2 donors, which develop acute rather than chronic GVHD. Therefore, in this model, donor genetic factors predispose to the development of chronic GVHD in recipients. We performed a genetic analysis aimed at mapping donor loci that influence the magnitude of early autoantibody production in B6D2F1 recipients of cells from DBA/2 donor mice. Linkage analysis suggested an influence of two loci: a locus on chromosome 11 linked to D11Mit278 and a locus on chromosome 4 linked to D4Mit226. The locus on chromosome 11 also appeared to influence the development of renal pathology associated with chronic GVHD.

  11. Evidence for genetic diversity of Toxoplasma gondii in selected intermediate hosts in Serbia.

    Science.gov (United States)

    Marković, Marija; Ivović, Vladimir; Stajner, Tijana; Djokić, Vitomir; Klun, Ivana; Bobić, Branko; Nikolić, Aleksandra; Djurković-Djaković, Olgica

    2014-05-01

    To contribute to the insight into the worldwide population structure of Toxoplasma gondii, we genetically characterized a total of eight strains isolated from intermediate hosts including humans, sheep and pigeons in Serbia. Although parasite DNA was detected in 28.2% (60/213) of the human samples from 162 patients serologically suspected of active toxoplasmosis, as well as in 5/7 seropositive pigeons and in 2/12 seropositive sheep examined, multilocus PCR-RFLP genotyping, using SAG1, 5'SAG2, 3'SAG2, GRA6, 5'GRA7 and 3'GRA7 as markers, was successful in only four human isolates (of which one was isolated from both the bronchoalveolar lavage fluid and blood samples of a single patient), one sheep and three pigeons. Of the eight isolates, five were type II (62.5%), one was type III, one was atypical, and one had a type I allele at GRA6 as the single locus genotyped. Although type II, as elsewhere in Europe, predominated, these results may suggest a higher genetic diversity of T. gondii in Serbia, reflecting local environmental contamination and also the geographical position of the country in South-East Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. How biological background assumptions influence scientific risk evaluation of stacked genetically modified plants: an analysis of research hypotheses and argumentations.

    Science.gov (United States)

    Rocca, Elena; Andersen, Fredrik

    2017-08-14

    Scientific risk evaluations are constructed by specific evidence, value judgements and biological background assumptions. The latter are the framework-setting suppositions we apply in order to understand some new phenomenon. That background assumptions co-determine choice of methodology, data interpretation, and choice of relevant evidence is an uncontroversial claim in modern basic science. Furthermore, it is commonly accepted that, unless explicated, disagreements in background assumptions can lead to misunderstanding as well as miscommunication. Here, we extend the discussion on background assumptions from basic science to the debate over genetically modified (GM) plants risk assessment. In this realm, while the different political, social and economic values are often mentioned, the identity and role of background assumptions at play are rarely examined. We use an example from the debate over risk assessment of stacked genetically modified plants (GM stacks), obtained by applying conventional breeding techniques to GM plants. There are two main regulatory practices of GM stacks: (i) regulate as conventional hybrids and (ii) regulate as new GM plants. We analyzed eight papers representative of these positions and found that, in all cases, additional premises are needed to reach the stated conclusions. We suggest that these premises play the role of biological background assumptions and argue that the most effective way toward a unified framework for risk analysis and regulation of GM stacks is by explicating and examining the biological background assumptions of each position. Once explicated, it is possible to either evaluate which background assumptions best reflect contemporary biological knowledge, or to apply Douglas' 'inductive risk' argument.

  13. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    Science.gov (United States)

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  14. Estimation of residual energy intake and its genetic background during the growing period in pigs

    NARCIS (Netherlands)

    Shirali, M.; Doeschl-Wilson, A.; Duthie, C.; Knap, P.W.; Kanis, E.; Arendonk, van J.A.M.; Roehe, R.

    2014-01-01

    The aims of this study were to (i) compare models estimating residual energy intake (REI) using either lean and fat tissue growth or their proxy traits (average daily gain (ADG) and backfat thickness (BF)); (ii) determine genetic characteristics of REI at different growth stages and the entire test

  15. Inheritance of grain polyphenol oxidase (PPO) activity in multiple wheat (Triticum aestivum L.) genetic backgrounds

    Science.gov (United States)

    Grain polyphenol oxidase (PPO) activity can cause discoloration of wheat (Triticum aestivum L.) food products. Five crosses (PI 117635/Antelope; Fielder/NW03681; Fielder/Antelope; NW07OR1070/Antelope; NW07OR1066/OR2050272H) were selected to study the genetic inheritance of PPO activity. STS marker...

  16. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions.

    Science.gov (United States)

    Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter

    2011-02-22

    Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different

  17. Genetic Background Strongly Modifies the Severity of Symptoms of Hirschsprung Disease, but Not Hearing Loss in Rats Carrying Ednrbsl Mutations

    Science.gov (United States)

    Dang, Ruihua; Torigoe, Daisuke; Suzuki, Sari; Kikkawa, Yoshiaki; Moritoh, Kanako; Sasaki, Nobuya; Agui, Takashi

    2011-01-01

    Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrbsl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome. PMID:21915282

  18. Nature versus nurture in frontotemporal lobar degeneration: the interaction of genetic background and education on brain damage.

    Science.gov (United States)

    Premi, E; Garibotto, V; Alberici, A; Paghera, B; Giubbini, R; Padovani, A; Borroni, B

    2012-01-01

    Frontotemporal lobar degeneration (FTLD) is a progressive neurodegenerative disorder with a strong genetic background. It has been reported that modifiable factors, i.e. education (E), might act as proxies for reserve capacity. To evaluate the impact of genetic background (positive family history, FH) on reserve mechanisms, by measuring regional cerebral blood flow (rCBF) correlates in FTLD patients. 145 FTLD patients were recruited and underwent clinical, neuropsychological, behavioral assessment, and SPECT study. The main effect of E and FH on rCBF was evaluated. To test the potential interaction between the E and rCBF in FTLD patients with or without positive FH, a difference of slope analysis in the two groups was calculated. All the analyses were controlled for disease severity (Clinical Dementia Rating Scale, FTD-CDR). A main effect of education (E+ Reserve mechanisms are available also in presence of an unfavorable genetic status. However, these compensatory mechanisms are modulated by the interaction with genetic factors. Copyright © 2012 S. Karger AG, Basel.

  19. The bandit, a New DNA Transposon from a Hookworm—Possible Horizontal Genetic Transfer between Host and Parasite

    Science.gov (United States)

    Laha, Thewarach; Loukas, Alex; Wattanasatitarpa, Supatra; Somprakhon, Jenjira; Kewgrai, Nonglack; Sithithaworn, Paiboon; Kaewkes, Sasithorn; Mitreva, Makedonka; Brindley, Paul J.

    2007-01-01

    Background An enhanced understanding of the hookworm genome and its resident mobile genetic elements should facilitate understanding of the genome evolution, genome organization, possibly host-parasite co-evolution and horizontal gene transfer, and from a practical perspective, development of transposon-based transgenesis for hookworms and other parasitic nematodes. Methodology/Principal Findings A novel mariner-like element (MLE) was characterized from the genome of the dog hookworm, Ancylostoma caninum, and termed bandit. The consensus sequence of the bandit transposon was 1,285 base pairs (bp) in length. The new transposon was flanked by perfect terminal inverted repeats of 32 nucleotides in length with a common target site duplication TA, and it encoded an open reading frame (ORF) of 342 deduced amino acid residues. Phylogenetic comparisons confirmed that the ORF encoded a mariner-like transposase, which included conserved catalytic domains, and that the bandit transposon belonged to the cecropia subfamily of MLEs. The phylogenetic analysis also indicated that the Hsmar1 transposon from humans was the closest known relative of bandit, and that bandit and Hsmar1 constituted a clade discrete from the Tc1 subfamily of MLEs from the nematode Caenorhabditis elegans. Moreover, homology models based on the crystal structure of Mos1 from Drosophila mauritiana revealed closer identity in active site residues of the catalytic domain including Ser281, Lys289 and Asp293 between bandit and Hsmar1 than between Mos1 and either bandit or Hsmar1. The entire bandit ORF was amplified from genomic DNA and a fragment of the bandit ORF was amplified from RNA, indicating that this transposon is actively transcribed in hookworms. Conclusions/Significance A mariner-like transposon termed bandit has colonized the genome of the hookworm A. caninum. Although MLEs exhibit a broad host range, and are identified in other nematodes, the closest phylogenetic relative of bandit is the Hsmar1

  20. Genetic variation in Asterionella formosa (Bacillariophyceae) is it linked to frequent epidemics of host-specific parasitic fungi?

    NARCIS (Netherlands)

    De Bruin, A.; Ibelings, B.W.; Rijkeboer, M.; Brehm, Michaela; Van Donk, E.

    2004-01-01

    Understanding of the genetic basis for susceptibility and resistance is still lacking for most aquatic host-parasite systems, for instance, for phytoplankton and their fungal parasites. Fungal parasites can have significant effects on phytoplankton populations, mainly through their ability to

  1. Genetic Factors in Rhizobium Affecting the Symbiotic Carbon Costs of N2 Fixation and Host Plant Biomass Production

    DEFF Research Database (Denmark)

    Skøt, L.; Hirsch, P. R.; Witty, J. F.

    1986-01-01

    The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different...

  2. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants

    Science.gov (United States)

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-01-01

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed. PMID:16024367

  3. The genetic background of obesity and its treatment with bariatric surgery

    OpenAIRE

    Lischková, Olga

    2017-01-01

    Obesity is a frequent metabolic disease that causes many other health and socioeconomic complications. Obesity arises due to excessive energy intake and decrease in energy expenditure, which is a conseqence of contemporary lifestyle. Moreover, obesity has a strong genetic component. Common obesity is polygenic, multifactorial disease, in which individual genes interact with each other and with environmental factors. Genome-wide association studies, conducted between 2006-09, led to the discov...

  4. Epidemiologic, Virologic, and Host Genetic Factors of Norovirus Outbreaks in Long-term Care Facilities.

    Science.gov (United States)

    Costantini, Veronica P; Cooper, Emilie M; Hardaker, Hope L; Lee, Lore E; Bierhoff, Marieke; Biggs, Christianne; Cieslak, Paul R; Hall, Aron J; Vinjé, Jan

    2016-01-01

    In the Unites States, long-term care facilities (LTCFs) are the most common setting for norovirus outbreaks. These outbreaks provide a unique opportunity to better characterize the viral and host characteristics of norovirus disease. We enrolled 43 LTCFs prospectively to study the epidemiology, virology, and genetic host factors of naturally occurring norovirus outbreaks. Acute and convalescent stool, serum, and saliva samples from cases, exposed and nonexposed controls were collected. Norovirus infection was confirmed using quantitative polymerase chain reaction testing of stool samples or 4-fold increase in serum antibody titers. The presence of histo-blood group antigens (secretor, ABO, and Lewis type) was determined in saliva. Sixty-two cases, 34 exposed controls, and 18 nonexposed controls from 10 norovirus outbreaks were enrolled. Forty-six percent of acute, 27% of convalescent case, and 11% of control stool samples tested norovirus positive. Outbreak genotypes were GII.4 (Den Haag, n = 3; New Orleans, n = 4; and Sydney, n = 2) and GI.1 (n = 1). Viral load in GII.4 Sydney outbreaks was significantly higher than in outbreaks caused by other genotypes; cases and controls shed similar amounts of virus. Forty-seven percent of cases shed virus for ≥ 21 days. Symptomatic infections with GII.4 Den Haag and GII.4 New Orleans were detected among nonsecretor individuals. Almost half of all symptomatic individuals shed virus for at least 21 days. Viral load was highest in GII.4 viruses that most recently emerged; these viruses also infect the nonsecretor population. These findings will help to guide development of targeted prevention and control measures in the elderly. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Genetic background specific hypoxia resistance in rat is correlated with balanced activation of a cross-chromosomal genetic network centering on physiological homeostasis

    Directory of Open Access Journals (Sweden)

    Lei eMao

    2012-10-01

    Full Text Available Genetic background of an individual can drastically influence an organism’s response upon environmental stress and pathological stimulus. Previous studies in inbred rats showed that compared to Brown Norway (BN, Dahl salt-sensitive (SS rat exerts strong hypoxia susceptibility. However, despite extensive narrow-down approaches via the chromosome substitution methodology, this genome-based physiological predisposition could not be traced back to distinct quantitative trait loci. Upon the completion and public data availability of PhysGen SS-BN consomic rat platform, I employed systems biology approach attempting to further our understanding of the molecular basis of genetic background effect in light of hypoxia response. I analyzed the physiological screening data of 22 consomic rat strains under normoxia and two-weeks of hypoxia, and cross-compared them to the parental strains. The analyses showed that SS-9BN and SS-18BN represent the most hypoxia resistant CS strains with phenotype similar to BN, whereas SS-6BN and SS-YBN segregated to the direction of SS. A meta-analysis on the transcriptomic profiles of these consomic rat strains under hypoxia treatment showed that although polymorphisms on the substituted BN chromosomes could be directly involved in hypoxia resistance, this seems to be embedded in a more complex trans-chromosomal genetic regulatory network. Via information theory based modeling approach, this hypoxia-relevant core genetic network was reverse-engineered. Network analyses showed that the protective effects of BN chromosome 9 and 18 were reflected by a balanced activation of this core network centering on physiological homeostasis. Presumably, it is the system robustness constituted on such differential network activation that acts as hypoxia response modifier. Understanding of the intrinsic link between the individual genetic background and the network robustness will set a basis in the current scientific efforts toward

  6. Development of Microsatellite Markers in the Branched Broomrape Phelipanche ramosa L. (Pomel and Evidence for Host-Associated Genetic Divergence

    Directory of Open Access Journals (Sweden)

    Valérie Le Corre

    2014-01-01

    Full Text Available Phelipanche ramosa is a parasitic plant that infects numerous crops worldwide. In Western Europe it recently expanded to a new host crop, oilseed rape, in which it can cause severe yield losses. We developed 13 microsatellite markers for P. ramosa using next-generation 454 sequencing data. The polymorphism at each locus was assessed in a sample of 96 individuals collected in France within 6 fields cultivated with tobacco, hemp or oilseed rape. Two loci were monomorphic. At the other 11 loci, the number of alleles and the expected heterozygosity ranged from 3 to 6 and from 0.31 to 0.60, respectively. Genetic diversity within each cultivated field was very low. The host crop from which individuals were collected was the key factor structuring genetic variation. Individuals collected on oilseed rape were strongly differentiated from individuals collected on hemp or tobacco, which suggests that P. ramosa infecting oilseed rape forms a genetically diverged race. The microsatellites we developed will be useful for population genetics studies and for elucidating host-associated genetic divergence in P. ramosa.

  7. Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background.

    Science.gov (United States)

    Saqui-Salces, Milena; Tsao, Amy C; Gillilland, Merritt G; Merchant, Juanita L

    2017-01-01

    The impact of omeprazole (OM), a widely used over-the-counter proton pump inhibitor, on weight gain has not been extensively explored. We examined what factors, e.g., diet composition, microbiota, genetic strain, and sex, might affect weight gain in mice fed a high caloric diet while on OM. Inbred C57BL/6J strain, a 50:50 hybrid (B6SJLF1/J) strain, and mice on a highly mixed genetic background were fed four diets: standard chow (STD, 6% fat), STD with 200 ppm OM (STD + O), a high-energy chow (HiE, 11% fat), and HiE chow with OM (HiE + O) for 17 wk. Metabolic analysis, body composition, and fecal microbiota composition were analyzed in C57BL/6J mice. Oral glucose tolerance tests were performed using mice on the mixed background. After 8 wk, female and male C57BL/6J mice on the HiE diets ate less, whereas males on the HiE diets compared with the STD diets gained weight. All diet treatments reduced energy expenditure in females but in males only those on the HiE + O diet. Gut microbiota composition differed in the C57BL/6J females but not the males. Hybrid B6SJLF1/J mice showed similar weight gain on all test diets. In contrast, mixed strain male mice fed a HiE + O diet gained ∼40% more weight than females on the same diet. In addition to increased weight gain, mixed genetic mice on the HiE + O diet cleared glucose normally but secreted more insulin. We concluded that sex and genetic background define weight gain and metabolic responses of mice on high caloric diets and OM. Copyright © 2017 the American Physiological Society.

  8. Population genetics of the Schistosoma snail host Bulinus truncatus in Egypt.

    Science.gov (United States)

    Zein-Eddine, Rima; Djuikwo-Teukeng, Félicité F; Dar, Yasser; Dreyfuss, Gilles; Van den Broeck, Frederik

    2017-08-01

    The tropical freshwater snail Bulinus truncatus serves as an important intermediate host of several human and cattle Schistosoma species in many African regions. Despite some ecological and malacological studies, there is no information on the genetic diversity of B. truncatus in Egypt. Here, we sampled 70-100 snails in ten localities in Upper Egypt and the Nile Delta. Per locality, we sequenced 10 snails at a partial fragment of the cytochrome c oxidase subunit 1 gene (cox1) and we genotyped 25-30 snails at six microsatellite markers. A total of nine mitochondrial haplotypes were detected, of which five were unique to the Nile Delta and three were unique to Upper Egypt, indicating that snail populations may have evolved independently in both regions. Bayesian clustering and hierarchical F-statistics using microsatellite markers further revealed strong population genetic structure at the level of locality. Observed heterozygosity was much lower compared to what is expected under random mating, which could be explained by high selfing rates, population size reductions and to a lesser extent by the Wahlund effect. Despite these observations, we found signatures of gene flow and cross-fertilization, even between snails from the Nile Delta and Upper Egypt, indicating that B. truncatus can travel across large distances in Egypt. These observations could have serious consequences for disease epidemiology, as it means that infected snails from one region could rapidly and unexpectedly spark a new epidemic in another distant region. This could be one of the factors explaining the rebound of human Schistosoma infections in the Nile Delta, despite decades of sustained schistosomiasis control. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation.

    Science.gov (United States)

    Gompert, Zachariah; Jahner, Joshua P; Scholl, Cynthia F; Wilson, Joseph S; Lucas, Lauren K; Soria-Carrasco, Victor; Fordyce, James A; Nice, Chris C; Buerkle, C Alex; Forister, Matthew L

    2015-06-01

    The genetic and ecological factors that shape the evolution of animal diets remain poorly understood. For herbivorous insects, the expectation has been that trade-offs exist, such that adaptation to one host plant reduces performance on other potential hosts. We investigated the genetic architecture of alternative host use by rearing individual Lycaeides melissa butterflies from two wild populations in a crossed design on two hosts (one native and one introduced) and analysing the genetic basis of differences in performance using genomic approaches. Survival during the experiment was highest when butterfly larvae were reared on their natal host plant, consistent with local adaptation. However, cross-host correlations in performance among families (within populations) were not different from zero. We found that L. melissa populations possess genetic variation for larval performance and variation in performance had a polygenic basis. We documented very few genetic variants with trade-offs that would inherently constrain diet breadth by preventing the optimization of performance across hosts. Instead, most genetic variants that affected performance on one host had little to no effect on the other host. In total, these results suggest that genetic trade-offs are not the primary cause of dietary specialization in L. melissa butterflies. © 2015 John Wiley & Sons Ltd.

  10. Candidate Genes Detected in Transcriptome Studies are Strongly Dependent on Genetic Background

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Sørensen, Jesper Givskov; Kristensen, Torsten Nygård

    2011-01-01

    identified from studies of gene expression in Drosophila melanogaster using similar technical platforms. We found little overlap across studies between putative candidate genes for the same traits in the same sex. Instead there was a high degree of overlap between different traits and sexes within the same...... experiments and in future studies we suggest a focus on the genes, networks and pathways affecting traits in a consistent manner across backgrounds....

  11. Genetic Background and Population Genetics of Hungarian Brown Trout Populations Using PCR-RFLP and Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Ágnes Ősz

    2015-12-01

    4 University of West Hungary, Mosonmagyaróvár Vár 2., 9200 Mosonmagyaróvár, Hungary Based on the analyses of the mitochondrial DNA of several European brown trout populations, five evolutionary lineages of brown trout were indentified (Atlantic, Danubian, Mediterranean, Adriatic, Marble. The species is bred primarily for stock enhancement of natural waters, however the most hatchery-maintained broodstocks originate from the Atlantic lineage. Due to the hydrogeography of Hungary our stocks should theoretically belong to the Danubian lineage; however, this has not been investigated earlier by genetic studies. For our genetic analysis, 702 fin clips were collected from two brown trout broodstocks (Lillafüred and Szilvásvárad as well as populations of natural streams (Bán, Jósva, Kemence, Apátkút, Bittva and Kölöntés in Hungary. Sequencing of the control region in mitochondrial DNA, three PCR-RFLP (mitochondrial DNA control region, lactate dehydrogenase and somatolactin genes and five microsatellite markers were used to distinguish between Danubian and Atlantic lineages of brown trout. The proportion of the mitochondrial haplotype of the Danubian lineage was low, with the exception of the Apátkúti, Kölöntés streams and Szilvásvárad broodstock. Analyses of nuclear PCR-RFLP and microsatellites markers showed various distributions of alleles characteristic of the Atlantic or Danubian lineages, although the Atlantic genotype has dominated in all population. In case of the analyses of microsatellites the polymorphism varied greatly at all locations. In addition we found several alleles that were not described earlier in other populations. Those alleles probably would be typical of Hungarian brown trout populations. Overall the populations were effectively in Hardy-Weinberg equilibrium for both PCR-RFLP and microsatellite markers. The remarkably high proportion of allochthonous Atlantic alleles in the analyzed sites is a clear indicator of the import

  12. Oral Microbiota: Microbial Biomarkers of Metabolic Syndrome Independent of Host Genetic Factors

    Directory of Open Access Journals (Sweden)

    Jiyeon Si

    2017-12-01

    Full Text Available The oral microbiota plays a critical role in both local and systemic inflammation. Metabolic syndrome (MetS is characterized by low-grade inflammation, and many studies have been conducted on the gut microbiota from stool specimens. However, the etiological role of the oral microbiota in the development of MetS is unclear. In this study, we analyzed the oral and gut microbiome from 228 subgingival plaque and fecal samples from a Korean twin-family cohort with and without MetS. Significant differences in microbial diversity and composition were observed in both anatomical niches. However, a host genetic effect on the oral microbiota was not observed. A co-occurrence network analysis showed distinct microbiota clusters that were dependent on the MetS status. A comprehensive analysis of the oral microbiome identified Granulicatella and Neisseria as bacteria enriched in subjects with MetS and Peptococcus as bacteria abundant in healthy controls. Validation of the identified oral bacteria by quantitative PCR (qPCR showed that healthy controls possessed significantly lower levels of G. adiacens (p = 0.023 and a higher ratio of Peptococcus to Granulicatella (p < 0.05 than MetS subjects. Our results support that local oral microbiota can be associated with systemic disorders. The microbial biomarkers identified in this study would aid in determination of which individuals develop chronic diseases from their MetS and contribute to strategic disease management.

  13. Genetic Variation of the Host Plant Species Matters for Interactions with Above- and Belowground Herbivores

    Directory of Open Access Journals (Sweden)

    Dinesh Kafle

    2014-08-01

    Full Text Available Plants are challenged by both above- and belowground herbivores which may indirectly interact with each other via herbivore-induced changes in plant traits; however, little is known about how genetic variation of the host plant shapes such interactions. We used two genotypes (M4 and E9 of Solanum dulcamara (Solanaceae with or without previous experience of aboveground herbivory by Spodoptera exigua (Noctuidae to quantify its effects on subsequent root herbivory by Agriotes spp. (Elateridae. In the genotype M4, due to the aboveground herbivory, shoot and root biomass was significantly decreased, roots had a lower C/N ratio and contained significantly higher levels of proteins, while the genotype E9 was not affected. However, aboveground herbivory had no effects on weight gain or mortality of the belowground herbivores. Root herbivory by Agriotes increased the nitrogen concentration in the roots of M4 plants leading to a higher weight gain of conspecific larvae. Also, in feeding bioassays, Agriotes larvae tended to prefer roots of M4 over E9, irrespective of the aboveground herbivore treatment. Fourier-Transform Infrared Spectroscopy (FT-IR documented differences in metabolic profiles of the two plant genotypes and of the roots of M4 plants after aboveground herbivory. Together, these results demonstrate that previous aboveground herbivory can have genotype-specific effects on quantitative and qualitative root traits. This may have consequences for belowground interactions, although generalist root herbivores might not be affected when the root biomass offered is still sufficient for growth and survival.

  14. Genetic background and environmental conditions drive metabolic variation in wild type and transgenic soybean (Glycine max) seeds.

    Science.gov (United States)

    Cohen, Hagai; Shir, Ofer M; Yu, Yang; Hou, Wensheng; Sun, Shi; Han, Tianfu; Amir, Rachel

    2016-08-01

    The metabolic profiles and composition of storage reserves of agricultural crop seeds are strongly regulated by heritable and environmental factors. Yet, very little is known about the genetic and environmental determinants of adaptive metabolic variation amongst wild type as well as transgenic seed populations derived from the same genetic background, grown under natural field conditions. The goal of the current study was to investigate the effects of natural environmental conditions on wild type and transgenic soybean seeds expressing a feedback-insensitive form of cystathionine γ-synthase, a methionine main regulatory enzyme. The seeds were grown in four geographically distinct habitats in China and then assayed for primary metabolic profiles using gas chromatography mass spectrometry, morphological traits and storage reserve accumulation. The analyses revealed changes in the levels of primary metabolites which evidently exhibited high correlation to methionine regardless of changes in environmental conditions. The environment, however, constituted a major determinant of metabolic profiles amongst seeds, as much more metabolites were observed to be affected by this variable, particularly along the north-to-south latitudinal gradient. The observations suggest that metabolic variation amongst seeds grown under natural field conditions depends upon the complex relationships existing amongst their genetic background and the environmental conditions characterizing their cultivation areas. © 2016 John Wiley & Sons Ltd.

  15. A comparative analysis of genetic differentiation across six shared willow host species in leaf- and bud-galling sawflies.

    Directory of Open Access Journals (Sweden)

    Sanna A Leppänen

    Full Text Available Genetic divergence and speciation in plant-feeding insects could be driven by contrasting selection pressures imposed by different plant species and taxa. While numerous examples of host-associated differentiation (HAD have been found, the overall importance of HAD in insect diversification remains unclear, as few studies have investigated its frequency in relation to all speciation events. One promising way to infer the prevalence and repeatability of HAD is to estimate genetic differentiation in multiple insect taxa that use the same set of hosts. To this end, we measured and compared variation in mitochondrial COI and nuclear ITS2 sequences in population samples of leaf-galling Pontania and bud-galling Euura sawflies (Hymenoptera: Tenthredinidae collected from six Salix species in two replicate locations in northern Fennoscandia. We found evidence of frequent HAD in both species complexes, as individuals from the same willow species tended to cluster together on both mitochondrial and nuclear phylogenetic trees. Although few fixed differences among the putative species were found, hierarchical AMOVAs showed that most of the genetic variation in the samples was explained by host species rather than by sampling location. Nevertheless, the levels of HAD measured across specific pairs of host species were not correlated in the two focal galler groups. Hence, our results support the hypothesis of HAD as a central force in herbivore speciation, but also indicate that evolutionary trajectories are only weakly repeatable even in temporally overlapping radiations of related insect taxa.

  16. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

    Science.gov (United States)

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-11-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

  17. The specificity and genetic background of the rye (Secale cereale L.) tissue culture response.

    Science.gov (United States)

    Targońska, Małgorzata; Hromada-Judycka, Aneta; Bolibok-Brągoszewska, Hanna; Rakoczy-Trojanowska, Monika

    2013-01-01

    Rye is one of the most important crops in Eastern and Northern Europe. Despite the numerous beneficial features of rye, its annual production decreases successively which correlates with the lack of progress in its breeding compared with other cereals. Biotechnological methods could effectively improve the breeding of rye. However, their application is highly limited by the absence of an efficient procedure for plant regeneration in vitro, since rye is one of the most recalcitrant cereals with regard to the tissue culture response (TCR), and successful regeneration is highly dependent on genotype. Efforts to understand the genetic mechanisms controlling TCR of rye have elucidated some basic aspects, and several genes and genome regions controlling this trait have been identified. The aim of this review is to summarize the limited current knowledge of this topic.

  18. Interstitial lung disease in children – genetic background and associated phenotypes

    Directory of Open Access Journals (Sweden)

    Griese Matthias

    2005-04-01

    Full Text Available Abstract Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice.

  19. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background.

    Directory of Open Access Journals (Sweden)

    Julien Vibert

    2017-03-01

    Full Text Available Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific "signature" that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU data, revealing T cell proliferation heterogeneity and specific signatures.

  20. Modelling T cell proliferation: Dynamics heterogeneity depending on cell differentiation, age, and genetic background.

    Science.gov (United States)

    Vibert, Julien; Thomas-Vaslin, Véronique

    2017-03-01

    Cell proliferation is the common characteristic of all biological systems. The immune system insures the maintenance of body integrity on the basis of a continuous production of diversified T lymphocytes in the thymus. This involves processes of proliferation, differentiation, selection, death and migration of lymphocytes to peripheral tissues, where proliferation also occurs upon antigen recognition. Quantification of cell proliferation dynamics requires specific experimental methods and mathematical modelling. Here, we assess the impact of genetics and aging on the immune system by investigating the dynamics of proliferation of T lymphocytes across their differentiation through thymus and spleen in mice. Our investigation is based on single-cell multicolour flow cytometry analysis revealing the active incorporation of a thymidine analogue during S phase after pulse-chase-pulse experiments in vivo, versus cell DNA content. A generic mathematical model of state transition simulates through Ordinary Differential Equations (ODEs) the evolution of single cell behaviour during various durations of labelling. It allows us to fit our data, to deduce proliferation rates and estimate cell cycle durations in sub-populations. Our model is simple and flexible and is validated with other durations of pulse/chase experiments. Our results reveal that T cell proliferation is highly heterogeneous but with a specific "signature" that depends upon genetic origins, is specific to cell differentiation stages in thymus and spleen and is altered with age. In conclusion, our model allows us to infer proliferation rates and cell cycle phase durations from complex experimental 5-ethynyl-2'-deoxyuridine (EdU) data, revealing T cell proliferation heterogeneity and specific signatures.

  1. The Moral Reasoning of Genetic Dilemmas Amongst Jewish Israeli Undergraduate Students with Different Religious Affiliations and Scientific Backgrounds.

    Science.gov (United States)

    Siani, Merav; Ben-Zvi Assaraf, Orit

    2016-06-01

    The main objective of this study was to shed light on the moral reasoning of undergraduate Israeli students towards genetic dilemmas, and on how these are affected by their religious affiliation, by the field they study and by their gender. An open ended questionnaire was distributed among 449 undergraduate students in institutions of higher education in Israel, and their answers were analyzed according to the framework described by Sadler and Zeidler (Science Education, 88(1), 4-27, 2004). They were divided into two major categories: those whose reasoning was based on the consideration of moral consequences (MC), and those who supported their opinion by citing non-consequentialist moral principles (MP). Students' elaborations to questions dealing with values towards genetic testing showed a correlation between the students' religious affiliation and their reasoning, with religious students' elaborations tending to be more principle based than those of secular ones. Overall, the students' elaborations indicate that their main concern is the possibility that their personal genetic information will be exposed, and that their body's personal rights will be violated. We conclude the paper by offering several practical recommendations based on our findings for genetic counseling that is specifically tailored to fit different patients according to their background.

  2. Genetic markers for studies on the systematics and population genetics of snails, Bithynia spp., the first intermediate hosts of Opisthorchis viverrini in Thailand.

    Science.gov (United States)

    Kiatsopit, Nadda; Sithithaworn, Paiboon; Boonmars, Thidarut; Tesana, Smarn; Chanawong, Arunwadee; Saijuntha, Weerachai; Petney, Trevor N; Andrews, Ross H

    2011-05-01

    Snails are the critical amplifying hosts of the liver fluke Opisthorchis viverrini, the causative agent of hepatobiliary disease and cholangiocarcinoma in the Mekong area of Southeast Asia. Bithynia funiculata, B. siamensis goniomphalos and B. s. siamensis are the first intermediate hosts of O. viverrini in Thailand. Morphological similarity between Bithynia species and subspecies creates problems for their taxonomic identification and an understanding of Bithynia systematics. In this study, multilocus enzyme electrophoresis (MEE) was applied to define genetic markers that could prove useful for investigating the systematics and population genetics of this genus in Thailand. Of the 34 enzymes examined, 20 encoding a presumptive 24 loci showed sufficient staining intensity and resolution for genetic interpretation. Of these, three loci were monomorphic and eight loci were diagnostic among the three Bithynia taxa. The remaining 13 loci were diagnostic between combinations of the three taxa. Fixed genetic differences were detected at 67-73% of loci among these taxa which in turn differed from a closely related species, Hydrobioides nassa, at 88% of loci. Seventy three percent fixed genetic differences were detected between B. funiculata and the two sub-species B. s. siamensis and B. s goniomphalos. Our data reveals similarly large genetic divergence, 67% fixed genetic differences, between B. s. siamensis and B. s. goniomphalos, which may well represent different species rather than subspecies as currently defined. The genetic markers detected will form the basis for subsequent comprehensive studies on the systematics and population genetics of Bithynia snails as well as for their role in the transmission of O. viverrini and opisthorchiasis. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Differential Cotton leaf crumple virus-VIGS-mediated gene silencing and viral genome localization in different Gossypium hirsutum genetic backgrounds

    KAUST Repository

    Idris, Ali

    2010-12-01

    A Cotton leaf crumple virus (CLCrV)-based gene silencing vector containing a fragment of the Gossypium hirsutum Magnesium chelatase subunit I was used to establish endogenous gene silencing in cotton of varied genetic backgrounds. Biolistic inoculation resulted in systemic and persistent photo-bleaching of the leaves and bolls of the seven cultivars tested, however, the intensity of silencing was variable. CLCrV-VIGS-mediated expression of green fluorescent protein was used to monitor the in planta distribution of the vector, indicating successful phloem invasion in all cultivars tested. Acala SJ-1, one of the cotton cultivars, was identified as a particularly optimal candidate for CLCrV-VIGS-based cotton reverse-genetics. © 2010 Elsevier Ltd.

  4. Analysis of Genetic Variation in Brevipalpus yothersi (Acari: Tenuipalpidae) Populations from Four Species of Citrus Host Plants.

    Science.gov (United States)

    Salinas-Vargas, Delfina; Santillán-Galicia, Ma Teresa; Guzmán-Franco, Ariel W; Hernández-López, Antonio; Ortega-Arenas, Laura D; Mora-Aguilera, Gustavo

    2016-01-01

    We studied species diversity and genetic variation among populations of Brevipalpus mites from four species of citrus host plants. We sampled mites on orange, lime, grapefruit and mandarin trees from orchards at six localities distributed in the five most important citrus producing states in Mexico. Genetic variation among citrus host plants and localities were assessed by analysis of nucleotide sequence data from fragments of the mitochondrial cytochrome oxidase subunit I (COI). Both Brevipalpus yothersi and B. californicus were found at these sites, and B. yothersi was the most abundant species found on all citrus species and in all localities sampled. B. californicus was found mainly on orange and mandarin and only in two of the states sampled. AMOVA and haplotype network analyses revealed no correlation between B. yothersi genetic population structure and geographical origin or citrus host plant species. Considering that a previous study reported greater genetic diversity in B. yothersi populations from Brazil than we observed in Mexico, we discuss the possibility that the Mexican populations may have originated in the southern region of America.

  5. The genetic architecture of ecological adaptation: intraspecific variation in host plant use by the lepidopteran crop pest Chloridea virescens.

    Science.gov (United States)

    Oppenheim, Sara J; Gould, Fred; Hopper, Keith R

    2018-03-01

    Intraspecific variation in ecologically important traits is a cornerstone of Darwin's theory of evolution by natural selection. The evolution and maintenance of this variation depends on genetic architecture, which in turn determines responses to natural selection. Some models suggest that traits with complex architectures are less likely to respond to selection than those with simple architectures, yet rapid divergence has been observed in such traits. The simultaneous evolutionary lability and genetic complexity of host plant use in the Lepidopteran subfamily Heliothinae suggest that architecture may not constrain ecological adaptation in this group. Here we investigate the response of Chloridea virescens, a generalist that feeds on diverse plant species, to selection for performance on a novel host, Physalis angulata (Solanaceae). P. angulata is the preferred host of Chloridea subflexa, a narrow specialist on the genus Physalis. In previous experiments, we found that the performance of C. subflexa on P. angulata depends on many loci of small effect distributed throughout the genome, but whether the same architecture would be involved in the generalist's adoption of P. angulata was unknown. Here we report a rapid response to selection in C. virescens for performance on P. angulata, and establish that the genetic architecture of intraspecific variation is quite similar to that of the interspecific differences in terms of the number, distribution, and effect sizes of the QTL involved. We discuss the impact of genetic architecture on the ability of Heliothine moths to respond to varying ecological selection pressures.

  6. The anthocyanin cyanidin-3-O-β-glucoside modulates murine glutathione homeostasis in a manner dependent on genetic background.

