WorldWideScience

Sample records for host galaxy fields

  1. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  2. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...... - I colour than the eastern component, suggesting the presence of at least some dust. We do not detect the host galaxy of GRB 000301C in neither Lyalpha emission nor in U and I broad-band images. The strongest limit comes from combining the narrow and U-band imaging where we infer a limit of U...

  3. Star formation quenching in quasar host galaxies

    Science.gov (United States)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  4. Star Formation Quenching in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Carniani, Stefano, E-mail: sc888@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge (United Kingdom); Kavli Institute for Cosmology, University of Cambridge, Cambridge (United Kingdom)

    2017-10-16

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M{sub ⊙} yr{sup −1}, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  5. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  6. Star Formation Quenching in Quasar Host Galaxies

    International Nuclear Information System (INIS)

    Carniani, Stefano

    2017-01-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M ⊙ yr −1 , has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  7. Imaging of SDSS z > 6 Quasar Fields: Gravitational Lensing, Companion Galaxies, and the Host Dark Matter Halos

    Science.gov (United States)

    Willott, Chris J.; Percival, Will J.; McLure, Ross J.; Crampton, David; Hutchings, John B.; Jarvis, Matt J.; Sawicki, Marcin; Simard, Luc

    2005-06-01

    We have undertaken deep optical imaging observations of three 6.2dropouts is consistent with that found in random fields. We consider the expected dark matter halo masses that host these quasars under the assumption that a correlation between black hole mass and dark matter halo mass exists. We show that the steepness of the high-mass tail of the halo mass function at this redshift, combined with realistic amounts of scatter in this correlation, leads to expected halo masses substantially lower than previously believed. This analysis can explain the lack of companion galaxies found here and the low dynamical mass recently published for one of the quasars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina).

  8. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  9. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  10. Distant Galaxy Clusters Hosting Extreme Central Galaxies

    Science.gov (United States)

    McDonald, Michael

    2014-09-01

    The recently-discovered Phoenix cluster harbors the most star-forming central cluster galaxy of any cluster in the known Universe, by nearly a factor of 10. This extreme system appears to be fulfilling early cooling flow predictions, although the lack of similar systems makes any interpretation difficult. In an attempt to find other "Phoenix-like" clusters, we have cross-correlated archival all-sky surveys (in which Phoenix was detected) and isolated 4 similarly-extreme systems which are also coincident in position and redshift with an overdensity of red galaxies. We propose here to obtain Chandra observations of these extreme, Phoenix-like systems, in order to confirm them as relaxed, rapidly-cooling galaxy clusters.

  11. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  12. Study of GRBs Hosts Galaxies Vicinity Properties

    Science.gov (United States)

    Bernal, S.; Vasquez, N.; Hoyle, F.

    2017-07-01

    The study of GRBs host galaxies and its vicinity could provide constrains on the progenitor and an opportunity to use these violent explosions to characterize the nature of the highredshift universe. Studies of GRB host galaxies reveal a population of starforming galaxies with great diversity, spanning a wide range of masses, star formation rate, and redshifts. In order to study the galactic ambient of GRBs we used the S. Savaglio catalog from 2015 where 245 GRBs are listed with RA-Dec position and z. We choose 22 GRBs Hosts galaxies from Savaglio catalog and SDSS DR12, with z range 0population characteristics. We calculate the volumetric density populatation of glalaxies around the GRB Hosts within a volume of an sphere whit radius of 10 h-1 Mpc and find a low density compared with a typical group of galaxies. In order to know the galaxies stellar formation state, in regions where GRBs are formed, we made an analysis of color index using SDSS data of μ [λ 3543], r[λ 6231] and calculate the indexes μ-r. We find a value μ-r=2.63, it means that the galactic ambient of GRBs Host regions are statistically redder than void and wall regions on a indirect way (Voids:μ-r=2.043; Walls:μ-r=2.162). Futhermore, we used a inverse concentration index analysis, ICI=R50/R90 and find that galaxies in GRBs Hosts vicinity are also of slightly early type than void and wall galaxies. With this work we provide characteristics on the regions for future works related with highredsift universe that using the GRBs.

  13. Radio-continuum emission from quasar host galaxies

    International Nuclear Information System (INIS)

    Condon, J. J.; Gower, A. C.; Hutchings, J. B.; Victoria Univ., Canada; Dominion Astrophysical Observatory, Victoria)

    1987-01-01

    Seven low-redshift quasars that are likely to be in spiral galaxies have been observed in a search for radio-continuum emission from the host galaxies of quasars. The properties of the individual quasars are listed, and 1.49 GHz contour maps of the seven quasar fields are presented. Map parameters and radio source parameters are given along with optical images of three of the objects. The results indicate that these quasars probably do reside in spiral galaxies. The radio luminosities, sizes, orientations, and u values all indicate that relativistic beaming alone cannot be used to explain the differences between the present sources and the far stronger radio sources seen in blazars or larger optically selected quasar samples. However, an apparent correlation between the radio luminosity and the ratio of the optical nuclear to host-galaxy luminosity is consistent with some beaming of nuclear radiation. 26 references

  14. Gamma-Ray Burst Host Galaxies Have "Normal" Luminosities.

    Science.gov (United States)

    Schaefer

    2000-04-10

    The galactic environment of gamma-ray bursts can provide good evidence about the nature of the progenitor system, with two old arguments implying that the burst host galaxies are significantly subluminous. New data and new analysis have now reversed this picture: (1) Even though the first two known host galaxies are indeed greatly subluminous, the next eight hosts have absolute magnitudes typical for a population of field galaxies. A detailed analysis of the 16 known hosts (10 with redshifts) shows them to be consistent with a Schechter luminosity function with R*=-21.8+/-1.0, as expected for normal galaxies. (2) Bright bursts from the Interplanetary Network are typically 18 times brighter than the faint bursts with redshifts; however, the bright bursts do not have galaxies inside their error boxes to limits deeper than expected based on the luminosities for the two samples being identical. A new solution to this dilemma is that a broad burst luminosity function along with a burst number density varying as the star formation rate will require the average luminosity of the bright sample (>6x1058 photons s-1 or>1.7x1052 ergs s-1) to be much greater than the average luminosity of the faint sample ( approximately 1058 photons s-1 or approximately 3x1051 ergs s-1). This places the bright bursts at distances for which host galaxies with a normal luminosity will not violate the observed limits. In conclusion, all current evidence points to gamma-ray burst host galaxies being normal in luminosity.

  15. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    Science.gov (United States)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (GMOS z\\prime -band image (≃ 1\\buildrel{\\prime\\prime}\\over{.} 4 (4.6 kpc) at FWHM with ellipticity b/a=0.45). The spatial offset between the centroid of the Hα emission region and the position of the radio bursts is 0\\buildrel{\\prime\\prime}\\over{.} 08+/- 0\\buildrel{\\prime\\prime}\\over{.} 02 (0.26 ± 0.07 kpc), indicating that FRB 121102 is located within the star-forming region. This close spatial association of FRB 121102 with the star-forming region is consistent with expectations from young pulsar/magnetar models for FRB 121102, and it also suggests that the observed Hα emission region can make a major dispersion measure (DM) contribution to the host galaxy DM component of FRB 121102. Nevertheless, the largest possible value of the DM contribution from the Hα emission region inferred from our observations still requires a significant amount of ionized baryons in intergalactic medium (IGM; the so-called “missing” baryons) as the DM source of FRB 121102, and we obtain a 90% confidence level lower limit on the cosmic baryon density in the IGM in the low-redshift universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  16. Circumnuclear Structures in Megamaser Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pjanka, Patryk; Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Braatz, James A.; Lo, Fred K. Y. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Henkel, Christian [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Läsker, Ronald, E-mail: ppjanka@princeton.edu [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Kaarina (Finland)

    2017-08-01

    Using the Hubble Space Telescope , we identify circumnuclear (100–500 pc scale) structures in nine new H{sub 2}O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ∼100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  17. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    International Nuclear Information System (INIS)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2013-01-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M * /M ☉ ) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  18. A redshift determination of the host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y. [RIKEN, Saitama (Japan); Tokyo Institute of Technology, Tokyo (Japan). Department of Physics; Yoshida, A. [Aoyama Garkuin Univ., Kanagawa (Japan). Department of Physics; Yamada, T. [National Astronomical Observatory, Tokyo (Japan)] (and others)

    2005-07-15

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically {approx} 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 {+-} 0.4) x 10{sup 54} erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10{sup 51} ergs, their opening angle is calculated as {theta}{sub j} = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts.0.

  19. A redshift determination of the host galaxy

    International Nuclear Information System (INIS)

    Urata, Y.

    2005-01-01

    Using the Suprime-Cam on the Subaru telescope, we carried out deep multi band (V, R, I, z') imaging for the host galaxy of GRB980329, which is one of well studied optically dark gamma- ray bursts. The host galaxy was detected clearly in all bands. Combining these measurements with published near-infrared data, we determined the photometric redshift of the galaxy as z = 3.56 (3.21-3.79 at 90 range). The implied V-band extinction is rather low, typically ∼ 1 mag. At z = 3.56, the isotropic 40-700 keV total energy of GRB980329 is calculated as (2.1 ± 0.4) x 10 54 erg. Assuming that this GRB was emitted by a pair of jets with a total energy of 10 51 ergs, their opening angle is calculated as θ j = 2.1. The present results disfavor the high-redshift hypothesis and the high extinction scenario of optically dark bursts

  20. Black hole growth and starburst activity at z = 0.6-4 in the Chandra Deep Field South. Host galaxies properties of obscured AGN

    Science.gov (United States)

    Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.

    2009-12-01

    Aims: The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. Methods: We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. Results: We found that X-ray selected (LX ⪆ 1042 erg s-1) AGN show Spitzer colors consistent with both AGN and starburst dominated infrared continuum; the latter would not have been selected as AGN from infrared diagnostics. The host galaxies of X-ray selected obscured AGN are all massive (Mast > 1010 M_⊙) and, in 50% of the cases, are also actively forming stars (1/SSFR mass up to a value of 30% at z > 1 and Mast > 3 × 1011 M_⊙, a fraction significantly higher than in the local Universe for AGN of similar luminosities. Tables [see full textsee full textsee full text] and [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  1. Discovery of a bright quasar without a massive host galaxy.

    Science.gov (United States)

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  2. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... 980703 with any special features in the host. The host galaxy appears to be a typical example of a compact star forming galaxy similar to those found in the Hubble Deep Field North. The R-band light curve of the optical afterglow associated with this gamma-ray burst is consistent with a single power...

  3. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    Science.gov (United States)

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  4. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    Science.gov (United States)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  5. Spectroscopy of superluminous supernova host galaxies

    DEFF Research Database (Denmark)

    Leloudas, G.; Kruehler, T.; Schulze, S

    2015-01-01

    -poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe...

  6. Do Low Surface Brightness Galaxies Host Stellar Bars?

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-09-20

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  7. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo

    2017-01-01

    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  8. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ˜ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z˜ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm-3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  9. The Evolution of the Stellar Hosts of Radio Galaxies

    International Nuclear Information System (INIS)

    Lacy, Mark; Bunker, Andrew J.; Ridgway, Susan E.

    2000-01-01

    We present new near-infrared images of z>0.8 radio galaxies from the flux-limited 7C-iii sample of radio sources for which we have recently obtained almost complete spectroscopic redshifts. The 7C objects have radio luminosities ≅20 times fainter than 3C radio galaxies at a given redshift. The absolute magnitudes of the underlying host galaxies and their scale sizes are only weakly dependent on radio luminosity. Radio galaxy hosts at z∼2 are significantly brighter than the hosts of radio-quiet quasars at similar redshifts and the recent model AGN hosts of Kauffmann and Haehnelt. There is no evidence for strong evolution in scale size, which shows a large scatter at all redshifts. The hosts brighten significantly with redshift, consistent with the passive evolution of a stellar population that formed at z(greater-or-similar sign)3. This scenario is consistent with studies of host galaxy morphology and submillimeter continuum emission, both of which show strong evolution at z(greater-or-similar sign)2.5. The lack of a strong ''redshift cutoff'' in the radio luminosity function to z>4 suggests that the formation epoch of the radio galaxy host population lasts (greater-or-similar sign)1 Gyr, from z(greater-or-similar sign)5 to z∼3. We suggest these facts are best explained by models in which the most massive galaxies and their associated AGN form early because of high baryon densities in the centers of their dark matter haloes. (c) 2000 The American Astronomical Society

  10. LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Yasuda, Naoki; Fukugita, Masataka

    2010-01-01

    The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ≤ z ≤ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg 2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, R V , is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ∼0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar

  11. Spectro-photometric study of the GRB 030329 host galaxy

    International Nuclear Information System (INIS)

    Gorosabel, J.; Ramirez, D. Perez

    2005-01-01

    In this study we present optical/near-infrared (NIR) broad band photometry and optical spectroscopic observations of the GRB 030329 host galaxy. The Spectral Energy Distribution (SED) of the host is consistent with a starburst galaxy template with a dominant stellar population age of ∼ 150 Myr and an extinction A ν ∼ 0.6. Analysis of the spectral emission lines shows that the host is likely a low metallicity galaxy. Two independent diagnostics, based on the restframe UV continuum and the [OII] line flux, provide a consistent unextincted star formation rate of SFRN ∼ 0.6 Myr -1 . The low absolute magnitude of the host (M B ∼ -16.5) implies a high specific star formation rate value, SSFR ≅ 34 Myr -1 (L/L) -1

  12. Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    Science.gov (United States)

    Alger, M. J.; Banfield, J. K.; Ong, C. S.; Rudnick, L.; Wong, O. I.; Wolf, C.; Andernach, H.; Norris, R. P.; Shabala, S. S.

    2018-05-01

    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data.

  13. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  14. Hydrodynamic effects of nuclear active galaxy winds on host galaxies

    International Nuclear Information System (INIS)

    Schiano, A.V.R.