    Science.gov (United States)

    Norris, Katie M; Okie, Whitney; Yakaitis, Claire L; Pazdro, Robert

    2016-10-01

    Anthocyanins are a class of phytochemicals that have generated considerable interest due to their reported health benefits. It has been proposed that commonly consumed anthocyanins, such as cyandin-3-O-β-glucoside (C3G), confer cellular protection by stimulating biosynthesis of glutathione (GSH), an endogenous antioxidant. Currently, it is unknown whether the health effects of dietary anthocyanins are genetically determined. We therefore tested the hypothesis that anthocyanin-induced alterations in GSH homeostasis vary by genetic background. Mice representing five genetically diverse inbred strains (A/J, 129S1/SvImJ, CAST/EiJ, C57BL/6J, and NOD/ShiLtJ) were assigned to a control or 100mg/kg C3G diet (n=5/diet/strain) for six weeks. GSH and GSSG levels were quantified in liver, kidney, heart, pancreas, and brain samples using HPLC. The C3G diet promoted an increase in renal GSH concentrations, hepatic GSH/GSSG, and cardiac GSH/GSSG in CAST/EiJ mice. C3G treatment also induced an increase in pancreatic GSH/GSSG in C57BL/6J mice. In contrast, C3G did not affect GSH homeostasis in NOD/ShiLtJ mice. Surprisingly, the C3G-diet caused a decrease in hepatic GSH/GSSG in A/J and 129S1/SvImJ mice compared to controls; C3G-treated 129S1/SvImJ mice also exhibited lower total glutathione in the heart. Overall, we discovered that C3G modulates the GSH system in a strain- and tissue-specific manner. To our knowledge, this study is the first to show that the redox effects of anthocyanins are determined by genetic background. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Mediterranean Diet Adherence and Genetic Background Roles within a Web-Based Nutritional Intervention: The Food4Me Study

    Science.gov (United States)

    Navas-Carretero, Santiago; Fallaize, Rosalind; O’Donovan, Clare B.; Moschonis, George; Marsaux, Cyril F. M.; Manios, Yannis; Daniel, Hannelore; Brennan, Lorraine; Drevon, Christian A.; Gundersen, Thomas E.; Gibney, Mike; Saris, Wim H. M.; Lovegrove, Julie A.; Grimaldi, Keith; Bouwman, Jildau; Van Ommen, Ben; Martinez, J. Alfredo

    2017-01-01

    Mediterranean Diet (MedDiet) adherence has been proven to produce numerous health benefits. In addition, nutrigenetic studies have explained some individual variations in the response to specific dietary patterns. The present research aimed to explore associations and potential interactions between MedDiet adherence and genetic background throughout the Food4Me web-based nutritional intervention. Dietary, anthropometrical and biochemical data from volunteers of the Food4Me study were collected at baseline and after 6 months. Several genetic variants related to metabolic risk features were also analysed. A Genetic Risk Score (GRS) was derived from risk alleles and a Mediterranean Diet Score (MDS), based on validated food intake data, was estimated. At baseline, there were no interactions between GRS and MDS categories for metabolic traits. Linear mixed model repeated measures analyses showed a significantly greater decrease in total cholesterol in participants with a low GRS after a 6-month period, compared to those with a high GRS. Meanwhile, a high baseline MDS was associated with greater decreases in Body Mass Index (BMI), waist circumference and glucose. There also was a significant interaction between GRS and the MedDiet after the follow-up period. Among subjects with a high GRS, those with a high MDS evidenced a highly significant reduction in total carotenoids, while among those with a low GRS, there was no difference associated with MDS levels. These results suggest that a higher MedDiet adherence induces beneficial effects on metabolic outcomes, which can be affected by the genetic background in some specific markers. PMID:29019927

  8. Mediterranean Diet Adherence and Genetic Background Roles within a Web-Based Nutritional Intervention: The Food4Me Study

    Directory of Open Access Journals (Sweden)

    Rodrigo San-Cristobal

    2017-10-01

    Full Text Available Mediterranean Diet (MedDiet adherence has been proven to produce numerous health benefits. In addition, nutrigenetic studies have explained some individual variations in the response to specific dietary patterns. The present research aimed to explore associations and potential interactions between MedDiet adherence and genetic background throughout the Food4Me web-based nutritional intervention. Dietary, anthropometrical and biochemical data from volunteers of the Food4Me study were collected at baseline and after 6 months. Several genetic variants related to metabolic risk features were also analysed. A Genetic Risk Score (GRS was derived from risk alleles and a Mediterranean Diet Score (MDS, based on validated food intake data, was estimated. At baseline, there were no interactions between GRS and MDS categories for metabolic traits. Linear mixed model repeated measures analyses showed a significantly greater decrease in total cholesterol in participants with a low GRS after a 6-month period, compared to those with a high GRS. Meanwhile, a high baseline MDS was associated with greater decreases in Body Mass Index (BMI, waist circumference and glucose. There also was a significant interaction between GRS and the MedDiet after the follow-up period. Among subjects with a high GRS, those with a high MDS evidenced a highly significant reduction in total carotenoids, while among those with a low GRS, there was no difference associated with MDS levels. These results suggest that a higher MedDiet adherence induces beneficial effects on metabolic outcomes, which can be affected by the genetic background in some specific markers.

  9. Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs

    Directory of Open Access Journals (Sweden)

    Arnaud eBarbary

    2016-05-01

    Full Text Available With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes. However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a QTL analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, M. incognita, M. arenaria and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.

  10. Response to dietary phosphorus deficiency is affected by genetic background in growing pigs.

    Science.gov (United States)

    Alexander, L S; Qu, A; Cutler, S A; Mahajan, A; Lonergan, S M; Rothschild, M F; Weber, T E; Kerr, B J; Stahl, C H

    2008-10-01

    Concern over the environmental effect of P excretion from pig production has led to reduced dietary P supplementation. To examine how genetics influence P utilization, 94 gilts sired by 2 genetic lines (PIC337 and PIC280) were housed individually and fed either a P-adequate diet (PA) or a 20% P-deficient diet (PD) for 14 wk. Initially and monthly, blood samples were collected and BW recorded after an overnight fast. Growth performance and plasma indicators of P status were determined monthly. At the end of the trial, carcass traits, meat quality, bone strength, and ash percentage were determined. Pigs fed the PD diet had decreased (P < 0.05) plasma P concentrations and poorer G:F (P < 0.05) over the length of the trial. After 4 wk on trial, pigs fed the PD diet had increased (P < 0.05) plasma 1,25(OH)(2)D(3) and decreased (P < 0.05) plasma parathyroid hormone compared with those fed the PA diet. At the end of the trial, pigs fed the PD diet had decreased (P < 0.05) BW, HCW, and percentage fat-free lean and tended to have decreased LM area (P = 0.06) and marbling (P = 0.09) and greater (P = 0.12) 10th-rib backfat than pigs fed the PA diet. Additionally, animals fed the PD diet had weaker bones and also decreased (P < 0.05) ash percentage and increased (P < 0.05) concentrations of 1alpha-hydroxylase and parathyroid hormone receptor mRNA in kidney tissue. Regardless of dietary treatment, PIC337-sired pigs consumed more feed and gained more BW than their PIC280-sired counterparts (P < 0.05) during the study. The PIC337-sired pigs also had greater (P < 0.05) HCW, larger (P < 0.01) LM area, and tended to have (P = 0.07) greater dressing percentage. Meat from the PIC337-sired pigs also tended to have greater (P = 0.12) concentrations of lactate but decreased (P = 0.07) concentrations of total glucose units 24 h postslaughter. Although plasma 1,25(OH)(2)D(3) concentrations were elevated (P < 0.05) in all the animals fed the PD diet, this elevation due to P deficiency

  11. Age-Related Macular Degeneration: Pathogenesis, Genetic Background, and the Role of Nutritional Supplements

    Directory of Open Access Journals (Sweden)

    Marilita M. Moschos

    2014-01-01

    Full Text Available Age-related macular degeneration (ARMD is the leading cause of severe vision loss and blindness worldwide, mainly affecting people over 65 years old. Dry and wet ARDM are the main types of the disease, which seem to have a multifactorial background. The aim of this review is to summarize the mechanisms of ARMD pathogenesis and exhibit the role of diet and nutritional supplements in the onset and progression of the disease. Environmental factors, such as smoking, alcohol, and, diet appear to interact with mutations in nuclear and mitochondrial DNA, contributing to the pathogenesis of ARMD. Inflammatory mediators and oxidative stress, induced by the daily exposure of retina to high pressure of oxygen and light radiation, have been also associated with ARMD lesions. Other than medical and surgical therapies, nutritional supplements hold a significant role in the prevention and treatment of ARMD, eliminating the progression of macular degeneration.

  12. Establishment and characterization of MRT cell lines from genetically engineered mouse models and the influence of genetic background on their development.

    Science.gov (United States)

    Kuwahara, Yasumichi; Mora-Blanco, E Lorena; Banine, Fatima; Rogers, Arlin B; Fletcher, Christopher; Sherman, Larry S; Roberts, Charles W M; Weissman, Bernard E

    2013-06-15

    Malignant rhabdoid tumors (MRTs) are rare, aggressive cancers occuring in young children primarily through inactivation of the SNF5(INI1, SMARCB1) tumor suppressor gene. We and others have demonstrated that mice heterozygous for a Snf5 null allele develop MRTs with partial penetrance. We have also shown that Snf5(+/-) mice that lack expression of the pRb family, due to TgT121 transgene expression, develop MRTs with increased penetrance and decreased latency. Here, we report that altering the genetic background has substantial effects upon MRT development in Snf5(+/--) and TgT121 ;Snf5(+/-) mice, with a mixed F1 background resulting in increased latency and the appearance of brain tumors. We also report the establishment of the first mouse MRT cell lines that recapitulate many features of their human counterparts. Our studies provide further insight into the genetic influences on MRT development as well as provide valuable new cell culture and genetically engineered mouse models for the study of CNS-MRT etiology. Copyright © 2012 UICC.

  13. Influence of MTHFR Genetic Background on p16 and MGMT Methylation in Oral Squamous Cell Cancer

    Science.gov (United States)

    Ferlazzo, Nadia; Currò, Monica; Zinellu, Angelo; Caccamo, Daniela; Isola, Gaetano; Ventura, Valeria; Carru, Ciriaco; Matarese, Giovanni; Ientile, Riccardo

    2017-01-01

    Genetic polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) enzyme may influence DNA methylation. Alterations in DNA methylation patterns of genes involved in the regulation of the cell cycle, DNA repair, cell adherence and metastasis process are known to contribute to cancer development. In this study, the influence of the MTHFR C677T and A1298C gene polymorphisms on global DNA methylation and site-specific methylation on p16 and O6-methylguanine-DNA methyltransferase (MGMT) gene promoters was investigated in patients with oral squamous cell cancer (OSCC). To this aim, methylation studies were carried out by using genomic DNA isolated from saliva samples of 58 OSCC patients and 90 healthy controls. The frequency of the CT/AC and TT/AA genotypes was significantly higher in patients than in controls. Whereas no difference in global DNA methylation levels was observed between patients and controls, a higher frequency of methylation at both p16 and MGMT gene promoters was detected in patients compared with controls. A significant association between MTHFR gene polymorphisms and p16 and MGMT gene promoter methylation was found. The frequency of p16 and MGMT methylation was around 60% in patients with either the CT/AC or TT/AA genotype. Our results suggest that hypermethylation of cancer-related genes may be affected by MTHFR polymorphisms. PMID:28353639

  14. Influence of MTHFR Genetic Background on p16 and MGMT Methylation in Oral Squamous Cell Cancer

    Directory of Open Access Journals (Sweden)

    Nadia Ferlazzo

    2017-03-01

    Full Text Available Genetic polymorphisms of the methylenetetrahydrofolate reductase (MTHFR enzyme may influence DNA methylation. Alterations in DNA methylation patterns of genes involved in the regulation of the cell cycle, DNA repair, cell adherence and metastasis process are known to contribute to cancer development. In this study, the influence of the MTHFR C677T and A1298C gene polymorphisms on global DNA methylation and site-specific methylation on p16 and O6-methylguanine-DNA methyltransferase (MGMT gene promoters was investigated in patients with oral squamous cell cancer (OSCC. To this aim, methylation studies were carried out by using genomic DNA isolated from saliva samples of 58 OSCC patients and 90 healthy controls. The frequency of the CT/AC and TT/AA genotypes was significantly higher in patients than in controls. Whereas no difference in global DNA methylation levels was observed between patients and controls, a higher frequency of methylation at both p16 and MGMT gene promoters was detected in patients compared with controls. A significant association between MTHFR gene polymorphisms and p16 and MGMT gene promoter methylation was found. The frequency of p16 and MGMT methylation was around 60% in patients with either the CT/AC or TT/AA genotype. Our results suggest that hypermethylation of cancer-related genes may be affected by MTHFR polymorphisms.

  15. Influence of MTHFR Genetic Background on p16 and MGMT Methylation in Oral Squamous Cell Cancer.

    Science.gov (United States)

    Ferlazzo, Nadia; Currò, Monica; Zinellu, Angelo; Caccamo, Daniela; Isola, Gaetano; Ventura, Valeria; Carru, Ciriaco; Matarese, Giovanni; Ientile, Riccardo

    2017-03-29

    Genetic polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) enzyme may influence DNA methylation. Alterations in DNA methylation patterns of genes involved in the regulation of the cell cycle, DNA repair, cell adherence and metastasis process are known to contribute to cancer development. In this study, the influence of the MTHFR C677T and A1298C gene polymorphisms on global DNA methylation and site-specific methylation on p16 and O ⁶-methylguanine-DNA methyltransferase ( MGMT ) gene promoters was investigated in patients with oral squamous cell cancer (OSCC). To this aim, methylation studies were carried out by using genomic DNA isolated from saliva samples of 58 OSCC patients and 90 healthy controls. The frequency of the CT/AC and TT/AA genotypes was significantly higher in patients than in controls. Whereas no difference in global DNA methylation levels was observed between patients and controls, a higher frequency of methylation at both p16 and MGMT gene promoters was detected in patients compared with controls. A significant association between MTHFR gene polymorphisms and p16 and MGMT gene promoter methylation was found. The frequency of p16 and MGMT methylation was around 60% in patients with either the CT/AC or TT/AA genotype. Our results suggest that hypermethylation of cancer-related genes may be affected by MTHFR polymorphisms.

  16. Ecological adaptation and reproductive isolation in sympatry: genetic and phenotypic evidence for native host races of Rhagoletis pomonella.

    Science.gov (United States)

    Powell, Thomas H Q; Forbes, Andrew A; Hood, Glen R; Feder, Jeffrey L

    2014-02-01

    Ecological speciation with gene flow may be an important mode of diversification for phytophagous insects. The recent shift of Rhagoletis pomonella from its native host downy hawthorn (Crataegus mollis) to introduced apple (Malus domestica) in the northeastern United States is a classic example of sympatric host race formation. Here, we test whether R. pomonella has similarly formed host races on four native Crataegus species in the southern United States: western mayhaw (C. opaca), blueberry hawthorn (C. brachyacantha), southern red hawthorn (C. mollis var. texana) and green hawthorn (C. viridis). These four southern hosts differ from each other in their fruiting phenology and in the volatile compounds emitted from the surface of their fruits. These two traits form the basis of ecological reproductive isolation between downy hawthorn and apple flies in the north. We report evidence from microsatellite population surveys and eclosion studies supporting the existence of genetically differentiated and partially reproductively isolated host races of southern hawthorn flies. The results provide an example of host shifting and ecological divergence involving native plants and imply that speciation with gene flow may be commonly initiated in Rhagoletis when ecological opportunity presents itself. © 2013 John Wiley & Sons Ltd.

  17. Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Iris Kastenberger

    Full Text Available The role of dynorphin/kappa opioid receptors in epilepsy and addiction are well accepted, but their function in emotional control is not yet fully understood. Data obtained from different strains of prodynorphin (Pdyn- and kappa opioid receptor (KOP-deficient mice do not provide a consistent picture of the functions of Dyn/KOP in anxiety, suggesting the influence of testing conditions and/or genetic background. Therefore, we investigated the behaviour and neurochemistry of male and female Pdyn KO mice on the balb/c and C57Bl/6N background. Consistent with our results obtained from male mice on the C57bl/6N background, we observed a less anxious phenotype in the elevated plus maze, open-field and light-dark test in male mice on the balb/c background. Female mice on the balb/c background also displayed less anxiety like behaviour; however these data reflect high trait anxiety and inter-individual differences. In contrast, female mice on the C57Bl/6N background displayed low trait anxiety and a paradigm-dependent reduction of anxiety. No differences were observed in the forced swim test, while balb/c Pdyn KO mice displayed prolonged immobility in the tail suspension test. In line with our previous results, we observed reduced CRH mRNA in the central amygdala in all groups of mice. In contrast, the recently observed CRH mRNA reduction in the hypothalamic paraventricular nucleus appears restricted to male, but not female mice. Our data support previous data suggesting a pronounced impact of endogenous prodynorphin-derived peptides on anxiety. Moreover, our data support the idea that the less anxious phenotype manifests only at elevated stress levels.

  18. Exome sequencing of lymphomas from three dog breeds reveals somatic mutation patterns reflecting genetic background.

    Science.gov (United States)

    Elvers, Ingegerd; Turner-Maier, Jason; Swofford, Ross; Koltookian, Michele; Johnson, Jeremy; Stewart, Chip; Zhang, Cheng-Zhong; Schumacher, Steven E; Beroukhim, Rameen; Rosenberg, Mara; Thomas, Rachael; Mauceli, Evan; Getz, Gad; Palma, Federica Di; Modiano, Jaime F; Breen, Matthew; Lindblad-Toh, Kerstin; Alföldi, Jessica

    2015-11-01

    Lymphoma is the most common hematological malignancy in developed countries. Outcome is strongly determined by molecular subtype, reflecting a need for new and improved treatment options. Dogs spontaneously develop lymphoma, and the predisposition of certain breeds indicates genetic risk factors. Using the dog breed structure, we selected three lymphoma predisposed breeds developing primarily T-cell (boxer), primarily B-cell (cocker spaniel), and with equal distribution of B- and T-cell lymphoma (golden retriever), respectively. We investigated the somatic mutations in B- and T-cell lymphomas from these breeds by exome sequencing of tumor and normal pairs. Strong similarities were evident between B-cell lymphomas from golden retrievers and cocker spaniels, with recurrent mutations in TRAF3-MAP3K14 (28% of all cases), FBXW7 (25%), and POT1 (17%). The FBXW7 mutations recurrently occur in a specific codon; the corresponding codon is recurrently mutated in human cancer. In contrast, T-cell lymphomas from the predisposed breeds, boxers and golden retrievers, show little overlap in their mutation pattern, sharing only one of their 15 most recurrently mutated genes. Boxers, which develop aggressive T-cell lymphomas, are typically mutated in the PTEN-mTOR pathway. T-cell lymphomas in golden retrievers are often less aggressive, and their tumors typically showed mutations in genes involved in cellular metabolism. We identify genes with known involvement in human lymphoma and leukemia, genes implicated in other human cancers, as well as novel genes that could allow new therapeutic options. © 2015 Elvers et al. Published by Cold Spring Harbor Laboratory Press.

  19. An Enterobacter plasmid as a new genetic background for the transposon Tn1331

    Directory of Open Access Journals (Sweden)

    Alavi MR

    2011-11-01

    Full Text Available Mohammad R Alavi1,2, Vlado Antonic2, Adrien Ravizee1, Peter J Weina3, Mina Izadjoo1,2, Alexander Stojadinovic21Division of Wound Biology and Translational Research, Armed Forces Institute of Pathology and American Registry of Pathology, Washington DC, 2Combat Wound Initiative Program, Walter Reed Army Medical Center, Washington DC, 3The Walter Reed Army Institute of Research, Silver Spring, MD, USABackground: Genus Enterobacter includes important opportunistic nosocomial pathogens that could infect complex wounds. The presence of antibiotic resistance genes in these microorganisms represents a challenging clinical problem in the treatment of these wounds. In the authors’ screening of antibiotic-resistant bacteria from complex wounds, an Enterobacter species was isolated that harbors antibiotic-resistant plasmids conferring resistance to Escherichia coli. The aim of this study was to identify the resistance genes carried by one of these plasmids.Methods: The plasmids from the Enterobacter isolate were propagated in E. coli and one of the plasmids, designated as pR23, was sequenced by the Sanger method using fluorescent dye-terminator chemistry on a genetic analyzer. The assembled sequence was annotated by search of the GenBank database.Results: Plasmid pR23 is composed of the transposon Tn1331 and a backbone plasmid that is identical to the plasmid pPIGDM1 from Enterobacter agglomerans. The multidrug-resistance transposon Tn1331, which confers resistance to aminoglycoside and beta lactam antibiotics, has been previously isolated only from Klebsiella. The Enterobacter plasmid pPIGDM1, which carries a ColE1-like origin of replication and has no apparent selective marker, appears to provide a backbone for propagation of Tn1331 in Enterobacter. The recognition sequence of Tn1331 transposase for insertion into pPIGDM1 is the pentanucleotide TATTA, which occurs only once throughout the length of this plasmid.Conclusion: Transposition of Tn1331 into

  20. BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?

    Directory of Open Access Journals (Sweden)

    Tagliaferri Pierosandro

    2009-10-01

    Full Text Available Abstract Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients.

  1. The C57BL/6 genetic background confers cardioprotection in iron-overloaded mice

    Science.gov (United States)

    Musumeci, Marco; Maccari, Sonia; Sestili, Paola; Massimi, Alessia; Corritore, Elisa; Marano, Giuseppe; Catalano, Liviana

    2013-01-01

    Background Chronic transfusion therapy causes a progressive iron overload that damages many organs including the heart. Recent evidence suggests that L-type calcium channels play an important role in iron uptake by cardiomyocytes under conditions of iron overload. Given that beta-adrenergic stimulation significantly enhances L-type calcium current, we hypothesised that beta-adrenergic blocking drugs could reduce the deleterious effects of iron overload on the heart. Methods Iron overload was generated by intraperitoneal injections of iron dextran (1g/kg) administered once a week for 8 weeks in male C57bl/6 mice, while propranolol was administered in drinking water at the dose of 40 mg/kg/day. Cardiac function and ventricular remodelling were evaluated by echocardiography and histological methods. Results As compared to placebo, iron injection caused cardiac iron deposition. Surprisingly, despite iron overload, myocardial function and ventricular geometry in the iron-treated mice resulted unchanged as compared to those in the placebo-treated mice. Administration of propranolol increased cardiac performance in iron-overloaded mice. Specifically, as compared to the values in the iron-overloaded group, in iron-overloaded animals treated with propranolol left ventricular fractional shortening increased (from 31.6% to 44.2%, P =0.01) whereas left ventricular end-diastolic diameter decreased (from 4.1±0.1 mm to 3.5±0.1 mm, P =0.03). Propranolol did not alter cardiac systolic function or left ventricular sizes in the placebo group. Conclusions These results demonstrate that C57bl/6 mice are resistant to iron overload-induced myocardial injury and that treatment with propranolol is able to increase cardiac performance in iron-overloaded mice. However, since C57bl/6 mice were resistant to iron-induced injury, it remains to be evaluated further whether propranolol could prevent iron-overload cardiomyopathy. PMID:22790263

  2. Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon

    DEFF Research Database (Denmark)

    Tartally, András; Kelager, Andreas; Fürst, Matthias Alois

    2016-01-01

    The rare socially parasitic butterfly Maculinea alcon occurs in two forms, which are characteristic of hygric or xeric habitats and which exploit different host plants and host ants. The status of these two forms has been the subject of considerable controversy. Populations of the two forms...... on different host plants, each with a distinct flowering phenology, providing a temporal rather than spatial barrier to gene flow....

  3. Increased Sampling Reveals Novel Lineages of Entamoeba: Consequences of Genetic Diversity and Host Specificity for Taxonomy and Molecular Detection

    OpenAIRE

    Stensvold, CR; LEBBAD, M.; Victory, EL; Verweij, JJ; Tannich, E.; Alfellani, M; Legarraga, P; Clark, CG

    2011-01-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a t...

  4. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead.

    Science.gov (United States)

    Gundacker, Claudia; Gencik, Martin; Hengstschläger, Markus

    2010-10-01

    The heavy metals mercury and lead are well-known and significant developmental neurotoxicants. This review summarizes the genetic factors that modify their toxicokinetics. Understanding toxicokinetics (uptake, biotransformation, distribution, and elimination processes) is a key precondition to understanding the individual health risks associated with exposure. We selected candidate susceptibility genes when evidence was available for (1) genes/proteins playing a significant role in mercury and lead toxicokinetics, (2) gene expression/protein activity being induced by these metals, and (3) mercury and lead toxicokinetics being affected by gene knockout/knockdown or (4) by functional gene polymorphisms. The genetic background is far better known for mercury than for lead toxicokinetics. Involved are genes encoding L-type amino acid transporters, organic anion transporters, glutathione (GSH)-related enzymes, metallothioneins, and transporters of the ABC family. Certain gene variants can influence mercury toxicokinetics, potentially explaining part of the variable susceptibility to mercury toxicity. Delta-aminolevulinic acid dehydratase (ALAD), vitamin D receptor (VDR) and hemochromatosis (HFE) gene variants are the only well-established susceptibility markers of lead toxicity in humans. Many gaps remain in our knowledge about the functional genomics of this issue. This calls for studies to detect functional gene polymorphisms related to mercury- and lead-associated disease phenotypes, to demonstrate the impact of functional polymorphisms and gene knockout/knockdown in relation to toxicity, to confirm the in vivo relevance of genetic variation, and to examine gene-gene interactions on the respective toxicokinetics. Another crucial aspect is knowledge on the maternal-fetal genetic background, which modulates fetal exposure to these neurotoxicants. To completely define the genetically susceptible risk groups, research is also needed on the genes/proteins involved in the

  5. Genetic impairment of parasite myosin motors uncovers the contribution of host cell membrane dynamics to Toxoplasma invasion forces.

    Science.gov (United States)

    Bichet, Marion; Touquet, Bastien; Gonzalez, Virginie; Florent, Isabelle; Meissner, Markus; Tardieux, Isabelle

    2016-11-09

    The several-micrometer-sized Toxoplasma gondii protozoan parasite invades virtually any type of nucleated cell from a warm-blooded animal within seconds. Toxoplasma initiates the formation of a tight ring-like junction bridging its apical pole with the host cell membrane. The parasite then actively moves through the junction into a host cell plasma membrane invagination that delineates a nascent vacuole. Recent high resolution imaging and kinematics analysis showed that the host cell cortical actin dynamics occurs at the site of entry while gene silencing approaches allowed motor-deficient parasites to be generated, and suggested that the host cell could contribute energetically to invasion. In this study we further investigate this possibility by analyzing the behavior of parasites genetically impaired in different motor components, and discuss how the uncovered mechanisms illuminate our current understanding of the invasion process by motor-competent parasites. By simultaneously tracking host cell membrane and cortex dynamics at the site of interaction with myosin A-deficient Toxoplasma, the junction assembly step could be decoupled from the engagement of the Toxoplasma invasive force. Kinematics combined with functional analysis revealed that myosin A-deficient Toxoplasma had a distinct host cell-dependent mode of entry when compared to wild-type or myosin B/C-deficient Toxoplasma. Following the junction assembly step, the host cell formed actin-driven membrane protrusions that surrounded the myosin A-deficient mutant and drove it through the junction into a typical vacuole. However, this parasite-entry mode appeared suboptimal, with about 40 % abortive events for which the host cell membrane expansions failed to cover the parasite body and instead could apply deleterious compressive forces on the apical pole of the zoite. This study not only clarifies the key contribution of T. gondii tachyzoite myosin A to the invasive force, but it also highlights a new mode

  6. Variation in attraction to host plant odors in an invasive moth has a genetic basis and is genetically negatively correlated with fecundity.

    Science.gov (United States)

    Najar-Rodriguez, A; Schneeberger, M; Bellutti, N; Dorn, S

    2012-07-01

    Lepidopteran insects are major pests of agricultural crops, and mated female moths exploit plant volatiles to locate suitable hosts for oviposition. We investigated the heritability of odor-guided host location behavior and fecundity in the cosmopolitan oriental fruit moth Grapholita (Cydia) molesta, an oligophagous herbivore that attacks fruit trees. We used a full-sib/half-sib approach to estimate the heritability and the genetic correlation between these two traits. Results document a considerable genetic basis for olfactory attraction of females (h ( 2 ) = 0.37 ± 0.17) and their fecundity (h ( 2 ) = 0.32 ± 0.13), as well as a genetic trade-off between female attraction and fecundity (r ( g ) = -0.85 ± 0.21). These estimations were empirically corroborated by comparing two strains maintained in the laboratory for different numbers of generations. The long-term reared strain lost its olfactory discrimination ability but achieved significantly higher fecundity compared with the short-term reared strain. Our results highlight that genetic studies are relevant for understanding the evolution of odor-guided behavior in herbivore insects and for judging the promise of pest management strategies involving behavioral manipulation with plant volatiles.

  7. A Population Genetic Model of Evolution of Host-Mate Attraction and Nonhost Repulsion in a Bark Beetle Pityogenes bidentatus

    Directory of Open Access Journals (Sweden)

    John A. Byers

    2012-01-01

    Full Text Available Studies have shown that the bark beetle Pityogenes bidentatus (Coleoptera, Curculionidae, Scolytinae avoids volatiles of nonhost trees (Norway Spruce, birch, and oak and healthy host Scotch Pine when orienting to aggregation pheromone. A population genetic model of two behavioral genes was hypothesized where AA, Aa, and aa were allele combinations regulating orientation to host tree and pheromone odors, and BB, Bb, and bb were combinations allowing avoidance of nonhost and unsuitable host odors. The nine possible genotypes were assigned different survival factors that remained constant during simulation. The initial proportion of aabb genotype (little aggregation/host response and little avoidance of nonhosts was ~1.0 when a mutation was hypothesized that caused better orientation to host/beetle odors (Aabb and another mutation causing more efficient avoidance of nonhosts (aaBb. After these initial mutations, the model used indiscriminate mating of genotypic proportions and subsequent survival as input for each successive generation. The results indicate that AABB eventually fixates in the populations in some scenarios, while AABB and other genotypes reach stable equilibriums in other models depending on genotypic survival values supported by ecologically sound assumptions. The models indicate how development of insecticide resistance in pest insects may proceed.

  8. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.

    Directory of Open Access Journals (Sweden)

    Lyza Johnston

    Full Text Available Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp. and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations.

  9. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    Science.gov (United States)

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. © 2015 John Wiley & Sons Ltd.

  10. A genetic system for Citrus Tristeza Virus using the non-natural host Nicotiana benthamiana: an update.

    Science.gov (United States)

    Ambrós, Silvia; Ruiz-Ruiz, Susana; Peña, Leandro; Moreno, Pedro

    2013-01-01

    In nature Citrus tristeza virus (CTV), genus Closterovirus, infects only the phloem cells of species of Citrus and related genera. Finding that the CTV T36 strain replicated in Nicotiana benthamiana (NB) protoplasts and produced normal virions allowed development of the first genetic system based on protoplast transfection with RNA transcribed from a full-genome cDNA clone, a laborious and uncertain system requiring several months for each experiment. We developed a more efficient system based on agroinfiltration of NB leaves with CTV-T36-based binary plasmids, which caused systemic infection in this non-natural host within a few weeks yielding in the upper leaves enough CTV virions to readily infect citrus by slash inoculation. Stem agroinoculation of citrus and NB plants with oncogenic strains of Agrobacterium tumefaciens carrying a CTV-T36 binary vector with a GUS marker, induced GUS positive galls in both species. However, while most NB tumors were CTV positive and many plants became systemically infected, no coat protein or viral RNA was detected in citrus tumors, even though CTV cDNA was readily detected by PCR in the same galls. This finding suggests (1) strong silencing or CTV RNA processing in transformed cells impairing infection progress, and (2) the need for using NB as an intermediate host in the genetic system. To maintain CTV-T36 in NB or assay other CTV genotypes in this host, we also tried to graft-transmit the virus from infected to healthy NB, or to mechanically inoculate NB leaves with virion extracts. While these trials were mostly unsuccessful on non-treated NB plants, agroinfiltration with silencing suppressors enabled for the first time infecting NB plants by side-grafting and by mechanical inoculation with virions, indicating that previous failure to infect NB was likely due to virus silencing in early infection steps. Using NB as a CTV host provides new possibilities to study virus-host interactions with a simple and reliable system.

  11. Virulence Differences among Melissococcus plutonius Strains with Different Genetic Backgrounds in Apis mellifera Larvae under an Improved Experimental Condition.

    Science.gov (United States)

    Nakamura, Keiko; Yamazaki, Yuko; Shiraishi, Akiyo; Kobayashi, Sota; Harada, Mariko; Yoshiyama, Mikio; Osaki, Makoto; Okura, Masatoshi; Takamatsu, Daisuke

    2016-09-14

    European foulbrood (EFB) caused by Melissococcus plutonius is an important bacterial disease of honeybee larvae. M. plutonius strains can be grouped into three genetically distinct groups (CC3, CC12 and CC13). Because EFB could not be reproduced in artificially reared honeybee larvae by fastidious strains of CC3 and CC13 previously, we investigated a method to improve experimental conditions using a CC3 strain and found that infection with a potassium-rich diet enhanced proliferation of the fastidious strain in larvae at the early stage of infection, leading to the appearance of clear clinical symptoms. Further comparison of M. plutonius virulence under the conditions revealed that the representative strain of CC12 was extremely virulent and killed all tested bees before pupation, whereas the CC3 strain was less virulent than the CC12 strain, and a part of the infected larvae pupated. In contrast, the tested CC13 strain was avirulent, and as with the non-infected control group, most of the infected brood became adult bees, suggesting differences in the insect-level virulence among M. plutonius strains with different genetic backgrounds. These strains and the improved experimental infection method to evaluate their virulence will be useful tools for further elucidation of the pathogenic mechanisms of EFB.

  12. Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection.

    Science.gov (United States)

    Stensvold, C Rune; Lebbad, Marianne; Victory, Emma L; Verweij, Jaco J; Tannich, Egbert; Alfellani, Mohammed; Legarraga, Paulette; Clark, C Graham

    2011-07-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a total of 91 new partial small subunit rRNA gene sequences were obtained, including 49 from Entamoeba coli, 18 from Entamoeba polecki, and 17 from Entamoeba hartmanni. We propose a new nomenclature for significant variants within established Entamoeba species. Based on current data we propose that the uninucleated-cyst-producing Entamoeba infecting humans is called Entamoeba polecki and divided into four subtypes (ST1-ST4) and that Entamoeba coli is divided into two subtypes (ST1-ST2). New hosts for several species were detected and, while host specificity and genetic diversity of several species remain to be clarified, it is clear that previous reliance on cultivated material has given us a misleading and incomplete picture of variation within the genus Entamoeba. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. DISCORDANT GENETIC DIVERSITY AND GEOGRAPHIC PATTERNS BETWEEN CRASSICUTIS CICHLASOMAE (DIGENEA: APOCREADIIDAE) AND ITS CICHLID HOST, "CICHLASOMA" UROPHTHALMUS (OSTEICHTHYES: CICHLIDAE), IN MIDDLE-AMERICA

    National Research Council Canada - National Science Library

    Ulises Razo-Mendivil; Ella Vázquez-Domínguez; Gerardo Pérez-Ponce de León

    2013-01-01

    ...–parasite associations. We evaluated the genetic structure of the digenean Crassicutis cichlasomae and its most common host, the Mayan cichlid "Cichlasoma" urophthalmus, encompassing most of their geographical range in Middle-America...

  14. Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: Disease and insect resistance in forest trees

    Science.gov (United States)

    Richard A. Sniezko; Alvin D. Yanchuk; John T. Kliejunas; Katharine M. Palmieri; Janice M. Alexander; Susan J. Frankel

    2012-01-01

    Individual papers are available at http://www.fs.fed.us/psw/publications/documents/psw_gtr240/The Fourth International Workshop on the Genetics of Host-Parasite Interactions in Forestry: Disease and Insect Resistance in Forest Trees...

  15. Shared Genetic Background for Regulation of Mood and Sleep: Association of GRIA3 with Sleep Duration in Healthy Finnish Women

    Science.gov (United States)

    Utge, Siddheshwar; Kronholm, Erkki; Partonen, Timo; Soronen, Pia; Ollila, Hanna M.; Loukola, Anu; Perola, Markus; Salomaa, Veikko; Porkka-Heiskanen, Tarja; Paunio, Tiina

    2011-01-01

    Study Objectives: Sleeping 7 to 8 hours per night appears to be optimal, since both shorter and longer sleep times are related to increased morbidity and mortality. Depressive disorder is almost invariably accompanied by disturbed sleep, leading to decreased sleep duration, and disturbed sleep may be a precipitating factor in the initiation of depressive illness. Here, we examined whether, in healthy individuals, sleep duration is associated with genes that we earlier found to be associated with depressive disorder. Design: Population-based molecular genetic study. Setting: Regression analysis of 23 risk variants for depressive disorder from 12 genes to sleep duration in healthy individuals. Participants: Three thousand, one hundred, forty-seven individuals (25–75 y) from population-based Health 2000 and FINRISK 2007 samples. Measurements and Results: We found a significant association of rs687577 from GRIA3 on the X-chromosome with sleep duration in women (permutation-based corrected empirical P = 0.00001, β = 0.27; Bonferroni corrected P = 0.0052; f = 0.11). The frequency of C/C genotype previously found to increase risk for depression in women was highest among those who slept for 8 hours or less in all age groups younger than 70 years. Its frequency decreased with the lengthening of sleep duration, and those who slept for 9 to 10 hours showed a higher frequency of C/A or A/A genotypes, when compared with the midrange sleepers (7-8 hours) (permutation-based corrected empirical P = 0.0003, OR = 1.81). Conclusions: The GRIA3 polymorphism that was previously found to be associated with depressive disorder in women showed an association with sleep duration in healthy women. Mood disorders and short sleep may share a common genetic background and biologic mechanisms that involve glutamatergic neurotransmission. Citation: Utge S; Kronholm E; Partonen T; Soronen P; Ollila HM; Loukola A; Perola M; Salomaa V; Porkka-Heiskanen T; Paunio T. Shared genetic background for

  16. Progression of Left Ventricular Dysfunction and Remodelling under Optimal Medical Therapy in CHF Patients: Role of Individual Genetic Background.

    Science.gov (United States)

    Rigolli, Marzia; Cicoira, Mariantonietta; Bergamini, Corinna; Chiampan, Andrea; Rossi, Andrea; Vassanelli, Corrado

    2011-01-05

    Background. Neurohormonal systems play an important role in chronic heart failure (CHF). Due to interindividual heterogeneity in the benefits of therapy, it may be hypothesized that polymorphisms of neurohormonal systems may affect left ventricular (LV) remodelling and systolic function. We aimed to assess whether genetic background of maximally treated CHF patients predicts variations in LV systolic function and volumes. Methods and Results. We prospectively studied 131 CHF outpatients on optimal treatment for at least six months. Echocardiographic evaluations were performed at baseline and after 12 months. Genotype analysis for ACE I/D, β1adrenergic receptor (AR) Arg389Gly, β2AR Arg16Gly, and β2AR Gln27Glu polymorphisms was performed. No differences in baseline characteristics were detected among subgroups. ACE II was a significant predictor of improvement of LV end-diastolic and end-systolic volume (P = .003 and P = .002, respectively) but not of LV ejection fraction (LVEF); β1AR389 GlyGly was related to improvement of LVEF (P = .02) and LV end-systolic volume (P = .01). The predictive value of polymorphisms remained after adjustment for other clinically significant predictors (P < .05 for all). Conclusions. ACE I/D and β1AR Arg389Gly polymorphisms are independent predictors of reverse remodeling and systolic function recovery in CHF patients under optimal treatment.

  17. Progression of Left Ventricular Dysfunction and Remodelling under Optimal Medical Therapy in CHF Patients: Role of Individual Genetic Background

    Directory of Open Access Journals (Sweden)

    Marzia Rigolli

    2011-01-01

    Full Text Available Background. Neurohormonal systems play an important role in chronic heart failure (CHF. Due to interindividual heterogeneity in the benefits of therapy, it may be hypothesized that polymorphisms of neurohormonal systems may affect left ventricular (LV remodelling and systolic function. We aimed to assess whether genetic background of maximally treated CHF patients predicts variations in LV systolic function and volumes. Methods and Results. We prospectively studied 131 CHF outpatients on optimal treatment for at least six months. Echocardiographic evaluations were performed at baseline and after 12 months. Genotype analysis for ACE I/D, β1adrenergic receptor (AR Arg389Gly, β2AR Arg16Gly, and β2AR Gln27Glu polymorphisms was performed. No differences in baseline characteristics were detected among subgroups. ACE II was a significant predictor of improvement of LV end-diastolic and end-systolic volume (=.003 and =.002, respectively but not of LV ejection fraction (LVEF; β1AR389 GlyGly was related to improvement of LVEF (=.02 and LV end-systolic volume (=.01. The predictive value of polymorphisms remained after adjustment for other clinically significant predictors (<.05 for all. Conclusions. ACE I/D and β1AR Arg389Gly polymorphisms are independent predictors of reverse remodeling and systolic function recovery in CHF patients under optimal treatment.

  18. Comparison of genotypes I and III in Japanese encephalitis virus reveals distinct differences in their genetic and host diversity.

    Science.gov (United States)

    Han, Na; Adams, James; Chen, Ping; Guo, Zhen-yang; Zhong, Xiang-fu; Fang, Wei; Li, Na; Wen, Lei; Tao, Xiao-yan; Yuan, Zhi-ming; Rayner, Simon

    2014-10-01

    Japanese encephalitis (JE) is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been phylogenetically divided into five genotypes. Recent surveillance data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. To investigate the mechanism behind the genotype shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination, we collected (i) all full-length and partial JEV molecular sequences and (ii) associated genotype and host information comprising a data set of 873 sequences. We then examined differences between the two genotypes at the genetic and epidemiological level by investigating amino acid mutations, positive selection, and host range. We found that although GI is dominant, it has fewer sites predicted to be under positive selection, a narrower host range, and significantly fewer human isolates. For the E protein, the sites under positive selection define a haplotype set for each genotype that shows striking differences in their composition and diversity, with GIII showing significantly more variety than GI. Our results suggest that GI has displaced GIII by achieving a replication cycle that is more efficient but is also more restricted in its host range. Japanese encephalitis is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been divided into five genotypes based on sequence similarity. Recent data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. Understanding the reasons behind this shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination is important for controlling the spread of the virus and reducing human fatalities. We

  19. Contribution of genetic background, traditional risk factors, and HIV-related factors to coronary artery disease events in HIV-positive persons

    NARCIS (Netherlands)

    Rotger, Margalida; Glass, Tracy R; Junier, Thomas; Lundgren, Jens; Neaton, James D; Poloni, Estella S; van 't Wout, Angélique B; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P; Li, Xiuhong; Kingsley, Lawrence A; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A; Reiss, Peter; Weber, Rainer; Bucher, Heiner C; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E; Schölvinck, Elisabeth H.

    BACKGROUND: Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the

  20. Contribution of genetic background, traditional risk factors, and HIV-related factors to coronary artery disease events in HIV-positive persons

    DEFF Research Database (Denmark)

    Rotger, Margalida; Glass, Tracy R; Junier, Thomas

    2013-01-01

    BACKGROUND: Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the set...

  1. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease.

    Science.gov (United States)

    Imhann, Floris; Vich Vila, Arnau; Bonder, Marc Jan; Fu, Jingyuan; Gevers, Dirk; Visschedijk, Marijn C; Spekhorst, Lieke M; Alberts, Rudi; Franke, Lude; van Dullemen, Hendrik M; Ter Steege, Rinze W F; Huttenhower, Curtis; Dijkstra, Gerard; Xavier, Ramnik J; Festen, Eleonora A M; Wijmenga, Cisca; Zhernakova, Alexandra; Weersma, Rinse K

    2018-01-01

    Patients with IBD display substantial heterogeneity in clinical characteristics. We hypothesise that individual differences in the complex interaction of the host genome and the gut microbiota can explain the onset and the heterogeneous presentation of IBD. Therefore, we performed a case-control analysis of the gut microbiota, the host genome and the clinical phenotypes of IBD. Stool samples, peripheral blood and extensive phenotype data were collected from 313 patients with IBD and 582 truly healthy controls, selected from a population cohort. The gut microbiota composition was assessed by tag-sequencing the 16S rRNA gene. All participants were genotyped. We composed genetic risk scores from 11 functional genetic variants proven to be associated with IBD in genes that are directly involved in the bacterial handling in the gut: NOD2 , CARD9 , ATG16L1 , IRGM and FUT2 . Strikingly, we observed significant alterations of the gut microbiota of healthy individuals with a high genetic risk for IBD: the IBD genetic risk score was significantly associated with a decrease in the genus Roseburia in healthy controls (false discovery rate 0.017). Moreover, disease location was a major determinant of the gut microbiota: the gut microbiota of patients with colonic Crohn's disease (CD) is different from that of patients with ileal CD, with a decrease in alpha diversity associated to ileal disease (p=3.28×10 -13 ). We show for the first time that genetic risk variants associated with IBD influence the gut microbiota in healthy individuals. Roseburia spp are acetate-to-butyrate converters, and a decrease has already been observed in patients with IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs.

    Science.gov (United States)

    Sackett, Loren C; Collinge, Sharon K; Martin, Andrew P

    2013-05-01

    Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals. © 2013 Blackwell Publishing Ltd.

  3. Genetic and morphological variation in corallivorous snails (Coralliophila spp.) living on different host corals at Curaçao, southern Caribbean

    NARCIS (Netherlands)

    Potkamp, G.; Vermeij, M.J.A.; Hoeksema, B.W.

    2017-01-01

    Snails of the genus Coralliophila (Muricidae: Coralliophilinae) are common corallivores in the Caribbean, feeding on a wide range of host species. In the present study, the morphological and genetic variation in C. galea and C. caribaea were studied in relation to their association with host coral

  4. The molecular through ecological genetics of abnormal abdomen in Drosophila mercatorum. V. Female phenotypic expression on natural genetic backgrounds and in natural environments.

    Science.gov (United States)

    Templeton, A R; Hollocher, H; Johnston, J S

    1993-06-01

    The abnormal abdomen (aa) syndrome in Drosophila mercatorum depends on the presence of R1 inserts in a third or more of the X-linked 28S rDNA genes and the absence of selective underreplication of inserted repeats in polytene tissues that is controlled by an X-linked locus (ur) half a map unit from the rDNA complex. This syndrome affects both life history and morphology in the laboratory. Because abnormal morphologies are rarely encountered in nature, the purpose of this study is to see if the female life history traits are still affected under more natural genetic backgrounds and environmental conditions. Two outbred stocks were extracted from the natural population living near Kamuela, Hawaii: KaaX that has only X chromosomes with uraa alleles, and K+X that has only ur+ alleles. These two stocks have nonoverlapping distributions of insert proportions, indicating strong disequilibrium between the ur locus and the rDNA complex. The KaaX stock had almost no morphological penetrance of uraa, indicating that genetic background is important. KaaX expressed longer female egg-to-adult developmental times, increased early adult female fecundity, and decreased female adult longevity compared with K+X. By bagging natural rots of the cactus Opuntia megacantha near Kamuela, Hawaii, it was shown that egg-to-adult developmental time is slowed down by 0.92 days in females bearing uraa alleles in nature, with no detectable slowdown in uraa males. The bagged rot data also indicate that females bearing uraa alleles have a strong fecundity advantage in nature under some ecological conditions but not others.

  5. Environmental geochemistry of shale-hosted Ag-Pb-Zn massive sulfide deposits in northwest Alaska: Natural background concentrations of metals in water from mineralized areas

    Science.gov (United States)

    Kelley, K.D.; Taylor, C.D.

    1997-01-01

    Red Dog, Lik and Drenchwater are shale-hosted stratiform Ag-Pb-Zn massive sulfide deposits in the northwestern Brooks Range. Natural background concentrations of metals in waters from the undisturbed (unmined) Drenchwater prospect and Lik deposit were compared to pre-mining baseline studies conducted at Red Dog. The primary factors affecting water chemistry are the extent of exposure of the deposits, the grade of mineralization, the presence of carbonate reeks in the section, and the proportion of Fe-sulfide in the ore. Surface water samples from the Drenchwater prospect, which has pyrite-dominant mineralization exposed in outcrop, have pH values as low as 2.8 and high dissolved concentrations of metals including as much as 95 mg 1-1 Al, 270 mg 1-1 Fe, 8 ??1-1 Cd, 10 ??1-1 Pb, and 2600 ??1-1 Zn, with As up to 26 ??g1-1. Surface waters from the Red Dog deposit prior to mining were also acidic and metal-rich, however, dissolved metal concentrations in Red Dog waters were many times greater. The higher metal concentrations in Red Dog waters reflect the high Zn grades and the abundant sphalerite, pyrite, and galena that were present in outcrop prior to mining. In contrast, despite significant mineralization at the Lik deposit, carbonate rocks in the section buffer the system, resulting in less acidic, mostly near-neutral pH values with low concentrations of most metals except Zn.

  6. The Integral Role of Genetic Variation in the Evolution of Outcrossing in the Caenorhabditis elegans-Serratia marcescens Host-Parasite System.

    Directory of Open Access Journals (Sweden)

    Raymond C Parrish

    Full Text Available Outcrossing is predicted to facilitate more rapid adaptation than self-fertilization as a result of genetic exchange between genetically variable individuals. Such genetic exchange may increase the efficacy of selection by breaking down Hill-Robertson interference, as well as promoting the maintenance of within-lineage genetic diversity. Experimental studies have demonstrated the selective advantage of outcrossing in novel environments. Here, we assess the specific role of genetic variation in the evolution of outcrossing. We experimentally evolved genetically variable and inbred populations of mixed mating (outcrossing and self-fertilizing Caenorhabditis elegans nematodes under novel ecological conditions-specifically the presence of the virulent parasite Serratia marcescens. Outcrossing rates increased in genetically variable host populations evolved in the presence of the parasite, whereas parasite exposure in inbred populations resulted in reduced rates of host outcrossing. The host populations with genetic variation also exhibited increased fitness in the presence of the parasite over eight generations, whereas inbred populations did not. This increase in fitness was primarily the result of adaptation to the parasite, rather than recovery from initial inbreeding depression. Therefore, the benefits of outcrossing were only manifested in the presence of genetic variation, and outcrossing was favored over self-fertilization as a result. As predicted, the benefits of outcrossing under novel ecological conditions are a product of genetic exchange between genetically diverse lineages.

  7. A Genetic Screen for Pathogenicity Genes in the Hemibiotrophic Fungus Colletotrichum higginsianum Identifies the Plasma Membrane Proton Pump Pma2 Required for Host Penetration.

    Science.gov (United States)

    Korn, Martin; Schmidpeter, Johannes; Dahl, Marlis; Müller, Susanne; Voll, Lars M; Koch, Christian

    2015-01-01

    We used insertional mutagenesis by Agrobacterium tumefaciens mediated transformation (ATMT) to isolate pathogenicity mutants of Colletotrichum higginsianum. From a collection of 7200 insertion mutants we isolated 75 mutants with reduced symptoms. 19 of these were affected in host penetration, while 17 were affected in later stages of infection, like switching to necrotrophic growth. For 16 mutants the location of T-DNA insertions could be identified by PCR. A potential plasma membrane H(+)-ATPase Pma2 was targeted in five independent insertion mutants. We genetically inactivated the Ku80 component of the non-homologous end-joining pathway in C. higginsianum to establish an efficient gene knockout protocol. Chpma2 deletion mutants generated by homologous recombination in the ΔChku80 background form fully melanized appressoria but entirely fail to penetrate the host tissue and are non-pathogenic. The ChPMA2 gene is induced upon appressoria formation and infection of A. thaliana. Pma2 activity is not important for vegetative growth of saprophytically growing mycelium, since the mutant shows no growth penalty under these conditions. Colletotrichum higginsianum codes for a closely related gene (ChPMA1), which is highly expressed under most growth conditions. ChPMA1 is more similar to the homologous yeast genes for plasma membrane pumps. We propose that expression of a specific proton pump early during infection may be common to many appressoria forming fungal pathogens as we found ChPMA2 orthologs in several plant pathogenic fungi.

  8. Shared genetic background for regulation of mood and sleep: association of GRIA3 with sleep duration in healthy Finnish women.

    Science.gov (United States)

    Utge, Siddheshwar; Kronholm, Erkki; Partonen, Timo; Soronen, Pia; Ollila, Hanna M; Loukola, Anu; Perola, Markus; Salomaa, Veikko; Porkka-Heiskanen, Tarja; Paunio, Tiina

    2011-10-01

    Sleeping 7 to 8 hours per night appears to be optimal, since both shorter and longer sleep times are related to increased morbidity and mortality. Depressive disorder is almost invariably accompanied by disturbed sleep, leading to decreased sleep duration, and disturbed sleep may be a precipitating factor in the initiation of depressive illness. Here, we examined whether, in healthy individuals, sleep duration is associated with genes that we earlier found to be associated with depressive disorder. Population-based molecular genetic study. Regression analysis of 23 risk variants for depressive disorder from 12 genes to sleep duration in healthy individuals. Three thousand, one hundred, forty-seven individuals (25-75 y) from population-based Health 2000 and FINRISK 2007 samples. We found a significant association of rs687577 from GRIA3 on the X-chromosome with sleep duration in women (permutation-based corrected empirical P=0.00001, β=0.27; Bonferroni corrected P=0.0052; f=0.11). The frequency of C/C genotype previously found to increase risk for depression in women was highest among those who slept for 8 hours or less in all age groups younger than 70 years. Its frequency decreased with the lengthening of sleep duration, and those who slept for 9 to 10 hours showed a higher frequency of C/A or A/A genotypes, when compared with the midrange sleepers (7-8 hours) (permutation-based corrected empirical P=0.0003, OR=1.81). The GRIA3 polymorphism that was previously found to be associated with depressive disorder in women showed an association with sleep duration in healthy women. Mood disorders and short sleep may share a common genetic background and biologic mechanisms that involve glutamatergic neurotransmission.

  9. Genetic background analysis of protein C deficiency demonstrates a recurrent mutation associated with venous thrombosis in Chinese population.

    Directory of Open Access Journals (Sweden)

    Liang Tang

    Full Text Available BACKGROUND: Protein C (PC is one of the most important physiological inhibitors of coagulation proteases. Hereditary PC deficiency causes a predisposition to venous thrombosis (VT. The genetic characteristics of PC deficiency in the Chinese population remain unknown. METHODS: Thirty-four unrelated probands diagnosed with hereditary PC deficiency were investigated. PC activity and antigen levels were measured. Mutation analysis was performed by sequencing the PROC gene. In silico analyses, including PolyPhen-2, SIFT, multiple sequence alignment, splicing prediction, and protein molecular modeling were performed to predict the consequences of each variant identified. One recurrent mutation and its relative risk for thrombosis in relatives were analyzed in 11 families. The recurrent mutation was subsequently detected in a case (VT patients-control study, and the adjusted odds ratio (OR for VT risk was calculated by logistic regression analysis. RESULTS: A total of 18 different mutations, including 12 novel variants, were identified. One common mutation, PROC c.565C>T (rs146922325:C>T, was found in 17 of the 34 probands. The family study showed that first-degree relatives bearing this variant had an 8.8-fold (95%CI = 1.1-71.6 increased risk of venous thrombosis. The case-control (1003 vs. 1031 study identified this mutation in 5.88% patients and in 0.87% controls, respectively. The mutant allele conferred a high predisposition to venous thrombosis (adjusted OR = 7.34, 95%CI = 3.61-14.94. The plasma PC activity and antigen levels in heterozygotes were 51.73±6.92 U/dl and 75.17±4.84 U/dl, respectively. CONCLUSIONS: This is the first study on the genetic background of PC deficiency in the Chinese population. The PROC c.565C>T mutation is the most frequent cause of PC deficiency as well as a prevalent risk factor for VT in Chinese individuals. The inclusion of this variant in routine thrombophilic detection may improve the diagnosis and

  10. IMPROVING PLANT GENETIC ENGINEERING BY MANIPULATING THE HOST. (R829479C001)

    Science.gov (United States)

    Agrobacterium-mediated transformation is a major technique for the genetic engineering of plants. However, there are many economically important crop and tree species that remain highly recalcitrant to Agrobacterium infection. Although attempts have been made to ...

  11. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors.

    Science.gov (United States)

    Hauser, Kurt F; Knapp, Pamela E

    2014-01-01

    Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions. © 2014 Elsevier Inc. All rights reserved.

  12. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC MICROBIAL GENETIC MARKERS IN COW FECAL SAMPLES

    Science.gov (United States)

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...

  13. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN CATTLE FECAL SAMPLES - ABSTRACT

    Science.gov (United States)

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host specific markers. Here, we describe the application of a genome fragment enrichment met...

  14. Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its cichlid host, "Cichlasoma" urophthalmus (Osteichthyes: Cichlidae), in Middle-America.

    Science.gov (United States)

    Razo-Mendivil, Ulises; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2013-12-01

    Genetic analyses of hosts and their parasites are key to understand the evolutionary patterns and processes that have shaped host-parasite associations. We evaluated the genetic structure of the digenean Crassicutis cichlasomae and its most common host, the Mayan cichlid "Cichlasoma" urophthalmus, encompassing most of their geographical range in Middle-America (river basins in southeastern Mexico, Belize, and Guatemala together with the Yucatan Peninsula). Genetic diversity and structure analyses were done based on 167 cytochrome c oxidase subunit 1 sequences (330 bp) for C. cichlasomae from 21 populations and 161 cytochrome b sequences (599 bp) for "C." urophthalmus from 26 populations. Analyses performed included phylogenetic tree estimation under Bayesian inference and maximum likelihood analysis, genetic diversity, distance and structure estimates, haplotype networks, and demographic evaluations. Crassicutis cichlasomae showed high genetic diversity values and genetic structuring, corresponding with 4 groups clearly differentiated and highly divergent. Conversely, "C." urophthalmus showed low levels of genetic diversity and genetic differentiation, defined as 2 groups with low divergence and with no correspondence with geographical distribution. Our results show that species of cichlids parasitized by C. cichlasomae other than "C." urophthalmus, along with multiple colonization events and subsequent isolation in different basins, are likely factors that shaped the genetic structure of the parasite. Meanwhile, historical long-distance dispersal and drought periods during the Holocene, with significant population size reductions and fragmentations, are factors that could have shaped the genetic structure of the Mayan cichlid.

  15. Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to Tomato spotted wilt virus-vector competence.

    Science.gov (United States)

    Westmore, G C; Poke, F S; Allen, G R; Wilson, C R

    2013-09-01

    Of eight thelytokous populations of onion thrips (Thrips tabaci) collected from potato (three populations), onion (four) or Chrysanthemum (one) hosts from various regions of Australia, only those from potato were capable of transmitting Tomato spotted wilt virus (TSWV) in controlled transmission experiments. Genetic differentiation of seven of these eight populations, and nine others not tested for TSWV vector competence, was examined by comparison of the DNA sequences of mitochondrial cytochrome oxidase subunit 1 (COI) gene. All Australian populations of T. tabaci grouped within the European 'L2' clade of Brunner et al. (2004). Within this clade the seven populations from potato, the three from onion, and the four from other hosts (Chrysanthemum, Impatiens, lucerne, blackberry nightshade) clustered as three distinct sub-groupings characterised by source host. Geographical source of thrips populations had no influence on genetic diversity. These results link genetic differentiation of thelytokous T. tabaci to source host and to TSWV vector capacity for the first time.

  16. A specific superoxide dismutase mutation is on the same genetic background in sporadic and familial cases of amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, C.; Brock, D.J.H. [Univ. of Edinburgh (United Kingdom); Swingler, R.J. [Dundee Royal Infirmary (United Kingdom)] [and others

    1996-11-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative disease of motor neurons, causing progressive muscular atrophy, weakness, and death from respiratory failure, often within 2-3 years. Although most cases are sporadic, some 5%-10% are inherited as autosomal dominants with age-dependent penetrance. An ALS locus has been mapped to chromosome 21q, and causative mutations identified in the Cu/Zn superoxide dismutase (SOD1) gene. A majority of SOD1 mutations have been found in cases with a clear family history of ALS. However, we and others have also described SOD1 mutations in patients where the disease appears to be sporadic. This is especially true for the missense mutation in codon 113 of the SOD1 gene, which substitutes threonine for isoleucine (I113T). One explanation for this finding is that this codon is a mutational hot spot with sporadic cases representing new mutations. Another is that the inherited nature of the cases is disguised by the reduced penetrance of this specific mutation. We have now shown that each of six unrelated cases of I113T mutation that we have collected in the Scottish population occurs on the same genetic background. Association analysis of multiple flanking loci on chromosome 21q supports the conclusion of a founder effect, with the original mutational event occurring {ge}10 generations ago. 12 refs., 1 fig., 1 tab.

  17. Phenolic Contents and Compositions in Skins of Red Wine Grape Cultivars among Various Genetic Backgrounds and Originations

    Directory of Open Access Journals (Sweden)

    Lei Zhu

    2012-03-01

    Full Text Available In order to analyze and compare the phenolic characteristics of red wine grapes with diverse genetic backgrounds, skin phenolics among 21 different cultivars belonging to Vitis vinifera L., East Asian and North American Vitis species and hybrids, as well as 2 varieties of muscadine grapes were estimated by HPLC-MS/MS. There were 45 anthocyanins, 28 flavonols, 8 flavan-3-ols, 9 cinnamic acids, 5 benzoic acids, 5 ellagic acids and 2 stilbenes detected in all the samples. Total contents of each phenolic type varied significantly among the different grape cultivars investigated. There was also a large variability in the phenolic compositions of different grape groups. The differences in anthocyanin composition were obvious between V. vinifera and non-V. vinifera grapes and also between the grapes originating from Eurasia and North America. Quercetin-3-glucuronide and quercetin-3-glucoside were marker flavonol compounds for Euvitis grape skins. Flavan-3-ol monomers were dominant in the skins of muscadine and non-V. amurensis East Asian grapes, whereas polymers were more common in V. vinifera and North American grapes. The muscadine grapes were very rich in flavonols, flavan-3-ols and ellagic acids. Via principal component analysis, these grape cultivars were clustered into three groups according to their characteristic phenolic content and composition.

  18. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    Science.gov (United States)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  19. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species.

    Directory of Open Access Journals (Sweden)

    Hermine Alexandre

    Full Text Available The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis and the Asian corn borer (ACB, O. furnacalis. A third species, the Adzuki bean borer (ABB, O. scapulalis, occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.

  20. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species.

    Science.gov (United States)

    Alexandre, Hermine; Ponsard, Sergine; Bourguet, Denis; Vitalis, Renaud; Audiot, Philippe; Cros-Arteil, Sandrine; Streiff, Réjane

    2013-01-01

    The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.

  1. Bacterial pathogenesis and interleukin-17: interconnecting mechanisms of immune regulation, host genetics, and microbial virulence that influence severity of infection.

    Science.gov (United States)

    Chamoun, Michelle N; Blumenthal, Antje; Sullivan, Matthew J; Schembri, Mark A; Ulett, Glen C

    2018-01-18

    Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the control of many different disorders, including autoimmune, oncogenic, and diverse infectious diseases. In the context of infectious diseases, IL-17 protects the host against various classes of microorganisms but, intriguingly, can also exacerbate the severity of some infections. The regulation of IL-17 expression stems, in part, from the activity of Interleukin-23 (IL-23), which drives the maturation of different classes of IL-17-producing cells that can alter the course of infection. In this review, we analyze IL-17/IL-23 signalling in bacterial infection, and examine the interconnecting mechanisms that link immune regulation, host genetics, and microbial virulence in the context of bacterial pathogenesis. We consider the roles of IL-17 in both acute and chronic bacterial infections, with a focus on mouse models of human bacterial disease that involve infection of mucosal surfaces in the lungs, urogenital, and gastrointestinal tracts. Polymorphisms in IL-17-encoding genes in humans, which have been associated with heightened host susceptibility to some bacterial pathogens, are discussed. Finally, we examine the implications of IL-17 biology in infectious diseases for the development of novel therapeutic strategies targeted at preventing bacterial infection.

  2. Integrating high-content imaging and chemical genetics to probe host cellular pathways critical for Yersinia pestis infection.

    Directory of Open Access Journals (Sweden)

    Krishna P Kota

    Full Text Available The molecular machinery that regulates the entry and survival of Yersinia pestis in host macrophages is poorly understood. Here, we report the development of automated high-content imaging assays to quantitate the internalization of virulent Y. pestis CO92 by macrophages and the subsequent activation of host NF-κB. Implementation of these assays in a focused chemical screen identified kinase inhibitors that inhibited both of these processes. Rac-2-ethoxy-3 octadecanamido-1-propylphosphocholine (a protein Kinase C inhibitor, wortmannin (a PI3K inhibitor, and parthenolide (an IκB kinase inhibitor, inhibited pathogen-induced NF-κB activation and reduced bacterial entry and survival within macrophages. Parthenolide inhibited NF-κB activation in response to stimulation with Pam3CSK4 (a TLR2 agonist, E. coli LPS (a TLR4 agonist or Y. pestis infection, while the PI3K and PKC inhibitors were selective only for Y. pestis infection. Together, our results suggest that phagocytosis is the major stimulus for NF-κB activation in response to Y. pestis infection, and that Y. pestis entry into macrophages may involve the participation of protein kinases such as PI3K and PKC. More importantly, the automated image-based screening platform described here can be applied to the study of other bacteria in general and, in combination with chemical genetic screening, can be used to identify host cell functions facilitating the identification of novel antibacterial therapeutics.

  3. A genetic system for Citrus Tristeza Virus using the non-natural host Nicotiana benthamiana: an update

    Directory of Open Access Journals (Sweden)

    Silvia eAmbrós

    2013-07-01

    Full Text Available In nature Citrus tristeza virus (CTV, genus Closterovirus, infects only the phloem cells of species of Citrus and related genera. Finding that the CTV T36 strain replicated in Nicotiana benthamiana (NB protoplasts and produced normal virions allowed development of the first genetic system based on protoplast transfection with RNA transcribed from a full-genome cDNA clone, a laborious and uncertain system requiring several months for each experiment. We developed a more efficient system based on agroinfiltration of NB leaves with CTV-T36-based binary plasmids, which caused systemic infection in this non-natural host within a few weeks yielding in the upper leaves enough CTV virions to readily infect citrus by slash inoculation. Stem agroinoculation of citrus and NB plants with oncogenic strains of Agrobacterium tumefaciens carrying a CTV-T36 binary vector with a GUS marker, induced GUS positive galls in both species. However, while most NB tumours were CTV positive and many plants became systemically infected, no coat protein or viral RNA was detected in citrus tumours, even though CTV cDNA was readily detected by PCR in the same galls. This finding suggests i strong silencing or CTV RNA processing in transformed cells impairing infection progress, and ii the need for using NB as an intermediate host in the genetic system. To maintain CTV-T36 in NB or assay other CTV genotypes in this host, we also tried to graft-transmit the virus from infected to healthy NB, or to mechanically inoculate NB leaves with virion extracts. While these trials were mostly unsuccessful on non-treated NB plants, agroinfiltration with silencing suppressors enabled for the first time infecting NB plants by side-grafting and by mechanical inoculation with virions, indicating that previous failure to infect NB was likely due to virus silencing in early infection steps. Using NB as a CTV host provides new possibilities to study virus-host interactions with a simple and

  4. A population-based study to investigate host genetic factors associated with hepatitis B infection and pathogenesis in the Chinese population

    Directory of Open Access Journals (Sweden)

    O'Brien Stephen J

    2008-01-01

    Full Text Available Abstract Background Hepatitis B virus (HBV infection is a significant public health problem that may lead to chronic liver disease, cirrhosis, and hepatocellular carcinoma (HCC. Approximately 30% of the world's population has been infected with HBV and approximately 350 million (5–6% are persistent carriers. More than 120 million Chinese are infected with HBV. The role of host genetic factors and their interactions with environmental factors leading to chronic HBV infection and its complications are not well understood. We believe that a better understanding of these factors and interactions will lead to more effective diagnostic and therapeutic options. Methods/Design This is a population-based, case-control study protocol to enroll 2200 Han Chinese from medical centers in northern and western China. Adult subjects in the following groups are being enrolled: healthy donors (n = 200, HBV infected persons achieving virus clearance (n = 400, asymptomatic HBV persistent carriers (n = 400, chronic hepatitis B cases (n = 400, decompensated liver cirrhosis with HBV infection cases (n = 400, and hepatocellular carcinoma with HBV infection cases (n = 400. In addition, for haplotype inference and quality control of sample handling and genotyping results, children of 1000 cases will be asked to provide a buccal sample for DNA extraction. With the exception of adult patients presenting with liver cirrhosis or HCC, all other cases and controls will be 40 years or older at enrollment. A questionnaire is being administered to capture dietary and environmental risk factors. Both candidate-gene and genome-wide association approaches will be used to assess the role of single genetic factors and higher order interactions with other genetic or environmental factors in HBV diseases. Conclusion This study is designed and powered to detect single gene effects as well as gene-gene and environmental-gene interactions. The identification of allelic polymorphisms in

  5. Genetic transformation of Geobacillus kaustophilus HTA426 by conjugative transfer of host-mimicking plasmids.

    Science.gov (United States)

    Suzuki, Hirokazu; Yoshida, Ken-ichi

    2012-09-01

    We established an efficient transformation method for thermophile Geobacillus kaustophilus HTA426 using conjugative transfer from Escherichia coli of host-mimicking plasmids that imitate DNA methylation of strain HTA426 to circumvent its DNA restriction barriers. Two conjugative plasmids, pSTE33T and pUCG18T, capable of shuttling between E. coli and Geobacillus spp., were constructed. The plasmids were first introduced into E. coli BR408, which expressed one inherent DNA methylase gene (dam) and two heterologous methylase genes from strain HTA426 (GK1380-GK1381 and GK0343-GK0344). The plasmids were then directly transferred from E. coli cells to strain HTA426 by conjugative transfer using pUB307 or pRK2013 as a helper plasmid. pUCG18T was introduced very efficiently (transfer efficiency, 10(-5)-10(-3) recipient(-1)). pSTE33T showed lower efficiency (10(-7)-10(-6) recipient(-1)) but had a high copy number and high segregational stability. Methylase genes in the donor substantially affected the transfer efficiency, demonstrating that the host-mimicking strategy contributes to efficient transformation. The transformation method, along with the two distinguishing plasmids, increases the potential of G. kaustophilus HTA426 as a thermophilic host to be used in various applications and as a model for biological studies of this genus. Our results also demonstrate that conjugative transfer is a promising approach for introducing exogenous DNA into thermophiles.

  6. Comparing self-reported ethnicity to genetic background measures in the context of the Multi-Ethnic Study of Atherosclerosis (MESA)

    OpenAIRE

    Bluemke David A; Allison David B; Padilla Miguel A; Vaughan Laura K; Rice Kenneth M; Redden David T; Divers Jasmin; Young Hunter J; Arnett Donna K

    2011-01-01

    Abstract Background Questions remain regarding the utility of self-reported ethnicity (SRE) in genetic and epidemiologic research. It is not clear whether conditioning on SRE provides adequate protection from inflated type I error rates due to population stratification and admixture. We address this question using data obtained from the Multi-Ethnic Study of Atherosclerosis (MESA), which enrolled individuals from 4 self-reported ethnic groups. We compare the agreement between SRE and genetic ...

  7. Impact of the genetic background on the composition of the chicken plasma MiRNome in response to a stress.

    Directory of Open Access Journals (Sweden)

    Marie-Laure Endale Ahanda

    Full Text Available Circulating extra-cellular microRNAs (miRNAs have emerged as promising minimally invasive markers in human medicine. We evaluated miRNAs isolated from total plasma as biomarker candidates of a response to an abiotic stress (feed deprivation in a livestock species. Two chicken lines selected for high (R+ and low (R- residual feed intake were chosen as an experimental model because of their extreme divergence in feed intake and energy metabolism. Adult R+ and R- cocks were sampled after 16 hours of feed deprivation and again four hours after re-feeding. More than 292 million sequence reads were generated by small RNA-seq of total plasma RNA. A total of 649 mature miRNAs were identified; after quality filtering, 148 miRNAs were retained for further analyses. We identified 23 and 19 differentially abundant miRNAs between feeding conditions and between lines respectively, with only two miRNAs identified in both comparisons. We validated a panel of six differentially abundant miRNAs by RT-qPCR on a larger number of plasma samples and checked their response to feed deprivation in liver. Finally, we evaluated the conservation and tissue distribution of differentially abundant miRNAs in plasma across a variety of red jungle fowl tissues. We show that the chicken plasma miRNome reacts promptly to the alteration of the animal physiological condition driven by a feed deprivation stress. The plasma content of stress-responsive miRNAs is strongly influenced by the genetic background, with differences reflecting the phenotypic divergence acquired through long-term selection, as evidenced by the profiles of conserved miRNAs with a regulatory role in energy metabolism (gga-miR-204, gga-miR-let-7f-5p and gga-miR-122-5p. These results reinforce the emerging view in human medicine that even small genetic differences can have a considerable impact on the resolution of biomarker studies, and provide support for the emerging interest in miRNAs as potential novel and

  8. Genetic background analysis of protein C deficiency demonstrates a recurrent mutation associated with venous thrombosis in Chinese population.

    Science.gov (United States)

    Tang, Liang; Guo, Tao; Yang, Rui; Mei, Heng; Wang, Huafang; Lu, Xuan; Yu, Jianming; Wang, Qingyun; Hu, Yu

    2012-01-01

    Protein C (PC) is one of the most important physiological inhibitors of coagulation proteases. Hereditary PC deficiency causes a predisposition to venous thrombosis (VT). The genetic characteristics of PC deficiency in the Chinese population remain unknown. Thirty-four unrelated probands diagnosed with hereditary PC deficiency were investigated. PC activity and antigen levels were measured. Mutation analysis was performed by sequencing the PROC gene. In silico analyses, including PolyPhen-2, SIFT, multiple sequence alignment, splicing prediction, and protein molecular modeling were performed to predict the consequences of each variant identified. One recurrent mutation and its relative risk for thrombosis in relatives were analyzed in 11 families. The recurrent mutation was subsequently detected in a case (VT patients)-control study, and the adjusted odds ratio (OR) for VT risk was calculated by logistic regression analysis. A total of 18 different mutations, including 12 novel variants, were identified. One common mutation, PROC c.565C>T (rs146922325:C>T), was found in 17 of the 34 probands. The family study showed that first-degree relatives bearing this variant had an 8.8-fold (95%CI = 1.1-71.6) increased risk of venous thrombosis. The case-control (1003 vs. 1031) study identified this mutation in 5.88% patients and in 0.87% controls, respectively. The mutant allele conferred a high predisposition to venous thrombosis (adjusted OR = 7.34, 95%CI = 3.61-14.94). The plasma PC activity and antigen levels in heterozygotes were 51.73±6.92 U/dl and 75.17±4.84 U/dl, respectively. This is the first study on the genetic background of PC deficiency in the Chinese population. The PROC c.565C>T mutation is the most frequent cause of PC deficiency as well as a prevalent risk factor for VT in Chinese individuals. The inclusion of this variant in routine thrombophilic detection may improve the diagnosis and prevention of venous thrombosis.

  9. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans▿ †

    Science.gov (United States)

    Kovács, Ákos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    2010-01-01

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene transcription, and heterologous d-lactate dehydrogenase expression. PMID:20400555

  10. Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans

    NARCIS (Netherlands)

    Kovacs, Akos T.; van Hartskamp, Mariska; Kuipers, Oscar P.; van Kranenburg, Richard

    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene

  11. Genetic loci for ventricular dilatation in the LEW/Jms rat with fetal-onset hydrocephalus are influenced by gender and genetic background

    Directory of Open Access Journals (Sweden)

    Mayorga David A

    2005-06-01

    Full Text Available Abstract Background The LEW/Jms rat strain has inherited hydrocephalus, with more males affected than females and an overall expression rate of 28%. This study aimed to determine chromosomal positions for genetic loci causing the hydrocephalus. Methods An F1 backcross was made to the parental LEW/Jms strain from a cross with non-hydrocephalic Fischer 344 rats. BC1 rats were generated for two specific crosses: the first with a male LEW/Jms rat as parent and grandparent, [(F × L × L], designated B group, and the second with a female LEW/Jms rat as the parent and grandparent [L × (L × F], designated C group. All hydrocephalic and a similar number of non-hydrocephalic rats from these two groups were genotyped with microsatellite markers and the data was analyzed separately for each sex by MAPMAKER. Results The frequency of hydrocephalus was not significantly different between the two groups (18.2 and 19.9 %, but there was a significant excess of males in the B group. The mean severity of hydrocephalus, measured as the ventricle-to-brain width ratio, was ranked as B group Conclusion Phenotypic expression of hydrocephalus in Lew/Jms, although not X-linked, has a strong male bias. One, and possibly two chromosomal regions are associated with the hydrocephalus.

  12. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity

    Science.gov (United States)

    Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc

    2015-01-01

    While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course. PMID:26379185

  13. The barley mutant emr1 exhibits restored resistance against Magnaporthe oryzae in the hypersusceptible mlo-genetic background.

    Science.gov (United States)

    Jansen, Marcus; Jarosch, Birgit; Schaffrath, Ulrich

    2007-05-01

    Barley plants having wild-type or mutant alleles at the MLO locus show opposite responses to infection with different pathogens, i.e. plants homozygous for mutant alleles (mlo) are resistant to powdery mildew but hypersusceptible to the rice blast fungus Magnaporthe oryzae and vice versa for plants with at least one wild-type MLO-allele. A mutational analysis was performed in the mlo-genetic background aimed at identifying of individuals with restored resistance against M. oryzae. Here, we describe the barley enhanced Magnaporthe resistance (emr1) mutant which showed restored resistance against blast in the absence of wild-type MLO. The emr1 mutant could be classified as a loss of function mutant. It could be excluded that resistance of emr1 is a back-mutation at the mlo-locus, because emr1 retained resistance against Bgh. The mutant did not display generally increased resistance as was evidenced by infection with either brown rust or net blotch pathogens. Additionally, resistance in emr1 was not associated with constitutively activated defence as confirmed by monitoring PR-gene transcript accumulation. Microscopic analysis showed that resistance of the emr1 mutant against M. oryzae was correlated with blocked penetration in epidermal cells and a concomitantly reduced progression into the mesophyll. These findings are reminiscent of the defence phenotypes against M. oryzae previously described for wild-type barley MLO genotypes. Therefore, it is tempting to speculate that resistance in the emr1 mutant was regained by the knockdown of putative suppressor element(s) acting in the defence scenario against M. oryzae, which diminish resistance only in mlo but not in MLO genotypes.