    1984-01-01

    In order to test the hypothesized existence of a powerful, thermal wind in active galactic nuclei, the hydrodynamic effects of such a wind on a model galactic interstellar medium (ISM) are investigated. The properties of several model ISMs are derived from observations of the Milky Way's ISM and those of nearby spiral and elliptical galaxies. The propagation of the wind into the low density gas component of the ISM is studied using the Kompaneets approximation of a strong explosion in an exponential atmosphere. Flattened gas distributions are shown to experience blow-out of wind gas along the symmetry axis. Next, the interaction of dense, interstellar clouds with the wind is investigated. The stability and mass loss of clouds in the wind are studied and it is proposed that clouds survive the encounter with the wind over large timescales. It is proposed that the narrow emission line regions (NELR) of active galaxies are the result of the interaction of active nuclei photons and a thermal wind on large, interstellar clouds

  15. Studies of faint field galaxies

    International Nuclear Information System (INIS)

    Ellis, R.S.

    1983-01-01

    Although claims are often made that photometric surveys of faint field galaxies reveal evidence for evolution over recent epochs (z<0.6), it has not yet been possible to select a single evolutionary model from comparisons with the data. Magnitude counts are sensitive to evolution but the data is well-mixed in distance because of the width of the luminosity function (LF). Colours can narrow the possibilities but the effects of redshift and morphology can only be separated using many passbands. In this paper, the author highlights two ways in which one can make further progress in this important subject. First, he discusses results based on the AAT redshift survey which comprises 5 Schmidt fields to J = 16.7 i.e. well beyond local inhomogeneities. Secondly, the difficulties in resolving the many possibilities encountered with faint photometry could be resolved with redshifts. To obtain redshift distributions for faint samples is now feasible via multi-object spectroscopy. At intermediate magnitudes (J=20) such distributions test the faint end of the galaxy LF; at faint magnitudes (J=22) they offer a direct evolutionary test. (Auth.)

  16. A Fast Radio Burst Host Galaxy

    OpenAIRE

    Keane, E. F.; Johnston, S.; Bhandari, S.; Barr, E.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Flynn, C.; Jameson, A.; Kramer, M.; Petroff, E.; Possenti, A.; van Straten, W.; Bailes, M.; Burke-Spolaor, S.

    2016-01-01

    In recent years, millisecond duration radio signals originating from distant galaxies appear to have been discovered in the so-called Fast Radio Bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity which, in tandem with a redshift measurement, can be used for fundamental physical investigations. While every fast radio burst has a dispersion measurement, none before now have had a redshift measurement, due to the difficulty in...

  17. STATISTICS OF SATELLITE GALAXIES AROUND MILKY-WAY-LIKE HOSTS

    International Nuclear Information System (INIS)

    Busha, Michael T.; Wechsler, Risa H.; Behroozi, Peter S.; Gerke, Brian F.; Klypin, Anatoly A.; Primack, Joel R.

    2011-01-01

    We calculate the probability that a Milky-Way (MW)-like halo in the standard cosmological model has the observed number of Magellanic Clouds (MCs). The statistics of the number of MCs in the lambda cold dark matter model are in good agreement with observations of a large sample of Sloan Digital Sky Survey (SDSS) galaxies. Under the subhalo abundance matching assumption of a relationship with small scatter between galaxy r-band luminosities and halo internal velocities v max , we make detailed comparisons to similar measurements using SDSS Data Release 7 data by Liu et al. Models and observational data give very similar probabilities for having zero, one, and two MC-like satellites. In both cases, MW luminosity hosts have just a ∼10% chance of hosting two satellites similar to the MCs. In addition, we present a prediction for the probability for a host galaxy to have N sats satellite galaxies as a function of the magnitudes of both the host and satellite. This probability and its scaling with host properties is significantly different from that of mass-selected objects because of scatter in the mass-luminosity relation and because of variations in the star formation efficiency with halo mass.

  18. The MUSE view of the host galaxy of GRB 100316D

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; Schulze, S.; Mehner, A.; Flores, H.; Cano, Z.; de Ugarte Postigo, A.; Kann, D. A.; Amorín, R.; Anderson, J. P.; Bauer, F. E.; Bensch, K.; Christensen, L.; Covino, S.; Della Valle, M.; Fynbo, J. P. U.; Jakobsson, P.; Klose, S.; Kuncarayakti, H.; Leloudas, G.; Milvang-Jensen, B.; Møller, P.; Puech, M.; Rossi, A.; Sánchez-Ramírez, R.; Vergani, S. D.

    2017-12-01

    The low distance, z = 0.0591, of GRB 100316D and its association with SN 2010bh represent two important motivations for studying this host galaxy and the GRB's immediate environment with the integral field spectrographs like Very Large Telescope/Multi-Unit Spectroscopic Explorer. Its large field of view allows us to create 2D maps of gas metallicity, ionization level and the star formation rate (SFR) distribution maps, as well as to investigate the presence of possible host companions. The host is a late-type dwarf irregular galaxy with multiple star-forming regions and an extended central region with signatures of on-going shock interactions. The gamma-ray burst (GRB) site is characterized by the lowest metallicity, the highest SFR and the youngest (∼20-30 Myr) stellar population in the galaxy, which suggest a GRB progenitor stellar population with masses up to 20-40 M⊙. We note that the GRB site has an offset of ∼660 pc from the most luminous SF region in the host. The observed SF activity in this galaxy may have been triggered by a relatively recent gravitational encounter between the host and a small undetected (LH α ≤ 1036 erg s-1) companion.

  19. Statistical Properties of Gamma-Ray Burst Host Galaxies Jie-Min ...

    Indian Academy of Sciences (India)

    Statistical Properties of Gamma-Ray Burst Host Galaxies. Jie-Min Chen1, Jin Zhang2,3, ... of GRB host galaxies and explore possible correlations between these properties. We also investigate possible cosmic ... hydrogen column density for the GRB host galaxies in our sample. 6.295. The stellar masses are mainly in the ...

  20. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  1. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    International Nuclear Information System (INIS)

    Rosario, D. J.; Wuyts, S.; Nandra, K.; Mozena, M.; Faber, S. M.; Koo, D. C.; Koekemoer, A.; Ferguson, H.; Grogin, N.; McGrath, E.; Hathi, N. P.; Dekel, A.; Donley, J.; Dunlop, J. S.; Giavalisco, M.; Guo, Y.; Kocevski, D. D.; Laird, E.; Rangel, C.; Newman, J.

    2013-01-01

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z ∼ 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z ∼ 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z ∼ 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z ∼> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  2. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  3. H α IMAGING OF NEARBY SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Theios, Rachel L.; Malkan, Matthew A. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095 (United States); Ross, Nathaniel R., E-mail: rtheios@astro.caltech.edu [Raytheon Space and Airborne Systems, 2000 E El Segundo Boulevard, El Segundo, CA 90245 (United States)

    2016-05-01

    We used narrowband (Δ λ = 70 Å) interference filters with the CCD imaging camera on the Nickel 1.0 m telescope at Lick Observatory to observe 31 nearby ( z < 0.03) Seyfert galaxies in the 12 μ m active galaxy sample. We obtained pure emission-line images of each galaxy, which reach down to a flux limit of 7.3 × 10{sup −15} erg cm{sup −2} s{sup −1} arcsec{sup −2}, and corrected these images for [N ii] emission and extinction. We separated the H α emission line of the “nucleus” (central 100–1000 pc) from that of the host galaxy. The extended H α emission is expected to be powered by newly formed hot stars, and indeed correlates well with other indicators of current star formation rates (SFRs) in these galaxies: extended 7.7 μ m polycyclic aromatic hydrocarbon, total far-infrared, and radio luminosity. Relative to what would be expected from recent star formation, there is a 0.8 dex excess of radio emission in our Seyfert galaxies. The H α luminosity we measured in the centers of our galaxies is dominated by the active galactic nucleus (AGN), and is linearly correlated with the hard X-ray luminosity. There is, however, an upward offset of 1 dex in this correlation for the Seyfert 1s, because their nuclear H α emission includes a strong additional contribution from the broad-line region. We found a correlation between SFR and AGN luminosity. In spite of selection effects, we concluded that the absence of bright Seyfert nuclei in galaxies with low SFRs is real, albeit only weakly significant. Finally, we used our measured spatial distributions of H α emission to determine what these Seyfert galaxies would look like when observed through fixed apertures (e.g., a spectroscopic fiber) at high redshifts. We found that although all of these Seyfert galaxies would be detectable emission-line galaxies at any redshift, most of them would appear to be dominated by (>67%) their H ii region emission. Only the most luminous AGNs (log( L {sub Hα}/erg s

  4. Supermassive Black Holes and Their Host Spheroids. I. Disassembling Galaxies

    Science.gov (United States)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids large-scale, intermediate-scale, and nuclear disks bars rings spiral arms halos extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  5. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  6. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    International Nuclear Information System (INIS)

    Savorgnan, G. A. D.; Graham, A. W.

    2016-01-01

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors

  7. Starburst-driven Superwinds in Quasar Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Peter; Podigachoski, Pece [Kapteyn Astronomical Institute, University of Groningen, Groningen (Netherlands); Wilkes, Belinda [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Haas, Martin, E-mail: pdb@astro.rug.nl, E-mail: podigachoski@astro.rug.nl [Astronomisches Institut, Ruhr Universität, Bochum (Germany)

    2017-07-01

    During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s{sup −1}. In particular, the location of these winds—close to the quasar, further out in its host galaxy, or in its direct environment—and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.

  8. SDSS IV MaNGA - Properties of AGN Host Galaxies

    Science.gov (United States)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  9. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    Science.gov (United States)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  10. The Properties of Faint Field Galaxies

    Science.gov (United States)

    Driver, Simon. P.

    1994-12-01

    One of the current drawbacks of Charge Coupled Devices (CCDs) is their restrictive fields of view. The Hitchhiker CCD camera overcomes this limitation by operating in parallel with existing instrumentation and is able to cover a large area as well as large volumes. Hitchhiker is mounted on the 4.2m William Herschel Telescope and has been operating for two years. The first use of the Hitchhiker data set has been to study the general properties of faint galaxies. The observed trend of how the differential numbers of galaxies vary with magnitude agrees extremely well with those of other groups and covers, for the first time, all four major optical bandpasses. This multi-band capability has also allowed the study of how the colors of galaxies change with magnitude and how the correlation of galaxies on the sky varies between the optical bandpasses. A dwarf dominated model has been developed to explain these observations and challenges our knowledge of the space-density of dwarf galaxies. The model demonstrates that a simple upward turn in the luminosity distribution of galaxies, similar to that observed in clusters, would remain undetected by the field surveys yet can explain many of the observations without recourse to non-passive galaxy evolution. The conclusion is that the field luminosity distribution is not constrained at faint absolute magnitudes. A combination of a high density of dwarf galaxies and mild evolution could explain all the observations. Continuing work with HST and the Medium Deep Survey Team now reveals the morphological mix of galaxies down to mI ~ 24.0. The results confirm that ellipticals and early-type spirals are well fitted by standard no-evolution models whilst the late-type spirals can only be fitted by strong evolution and/or a significant turn-up in the local field LF.

  11. Atomic hydrogen properties of active galactic nuclei host galaxies: H I in 16 nuclei of galaxies (NUGA) sources

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Mundell, Carole G.; García-Burillo, Santiago; Combes, Francoise

    2008-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (H I) in 16 nearby spiral galaxies hosting low luminosity active galactic nuclei (AGN), observed with high spectral and spatial resolution (resolution: ∼20'', ∼5 km s –1 ) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types ranging from Seyfert to star-forming nuclei, and was originally selected for the NUclei of GAlaxies project (NUGA)—a spectrally and spatially resolved interferometric survey of gas dynamics in nearby galaxies designed to identify the fueling mechanisms of AGN and the relation to host galaxy evolution. Here we investigate the relationship between the H I properties of these galaxies, their environment, their stellar distribution, and their AGN type. The large-scale H I morphology of each galaxy is classified as ringed, spiral, or centrally concentrated; comparison of the resulting morphological classification with the AGN type reveals that ring structures are significantly more common in low-ionization narrow emission-line regions (LINER) than in Seyfert host galaxies, suggesting a time evolution of the AGN activity together with the redistribution of the neutral gas. Dynamically disturbed H I disks are also more prevalent in LINER host galaxies than in Seyfert host galaxies. While several galaxies are surrounded by companions (some with associated H I emission), there is no correlation between the presence of companions and the AGN type (Seyfert/LINER).

  12. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Samantha L.; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  13. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Syed A. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangshu (China); Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, VIC (Australia); Lidman, Chris; Zhang, Bonnie R. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Ruhlmann-Kleider, Vanina, E-mail: saushuvo@gmail.com [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette, Paris (France)

    2017-10-10

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5 σ ), and decline more rapidly in massive hosts (significance >9 σ ) and in hosts with low specific star formation rates (significance >8 σ ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter ( σ {sub int} = 0.08 ± 0.01) in luminosity after standardization.

  14. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...... structures (like dust lanes, spiral arms or disks). A natural scenario which accounts of all the above results is a nuclear starburst that harbours a young population of stars from which the GRB originated....

  15. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    Science.gov (United States)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  16. On the mass-metallicity relation, velocity dispersion and gravitational well depth of GRB host galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam; Møller, Palle; Fynbo, Johan P. U.

    2015-01-01

    -DLA samples and compare the measured stellar masses for the four hosts where stellar masses have been determined from SED fits. We find excellent agreement and conclude that, on basis of all available data and tests, long duration GRB-DLA hosts and intervening QSO-DLAs are consistent with being drawn from...... away from the metallicity in the centre of the galaxy, second the path of the sightline through different parts of the potential well of the dark matter halo will cause different velocity fields to be sampled. We report evidence suggesting that this second effect may have been detected....

  17. The host galaxy of a fast radio burst.

    Science.gov (United States)

    Keane, E F; Johnston, S; Bhandari, S; Barr, E; Bhat, N D R; Burgay, M; Caleb, M; Flynn, C; Jameson, A; Kramer, M; Petroff, E; Possenti, A; van Straten, W; Bailes, M; Burke-Spolaor, S; Eatough, R P; Stappers, B W; Totani, T; Honma, M; Furusawa, H; Hattori, T; Morokuma, T; Niino, Y; Sugai, H; Terai, T; Tominaga, N; Yamasaki, S; Yasuda, N; Allen, R; Cooke, J; Jencson, J; Kasliwal, M M; Kaplan, D L; Tingay, S J; Williams, A; Wayth, R; Chandra, P; Perrodin, D; Berezina, M; Mickaliger, M; Bassa, C

    2016-02-25

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 ± 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of ΩIGM = 4.9 ± 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short γ-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.