  14. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    Science.gov (United States)

    Hanke, Dennis; Freuling, Conrad M; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R; Bøtner, Anette; Mettenleiter, Thomas C; Beer, Martin; Rasmussen, Thomas B; Müller, Thomas F; Höper, Dirk

    2016-07-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure in

  15. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    Directory of Open Access Journals (Sweden)

    Dennis Hanke

    2016-07-01

    Full Text Available There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV lineage (arctic-3, but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4 with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population

  16. Genetic analysis of Blastocystis hominis isolated from symptomatic and asymptomatic human hosts in Egypt.

    Science.gov (United States)

    Elwakil, Hala S; Talaat, Roba M

    2009-04-01

    Extensive genomic polymorphism was demonstrated among morphologically identical B. hominis isolates. A genetic diversity would be a powerful tool for identification or classification of B. hominis subtypes. In this study, 14 Egyptian B. hominis isolates were collected, 5 of them were isolated from asymptomatic people whose infections were detected during routine medical check-up and 9 were isolated from patients with gastrointestinal symptoms. Restriction fragment length polymorphism (RFLP) analysis of PCR amplified small-subunit rDNA (SSU rDNA) was used to study genetic diversity of B. hominis isolates by 3 different restriction enzymes (Hin-fI, RsaI & Sau3AI). Cluster analysis of the riboprint patterns showed 7 distinct genotypes out of 14 B. hominis isolates, 4 were previously reported riboprints and 3 were new ones. The frequency of intestinal symptoms was 64% in Blastocystis cases. Abdominal pain was the most frequent symptom 78% (7/9). There was no definite correlation between RFLP-banding pattern or genetically distinct genotypes and pathogenecity.

  17. Lack of population genetic structure and host specificity in the bat fly, Cyclopodia horsfieldi, across species of Pteropus bats in Southeast Asia.

    Science.gov (United States)

    Olival, Kevin J; Dick, Carl W; Simmons, Nancy B; Morales, Juan Carlos; Melnick, Don J; Dittmar, Katharina; Perkins, Susan L; Daszak, Peter; Desalle, Rob

    2013-08-08

    Population-level studies of parasites have the potential to elucidate patterns of host movement and cross-species interactions that are not evident from host genealogy alone. Bat flies are obligate and generally host-specific blood-feeding parasites of bats. Old-World flies in the family Nycteribiidae are entirely wingless and depend on their hosts for long-distance dispersal; their population genetics has been unstudied to date. We collected a total of 125 bat flies from three Pteropus species (Pteropus vampyrus, P. hypomelanus, and P. lylei) from eight localities in Malaysia, Cambodia, and Vietnam. We identified specimens morphologically and then sequenced three mitochondrial DNA gene fragments (CoI, CoII, cytB; 1744 basepairs total) from a subset of 45 bat flies. We measured genetic diversity, molecular variance, and population genetic subdivision (FST), and used phylogenetic and haplotype network analyses to quantify parasite genetic structure across host species and localities. All flies were identified as Cyclopodia horsfieldi with the exception of two individuals of Eucampsipoda sundaica. Low levels of population genetic structure were detected between populations of Cyclopodia horsfieldi from across a wide geographic range (~1000 km), and tests for isolation by distance were rejected. AMOVA results support a lack of geographic and host-specific population structure, with molecular variance primarily partitioned within populations. Pairwise FST values from flies collected from island populations of Pteropus hypomelanus in East and West Peninsular Malaysia supported predictions based on previous studies of host genetic structure. The lack of population genetic structure and morphological variation observed in Cyclopodia horsfieldi is most likely due to frequent contact between flying fox species and subsequent high levels of parasite gene flow. Specifically, we suggest that Pteropus vampyrus may facilitate movement of bat flies between the three Pteropus

  18. Behavioral validation of the Ts65Dn mouse model for Down syndrome of a genetic background free of the retinal degeneration mutation Pde6b(rd1).

    Science.gov (United States)

    Costa, Alberto C S; Stasko, Melissa R; Schmidt, Cecilia; Davisson, Muriel T

    2010-01-05

    The Ts65Dn mouse is the most studied and complete aneuploid model of Down syndrome (DS) widely available. As a model for human trisomy 21, these mice display many attractive features, including performance deficits in different behavioral tasks, alterations in synaptic plasticity and adult neurogenesis, motor dysfunction, and age-dependent cholinergic neurodegeneration. Currently, Ts65Dn mice are maintained on a genetic background that leads to blindness in about 25% of their offspring, because it segregates for the retinal degeneration 1 (Pde6b(rd1)) mutation of C3H/HeSnJ. This means that 25% of the mice have to be discarded in most experiments involving these animals, which is particularly problematic because the Ts65Dn stock has low reproductive performance. To circumvent this problem, we have bred the Ts65Dn extra chromosome many generations into a closely related genetic background that does not carry the Pde6b(rd1) mutation. Although the new genetic background is expected to be nearly identical to the original, differences in genetic background have the potential to alter mouse performance in certain behavioral tests. Therefore, we designed the present study primarily as a behavioral validation of Ts65Dn mice of the new background. We compared side-by-side their performance with that of Ts65Dn mice of the original background on the following set of assessments: (1) body length and weight; (2) 24-h locomotor activity; (3) the Morris water maze; (4) fear conditioning; and (5) grip strength. Except for very subtle differences on water maze performance, we found no significant differences between Ts65Dn mice on the two backgrounds in the measures assessed.

  19. Behavioral validation of the Ts65Dn mouse model for Down syndrome of a genetic background free of the retinal degeneration mutation Pdebrd1

    Science.gov (United States)

    Costa, Alberto C. S.; Stasko, Melissa R.; Schmidt, Cecilia; Davisson, Muriel T.

    2009-01-01

    The Ts65Dn mouse is the most studied and complete aneuploid model of Down syndrome (DS) widely available. As a model for human trisomy 21, these mice display many attractive features, including performance deficits in different behavioral tasks, alterations in synaptic plasticity and adult neurogenesis, motor dysfunction, and age-dependent cholinergic neurodegeneration. Currently, Ts65Dn mice are maintained on a genetic background that leads to blindness in about 25% of their offspring, because it segregates for the retinal degeneration 1 (Pde6brd1) mutation of C3H/HeSnJ. This means that 25% of the mice have to be discarded in most experiments involving these animals, which is particularly problematic because the Ts65Dn stock has low reproductive performance. To circumvent this problem, we have bred the Ts65Dn extra chromosome many generations into a closely related genetic background that does not carry the Pde6brd1 mutation. Although the new genetic background is expected to be nearly identical to the original, differences in genetic background have the potential to alter mouse performance in certain behavioral tests. Therefore, we designed the present study primarily as a behavioral validation of Ts65Dn mice of the new background. We compared side-by-side their performance with that of Ts65Dn mice of the original background on the following set of assessments: 1) body length and weight; 2) 24-hour locomotor activity; 3) the Morris water maze; 4) fear conditioning; and 5) grip strength. Except for very subtle differences on water maze performance, we found no significant differences between Ts65Dn mice on the two backgrounds in the measures assessed. PMID:19720087

  20. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    Science.gov (United States)

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  1. Comparative Genomics of Campylobacter iguaniorum to Unravel Genetic Regions Associated with Reptilian Hosts.

    Science.gov (United States)

    Gilbert, Maarten J; Miller, William G; Yee, Emma; Kik, Marja; Zomer, Aldert L; Wagenaar, Jaap A; Duim, Birgitta

    2016-10-05

    Campylobacter iguaniorum is most closely related to the species C fetus, C hyointestinalis, and C lanienae Reptiles, chelonians and lizards in particular, appear to be a primary reservoir of this Campylobacter species. Here we report the genome comparison of C iguaniorum strain 1485E, isolated from a bearded dragon (Pogona vitticeps), and strain 2463D, isolated from a green iguana (Iguana iguana), with the genomes of closely related taxa, in particular with reptile-associated C fetus subsp. testudinum In contrast to C fetus, C iguaniorum is lacking an S-layer encoding region. Furthermore, a defined lipooligosaccharide biosynthesis locus, encoding multiple glycosyltransferases and bounded by waa genes, is absent from C iguaniorum Instead, multiple predicted glycosylation regions were identified in C iguaniorum One of these regions is > 50 kb with deviant G + C content, suggesting acquisition via lateral transfer. These similar, but non-homologous glycosylation regions were located at the same position on the genome in both strains. Multiple genes encoding respiratory enzymes not identified to date within the C. fetus clade were present. C iguaniorum shared highest homology with C hyointestinalis and C fetus. As in reptile-associated C fetus subsp. testudinum, a putative tricarballylate catabolism locus was identified. However, despite colonizing a shared host, no recent recombination between both taxa was detected. This genomic study provides a better understanding of host adaptation, virulence, phylogeny, and evolution of C iguaniorum and related Campylobacter taxa. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations.

    Science.gov (United States)

    Dogimont, Catherine; Bendahmane, Abdelhafid; Chovelon, Véronique; Boissot, Nathalie

    2010-01-01

    Host plant resistance is an efficient and environmentally friendly means of controlling insects, including aphids, but resistant-breaking biotypes have occurred in several plant-aphid systems. Our review of the genetic and molecular bases of aphid resistance in crop species emphasizes the limited number of aphid resistance genes and alleles. Inheritance of aphid resistance may be monogenic (dominant or recessive genes) or polygenic. Two dominant, aphid resistance genes have been isolated to date. They both encode NBS-LRR proteins involved in the specific recognition of aphids. Strategies to ensure aphid resistance effectiveness and durability are discussed. Innovative research activities are proposed. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Contribution of genetic background, traditional risk factors, and HIV-related factors to coronary artery disease events in HIV-positive persons

    NARCIS (Netherlands)

    Rotger, Margalida; Glass, Tracy R.; Junier, Thomas; Lundgren, Jens; Neaton, James D.; Poloni, Estella S.; van 't Wout, Angélique B.; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F.; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A.; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P.; Li, Xiuhong; Kingsley, Lawrence A.; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S.; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M.; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; de Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H.; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; de Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R.; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A.; Reiss, Peter; Weber, Rainer; Bucher, Heiner C.; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E.; Gras, A. Luuk; van Wout, Angelique B.; Arnedo-Valero, Mireia; Sierra, Mariana de Paz; Rodriguez, Ana Torrecilla; Garcia, Juan Gonzalez; Arribas, Jose R.; Aubert, V.; Barth, J.; Battegay, M.; Bernasconi, E.; Böni, J.; Bucher, H. C.; Burton-Jeangros, C.; Calmy, A.; Cavassini, M.; Egger, M.; Elzi, L.; Fehr, J.; Fellay, J.; Francioli, P.; Furrer, H.; Fux, C. A.; Gorgievski, M.; Günthard, H.; Haerry, D.; Hasse, B.; Hirsch, H. H.; Hirschel, B.; Hösli, I.; Kahlert, C.; Kaiser, L.; Keiser, O.; Kind, C.; Klimkait, T.; Kovari, H.; Ledergerber, B.; Martinetti, G.; Martinez de Tejada, B.; Metzner, K.; Müller, N.; Nadal, D.; Pantaleo, G.; Rauch, A.; Regenass, S.; Rickenbach, M.; Rudin, C.; Schmid, P.; Schultze, D.; Schöni-Affolter, F.; Schüpbach, J.; Speck, R.; Taffé, P.; Tarr, P.; Telenti, A.; Trkola, A.; Vernazza, P.; Weber, R.; Prins, Yerly S. J. M.; Kuijpers, T. W.; Scherpbier, H. J.; Boer, K.; van der Meer, J. T. M.; Wit, F. W. M. N.; Godfried, M. H.; van der Poll, T.; Nellen, F. J. B.; Lange, J. M. A.; Geerlings, S. E.; van Vugt, M.; Vrouenraets, S. M. E.; Pajkrt, D.; Bos, J. C.; van der Valk, M.; Schreij, G.; Lowe, S.; Oude Lashof, A.; Pronk, M. J. H.; Bravenboer, B.; van der Ende, M. E.; de Vries-Sluijs, T. E. M. S.; Schurink, C. A. M.; van der Feltz, M.; Nouwen, J. L.; Gelinck, L. B. S.; Verbon, A.; Rijnders, B. J. A.; van de Ven-de Ruiter, E. D.; Slobbe, L.; Haag, Den; Kauffmann, R. H.; Schippers, E. F.; Groeneveld, P. H. P.; Alleman, M. A.; Bouwhuis, J. W.; ten Kate, R. W.; Soetekouw, R.; Kroon, F. P.; van den Broek, P. J.; van Dissel, J. T.; Arend, S. M.; van Nieuwkoop, C.; de Boer, M. J. G.; Jolink, H.; den Hollander, J. G.; Pogany, K.; Bronsveld, W.; Kortmann, W.; van Twillert, G.; van Houte, D. P. F.; Polée, M. B.; van Vonderen, M. G. A.; ten Napel, C. H. H.; Kootstra, G. J.; Brinkman, K.; Blok, W. L.; Frissen, P. H. J.; Schouten, W. E. M.; van den Berk, G. E. L.; Juttmann, J. R.; van Kasteren, M. E. E.; Brouwer, A. E.; Mulder, J. W.; van Gorp, E. C. M.; Smit, P. M.; Weijer, S.; van Eeden, A.; Verhagen, D. W. M.; Sprenger, H. G.; Doedens, R.; Scholvinck, E. H.; van Assen, S.; Stek, C. J.; Hoepelman, I. M.; Mudrikova, T.; Schneider, M. M. E.; Jaspers, C. A. J. J.; Ellerbroek, P. M.; Peters, E. J. G.; Maarschalk-Ellerbroek, L. J.; Oosterheert, J. J.; Arends, J. E.; Wassenberg, M. W. M.; van der Hilst, J. C. H.; Richter, C.; van der Berg, J. P.; Gisolf, E. H.; Margolick, Joseph B.; Plankey, Michael; Crain, Barbara; Dobs, Adrian; Farzadegan, Homayoon; Gallant, Joel; Johnson-Hill, Lisette; Sacktor, Ned; Selnes, Ola; Shepard, James; Thio, Chloe; Phair, John P.; Wolinsky, Steven M.; Badri, Sheila; Conover, Craig; O'Gorman, Maurice; Ostrow, David; Palella, Frank; Ragin, Ann; Detels, Roger; Martínez-Maza, Otoniel; Aronow, Aaron; Bolan, Robert; Breen, Elizabeth; Butch, Anthony; Fahey, John; Jamieson, Beth; Miller, Eric N.; Oishi, John; Vinters, Harry; Visscher, Barbara R.; Wiley, Dorothy; Witt, Mallory; Yang, Otto; Young, Stephen; Zhang, Zuo Feng; Rinaldo, Charles R.; Becker, James T.; Cranston, Ross D.; Martinson, Jeremy J.; Mellors, John W.; Silvestre, Anthony J.; Stall, Ronald D.; Muñoz, Alvaro; Abraham, Alison; Althoff, Keri; Cox, Christopher; D'Souza, Gypsyamber; Gange, Stephen J.; Golub, Elizabeth; Schollenberger, Janet; Seaberg, Eric C.; Su, Sol; Huebner, Robin E.; Dominguez, Geraldina; Moroni, M.; Angarano, G.; Antinori, A.; Carosi, G.; Cauda, R.; Monforte, A. d'Arminio; Di Perri, G.; Galli, M.; Iardino, R.; Ippolito, G.; Lazzarin, A.; Perno, C. F.; Sagnelli, E.; Viale, P. L.; Von Schlosser, F.; d'Arminio Monforte, A.; Ammassari, A.; Andreoni, M.; Balotta, C.; Bonfanti, P.; Bonora, S.; Borderi, M.; Capobianchi, M. R.; Castagna, A.; Ceccherini-Silberstein, F.; Cozzi-Lepri, A.; de Luca, A.; Gargiulo, M.; Gervasoni, C.; Girardi, E.; Lichtner, M.; Lo Caputo, S.; Madeddu, G.; Maggiolo, F.; Marcotullio, S.; Monno, L.; Murri, R.; Mussini, C.; Puoti, M.; Torti, C.; Fanti, I.; Formenti, T.; Galli, Laura; Lorenzini, Patrizia; Montroni, M.; Giacometti, A.; Costantini, A.; Riva, A.; Tirelli, U.; Martellotta, F.; Ladisa, N.; Lazzari, G.; Verucchi, G.; Castelli, F.; Scalzini, A.; Minardi, C.; Bertelli, D.; Quirino, T.; Abeli, C.; Manconi, P. E.; Piano, P.; Vecchiet, J.; Falasca, K.; Carnevale, G.; Lorenzotti, S.; Sighinolfi, L.; Segala, D.; Leoncini, F.; Mazzotta, F.; Pozzi, M.; Cassola, G.; Viscoli, G.; Viscoli, A.; Piscopo, R.; Mazzarello, G.; Mastroianni, C.; Belvisi, V.; Caramma, I.; Chiodera, A.; Castelli, P.; Rizzardini, G.; Ridolfo, A. L.; Foschi, A.; Salpietro, S.; Galli, A.; Bigoloni, A.; Spagnuolo, V.; Merli, S.; Carenzi, L.; Moioli, M. C.; Cicconi, P.; Bisio, L.; Gori, A.; Lapadula, G.; Abrescia, N.; Chirianni, A.; de Marco, M.; Ferrari, C.; Borghi, R.; Baldelli, F.; Belfiori, B.; Parruti, G.; Ursini, T.; Magnani, G.; Ursitti, M. A.; Narciso, P.; Tozzi, V.; Vullo, V.; d'Avino, A.; Zaccarelli, M.; Gallo, L.; Acinapura, R.; Capozzi, M.; Libertone, R.; Trotta, M. P.; Tebano, G.; Cattelan, A. M.; Mura, M. S.; Caramello, P.; Orofino, G. C.; Sciandra, M.; Raise, N. N.; Ebo, F.; Pellizzer, G.; Manfrin, V.; Law, M.; Petoumenos, K.; McManus, H.; Wright, S.; Bendall, C.; Moore, R.; Edwards, S.

    2013-01-01

    Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV

  4. Genetic variation in Micro-RNA genes of host genome affects clinical manifestation of symptomatic Human Cytomegalovirus infection.

    Science.gov (United States)

    Misra, Maneesh Kumar; Mishra, Aditi; Pandey, Shashi Kant; Kapoor, Rakesh; Sharma, Raj Kumar; Agrawal, Suraksha

    2015-10-01

    Micro-RNAs are implicated in various physiological and pathologic processes. In this study, we tested whether Micro-RNA gene variants of host-genome affect clinical manifestation of symptomatic HCMV infection. HCMV infection was detected by fluorescent PCR and immuno-histochemistry. The detection of genetic variants of four studied Micro-RNA tag-SNPs was done through PCR-RFLP assay and validated with DNA sequencing. We observed an increased risk ranged from 3-folds to 5-folds among symptomatic HCMV cases for mutant genotype of rs2910164 (crude OR=3.11, p=0.009 and adjusted OR=3.25, p=0.007), rs11614913 (crude OR=3.20, p=0.006 and adjusted OR=3.48, p=0.004) and rs3746444 (crude OR=4.91, p=0.002 and adjusted OR=5.28, p=0.002) tag-SNPs. Interestingly, all the tag-SNPs that were significant after multiple comparisons at a FDR of 5% in symptomatic HCMV cases remained significant even after bootstrap analysis, providing internal validation to these results. Multifactor Dimensionality Reduction (MDR) analysis revealed 5-folds increased risk for symptomatic HCMV cases under the four-factor model (rs2910164, rs2292832, rs11614913 and rs3746444). These results suggest that Micro-RNA gene variants of host-genome may affect clinical manifestation of symptomatic HCMV infection. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  5. Influence of genetic background, salinity, and inoculum size on growth of the ichthyotoxic golden alga (Prymnesium parvum)

    Science.gov (United States)

    Rashel, Rakib H.; Patino, Reynaldo

    2017-01-01

    Salinity (5–30) effects on golden alga growth were determined at a standard laboratory temperature (22 °C) and one associated with natural blooms (13 °C). Inoculum-size effects were determined over a wide size range (100–100,000 cells ml−1). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100 cells ml−1), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10–15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25–30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity − they remained stable at salinity of 5–10 and 5–15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml−1). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797’s superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10–15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density – whether artificially manipulated or naturally attained – can influence UTEX-2797 bloom potential.

  6. Genetically based polymorphisms in morphology and life history associated with putative host races of the water lily leaf beetle, Galerucella nymphaeae.

    Science.gov (United States)

    Pappers, Stephanie M; van der Velde, Gerard; Ouborg, N Joop; van Groenendael, Jan M

    2002-08-01

    A host race is a population that is partially reproductively isolated from other conspecific populations as a direct consequence of adaptation to a specific host. The initial step in host race formation is the establishment of genetically based polymorphisms in, for example, morphology, preference, or performance. In this study we investigated whether polymorphisms observed in Galerucella nymphaeae have a genetic component. Galerucella nymphaeae, the water lily leaf beetle, is a herbivore which feeds and oviposits on the plant hosts Nuphar lutea and Nymphaea alba (both Nymphaeaceae) and Rumex hydrolapathum and Polygonum amphibium (both Polygonaceae). A full reciprocal crossing scheme (16 crosses, each replicated 10 times) and subsequent transplantation of 1,001 egg clutches revealed a genetic basis for differences in body length and mandibular width. The heritability value of these traits, based on midparent-offspring regression, ranged between 0.53 and 0.83 for the different diets. Offspring from Nymphaeaceae parents were on average 12% larger and had on average 18% larger mandibles than offspring from Polygonaceae parents. Furthermore, highly significant correlations were found between feeding preference of the offspring and the feeding preference of their parents. Finally, two fitness components were measured: development time and survival. Development time was influenced by diet, survival both by cross type and diet, the latter of which suggest adaptation of the beetles. This suggestion is strengthened by a highly significant cross x diet interaction effect for development time as well as for survival, which is generally believed to indicate local adaptation. Although no absolute genetic incompatibility among putative host races was observed, survival of the between-host family offspring, on each diet separately, was lower than the survival of the within-host family offspring on that particular host. Survival of offspring of two Nymphaeaceae parents was about

  7. Genetic backgrounds and modifier genes of NTD mouse models: An opportunity for greater understanding of the multifactorial etiology of neural tube defects.

    Science.gov (United States)

    Leduc, Renee Y M; Singh, Parmveer; McDermid, Heather E

    2017-01-30

    Neurulation, the early embryonic process of forming the presumptive brain and spinal cord, is highly complex and involves hundreds of genes in multiple genetic pathways. Mice have long served as a genetic model for studying human neurulation, and the resulting neural tube defects (NTDs) that arise when neurulation is disrupted. Because mice appear to show mostly single gene inheritance for NTDs and humans show multifactorial inheritance, mice sometimes have been characterized as a simpler model for the identification and study of NTD genes. But are they a simple model? When viewed on different genetic backgrounds, many genes show significant variation in the penetrance and expressivity of NTD phenotypes, suggesting the presence of modifier loci that interact with the target gene to affect the phenotypic expression. Looking at mutations on different genetic backgrounds provides us with an opportunity to explore these complex genetic interactions, which are likely to better emulate similar processes in human neurulation. Here, we review NTD genes known to show strain-specific phenotypic variation. We focus particularly on the gene Cecr2, which is studied using both a hypomorphic and a presumptive null mutation on two different backgrounds: one susceptible (BALB/c) and one resistant (FVB/N) to NTDs. This strain difference has led to a search for genetic modifiers within a region on murine chromosome 19. Understanding how genetic variants alter the phenotypic outcome in NTD mouse models will help to direct future studies in humans, particularly now that more genome wide sequencing approaches are being used. Birth Defects Research 109:140-152, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Contribution of Genetic Background, Traditional Risk Factors, and HIV-Related Factors to Coronary Artery Disease Events in HIV-Positive Persons

    Science.gov (United States)

    Rotger, Margalida; Glass, Tracy R.; Junier, Thomas; Lundgren, Jens; Neaton, James D.; Poloni, Estella S.; van 't Wout, Angélique B.; Lubomirov, Rubin; Colombo, Sara; Martinez, Raquel; Rauch, Andri; Günthard, Huldrych F.; Neuhaus, Jacqueline; Wentworth, Deborah; van Manen, Danielle; Gras, Luuk A.; Schuitemaker, Hanneke; Albini, Laura; Torti, Carlo; Jacobson, Lisa P.; Li, Xiuhong; Kingsley, Lawrence A.; Carli, Federica; Guaraldi, Giovanni; Ford, Emily S.; Sereti, Irini; Hadigan, Colleen; Martinez, Esteban; Arnedo, Mireia; Egaña-Gorroño, Lander; Gatell, Jose M.; Law, Matthew; Bendall, Courtney; Petoumenos, Kathy; Rockstroh, Jürgen; Wasmuth, Jan-Christian; Kabamba, Kabeya; Delforge, Marc; De Wit, Stephane; Berger, Florian; Mauss, Stefan; de Paz Sierra, Mariana; Losso, Marcelo; Belloso, Waldo H.; Leyes, Maria; Campins, Antoni; Mondi, Annalisa; De Luca, Andrea; Bernardino, Ignacio; Barriuso-Iglesias, Mónica; Torrecilla-Rodriguez, Ana; Gonzalez-Garcia, Juan; Arribas, José R.; Fanti, Iuri; Gel, Silvia; Puig, Jordi; Negredo, Eugenia; Gutierrez, Mar; Domingo, Pere; Fischer, Julia; Fätkenheuer, Gerd; Alonso-Villaverde, Carlos; Macken, Alan; Woo, James; McGinty, Tara; Mallon, Patrick; Mangili, Alexandra; Skinner, Sally; Wanke, Christine A.; Reiss, Peter; Weber, Rainer; Bucher, Heiner C.; Fellay, Jacques; Telenti, Amalio; Tarr, Philip E.

    2013-01-01

    Background Persons infected with human immunodeficiency virus (HIV) have increased rates of coronary artery disease (CAD). The relative contribution of genetic background, HIV-related factors, antiretroviral medications, and traditional risk factors to CAD has not been fully evaluated in the setting of HIV infection. Methods In the general population, 23 common single-nucleotide polymorphisms (SNPs) were shown to be associated with CAD through genome-wide association analysis. Using the Metabochip, we genotyped 1875 HIV-positive, white individuals enrolled in 24 HIV observational studies, including 571 participants with a first CAD event during the 9-year study period and 1304 controls matched on sex and cohort. Results A genetic risk score built from 23 CAD-associated SNPs contributed significantly to CAD (P = 2.9×10−4). In the final multivariable model, participants with an unfavorable genetic background (top genetic score quartile) had a CAD odds ratio (OR) of 1.47 (95% confidence interval [CI], 1.05–2.04). This effect was similar to hypertension (OR = 1.36; 95% CI, 1.06–1.73), hypercholesterolemia (OR = 1.51; 95% CI, 1.16–1.96), diabetes (OR = 1.66; 95% CI, 1.10–2.49), ≥1 year lopinavir exposure (OR = 1.36; 95% CI, 1.06–1.73), and current abacavir treatment (OR = 1.56; 95% CI, 1.17–2.07). The effect of the genetic risk score was additive to the effect of nongenetic CAD risk factors, and did not change after adjustment for family history of CAD. Conclusions In the setting of HIV infection, the effect of an unfavorable genetic background was similar to traditional CAD risk factors and certain adverse antiretroviral exposures. Genetic testing may provide prognostic information complementary to family history of CAD. PMID:23532479

  9. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    -control systems to retain misfolded proteins in the ER and redirect them for cytosolic degradation, thereby only allowing folded proteins to reach the cell surface. Accordingly, the folding potential of the tested protein determines the ability of autotrophic colony growth. This system was successfully......Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic...... in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality...

  10. IL-17 Genetic and Immunophenotypic Evaluation in Chronic Graft-versus-Host Disease

    Science.gov (United States)

    Resende, Renata Gonçalves; Correia-Silva, Jeane de Fátima; Silva, Tarcília Aparecida; Salomão, Ulisses Eliezer; Marques-Silva, Luciano; Vieira, Érica Leandro Marciano; Dutra, Walderez Ornelas; Gomez, Ricardo Santiago

    2014-01-01

    Although interleukin-17 (IL-17) is a recently discovered cytokine associated with several autoimmune diseases, its role in the pathogenesis of chronic graft-versus-host disease (cGVHD) was not established yet. The objective of this study was to investigate the association of IL17A and IL17F genes polymorphisms and IL-17A and IL-17F levels with cGVHD. IL-17A expression was also investigated in CD4+ T cells of patients with systemic cGVHD. For Part I of the study, fifty-eight allo-HSCT recipients and donors were prospectively studied. Blood samples were obtained to determine IL17A and IL17F genes polymorphisms. Cytokines levels in blood and saliva were assessed by ELISA at days +35 and +100 after HSCT. In Part II, for the immunophenotypic evaluation, eight patients with systemic cGVHD were selected and the expression of IL-17A was evaluated. We found association between recipient AA genotype with systemic cGVHD. No association was observed between IL-17A levels and cGVHD. Lower IL-17A levels in the blood were associated with AA genotype. In flow cytometry analysis, decreased expression of IL-17A was observed in patients with cGVHD after stimulation. In conclusion, IL-17A may have an important role in the development of systemic cGVHD. PMID:25136146

  11. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease.

    Science.gov (United States)

    Jostins, Luke; Ripke, Stephan; Weersma, Rinse K; Duerr, Richard H; McGovern, Dermot P; Hui, Ken Y; Lee, James C; Schumm, L Philip; Sharma, Yashoda; Anderson, Carl A; Essers, Jonah; Mitrovic, Mitja; Ning, Kaida; Cleynen, Isabelle; Theatre, Emilie; Spain, Sarah L; Raychaudhuri, Soumya; Goyette, Philippe; Wei, Zhi; Abraham, Clara; Achkar, Jean-Paul; Ahmad, Tariq; Amininejad, Leila; Ananthakrishnan, Ashwin N; Andersen, Vibeke; Andrews, Jane M; Baidoo, Leonard; Balschun, Tobias; Bampton, Peter A; Bitton, Alain; Boucher, Gabrielle; Brand, Stephan; Büning, Carsten; Cohain, Ariella; Cichon, Sven; D'Amato, Mauro; De Jong, Dirk; Devaney, Kathy L; Dubinsky, Marla; Edwards, Cathryn; Ellinghaus, David; Ferguson, Lynnette R; Franchimont, Denis; Fransen, Karin; Gearry, Richard; Georges, Michel; Gieger, Christian; Glas, Jürgen; Haritunians, Talin; Hart, Ailsa; Hawkey, Chris; Hedl, Matija; Hu, Xinli; Karlsen, Tom H; Kupcinskas, Limas; Kugathasan, Subra; Latiano, Anna; Laukens, Debby; Lawrance, Ian C; Lees, Charlie W; Louis, Edouard; Mahy, Gillian; Mansfield, John; Morgan, Angharad R; Mowat, Craig; Newman, William; Palmieri, Orazio; Ponsioen, Cyriel Y; Potocnik, Uros; Prescott, Natalie J; Regueiro, Miguel; Rotter, Jerome I; Russell, Richard K; Sanderson, Jeremy D; Sans, Miquel; Satsangi, Jack; Schreiber, Stefan; Simms, Lisa A; Sventoraityte, Jurgita; Targan, Stephan R; Taylor, Kent D; Tremelling, Mark; Verspaget, Hein W; De Vos, Martine; Wijmenga, Cisca; Wilson, David C; Winkelmann, Juliane; Xavier, Ramnik J; Zeissig, Sebastian; Zhang, Bin; Zhang, Clarence K; Zhao, Hongyu; Silverberg, Mark S; Annese, Vito; Hakonarson, Hakon; Brant, Steven R; Radford-Smith, Graham; Mathew, Christopher G; Rioux, John D; Schadt, Eric E; Daly, Mark J; Franke, Andre; Parkes, Miles; Vermeire, Severine; Barrett, Jeffrey C; Cho, Judy H

    2012-11-01

    Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.

  12. IL-17 Genetic and Immunophenotypic Evaluation in Chronic Graft-versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves Resende

    2014-01-01

    Full Text Available Although interleukin-17 (IL-17 is a recently discovered cytokine associated with several autoimmune diseases, its role in the pathogenesis of chronic graft-versus-host disease (cGVHD was not established yet. The objective of this study was to investigate the association of IL17A and IL17F genes polymorphisms and IL-17A and IL-17F levels with cGVHD. IL-17A expression was also investigated in CD4+ T cells of patients with systemic cGVHD. For Part I of the study, fifty-eight allo-HSCT recipients and donors were prospectively studied. Blood samples were obtained to determine IL17A and IL17F genes polymorphisms. Cytokines levels in blood and saliva were assessed by ELISA at days +35 and +100 after HSCT. In Part II, for the immunophenotypic evaluation, eight patients with systemic cGVHD were selected and the expression of IL-17A was evaluated. We found association between recipient AA genotype with systemic cGVHD. No association was observed between IL-17A levels and cGVHD. Lower IL-17A levels in the blood were associated with AA genotype. In flow cytometry analysis, decreased expression of IL-17A was observed in patients with cGVHD after stimulation. In conclusion, IL-17A may have an important role in the development of systemic cGVHD.

  13. Host genetic factors in American cutaneous leishmaniasis: a critical appraisal of studies conducted in an endemic area of Brazil.

    Science.gov (United States)

    Castellucci, Léa Cristina; Almeida, Lucas Frederico de; Jamieson, Sarra Elisabeth; Fakiola, Michaela; Carvalho, Edgar Marcelino de; Blackwell, Jenefer Mary

    2014-06-01

    American cutaneous leishmaniasis (ACL) is a vector-transmitted infectious disease with an estimated 1.5 million new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a region endemic for ACL in the state of Bahia (BA), northeastern Brazil, with 500-1,300 patients treated annually. Over the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the role of host genes in determining resistance/susceptibility regarding this disease.

  14. Host genetic factors in American cutaneous leishmaniasis: a critical appraisal of studies conducted in an endemic area of Brazil

    Directory of Open Access Journals (Sweden)

    Léa Cristina Castellucci

    2014-06-01

    Full Text Available American cutaneous leishmaniasis (ACL is a vector-transmitted infectious disease with an estimated 1.5 million new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a region endemic for ACL in the state of Bahia (BA, northeastern Brazil, with 500-1,300 patients treated annually. Over the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the role of host genes in determining resistance/susceptibility regarding this disease.

  15. Genetic differentiation among Maruca vitrata F. (Lepidoptera: Crambidae populations on cultivated cowpea and wild host plants: implications for insect resistance management and biological control strategies.

    Directory of Open Access Journals (Sweden)

    Tolulope A Agunbiade

    Full Text Available Maruca vitrata Fabricius (Lepidoptera: Crambidae is a polyphagous insect pest that feeds on a variety of leguminous plants in the tropics and subtropics. The contribution of host-associated genetic variation on population structure was investigated using analysis of mitochondrial cytochrome oxidase 1 (cox1 sequence and microsatellite marker data from M. vitrata collected from cultivated cowpea (Vigna unguiculata L. Walp., and alternative host plants Pueraria phaseoloides (Roxb. Benth. var. javanica (Benth. Baker, Loncocarpus sericeus (Poir, and Tephrosia candida (Roxb.. Analyses of microsatellite data revealed a significant global FST estimate of 0.05 (P≤0.001. The program STRUCTURE estimated 2 genotypic clusters (co-ancestries on the four host plants across 3 geographic locations, but little geographic variation was predicted among genotypes from different geographic locations using analysis of molecular variance (AMOVA; among group variation -0.68% or F-statistics (FSTLoc = -0.01; P = 0.62. These results were corroborated by mitochondrial haplotype data (φSTLoc = 0.05; P = 0.92. In contrast, genotypes obtained from different host plants showed low but significant levels of genetic variation (FSTHost = 0.04; P = 0.01, which accounted for 4.08% of the total genetic variation, but was not congruent with mitochondrial haplotype analyses (φSTHost = 0.06; P = 0.27. Variation among host plants at a location and host plants among locations showed no consistent evidence for M. vitrata population subdivision. These results suggest that host plants do not significantly influence the genetic structure of M. vitrata, and this has implications for biocontrol agent releases as well as insecticide resistance management (IRM for M. vitrata in West Africa.

  16. The genetic basis of resistance and matching-allele interactions of a host-parasite system: The Daphnia magna-Pasteuria ramosa model.

    Science.gov (United States)

    Bento, Gilberto; Routtu, Jarkko; Fields, Peter D; Bourgeois, Yann; Du Pasquier, Louis; Ebert, Dieter

    2017-02-01

    Negative frequency-dependent selection (NFDS) is an evolutionary mechanism suggested to govern host-parasite coevolution and the maintenance of genetic diversity at host resistance loci, such as the vertebrate MHC and R-genes in plants. Matching-allele interactions of hosts and parasites that prevent the emergence of host and parasite genotypes that are universally resistant and infective are a genetic mechanism predicted to underpin NFDS. The underlying genetics of matching-allele interactions are unknown even in host-parasite systems with empirical support for coevolution by NFDS, as is the case for the planktonic crustacean Daphnia magna and the bacterial pathogen Pasteuria ramosa. We fine-map one locus associated with D. magna resistance to P. ramosa and genetically characterize two haplotypes of the Pasteuria resistance (PR-) locus using de novo genome and transcriptome sequencing. Sequence comparison of PR-locus haplotypes finds dramatic structural polymorphisms between PR-locus haplotypes including a large portion of each haplotype being composed of non-homologous sequences resulting in haplotypes differing in size by 66 kb. The high divergence of PR-locus haplotypes suggest a history of multiple, diverse and repeated instances of structural mutation events and restricted recombination. Annotation of the haplotypes reveals striking differences in gene content. In particular, a group of glycosyltransferase genes that is present in the susceptible but absent in the resistant haplotype. Moreover, in natural populations, we find that the PR-locus polymorphism is associated with variation in resistance to different P. ramosa genotypes, pointing to the PR-locus polymorphism as being responsible for the matching-allele interactions that have been previously described for this system. Our results conclusively identify a genetic basis for the matching-allele interaction observed in a coevolving host-parasite system and provide a first insight into its molecular basis.

  17. Genetic Diversity and Population Structure of Busseola segeta Bowden (Lepidoptera; Noctuidae: A Case Study of Host Use Diversification in Guineo-Congolian Rainforest Relic Area, Kenya

    Directory of Open Access Journals (Sweden)

    Jean-Francois Silvain

    2012-11-01

    Full Text Available Habitat modification and fragmentation are considered as some of the factors that drive organism distribution and host use diversification. Indigenous African stem borer pests are thought to have diversified their host ranges to include maize [Zea mays L.] and sorghum [Sorghum bicolor (L. Moench] in response to their increased availability through extensive cultivation. However, management efforts have been geared towards reducing pest populations in the cultivated fields with few attempts to understand possible evolution of "new" pest species. Recovery and growing persistence of Busseola segeta Bowden on maize (Zea mays L. in Kakamega called for studies on the role of wild host plants on the invasion of crops by wild borer species. A two-year survey was carried out in a small agricultural landscape along the edge of Kakamega forest (Kenya to assess host range and population genetic structure of B. segeta. The larvae of B. segeta were found on nine different plant species with the majority occurring on maize and sorghum. Of forty cytochrome b haplotypes identified, twenty-three occurred in both wild and cultivated habitats. The moths appear to fly long distances across the habitats with genetic analyses revealing weak differentiation between hosts in different habitats (FST = 0.016; p = 0.015. However, there was strong evidence of variation in genetic composition between growing seasons in the wild habitat (FST = 0.060; p < 0.001 with emergence or disappearance of haplotypes between habitats. Busseola segeta is an example of a phytophagous insect that utilizes plants with a human induced distribution range, maize, but does not show evidence of host race formation or reduction of gene flow among populations using different hosts. However, B. segeta is capable of becoming an important pest in the area and the current low densities may be attributed to the general low infestation levels and presence of a wide range of alternative hosts in the area.

  18. Influence of host genetic variation on rubella-specific T cell cytokine responses following rubella vaccination.

    Science.gov (United States)

    Ovsyannikova, Inna G; Ryan, Jenna E; Vierkant, Robert A; O'Byrne, Megan M; Pankratz, V Shane; Jacobson, Robert M; Poland, Gregory A

    2009-05-26

    The variability of immune response modulated by immune response gene polymorphisms is a significant factor in the protective effect of vaccines. We studied the association between cellular (cytokine) immunity and HLA genes among 738 schoolchildren (396 males and 342 females) between the ages of 11 and 19 years, who received two doses of rubella vaccine (Merck). Cytokine secretion levels in response to rubella virus stimulation were determined in PBMC cultures by ELISA. Cell supernatants were assayed for Th1 (IFN-gamma, IL-2, and IL-12p40), Th2 (IL-4, IL-5, and IL-10), and innate/proinflammatory (TNF-alpha, GM-CSF, and IL-6) cytokines. We found a strong association between multiple alleles of the HLA-DQA1 (global p-value 0.022) and HLA-DQB1 (global p-value 0.007) loci and variations in rubella-specific IL-2 cytokine secretion. Additionally, the relationships between alleles of the HLA-A (global p-value 0.058), HLA-B (global p-value 0.035), and HLA-C (global p-value 0.023) loci and TNF-alpha secretion suggest the importance of HLA class I molecules in innate/inflammatory immune response. Better characterization of these genetic profiles could help to predict immune responses at the individual and population level, provide data on mechanisms of immune response development, and further inform vaccine development and vaccination policies.

  19. Genetically programmed differences in epidermal host defense between psoriasis and atopic dermatitis patients.

    Directory of Open Access Journals (Sweden)

    Patrick L J M Zeeuwen

    Full Text Available In the past decades, chronic inflammatory diseases such as psoriasis, atopic dermatitis, asthma, Crohn's disease and celiac disease were generally regarded as immune-mediated conditions involving activated T-cells and proinflammatory cytokines produced by these cells. This paradigm has recently been challenged by the finding that mutations and polymorphisms in epithelium-expressed genes involved in physical barrier function or innate immunity, are risk factors of these conditions. We used a functional genomics approach to analyze cultured keratinocytes from patients with psoriasis or atopic dermatitis and healthy controls. First passage primary cells derived from non-lesional skin were stimulated with pro-inflammatory cytokines, and expression of a panel of 55 genes associated with epidermal differentiation and cutaneous inflammation was measured by quantitative PCR. A subset of these genes was analyzed at the protein level. Using cluster analysis and multivariate analysis of variance we identified groups of genes that were differentially expressed, and could, depending on the stimulus, provide a disease-specific gene expression signature. We found particularly large differences in expression levels of innate immunity genes between keratinocytes from psoriasis patients and atopic dermatitis patients. Our findings indicate that cell-autonomous differences exist between cultured keratinocytes of psoriasis and atopic dermatitis patients, which we interpret to be genetically determined. We hypothesize that polymorphisms of innate immunity genes both with signaling and effector functions are coadapted, each with balancing advantages and disadvantages. In the case of psoriasis, high expression levels of antimicrobial proteins genes putatively confer increased protection against microbial infection, but the biological cost could be a beneficial system gone awry, leading to overt inflammatory disease.

  20. Recovery of native genetic background in admixed populations using haplotypes, phenotypes, and pedigree information--using Cika cattle as a case breed.

    Directory of Open Access Journals (Sweden)

    Mojca Simčič

    Full Text Available The aim of this study was to obtain unbiased estimates of the diversity parameters, the population history, and the degree of admixture in Cika cattle which represents the local admixed breeds at risk of extinction undergoing challenging conservation programs. Genetic analyses were performed on the genome-wide Single Nucleotide Polymorphism (SNP Illumina Bovine SNP50 array data of 76 Cika animals and 531 animals from 14 reference populations. To obtain unbiased estimates we used short haplotypes spanning four markers instead of single SNPs to avoid an ascertainment bias of the BovineSNP50 array. Genome-wide haplotypes combined with partial pedigree and type trait classification show the potential to improve identification of purebred animals with a low degree of admixture. Phylogenetic analyses demonstrated unique genetic identity of Cika animals. Genetic distance matrix presented by rooted Neighbour-Net suggested long and broad phylogenetic connection between Cika and Pinzgauer. Unsupervised clustering performed by the admixture analysis and two-dimensional presentation of the genetic distances between individuals also suggest Cika is a distinct breed despite being similar in appearance to Pinzgauer. Animals identified as the most purebred could be used as a nucleus for a recovery of the native genetic background in the current admixed population. The results show that local well-adapted strains, which have never been intensively managed and differentiated into specific breeds, exhibit large haplotype diversity. They suggest a conservation and recovery approach that does not rely exclusively on the search for the original native genetic background but rather on the identification and removal of common introgressed haplotypes would be more powerful. Successful implementation of such an approach should be based on combining phenotype, pedigree, and genome-wide haplotype data of the breed of interest and a spectrum of reference breeds which

  1. Current overview of the genetic background of atrial fibrillation: Possible therapeutic gene targets for the treatment of atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Tetsushi Furukawa, MD, PhD

    2012-06-01

    Full Text Available Atrial fibrillation (AF is the most common arrhythmia. Although AF is known to develop during the course of various cardiac pathological conditions, including valvular heart diseases, congestive heart failure, and hypertension, recent clinical data implicate the additional contribution of genetic factors in the pathogenesis of AF. A familial form of AF has been noted, and 8 loci and 6 responsible genes have been identified. In non-familial AF, genetic risks were originally investigated by the candidate gene approach, and recently by genome-wide association studies (GWASs. GWASs executed in other countries have identified 3 loci: 4q25 near Pitx2, 1q21 in KCNN3, and 16q22 in ZFHX3. Several AF-associated SNPs in 4q25 are also associated with the recurrence rate of AF after catheter pulmonary vein isolation. This review will discuss the genetic underpinnings of AF, in both familial AF and non-familial AF.

  2. Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems

    NARCIS (Netherlands)

    Engelen, van S.; Bovenhuis, H.; Tol, van der P.P.J.; Visker, M.H.P.W.

    2018-01-01

    International environmental agreements have led to the need to reduce methane emission by dairy cows. Reduction could be achieved through selective breeding. The aim of this study was to quantify the genetic variation of methane emission by Dutch Holstein Friesian cows measured using infrared

  3. Genetic background strongly modifies the severity of symptoms of Hirschsprung disease, but not hearing loss in rats carrying Ednrb(sl mutations.

    Directory of Open Access Journals (Sweden)

    Ruihua Dang

    Full Text Available Hirschsprung disease (HSCR is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrb(sl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4. Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome.

  4. Effects of Cu/Zn superoxide dismutase (sod1 genotype and genetic background on growth, reproduction and defense in Biomphalaria glabrata.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Bonner

    Full Text Available Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1. We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation.

  5. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    Science.gov (United States)

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  6. Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants

    DEFF Research Database (Denmark)

    Ciofu, Oana; Mandsberg, Lotte F.; Bjarnsholt, Thomas

    2010-01-01

    are considered hallmarks of chronic virulence. The aims of our study were to investigate (1) the genetic background of the P. aeruginosa subpopulations with non-mutator, weak or strong mutator phenotype and their dynamics during the chronic lung infection, and (2) the time sequence in which the hypermutable...... CF patients (one to three isolates per time point). Analysis of the genetic background of the mutator phenotype showed that mutS was the most commonly affected gene followed by mutL in isolates with strong mutator phenotype. The mutT, mutY, mutM genes were affected in isolates with low fold......During the chronic lung infection of patients with cystic fibrosis (CF), Pseudomonas aeruginosa can survive for long periods due to adaptive evolution mediated by genetic variation. Hypermutability is considered to play an important role in this adaptive evolution and it has been demonstrated...

  7. Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field.

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Palloix, Alain; Castagnone-Sereno, Philippe

    2015-12-01

    Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS-LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability. © 2015 Society of Chemical Industry.

  8. Genetic Diversity of Toxoplasma gondii Strains from Different Hosts and Geographical Regions by Sequence Analysis of GRA20 Gene.

    Science.gov (United States)

    Ning, Hong-Rui; Huang, Si-Yang; Wang, Jin-Lei; Xu, Qian-Ming; Zhu, Xing-Quan

    2015-06-01

    Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa, which infects all warm-blood animals, including humans. In the present study, we examined sequence variation in dense granule 20 (GRA20) genes among T. gondii isolates collected from different hosts and geographical regions worldwide. The complete GRA20 genes were amplified from 16 T. gondii isolates using PCR, sequence were analyzed, and phylogenetic reconstruction was analyzed by maximum parsimony (MP) and maximum likelihood (ML) methods. The results showed that the complete GRA20 gene sequence was 1,586 bp in length among all the isolates used in this study, and the sequence variations in nucleotides were 0-7.9% among all strains. However, removing the type III strains (CTG, VEG), the sequence variations became very low, only 0-0.7%. These results indicated that the GRA20 sequence in type III was more divergence. Phylogenetic analysis of GRA20 sequences using MP and ML methods can differentiate 2 major clonal lineage types (type I and type III) into their respective clusters, indicating the GRA20 gene may represent a novel genetic marker for intraspecific phylogenetic analyses of T. gondii.

  9. The role of seed size, phenology, oogenesis and host distribution in the specificity and genetic structure in seed weevils (Curculio spp.) in mixed forests.

    Science.gov (United States)

    Arias-LeClaire, Harold; Bonal, Raúl; García-López, Daniel; Espelta, Josep Maria

    2017-11-23

    Synchrony between seed growth and oogenesis are suggested to largely shape trophic breadth of seed-feeding insects and ultimately contribute to their co-existence by means of resource partitioning or in the time when infestation occurs. Here we investigated: i) the role of seed phenology and sexual maturation of females in the host specificity of seed-feeding weevils (Curculio spp) predating in hazel and oak mixed forests and ii) the consequences that trophic breadth and host distribution have in the genetic structure of the weevil populations. DNA analyses were used to establish unequivocally host specificity and to determine the population genetic structure. We identified four species with different specificity, namely C. nucum females matured earlier and infested a unique host (hazelnuts) while three species (C. venosus, C. glandium, C. elephas) predated upon the acorns of the two oaks (Q. ilex and Q. humilis). The high specificity of C. nucum coupled with a more discontinuous distribution of hazel trees resulted in a significant genetic structure among sites. Also, the presence of an excess of local rare haplotypes indicated that C. nucum populations went through genetic expansion after recent bottlenecks. Conversely, these effects were not observed in the more generalist C. glandium predating upon oaks. Ultimately, co-existence of weevil species in this multi-host-parasite system is influenced by both resource and time partitioning. To what extent the restriction in gene flow among C. nucum populations may have negative consequences for their persistence in a time of increasing disturbances (e.g. drought in Mediterranean areas) deserves further research. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Genetic Evidence of Contemporary Dispersal of the Intermediate Snail Host of Schistosoma japonicum: Movement of an NTD Host Is Facilitated by Land Use and Landscape Connectivity.

    Directory of Open Access Journals (Sweden)

    Jennifer R Head

    2016-12-01

    Full Text Available While the dispersal of hosts and vectors-through active or passive movement-is known to facilitate the spread and re-emergence of certain infectious diseases, little is known about the movement ecology of Oncomelania spp., intermediate snail host of the parasite Schistosoma japonicum, and its consequences for the spread of schistosomiasis in East and Southeast Asia. In China, despite intense control programs aimed at preventing schistosomiasis transmission, there is evidence in recent years of re-emergence and persistence of infection in some areas, as well as an increase in the spatial extent of the snail host. A quantitative understanding of the dispersal characteristics of the intermediate host can provide new insights into the spatial dynamics of transmission, and can assist public health officials in limiting the geographic spread of infection.Oncomelania hupensis robertsoni snails (n = 833 were sampled from 29 sites in Sichuan, China, genotyped, and analyzed using Bayesian assignment to estimate the rate of recent snail migration across sites. Landscape connectivity between each site pair was estimated using the geographic distance distributions derived from nine environmental models: Euclidean, topography, incline, wetness, land use, watershed, stream use, streams and channels, and stream velocity. Among sites, 14.4% to 32.8% of sampled snails were identified as recent migrants, with 20 sites comprising >20% migrants. Migration rates were generally low between sites, but at 8 sites, over 10% of the overall host population originated from one proximal site. Greater landscape connectivity was significantly associated with increased odds of migration, with the minimum path distance (as opposed to median or first quartile emerging as the strongest predictor across all environmental models. Models accounting for land use explained the largest proportion of the variance in migration rates between sites. A greater number of irrigation channels

  11. Mitochondrial cytochrome oxidase I gene analysis indicates a restricted genetic background in Finnish noble crayfish (Astacus astacus stocks

    Directory of Open Access Journals (Sweden)

    Makkonen J.

    2015-01-01

    Full Text Available The IUCN Red List indexes the noble crayfish (Astacus astacus as vulnerable, with a declining population trend. The main threats to the species are the crayfish plague caused by the oomycete Aphanomyces astaci and the introduced North American crayfish that act as the carriers of this disease. In Finland, the noble crayfish is considered as a native species, which original distribution area covers the southern part of the country, but the species distribution has been dispersed to cover almost the whole country. The aim of this study was to survey the genetic diversity among the Finnish noble crayfish populations. The mitochondrial cytochrome oxidase I (COI-gene was sequenced from 742 individuals representing 59 populations from Finland and Estonia. As a result, only a single haplotype was found. Based on these results, the genetic diversity of noble crayfish in its Northern distribution range is remarkably low. The observed lack of variation can result from several mechanisms including small size of the founder population and the intense spreading of the species by manmade stockings. The restricted diversity can also be caused by eradication of the original populations due to crayfish plague epidemics and spreading of the invasive crayfish species carrying the crayfish plague. It is also possible that all contemporary Finnish noble crayfish populations originate from stockings with no variation in respect to COI-gene.

  12. Influence of Genetic Background on Hematologic and Histopathologic Alterations during Acute Granulocytic Anaplasmosis in 129/SvEv and C57BL/6J Mice Lacking Type I and Type II Interferon Signaling.

    Science.gov (United States)

    Johns, Jennifer L; Discipulo, Marielle L; Koehne, Amanda L; Moorhead, Kaitlin A; Nagamine, Claude M

    2017-03-01

    The role of host type I IFN signaling and its interaction with other immune pathways during bacterial infections is incompletely understood. Type II IFN signaling plays a key role during numerous bacterial infections including granulocytic anaplasmosis (GA) caused by Anaplasma phagocytophilum infection. The function of combined type I and type II IFN signaling and their potential synergism during GA and similar tick-borne diseases is a topic of current research investigation. The goal of this study was to evaluate 2 mouse models of absent type I/type II IFN signaling in experimental A. phagocytophilum infection to determine the effects of background strain. Mice lacking both type I and type II IFN receptor signaling (IFNAR-/-/IFNGR-/-) on either the 129/SvEv or C57BL/6J genetic background were evaluated at days 0, 6, 8, and 12 of infection. Pathogen burden in multiple organs was largely similar between strains of infected mice, with few significant differences. Background strain influenced the immune response to infection. Mice of the 129/SvEv strain developed more severe hematologic abnormalities, particularly more severe leukocytosis with marked neutrophilia and lymphocytosis, throughout acute infection. Histopathologic changes occurred in infected mice of both strains and varied in severity by organ. 129/SvEv mice developed more severe pathologic changes in spleen and bone marrow, whereas C57BL/6J mice developed more severe renal pathology. This work highlights the importance of mouse background strain in dictating pathophysiologic response to infection and informs future work regarding the loss of type I and type II IFN signaling on the immune response during GA.

  13. Relevance of baseline viral genetic heterogeneity and host factors for treatment outcome prediction in hepatitis C virus 1b-infected patients.

    Directory of Open Access Journals (Sweden)

    Verónica Saludes

    Full Text Available BACKGROUND: Only about 50% of patients chronically infected with HCV genotype 1 (HCV-1 respond to treatment with pegylated interferon-alfa and ribavirin (dual therapy, and protease inhibitors have to be administered together with these drugs increasing costs and side-effects. We aimed to develop a predictive model of treatment response based on a combination of baseline clinical and viral parameters. METHODOLOGY: Seventy-four patients chronically infected with HCV-1b and treated with dual therapy were studied (53 retrospectively -training group-, and 21 prospectively -validation group-. Host and viral-related factors (viral load, and genetic variability in the E1-E2, core and Interferon Sensitivity Determining Region were assessed. Multivariate discriminant analysis and decision tree analysis were used to develop predictive models on the training group, which were then validated in the validation group. PRINCIPAL FINDINGS: A multivariate discriminant predictive model was generated including the following variables in decreasing order of significance: the number of viral variants in the E1-E2 region, an amino acid substitution pattern in the viral core region, the IL28B polymorphism, serum GGT and ALT levels, and viral load. Using this model treatment outcome was accurately predicted in the training group (AUROC = 0.9444; 96.3% specificity, 94.7% PPV, 75% sensitivity, 81% NPV, and the accuracy remained high in the validation group (AUROC = 0.8148, 88.9% specificity, 90.0% PPV, 75.0% sensitivity, 72.7% NPV. A second model was obtained by a decision tree analysis and showed a similarly high accuracy in the training group but a worse reproducibility in the validation group (AUROC = 0.9072 vs. 0.7361, respectively. CONCLUSIONS AND SIGNIFICANCE: The baseline predictive models obtained including both host and viral variables had a high positive predictive value in our population of Spanish HCV-1b treatment naïve patients. Accurately identifying those

  14. Do host genetic traits in the bacterial sensing system play a role in the development of Chlamydia trachomatis-associated tubal pathology in subfertile women?

    Directory of Open Access Journals (Sweden)

    Ito James I

    2006-07-01

    Full Text Available Abstract Background In women, Chlamydia (C. trachomatis upper genital tract infection can cause distal tubal damage and occlusion, increasing the risk of tubal factor subfertility and ectopic pregnancy. Variations, like single nucleotide polymorphisms (SNPs, in immunologically important host genes are assumed to play a role in the course and outcome of a C. trachomatis infection. We studied whether genetic traits (carrying multiple SNPs in different genes in the bacterial sensing system are associated with an aberrant immune response and subsequently with tubal pathology following a C. trachomatis infection. The genes studied all encode for pattern recognition receptors (PRRs involved in sensing bacterial components. Methods Of 227 subfertile women, serum was available for C. trachomatis IgG antibody testing and genotyping (common versus rare allele of the PRR genes TLR9, TLR4, CD14 and CARD15/NOD2. In all women, a laparoscopy was performed to assess the grade of tubal pathology. Tubal pathology was defined as extensive peri-adnexal adhesions and/or distal occlusion of at least one tube. Results Following a C. trachomatis infection (i.e. C. trachomatis IgG positive, subfertile women carrying two or more SNPs in C. trachomatis PRR genes were at increased risk of tubal pathology compared to women carrying less than two SNPs (73% vs 33% risk. The differences were not statistically significant (P = 0.15, but a trend was observed. Conclusion Carrying multiple SNPs in C. trachomatis PRR genes tends to result in an aberrant immune response and a higher risk of tubal pathology following a C. trachomatis infection. Larger studies are needed to confirm our preliminary findings.

  15. Evidence that transition from health to psychotic disorder can be traced to semi-ubiquitous environmental effects operating against background genetic risk.

    Directory of Open Access Journals (Sweden)

    Martine van Nierop

    Full Text Available BACKGROUND: In order to assess the importance of environmental and genetic risk on transition from health to psychotic disorder, a prospective study of individuals at average (n = 462 and high genetic risk (n = 810 was conducted. METHOD: A three-year cohort study examined the rate of transition to psychotic disorder. Binary measures indexing environmental exposure (combining urban birth, cannabis use, ethnicity and childhood trauma and proxy genetic risk (high-risk sibling status were used to model transition. RESULTS: The majority of high-risk siblings (68% and healthy comparison subjects (60% had been exposed to one or more environmental risks. The risk of transition in siblings (n = 9, 1.1% was higher than the risk in healthy comparison subjects (n = 2, 0.4%; OR(adj = 2.2,95%CI:5-10.3. All transitions (100% were associated with environmental exposure, compared to 65% of non-transitions (p = 0.014, with the greatest effects for childhood trauma (OR(adj = 34.4,95%CI:4.4-267.4, cannabis use (OR = 4.1,95%CI:1.1, 15.4, minority ethnic group (OR = 3.8,95%CI:1.2,12.8 and urban birth (OR = 3.7,95%CI:0.9,15.4. The proportion of transitions in the population attributable to environmental and genetic risk ranged from 28% for minority ethnic group, 45% for urban birth, 57% for cannabis use, 86% for childhood trauma, and 50% for high-risk sibling status. Nine out of 11 transitions (82% were exposed to both genetic and environmental risk, compared to only 43% of non-transitions (p = 0.03. CONCLUSION: Environmental risk associated with transition to psychotic disorder is semi-ubiquitous regardless of genetic high risk status. Careful prospective documentation suggests most transitions can be attributed to powerful environmental effects that become detectable when analysed against elevated background genetic risk, indicating gene-environment interaction.

  16. The Protective Effect of Minocycline in a Paraquat-Induced Parkinson's Disease Model in Drosophila is Modified in Altered Genetic Backgrounds

    Directory of Open Access Journals (Sweden)

    Arati A. Inamdar

    2012-01-01

    Full Text Available Epidemiological studies link the herbicide paraquat to increased incidence of Parkinson's disease (PD. We previously reported that Drosophila exposed to paraquat recapitulate PD symptoms, including region-specific degeneration of dopaminergic neurons. Minocycline, a tetracycline derivative, exerts ameliorative effects in neurodegenerative disease models, including Drosophila. We investigated whether our environmental toxin-based PD model could contribute to an understanding of cellular and genetic mechanisms of minocycline action and whether we could assess potential interference with these drug effects in altered genetic backgrounds. Cofeeding of minocycline with paraquat prolonged survival, rescued mobility defects, blocked generation of reactive oxygen species, and extended dopaminergic neuron survival, as has been reported previously for a genetic model of PD in Drosophila. We then extended this study to identify potential interactions of minocycline with genes regulating dopamine homeostasis that might modify protection against paraquat and found that deficits in GTP cyclohydrolase adversely affect minocycline rescue. We further performed genetic studies to identify signaling pathways that are necessary for minocycline protection against paraquat toxicity and found that mutations in the Drosophila genes that encode c-Jun N-terminal kinase (JNK and Akt/Protein kinase B block minocycline rescue.

  17. Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area

    Directory of Open Access Journals (Sweden)

    Hauswald Anne-Kathrin

    2011-10-01

    Full Text Available Abstract Background Oncomelania hupensis robertsoni is the sole intermediate host for Schistosoma japonicum in western China. Given the close co-evolutionary relationships between snail host and parasite, there is interest in understanding the distribution of distinct snail phylogroups as well as regional population structures. Therefore, this study focuses on these aspects in a re-emergent schistosomiasis area known to harbour representatives of two phylogroups - the Deyang-Mianyang area in Sichuan Province, China. Based on a combination of mitochondrial and nuclear DNA, the following questions were addressed: 1 the phylogeography of the two O. h. robertsoni phylogroups, 2 regional and local population structure in space and time, and 3 patterns of local dispersal under different isolation-by-distance scenarios. Results The phylogenetic analyses confirmed the existence of two distinct phylogroups within O. h. robertsoni. In the study area, phylogroups appear to be separated by a mountain range. Local specimens belonging to the respective phylogroups form monophyletic clades, indicating a high degree of lineage endemicity. Molecular clock estimations reveal that local lineages are at least 0.69-1.58 million years (My old and phylogeographical analyses demonstrate that local, watershed and regional effects contribute to population structure. For example, Analyses of Molecular Variances (AMOVAs show that medium-scale watersheds are well reflected in population structures and Mantel tests indicate isolation-by-distance effects along waterways. Conclusions The analyses revealed a deep, complex and hierarchical structure in O. h. robertsoni, likely reflecting a long and diverse evolutionary history. The findings have implications for understanding disease transmission. From a co-evolutionary standpoint, the divergence of the two phylogroups raises species level questions in O. h. robertsoni and also argues for future studies relative to the

  18. Whole genome analysis on the genetic backgrounds associated with the secondary failure to etanercept in patients with rheumatoid arthritis.

    Science.gov (United States)

    Funahashi, Keiko; Koyano, Satoru; Echizen, Hirotoshi; Matsubara, Tsukasa

    2017-03-01

    Etanercept is effective for the treatment of rheumatoid arthritis (RA). However, some of the patients eventually lose efficacy (secondary failure) despite the absence of neutralizing antibodies. We aimed to explore single nucleotide polymorphisms (SNPs) associated with secondary failure. We recruited RA patients given etanercept at 50 mg/week for ≥6 months from the Matsubara Mayflower Hospital RA registry. They were assigned to responders, secondary failure patients, and non-responders according to Disease Activity Score. Genome-wide association study (GWAS) was performed using Illumina HumanHAP300k BeadChips and the results were analyzed with Plink software. Clinical backgrounds were compared by ANOVA and contingency table analysis. The protocol was approved by IRB and written informed consent was obtained. Ninety, 27 and 17 patients were assigned to responders, secondary failure patients, and non-responders, respectively. No significant differences were observed regarding clinical backgrounds among the groups. GWAS revealed that six and 37 SNPs may be associated with secondary failure to etanercept with petanercept.

  19. Skewed Helper T-Cell Responses to IL-12 Family Cytokines Produced by Antigen-Presenting Cells and the Genetic Background in Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Jun Shimizu

    2013-01-01

    Full Text Available Behcet’s disease (BD is a multisystemic inflammatory disease and is characterized by recurrent attacks on eyes, brain, skin, and gut. There is evidence that skewed T-cell responses contributed to its pathophysiology in patients with BD. Recently, we found that Th17 cells, a new helper T (Th cell subset, were increased in patients with BD, and both Th type 1 (Th1 and Th17 cell differentiation signaling pathways were overactivated. Several researches revealed that genetic polymorphisms in Th1/Th17 cell differentiation signaling pathways were associated with the onset of BD. Here, we summarize current findings on the Th cell subsets, their contribution to the pathogenesis of BD and the genetic backgrounds, especially in view of IL-12 family cytokine production and pattern recognition receptors of macrophages/monocytes.

  20. Genetic Structure Inferred from Mitochondrial 12S Ribosomal RNA Sequence of Oncomelania quadrasi, the Intermediate Snail Host of Schistosoma japonicum in the Philippines

    OpenAIRE

    Saijuntha, Weerachai; Jarilla, Blanca; Leonardo, Alvin K.; Sunico, Louie S.; Leonardo, Lydia R.; Andrews, Ross H.; Sithithaworn, Paiboon; Trevor N Petney; Kirinoki, Masashi; Kato-Hayashi, Naoko; Kikuchi, Mihoko; Chigusa, Yuichi; Agatsuma, Takeshi

    2014-01-01

    Species and subspecies of the Oncomelania hupensis species complex are recognized as intermediate hosts of Schistosoma japonicum. Of these species and subspecies, O. quadrasi is distributed throughout the Philippines. This study used 12S ribosomal RNA sequences to explore the genetic structure of O. quadrasi populations in the Philippines. Three subspecies, O. h. hupensis, O. h. formosana, and O. h. chiui of this group were also examined. The phylogenetic tree and haplotypes network showed th...

  1. Generation of a human control PBMC derived iPS cell line TUSMi001-A from a healthy male donor of Han Chinese genetic background

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2017-12-01

    Full Text Available A 59-year old healthy man of Han Chinese genetic background donated his peripheral blood mononuclear cells (PBMC. The non-integrating episomal vector system was used to reprogram his PBMCs with the human OSKM (Oct4, Sox2, Kl4 and c-Myc transcription factors. The pluripotency of transgene-free iPSCs was confirmed by immunocytochemistry for pluripotency markers and by the ability of the iPSCs to differentiate spontaneously into 3 germ layers in vitro. In addition, the iPSC line displayed a normal karyotype. In the studies of disease mechanism, the iPSC line can be used as a control.

  2. Generation of a human induced pluripotent stem cell line from a 65-year old healthy female donor with Chinese Han genetic background.

    Science.gov (United States)

    Wang, Ying; Zhang, Jing; Zhang, Yue; Huang, Danyi; Zhao, Jian; Li, Gang; Lei, Ying

    2017-10-01

    Peripheral blood mononuclear cells (PBMC) were collected from a 65-year old healthy woman with Chinese Han genetic background. The PBMCs were reprogrammed with the human OKSM transcription factors using the non-integrating episomal vector system. The transgene-free iPSC showed pluripotency verified by immunocytochemistry for pluripotency markers and differentiated spontaneously toward the 3 germ layers in vitro. Furthermore, the iPSC line showed normal karyotype. The iPSC line can be used as control in disease mechanism studies. Resource table. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Generation of a human induced pluripotent stem cell line from a 65-year old healthy female donor with Chinese Han genetic background

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2017-10-01

    Full Text Available Peripheral blood mononuclear cells (PBMC were collected from a 65-year old healthy woman with Chinese Han genetic background. The PBMCs were reprogrammed with the human OKSM transcription factors using the non-integrating episomal vector system. The transgene-free iPSC showed pluripotency verified by immunocytochemistry for pluripotency markers and differentiated spontaneously toward the 3 germ layers in vitro. Furthermore, the iPSC line showed normal karyotype. The iPSC line can be used as control in disease mechanism studies.

  4. Temporal genetic variability and host sources of Escherichia coli associated with fecal pollution from domesticated animals in the shellfish culture environment of Xiangshan Bay, East China Sea

    Energy Technology Data Exchange (ETDEWEB)

    Fu Linglin, E-mail: full1103@yahoo.com.cn [Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Shuai Jiangbing [Zhejiang Entry and Exit Inspection and Quarantine Bureau, Hangzhou 310012 (China); Wang Yanbo; Ma Hongjia [Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Li Jianrong, E-mail: lijianrong@mail.zjgsu.edu.cn [Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China)

    2011-10-15

    This study was conducted to analyze the genetic variability of Escherichia coli from domesticated animal wastes for microbial source tracking (MST) application in fecal contaminated shellfish growing waters of Xiangshan Bay, East China Sea. (GTG){sub 5} primer was used to generate 1363 fingerprints from E. coli isolated from feces of known 9 domesticated animal sources around this shellfish culture area. Jackknife analysis of the complete (GTG){sub 5}-PCR DNA fingerprint library indicated that isolates were assigned to the correct source groups with an 84.28% average rate of correct classification. Based on one-year source tracking data, the dominant sources of E. coli were swine, chickens, ducks and cows in this water area. Moreover, annual and spatial changes of E. coli concentrations and host sources may affect the level and distribution of zoonotic pathogen species in waters. Our findings will further contribute to preventing fecal pollution in aquatic environments and quality control of shellfish. - Highlights: > The host-origin library developed by (GTG){sub 5}-PCR could be used to shellfish water MST. > Fecal pollution of Xiangshan Bay arose from multiple sources of agricultural wastes. > High level of E. coli concentration in shellfish water increases the health risk. > Annual changes of E. coli host sources affect distribution of zoonotic pathogens. - The temporal genetic variability and dominant host sources of E. coli in fecal contaminated shellfish growing waters of Xiangshan Bay was characterized.

  5. Genetic and morphological diversity of Trisetacus species (Eriophyoidea: Phytoptidae) associated with coniferous trees in Poland: phylogeny, barcoding, host and habitat specialization.

    Science.gov (United States)

    Lewandowski, Mariusz; Skoracka, Anna; Szydło, Wiktoria; Kozak, Marcin; Druciarek, Tobiasz; Griffiths, Don A

    2014-08-01

    Eriophyoid species belonging to the genus Trisetacus are economically important as pests of conifers. A narrow host specialization to conifers and some unique morphological characteristics have made these mites interesting subjects for scientific inquiry. In this study, we assessed morphological and genetic variation of seven Trisetacus species originating from six coniferous hosts in Poland by morphometric analysis and molecular sequencing of the mitochondrial cytochrome oxidase subunit I gene and the nuclear D2 region of 28S rDNA. The results confirmed the monophyly of the genus Trisetacus as well as the monophyly of five of the seven species studied. Both DNA sequences were effective in discriminating between six of the seven species tested. Host-dependent genetic and morphological variation in T. silvestris and T. relocatus, and habitat-dependent genetic and morphological variation in T. juniperinus were detected, suggesting the existence of races or even distinct species within these Trisetacus taxa. This is the first molecular phylogenetic analysis of the Trisetacus species. The findings presented here will stimulate further investigations on the evolutionary relationships of Trisetacus as well as the entire Phytoptidae family.

  6. A synthetic workflow for coordinated direct observation and genetic tagging applied to a complex host-parasite interaction.

    Science.gov (United States)

    Nguyen, A T; Kuwata, C; Kuris, A M

    2015-05-01

    An important aspect influencing host specificity is a parasite's compatibility, or ability, to infect a potential host. Here, we examine the compatibility between different trematode genotypes of the same species and several host species. To execute this study, we developed a synthetic workflow which combines the use of a fluorescent dye and standard molecular techniques to study host-parasite interactions and host specificity. The utility of the fluorescent dye, BIODIPY FL C₁₂, was evaluated to label and track larval trematodes during experimental infections using the Cerithidea californica-trematode host-parasite system. Our results showed that low dye concentrations (200 nM) did not significantly affect survival or infectivity of Acanthoparyphium spinulosum and proved to be useful for labeling cercariae. Parasites were genotyped based on sequences from cytochrome oxidase subunit 1 (COI) and the nuclear internal transcribed spacer 1 (ITS1) prior to labeling and experimental infections. Samples with low COI PCR product yield were reamplified using the M13 tails to obtain enough material for sequencing. Three parasite genotypes were recovered and results from experimental infections demonstrated varying levels of host specificity. Of the three host species used (C. californica, Polydora nuchalis, Tagelus californianus), genotype B was unable to infect P. nuchalis. Genotype A individuals were less likely to infect P. nuchalis than the other host species. Additionally, genotype C was unable to infect any host offered in this study. These findings reflect possible suboptimal pairings between parasite genotype and host species. Furthermore, the present study provides procedures that are useful for exploring parasite ecology at the molecular level.

  7. Phylogeography of two parthenogenetic sawfly species (Hymenoptera: Tenthredinidae): relationship of population genetic differentiation to host plant distribution

    NARCIS (Netherlands)

    Müller, C.; Barker, A.; Boevé, J.L.; Jong, de P.W.; Vos, de H.; Brakefield, P.M.

    2004-01-01

    This study compares the population genetic structure of two obligate parthenogenetic sawfly species, Aneugmenus padi (L.) Zhelochovtsev and Eurhadinoceraea ventralis (Panzer) Enslin (Hymenoptera: Tenthredinidae). Allozymes were used to detect genetic differences in larvae collected at different

  8. Genetic differentiation associated with host plants and geography among six widespread lineages of South American Blepharoneura fruit flies (Tephritidae)

    Science.gov (United States)

    Tropical herbivorous insects are astonishingly diverse and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host-plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most lineages of herbivorous fruit f...

  9. Prevalence and diversity of enterotoxin genes with genetic background of Staphylococcus aureus isolates from different origins in China.

    Science.gov (United States)

    Chao, Guoxiang; Bao, Guangyu; Cao, Yongzhong; Yan, Wenguang; Wang, Yan; Zhang, Xiaorong; Zhou, Liping; Wu, Yantao

    2015-10-15

    Staphylococcal enterotoxins (SE) induce toxin-mediated diseases, such as food poisoning. In the present study, 568 isolates from different sources were tested for the prevalence of 18 SE genes and performed spa typing. In addition, we characterized the relationships between the distribution of SE genes and molecular clones based on multilocus sequence typing (MLST), spa and staphylococcal cassette chromosome mec (SCCmec) typing in selected 250 isolates. Approximately 54.40% of the isolates from different sources harbored one or more SE genes forming 120 distinct gene profiles. Seven genes, sea, seb, seg, seo, sem, seq, and sel were more frequently detected. The distributions of the SE genes among the isolates from human, animals, and foodborne origins were highly different with isolates from environments (Porigin isolates were significantly higher than that in animal origin isolates (Porigin isolates (P>0.05). We identified two important gene clusters, sea-sek-seq, which is closely related to hospital-acquired (HA) methicillin-resistant Staphylococcus aureus (MRSA)-III, and the egc cluster, which accounts for nearly half of all genes. Approximately 71% isolates could be typed by spa, yielding 103 spa types, of which 18 spa types were primary types. In clonal complex (CC) 239, an important Asian HA-MRSA-III clone from humans, nearly all isolates harbored complete or partial sea-sek-seq cluster; the main spa types were t030 and t037. In CC630, an important new community-associated (CA) MRSA-V CC in China, only sporadic SE genes, three main spa types, t4549, t2196, and t377 were observed. The egc cluster coexisting with other genes was present in isolates of CC5, CC9, CC1281, CC1301, CC30 and sequence type (ST) 25, but completely absent in isolates of CC239, CC59, CC7, and CC88. The results illustrate the genetic clonal diversity and the identity of S. aureus isolates from different sources with respect to SE genes and highlight a correlation between SE genes or gene

  10. Mitochondrial genetic background modifies the relationship between traffic-related air pollution exposure and systemic biomarkers of inflammation.

    Directory of Open Access Journals (Sweden)

    Sharine Wittkopp

    Full Text Available BACKGROUND: Mitochondria are the main source of reactive oxygen species (ROS. Human mitochondrial haplogroups are linked to differences in ROS production and oxidative-stress induced inflammation that may influence disease pathogenesis, including coronary artery disease (CAD. We previously showed that traffic-related air pollutants were associated with biomarkers of systemic inflammation in a cohort panel of subjects with CAD in the Los Angeles air basin. OBJECTIVE: We tested whether air pollutant exposure-associated inflammation was stronger in mitochondrial haplogroup H than U (high versus low ROS production in this panel (38 subjects and 417 observations. METHODS: Inflammation biomarkers were measured weekly in each subject (≤ 12 weeks, including interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, C-reactive protein, interleukin-6 soluble receptor and tumor necrosis factor-soluble receptor II. We determined haplogroup by restriction fragment length polymorphism analysis. Air pollutants included nitrogen oxides (NOx, carbon monoxide (CO, organic carbon, elemental and black carbon (EC, BC; and particulate matter mass, three size fractions (<0.25 µm, 0.25-2.5 µm, and 2.5-10 µm in aerodynamic diameter. Particulate matter extracts were analyzed for organic compounds, including polycyclic aromatic hydrocarbons (PAH, and in vitro oxidative potential of aqueous extracts. Associations between exposures and biomarkers, stratified by haplogroup, were analyzed by mixed-effects models. RESULTS: IL-6 and TNF-α were associated with traffic-related air pollutants (BC, CO, NOx and PAH, and with mass and oxidative potential of quasi-ultrafine particles <0.25 µm. These associations were stronger for haplogroup H than haplogroup U. CONCLUSIONS: Results suggest that mitochondrial haplogroup U is a novel protective factor for air pollution-related systemic inflammation in this small group of subjects.