  18. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies

    OpenAIRE

    Leloudas, G.; Schulze, S.; Kruehler, T.; Gorosabel, J.; Christensen, L.; Mehner, A.; Postigo, A. de Ugarte; Amorin, R.; Thoene, C. C.; Anderson, J. P.; Bauer, F. E.; Gallazzi, A.; Helminiak, K. G.; Hjorth, J.; Ibar, E.

    2014-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusi...

  19. The Host Galaxy and the Extended Emission-Line Region of the Radio Galaxy 3C 79

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2008-04-01

    We present extensive ground-based spectroscopy and HST imaging of 3C 79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host galaxy is a massive elliptical with a compact companion 0.8'' away and 4 mag fainter. The host galaxy spectrum is best described by an intermediate-age (1.3 Gyr) stellar population (4% by mass), superimposed on a 10 Gyr old population and a power law (αλ = - 1.8); the stellar populations are consistent with supersolar metallicities, with the best fit given by the 2.5 Z⊙ models. We derive a dynamical mass of 4 × 1011 M⊙ within the effective radius from the velocity dispersion. The EELR spectra clearly indicate that the EELR is photoionized by the hidden central engine. Photoionization modeling shows evidence that the gas metallicity in both the EELR and the nuclear narrow-line region is mildly subsolar (0.3-0.7 Z⊙), significantly lower than the supersolar metallicities deduced from typical active galactic nuclei in the Sloan Digital Sky Survey. The more luminous filaments in the EELR exhibit a velocity field consistent with a common disk rotation. Fainter clouds, however, show high approaching velocities that are uncoupled from this apparent disk rotation. The striking similarities between this EELR and the EELRs around steep-spectrum radio-loud quasars provide further evidence for the orientation-dependent unification schemes. The metal-poor gas is almost certainly not native to the massive host galaxy. We suggest that the close companion galaxy could be the tidally stripped bulge of a late-type galaxy that is merging with the host galaxy. The interstellar medium of such a galaxy is probably the source for the low-metallicity gas in 3C 79. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative

  20. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  1. Host galaxy spectra and consequences for supernova typing from the SDSS SN survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Sako, Masao; Gupta, Ravi R. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Bassett, Bruce; Kunz, Martin [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, 7945 (South Africa); Bizyaev, Dmitry; Brinkmann, J.; Brewington, Howard; Ebelke, Garrett L. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Campbell, Heather [Institute of Astronomy, Madingley Road, Cambridge CB4 0HA (United Kingdom); D' Andrea, Chris B.; Lampeitl, Hubert [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Frieman, Joshua A. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Galbany, Lluís [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysics, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Jha, Saurabh W., E-mail: olmstead@physics.utah.edu [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); and others

    2014-04-01

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey, this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of SN host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future analysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased toward lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  2. ALMA Observations of the Host Galaxy of GRB 090423 at z = 8.23: Deep Limits on Obscured Star Formation 630 Million Years after the Big Bang

    Science.gov (United States)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Tanvir, N. R.; Stanway, E. R.; Levan, A. J.; Levesque, E. M.; Davies, J. E.

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F ν(222 GHz) Space Telescope rest-frame ultraviolet (UV) observations is SFRUV ~ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z >~ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  3. ACTIVE GALACTIC NUCLEI IN GROUPS AND CLUSTERS OF GALAXIES: DETECTION AND HOST MORPHOLOGY

    International Nuclear Information System (INIS)

    Arnold, Timothy J.; Martini, Paul; Mulchaey, John S.; Berti, Angela; Jeltema, Tesla E.

    2009-01-01

    The incidence and properties of active galactic nuclei (AGNs) in the field, groups, and clusters can provide new information about how these objects are triggered and fueled, similar to how these environments have been employed to study galaxy evolution. We have obtained new XMM-Newton observations of seven X-ray selected groups and poor clusters with 0.02 -1 ). We find that the X-ray selected AGN fraction increases from f A (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.047 +0.023 -0.016 in clusters to 0.091 +0.049 -0.034 for the groups (85% significance), or a factor of 2, for AGN above an 0.3-8 keV X-ray luminosity of 10 41 ergs -1 hosted by galaxies more luminous than M* R + 1. The trend is similar, although less significant, for a lower-luminosity host threshold of M R = -20 mag. For many of the groups in the sample, we have also identified AGN via standard emission-line diagnostics and find that these AGNs are nearly disjoint from the X-ray selected AGN. Because there are substantial differences in the morphological mix of galaxies between groups and clusters, we have also measured the AGN fraction for early-type galaxies alone to determine if the differences are directly due to environment, or indirectly due to the change in the morphological mix. We find that the AGN fraction in early-type galaxies is also lower in clusters f A,n≥2.5 (L X ≥ 10 41 ; M R ≤ M* R + 1) = 0.048 +0.028 -0.019 compared to 0.119 +0.064 -0.044 for the groups (92% significance), a result consistent with the hypothesis that the change in AGN fraction is directly connected to environment.

  4. ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES

    International Nuclear Information System (INIS)

    Castro Ceron, J. M.; Michalowski, M. J.; Hjorth, J.; Malesani, D.; Watson, D.; Fynbo, J. P. U.; Gorosabel, J.; Morales Calderon, M.

    2010-01-01

    We analyze Spitzer images of 30 long-duration gamma-ray burst (GRB) host galaxies. We estimate their total stellar masses (M * ) based on the rest-frame K-band luminosities (L K rest ) and constrain their star formation rates (SFRs; not corrected for dust extinction) based on the rest-frame UV continua. Further, we compute a mean M * /L K rest = 0.45 M sun /L sun . We find that the hosts are low M * , star-forming systems. The median M * in our sample ((M * ) = 10 9.7 M sun ) is lower than that of 'field' galaxies (e.g., Gemini Deep Deep Survey). The range spanned by M * is 10 7 M sun * 11 M sun , while the range spanned by the dust-uncorrected UV SFR is 10 -2 M sun yr -1 sun yr -1 . There is no evidence for intrinsic evolution in the distribution of M * with redshift. We show that extinction by dust must be present in at least 25% of the GRB hosts in our sample and suggest that this is a way to reconcile our finding of a relatively lower UV-based, specific SFR (φ ≡ SFR/M * ) with previous claims that GRBs have some of the highest φ values. We also examine the effect that the inability to resolve the star-forming regions in the hosts has on φ.

  5. SIMULATING MAGNETIC FIELDS IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Kotarba, H.; Karl, S. J.; Naab, T.; Johansson, P. H.; Lesch, H.; Dolag, K.; Stasyszyn, F. A.

    2010-01-01

    We present self-consistent high-resolution simulations of NGC 4038/4039 (the A ntennae galaxies ) including star formation, supernova feedback, and magnetic fields performed with the N-body/smoothed particle hydrodynamic (SPH) code GADGET, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 10 -9 to 10 -4 G. At the time of the best match with the central region of the Antennae system, the magnetic field has been amplified by compression and shear flows to an equilibrium field value of ∼10 μG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly nonlinear environment. We also discuss the relevance of the amplification effect for present-day magnetic fields in the context of hierarchical structure formation.

  6. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen [Department of Physics, Xiamen University, Xiamen (China); Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan, E-mail: fangt@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen (China)

    2016-06-20

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  7. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  8. Weak lensing galaxy cluster field reconstruction

    Science.gov (United States)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  9. THE ROLE OF RADIATION PRESSURE IN THE NARROW LINE REGIONS OF SEYFERT HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Banfield, Julie [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Shastri, Prajval; Kharb, Preeti; Bhatt, Harish [Indian Institute of Astrophysics, Sarjapur Road, Bengaluru 560034 (India); Scharwächter, Julia [LERMA, Observatoire de Paris, PSL, CNRS, Sorbonne Universités, UPMC, F-75014 Paris (France); Jin, Chichuan [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Zaw, Ingyin [New York University (Abu Dhabi), 70 Washington Square S, New York, NY 10012 (United States); James, Bethan [Institute of Astronomy, Cambridge University, Madingley Road, Cambridge CB3 0HA (United Kingdom); Juneau, Stéphanie [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Srivastava, Shweta, E-mail: Rebecca.Davies@anu.edu.au [Astronomy and Astrophysics Division, Physical Research Laboratory, Ahmedabad 380009 (India)

    2016-06-10

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ∼ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ∼ 0 to −3.2 ≲ log U ≲ −3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  10. Type Ia supernova Hubble residuals and host-galaxy properties

    International Nuclear Information System (INIS)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E.

    2014-01-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  11. Galaxies

    International Nuclear Information System (INIS)

    1987-01-01

    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  12. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  13. MODELING THE GRB HOST GALAXY MASS DISTRIBUTION: ARE GRBs UNBIASED TRACERS OF STAR FORMATION?

    International Nuclear Information System (INIS)

    Kocevski, Daniel; West, Andrew A.; Modjaz, Maryam

    2009-01-01

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low-metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity relationship for galaxies, along with a sharp host metallicity cutoff suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that subsolar metallicity cutoffs effectively limit GRBs to low-stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low-metallicity cutoffs of 0.1 to 0.5 Z sun are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H) KK04 = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z ∼ 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity-biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  14. THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY

    International Nuclear Information System (INIS)

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Jha, Saurabh W.; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Nordin, Jakob; Im, Myungshin; Marriner, John; Miquel, Ramon; Oestman, Linda; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2010-01-01

    We present an analysis of the host galaxy dependences of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2σ and 3σ) that SNe Ia are ≅0.1 ± 0.04 mag brighter in passive host galaxies than in star-forming hosts, after the SN Ia light curves have been standardized using the light-curve shape and color variations. This difference in brightness is present in both the SALT2 and MCLS2k2 light-curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R V = 1.0 ± 0.2, while SNe Ia in star-forming hosts require R V = 1.8 +0.2 -0.4 . The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of >4σ) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  15. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  16. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  17. A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies

    International Nuclear Information System (INIS)

    Fan, XiLong; Messenger, Christopher; Heng, Ik Siong

    2014-01-01

    We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% of the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.

  18. HOT GAS HALOS IN EARLY-TYPE FIELD GALAXIES

    International Nuclear Information System (INIS)

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L X -L K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L K ∼ * suggests that internal processes such as supernovae-driven winds or active galactic nucleus feedback expel hot gas from low-mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L K ∼ * galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster medium and hot gas halos of galaxies in rich environments, with the ambient medium helping to confine or even enhance the halos in some cases and acting to remove gas in others. In contrast, the hot gas content of more isolated galaxies is largely a function of the mass of the galaxy, with more massive galaxies able to maintain their halos, while in lower mass systems the hot gas escapes in outflowing winds.

  19. Correlations Between Central Massive Objects And Their Host Galaxies: From Bulgeless Spirals to Ellipticals

    OpenAIRE

    Li, Yuexing; Haiman, Zoltán; Mac Low, Mordecai-Mark

    2006-01-01

    Recent observations by Ferrarese et al. (2006) and Wehner et al. (2006) reveal that a majority of galaxies contain a central massive object (CMO), either a supermassive black hole (SMBH) or a compact stellar nucleus, regardless of the galaxy mass or morphological type, and that there is a tight relation between the masses of CMOs and those of the host galaxies. Several recent studies show that feedback from black holes can successfully explain the $\\msigma$ correlation in massive elliptical g...

  20. On the Origin of the Mass-Metallicity Relation for GRB Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /Boston U., Dept. Astron.

    2011-06-02

    We investigate the nature of the mass-metallicity (M-Z) relation for long gamma-ray burst (LGRB) host galaxies. Recent studies suggest that the M-Z relation for local LGRB host galaxies may be systematically offset towards lower metallicities relative to the M-Z relation defined by the general star forming galaxy (SDSS) population. The nature of this offset is consistent with suggestions that low metallicity environments may be required to produce high mass progenitors, although the detection of several GRBs in high-mass, high-metallicity galaxies challenges the notion of a strict metallicity cut-off for host galaxies that are capable of producing GRBs. We show that the nature of this reported offset may be explained by a recently proposed anti-correlation between the star formation rate (SFR) and the metallicity of star forming galaxies. If low metallicity galaxies produce more stars than their equally massive, high-metallicity counterparts, then transient events that closely trace the SFR in a galaxy would be more likely to be found in these low metallicity, low mass galaxies. Therefore, the offset between the GRB and SDSS defined M-Z relations may be the result of the different methods used to select their respective galaxy populations, with GRBs being biased towards low metallicity, high SFR, galaxies. We predict that such an offset should not be expected of transient events that do not closely follow the star formation history of their host galaxies, such as short duration GRBs and SN Ia, but should be evident in core collapse SNe found through upcoming untargeted surveys.

  1. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    Science.gov (United States)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (zBAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  2. A Hubble Space Telescope imaging study of four FeLoBAL quasar host galaxies

    Science.gov (United States)

    Lawther, D.; Vestergaard, M.; Fan, X.

    2018-04-01

    We study the host galaxies of four Iron Low-Ionization Broad Absorption-line Quasars (FeLoBALs), using Hubble Space Telescope imaging data, investigating the possibility that they represent a transition between an obscured active galactic nucleus (AGN) and an ordinary optical quasar. In this scenario, the FeLoBALs represent the early stage of merger-triggered accretion, in which case their host galaxies are expected to show signs of an ongoing or recent merger. Using PSF subtraction techniques, we decompose the images into host galaxy and AGN components at rest-frame ultraviolet and optical wavelengths. The ultraviolet is sensitive to young stars, while the optical probes stellar mass. In the ultraviolet we image at the BAL absorption trough wavelengths so as to decrease the contrast between the quasar and host galaxy emission. We securely detect an extended source for two of the four FeLoBALs in the rest-frame optical; a third host galaxy is marginally detected. In the rest-frame UV we detect no host emission; this constrains the level of unobscured star formation. Thus, the host galaxies have observed properties that are consistent with those of non-BAL quasars with the same nuclear luminosity, i.e. quiescent or moderately star-forming elliptical galaxies. However, we cannot exclude starbursting hosts that have the stellar UV emission obscured by modest amounts of dust reddening. Thus, our findings also allow the merger-induced young quasar scenario. For three objects, we identify possible close companion galaxies that may be gravitationally interacting with the quasar hosts.