  11. Oppositional defiant- and conduct disorder-like problems: neurodevelopmental predictors and genetic background in boys and girls, in a nationwide twin study.

    Science.gov (United States)

    Kerekes, Nóra; Lundström, Sebastian; Chang, Zheng; Tajnia, Armin; Jern, Patrick; Lichtenstein, Paul; Nilsson, Thomas; Anckarsäter, Henrik

    2014-01-01

    Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD) and conduct disorder (CD). The aims of this study were to identify gender-specific associations between the behavioural problems-ODD/CD-like problems-and the neurodevelopmental disorders-attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD)-and to investigate underlying genetic effects. Methods. 17,220 twins aged 9 or 12 were screened using the Autism-Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting. Results. Social interaction problems (one of the ASD subdomains) was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%-62% of the variance in behavioural problems, except in CD-like problems in girls (26%). Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls. Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.

  12. Comparing self-reported ethnicity to genetic background measures in the context of the Multi-Ethnic Study of Atherosclerosis (MESA)

    Science.gov (United States)

    2011-01-01

    Background Questions remain regarding the utility of self-reported ethnicity (SRE) in genetic and epidemiologic research. It is not clear whether conditioning on SRE provides adequate protection from inflated type I error rates due to population stratification and admixture. We address this question using data obtained from the Multi-Ethnic Study of Atherosclerosis (MESA), which enrolled individuals from 4 self-reported ethnic groups. We compare the agreement between SRE and genetic based measures of ancestry (GBMA), and conduct simulation studies based on observed MESA data to evaluate the performance of each measure under various conditions. Results Four clusters are identified using 96 ancestry informative markers. Three of these clusters are well delineated, but 30% of the self-reported Hispanic-Americans are misclassified. We also found that MESA SRE provides type I error rates that are consistent with the nominal levels. More extensive simulations revealed that this finding is likely due to the multi-ethnic nature of the MESA. Finally, we describe situations where SRE may perform as well as a GBMA in controlling the effect of population stratification and admixture in association tests. Conclusions The performance of SRE as a control variable in genetic association tests is more nuanced than previously thought, and may have more value than it is currently credited with, especially when smaller replication studies are being considered in multi-ethnic samples. PMID:21375750

  13. Oppositional defiant- and conduct disorder-like problems: neurodevelopmental predictors and genetic background in boys and girls, in a nationwide twin study

    Directory of Open Access Journals (Sweden)

    Nóra Kerekes

    2014-04-01

    Full Text Available Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD and conduct disorder (CD. The aims of this study were to identify gender-specific associations between the behavioural problems–ODD/CD-like problems–and the neurodevelopmental disorders–attention deficit hyperactivity disorder (ADHD, autism spectrum disorder (ASD–and to investigate underlying genetic effects.Methods. 17,220 twins aged 9 or 12 were screened using the Autism–Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting.Results. Social interaction problems (one of the ASD subdomains was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%–62% of the variance in behavioural problems, except in CD-like problems in girls (26%. Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls.Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.

  14. Multiple Genetic Backgrounds of the Amplified Plasmodium falciparum Multidrug Resistance (pfmdr1) Gene and Selective Sweep of 184F Mutation in Cambodia

    Science.gov (United States)

    Vinayak, Sumiti; Alam, Md Tauqeer; Sem, Rithy; Shah, Naman K.; Susanti, Augustina I.; Lim, Pharath; Muth, Sinuon; Maguire, Jason D.; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam

    2011-01-01

    Background The emergence of artesunate-mefloquine (AS+MQ)–resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. Methods We characterized 13 microsatellite loci flanking (± 99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. Results Genetic analysis revealed no difference in the mean (± standard deviation) expected heterozygosity (He) at loci around single (0.75 ± 0.03) and multiple (0.76 ± 0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean He (± SD) around mutant allele (0.56 ± 0.05), compared with wild-type allele (0.84 ± 0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. Conclusion The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds. PMID:20367478

  15. Genetic background contributes to the co-morbidity of anxiety and depression with audiogenic seizure propensity and responses to fluoxetine treatment.

    Science.gov (United States)

    Sarkisova, Karine Yu; Fedotova, Irina B; Surina, Natalia M; Nikolaev, Georgy M; Perepelkina, Olga V; Kostina, Zoya A; Poletaeva, Inga I

    2017-03-01

    Anxiety and depression are the most frequent comorbidities of different types of convulsive and non-convulsive epilepsies. Increased anxiety and depression-like phenotype have been described in the genetic absence epilepsy models as well as in models of limbic epilepsy and acquired seizure models, suggesting a neurobiological connection. However, whether anxiety and/or depression are comorbid to audiogenic epilepsy remains unclear. The aim of this study was to investigate whether anxiety or depression-like behavior can be found in rat strains with different susceptibility to audiogenic seizures (AS) and whether chronic fluoxetine treatment affects this co-morbidity. Behavior in the elevated plus-maze and the forced swimming test was studied in four strains: Wistar rats non-susceptible to AS; Krushinsky-Molodkina (KM) strain, selectively bred for AS propensity from outbred Wistar rats; and a selection lines bred for maximal AS expression (strain "4") and for a lack of AS (strain "0") from KM×Wistar F2 hybrids. Effects of chronic antidepressant treatment on AS and behavior were also evaluated. Anxiety and depression levels were higher in KM rats (with AS) compared with Wistar rats (without AS), indicating the comorbidity with AS. However, in strains "4" and "0" with contrasting AS expression, but with a genetic background close to KM rats, anxiety and depression were not as divergent as in KMs versus Wistars. Fluoxetine treatment exerted an antidepressant effect in all rat strains irrespective of its effect on AS. Genetic background contributes substantively to the co-morbidity of anxiety and depression with AS propensity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The population genetics of Pseudomonas aeruginosa isolates from different patient populations exhibits high-level host specificity.

    Directory of Open Access Journals (Sweden)

    Rosa van Mansfeld

    Full Text Available OBJECTIVE: To determine whether highly prevalent P. aeruginosa sequence types (ST in Dutch cystic fibrosis (CF patients are specifically linked to CF patients we investigated the population structure of P. aeruginosa from different clinical backgrounds. We first selected the optimal genotyping method by comparing pulsed-field gel electrophoresis (PFGE, multilocus sequence typing (MLST and multilocus variable number tandem-repeat analysis (MLVA. METHODS: Selected P. aeruginosa isolates (n = 60 were genotyped with PFGE, MLST and MLVA to determine the diversity index (DI and congruence (adjusted Rand and Wallace coefficients. Subsequently, isolates from patients admitted to two different ICUs (n = 205, from CF patients (n = 100 and from non-ICU, non-CF patients (n = 58, of which 19 were community acquired were genotyped with MLVA to determine distribution of genotypes and genetic diversity. RESULTS: Congruence between the typing methods was >79% and DIs were similar and all >0.963. Based on costs, ease, speed and possibilities to compare results between labs an adapted MLVA scheme called MLVA9-Utrecht was selected as the preferred typing method. In 363 clinical isolates 252 different MLVA types (MTs were identified, indicating a highly diverse population (DI  = 0.995; CI  = 0.993-0.997. DI levels were similarly high in the diverse clinical sources (all >0.981 and only eight genotypes were shared. MTs were highly specific (>80% for the different patient populations, even for similar patient groups (ICU patients in two distinct geographic regions, with only three of 142 ICU genotypes detected in both ICUs. The two major CF clones were unique to CF patients. CONCLUSION: The population structure of P. aeruginosa isolates is highly diverse and population specific without evidence for a core lineage in which major CF, hospital or community clones co-cluster. The two genotypes highly prevalent among Dutch CF patients appeared unique to CF patients

  17. Host-associated genetic differentiation in a seed parasitic weevil Rhinusa antirrhini (Coleptera: Curculionidae) revealed by mitochondrial and nuclear sequence data.

    Science.gov (United States)

    Hernández-Vera, Gerardo; Mitrović, Milana; Jović, Jelena; Tosevski, Ivo; Caldara, Roberto; Gassmann, Andre; Emerson, Brent C

    2010-06-01

    Plant feeding insects and the plants they feed upon represent an ecological association that is thought to be a key factor for the diversification of many plant feeding insects, through differential adaptation to different plant selective pressures. While a number of studies have investigated diversification of plant feeding insects above the species level, relatively less attention has been given to patterns of diversification within species, particularly those that also require plants for oviposition and subsequent larval development. In the case of plant feeding insects that also require plant tissues for the completion of their reproductive cycle through larval development, the divergent selective pressure not only acts on adults, but on the full life history of the insect. Here we focus attention on Rhinusa antirrhini (Curculionidae), a species of weevil broadly distributed across Europe that both feeds on, and oviposits and develops within, species of the plant genus Linaria (Plantaginaceae). Using a combination of mtDNA (COII) and nuclear DNA (EF1-alpha) sequencing and copulation experiments we assess evidence for host associated genetic differentiation within R. antirrhini. We find substantial genetic variation within this species that is best explained by ecological specialisation on different host plant taxa. This genetic differentiation is most pronounced in the mtDNA marker, with patterns of genetic variation at the nuclear marker suggesting incomplete lineage sorting and/or gene flow between different host plant forms of R. antirrhini, whose origin is estimated to date to the mid-Pliocene (3.77 Mya; 2.91-4.80 Mya).

  18. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  19. A resposta oxidativa em corações de camundongos é modulada por background genético The oxidative response of mouse hearts is modulated by genetic background

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Santos-Silva

    2013-02-01

    observed in the Swiss strain mice (p < 0.05, while a decrease was observed in the C3H (p < 0.05 and BALB/c (p < 0.001 strain mice as compared with their respective control groups. The reduced glutathione/reduced glutathione ratio showed a reduction in the Swiss and C57BL/6 (p < 0.05 strain mice as compared with their respective control groups. CONCLUSIONS: The genetic background of mice can influence the antioxidant response after exposure to cigarette smoke and seems to be a determinant factor for redox imbalance in Swiss and C57BL/6 strain mice. Understanding antioxidant responses and genetic background of C3H and BALB/c strain mice might provide important information regarding cardiac resistance to cigarette smoke.

  20. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.

    2015-01-01

    Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  1. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.

  2. The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host.

    Directory of Open Access Journals (Sweden)

    Joshua G Harrison

    Full Text Available From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa onto an exotic host plant (alfalfa, Medicago sativa. We examine variation among seven alfalfa populations that differed in terms of colonization by L. melissa; specifically, we examined variation in phytochemistry, foliar protein, and plant population genetic structure, as well as responses of caterpillars and adult butterflies to foliage from the same populations. Regional patterns of alfalfa colonization by L. melissa were well predicted by phytochemical variation, and colonized patches of alfalfa showed a similar level of inter-individual phytochemical diversity. However, phytochemical variation was a poor predictor of larval performance, despite the fact that survival and weight gain differed dramatically among caterpillars reared on plants from different alfalfa populations. Moreover, we observed a mismatch between alfalfa supporting the best larval performance and alfalfa favored by ovipositing females. Thus, the axes of plant variation that mediate interactions with L. melissa depend upon herbivore life history stage, which raises important issues for our understanding of adaptation to novel resources by an organism with a complex life history.

  3. The Many Dimensions of Diet Breadth: Phytochemical, Genetic, Behavioral, and Physiological Perspectives on the Interaction between a Native Herbivore and an Exotic Host.

    Science.gov (United States)

    Harrison, Joshua G; Gompert, Zachariah; Fordyce, James A; Buerkle, C Alex; Grinstead, Rachel; Jahner, Joshua P; Mikel, Scott; Nice, Christopher C; Santamaria, Aldrin; Forister, Matthew L

    2016-01-01

    From the perspective of an herbivorous insect, conspecific host plants are not identical, and intraspecific variation in host nutritional quality or defensive capacity might mediate spatially variable outcomes in plant-insect interactions. Here we explore this possibility in the context of an ongoing host breadth expansion of a native butterfly (the Melissa blue, Lycaeides melissa) onto an exotic host plant (alfalfa, Medicago sativa). We examine variation among seven alfalfa populations that differed in terms of colonization by L. melissa; specifically, we examined variation in phytochemistry, foliar protein, and plant population genetic structure, as well as responses of caterpillars and adult butterflies to foliage from the same populations. Regional patterns of alfalfa colonization by L. melissa were well predicted by phytochemical variation, and colonized patches of alfalfa showed a similar level of inter-individual phytochemical diversity. However, phytochemical variation was a poor predictor of larval performance, despite the fact that survival and weight gain differed dramatically among caterpillars reared on plants from different alfalfa populations. Moreover, we observed a mismatch between alfalfa supporting the best larval performance and alfalfa favored by ovipositing females. Thus, the axes of plant variation that mediate interactions with L. melissa depend upon herbivore life history stage, which raises important issues for our understanding of adaptation to novel resources by an organism with a complex life history.

  4. Difference in suitable mechanical properties of three-dimensional, synthetic scaffolds for self-renewing mouse embryonic stem cells of different genetic backgrounds.

    Science.gov (United States)

    Lee, Myungook; Ahn, Jong Il; Ahn, Ji Yeon; Yang, Woo Sub; Hubbell, Jeffrey A; Lim, Jeong Mook; Lee, Seung Tae

    2017-11-01

    We evaluated whether the genetic background of embryonic stem cells (ESCs) affects the properties suitable for three-dimensional (3D) synthetic scaffolds for cell self-renewal. Inbred R1 and hybrid B6D2F1 mouse ESC lines were cultured for 7 days in hydrogel scaffolds with different properties derived from conjugating 7.5, 10, 12.5, or 15% (wt/vol) vinylsulfone-functionalized three-, four-, or eight-arm polyethylene glycol (PEG) with dicysteine-containing crosslinkers with an intervening matrix metalloproteinase-specific cleavage sites. Cell proliferation and expression of self-renewal-related genes and proteins by ESCs cultured in feeder-free or containing 2D culture plate or 3D hydrogel were monitored. As a preliminary experiment, the E14 ESC-customized synthetic 3D microenvironment did not maintain self-renewal of either the R1 or B6D2F1 ESCs. The best R1 cell proliferation (10.04 vs. 0.16-4.39; p < 0.0001) was observed in the four-arm 7.5% PEG-based hydrogels than those with other properties, whereas the F1 ESCs showed better proliferation when they were embedded in the three-arm 10% hydrogels. Self-renewal-related gene and protein expression by ESCs after feeder-free 3D culture was generally maintained compared with the feeder-containing 2D culture, but expression patterns and quantities differed. However, the feeder-free 3D culture yielded better expression than the feeder-free 2D culture. In conclusion, genetic background determined the suitability of hydrogel scaffolds for self-renewal of ESCs, which requires customization for the mechanical properties of each cell line. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2261-2268, 2017. © 2016 Wiley Periodicals, Inc.

  5. Microarray and morphological analysis of early postnatal CRB2 mutant retinas on a pure C57BL/6J genetic background.

    Directory of Open Access Journals (Sweden)

    Celso Henrique Alves

    Full Text Available In humans, the Crumbs homologue-1 (CRB1 gene is mutated in progressive types of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis. The severity of the phenotype due to human CRB1 or mouse Crb1 mutations is dependent on the genetic background. Mice on C57BL/6J background with Crb1 mutations show late onset of retinal spotting phenotype or no phenotype. Recently, we showed that conditional deletion of mouse Crb2 in the retina results in early retinal disorganization leading to severe and progressive retinal degeneration with concomitant visual loss that mimics retinitis pigmentosa due to mutations in the CRB1 gene. Recent studies in the fruit fly and zebrafish suggest roles of the Crumbs (CRB complex members in the regulation of cellular signalling pathways including the Notch1, mechanistic target of rapamycin complex 1 (mTORC1 and the Hippo pathway. Here, we demonstrate that mice backcrossed to C57BL/6J background with loss of CRB2 in the retina show a progressive disorganization and degeneration phenotype during late retinal development. We used microarray gene profiling to study the transcriptome of retinas lacking CRB2 during late retinal development. Unexpectedly, the retinas of newborn mice lacking CRB2 showed no changes in the transcriptome during retinal development. These findings suggest that loss of CRB2 in the developing retina results in retinal disorganization and subsequent degeneration without major changes in the transcriptome of the retina. These mice might be an interesting model to study the onset of retinal degeneration upon loss of CRB proteins.

  6. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies

    NARCIS (Netherlands)

    Whiteman, N.K.; Matson, K.D.; Bollmer, J.L.; Parker, P.G.

    2006-01-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity

  7. Innate and adaptive host responses and their genetic control in tuberculosis : studies in Indonesia, a highly TB endemic setting

    NARCIS (Netherlands)

    Sahiratmadja, Edhyana Kusumastuti

    2007-01-01

    Tuberculosis (TB) is an infectious disease, caused by Mycobacterium tuberculosis. MTB infection does not necessarily progress to TB. Only 5-10% of exposed individuals develop clinical signs and symptoms of TB. Given the impact of mycobacterial exposure and the immunoregulatory consequences for host

  8. Effects of temperature and predator on the persistence of host-specific Bacteroides-Prevotella genetic markers in water.

    Science.gov (United States)

    Kobayashi, Ayano; Sano, Daisuke; Okabe, Satoshi

    2013-01-01

    Genetic markers derived from Bacteroidales spp. have been proposed as promising indicators for fecal contamination in the water environment. However, little is known about the persistency of Bacteroidales spp. 16S rRNA genetic markers in the natural environment, which hampers the precise identification of fecal contamination sources. In this study, the persistency of human-specific Bacteroidales spp. genetic markers in river water was investigated during a 3-week agitation. The copy number of Bacteroidales spp. genetic marker was decreased with agitation time, and was very sensitive to water temperature. After the 3-week agitation, three clones of 18S rRNA gene related to Glaucoma scintillans, Spumella-like flagellate, and Colpidium campylum were acquired. The presence of predators that can prey on target bacteria could also be a critical factor affecting the quantified value of genetic markers. It is very important to take these factors, water temperature and the presence of predator, into account for predicting the fate of genetic markers to accurately identify fecal pollution sources.

  9. Genetics of graft-versus-host disease, I. A locus on chromosome 1 influences development of acute graft-versus-host disease in a major histocompatibility complex mismatched murine model.

    Science.gov (United States)

    Allen, R D; Dobkins, J A; Harper, J M; Slayback, D L

    1999-02-01

    Graft-versus-host disease (GVHD) is the major complication occurring after bone marrow transplantation. The severity of GVHD varies widely, with this variation generally being attributed to variation in the degree of disparity between host and donor for minor histocompatibility antigens. However, it is also possible that other forms of polymorphism, such as polymorphisms in immune effector molecules, might play a significant role in determining GVHD severity. In order to investigate this hypothesis, we are studying the genetic factors that influence GVHD development in a murine model. We here report the first results of this analysis, which demonstrate that a locus on Chromosome 1 of the mouse, and possibly also a locus on Chromosome 4, exert considerable influence over the development of one aspect of acute GVHD - splenomegaly - in a parent-->F1 murine model. These results demonstrate that non-MHC genes can exert quite significant effects on the development of GVHD-associated pathology and that gene mapping can be used as a tool to identify these loci. Further analysis of such loci will allow identification of the mechanism whereby they influence GVHD and may lead in the future to improved selection of donors for human bone marrow transplantation.

  10. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy.

    Directory of Open Access Journals (Sweden)

    Nathaniel D Maynard

    2010-07-01

    Full Text Available Latently infecting viruses are an important class of virus that plays a key role in viral evolution and human health. Here we report a genome-scale forward-genetics screen for host-dependencies of the latently-infecting bacteriophage lambda. This screen identified 57 Escherichia coli (E. coli genes--over half of which have not been previously associated with infection--that when knocked out inhibited lambda phage's ability to replicate. Our results demonstrate a highly integrated network between lambda and its host, in striking contrast to the results from a similar screen using the lytic-only infecting T7 virus. We then measured the growth of E. coli under normal and infected conditions, using wild-type and knockout strains deficient in one of the identified host genes, and found that genes from the same pathway often exhibited similar growth dynamics. This observation, combined with further computational and experimental analysis, led us to identify a previously unannotated gene, yneJ, as a novel regulator of lamB gene expression. A surprising result of this work was the identification of two highly conserved pathways involved in tRNA thiolation-one pathway is required for efficient lambda replication, while the other has anti-viral properties inhibiting lambda replication. Based on our data, it appears that 2-thiouridine modification of tRNAGlu, tRNAGln, and tRNALys is particularly important for the efficient production of infectious lambda phage particles.

  11. Molecular analysis of echinostome metacercariae from their second intermediate host found in a localised geographic region reveals genetic heterogeneity and possible cryptic speciation.

    Directory of Open Access Journals (Sweden)

    Waraporn Noikong

    2014-04-01

    Full Text Available Echinostome metacercariae are the infective stage for humans and animals. The identification of echinostomes has been based until recently on morphology but molecular techniques using sequences of ribosomal RNA and mitochondrial DNA have indicated major clades within the group. In this study we have used the ITS2 region of ribosomal RNA and the ND1 region of mitochondrial DNA to identify metacercariae from snails collected from eight well-separated sites from an area of 4000 km2 in Lamphun Province, Thailand. The derived sequences have been compared to those collected from elsewhere and have been deposited in the nucleotide databases. There were two aims of this study; firstly, to determine the species of echinostome present in an endemic area, and secondly, to assess the intra-specific genetic diversity, as this may be informative with regard to the potential for the development of anthelmintic resistance and with regard to the spread of infection by the definitive hosts. Our results indicate that the most prevalent species are most closely related to E. revolutum, E. trivolvis, E. robustum, E. malayanum and Euparyphium albuferensis. Some sites harbour several species and within a site there could be considerable intra-species genetic diversity. There is no significant geographical structuring within this area. Although the molecular techniques used in this study allowed the assignment of the samples to clades within defined species, however, within these groupings there were significant differences indicating that cryptic speciation may have occurred. The degree of genetic diversity present would suggest the use of targeted regimes designed to minimise the selection of anthelmintic resistance. The apparent lack of geographic structuring is consistent with the transmission of the parasites by the avian hosts.

  12. Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina)▿ †

    Science.gov (United States)

    Estrella, María Julia; Muñoz, Socorro; Soto, María José; Ruiz, Oscar; Sanjuán, Juan

    2009-01-01

    A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin. PMID

  13. Inbreeding in stochastic subdivided mating systems: the genetic consequences of host spatial structure, aggregated transmission dynamics and life history characteristics in parasite populations.

    Science.gov (United States)

    Dharmarajan, Guha

    2015-03-01

    Inbreeding in parasite populations can have important epidemiological and evolutionary implications. However, theoretical models have predominantly focussed on the evolution of parasite populations under strong selection or in epidemic situations, and our understanding of neutral gene dynamics in parasite populations at equilibrium has been limited to verbal arguments or conceptual models. This study focusses on how host-parasite population dynamics affects observed levels of inbreeding in a random sample of parasites from an infinite population of hosts by bridging traditional genetic and parasitological processes utilizing a backward-forward branching Markov process embedded within a flexible statistical framework, the logarithmic-poisson mixture model. My results indicate that levels of inbreeding in parasites are impacted by demographic and/or transmission dynamics (subdivided mating, aggregated transmission dynamics and host spatial structure), and that this inbreeding is poorly estimated by 'equilibrium' levels of inbreeding calculated assuming regular systems of mating. Specifically, the model reveals that at low levels of inbreeding (F ≤ 0.1), equilibrium levels of inbreeding are lower than those observed, while at high levels of inbreeding the opposite pattern occurs. The model also indicates that inbreeding could have important epidemiological implications (e.g., the spread of recessive drug resistance genes) by directly impacting the observed frequency of rare homozygotes in parasite populations. My results indicate that frequencies of rare homozygotes are affected by aggregated transmission dynamics and host spatial structure, and also that an increase in the frequency of rare homozygotes can be caused by a decrease in effective population size solely due to the presence of a subdivided breeding system.

  14. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation.

    Science.gov (United States)

    Picard, Marion A L; Boissier, Jérôme; Roquis, David; Grunau, Christoph; Allienne, Jean-François; Duval, David; Toulza, Eve; Arancibia, Nathalie; Caffrey, Conor R; Long, Thavy; Nidelet, Sabine; Rohmer, Marine; Cosseau, Céline

    2016-09-01

    Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on

  15. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation.

    Directory of Open Access Journals (Sweden)

    Marion A L Picard

    2016-09-01

    Full Text Available Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner.We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae and after (in adults the phenotypic sexual dimorphism appearance. In this paper we present (i candidate determinants of the sexual differentiation, (ii sex-biased players of the interaction with the vertebrate host, and (iii different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes.Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not

  16. Genetic basis and selection for life-history trait plasticity on alternative host plants for the cereal aphid Sitobion avenae.

    Directory of Open Access Journals (Sweden)

    Xinjia Dai

    Full Text Available Sitobion avenae (F. can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones' life-history traits was unexpectedly low. The factor 'clone' alone explained 27.7-62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed.

  17. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    Science.gov (United States)

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE(-/-) Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. Genetic background alters the severity and onset of neuromuscular disease caused by the loss of ubiquitin-specific protease 14 (usp14.

    Directory of Open Access Journals (Sweden)

    Andrea G Marshall

    Full Text Available In this study, we identified and characterized an N-ethyl-N-nitrosourea (ENU induced mutation in Usp14 (nmf375 that leads to adult-onset neurological disease. The nmf375 mutation causes aberrant splicing of Usp14 mRNA, resulting in a 95% reduction in USP14. We previously showed that loss of USP14 in ataxia (ax (J mice results in reduced ubiquitin levels, motor endplate disease, Purkinje cell axonal dystrophy and decreased hippocampal paired pulse facilitation (PPF during the first 4-6 weeks of life, and early postnatal lethality by two months of age. Although the loss of USP14 is comparable between the nmf375 and ax (J mice, the nmf375 mice did not exhibit these ax (J developmental abnormalities. However, by 12 weeks of age the nmf375 mutants present with ubiquitin depletion and motor endplate disease, indicating a continual role for USP14-mediated regulation of ubiquitin pools and neuromuscular junction (NMJ structure in adult mice. The observation that motor endplate disease was only seen after ubiquitin depletion suggests that the preservation of NMJ structure requires the stable maintenance of synaptic ubiquitin pools. Differences in genetic background were shown to affect ubiquitin expression and dramatically alter the phenotypes caused by USP14 deficiency.

  19. Differential Proinflammatory and Oxidative Stress Response and Vulnerability to Metabolic Syndrome in Habitual High-Fat Young Male Consumers Putatively Predisposed by Their Genetic Background

    Directory of Open Access Journals (Sweden)

    María Jesús Moreno-Aliaga

    2013-08-01

    Full Text Available The current nutritional habits and lifestyles of modern societies favor energy overloads and a diminished physical activity, which may produce serious clinical disturbances and excessive weight gain. In order to investigate the mechanisms by which the environmental factors interact with molecular mechanisms in obesity, a pathway analysis was performed to identify genes differentially expressed in subcutaneous abdominal adipose tissue (SCAAT from obese compared to lean male (21–35 year-old subjects living in similar obesogenic conditions: habitual high fat dietary intake and moderate physical activity. Genes involved in inflammation (ALCAM, CTSB, C1S, YKL-40, MIF, SAA2, extracellular matrix remodeling (MMP9, PALLD, angiogenesis (EGFL6, leptin and oxidative stress (AKR1C3, UCHL1, HSPB7 and NQO1 were upregulated; whereas apoptosis, signal transcription (CITED 2 and NR3C1, cell control and cell cycle-related genes were downregulated. Interestingly, the expression of some of these genes (C1S, SAA2, ALCAM, CTSB, YKL-40 and tenomodulin was found to be associated with some relevant metabolic syndrome features. The obese group showed a general upregulation in the expression of inflammatory, oxidative stress, extracellular remodeling and angiogenic genes compared to lean subjects, suggesting that a given genetic background in an obesogenic environment could underlie the resistance to gaining weight and obesity-associated manifestations.

  20. Evaluation of lectin pathway activity and mannan-binding lectin levels in the course of pregnancy complicated by diabetes type 1, based on the genetic background.

    Science.gov (United States)

    Pertyńska Marczewska, Magdalena; Cedzyński, Maciej; Swierzko, Anna; Szala, Agnieszka; Sobczak, Małgorzata; Cypryk, Katarzyna; Wilczyński, Jan

    2009-01-01

    There are numerous indications that either mannan-binding lectin (MBL) deficiency or its excessive activity are associated with adverse pregnancy outcomes. High MBL concentrations and corresponding MBL2 genotypes were shown to be associated with microvascular complications in type 1 diabetes. The aim of this study was to evaluate levels of MBL and MBL-dependent activity of the lectin pathway (LP) of complement in the course of pregnancy in diabetic mothers, based on genetic background. These parameters were determined in samples from healthy non-pregnant (control), diabetic non-pregnant, healthy pregnant, and pregnant diabetic women. No significant differences in median MBL levels or LP activities were found in any study group compared to the control. However, statistically significant differences in MBL levels were noted during pregnancy between the 1st and 3rd trimesters in both healthy controls and pregnant diabetics. With regard to LP values, similar trends were evident, but statistically significant results were obtained only in the healthy pregnant group. When data analysis was confined to patients carrying the A/A (wild-type) MBL2 genotype, an increase in MBL level during pregnancy (in both healthy and diabetic pregnant women) was still observed. Similarly, LP activity increased during both healthy and diabetic pregnancies, significantly so for the former. Diabetes, an autoimmune disease, is a serious complication of pregnancy. Therefore, determination of MBL status might be beneficial in identifying type 1 diabetic patients who are at increased risk of developing both vascular complications and poor pregnancy outcomes.

  1. Proanthocyanidins in Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Origins with Special Reference to the Influence of Genetic Background and Growth Location.

    Science.gov (United States)

    Yang, Wei; Laaksonen, Oskar; Kallio, Heikki; Yang, Baoru

    2016-02-17

    Wild sea buckthorn berries from Finland (Hippophaë rhamnoides ssp. rhamnoides) and China (ssp. sinensis) as well as berries of two varieties of ssp. rhamnoides cultivated in Finland and five of ssp. mongolica cultivated in Canada were compared on the basis of the content and composition of proanthocyanidins (PAs). Among all of the samples, only B-type PAs were found. The contents of dimeric, trimeric, tetrameric, and total PAs were in the range of 1.4-8.9, 1.3-9.5, 1.0-7.1, and 390-1940 mg/100 g of dry weight, respectively. The three subspecies were separated by three validated factors (R(2), 0.724; Q(2), 0.677) in the partial least squares discriminant analysis model. Significant differences in total PAs were found between the ssp. rhamnoides and mongolica samples (p < 0.05). In ssp. rhamnoides, samples grown in northern Finland were characterized by a high amount of total PAs, typically 2-3 times higher than that in the level found in southern Finland. In ssp. sinensis, altitude did not have a systematic effect on the PA composition, suggesting the significance of the interaction between genetic background and growth location.

  2. The genetic background affects composition, oxidative stability and quality traits of Iberian dry-cured hams: purebred Iberian versus reciprocal Iberian × Duroc crossbred pigs.

    Science.gov (United States)

    Fuentes, Verónica; Ventanas, Sonia; Ventanas, Jesús; Estévez, Mario

    2014-02-01

    This study examined the physico-chemical characteristics, oxidative stability and sensory properties of Iberian cry-cured hams as affected by the genetic background of the pigs: purebred Iberian (PBI) pigs vs reciprocal cross-bred Iberian × Duroc pigs (IB × D pigs: Iberian dams × Duroc sires; D × IB pigs: Duroc dams × Iberian sires). Samples from PBI pigs contained significantly higher amounts of IMF, monounsaturated fatty acids, heme pigments and iron than those from crossbred pigs. The extent of lipid and protein oxidation was significantly larger in dry-cured hams of crossbred pigs than in those from PBI pigs. Dry-cured hams from PBI pigs were defined by positive sensory properties (i.e. redness, brightness and juiciness) while hams from crossbred pigs were ascribed to negative ones (i.e. hardness, bitterness and sourness). Hams from PBI pigs displayed a superior quality than those from crossbred pigs. The position of the dam or the sire in reciprocal Iberian × Duroc crosses had no effect on the quality of Iberian hams. © 2013.

  3. A new mouse model for marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of Fbn1 expression.

    Directory of Open Access Journals (Sweden)

    Bruno L Lima

    Full Text Available Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans. Heterozygotes for the mutant Fbn1 allele mgΔloxPneo, carrying the same internal deletion of exons 19-24 as the mgΔ mouse model, present defective microfibrillar deposition, emphysema, deterioration of aortic wall and kyphosis. However, the onset of a clinical phenotypes is earlier in the 129/Sv than in C57BL/6 background, indicating the existence of genetic modifiers of MFS between these two mouse strains. In addition, we characterized a wide clinical variability within the 129/Sv congenic heterozygotes, suggesting involvement of epigenetic factors in disease severity. Finally, we show a strong negative correlation between overall levels of Fbn1 expression and the severity of the phenotypes, corroborating the suggested protective role of normal fibrillin-1 in MFS pathogenesis, and supporting the development of therapies based on increasing Fbn1 expression.

  4. [An improvement of the calibration results for grey analytical system in high performance liquid chromatography applying constrained background bilinearization method based on genetic algorithm optimization strategy].

    Science.gov (United States)

    Zhang, Yaxiong; Nie, Xianling

    2017-06-08

    Constrained background bilinearization (CBBL) method was applied for multivariate calibration analysis of the grey analytical system in high performance liquid chromatography (HPLC). By including the variables of the concentrations and the retention time of the analytes simultaneously, the standard CBBL was modified for the multivariate calibration of the HPLC system with poor retention precision. The CBBL was optimized globally by genetic algorithm (GA). That is to say, both the concentrations and the retention times of the analytes were optimized globally and simultaneously by GA. The modified CBBL was applied in the calibration analysis for both simulated and experimental HPLC system with poor retention precision. The experimental data were collected from HPLC separation system for phenolic compounds. The modified CBBL was verified to be useful to prevent the inherent limitation of the standard CBBL, which means that the standard CBBL may result in poor calibration results in the case of poor retention precision in chromatography system. Moreover, the modified CBBL can give not only the concentrations but also the retention time of the analytes. i. e., more useful information of the analytes can be generated by the modified CBBL. Subsequently, nearly ideal calibration results were obtained. On the other hand, comparing with the calibration results by the classical rank annihilation factor analysis (RAFA) and residual bilinearization (RBL) method, the results given by the modified CBBL were also improved significantly for the HPLC systems studied in this work.

  5. Background Opacities

    NARCIS (Netherlands)

    Kamp, I.; Monier, R.; Smalley, B.; Wahlgren, G.; Stee, Ph.

    2010-01-01

    In NLTE computations of trace elements in stellar atmospheres, background opacities are generally treated in LTE. It is thus important to assess the impact of different methods of including this background opacity on the statistical equilibrium of the trace element and its resulting NLTE abundance.

  6. Cellular host responses to gliomas.

    Directory of Open Access Journals (Sweden)

    Joseph Najbauer

    Full Text Available BACKGROUND: Glioblastoma multiforme (GBM is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. METHODOLOGY/PRINCIPAL FINDINGS: Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a 'network' with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a 'pair-wise' manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a low-generation tumors (first in vivo passage in rats were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b high-generation xenografts (fifth passage had pronounced cellularity, were angiogenic with 'glomerulus-like' microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  7. Genetic tools link long-term demographic and life-history traits of anemonefish to their anemone hosts

    KAUST Repository

    Salles, Océane C.

    2016-07-26

    The life-history traits and population dynamics of species are increasingly being attributed to the characteristics of their preferred habitats. While coral reef fish are often strongly associated with particular habitats, long-term studies establishing the demographic and life-history consequences of occupying different reef substrata are rare and no studies have monitored individuals in situ over their lifetime and determined the fate of their offspring. Here, we documented a quasi-turnover and local reproductive success for an entire population of orange clownfish (Amphiprion percula) from Kimbe Island, Papua New Guinea, by taking bi-annual samples of DNA over a 10-yr period (2003–2013). We compared demographic and life-history traits of individuals living on two host anemone species, Heteractis magnifica and Stichodactyla gigantea, including female size, adult continued presence (a proxy for relative longevity range), early post-settlement growth, the number of eggs per clutch and ‘local’ reproductive success (defined for each adult as the number of offspring returning to the natal population). Our results indicate that while the relative longevity of adults was similar on both host anemone species, females living in H. magnifica were larger than females in S. gigantea. However, despite females growing larger and producing more eggs on H. magnifica, we found that local reproductive success was significantly higher for clownfish living in S. gigantea. Life-history traits also exhibited local spatial variation, with higher local reproductive success recorded for adults living on S. gigantea on the eastern side of the island. Our findings support a ‘silver-spoon’ hypothesis that predicts individuals that are fortunate enough to recruit into good habitat and location will be rewarded with higher long-term reproductive success and will make a disproportionate contribution to population renewal. © 2016 Springer-Verlag Berlin Heidelberg

  8. Background Material

    DEFF Research Database (Denmark)

    Zandersen, Marianne; Hyytiäinen, Kari; Saraiva, Sofia

    This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders.......This document serves as a background material to the BONUS Pilot Scenario Workshop, which aims to develop harmonised regional storylines of socio-ecological futures in the Baltic Sea region in a collaborative effort together with other BONUS projects and stakeholders....

  9. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  10. Association among genetic predisposition, gut microbiota, and host immune response in the etiopathogenesis of inflammatory bowel disease.

    Science.gov (United States)

    Basso, P J; Fonseca, M T C; Bonfá, G; Alves, V B F; Sales-Campos, H; Nardini, V; Cardoso, C R B

    2014-09-01

    Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disorder that affects thousands of people around the world. These diseases are characterized by exacerbated uncontrolled intestinal inflammation that leads to poor quality of life in affected patients. Although the exact cause of IBD still remains unknown, compelling evidence suggests that the interplay among immune deregulation, environmental factors, and genetic polymorphisms contributes to the multifactorial nature of the disease. Therefore, in this review we present classical and novel findings regarding IBD etiopathogenesis. Considering the genetic causes of the diseases, alterations in about 100 genes or allelic variants, most of them in components of the immune system, have been related to IBD susceptibility. Dysbiosis of the intestinal microbiota also plays a role in the initiation or perpetuation of gut inflammation, which develops under altered or impaired immune responses. In this context, unbalanced innate and especially adaptive immunity has been considered one of the major contributing factors to IBD development, with the involvement of the Th1, Th2, and Th17 effector population in addition to impaired regulatory responses in CD or UC. Finally, an understanding of the interplay among pathogenic triggers of IBD will improve knowledge about the immunological mechanisms of gut inflammation, thus providing novel tools for IBD control.

  11. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits, Texas Coastal Plain, USA

    Science.gov (United States)

    Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark

    2017-01-01

    The coincidence of a number of geologic and climatic factors combined to create conditions favorable for the development of mineable concentrations of uranium hosted by Eocene through Pliocene sandstones in the Texas Coastal Plain. Here 254 uranium occurrences, including 169 deposits, 73 prospects, 6 showings and 4 anomalies, have been identified. About 80 million pounds of U3O8 have been produced and about 60 million pounds of identified producible U3O8 remain in place. The development of economic roll-type uranium deposits requires a source, large-scale transport of uranium in groundwater, and deposition in reducing zones within a sedimentary sequence. The weight of the evidence supports a source from thick sequences of volcanic ash and volcaniclastic sediment derived mostly from the Trans-Pecos volcanic field and Sierra Madre Occidental that lie west of the region. The thickest accumulations of source material were deposited and preserved south and west of the San Marcos arch in the Catahoula Formation. By the early Oligocene, a formerly uniformly subtropical climate along the Gulf Coast transitioned to a zoned climate in which the southwestern portion of Texas Coastal Plain was dry, and the eastern portion humid. The more arid climate in the southwestern area supported weathering of volcanic ash source rocks during pedogenesis and early diagenesis, concentration of uranium in groundwater and movement through host sediments. During the middle Tertiary Era, abundant clastic sediments were deposited in thick sequences by bed-load dominated fluvial systems in long-lived channel complexes that provided transmissive conduits favoring transport of uranium-rich groundwater. Groundwater transported uranium through permeable sandstones that were hydrologically connected with source rocks, commonly across formation boundaries driven by isostatic loading and eustatic sea level changes. Uranium roll fronts formed as a result of the interaction of uranium-rich groundwater

  12. Differential Insulin Secretion of High-Fat Diet-Fed C57BL/6NN and C57BL/6NJ Mice: Implications of Mixed Genetic Background in Metabolic Studies.

    Directory of Open Access Journals (Sweden)

    Camille Attané

    Full Text Available Many metabolic studies employ tissue-specific gene knockout mice, which requires breeding of floxed gene mice, available mostly on C57BL/6N (NN genetic background, with cre or Flp recombinase-expressing mice, available on C57BL/6J (JJ background, resulting in the generation of mixed C57BL/6NJ (NJ genetic background mice. Recent awareness of many genetic differences between NN and JJ strains including the deletion of nicotinamide nucleotide transhydrogenase (nnt, necessitates examination of the consequence of mixed NJ background on glucose tolerance, beta cell function and other metabolic parameters. Male mice with NN and NJ genetic background were fed with normal or high fat diets (HFD for 12 weeks and glucose and insulin homeostasis were studied. Genotype had no effect on body weight and food intake in mice fed normal or high fat diets. Insulinemia in the fed and fasted states and after a glucose challenge was lower in HFD-fed NJ mice, even though their glycemia and insulin sensitivity were similar to NN mice. NJ mice showed mild glucose intolerance. Moreover, glucose- but not KCl-stimulated insulin secretion in isolated islets was decreased in HFD-fed NJ vs NN mice without changes in insulin content and beta cell mass. Under normal diet, besides reduced fed insulinemia, NN and NJ mice presented similar metabolic parameters. However, HFD-fed NJ mice displayed lower fed and fasted insulinemia and glucose-induced insulin secretion in vivo and ex vivo, as compared to NN mice. These results strongly caution against using unmatched mixed genetic background C57BL/6 mice for comparisons, particularly under HFD conditions.

  13. The genomes of closely related Pantoea ananatis maize seed endophytes having different effects on the host plant differ in secretion system genes and mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Raheleh eSheibani-Tezerji

    2015-05-01

    Full Text Available The seed as a habitat for microorganisms is as yet under-explored and has quite distinct characteristics as compared to other vegetative plant tissues. In this study, we investigated three closely related P. ananatis strains (named S6, S7 and S8, which were isolated from maize seeds of healthy plants. Plant inoculation experiments revealed that each of these strains exhibited a different phenotype ranging from weak pathogenic (S7, commensal (S8, to a beneficial, growth-promoting effect (S6 in maize. We performed a comparative genomics analysis in order to find genetic determinants responsible for the differences observed. Recent studies provided exciting insight into the genetic drivers of niche adaption and functional diversification of the genus Pantoea. However, we report here for the first time on the analysis of P. ananatis strains colonizing the same ecological niche but showing distinct interaction strategies with the host plant. Our comparative analysis revealed that genomes of these three strains are highly similar. However, genomic differences in genes encoding protein secretion systems and putative effectors, and transposase/integrases/phage related genes could be observed.

  14. The Recently Discovered Bokeloh Bat Lyssavirus: Insights Into Its Genetic Heterogeneity and Spatial Distribution in Europe and the Population Genetics of Its Primary Host.

    Science.gov (United States)

    Eggerbauer, Elisa; Troupin, Cécile; Passior, Karsten; Pfaff, Florian; Höper, Dirk; Neubauer-Juric, Antonie; Haberl, Stephanie; Bouchier, Christiane; Mettenleiter, Thomas C; Bourhy, Hervé; Müller, Thomas; Dacheux, Laurent; Freuling, Conrad M

    2017-01-01

    In 2010, a novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a Natterer's bat (Myotis nattereri) in Germany. Two further viruses were isolated in the same country and in France in recent years, all from the same bat species and all found in moribund or dead bats. Here we report the description and the full-length genome sequence of five additional BBLV isolates from Germany (n=4) and France (n=1). Interestingly, all of them were isolated from the Natterer's bat, except one from Germany, which was found in a common Pipistrelle bat (Pipistrellus pipistrellus), a widespread and abundant bat species in Europe. The latter represents the first case of transmission of BBLV to another bat species. Phylogenetic analysis clearly demonstrated the presence of two different lineages among this lyssavirus species: lineages A and B. The spatial distribution of these two lineages remains puzzling, as both of them comprised isolates from France and Germany; although clustering of isolates was observed on a regional scale, especially in Germany. Phylogenetic analysis based on the mitochondrial cytochrome b (CYTB) gene from positive Natterer's bat did not suggest a circulation of the respective BBLV sublineages in specific Natterer's bat subspecies, as all of them were shown to belong to the M. nattereri sensu stricto clade/subspecies and were closely related (German and French positive bats). At the bat host level, we demonstrated that the distribution of BBLV at the late stage of the disease seems large and massive, as viral RNA was detected in many different organs. © 2017 Elsevier Inc. All rights reserved.

  15. Blood clearance of the prion protein introduced by intravenous route in sheep is influenced by host genetic and physiopathologic factors.

    Science.gov (United States)

    Gayrard, Véronique; Picard-Hagen, Nicole; Viguié, Catherine; Jeunesse, Elisabeth; Tabouret, Guillaume; Rezaei, Human; Toutain, Pierre-Louis

    2008-04-01

    The risk of transmissible spongiform encephalopathy (TSE) transmission by blood transfusion is dependent on the blood concentrations of the pathologic isoform of prion protein (PrPsc) but may also be influenced by blood concentrations of cellular PrP (PrPc). These concentrations are controlled by the blood clearance of PrP, which has never been evaluated. The blood (actually plasma) clearance of ovine purified prokaryote recombinant PrP (rPrP) was measured in genotyped and in nephrectomized sheep. The exposure to proteinase K-resistant fragments of PrP (PrPres) after intravenous (IV) administration of scrapie-associated fibrils (SAFs) was also investigated in a sheep. The ARR variant of rPrP was eliminated more rapidly than its VRQ counterpart. The PrPc plasma concentrations in homozygous highly susceptible VRQ sheep were greater than in homozygous ARR-resistant sheep, suggesting that clearance of the ARR variant of PrPc was higher than that of the VRQ variant. The plasma clearance of rPrP was decreased by 52 percent after a bilateral nephrectomy indicating the significant contribution of the kidneys in eliminating rPrP. PrPres was shown to be slowly eliminated after IV administration of scrapie-associated fibrils. PrP host genotype and physiopathologic factors could influence the risk of TSE transmission by modulating blood PrP clearance. This risk was increased by the sustained exposure to PrPres after IV administration. It should be noted that although the materials that have been administered (rPrP and SAFs) were not the actual species of interest, they can be of value as probes for investigating PrP clearance mechanisms.

  16. Genetics

    Science.gov (United States)

    ... Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... mother and medications). These include: Asthma Cancer Coronary heart disease Diabetes Hypertension Stroke MITOCHONDRIAL DNA-LINKED DISORDERS Mitochondria ...

  17. Genetic barcoding of marine leeches (Ozobranchus spp.) from Florida sea turtles and their divergence in host specificity.

    Science.gov (United States)

    McGowin, Audrey E; Truong, Triet M; Corbett, Adrian M; Bagley, Dean A; Ehrhart, Llewellyn M; Bresette, Michael J; Weege, Steven T; Clark, Dave

    2011-03-01

    Ozobranchus margoi and Ozobranchus branchiatus are the only two species of marine turtle leeches (Ozobranchus spp.) known to inhabit the Atlantic coast of the United States and the Gulf of Mexico. In early reports of fibropapillomatosis (FP) in green turtles (Chelonia mydas), O. branchiatus was implicated as a vector in the transmission of Fibropapilloma-associated turtle herpesvirus (FPTHV). It is imperative that the leech species be identified to elucidate the role Ozobranchus spp. may play in disease transmission. In this study, Ozobranchus branchiatus has been identified for the first time on a loggerhead (Caretta caretta) turtle, and the molecular data for this species is now available for the first time in GenBank. Both species of leeches were also found infecting a single C. mydas. Using morphological taxonomy combined with distance- and character-based genetic sequence analyses, this study has established a DNA barcode for both species of Ozobranchus spp. leech and has shown it can be applied successfully to the identification of leeches at earlier stages of development when morphological taxonomy cannot be employed. The results suggest a different haplotype may exist for O. branchiatus leeches found on C. caretta versus C. mydas. Leech cocoon residue collected from a C. mydas was identified using the new method. © 2010 Blackwell Publishing Ltd.

  18. A Statistical Framework for Microbial Source Attribution: Measuring Uncertainty in Host Transmission Events Inferred from Genetic Data (Part 2 of a 2 Part Report)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J; Velsko, S

    2009-11-16

    This report explores the question of whether meaningful conclusions can be drawn regarding the transmission relationship between two microbial samples on the basis of differences observed between the two sample's respective genomes. Unlike similar forensic applications using human DNA, the rapid rate of microbial genome evolution combined with the dynamics of infectious disease require a shift in thinking on what it means for two samples to 'match' in support of a forensic hypothesis. Previous outbreaks for SARS-CoV, FMDV and HIV were examined to investigate the question of how microbial sequence data can be used to draw inferences that link two infected individuals by direct transmission. The results are counter intuitive with respect to human DNA forensic applications in that some genetic change rather than exact matching improve confidence in inferring direct transmission links, however, too much genetic change poses challenges, which can weaken confidence in inferred links. High rates of infection coupled with relatively weak selective pressure observed in the SARS-CoV and FMDV data lead to fairly low confidence for direct transmission links. Confidence values for forensic hypotheses increased when testing for the possibility that samples are separated by at most a few intermediate hosts. Moreover, the observed outbreak conditions support the potential to provide high confidence values for hypothesis that exclude direct transmission links. Transmission inferences are based on the total number of observed or inferred genetic changes separating two sequences rather than uniquely weighing the importance of any one genetic mismatch. Thus, inferences are surprisingly robust in the presence of sequencing errors provided the error rates are randomly distributed across all samples in the reference outbreak database and the novel sequence samples in question. When the number of observed nucleotide mutations are limited due to characteristics of the

  19. Genetic characterization of oropharyngeal trichomonad isolates from wild birds indicates that genotype is associated with host species, diet and presence of pathognomonic lesions.

    Science.gov (United States)

    Martínez-Herrero, M C; Sansano-Maestre, J; López Márquez, I; Obón, E; Ponce, C; González, J; Garijo-Toledo, M M; Gómez-Muñoz, M T

    2014-01-01

    Oropharyngeal trichomonad isolates of wild birds from Spain were studied. A total of 1688 samples (1214 of predator birds and 474 of prey species) from wildlife recovery centres and scientific bird-ringing campaigns were analysed from 2011 to 2013. The overall infection prevalence was 20.3% (11.4% in predator birds and 43.3% in prey species). Pathognomonic lesions were present in 26% of the infected birds (57.3% in predator birds and 4.9% in prey species). The most commonly parasitized species were the goshawk (Accipiter gentilis, 74.5%) and the rock pigeon (Columba livia, 79.4%). Host species in which the parasite has not been previously analysed by polymerase chain reaction and sequencing in Spain are also reported: Columba palumbus, Streptopelia turtur, Pica pica, A. gentilis, Accipiter nisus, Asio otus, Bubo bubo, Buteo buteo, Circus aeruginosus, Circus cyaneus, Falco naumanni, Falco peregrinus, Neophron percnopterus, Otus scops, Pernis apivorus and Strix aluco. Sequence analysis of the ITS1/5.8S/ITS2 region revealed five different genotypes and also some mixed infections. A relationship between genotype and host species was observed, but only two genotypes (ITS-OBT-Tg-1and ITS-OBT-Tg-2) were widely distributed. Genotype ITS-OBT-Tg-1 was most frequently found in predator birds and statistically associated with pathognomonic lesions. Non-strict ornithophagous species were at higher risk to develop disease than ornithophagous ones. Genotypes ITS-OBT-Tcl-1 and ITS-OBT-Tcl-2 are new reports, and ITS-OBT-Tvl-5 is reported for the first time in Spain. They showed higher genetic homology to Trichomonas canistomae and Trichomonas vaginalis than to Trichomonas gallinae, indicating the possibility of new species within this genus.

  20. Molecular Characterization of Staphylococcus aureus Isolated from Bovine Mastitis and Close Human Contacts in South African Dairy Herds: Genetic Diversity and Inter-Species Host Transmission

    Science.gov (United States)

    Schmidt, Tracy; Kock, Marleen M.; Ehlers, Marthie M.

    2017-01-01

    Staphylococcus aureus is one of the most common etiological agents of contagious bovine mastitis worldwide. The purpose of this study was to genetically characterize a collection of S. aureus isolates (bovine = 146, human = 12) recovered from cases of bovine mastitis and nasal swabs of close human contacts in the dairy environment. Isolates were screened for a combination of clinically significant antimicrobial and virulence gene markers whilst the molecular epidemiology of these isolates and possible inter-species host transmission was investigated using a combination of genotyping techniques. None of the isolates under evaluation tested positive for methicillin or vancomycin resistance encoding genes. Twenty seven percent of the bovine S. aureus isolates tested positive for one or more of the pyrogenic toxin superantigen (PTSAg) genes with the sec and sell genes predominating. Comparatively, 83% of the human S. aureus isolates tested positive for one or more PTSAg genes with a greater variety of genes being detected. Genomic DNA macrorestriction followed by pulsed-field gel electrophoresis (PFGE) of the bovine isolates generated 58 electrophoretic patterns which grouped into 10 pulsotypes at an 80% similarity level. The majority of the bovine isolates, 93.2% (136/146), clustered into four major pulsotypes. Seven sequence types (ST) were identified among the representative bovine S. aureus isolates genotyped, including: ST8 (CC8), ST97 (CC97), ST351 (CC705), ST352 (CC97), ST508 (CC45), ST2992 (CC97) and a novel sequence type, ST3538 (CC97). Based on PFGE analysis, greater genetic diversity was observed among the human S. aureus isolates. Bovine and human isolates from three sampling sites clustered together and were genotypically indistinguishable. Two of the isolates, ST97 and ST352 belong to the common bovine lineage CC97, and their isolation from close human contacts suggests zoonotic transfer. In the context of this study, the third isolate, ST8 (CC8), is

  1. Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni.

    Science.gov (United States)

    Rinaldi, Gabriel; Yan, Hongbin; Nacif-Pimenta, Rafael; Matchimakul, Pitchaya; Bridger, Joanna; Mann, Victoria H; Smout, Michael J; Brindley, Paul J; Knight, Matty

    2015-07-01

    The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25°C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large. Copyright © 2015 Australian

  2. Multi-locus genotypes of Enterocytozoon bieneusi in captive Asiatic black bears in southwestern China: High genetic diversity, broad host range, and zoonotic potential

    Science.gov (United States)

    Cao, Xuefeng; Song, Yuan; Wang, Wuyou; Huang, Xiangming; Liu, Xuehan; Hu, Yanchun; Fu, Hualin; He, Min; Wang, Ya; Zhang, Yue; Wu, Kongju; Peng, Guangneng

    2017-01-01

    Enterocytozoon bieneusi is an obligate eukaryotic intracellular parasite that infects a wide variety of vertebrate and invertebrate hosts. Although considerable research has been conducted on this organism, relatively little information is available on the occurrence of E. bieneusi in captive Asiatic black bears. The present study was performed to determine the prevalence, genetic diversity, and zoonotic potential of E. bieneusi in captive Asiatic black bears in zoos in southwestern China. Fecal specimens from Asiatic black bears in four zoos, located in four different cities, were collected and analyzed for the prevalence of E. bieneusi. The average prevalence of E. bieneusi was 27.4% (29/106), with the highest prevalence in Guiyang Zoo (36.4%, 16/44). Altogether, five genotypes of E. bieneusi were identified among the 29 E. bieneusi-positive samples, including three known genotypes (CHB1, SC02, and horse2) and two novel genotypes named ABB1 and ABB2. Multi-locus sequence typing using three microsatellites (MS1, MS3, and MS7) and one minisatellite (MS4) revealed V, III, V, and IV genotypes at these four loci, respectively. Phylogenetic analysis showed that the genotypes SC02 and ABB2 were clustered into group 1 of zoonotic potential, the genotypes CHB1 and ABB1 were clustered into a new group, and the genotype horse2 was clustered into group 6 of unclear zoonotic potential. In conclusion, this study identified two novel E. bieneusi genotypes in captive Asiatic black bears, and used microsatellite and minisatellite markers to reveal E. bieneusi genetic diversity. Moreover, our findings show that genotypes SC02 (identified in humans) and ABB2 belong to group 1 with zoonotic potential, suggesting the risk of transmission of E. bieneusi from Asiatic black bears to humans and other animals. PMID:28182656

  3. Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver.

    Directory of Open Access Journals (Sweden)

    Tetyana Kobets

    Full Text Available BACKGROUND: Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models. METHODS: We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem recombinant congenic (RC strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured. PRINCIPAL FINDINGS: Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain. CONCLUSION: Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.

  4. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity?

    Science.gov (United States)

    Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C.

    2010-01-01

    The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes. ?? 2010 Blackwell Publishing Ltd.

  5. Genetic, host, and environmental interactions in a 19 year old with severe chronic obstructive lung disease; observations regarding the pathophysiology of airflow obstruction

    Directory of Open Access Journals (Sweden)

    Grosu HB

    2012-06-01

    Full Text Available Horiana B Grosu,1 Jonathan Killam,2 Elvina Khusainova,3 James Lozada,1 Andrew Needelman,4 Edward Eden11Division of Pulmonary Critical Care and Sleep Medicine, 2Department of Radiology, 3Department of Medicine, St Luke's Roosevelt Hospital Center, New York, 4Mid Hudson Medical Group, Poughkeepsie, New York, USAAbstract: A case of a 19-year-old with severe chronic obstructive pulmonary disease is presented. This case illustrates genetic (severe alpha-1 antitrypsin deficiency and host factors (such as developmental diaphragmatic hernia and the innate response to injury, and environmental (high oxidative stress and lung injury interactions that lead to severe chronic obstructive lung disease. The development of chronic lung disease was caused by lung injury under high oxidative and inflammatory conditions in the setting of a diaphragmatic hernia. In the absence of normal alpha-1 antitrypsin levels, a pro-elastolytic environment in the early period of lung growth enhanced the development of severe hyperinflation and precocious airflow obstruction.Keywords: Swyer James Macleod syndrome, alpha-1 antitrypsin deficiency, bronchopulmonary dysplasia, chronic obstructive pulmonary disease

  6. Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: a GEHA study

    DEFF Research Database (Denmark)

    Rose, Giuseppina; Romeo, Giuseppe; Dato, Serena

    2010-01-01

    Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate....... We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs...... in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance...

  7. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  8. Complement genetics and host defence.

    Science.gov (United States)

    Lachmann, P J

    1990-12-01

    There is a surprisingly high frequency of allelic variation in complement proteins. The best candidate for a true selective polymorphism is that of C3. For C4 and factor B within the MHC it is more difficult to identify the effects of individual alleles. No evidence suggests other alleles of C4 (and C2) than the null alleles (or the two isoproteins C4A and C4B) to have any functional differences with resistance. Thus, the major functions of complement, as shown by the effects of deficiency, are to resist infection against bacteria and particularly against Neisseria, and to prevent immune complex disease. There are also undoubtedly balancing contributions to the pathogenesis of some infections and to all immune complex disease. Data from studies of C4 polymorphism and from the presence of control proteins on micro-organisms suggest there may be in addition more subtle contributions to immunity against a variety of other infections.

  9. Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background

    Directory of Open Access Journals (Sweden)

    Pietro Gramazio

    2017-08-01

    Full Text Available Advanced backcrosses (ABs and introgression lines (ILs of eggplant (Solanum melongena can speed up genetics and genomics studies and breeding in this crop. We have developed the first full set of ABs and ILs in eggplant using Solanum incanum, a wild eggplant that has a relatively high tolerance to drought, as a donor parent. The development of these ABs and IL eggplant populations had a low efficiency in the early stages, because of the lack of molecular markers and genomic tools. However, this dramatically improved after performing genotyping-by-sequencing in the first round of selfing, followed by high-resolution-melting single nucleotide polymorphism genotyping in subsequent selection steps. A set of 73 selected ABs covered 99% of the S. incanum genome, while 25 fixed immortal ILs, each carrying a single introgressed fragment in homozygosis, altogether spanned 61.7% of the S. incanum genome. The introgressed size fragment in the ILs contained between 0.1 and 10.9% of the S. incanum genome, with a mean value of 4.3%. Sixty-eight candidate genes involved in drought tolerance were identified in the set of ILs. This first set of ABs and ILs of eggplant will be extremely useful for the genetic dissection of traits of interest for eggplant, and represents an elite material for introduction into the breeding pipelines for developing new eggplant cultivars adapted to the challenges posed by the climate-change scenario.

  10. Sex-specific effects of a parasite evolving in a female-biased host population

    Directory of Open Access Journals (Sweden)

    Duneau David

    2012-12-01

    Full Text Available Abstract Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration, which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  11. Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation

    Directory of Open Access Journals (Sweden)

    Yockteng Roxana

    2008-03-01

    Full Text Available Abstract Background Using phylogenetic approaches, the expectation that parallel cladogenesis should occur between parasites and hosts has been validated in some studies, but most others provided evidence for frequent host shifts. Here we examine the evolutionary history of the association between Microbotryum fungi that cause anther smut disease and their Caryophyllaceous hosts. We investigated the congruence between host and parasite phylogenies, inferred cospeciation events and host shifts, and assessed whether geography or plant ecology could have facilitated the putative host shifts identified. For cophylogeny analyses on microorganisms, parasite strains isolated from different host species are generally considered to represent independent evolutionary lineages, often without checking whether some strains actually belong to the same generalist species. Such an approach may mistake intraspecific nodes for speciation events and thus bias the results of cophylogeny analyses if generalist species are found on closely related hosts. A second aim of this study was therefore to evaluate the impact of species delimitation on the inferences of cospeciation. Results We inferred a multiple gene phylogeny of anther smut strains from 21 host plants from several geographic origins, complementing a previous study on the delimitation of fungal species and their host specificities. We also inferred a multi-gene phylogeny of their host plants, and the two phylogenies were compared. A significant level of cospeciation was found when each host species was considered to harbour a specific parasite strain, i.e. when generalist parasite species were not recognized as such. This approach overestimated the frequency of cocladogenesis because individual parasite species capable of infecting multiple host species (i.e. generalists were found on closely related hosts. When generalist parasite species were appropriately delimited and only a single representative of

  12. Confirming candidate genes for longevity in Drosophila melanogaster using two different genetic backgrounds and selection methods

    DEFF Research Database (Denmark)

    Wit, Janneke; Frydenberg, Jane; Sarup, Pernille Merete

    2013-01-01

    Elucidating genes that affect life span or that can be used as biomarkers for ageing has received attention in diverse studies in recent years. Using model organisms and various approaches several genes have been linked to the longevity phenotype. For Drosophila melanogaster those studies have....... For about 50% of these we confirmed their potential as a candidate longevity gene. We found one robust candidate gene for longevity, CG32638. Three other genes, CG8934, mRpS10 and Spn43Ad, showed a tendency to be involved in life span determination in both backgrounds tested....

  13. Genetic Background and Expression of the New qepA4 Gene Variant Recovered in Clinical TEM-1- and CMY-2-Producing Escherichia coli

    Directory of Open Access Journals (Sweden)

    Vera Manageiro

    2017-10-01

    Full Text Available A new QepA4 variant was detected in an O86:H28 ST156-fimH38 Escherichia coli, showing a multidrug-resistance phenotype. PAβN inhibition of qepA4-harboring transconjugant resulted in increase of nalidixic acid accumulation. The qepA4 and catA1 genes were clustered in a 26.0-kp contig matching an IncF-type plasmid, and containing a Tn21-type transposon with multiple mobile genetic elements. This QepA variant is worrisome because these determinants might facilitate the selection of higher-level resistance mutants, playing a role in the development of resistance, and/or confer higher-level resistance to fluoroquinolones in association with chromosomal mutations.

  14. Ablation of the cardiac ryanodine receptor phospho-site Ser2808 does not alter the adrenergic response or the progression to heart failure in mice. Elimination of the genetic background as critical variable.

    Science.gov (United States)

    Alvarado, Francisco J; Chen, Xi; Valdivia, Héctor H

    2017-02-01

    Phosphorylation of the cardiac ryanodine receptor (RyR2) phospho-site S2808 has been touted by the Marks group as a hallmark of heart failure (HF) and a critical mediator of the physiological fight-or-flight response of the heart. In support of this hypothesis, mice unable to undergo phosphorylation at RyR2-S2808 (S2808A) were significantly protected against HF and displayed a blunted response to adrenergic stimulation. However, the issue remains highly controversial because several groups have been unable to reproduce these findings. An important variable not considered before is the genetic background of the mice used to obtain these divergent results. We backcrossed a RyR2-S2808A mouse into a congenic C57Bl/6 strain, the same strain used by the Marks group to conduct their experiments. We then performed several key experiments to confirm or discard the genetic background of the mouse as a relevant variable, including induction of HF by myocardial infarction and tests of integrity of adrenergic response. Congenic C57Bl/6 harboring the S2808A mutation showed similar echocardiographic parameters that indicated identical progression towards HF compared to wild type controls, and had a normal response to adrenergic stimulation in whole animal and cellular experiments. The genetic background of the different mouse models is unlikely to be the source of the divergent results obtained by the Marks group in comparison to several other groups. Cardiac adrenergic response and progression towards HF proceed unaltered in mice harboring the RyR2-S2808A mutation. Preventing RyR2-S2808 phosphorylation does not preclude a normal sympathetic response nor mitigates the pathophysiological consequences of MI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A rare G1P[6] super-short human rotavirus strain carrying an H2 genotype on the genetic background of a porcine rotavirus.

    Science.gov (United States)

    Do, Loan Phuong; Nakagomi, Toyoko; Nakagomi, Osamu

    2014-01-01

    Rotavirus strains with a rearranged 11th genome segment may show super-short RNA electropherotypes. Examples from human strains were limited to seven strains, 69M, 57M, B37, Mc345, AU19, B4106 and BE2001, which have a variety of G and P genotypes. AU19 is a rare G1P[6] human rotavirus strain detected in a Japanese infant with severe acute gastroenteritis. This study was undertaken to better understand the origin of AU19 by determining the genotype constellation of AU19. Upon nearly-full genome sequencing, AU19 had a G1-P[6]-I5-R1-C1-M1-A8-N1-T1-E1-H2 genotype constellation. Possession of I5 and A8 genotypes is indicative of its porcine rotavirus origin, whereas possession of H2 genotype is indicative of its DS-1 like human rotavirus origin. At the phylogenetic lineage level for the genome segments that share the genotype between porcine and human rotaviruses, the VP1-4, VP7, NSP3-4 genes were most closely related to those of porcine rotaviruses, but the origin of the NSP2 gene was inconclusive. As to the NSP5 gene, the lineage containing AU19 and the other three super-short human strains, 69M, 57M and B37, carrying the H2 genotype (H2b) clustered with the lineage to which DS-1- like short strains belonged (H2a) albeit with an insignificant bootstrap support. Taken all these observations together, AU19 was likely to emerge as a consequence of interspecies transmission of a porcine rotavirus to a child coupled with the acquisition of a rare H2b genotype by genetic reassortment probably from a co-circulating human strain. The addition of the AU19 NSP5 sequence to much homogeneous H2b genotypes shared by previous super-short rotavirus strains made the genetic diversity of H2b genotypes as diverse as that of the H2a genotype, lending support to the hypothesis that super-short strains carrying H2b genotype have long been circulating unnoticed in the human population. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A systematic analysis of TCA Escherichia coli mutants reveals suitable genetic backgrounds for enhanced hydrogen and ethanol production using glycerol as main carbon source.

    Science.gov (United States)

    Valle, Antonio; Cabrera, Gema; Muhamadali, Howbeer; Trivedi, Drupad K; Ratray, Nicholas J W; Goodacre, Royston; Cantero, Domingo; Bolivar, Jorge

    2015-09-01

    Biodiesel has emerged as an environmentally friendly alternative to fossil fuels; however, the low price of glycerol feed-stocks generated from the biodiesel industry has become a burden to this industry. A feasible alternative is the microbial biotransformation of waste glycerol to hydrogen and ethanol. Escherichia coli, a microorganism commonly used for metabolic engineering, is able to biotransform glycerol into these products. Nevertheless, the wild type strain yields can be improved by rewiring the carbon flux to the desired products by genetic engineering. Due to the importance of the central carbon metabolism in hydrogen and ethanol synthesis, E. coli single null mutant strains for enzymes of the TCA cycle and other related reactions were studied in this work. These strains were grown anaerobically in a glycerol-based medium and the concentrations of ethanol, glycerol, succinate and hydrogen were analysed by HPLC and GC. It was found that the reductive branch is the more relevant pathway for the aim of this work, with malate playing a central role. It was also found that the putative C4-transporter dcuD mutant improved the target product yields. These results will contribute to reveal novel metabolic engineering strategies for improving hydrogen and ethanol production by E. coli. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Genotype-specific interactions and the trade-off between host and parasite fitness

    Directory of Open Access Journals (Sweden)

    Shykoff Jacqui A

    2007-10-01

    Full Text Available Abstract Background Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica, a natural pathogen of the Brassicaceae Arabidopsis thaliana. Results We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb, although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant. Conclusion These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions

  18. Effect of the Winter Wheat Cheyenne 5A Substituted Chromosome on Dynamics of Abscisic Acid and Cytokinins in Freezing-Sensitive Chinese Spring Genetic Background

    Directory of Open Access Journals (Sweden)

    Balázs Kalapos

    2017-11-01

    Full Text Available The effect of short- and long-term cold treatment on the abscisic acid (ABA and cytokinin (CK metabolism, and their main biosynthesis- and signaling-related genes were investigated in freezing-sensitive and freezing-tolerant wheat genotypes. Varieties Cheyenne and Chinese Spring substituted with the 5A Cheyenne chromosome, which represented freezing-tolerant genotypes, were compared with the freezing-sensitive Chinese Spring. Hormone levels and gene expression data indicated that the short- and long-term cold treatments are associated with specific regulation of the accumulation of cold-protective proteins and phytohormone levels, as well as the expression profiles of the hormone-related genes. The significant differences were observed between the genotypes, and between their leaf and crown tissues, too. The level of dehydrins, including WCS120 protein, and expression of WCS120 gene were considerably higher in the freezing-tolerant genotypes after 21 days of cold treatment. Expression of Cor14b and CBF14, cold-responsive regulator genes, was increased by cold treatment in all genotypes, to higher extent in freezing-tolerant genotypes. Cluster analysis revealed that the tolerant genotypes had a similar response to cold treatment, regarding expression of the ABA and CK metabolic genes, as well as hormone levels in leaves. As far as hormone levels in crowns are concerned, however, the strongly freezing-tolerant Cheyenne variety clustered separately from the Chinese Spring and the substitution line, which were more similar to each other after both 1 and 21 days of cold treatment than to Cheyenne. Based on these results we concluded that the 5A chromosome of wheat might have both a direct and an indirect impact on the phytohormone-dependent cold-induced freezing tolerance. Based on the gene expression data, novel genetic markers could be developed, which may be used to determine the freezing tolerance level in a wide range of wheat varieties.

  19. Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model.

    Science.gov (United States)

    Flagel, Shelly B; Chaudhury, Sraboni; Waselus, Maria; Kelly, Rebeca; Sewani, Salima; Clinton, Sarah M; Thompson, Robert C; Watson, Stanley J; Akil, Huda

    2016-05-17

    This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with "temperament," including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor.

  20. Molecular and Functional Characterization of GR2-R1 Event Based Backcross Derived Lines of Golden Rice in the Genetic Background of a Mega Rice Variety Swarna.

    Directory of Open Access Journals (Sweden)

    Haritha Bollinedi

    Full Text Available Homozygous Golden Rice lines developed in the background of Swarna through marker assisted backcross breeding (MABB using transgenic GR2-R1 event as a donor for the provitamin A trait have high levels of provitamin A (up to 20 ppm but are dwarf with pale green leaves and drastically reduced panicle size, grain number and yield as compared to the recurrent parent, Swarna. In this study, we carried out detailed morphological, biochemical and molecular characterization of these lines in a quest to identify the probable reasons for their abnormal phenotype. Nucleotide blast analysis with the primer sequences used to amplify the transgene revealed that the integration of transgene disrupted the native OsAux1 gene, which codes for an auxin transmembrane transporter protein. Real time expression analysis of the transgenes (ZmPsy and CrtI driven by endosperm-specific promoter revealed the leaky expression of the transgene in the vegetative tissues. We propose that the disruption of OsAux1 disturbed the fine balance of plant growth regulators viz., auxins, gibberellic acid and abscisic acid, leading to the abnormalities in the growth and development of the lines homozygous for the transgene. The study demonstrates the conserved roles of OsAux1 gene in rice and Arabidopsis.

  1. Molecular and Functional Characterization of GR2-R1 Event Based Backcross Derived Lines of Golden Rice in the Genetic Background of a Mega Rice Variety Swarna.

    Science.gov (United States)

    Bollinedi, Haritha; S, Gopala Krishnan; Prabhu, Kumble Vinod; Singh, Nagendra Kumar; Mishra, Sushma; Khurana, Jitendra P; Singh, Ashok Kumar

    2017-01-01

    Homozygous Golden Rice lines developed in the background of Swarna through marker assisted backcross breeding (MABB) using transgenic GR2-R1 event as a donor for the provitamin A trait have high levels of provitamin A (up to 20 ppm) but are dwarf with pale green leaves and drastically reduced panicle size, grain number and yield as compared to the recurrent parent, Swarna. In this study, we carried out detailed morphological, biochemical and molecular characterization of these lines in a quest to identify the probable reasons for their abnormal phenotype. Nucleotide blast analysis with the primer sequences used to amplify the transgene revealed that the integration of transgene disrupted the native OsAux1 gene, which codes for an auxin transmembrane transporter protein. Real time expression analysis of the transgenes (ZmPsy and CrtI) driven by endosperm-specific promoter revealed the leaky expression of the transgene in the vegetative tissues. We propose that the disruption of OsAux1 disturbed the fine balance of plant growth regulators viz., auxins, gibberellic acid and abscisic acid, leading to the abnormalities in the growth and development of the lines homozygous for the transgene. The study demonstrates the conserved roles of OsAux1 gene in rice and Arabidopsis.

  2. Vulnerability to depression: A moderated mediation model of the roles of child maltreatment, peer victimization, and 5-HTTLPR genetic variation among children from low-SES backgrounds

    Science.gov (United States)

    Banny, Adrienne M.; Cicchetti, Dante; Rogosch, Fred A.; Oshri, Assaf; Crick, Nicki R.

    2014-01-01

    Child maltreatment, peer victimization, and a polymorphism of the serotonin transporter gene (5-HTTLPR) were examined as predictors of depressive symptomatology. Children (M age = 11.26, SD = 1.65), including 156 maltreated and 145 nonmaltreated children from comparable low socioeconomic backgrounds, provided DNA samples and self-reports of relational peer victimization, overt peer victimization, and depressive symptoms. Path analysis showed that relational and overt victimization mediated the association between child maltreatment and depressive symptoms. Bootstrapping procedures were used to test moderated mediation and demonstrated that genotype moderated the indirect effects of relational and overt victimization on child depressive symptoms, such that victimized children with the l/l variation were at an increased risk for depressive symptoms compared to victimized children carrying an s allele. Results highlight the utility of examining process models that incorporate biological and psychological factors contributing to the development of depressive symptomatology, and provide direction toward understanding and promoting resilience among high risk youth from a multiple levels of analysis approach. PMID:23880379

  3. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  4. Metabolic and clinical response to Escherichia coli lipopolysaccharide in layer pullets of different genetic backgrounds supplied with graded dietary L-arginine.