  3. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence...

  4. Host galaxies of type ia supernovae from the nearby supernova factory

    Science.gov (United States)

    Childress, Michael Joseph

    Type Ia Supernovae (SNe Ia) are excellent distance indicators, yet the full details of the underlying physical mechanism giving rise to these dramatic stellar deaths remain unclear. As large samples of cosmological SNe Ia continue to be collected, the scatter in brightnesses of these events is equally affected by systematic errors as statistical. Thus we need to understand the physics of SNe Ia better, and in particular we must know more about the progenitors of these SNe so that we can derive better estimates for their true intrinsic brightnesses. The host galaxies of SNe Ia provide important indirect clues as to the nature of SN Ia progenitors. In this Thesis we utilize the host galaxies of SNe Ia discovered by the Nearby Supernova Factory (SNfactory) to pursue several key investigations into the nature of SN Ia progenitors and their effects on SN Ia brightnesses. We first examine the host galaxy of SN 2007if, an important member of the subclass of SNe Ia whose extreme brightnesses indicate a progenitor that exceeded the canonical Chandrasekhar-mass value presumed for normal SNe Ia, and show that the host galaxy of this SN is composed of very young stars and has extremely low metallicity, providing important constraints on progenitor scenarios for this SN. We then utilize the full sample of SNfactory host galaxy masses (measured from photometry) and metallicities (derived from optical spectroscopy) to examine several global properties of SN Ia progenitors: (i) we show that SN Ia hosts show tight agreement with the normal galaxy mass-metallicity relation; (ii) comparing the observed distribution of SN Ia host galaxy masses to a theoretical model that couples galaxy physics to the SN Ia delay time distribution (DTD), we show the power of the SN Ia host mass distribution in constraining the SN Ia DTD; and (iii) we show that the lack of ultra-low metallicities in the SNfactory SN Ia host sample gives provisional support for the theorized low-metallicity inhibition of

  5. The unique structural parameters of the underlying host galaxies in blue compact dwarfs

    International Nuclear Information System (INIS)

    Janowiecki, Steven; Salzer, John J.

    2014-01-01

    The nature of possible evolutionary pathways between various types of dwarf galaxies is still not fully understood. Blue compact dwarf galaxies (BCDs) provide a unique window into dwarf galaxy formation and evolution and are often thought of as an evolutionary stage between different classes of dwarf galaxies. In this study we use deep optical and near-infrared observations of the underlying hosts of BCDs in order to study the structural differences between different types of dwarf galaxies. When compared with dwarf irregular galaxies of similar luminosities, we find that the underlying hosts of BCDs have significantly more concentrated light distributions, with smaller scale lengths and brighter central surface brightnesses. We demonstrate here that the underlying hosts of BCDs are distinct from the broad continuum of typical dwarf irregular galaxies, and that it is unlikely that most dwarf irregular galaxies can transform into a BCD or vice versa. Furthermore, we find that the starburst in a BCD only brightens it on average by ∼0.8 mag (factor of two), in agreement with other studies. It appears that a BCD is a long-lived and distinct type of dwarf galaxy that exhibits an exceptionally concentrated matter distribution. We suggest that it is this compact mass distribution that enables the strong star formation events that characterize this class of dwarf galaxy, that the compactness of the underlying host can be used as a distinguishing parameter between BCDs and other dwarf galaxies, and that it can also be used to identify BCDs which are not currently experiencing an intense starburst event.

  6. GREEN GALAXIES IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu

    2013-01-01

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 + color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M 20 planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ 10 ) distributions at z > 0.7. At z * 10.0 M ☉ green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M * 10.0 M ☉ blue galaxies into red galaxies, especially at z < 0.5

  7. STAR CLUSTER COMPLEXES AND THE HOST GALAXY IN THREE H II GALAXIES: Mrk 36, UM 408, AND UM 461

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, P. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Telles, E. [Observatorio Nacional, Rua Jose Cristino, 77, Rio de Janeiro 20921-400 (Brazil); Nigoche-Netro, A. [Instituto de Astrofisica de Andalucia (IAA), Glorieta de la Astronomia s/n, 18008 Granada (Spain); Carrasco, E. R., E-mail: plagos@astro.up.pt, E-mail: etelles@on.br, E-mail: nigoche@iaa.es, E-mail: rcarrasco@gemini.edu [Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena (Chile)

    2011-11-15

    We present a stellar population study of three H II galaxies (Mrk 36, UM 408, and UM 461) based on the analysis of new ground-based high-resolution near-infrared J, H, and K{sub p} broadband and Br{gamma} narrowband images obtained with Gemini/NIRI. We identify and determine the relative ages and masses of the elementary star clusters and/or star cluster complexes of the starburst regions in each of these galaxies by comparing the colors with evolutionary synthesis models that include the contribution of stellar continuum, nebular continuum, and emission lines. We found that the current star cluster formation efficiency in our sample of low-luminosity H II galaxies is {approx}10%. Therefore, most of the recent star formation is not in massive clusters. Our findings seem to indicate that the star formation mode in our sample of galaxies is clumpy, and that these complexes are formed by a few massive star clusters with masses {approx}>10{sup 4} M{sub Sun }. The age distribution of these star cluster complexes shows that the current burst started recently and likely simultaneously over short timescales in their host galaxies, triggered by some internal mechanism. Finally, the fraction of the total cluster mass with respect to the low surface brightness (or host galaxy) mass, considering our complete range in ages, is less than 1%.

  8. A molecular gas-rich GRB host galaxy at the peak of cosmic star formation

    Science.gov (United States)

    Arabsalmani, M.; Le Floc'h, E.; Dannerbauer, H.; Feruglio, C.; Daddi, E.; Ciesla, L.; Charmandaris, V.; Japelj, J.; Vergani, S. D.; Duc, P.-A.; Basa, S.; Bournaud, F.; Elbaz, D.

    2018-05-01

    We report the detection of the CO(3-2) emission line from the host galaxy of gamma-ray burst (GRB) 080207 at z = 2.086. This is the first detection of molecular gas in emission from a GRB host galaxy beyond redshift 1. We find this galaxy to be rich in molecular gas with a mass of 1.1 × 10^{11} M_{{\\odot }} assuming αCO = 4.36 M_{{\\odot }} (K km s^{-1} pc^2)^{-1}. The molecular gas mass fraction of the galaxy is ˜0.5, typical of star-forming galaxies (SFGs) with similar stellar masses and redshifts. With an SFR_{FIR} of 260 M_{{\\odot }} yr^{-1}, we measure a molecular gas depletion time-scale of 0.43 Gyr, near the peak of the depletion time-scale distribution of SFGs at similar redshifts. Our findings are therefore in contradiction with the proposed molecular gas deficiency in GRB host galaxies. We argue that the reported molecular gas deficiency for GRB hosts could be the artefact of improper comparisons or neglecting the effect of the typical low metallicities of GRB hosts on the CO-to-molecular-gas conversion factor. We also compare the kinematics of the CO(3-2) emission line to that of the H α emission line from the host galaxy. We find the H α emission to have contributions from two separate components, a narrow and a broad one. The narrow component matches the CO emission well in velocity space. The broad component, with a full width at half-maximum of ˜1100 km s^{-1}, is separated by +390 km s^{-1} in velocity space from the narrow component. We speculate this broad component to be associated with a powerful outflow in the host galaxy or in an interacting system.

  9. Bar Frequency & Galaxy Host Properties using the Spitzer Survey of Stellar Structure in Galaxies (S4G)

    Science.gov (United States)

    Sheth, Kartik; Mizusawa, T.; Kim, T.; Munoz-Mateos, J.; Regan, M. W.; de Swardt, B.; Gadotti, D.; S4G Team

    2011-01-01

    Using the volume limited sample of 2,331 nearby galaxies from the Spitzer Survey of Stellar Structure in Galaxies (S4G), we have classified the frequency of barred spiral galaxies. The literature abounds with frequency ranges from as low as 20% to as high as 80% but these variations are driven by the quality of the data, the sample size and the methodology of the studies. Using the 3.6 and 4.5 micron IRAC images from S4G, we are able to make a definitive measurement of the local bar fraction as a function of the galaxy host and environment. We present the results from this survey and discuss how the current bar fraction compares to the declining frequency of bars from the present day to z 1.

  10. HOST GALAXY PROPERTIES OF THE SWIFT BAT ULTRA HARD X-RAY SELECTED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) active galactic nucleus (AGN) with host galaxy optical data to date, with 185 nearby (z * >10.5) have a 5-10 times higher rate of spiral morphologies than in SDSS AGNs or inactive galaxies. We also see enhanced far-infrared emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGNs are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGNs have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] λ5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGNs in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as a whole. In agreement with the unified model of AGNs, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGNs suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  11. Investigating a population of infrared-bright gamma-ray burst host galaxies

    Science.gov (United States)

    Chrimes, Ashley A.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Angus, Charlotte R.; Greis, Stephanie M. L.

    2018-04-01

    We identify and explore the properties of an infrared-bright gamma-ray burst (GRB) host population. Candidate hosts are selected by coincidence with sources in WISE, with matching to random coordinates and a false alarm probability analysis showing that the contamination fraction is ˜ 0.5. This methodology has already identified the host galaxy of GRB 080517. We combine survey photometry from Pan-STARRS, SDSS, APASS, 2MASS, GALEX and WISE with our own WHT/ACAM and VLT/X-shooter observations to classify the candidates and identify interlopers. Galaxy SED fitting is performed using MAGPHYS, in addition to stellar template fitting, yielding 13 possible IR-bright hosts. A further 7 candidates are identified from previously published work. We report a candidate host for GRB 061002, previously unidentified as such. The remainder of the galaxies have already been noted as potential hosts. Comparing the IR-bright population properties including redshift z, stellar mass M⋆, star formation rate SFR and V-band attenuation AV to GRB host catalogues in the literature, we find that the infrared-bright population is biased toward low z, high M⋆ and high AV. This naturally arises from their initial selection - local and dusty galaxies are more likely to have the required IR flux to be detected in WISE. We conclude that while IR-bright GRB hosts are not a physically distinct class, they are useful for constraining existing GRB host populations, particularly for long GRBs.

  12. Supermassive Black Holes and Their Host Galaxies. I. Bulge Luminosities from Dedicated Near-infrared Data

    Science.gov (United States)

    Läsker, Ronald; Ferrarese, Laura; van de Ven, Glenn

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M •, and the bulge luminosities of their host galaxies, L bul, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M •, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M •-L bul relation in a companion paper.

  13. A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES

    International Nuclear Information System (INIS)

    Geha, M.; Blanton, M. R.; Yan, R.; Tinker, J. L.

    2012-01-01

    We demonstrate that dwarf galaxies (10 7 stellar 9 M ☉ , –12 > M r > –18) with no active star formation are extremely rare ( Hα stellar 9 M ☉ below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1σ upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 × 10 9 M ☉ , ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.

  14. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation

    Science.gov (United States)

    Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.

    2018-03-01

    We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.

  15. Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

    Science.gov (United States)

    Di Matteo, Tiziana; Springel, Volker; Hernquist, Lars

    2005-02-10

    In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.

  16. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    Directory of Open Access Journals (Sweden)

    Peter Erwin

    2012-01-01

    Full Text Available Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC/M⋆, tot for NSCs in spirals (at least those with Hubble types Sc and later is typically an order of magnitude smaller than the mass ratio MBH/M⋆, bul of SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.

  17. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    International Nuclear Information System (INIS)

    Zhu, Yi-Nan; Wu, Hong

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M H i ), stellar mass (M * ), and H i-to-stellar mass ratio (M H i /M * ) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M H i or M H i /M * . The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  18. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  19. THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Berger, Edo; Bagley, Megan M.

    2010-01-01

    We present the first observations from a large-scale survey of nearby (z < 1) long-duration gamma-ray burst (LGRB) host galaxies, which consist of eight rest-frame optical spectra obtained at Keck and Magellan. Along with two host galaxy observations from the literature, we use optical emission-line diagnostics to determine metallicities, ionization parameters, young stellar population ages, and star formation rates. We compare the LGRB host environments to a variety of local and intermediate-redshift galaxy populations, as well as the newest grid of stellar population synthesis and photoionization models generated with the Starburst99/Mappings codes. With these comparisons, we investigate whether the GRB host galaxies are consistent with the properties of the general galaxy population, and therefore whether they may be used as reliable tracers of star formation. Despite the limitations inherent in our small sample, we find strong evidence that LGRB host galaxies generally have low-metallicity interstellar medium (ISM) environments out to z ∼ 1. The ISM properties of our GRB hosts, including metallicity and ionization parameter, are significantly different from the general galaxy population and host galaxies of nearby broad-lined Type Ic supernovae. However, these properties show better agreement with a sample of nearby metal-poor galaxies.

  20. Stellar mass estimation based on IRAC photometry for Spitzer SWIRE-field galaxies

    International Nuclear Information System (INIS)

    Zhu Yinan; Wu Hong; Li Haining; Cao Chen

    2010-01-01

    We analyze the feasibility of estimating the stellar mass of galaxies by mid-infrared luminosities based on a large sample of galaxies cross-identified from Spitzer SWIRE fields and the SDSS spectrographic survey. We derived the formulae to calculate the stellar mass by using IRAC 3.6 μm and 4.5 μm luminosities. The mass-to-luminosity ratios of IRAC 3.6 μm and 4.5 μm luminosities are more sensitive to the star formation history of galaxies than to other factors, such as the intrinsic extinction, metallicity and star formation rate. To remove the effect of star formation history, we used g - r color to recalibrate the formulae and obtain a better result. Researchers must be more careful when estimating the stellar mass of low metallicity galaxies using our formulae. Due to the emission from dust heated by the hottest young stars, luminous infrared galaxies present higher IRAC 4.5 μm luminosities compared to IRAC 3.6 μm luminosities. For most of type-II AGNs, the nuclear activity cannot enhance 3.6 μm and 4.5 μm luminosities compared with normal galaxies. Star formation in our AGN-hosting galaxies is also very weak, almost all of which are early-type galaxies.

  1. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  2. A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT z = 3.036

    International Nuclear Information System (INIS)

    Chen, Hsiao-Wen; Perley, Daniel A.; Cenko, S. Bradley; Bloom, Joshua S.; Wilson, Christine D.; Levan, Andrew J.; Prochaska, Jason X.; Tanvir, Nial R.; Dessauges-Zavadsky, Miroslava; Pettini, Max

    2010-01-01

    We report the discovery of the host galaxy of Swift dark burst GRB 080607 at z GRB = 3.036. GRB 080607 is a unique case of a highly extinguished (A V ∼ 3 mag) afterglow that was yet sufficiently bright for high-quality absorption-line spectroscopy. The host galaxy is clearly resolved in deep Hubble Space Telescope (HST) WF3/IR F160W images and well detected in the Spitzer IRAC 3.5 μm and 4.5 μm channels, while displaying little/no fluxes in deep optical images from Keck and Magellan. The extremely red optical-infrared colors are consistent with the large extinction seen in the afterglow light, suggesting that the large amount of dust and gas surface mass density seen along the afterglow sight line is not merely local but likely reflects the global dust content across the entire host galaxy. Adopting the dust properties and metallicity of the host interstellar medium derived from studies of early-time afterglow light and absorption-line spectroscopy, we perform a stellar population synthesis analysis of the observed spectral energy distribution to constrain the intrinsic luminosity and stellar population of this dark burst host. The host galaxy is best described by an exponentially declining star formation rate of e-folding time τ = 2 Gyr and an age of ∼2 Gyr. We also derive an extinction-corrected star formation rate of SFR ∼ 125 h -2 M sun yr -1 and a total stellar mass of M * ∼ 4 x 10 11 h -2 M sun . Our study provides an example of massive, dusty star-forming galaxies contributing to the γ-ray burst (GRB) host galaxy population, supporting the notion that long-duration GRBs trace the bulk of cosmic star formation.

  3. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  4. HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES

    International Nuclear Information System (INIS)

    Kelly, Patrick L.; Burke, David L.; Hicken, Malcolm; Mandel, Kaisey S.; Kirshner, Robert P.

    2010-01-01

    From Sloan Digital Sky Survey u'g'r'i'z' imaging, we estimate the stellar masses of the host galaxies of 70 low-redshift Type Ia supernovae (SNe Ia, 0.015 10.8 M sun in a cosmology fit yields 1 + w = 0.22 +0.152 -0.108 , while a combination where the 30 nearby SNe instead have host masses greater than 10 10.8 M sun yields 1 + w = -0.03 +0.217 -0.143 . Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SNe Ia.

  5. DYNAMICAL EVOLUTION OF AGN HOST GALAXIES-GAS IN/OUT-FLOW RATES IN SEVEN NUGA GALAXIES

    International Nuclear Information System (INIS)

    Haan, Sebastian; Schinnerer, Eva; Rix, Hans-Walter; Emsellem, Eric; GarcIa-Burillo, Santiago; Combes, Francoise; Mundell, Carole G.

    2009-01-01

    To examine the role of the host galaxy structure in fueling nuclear activity, we estimated gas flow rates from several kpc down to the inner few 10 pc for seven nearby spiral galaxies, selected from the NUclei of GAlaxies sample. We calculated gravitational torques from near-infrared images and determined gas in/out-flow rates as a function of radius and location within the galactic disks, based on high angular resolution interferometric observations of molecular (CO using Plateau de Bure interferometer) and atomic (H I using the Very Large Array) gas. The results are compared with kinematic evidence for radial gas flows and the dynamical state of the galaxies (via resonances) derived from several different methods. We show that gravitational torques are very efficient at transporting gas from the outer disk all the way into the galaxies centers at ∼100 pc; previously assumed dynamical barriers to gas transport, such as the corotation resonance of stellar bars, seem to be overcome by gravitational torque induced gas flows from other nonaxisymmetric structures. The resulting rates of gas mass inflow range from 0.01 to 50 M sun yr -1 and are larger for the galaxy center than for the outer disk. Our gas flow maps show the action of nested bars within larger bars for three galaxies. Noncircular streaming motions found in the kinematic maps are larger in the center than in the outer disk and appear to correlate only loosely with the in/out-flow rates as a function of radius. We demonstrate that spiral gas disks are very dynamic systems that undergo strong radial evolution on timescales of a few rotation periods (e.g., 5 x 10 8 yrs at a radius of 5 kpc), due to the effectiveness of gravitational torques in redistributing the cold galactic gas.

  6. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-06-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey r-band images with artificial AGN point sources added that are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover point source and host galaxy magnitudes with smaller systematic error and a lower average scatter (49 per cent). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ± 50 per cent if it is trained on multiple PSFs. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN is more robust and easy to use than parametric methods as it requires no input parameters.

  7. PSFGAN: a generative adversarial network system for separating quasar point sources and host galaxy light

    Science.gov (United States)

    Stark, Dominic; Launet, Barthelemy; Schawinski, Kevin; Zhang, Ce; Koss, Michael; Turp, M. Dennis; Sartori, Lia F.; Zhang, Hantian; Chen, Yiru; Weigel, Anna K.

    2018-03-01

    The study of unobscured active galactic nuclei (AGN) and quasars depends on the reliable decomposition of the light from the AGN point source and the extended host galaxy light. The problem is typically approached using parametric fitting routines using separate models for the host galaxy and the point spread function (PSF). We present a new approach using a Generative Adversarial Network (GAN) trained on galaxy images. We test the method using Sloan Digital Sky Survey (SDSS) r-band images with artificial AGN point sources added which are then removed using the GAN and with parametric methods using GALFIT. When the AGN point source PS is more than twice as bright as the host galaxy, we find that our method, PSFGAN, can recover PS and host galaxy magnitudes with smaller systematic error and a lower average scatter (49%). PSFGAN is more tolerant to poor knowledge of the PSF than parametric methods. Our tests show that PSFGAN is robust against a broadening in the PSF width of ±50% if it is trained on multiple PSF's. We demonstrate that while a matched training set does improve performance, we can still subtract point sources using a PSFGAN trained on non-astronomical images. While initial training is computationally expensive, evaluating PSFGAN on data is more than 40 times faster than GALFIT fitting two components. Finally, PSFGAN it is more robust and easy to use than parametric methods as it requires no input parameters.

  8. Resolving the host galaxy of a distant blazar with LBT/LUCI 1 + ARGOS

    Science.gov (United States)

    Farina, E. P.; Georgiev, I. Y.; Decarli, R.; Terzić, T.; Busoni, L.; Gässler, W.; Mazzoni, T.; Borelli, J.; Rosensteiner, M.; Ziegleder, J.; Bonaglia, M.; Rabien, S.; Buschkamp, P.; Orban de Xivry, G.; Rahmer, G.; Kulas, M.; Peter, D.

    2018-05-01

    BL Lac objects emitting in the very high energy (VHE) regime are unique tools to peer into the properties of the extragalactic background light (EBL). However, due to the typical absence of features in their spectra, the determination of their redshifts has proven challenging. In this work, we exploit the superb spatial resolution delivered by the new Advanced Rayleigh guided Ground layer adaptive Optics System (ARGOS) at the Large Binocular Telescope to detect the host galaxy of HESS J1943+213, a VHE emitting BL Lac shining through the Galaxy. Deep H-band imaging collected during the ARGOS commissioning allowed us to separate the contribution of the nuclear emission and to unveil the properties of the host galaxy with unprecedented detail. The host galaxy is well fitted by a Sérsic profile with index of n ˜ 2 and total magnitude of HHost ˜ 16.15 mag. Under the assumption that BL Lac host galaxies are standard candles, we infer a redshift of z ˜ 0.21. In the framework of the current model for the EBL, this value is in agreement with the observed dimming of the VHE spectrum due to the annihilation of energetic photons on the EBL

  9. Spectrophotometry of nearby field galaxies : The data

    NARCIS (Netherlands)

    Jansen, RA; Fabricant, D; Franx, M; Caldwell, N

    We have obtained integrated and nuclear spectra as well as U, B, R surface photometry for a representative sample of 196 nearby galaxies. These galaxies span the entire Hubble sequence in morphological type, as well as a wide range of luminosities (M(B) = -14 to -22). Here we present the

  10. Blending bias impacts the host halo masses derived from a cross-correlation analysis of bright submillimetre galaxies

    NARCIS (Netherlands)

    Cowley, William I.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun; Wilkinson, Aaron

    2017-01-01

    Placing bright submillimetre galaxies (SMGs) within the broader context of galaxy formation and evolution requires accurate measurements of their clustering, which can constrain the masses of their host dark matter haloes. Recent work has shown that the clustering measurements of these galaxies may

  11. Possible Correlations between the Emission Properties of SGRBs and Their Offsets from the Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai; Jin, Zhi-Ping; Li, Xiang; Fan, Yi-Zhong; Wei, Da-Ming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Zhang, Fu-Wen, E-mail: jin@pmo.ac.cn, E-mail: yzfan@pmo.ac.cn, E-mail: dmwei@pmo.ac.cn [College of Science, Guilin University of Technology, Guilin 541004 (China)

    2017-07-20

    Short gamma-ray bursts (SGRBs) are widely believed to be from mergers of binary compact objects involving at least one neutron star and hence have a broad range of spatial offsets from their host galaxies. In this work, we search for possible correlations between the emission properties of 18 SGRBs and their offsets from the host galaxies. The SGRBs with and without extended emission do not show significant differences between their offset distributions, in agreement with some previous works. There are, however, possible correlations between the optical and X-ray afterglow emission and the offsets. The underlying physical origins are examined.

  12. SUPPRESSION OF STAR FORMATION IN THE HOSTS OF LOW-EXCITATION RADIO GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Cameron; Salim, Samir, E-mail: cameronpace@suu.edu, E-mail: salims@indiana.edu [Indiana University, Department of Astronomy, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2016-02-10

    The feedback from radio-loud active galactic nuclei (R-AGNs) may help maintain low star-formation (SF) rates in their early-type hosts, but the observational evidence for this mechanism has been inconclusive. We study systematic differences of aggregate spectral energy distributions (SEDs) of various subsets of ∼4000 low-redshift R-AGNs from Best and Heckman with respect to (currently) inactive control samples selected to have matching redshift, stellar mass, population age, axis ratio, and environment. Aggregate SEDs, ranging from the ultraviolet (UV) through mid-infrared (mid-IR, 22 μm), were constructed using a Bayesian method that eliminates biases from non-detections in Galaxy Evolution Explorer and Wide-field Infrared Survey Explorer. We study rare high-excitation sources separately from low-excitation ones, which we split by environment and host properties. We find that both the UV and mid-IR emission of non-cluster R-AGNs (80% of sample) are suppressed by ∼0.2 dex relative to that of the control group, especially for moderately massive galaxies (log M{sub *} ≲ 11). The difference disappears for high-mass R-AGNs and for R-AGNs in clusters, where other, non-AGN quenching/maintenance mechanisms may dominate, or where the suppression of SF due to AGNs may persist between active phases of the central engine, perhaps because of the presence of a hot gaseous halo storing AGN energy. High-excitation (high accretion rate) sources, which make up 2% of the R-AGN sample, do not show any evidence of SF suppression (their UV is the same as in controls), but they exhibit a strong mid-IR excess due to AGN dust heating.

  13. The host galaxy of a fast radio burst

    OpenAIRE

    Keane, E. F.; Jencson, J.; Kasliwal, Mansi M.

    2016-01-01

    In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty i...

  14. Galaxy And Mass Assembly (GAMA): gas fuelling of spiral galaxies in the local Universe II. - direct measurement of the dependencies on redshift and host halo mass of stellar mass growth in central disc galaxies

    Science.gov (United States)

    Grootes, M. W.; Dvornik, A.; Laureijs, R. J.; Tuffs, R. J.; Popescu, C. C.; Robotham, A. S. G.; Liske, J.; Brown, M. J. I.; Holwerda, B. W.; Wang, L.

    2018-06-01

    We present a detailed analysis of the specific star formation rate-stellar mass (sSFR-M*) of z ≤ 0.13 disc central galaxies using a morphologically selected mass-complete sample (M* ≥ 109.5 M⊙). Considering samples of grouped and ungrouped galaxies, we find the sSFR-M* relations of disc-dominated central galaxies to have no detectable dependence on host dark-matter halo (DMH) mass, even where weak-lensing measurements indicate a difference in halo mass of a factor ≳ 5. We further detect a gradual evolution of the sSFR-M* relation of non-grouped (field) central disc galaxies with redshift, even over a Δz ≈ 0.04 (≈5 × 108 yr) interval, while the scatter remains constant. This evolution is consistent with extrapolation of the `main sequence of star-forming-galaxies' from previous literature that uses larger redshift baselines and coarser sampling. Taken together, our results present new constraints on the paradigm under which the SFR of galaxies is determined by a self-regulated balance between gas inflows and outflows, and consumption of gas by star formation in discs, with the inflow being determined by the product of the cosmological accretion rate and a fuelling efficiency - \\dot{M}_{b,halo}ζ. In particular, maintaining the paradigm requires \\dot{M}_{b,halo}ζ to be independent of the mass Mhalo of the host DMH. Furthermore, it requires the fuelling efficiency ζ to have a strong redshift dependence (∝(1 + z)2.7 for M* = 1010.3 M⊙ over z = 0-0.13), even though no morphological transformation to spheroids can be invoked to explain this in our disc-dominated sample. The physical mechanisms capable of giving rise to such dependencies of ζ on Mhalo and z for discs are unclear.