    Science.gov (United States)

    Lieboldt, M A; Frahm, J; Halle, I; Görs, S; Schrader, L; Weigend, S; Preisinger, R; Metges, C C; Breves, G; Dänicke, S

    2016-03-01

    L-arginine (Arg) is an essential amino acid in birds that plays a decisive role in avian protein synthesis and immune response. Effects of graded dietary Arg supply on metabolic and clinical response to Escherichia coli lipopolysaccharide (LPS) were studied over 48 hours after a single intramuscular LPS injection in 18-week-old genetically diverse purebred pullets. LPS induced a genotype-specific fever response within 4 hours post injectionem. Whereas brown genotypes showed an initial hypothermia followed by longer-lasting moderate hyperthermia, white genotypes exhibited a biphasic hyperthermia without initial hypothermia. Furthermore, within 2 hours after LPS injection, sickness behavior characterized by lethargy, anorexia, intensified respiration, and ruffled feathers appeared, persisted for 3 to 5 hours and recovered 12 hours post injectionem. The varying grades of Arg did not alter the examined traits named above, whereas insufficient Arg reduced body growth and increased relative weights of liver and pancreas significantly. At 48 hours post injectionem, increased relative weights of liver and spleen were also found in LPS treated pullets, whereas LPS decreased those of pancreas, bursa, thymus, and cecal tonsils. Moreover, LPS lowered the sum of plasma amino acids and decreased plasma concentrations of Arg, citrulline, glutamate, methionine, ornithine, phenylalanine, proline, tryptophan, and tyrosine, and increased those of aspartate, glutamine, lysine, 1- and 3-methyl-histidine. Elevating concentrations of dietary Arg led to increasing plasma concentrations of Arg, citrulline, ornithine, and 3-methyl-histidine subsequently. As quantitative expression of LPS-induced anorexia, proteolysis, and the following changes in plasma amino acids, pullets showed a significant decrease of feed and nitrogen intake and catabolic metabolism characterized by negative nitrogen balance and body weight loss in the first 24 hours post injectionem. Pullets recovered from the

  5. Host Genotype and Microbiota Contribute Asymmetrically to Transcriptional Variation in the Threespine Stickleback Gut

    Science.gov (United States)

    Small, Clayton M.; Milligan-Myhre, Kathryn; Bassham, Susan; Guillemin, Karen

    2017-01-01

    Recent studies of interactions between hosts and their resident microbes have revealed important ecological and evolutionary consequences that emerge from these complex interspecies relationships, including diseases that occur when the interactions go awry. Given the preponderance of these interactions, we hypothesized that effects of the microbiota on gene expression in the developing gut—an important aspect of host biology—would be pervasive, and that these effects would be both comparable in magnitude to and contingent on effects of the host genetic background. To evaluate the effects of the microbiota, host genotype, and their interaction on gene expression in the gut of a genetically diverse, gnotobiotic host model, the threespine stickleback (Gasterosteus aculeatus), we compared RNA-seq data among 84 larval fish. Surprisingly, we found that stickleback population and family differences explained substantially more gene expression variation than the presence of microbes. Expression levels of 72 genes, however, were affected by our microbiota treatment. These genes, including many associated with innate immunity, comprise a tractable subset of host genetic factors for precise, systems-level study of host–microbe interactions in the future. Importantly, our data also suggest subtle signatures of a statistical interaction between host genotype and the microbiota on expression patterns of genetic pathways associated with innate immunity, coagulation and complement cascades, focal adhesion, cancer, and peroxisomes. These genotype-by-environment interactions may prove to be important leads to the understanding of host genetic mechanisms commonly at the root of sometimes complex molecular relationships between hosts and their resident microbes. PMID:28391321

  6. Host response in aggressive periodontitis.

    Science.gov (United States)

    Kulkarni, Cyelee; Kinane, Denis F

    2014-06-01

    It is critical to understand the underlying host responses in aggressive periodontitis to provide a better appreciation of the risk and susceptibility to this disease. Such knowledge may elucidate the etiology and susceptibility to aggressive periodontitis and directly influence treatment decisions and aid diagnosis. This review is timely in that several widely held tenets are now considered unsupportable, namely the concept that Aggregatibacter actinomycetemycomitans is the key pathogen and that chemotactic defects in polymorphonuclear leukocytes are part of the etiopathology. This review also serves to put into context key elements of the host response that may be implicated in the genetic background of aggressive periodontitis. Furthermore, key molecules unique to the host response in aggressive periodontitis may have diagnostic utility and be used in chairside clinical activity tests or as population screening markers. It is becoming increasingly appreciated that the microbial etiology of aggressive periodontitis and the histopathology of this disease are more similar to than different from that of chronic periodontitis. An important therapeutic consideration from the lack of support for A. actinomycetemycomitans as a critical pathogen here is that the widely held belief that tetracycline had a role in aggressive periodontitis therapy is now not supported and that antibiotics such as those used effectively in chronic periodontitis (metronidazole and amoxicillin) are not contraindicated. Furthermore, A. actinomycetemycomitans-related molecules, such as cytolethal distending toxin and leukotoxin, are less likely to have utility as diagnosis agents or as therapeutic targets. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Reef Endemism, Host Specificity and Temporal Stability in Populations of Symbiotic Dinoflagellates from Two Ecologically Dominant Caribbean Corals

    OpenAIRE

    Thornhill, Daniel J.; Yu Xiang; Fitt, William K.; Santos, Scott R.

    2009-01-01

    BACKGROUND: The dinoflagellate genus Symbiodinium forms symbioses with numerous protistan and invertebrate metazoan hosts. However, few data on symbiont genetic structure are available, hindering predictions of how these populations and their host associations will fair in the face of global climate change. METHODOLOGY/PRINCIPAL FINDINGS: Here, Symbiodinium population structure from two of the Caribbean's ecologically dominant scleractinian corals, Montastraea faveolata and M. annularis, was ...

  8. Developing smarter host mixtures to control plant disease

    National Research Council Canada - National Science Library

    Mikaberidze, A; McDonald, B. A; Bonhoeffer, S

    2015-01-01

    ...) is facilitated by the genetic uniformity underlying modern agroecosystems. One path to sustainable disease control lies in increasing genetic diversity at the field scale by using genetically diverse host mixtures...

  9. Generative electronic background music system

    Energy Technology Data Exchange (ETDEWEB)

    Mazurowski, Lukasz [Faculty of Computer Science, West Pomeranian University of Technology in Szczecin, Zolnierska Street 49, Szczecin, PL (Poland)

    2015-03-10

    In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.

  10. Epidemiological pattern of classical Borna disease and regional genetic clustering of Borna disease viruses point towards the existence of to-date unknown endemic reservoir host populations.

    Science.gov (United States)

    Dürrwald, Ralf; Kolodziejek, Jolanta; Muluneh, Aemero; Herzog, Sibylle; Nowotny, Norbert

    2006-03-01

    Classical Borna disease (cBD), a non-purulent encephalitis of solipeds and sheep, is endemic in certain areas of central Europe. The etiologic agent is Borna disease virus (BDV), thus far the only member of the family Bornaviridae. Based on epidemiological patterns of cBD and recent phylogenetic findings this review hypothesizes the possible existence of yet unknown BDV reservoir host populations, and analyzes critically BDVs from outside endemic regions.

  11. Asteroseismic Investigation of Known Planet Hosts in the Kepler Field

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Brown, T. M.

    2010-01-01

    Asteroseismic Investigation of Known Planet Hosts in the Kepler Field .a{background-color: #ffff88}.h{background-color: #ffff00}.b{background-color: #ccccff}.i{background-color: #3333ff}.c{background-color: #ffcccc}.j{background-color: #ff3333}.d{background-color: #bbffff}.k{background-color: #00...

  12. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (Central Portugal): genetic implications of crystal-chemical and isotopic features

    Science.gov (United States)

    da Costa, I. Ribeiro; Mourão, C.; Récio, C.; Guimarães, F.; Antunes, I. M.; Ramos, J. Farinha; Barriga, F. J. A. S.; Palmer, M. R.; Milton, J. A.

    2014-04-01

    Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl-oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17-57 %) and Mg/(Mg + Fe) ratios (0.19-0.50 in two-mica granitic rocks, and 0.05-0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (-78.2 ± 4.7 ‰) and δ11B (-10.7 to -9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31-0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = -29.5 ‰, and δ11B = -9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26-0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1-13.3 ‰), though wider-ranging δD (-58.5 to -36.5 ‰) and δ11B (-10.2 to -8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35-0.78] and oxydravite [Mg/(Mg + Fe) = 0.51-0.58], respectively. Boron contents of the granitic rocks are low (Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the

  13. The role of symbiont genetic distance and potential adaptability in host preference towards Pseudonocardia symbionts in Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael; Maynard, Janielle; Roland, Damien L.

    2011-01-01

    Fungus-growing ants display symbiont preference in behavioral assays, both towards the fungus they cultivate for food and Actinobacteria they maintain on their cuticle for antibiotic production against parasites. These Actinobacteria, genus Pseudonocardia Henssen (Pseudonocardiacea: Actinomycetales......), help defend the ants’ fungal mutualist from specialized parasites. In Acromyrmex Mayr (Hymenoptera: Formicidae) leaf-cutting ants, individual colonies maintain either a single or a few strains of Pseudonocardia, and the symbiont is primarily vertically transmitted between generations by colony...... with two non-native strains, elucidating the role of genetic distance on preference between strains and Pseudonocardia origin. Our findings suggest that ants tend to prefer bacteria more closely related to their native bacterium and that genetic similarity is probably more important than whether symbionts...

  14. Monitoring long-term evolutionary changes following Wolbachia introduction into a novel host: the Wolbachia popcorn infection in Drosophila simulans.

    Science.gov (United States)

    Carrington, Lauren B; Hoffmann, Ary A; Weeks, Andrew R

    2010-07-07

    Wolbachia may act as a biological control agent for pest management; in particular, the Wolbachia variant wMelPop (popcorn) shortens host longevity and may be useful for dengue suppression. However, long-term changes in the host and Wolbachia genomes can alter Wolbachia spread and/or host effects that suppress disease. Here, we investigate the phenotypic effects of wMelPop in a non-native host, Drosophila simulans, following artificial transinfection approximately 200 generations ago. Long-term rearing and maintenance of the bacteria were at 19 degrees C in the original I-102 genetic background that was transinfected with the popcorn strain. The bacteria were then introgressed into three massbred backgrounds, and tetracycline was used to create uninfected sublines. The effect of wMelPop on longevity in this species appears to have changed; longevity was no longer reduced at 25 degrees C in some nuclear backgrounds, reflecting different geographical origin, selection or drift, although the reduction was still evident for flies held at 30 degrees C. Wolbachia influenced productivity and viability, and development time in some host backgrounds. These findings suggest that long-term attenuation of Wolbachia effects may compromise the effectiveness of this bacterium in pest control. They also emphasize the importance of host nuclear background on Wolbachia phenotypic effects.

  15. Genetic parameters for FAMACHA score and related traits for host resistance/resilience and production at differing severities of worm challenge in a Merino flock in South Africa.

    Science.gov (United States)

    Riley, D G; Van Wyk, J A

    2009-09-16

    The objectives of this study were to estimate genetic parameters for FAMACHA score and related traits at different levels of worm challenge in sheep and to assess the effect of different methods for modelling records from treated lambs on estimates of genetic parameters. Data were collected over five consecutive Haemonchus seasons from a total of l671 Merino lambs using the FAMACHA clinical evaluation system, and anaemic individuals were treated as needed, until flock health necessitated mass treatment at the peak of the worm season. Records of each sampling occasion were classified into low, moderate, or peak levels of worm challenge. Animal models were run separately for traits within each data set. Alternative analyses were conducted in which records of treated lambs were (1) included without adjustment, (2) included along with a fixed effect representing treatment status of the lamb for each record, and (3) included after application of a penalty to offset any phenotypic improvement or advantage due to that treatment. Estimates of heritability for individual FAMACHA data sets ranged from 0.06+/-0.04 to 0.24+/-0.05, the highest estimates being obtained for peak worm challenge data. Estimates of genetic correlation for FAMACHA with other traits varied, but were always near negative unity for FAMACHA score with haematocrit value. When data of treated lambs were penalised, higher estimates of heritability were obtained than when not penalised, hence this may be an effective method for allowing for early treatment of overly susceptible animals before the level of worm challenge is at an optimum level for BLUP (Best Linear Unbiased Prediction) evaluation. The estimate of genetic correlation for FAMACHA score in moderate worm challenge with that in peak worm challenge was almost unity. This suggests that estimation of breeding values for this trait using data from moderate worm challenge may be as effective as that from peak challenge.

  16. A genetically distinct Schistosoma from Radix luteola from Nepal related to Schistosoma turkestanicum: A phylogenetic study of schistosome and snail host.

    Science.gov (United States)

    Devkota, Ramesh; Brant, Sara V; Loker, Eric S

    2016-12-01

    During a survey of freshwater snails in the Terai region of southern Nepal, 16 of 2588 specimens of Radix luteola from 4 different habitats were found to be shedding schistosome cercariae. None of the 1411 specimens of Radix acuminata we collected were positive for schistosomes. Analysis of 28S, cox1, 16S and 12S sequences indicated that all the R. luteola-derived schistosomes were genetically very similar to one another and, although unambiguously grouping most closely to the widespread Asian species Schistosoma turkestanicum, were clearly genetically distinct from it. We lack information from other life cycle stages to verify the specific identity of these cercariae, but it is possible they are of Schistosoma bomfordi or Schistosoma dattai, both species previously known only from northern India, the latter species known to infect R. luteola. This study provides sequence evidence for a third genetically distinct lymnaeid-transmitted Schistosoma lineage in Asia (to go along with S. turkestanicum and S. incognitum). As a close relative of S. turkestanicum, it provides the first direct molecular evidence to accompany morphological results from earlier studies for the presence of a S. turkestanicum species group in Asia. It increases to five the number of known or suspected mammalian schistosome species to be present in the Terai region of Nepal. Radix luteola and R. acuminata were identified and differentiated using conchological features and by molecular phylogenetic analyses of cox1 and 16S genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A novel Sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus

    DEFF Research Database (Denmark)

    Wang, Ying; Duan, Zhenhong; Zhu, Haojun

    2007-01-01

    An integrative non-conjugative extrachromosomal genetic element, denoted as pSSVi, has been isolated from a Sulfolobus solfataricus P2 strain and was characterized. This genetic element is a double-stranded DNA of 5740 bp in size and contains eight open reading frames (ORFs). It resembles members......1 and SSV2 appeared to replicate more efficiently in the presence of pSSVi. Given the versatile genetic abilities, pSSVi appears to be well suited for a role in horizontal gene transfer....... of the pRN plasmid family in genome organization but shows only weak similarity to the latter in conserved regions. pSSVi has a copG gene similar to that of a pRN plasmid, encodes a large replication protein which, unlike a typical pRN RepA, contains no polymerase/primase domain, and lacks the plrA gene....... Interestingly, pSSVi encodes an SSV-type integrase which probably catalyzes the integration of its genome into a specific site (a tRNA(Arg) gene) in the S. solfataricus P2 genome. Like pSSVx, pSSVi can be packaged into a spindle-like viral particle and spread with the help of SSV1 or SSV2. In addition, both SSV...

  18. Marker-Assisted Development and Evaluation of Near-Isogenic Lines for Broad-Spectrum Powdery Mildew Resistance Gene Pm2b Introgressed into Different Genetic Backgrounds of Wheat

    Directory of Open Access Journals (Sweden)

    Hongxing Xu

    2017-07-01

    Full Text Available At present, most of released wheat cultivars or breeding lines in China are susceptible to powdery mildew (Pm (caused by Blumeria graminis f. sp. tritici, Bgt, so there is an urgent need to rapidly transfer effective and broad-spectrum Pm resistance genes into elite cultivars/lines. Near-isogenic lines (NILs with short target gene region are very important in molecular breeding and map-based cloning and can be developed by combining marker-assisted selection and conventional phenotypic identification. However, no Pm gene NILs were reported by using this method in the previous studies. A new broad-spectrum dominant resistance gene Pm2b, derived from the Chinese wheat breeding line KM2939, conferred high resistance to Pm at both the seedling and adult stages. In this study, with the aid of forward and background selection (FS and BS using molecular markers, the Pm2b gene was introgressed into three elite susceptible commercial cultivars Shimai 15, Shixin 828, and Kenong 199 through the back-crossing procedure. With the appropriate backcrossing generations, selected population sizes and marker number for BS, the homozygous resistant BC3F2:3 NILs of Pm2b gene in the three genetic backgrounds with the highest recipient genome composition of about 99%, confirmed by simple sequence repeat markers and 660K single nucleotide polymorphic array, were developed and evaluated for the powdery mildew resistance and agronomic traits. The different resistance and similar or improved agronomic performance between Pm2b NILs and their corresponding recurrent parents indicated their potential value in the marker-assisted breeding of the Pm2b gene. Moreover, the development of four flanked diagnostic markers (CFD81, BWM25, BWM20, and BWM21 of the Pm2 gene can effectively assist the forward selection and accelerate the transfer and use of this resistance gene.

  19. Use of multi-trait and random regression models to identify genetic variation in tolerance to porcine reproductive and respiratory syndrome virus

    NARCIS (Netherlands)

    Lough, Graham; Rashidi, Hamed; Kyriazakis, Ilias; Dekkers, Jack C.M.; Hess, Andrew; Hess, Melanie; Deeb, Nader; Kause, Antti; Lunney, Joan K.; Rowland, Raymond R.R.; Mulder, Herman; Doeschl-Wilson, Andrea

    2017-01-01

    Background: A host can adopt two response strategies to infection: resistance (reduce pathogen load) and tolerance (minimize impact of infection on performance). Both strategies may be under genetic control and could thus be targeted for genetic improvement. Although there is evidence that

  20. Systematic genetic dissection of PTS in Vibrio cholerae uncovers a novel glucose transporter and a limited role for PTS during infection of a mammalian host.

    Science.gov (United States)

    Hayes, Chelsea A; Dalia, Triana N; Dalia, Ankur B

    2017-05-01

    A common mechanism for high affinity carbohydrate uptake in microbial species is the phosphoenolpyruvate-dependent phosphotransferase system (PTS). This system consists of a shared component, EI, which is required for all PTS transport, and numerous carbohydrate uptake transporters. In Vibrio cholerae, there are 13 distinct PTS transporters. Due to genetic redundancy within this system, the carbohydrate specificity of each of these transporters is not currently defined. Here, using multiplex genome editing by natural transformation (MuGENT), we systematically dissect PTS transport in V. cholerae. Specifically, we generated a mutant strain that lacks all 13 PTS transporters, and from this strain, we created a panel of mutants where each expresses a single transporter. Using this panel, we have largely defined the carbohydrate specificities of each PTS transporter. In addition, this analysis uncovered a novel glucose transporter. We have further defined the mechanism of this transporter and characterized its regulation. Using our 13 PTS transporter mutant, we also provide the first clear evidence that carbohydrate transport by the PTS is not essential during infection in an infant mouse model of cholera. In summary, this study shows how multiplex genome editing can be used to rapidly dissect complex biological systems and genetic redundancy in microbial systems. © 2017 John Wiley & Sons Ltd.

  1. Host cell invasion and oral infection by Trypanosoma cruzi strains of genetic groups TcI and TcIV from chagasic patients.

    Science.gov (United States)

    Maeda, Fernando Yukio; Clemente, Tatiana Mordente; Macedo, Silene; Cortez, Cristian; Yoshida, Nobuko

    2016-04-01

    Outbreaks of acute Chagas disease by oral infection have been reported frequently over the last ten years, with higher incidence in northern South America, where Trypanosoma cruzi lineage TcI predominates, being responsible for the major cause of resurgent human disease, and a small percentage is identified as TcIV. Mechanisms of oral infection and host-cell invasion by these parasites are poorly understood. To address that question, we analyzed T. cruzi strains isolated from chagasic patients in Venezuela, Guatemala and Brazil. Trypanosoma cruzi metacyclic trypomastigotes were orally inoculated into mice. The mouse stomach collected four days later, as well as the stomach and the heart collected 30 days post-infection, were processed for histological analysis. Assays to mimic parasite migration through the gastric mucus layer were performed by counting the parasites that traversed gastric mucin-coated transwell filters. For cell invasion assays, human epithelial HeLa cells were incubated with metacyclic forms and the number of internalized parasites was counted. All TcI and TcIV T. cruzi strains were poorly infective by the oral route. Parasites were either undetectable or were detected in small numbers in the mouse stomach four days post oral administration. Replicating parasites were found in the stomach and/or in the heart 30 days post-infection. As compared to TcI lineage, the migration capacity of TcIV parasites through the gastric mucin-coated filter was higher but lower than that exhibited by TcVI metacyclic forms previously shown to be highly infective by the oral route. Expression of pepsin-resistant gp90, the surface molecule that downregulates cell invasion, was higher in TcI than in TcIV parasites and, accordingly, the invasion capacity of TcIV metacyclic forms was higher. Gp90 molecules spontaneously released by TcI metacyclic forms inhibited the parasite entry into host cells. TcI parasites exhibited low intracellular replication rate. Our findings

  2. Evidence of expanded host range and mammalian-associated genetic changes in a duck H9N2 influenza virus following adaptation in quail and chickens.

    Directory of Open Access Journals (Sweden)

    Md Jaber Hossain

    Full Text Available H9N2 avian influenza viruses continue to circulate worldwide; in Asia, H9N2 viruses have caused disease outbreaks and established lineages in land-based poultry. Some H9N2 strains are considered potentially pandemic because they have infected humans causing mild respiratory disease. In addition, some of these H9N2 strains replicate efficiently in mice without prior adaptation suggesting that H9N2 strains are expanding their host range. In order to understand the molecular basis of the interspecies transmission of H9N2 viruses, we adapted in the laboratory a wildtype duck H9N2 virus, influenza A/duck/Hong Kong/702/79 (WT702 virus, in quail and chickens through serial lung passages. We carried out comparative analysis of the replication and transmission in quail and chickens of WT702 and the viruses obtained after 23 serial passages in quail (QA23 followed by 10 serial passages in chickens (QA23CkA10. Although the WT702 virus can replicate and transmit in quail, it replicates poorly and does not transmit in chickens. In contrast, the QA23CkA10 virus was very efficient at replicating and transmitting in quail and chickens. Nucleotide sequence analysis of the QA23 and QA23CkA10 viruses compared to the WT702 virus indicated several nucleotide substitutions resulting in amino acid changes within the surface and internal proteins. In addition, a 21-amino acid deletion was found in the stalk of the NA protein of the QA23 virus and was maintained without further modification in the QA23CkA10 adapted virus. More importantly, both the QA23 and the QA23CkA10 viruses, unlike the WT702 virus, were able to readily infect mice, produce a large-plaque phenotype, showed faster replication kinetics in tissue culture, and resulted in the quick selection of the K627 amino acid mammalian-associated signature in PB2. These results are in agreement with the notion that adaptation of H9 viruses to land-based birds can lead to strains with expanded host range.

  3. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model

    Science.gov (United States)

    Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu

    2017-10-01

    Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation

  4. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, Jennifer, E-mail: j.mahony@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Ainsworth, Stuart; Stockdale, Stephen [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Sinderen, Douwe van, E-mail: d.vansinderen@ucc.ie [Department of Microbiology, University College Cork, Western Road, Cork (Ireland); Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork, Western Road, Cork (Ireland)

    2012-12-20

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes, and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.

  5. Double-stranded RNA mycovirus infection of Aspergillus fumigatus is not dependent on the genetic make-up of the host.

    Directory of Open Access Journals (Sweden)

    Jeannine M Refos

    Full Text Available Aspergillus fumigatus is a fungus that causes opportunistic infections in immunocompromised patients, with high morbidity and mortality. In its turn, A. fumigatus can become infected with mycoviruses. Most mycoviruses have a dsRNA genome and can cause fungal hypovirulence. For that reason, mycoviruses could theoretically be used as therapeutic tools to combat fungal infections. We determined if a certain genetic make-up of A. fumigatus was associated with the presence of mycoviruses in 86 clinical A. fumigatus isolates. Mycovirus screening was performed by isolating dsRNA from mycelial cultures using a Trizol/Chloroform method. The genetic relatedness of dsRNA infected A. fumigatus was determined by cell surface protein (CSP typing and determination of the mating type. Sixteen (18.6% of the 86 clinical A. fumigatus isolates contained dsRNA. The A. fumigatus collection could be divided into 11 different CSP types. DsRNA infected A. fumigatus isolates had similar CSP types as non-infected isolates. In both cases, the CSP types t01, t02, t03 and t04 were the most prevalent and the distribution comparable to the CSP types observed in other Dutch collections. Mating types MAT1-1 and MAT1-2 were evenly distributed among all A. fumigatus strains, regardless of CSP type. No difference was observed in mycovirus infections between MAT1-1 and MAT1-2 isolates. DsRNA mycovirus infections in A. fumigatus are not related to either CSP or mating type and therefore represent an interesting future therapeutic tool to combat fungal infections.

  6. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development.

    Science.gov (United States)

    Tsetsarkin, Konstantin A; Kenney, Heather; Chen, Rubing; Liu, Guangping; Manukyan, Hasmik; Whitehead, Stephen S; Laassri, Majid; Chumakov, Konstantin; Pletnev, Alexander G

    2016-08-23

    An arthropod-borne virus, Zika virus (ZIKV), has recently emerged as a major human pathogen. Associated with complications during perinatal development and Guillain-Barré syndrome in adults, ZIKV raises new challenges for understanding the molecular determinants of flavivirus pathogenesis. This underscores the necessity for the development of a reverse genetic system based on an epidemic ZIKV strain. Here, we describe the generation and characterization in cell cultures of an infectious cDNA clone of ZIKV isolated from the 2015 epidemic in Brazil. The cDNA-derived ZIKV replicated efficiently in a variety of cell lines, including those of both neuronal and placental origin. We observed that the growth of cDNA-derived virus was attenuated compared to the growth of the parental isolate in most cell lines, which correlates with substantial differences in sequence heterogeneity between these viruses that were determined by deep-sequencing analysis. Our findings support the role of genetic diversity in maintaining the replicative fitness of viral populations under changing conditions. Moreover, these results indicate that caution should be exercised when interpreting the results of reverse-genetics experiments in attempts to accurately predict the biology of natural viruses. Finally, a Vero cell-adapted cDNA clone of ZIKV was generated that can be used as a convenient platform for studies aimed at the development of ZIKV vaccines and therapeutics. The availability of genetic tools and laboratory models determines the progress in understanding mechanisms of virus emergence and pathogenesis. Recent large-scale outbreaks of Zika virus (ZIKV) that were linked to complications during perinatal development and Guillain-Barré syndrome in adults emphasize the urgency for the development of a reverse-genetics system based on an epidemic ZIKV strain. Here, we report a stable infectious cDNA clone for ZIKV isolated during the 2015 epidemic in Brazil, as well as a Vero cell

  7. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the Ay allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss

    Science.gov (United States)

    2013-01-01

    Background Mice carrying the Ay allele at the agouti locus become obese and are heavier than their non-Ay littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-Ay females are heavier than DDD females, whereas DDD.Cg-Ay males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-Ay males. Results Growth curves of DDD.Cg-Ay mice were analyzed and compared with those of B6.Cg-Ay mice from 5 to 25 weeks. In DDD.Cg-Ay males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-Ay) F1-Ay mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the Ay allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC Ay males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-Ay males. Conclusions The lower body weight of DDD.Cg-Ay male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes

  8. A genetic variant in the IL-17 promoter is functionally associated with acute graft-versus-host disease after unrelated bone marrow transplantation.

    Directory of Open Access Journals (Sweden)

    J Luis Espinoza

    Full Text Available Interleukin IL-17 is a proinflammatory cytokine that has been implicated in the pathogenesis of various autoimmune diseases. The single nucleotide polymorphism (SNP, rs2275913, in the promoter region of the IL-17 gene is associated with susceptibility to ulcerative colitis. When we examined the impact of rs2275913 in a cohort consisting of 438 pairs of patients and their unrelated donors transplanted through the Japan Marrow Donor Program, the donor IL-17 197A allele was found to be associated with a higher risk of acute graft-versus-host disease (GVHD; hazard ratio [HR], 1.46; 95% confidence interval [CI], 1.00 to 2.13; P = 0.05. Next, we investigated the functional relevance of the rs2275913 SNP. In vitro stimulated T cells from healthy individuals possessing the 197A allele produced significantly more IL-17 than those without the 197A allele. In a gene reporter assay, the 197A allele construct induced higher luciferase activity than the 197G allele, and the difference was higher in the presence of T cell receptor activation and was abrogated by cyclosporine treatment. Moreover, the 197A allele displayed a higher affinity for the nuclear factor activated T cells (NFAT, a critical transcription factor involved in IL-17 regulation. These findings substantiate the functional relevance of the rs2275913 polymorphism and indicate that the higher IL-17 secretion by individuals with the 197A allele likely accounts for their increased risk for acute GVHD and certain autoimmune diseases.

  9. Chlamydia pneumoniae is genetically diverse in animals and appears to have crossed the host barrier to humans on (at least two occasions.

    Directory of Open Access Journals (Sweden)

    Candice M Mitchell

    2010-05-01

    Full Text Available Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial. Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non-Indigenous most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations. This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.

  10. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    Science.gov (United States)

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced the hosts' resistance

  11. Bacterial Communities Differ among Drosophila melanogaster Populations and Affect Host Resistance against Parasitoids.

    Directory of Open Access Journals (Sweden)

    Mariia Chaplinska

    Full Text Available In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects is a factor that may also exert a significant influence and is often overlooked. To test for population background effects, we characterized the bacterial communities in larvae of six genetically differentiated and geographically distant D. melanogaster lines collected from natural populations across Europe. The diet for these six lines had been identical for ca. 50 generations, thus any differences in the composition of the microbiome originates from the host populations. We also investigated whether induced shifts in the microbiome-in this case by controlled antibiotic administration-alters the hosts' resistance to parasitism. Our data revealed a clear signature of population background on the diversity and composition of D. melanogaster microbiome that differed across lines, even after hosts had been maintained at the same diet and laboratory conditions for over 4 years. In particular, the number of bacterial OTUs per line ranged from 8 to 39 OTUs. Each line harboured 2 to 28 unique OTUs, and OTUs that were highly abundant in some lines were entirely missing in others. Moreover, we found that the response to antibiotic treatment differed among the lines and significantly altered the host resistance to the parasitoid Asobara tabida in one of the six lines. Wolbachia, a widespread intracellular endosymbiont associated with parasitoid resistance, was lacking in this line, suggesting that other components of the Drosophila microbiome caused a change in host resistance. Collectively, our results revealed that lines that originate from different population backgrounds show significant differences in the established Drosophila microbiome, outpacing the long-term effect of diet. Perturbations on these naturally assembled microbiomes to some degree influenced

  12. Building Background Knowledge

    Science.gov (United States)

    Neuman, Susan B.; Kaefer, Tanya; Pinkham, Ashley

    2014-01-01

    This article make a case for the importance of background knowledge in children's comprehension. It suggests that differences in background knowledge may account for differences in understanding text for low- and middle-income children. It then describes strategies for building background knowledge in the age of common core standards.

  13. Genetic background (DDD/Sgn versus C57BL/6J) strongly influences postnatal growth of male mice carrying the A(y) allele at the agouti locus: identification of quantitative trait loci associated with diabetes and body weight loss.

    Science.gov (United States)

    Suto, Jun-ichi; Satou, Kunio

    2013-05-04

    Mice carrying the A(y) allele at the agouti locus become obese and are heavier than their non-A(y) littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-A(y) females are heavier than DDD females, whereas DDD.Cg-A(y) males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-A(y) males. Growth curves of DDD.Cg-A(y) mice were analyzed and compared with those of B6.Cg-A(y) mice from 5 to 25 weeks. In DDD.Cg-A(y) males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-A(y)) F(1)-A(y) mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the A(y) allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC A(y) males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-A(y) males. The lower body weight of DDD.Cg-A(y) male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL

  14. Molecular cytogenetic characterization of canine histiocytic sarcoma: A spontaneous model for human histiocytic cancer identifies deletion of tumor suppressor genes and highlights influence of genetic background on tumor behavior

    Directory of Open Access Journals (Sweden)

    Abadie Jerome

    2011-05-01

    Full Text Available Abstract Background Histiocytic malignancies in both humans and dogs are rare and poorly understood. While canine histiocytic sarcoma (HS is uncommon in the general domestic dog population, there is a strikingly high incidence in a subset of breeds, suggesting heritable predisposition. Molecular cytogenetic profiling of canine HS in these breeds would serve to reveal recurrent DNA copy number aberrations (CNAs that are breed and/or tumor associated, as well as defining those shared with human HS. This process would identify evolutionarily conserved cytogenetic changes to highlight regions of particular importance to HS biology. Methods Using genome wide array comparative genomic hybridization we assessed CNAs in 104 spontaneously occurring HS from two breeds of dog exhibiting a particularly elevated incidence of this tumor, the Bernese Mountain Dog and Flat-Coated Retriever. Recurrent CNAs were evaluated further by multicolor fluorescence in situ hybridization and loss of heterozygosity analyses. Statistical analyses were performed to identify CNAs associated with tumor location and breed. Results Almost all recurrent CNAs identified in this study were shared between the two breeds, suggesting that they are associated more with the cancer phenotype than with breed. A subset of recurrent genomic imbalances suggested involvement of known cancer associated genes in HS pathogenesis, including deletions of the tumor suppressor genes CDKN2A/B, RB1 and PTEN. A small number of aberrations were unique to each breed, implying that they may contribute to the major differences in tumor location evident in these two breeds. The most highly recurrent canine CNAs revealed in this study are evolutionarily conserved with those reported in human histiocytic proliferations, suggesting that human and dog HS share a conserved pathogenesis. Conclusions The breed associated clinical features and DNA copy number aberrations exhibited by canine HS offer a valuable model

  15. Antagonistic experimental coevolution with a parasite increases host recombination frequency

    Directory of Open Access Journals (Sweden)

    Kerstes Niels AG

    2012-02-01

    Full Text Available Abstract Background One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.

  16. Patterns of host adaptation in fly infecting Entomophthora species

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Jensen, Annette Bruun; Eilenberg, Jørgen

    .g. Entomophthora, Strongwellsea and Entomophaga). Species diversification of the obligate IPF within Entomophthoromycota thus seems to be primarily driven by co-evolutionary host adaptation to specific insect families, genera or species-complexes, but the underlying genetic factors of host adaptation...... in this fungal order are largely unknown and leave many unanswered questions. For example are the number of virulence factors increasing, or decreasing when fungal pathogens adapt to a narrow range of potential hosts? And, are host specialization based on many genetic changes with small effect or few with large...... differences and similarities in order to detect patterns of host-specific molecular adaptation....

  17. Road MAPs to engineer host microbiomes.

    Science.gov (United States)

    Oyserman, Ben O; Medema, Marnix H; Raaijmakers, Jos M

    2017-12-02

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the MAPs-first approach, a theoretical and experimental roadmap that involves quantitative profiling of MAPs across genetically variable hosts and subsequent identification of the underlying mechanisms. We outline strategies for developing 'modular microbiomes'-synthetic microbial consortia that are engineered in concert with the host genotype to confer different but mutually compatible MAPs to a single host or host population. By integrating host and microbial traits, these strategies will facilitate targeted engineering of microbiomes to the benefit of agriculture, human/animal health and biotechnology. Copyright © 2017. Published by Elsevier Ltd.

  18. RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant.

    Science.gov (United States)

    Krysciak, Dagmar; Grote, Jessica; Rodriguez Orbegoso, Mariita; Utpatel, Christian; Förstner, Konrad U; Li, Lei; Schmeisser, Christel; Krishnan, Hari B; Streit, Wolfgang R

    2014-09-01

    The alphaproteobacterium Sinorhizobium fredii NGR234 has an exceptionally wide host range, as it forms nitrogen-fixing nodules with more legumes than any other known microsymbiont. Within its 6.9-Mbp genome, it encodes two N-acyl-homoserine-lactone synthase genes (i.e., traI and ngrI) involved in the biosynthesis of two distinct autoinducer I-type molecules. Here, we report on the construction of an NGR234-ΔtraI and an NGR234-ΔngrI mutant and their genome-wide transcriptome analysis. A high-resolution RNA sequencing (RNA-seq) analysis of early-stationary-phase cultures in the NGR234-ΔtraI background suggested that up to 316 genes were differentially expressed in the NGR234-ΔtraI mutant versus the parent strain. Similarly, in the background of NGR234-ΔngrI 466 differentially regulated genes were identified. Accordingly, a common set of 186 genes was regulated by the TraI/R and NgrI/R regulon. Coregulated genes included 42 flagellar biosynthesis genes and 22 genes linked to exopolysaccharide (EPS) biosynthesis. Among the genes and open reading frames (ORFs) that were differentially regulated in NGR234-ΔtraI were those linked to replication of the pNGR234a symbiotic plasmid and cytochrome c oxidases. Biotin and pyrroloquinoline quinone biosynthesis genes were differentially expressed in the NGR234-ΔngrI mutant as well as the entire cluster of 21 genes linked to assembly of the NGR234 type III secretion system (T3SS-II). Further, we also discovered that genes responsible for rhizopine catabolism in NGR234 were strongly repressed in the presence of high levels of N-acyl-homoserine-lactones. Together with nodulation assays, the RNA-seq-based findings suggested that quorum sensing (QS)-dependent gene regulation appears to be of higher relevance during nonsymbiotic growth rather than for life within root nodules. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Cosmogenic Backgrounds to 0{\

    CERN Document Server

    :,; Auty, D J; Barbeau, P S; Beck, D; Belov, V; Breidenbach, M; Brunner, T; Burenkov, A; Cao, G F; Chambers, C; Cleveland, B; Coon, M; Craycraft, A; Daniels, T; Danilov, M; Daugherty, S J; Davis, J; Delaquis, S; Der Mesrobian-Kabakian, A; DeVoe, R; Didberidze, T; Dilling, J; Dolgolenko, A; Dolinski, M J; Dunford, M; Fairbank, W; Farine, J; Feldmeier, W; Feyzbakhsh, S; Fierlinger, P; Fudenberg, D; Gornea, R; Graham, K; Gratta, G; Hall, C; Herrin, S; Hughes, M; Jewell, M J; Johnson, A; Johnson, T N; Johnston, S; Karelin, A; Kaufman, L J; Killick, R; Koffas, T; Kravitz, S; Krücken, R; Kuchenkov, A; Kumar, K S; Leonard, D S; Licciardi, C; Lin, Y H; Ling, J; MacLellan, R; Marino, M G; Mong, B; Moore, D; Njoya, O; Nelson, R; Odian, A; Ostrovskiy, I; Piepke, A; Pocar, A; Prescott, C Y; Retière, F; Rowson, P C; Russell, J J; Schubert, A; Sinclair, D; Smith, E; Stekhanov, V; Tarka, M; Tolba, T; Tsang, R; Twelker, K; Vuilleumier, J -L; Waite, A; Walton, J; Walton, T; Weber, M; Wen, L J; Wichoski, U; Wood, J; Yang, L; Yen, Y -R; Zeldovich, O Ya

    2015-01-01

    As neutrinoless double-beta decay experiments become more sensitive and intrinsic radioactivity in detector materials is reduced, previously minor contributions to the background must be understood and eliminated. With this in mind, cosmogenic backgrounds have been studied with the EXO-200 experiment. Using the EXO-200 TPC, the muon flux (through a flat horizontal surface) underground at the Waste Isolation Pilot Plant (WIPP) has been measured to be {\\Phi} = 4.07 $\\pm$ 0.14 (sys) $\\pm$ 0.03 (stat) $\\times$ $10^{-7}$cm$^{-2}$ s$^{-1}$, with a vertical intensity of $I_{v}$ = 2.97$^{+0.14}_{-0.13}$ (sys) $\\pm$ 0.02 (stat) $\\times$ $10^{-7}$cm$^{-2}$ s$^{-1}$ sr$^{-1}$. Simulations of muon-induced backgrounds identified several potential cosmogenic radionuclides, though only 137Xe is a significant background for the 136Xe 0{\

  20. The Cosmic Microwave Background

    Science.gov (United States)

    Pierpaoli, E.

    2011-03-01

    In these lectures I present the physical aspects of the Cosmic Microwave Background primary and secondary anisotropies; the characteristics of the CMB power spectra and their dependence on cosmological parameters. I also discuss the observational status and future perspectives.