  15. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  16. ALMA observations of the host galaxy of GRB 090423 at z = 8.23: deep limits on obscured star formation 630 million years after the big bang

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Chary, R.-R.; Laskar, T.; Chornock, R.; Davies, J. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Stanway, E. R.; Levan, A. J. [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Levesque, E. M. [CASA, University of Colorado UCB 389, Boulder, CO 80309 (United States)

    2014-12-01

    We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB 090423 at z = 8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3σ limits of F {sub ν}(222 GHz) ≲ 33 μJy and F {sub ν}(3.6 μm) ≲ 81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp 220 and comparable to the local starburst M 82. Comparing this with model spectral energy distributions, we place a limit on the infrared (IR) luminosity of L {sub IR}(8-1000 μm) ≲ 3 × 10{sup 10} L {sub ☉}, corresponding to a limit on the obscured star formation rate of SFR{sub IR}≲5 M {sub ☉} yr{sup –1}. For comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame ultraviolet (UV) observations is SFR{sub UV} ≲ 1 M {sub ☉} yr{sup –1}. We also place a limit on the host galaxy stellar mass of M {sub *} ≲ 5 × 10{sup 7} M {sub ☉} (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z ≳ 4 (Lyman break galaxies, Lyα emitters, and submillimeter galaxies) and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB 090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z ≳ 4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.

  17. A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203

    International Nuclear Information System (INIS)

    Watson, D.; French, J.; Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Castro Cerón, J. M.; Christensen, L.; O'Halloran, B.; Michałowski, M.; Gordon, K. D.; Covino, S.; Reinfrank, R. F.

    2011-01-01

    Gamma-ray burst (GRB) host galaxies have been studied extensively in optical photometry and spectroscopy. Here we present the first mid-infrared spectrum of a GRB host, HG 031203. It is one of the nearest GRB hosts at z = 0.1055, allowing both low- and high-resolution spectroscopy with the Spitzer Infrared Spectrograph (IRS). Medium-resolution UV to K-band spectroscopy with the X-shooter spectrograph on the Very Large Telescope is also presented, along with Spitzer IRAC and MIPS photometry, as well as radio and submillimeter observations. These data allow us to construct a UV to radio spectral energy distribution with almost complete spectroscopic coverage from 0.3 to 35 μm of a GRB host galaxy for the first time, potentially valuable as a template for future model comparisons. The IRS spectra show strong, high-ionization fine structure line emission indicative of a hard radiation field in the galaxy—in particular the [S IV]/[S III] and [Ne III]/[Ne II] ratios—suggestive of strong ongoing star formation and a very young stellar population. The absence of any polycyclic aromatic hydrocarbon emission supports these conclusions, as does the probable hot peak dust temperature, making HG 031203 similar to the prototypical blue compact dwarf galaxy (BCD), II Zw 40. The selection of HG 031203 via the presence of a GRB suggests that it might be a useful analog of very young star-forming galaxies in the early universe, and hints that local BCDs may be used as more reliable analogs of star formation in the early universe than typical local starbursts. We look at the current debate on the ages of the dominant stellar populations in z ∼ 7 and z ∼ 8 galaxies in this context. The nebular line emission is so strong in HG 031203 that at z ∼ 7, it can reproduce the spectral energy distributions of z-band dropout galaxies with elevated IRAC 3.6 and 4.5 μm fluxes without the need to invoke a 4000 Å break. Indeed, photometry of HG 031203 shows elevation of the broadband V

  18. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Sokolov, V.V.; Gorosabel, J.

    2001-01-01

    that GRB 991208 is at 3.7 Gpc (for H-0 = 60 km s(-1) Mpc(-1), Omega (0) = 1 and Lambda (0) = 0), implying an isotropic energy release of 1.15 10(53) erg which may. be relaxed by beaming by a factor >10(2). Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting...... a massive star origin. The absolute magnitude of the galaxy is M-B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) M-circle dot yr(-1), which is much larger than the present-day rate in our Galaxy. The quasi simultaneous broad...

  19. A COMPACT GROUP OF GALAXIES AT Z = 2.48 HOSTING AN AGN-DRIVEN OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Hsin-Yi [Gemini Observatory, 670 N Aohoku Place, Hilo, HI 96720 (United States); Stockton, Alan, E-mail: jshih@gemini.edu, E-mail: stockton@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-12-10

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 10{sup 11}M{sub ⊙} and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass–metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow.

  20. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, M.; Krühler, T.; Fynbo, J. P. U.; Watson, D. J.; De Ugarte Postigo, A.; Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen (Denmark); Hartoog, O. E.; Kaper, L. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands); Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); D' Elia, V. [INAF/Rome Astronomical Observatory, via Frascati 33, I-00040 Monteporzio Catone (Roma) (Italy); Zafar, T. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Afonso, P. M. J. [Physics and Astronomy Department, American River College, 4700 College Oak Drive, Sacramento, CA 95841 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Flores, H. [Laboratoire GEPI, Observatoire de Paris, CNRS-UMR8111, Universite Paris Diderot 5 place Jules Janssen, F-92195 Meudon (France); Goldoni, P. [APC, Astroparticule et Cosmologie, Universite Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, Rue Alice Domon et Léonie Duquet, F-75205 Paris, Cedex 13 (France); Greiner, J. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, D-85748 Garching (Germany); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, IS-107 Reykjavik (Iceland); Klose, S. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Levan, A. J., E-mail: sparre@dark-cosmology.dk [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); and others

    2014-04-20

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of log N(H I)/cm{sup −2}=22.30±0.06 and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A{sub V} = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.

  1. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...

  2. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  3. Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies

    NARCIS (Netherlands)

    Cordes, J.M.; Wasserman, I.; Hessels, J.W.T.; Lazio, T.J.W.; Chatterjee, S.; Wharton, R.S.

    2017-01-01

    The amplitudes of fast radio bursts (FRBs) can be strongly modulated by plasma lenses in their host galaxies, including that of the repeating FRB 121102 at ∼1 Gpc luminosity distance. Caustics require the lens’ dispersion measure depth ({{DM}}{\\ell }), scale size (a), and distance from the source

  4. Census of the Local Universe (CLU) Hα Galaxy Survey: Characterization of Galaxy Catalogs from Preliminary Fields

    Science.gov (United States)

    Cook, David O.; Kasliwal, Mansi; Van Sistine, Anglea; Kaplan, David; iPTF

    2018-01-01

    In this talk I introduce the Census of the Local Universe (CLU) galaxy survey. The survey uses 4 wavelength-adjacent, narrowband filters to search for emission-line (Hα) sources across ~3π (26,470 deg2) of the sky and out to distance of 200 Mpc. I will present an analysis of galaxy candidates in 14 preliminary fields (out of 3626) to assess the limits of the survey and the potential for finding new galaxies in the local Universe. We anticipate finding tens-of-thousands of new galaxies in the full ~3π survey. In addition, I present some interesting galaxies found in these fields, which include: newly discovered blue compact dwarfs (e.g., blueberries), 1 new green pea, 1 new QSO, and a known planetary nebula. The majority of the CLU galaxies show properties similar to normal star-forming galaxies; however, the newly discovered blueberries tend to have high star formation rates for their given stellar mass.

  5. Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

    Science.gov (United States)

    Cao, Liang; Lu, Youjun; Zhao, Yuetong

    2018-03-01

    Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.

  6. CHEMODYNAMIC EVOLUTION OF DWARF GALAXIES IN TIDAL FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, David; Martel, Hugo [Département de physique, de génie physique et d’optique, Université Laval, Québec, QC, G1V 0A6 (Canada); Romeo, Alessandro B., E-mail: david-john.williamson.1@ulaval.ca [Department of Earth and Space Sciences, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2016-11-01

    The mass–metallicity relation shows that the galaxies with the lowest mass have the lowest metallicities. As most dwarf galaxies are in group environments, interaction effects such as tides could contribute to this trend. We perform a series of smoothed particle hydrodynamics simulations of dwarf galaxies in external tidal fields to examine the effects of tides on their metallicities and metallicity gradients. In our simulated galaxies, gravitational instabilities drive gas inwards and produce centralized star formation and a significant metallicity gradient. Strong tides can contribute to these instabilities, but their primary effect is to strip the outer low-metallicity gas, producing a truncated gas disk with a large metallicity. This suggests that the effect of tides on the mass–metallicity relation is to move dwarf galaxies to higher metallicities.

  7. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  8. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    International Nuclear Information System (INIS)

    Tendulkar, S. P.; Kaspi, V. M.; Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N.; Cordes, J. M.; Chatterjee, S.; Bower, G. C.; Law, C. J.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Lazio, T. J. W.; Marcote, B.; Paragi, Z.; McLaughlin, M. A.; Ransom, S. M.; Scholz, P.

    2017-01-01

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10"−"4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m_r_′ = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M _* ∼ (4–7) × 10"7 M _⊙, assuming a mass-to-light ratio between 2 to 3 M _⊙ L _⊙ "−"1. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M _⊙ yr"−"1 and a substantial host dispersion measure (DM) depth ≲324 pc cm"−"3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  9. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, S. P.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Cordes, J. M.; Chatterjee, S. [Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Bower, G. C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720 (United States); Law, C. J. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720 (United States); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Burke-Spolaor, S.; Butler, B. J.; Demorest, P. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Marcote, B.; Paragi, Z. [Joint Institute for VLBI ERIC, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Scholz, P., E-mail: shriharsh@physics.mcgill.ca, E-mail: bassa@astron.nl [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); and others

    2017-01-10

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  10. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    Science.gov (United States)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  11. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, M. E.; Galbany, L.; López-Sánchez, Á. R.; Mollá, M.; González-Gaitán, S.; Vílchez, J. M.; Carnero, A.

    2018-05-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies, where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SN (Sloan Digital Sky Survey-II Supernova) survey at intermediate redshift by measuring their emission-line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR versus oxygen abundance shows a slope of -0.186 ± 0.123 mag dex-1 (1.52σ) in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  12. Magnetic fields in barred galaxies I. The atlas

    CERN Document Server

    Beck, R; Ehle, M; Harnett, J I; Haynes, R F; Shukurov, A M; Sokoloff, D D; Thierbach, M

    2002-01-01

    The total and polarized radio continuum emission of 20 barred galaxies was observed with the Very Large Array (VLA) at 3, 6, 18 and 22 cm and with the Australia Telescope Compact Array (ATCA) at 6 cm and 13 cm. Maps at 30 arcsec angular resolution are presented here. Polarized emission (and therefore a large-scale regular magnetic field) was detected in 17 galaxies. Most galaxies of our sample are similar to non-barred galaxies with respect to the radio/far-infrared flux correlation and equipartition strength of the total magnetic field. Galaxies with highly elongated bars are not always radio-bright. We discuss the correlation of radio properties with the aspect ratio of the bar and other measures of the bar strength. We introduce a new measure of the bar strength, \\Lambda, related to the quadrupole moment of the bar's gravitational potential. The radio surface brightness I of the barred galaxies in our sample is correlated with \\Lambda, I \\propto \\Lambda^0.4+/-0.1, and thus is highest in galaxies with a lon...

  13. CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Hatsukade, Bunyo; Ohta, Kouji; Hashimoto, Tetsuya; Nakanishi, Kouichiro; Tamura, Yoichi; Kohno, Kotaro

    2012-01-01

    We present the results of the 16 cm wave band continuum observations of four host galaxies of gamma-ray bursts (GRBs) 990705, 021211, 041006, and 051022 using the Australia Telescope Compact Array. Radio emission was not detected in any of the host galaxies. The 2σ upper limits on star formation rates derived from the radio observations of the host galaxies are 23, 45, 27, and 26 M ☉ yr –1 , respectively, which are less than about 10 times those derived from UV/optical observations, suggesting that they have no significant dust-obscured star formation. GRBs 021211 and 051022 are known as the so-called dark GRBs and our results imply that dark GRBs do not always occur in galaxies enshrouded by dust. Because large dust extinction was not observed in the afterglow of GRB 021211, our result suggests the possibility that the cause of the dark GRB is the intrinsic faintness of the optical afterglow. On the other hand, by considering the high column density observed in the afterglow of GRB 051022, the likely cause of the dark GRB is the dust extinction in the line of sight of the GRB.

  14. THE HOST GALAXY PROPERTIES OF VARIABILITY SELECTED AGN IN THE PAN-STARRS1 MEDIUM DEEP SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Heinis, S.; Gezari, S.; Kumar, S. [Department of Astronomy, University of Maryland, College Park, MD (United States); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2016-07-20

    We study the properties of 975 active galactic nuclei (AGNs) selected by variability in the Pan-STARRS1 Medium deep Survey. Using complementary multi-wavelength data from the ultraviolet to the far-infrared, we use spectral energy distribution fitting to determine the AGN and host properties at z < 1 and compare to a well-matched control sample. We confirm the trend previously observed: that the variability amplitude decreases with AGN luminosity, but we also observe that the slope of this relation steepens with wavelength, resulting in a “redder when brighter” trend at low luminosities. Our results show that AGNs are hosted by more massive hosts than control sample galaxies, while the rest frame dust-corrected NUV r color distribution of AGN hosts is similar to control galaxies. We find a positive correlation between the AGN luminosity and star formation rate (SFR), independent of redshift. AGN hosts populate the entire range of SFRs within and outside of the Main Sequence of star-forming galaxies. Comparing the distribution of AGN hosts and control galaxies, we show that AGN hosts are less likely to be hosted by quiescent galaxies and more likely to be hosted by Main Sequence or starburst galaxies.

  15. The Galaxy Hosts And Large-Scale Environments of Short-Hard Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Prochaska, Jason X.; Bloom, J.S.; Chen, H.-W.; Foley, R.J.; Perley, D.A.; Ramirez-Ruiz, E.; Granot, J.; Lee, W.H.; Pooley, D.; Alatalo, K.; Hurley, K.; Cooper, M.C.; Dupree, A.K.; Gerke, B.F.; Hansen, B.M.S.; Kalirai, J.S.; Newman, J.A.; Rich, R.M.; Richer, H.; Stanford, S.A.; Stern, D.

    2005-01-01

    The rapid succession of discovery of short-duration hard-spectrum GRBs has led to unprecedented insights into the energetics of the explosion and nature of the progenitors. Yet short of the detection of a smoking gun, like a burst of coincident gravitational radiation or a Li-Paczynski mini-supernova, it is unlikely that a definitive claim can be made for the progenitors. As was the case with long-duration soft-spectrum GRBs, however, the expectation is that a systematic study of the hosts and the locations of short GRBs could begin to yield fundamental clues about their nature. We present the first aggregate study of the host galaxies of short-duration hard-spectrum GRBs. In particular, we present the Gemini-North and Keck discovery spectra of the galaxies that hosted three short GRBs and a moderate-resolution (R ∼ 6000) spectrum of a fourth host. We find that these short-hard GRBs originate in a variety of low-redshift (z # circle d ot# yr -1 ) or recent star formation. Two of these galaxies are located within a cluster environment. These observations support an origin from the merger of compact stellar remnants, such as double neutron stars of a neutron star-black hole binary. The fourth event, in contrast, occurred within a dwarf galaxy with a star formation rate exceeding 0.5 M # circle d ot# yr -1 . Therefore, it appears that like supernovae of Type Ia, the progenitors of short-hard bursts are created in all galaxy types, suggesting a corresponding class with a wide distribution of delay times between formation and explosion

  16. Confusion-limited galaxy fields. II. Classical analyses

    International Nuclear Information System (INIS)

    Chokshi, A.; Wright, E.L.

    1989-01-01

    Chokshi and Wright presented a detailed model for simulating angular distribution of galaxy images in fields that extended to very high redshifts. Standard tools are used to analyze these simulated galaxy fields for the Omega(O) = 0 and the Omega(O) = 1 cases in order to test the discriminatory power of these tools. Classical number-magnitude diagrams and surface brightness-color-color diagrams are employed to study crowded galaxy fields. An attempt is made to separate the effects due to stellar evolution in galaxies from those due to the space time geometry. The results show that this discrimination is maximized at near-infrared wavelengths where the stellar photospheres are still visible but stellar evolution effects are less severe than those observed at optical wavelenghts. Rapid evolution of the stars on the asymptotic giant branch is easily recognized in the simulated data for both cosmologies and serves to discriminate between the two extreme values of Omega(O). Measurements of total magnitudes of individual galaxies are not essential for studying light distribution in galaxies as a function of redshift. Calculations for the extragalactic background radiation are carried out using the simulated data, and compared to integrals over the evolutionary models used. 29 refs

  17. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J. [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Añorve, C. [Facultad de Ciencias de la Tierra y del Espacio (FACITE) de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa (Mexico); Cruz-González, I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF (Mexico); Antón, S. [Instituto de Astrofísica de Andalucía-CSIC, E-18008 Granada (Spain); Karhunen, K.; Sanghvi, J., E-mail: leon.tavares@inaoep.mx [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland)

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  18. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    International Nuclear Information System (INIS)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-01-01

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to δt ≈ 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A host V ≈ 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N H, i nt (z = 1.3) ≈ 2 × 10 22 cm –2 , is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at ≈0.9-11 days reveal a constant flux density of F ν (5.8 GHz) = 35 ± 4 μJy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z ≈ 1.3, with a resulting star formation rate of x ≈ 300 M ☉ yr –1 . The inferred extinction and small projected offset (2.2 ± 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n ∼ 10 –3 cm –3 , an isotropic-equivalent energy scale of E γ, i so ≈ E K, i so ≈ 7 × 10 51 erg, and a jet opening angle of θ j ∼> 11°. The expected fraction of luminous infrared galaxies in the short GRB host sample is ∼0.01 and ∼0.25 (for pure stellar mass and star formation weighting, respectively). Thus, the observed fraction of two events in about 25 hosts (GRBs 120804A and 100206A) appears to support our previous conclusion that short

  19. Fitting and Phenomenology in Type IA Supernova Cosmology: Generalized Likelihood Analyses for Multiple Evolving Populations and Observations of Near-Infrared Lightcurves Including Host Galaxy Properties

    Science.gov (United States)

    Ponder, Kara A.

    In the late 1990s, Type Ia supernovae (SNeIa) led to the discovery that the Universe is expanding at an accelerating rate due to dark energy. Since then, many different tracers of acceleration have been used to characterize dark energy, but the source of cosmic acceleration has remained a mystery. To better understand dark energy, future surveys such as the ground-based Large Synoptic Survey Telescope and the space-based Wide-Field Infrared Survey Telescope will collect thousands of SNeIa to use as a primary dark energy probe. These large surveys will be systematics limited, which makes it imperative for our insight regarding systematics to dramatically increase over the next decade for SNeIa to continue to contribute to precision cosmology. I approach this problem by improving statistical methods in the likelihood analysis and collecting near infrared (NIR) SNeIa with their host galaxies to improve the nearby data set and search for additional systematics. Using more statistically robust methods to account for systematics within the likelihood function can increase accuracy in cosmological parameters with a minimal precision loss. Though a sample of at least 10,000 SNeIa is necessary to confirm multiple populations of SNeIa, the bias in cosmology is ˜ 2 sigma with only 2,500 SNeIa. This work focused on an example systematic (host galaxy correlations), but it can be generalized for any systematic that can be represented by a distribution of multiple Gaussians. The SweetSpot survey gathered 114 low-redshift, NIR SNeIa that will act as a crucial anchor sample for the future high redshift surveys. NIR observations are not as affected by dust contamination, which may lead to increased understanding of systematics seen in optical wavelengths. We obtained spatially resolved spectra for 32 SweetSpot host galaxies to test for local host galaxy correlations. For the first time, we probe global host galaxy correlations with NIR brightnesses from the current literature

  20. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjin [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Peng, Chien Y. [Giant Magellan Telescope Corporation, 251 S. Lake Ave., Suite 300, Pasadena, CA 91101 (United States); Barth, Aaron J. [Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 (United States); Im, Myungshin, E-mail: mkim@kasi.re.kr, E-mail: lho.pku@gmail.com, E-mail: peng@gmto.org, E-mail: barth@uci.edu, E-mail: mim@astro.snu.ac.kr [Department of Physics and Astronomy, Frontier Physics Research Division (FPRD), Seoul National University, Seoul (Korea, Republic of)

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift ( z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope . The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (H β FWHM ≤ 2000 km s{sup −1}) Type 1 AGNs, in contrast to their broad-line (H β FWHM > 2000 km s{sup −1}) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population.

  1. HOST GALAXY PROPERTIES OF THE SUBLUMINOUS GRB 120422A/SN 2012bz

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Chornock, Ryan; Soderberg, Alicia M.; Berger, Edo; Lunnan, Ragnhild, E-mail: Emily.Levesque@colorado.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-10-20

    GRB 120422A is a nearby (z = 0.283) long-duration gamma-ray burst (LGRB) detected by Swift with E {sub {gamma},iso} {approx} 4.5 Multiplication-Sign 10{sup 49} erg. It is also associated with the spectroscopically confirmed broad-lined Type Ic SN 2012bz. These properties establish GRB 120422A/SN 2012bz as the sixth and newest member of the class of subluminous GRBs supernovae (SNe). Observations also show that GRB 120422A/SN 2012bz occurred at an unusually large offset ({approx}8 kpc) from the host galaxy nucleus, setting it apart from other nearby LGRBs and leading to speculation that the host environment may have undergone prior interaction activity. Here, we present spectroscopic observations using the 6.5 m Magellan telescope at Las Campanas. We extract spectra at three specific locations within the GRB/SN host galaxy, including the host nucleus, the explosion site, and the 'bridge' of diffuse emission connecting these two regions. We measure a metallicity of log(O/H) + 12 = 8.3 {+-} 0.1 and a star formation rate (SFR) per unit area of 0.08 M {sub Sun} yr{sup -1} kpc{sup -2} at the host nucleus. At the GRB/SN explosion site we measure a comparable metallicity of log(O/H) + 12 = 8.2 {+-} 0.1 but find a much lower SFR per unit area of 0.01 M {sub Sun} yr{sup -1} kpc{sup -2}. We also compare the host galaxy of this event to the hosts of other LGRBs, including samples of subluminous LGRBs and cosmological LGRBs, and find no systematic metallicity difference between the environments of these different subtypes.

  2. Co-evolution of Massive Black Holes and Their Host Galaxies

    Science.gov (United States)

    Chen, Y. M.

    2010-07-01

    A scenario of co-evolution of supermassive black holes (SMBHs) and galaxies has been clearly conducted by the important evidence from observational results of quasar host galaxies and the relation between spheroid and SMBH mass. There are a plenty of unresolved problems and questions, some being basic, to be addressed in this scenario. The main goal of the present thesis is focusing on the mysterious scenario including growth of primordial black holes, cosmological evolution of spins and duty cycle of SMBHs, and interaction between the SMBH activity and star formation in galaxies from low to high redshifts. We review the main progress of this field over the past decade since the discovery of Magorrian relation and present comments on some questions in light of our view of points. The key questions to be addressed in this thesis work are: (1) how does the fast growth of primordial black holes influence their evolution? (2) what is the equation to describe the co-evolution of SMBHs and galaxies? (3) what is the mechanism to control the co-evolution? (4) how to transport the fueling gas from kpc scale to the center? It has been suggested that fast growth of primordial black holes via super-Eddington accretion is a promising way to form SMBHs in high redshift universe. Neutrino cooling has been employed and expedites the growth. We consider the Compton heating of the surroundings of the primordial black holes. We find that the realistic accretion rate is only a few percent of the Eddington rate, and the accretion is episodic. It implies that the fast growth via super-Eddington is not feasible. These conclusions have been confirmed by the detailed numerical simulations of Milosavljevic et al. (2008). The difficulties of the fast growth via accretion of baryon particles make the formation of SMBHs elusive in high redshift universe. We developed a new formulation to calculate the duty cycle of SMBHs based on the Soltan argument. We show it can be expressed by the mass

  3. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  4. Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings

    Science.gov (United States)

    Ma, Chao; de Grijs, Richard; Ho, Luis C.

    2018-04-01

    Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.

  5. High-Redshift Radio Galaxies from Deep Fields

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... High-Redshift Radio Galaxies from Deep Fields ... Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, ... Articles are also visible in Web of Science immediately.

  6. THE EFFECTS OF X-RAY FEEDBACK FROM ACTIVE GALACTIC NUCLEI ON HOST GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Hambrick, D. Clay; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2011-01-01

    Hydrodynamic simulations of galaxies with active galactic nuclei (AGNs) have typically employed feedback that is purely local, i.e., an injection of energy to the immediate neighborhood of the black hole (BH). We perform GADGET-2 simulations of massive elliptical galaxies with an additional feedback component: an observationally calibrated X-ray radiation field which emanates from the BH and heats gas out to large radii from the galaxy center. We find that including the heating and radiation pressure associated with this X-ray flux in our simulations enhances the effects which are commonly reported from AGN feedback. This new feedback model is twice as effective as traditional feedback at suppressing star formation, produces three times less star formation in the last 6 Gyr, and modestly lowers the final BH mass (30%). It is also significantly more effective than an X-ray background in reducing the number of satellite galaxies.

  7. VizieR Online Data Catalog: Host galaxies of Superluminous Supernovae (Angus+, 2016)

    Science.gov (United States)

    Angus, C. R.; Levan, A. J.; Perley, D. A.; Tanvir, N. R.; Lyman, J. D.; Stanway, E. R.; Fruchter, A. S.

    2016-11-01

    Here we use nIR and rest-frame UV observations of a sample of 21 SLSN host galaxies, within a redshift range of 0.019 SCP 06F6). This HST sample (programme GO-13025; PI: Levan) comprised 21 targets, based on the sample of Neill et al. (2011ApJ...727...15N), supplemented with luminous SNe from the literature (up to 2012 Jan). (6 data files).

  8. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    International Nuclear Information System (INIS)

    Sun, Jiayi; Shen, Yue

    2015-01-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L Edd ) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ * (hence, the BH mass via the M–σ * relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ * systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ * on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties

  9. Dwarf Galaxies with Gentle Star Formation and the Counts of Galaxies in the Hubble Deep Field

    OpenAIRE

    Campos, Ana

    1997-01-01

    In this paper the counts and colors of the faint galaxies observed in the Hubble Deep Field are fitted by means of simple luminosity evolution models that incorporate a numerous population of fading dwarfs. The observed color distribution of the very faint galaxies now allows us to put constraints on the star formation history in dwarfs. It is shown that the star-forming activity in these small systems has to proceed in a gentle way, i.e., through episodes where each one lasts much longer tha...

  10. Hosts and environments of low luminosity active galaxies in the local universe: The care and feeding of weak AGN

    Science.gov (United States)

    Parejko, John Kenneth

    The observed relationship between the mass of a galaxy's supermassive black hole and the galaxy's bulge mass suggests a relationship between the growth of the galaxy and the growth of its central black hole. When these black holes grow, they release phenomenal amounts of energy into their surroundings, possibly disrupting further growth of the galaxy. The feeding (inflowing matter) and feedback (outflowing energy) of a galaxy's central black hole may be intimately related to the properties of the host's environment, on scales many orders of magnitude beyond the black hole's gravitational influence. While feeding, a massive black hole reveals itself as an Active Galactic Nucleus (AGN), but only a few percent of all galaxies show evidence of an AGN. This thesis focuses on this question: What distinguishes galaxies that are currently hosting actively accreting black holes from those that are not? We use the vast data set provided by the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) to study the environments of a well defined sample of AGN hosts. To reduce contamination by galaxies that do not harbor actively accreting black holes, we define a clear, unambiguous sample of local AGN. Using this sample, we search for AGN in merging galaxies and measure the 2-point cross-correlation function of AGN and all galaxies to estimate the environments of AGN hosts compared to non-AGN hosts. We also describe trends in different subsamples of AGN, including luminosity and classification sub-type. Finally, we show how these techniques may be applied to future data sets such as forthcoming SDSS III data and X-ray data from the eROSITA satellite.

  11. The Magnetic Field in Galaxies, Galaxy Clusters, and the InterGalactic Space

    CERN Document Server

    Dar, A; Dar, Arnon

    2005-01-01

    Magnetic fields of debated origin appear to permeate the Universe on all large scales. There is mounting evidence that supernovae produce not only roughly spherical ejecta and winds, but also highly relativistic jets of ordinary matter. These jets, which travel long distances, slow down by accelerating the matter encountered on their path to cosmic-ray energies. We show that, if the turbulent motions induced by the winds and the cosmic rays generate magnetic fields in rough energy equipartition, the predicted magnetic-field strengths coincide with the ones observed not only in galaxies (5 $\\mu$G in the Milky Way) but also in galaxy clusters (6 $\\mu$G in Coma). The prediction for the intergalactic (or inter-cluster) field is 50 nG.

  12. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    French, K. Decker; Zabludoff, Ann [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Arcavi, Iair [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 10{sup 9.4}–10{sup 10.3} M {sub ☉}, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 10{sup 5.5}–10{sup 7.5} M {sub ☉}. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  13. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Science.gov (United States)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})∼ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  14. ON THE DEPENDENCE OF TYPE Ia SNe LUMINOSITIES ON THE METALLICITY OF THEIR HOST GALAXIES

    International Nuclear Information System (INIS)

    Moreno-Raya, Manuel E.; Mollá, Mercedes; López-Sánchez, Ángel R.; Galbany, Lluís; Vílchez, José Manuel; Rosell, Aurelio Carnero; Domínguez, Inmaculada

    2016-01-01

    The metallicity of the progenitor system producing a type Ia supernova (SN Ia) could play a role in its maximum luminosity, as suggested by theoretical predictions. We present an observational study to investigate if such a relationship exists. Using the 4.2 m William Herschel Telescope (WHT) we have obtained intermediate-resolution spectroscopy data of a sample of 28 local galaxies hosting SNe Ia, for which distances have been derived using methods independent of those based on SN Ia parameters. From the emission lines observed in their optical spectra, we derived the gas-phase oxygen abundance in the region where each SN Ia exploded. Our data show a trend, with an 80% of chance not being due to random fluctuation, between SNe Ia absolute magnitudes and the oxygen abundances of the host galaxies, in the sense that luminosities tend to be higher for galaxies with lower metallicities. This result seems likely to be in agreement with both the theoretically expected behavior and with other observational results. This dependence M B –Z might induce systematic errors when it is not considered when deriving SNe Ia luminosities and then using them to derive cosmological distances

  15. Strong magnetic fields, galaxy formation, and the Galactic engine

    International Nuclear Information System (INIS)

    Greyber, H.D.

    1989-01-01

    The strong-magnetic-field model proposed as an energy source for AGN and quasars by Greyber (1961, 1962, 1964, 1967, 1984, 1988, and 1989) is discussed. The basic principles of the model are reviewed; its advantages (in explaining the observed features of AGN and quasars) over models based on a rotating accretion disk are indicated in a table; and its implications for galaxy and quasar formation are explored. The gravitationally bound current loops detected in nearby spiral galaxies are interpreted as weak remnants of the current loops present during their formation. An observational search for a similar loop near the Galactic center is proposed. 27 refs

  16. Galaxies

    International Nuclear Information System (INIS)

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  17. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  18. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  19. THE CLUSTERING OF ALFALFA GALAXIES: DEPENDENCE ON H I MASS, RELATIONSHIP WITH OPTICAL SAMPLES, AND CLUES OF HOST HALO PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Papastergis, Emmanouil; Giovanelli, Riccardo; Haynes, Martha P.; Jones, Michael G. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Rodríguez-Puebla, Aldo, E-mail: papastergis@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu, E-mail: jonesmg@astro.cornell.edu, E-mail: apuebla@astro.unam.mx [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264, 04510 México, D.F. (Mexico)

    2013-10-10

    We use a sample of ≈6000 galaxies detected by the Arecibo Legacy Fast ALFA (ALFALFA) 21 cm survey to measure the clustering properties of H I-selected galaxies. We find no convincing evidence for a dependence of clustering on galactic atomic hydrogen (H I) mass, over the range M{sub H{sub I}} ≈ 10{sup 8.5}-10{sup 10.5} M{sub ☉}. We show that previously reported results of weaker clustering for low H I mass galaxies are probably due to finite-volume effects. In addition, we compare the clustering of ALFALFA galaxies with optically selected samples drawn from the Sloan Digital Sky Survey (SDSS). We find that H I-selected galaxies cluster more weakly than even relatively optically faint galaxies, when no color selection is applied. Conversely, when SDSS galaxies are split based on their color, we find that the correlation function of blue optical galaxies is practically indistinguishable from that of H I-selected galaxies. At the same time, SDSS galaxies with red colors are found to cluster significantly more than H I-selected galaxies, a fact that is evident in both the projected as well as the full two-dimensional correlation function. A cross-correlation analysis further reveals that gas-rich galaxies 'avoid' being located within ≈3 Mpc of optical galaxies with red colors. Next, we consider the clustering properties of halo samples selected from the Bolshoi ΛCDM simulation. A comparison with the clustering of ALFALFA galaxies suggests that galactic H I mass is not tightly related to host halo mass and that a sizable fraction of subhalos do not host H I galaxies. Lastly, we find that we can recover fairly well the correlation function of H I galaxies by just excluding halos with low spin parameter. This finding lends support to the hypothesis that halo spin plays a key role in determining the gas content of galaxies.

  20. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Levan, A.; Tunnicliffe, R. L. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Mangano, V. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Fox, D. B. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Menten, K. M. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Hjorth, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Roth, K. [Gemini Observatory, 670 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared

  1. First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system

    Science.gov (United States)

    Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.

    2015-11-01

    We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.

  2. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  3. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lunnan, R.; Chornock, R.; Berger, E.; Milisavljevic, D.; Drout, M.; Sanders, N. E.; Challis, P. M.; Czekala, I.; Foley, R. J.; Fong, W.; Kirshner, R. P.; Leibler, C.; Marion, G. H.; Narayan, G. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Huber, M. E. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); McCrum, M.; Smartt, S. J. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Rest, A. [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Roth, K. C. [Gemini Observatory, 670 N. Aohoku Place, Hilo, HI 96720 (United States); Scolnic, D., E-mail: rlunnan@cfa.harvard.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); and others

    2013-07-10

    We present observations and analysis of PS1-10bzj, a superluminous supernova (SLSN) discovered in the Pan-STARRS Medium Deep Survey at a redshift z = 0.650. Spectroscopically, PS1-10bzj is similar to the hydrogen-poor SLSNe 2005ap and SCP 06F6, though with a steeper rise and lower peak luminosity (M{sub bol} {approx_equal} -21.4 mag) than previous events. We construct a bolometric light curve, and show that while PS1-10bzj's energetics were less extreme than previous events, its luminosity still cannot be explained by radioactive nickel decay alone. We explore both a magnetar spin-down and circumstellar interaction scenario and find that either can fit the data. PS1-10bzj is located in the Extended Chandra Deep Field South and the host galaxy is imaged in a number of surveys, including with the Hubble Space Telescope. The host is a compact dwarf galaxy (M{sub B} Almost-Equal-To -18 mag, diameter {approx}< 800 pc), with a low stellar mass (M{sub *} Almost-Equal-To 2.4 Multiplication-Sign 10{sup 7} M{sub Sun }), young stellar population ({tau}{sub *} Almost-Equal-To 5 Myr), and a star formation rate of {approx}2-3 M{sub Sun} yr{sup -1}. The specific star formation rate is the highest seen in an SLSN host so far ({approx}100 Gyr{sup -1}). We detect the [O III] {lambda}4363 line, and find a low metallicity: 12 + (O/H) = 7.8 {+-} 0.2 ({approx_equal} 0.1 Z{sub Sun }). Together, this indicates that at least some of the progenitors of SLSNe come from young, low-metallicity populations.

  4. The afterglow and elliptical host galaxy of the short gamma-ray burst GRB 050724.

    Science.gov (United States)

    Berger, E; Price, P A; Cenko, S B; Gal-Yam, A; Soderberg, A M; Kasliwal, M; Leonard, D C; Cameron, P B; Frail, D A; Kulkarni, S R; Murphy, D C; Krzeminski, W; Piran, T; Lee, B L; Roth, K C; Moon, D-S; Fox, D B; Harrison, F A; Persson, S E; Schmidt, B P; Penprase, B E; Rich, J; Peterson, B A; Cowie, L L

    2005-12-15

    Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.

  5. AN EXAMINATION OF THE OPTICAL SUBSTRUCTURE OF GALAXY CLUSTERS HOSTING RADIO SOURCES

    International Nuclear Information System (INIS)

    Wing, Joshua D.; Blanton, Elizabeth L.

    2013-01-01

    Using radio sources from the Faint Images of the Radio Sky at Twenty-cm survey, and optical counterparts in the Sloan Digital Sky Survey, we have identified a large number of galaxy clusters. The radio sources within these clusters are driven by active galactic nuclei, and our cluster samples include clusters with bent, and straight, double-lobed radio sources. We also included a single-radio-component comparison sample. We examine these galaxy clusters for evidence of optical substructure, testing the possibility that bent double-lobed radio sources are formed as a result of large-scale cluster mergers. We use a suite of substructure analysis tools to determine the location and extent of substructure visible in the optical distribution of cluster galaxies, and compare the rates of substructure in clusters with different types of radio sources. We found no preference for significant substructure in clusters hosting bent double-lobed radio sources compared to those with other types of radio sources.

  6. Driving the growth of the earliest supermassive black holes with major mergers of host galaxies

    International Nuclear Information System (INIS)

    Tanaka, Takamitsu L

    2014-01-01

    The formation mechanism of supermassive black holes (SMBHs) in general, and of ∼10 9  m ⊙ SMBHs observed as luminous quasars at redshifts z>6 in particular, remains an open fundamental question. The presence of such massive BHs at such early times, when the Universe was less than a billion years old, implies that they grew via either super-Eddington accretion, or nearly uninterrupted gas accretion near the Eddington limit; the latter, at first glance, is at odds with empirical trends at lower redshifts, where quasar episodes associated with rapid BH growth are rare and brief. In this work, I examine whether and to what extent the growth of the z>6 quasar SMBHs can be explained within the standard quasar paradigm, in which major mergers of host galaxies trigger episodes of rapid gas accretion below or near the Eddington limit. Using a suite of Monte Carlo merger tree simulations of the assembly histories of 40 likely z>6 quasar host halos, I investigate (i) their growth and major merger rates out to z∼40, and (ii) how long the feeding episodes induced by host mergers must last in order to explain the observed z≳6 quasar population without super-Eddington accretion. The halo major merger rate scales roughly as ∝ (1+z) 5/2 , consistent with cosmological simulations at lower redshifts, with quasar hosts typically experiencing ≳10 major mergers between 15>z>6 (≈650 Myr), compared to ∼1 for typical massive galaxies at 3>z>0 (≈11 Gyr). The high rate of major mergers allows for nearly continuous SMBH growth if (for example) a merger triggers feeding for a duration comparable to the halo dynamical time. These findings suggest that the growth mechanisms of the earliest quasar SMBHs need not have been drastically different from their counterparts at lower redshifts. (paper)

  7. The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52

    Science.gov (United States)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Rutledge, Robert E.; Greene, Jenny E.

    2008-10-01

    We present new multiwavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus and to examine the mass of its black hole, previously estimated to be ~105 M⊙. HST ACS HRC images show that the host galaxy has a dwarf elliptical morphology (MI = - 18.4 mag, Sérsic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM-Newton show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and NH = 58+ 8.4-9.2 × 1021 cm -2, that moved out of the line of sight in between the XMM-Newton and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the SED of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of Lbol = 1.3 × 1043 ergs s-1. Finally, we compare black hole mass estimators, including methods based on X-ray variability, and optical scaling relations using the broad Hβ line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be MBH = (2.2-4.2) × 105 M⊙, with an Eddington ratio of Lbol/LEdd ≈ 0.2-0.5.

  8. The evolution of magnetic fields in clusters of galaxies

    International Nuclear Information System (INIS)

    Stoeckl, J.

    2011-01-01

    Although the observational knowledge base about the properties of magnetic fields in clusters of galaxies has significantly improved in recent years, our understanding of the evolution and influence of the magnetic fields is still limited. We present results from our study on the influence of cluster scale magnetic fields on the structure formation of clusters of galaxies and the evolution of the intra-cluster medium (ICM). The high-resolution simulations employ a self-consistent numerical setup, which includes gravity, cosmology, magnetohydrodynamics and radiative cooling. We find that during structure formation cosmological magnetic seed fields of the order of 10 -1 1 to 10 -9 G are amplified by up to six orders of magnitude, which is in good agreement with observations. Furthermore we find that merger shocks during the cluster formation can have a dispersive effect on the magnetic field in the cluster center, and the outgoing shock waves can lead to magnetic fields of the order of [mu]G even at distances of more than 1 Mpc from the center. We highlight this as a possible explanation for the faint or undetectable radio halos that can be observed together with strong radio relics. (author) [de

  9. Galaxies

    International Nuclear Information System (INIS)

    1989-01-01

    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  10. Dark matter deprivation in the field elliptical galaxy NGC 7507

    Science.gov (United States)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  11. Magnetic field evolution in dwarf and Magellanic-type galaxies

    Science.gov (United States)

    Siejkowski, H.; Soida, M.; Chyży, K. T.

    2018-03-01

    Aims: Low-mass galaxies radio observations show in many cases surprisingly high levels of magnetic field. The mass and kinematics of such objects do not favour the development of effective large-scale dynamo action. We attempted to check if the cosmic-ray-driven dynamo can be responsible for measured magnetization in this class of poorly investigated objects. We investigated how starburst events on the whole, as well as when part of the galactic disk, influence the magnetic field evolution. Methods: We created a model of a dwarf/Magellanic-type galaxy described by gravitational potential constituted from two components: the stars and the dark-matter halo. The model is evolved by solving a three-dimensional (3D) magnetohydrodynamic equation with an additional cosmic-ray component, which is approximated as a fluid. The turbulence is generated in the system via supernova explosions manifested by the injection of cosmic-rays. Results: The cosmic-ray-driven dynamo works efficiently enough to amplify the magnetic field even in low-mass dwarf/Magellanic-type galaxies. The e-folding times of magnetic energy growth are 0.50 and 0.25 Gyr for the slow (50 km s-1) and fast (100 km s-1) rotators, respectively. The amplification is being suppressed as the system reaches the equipartition level between kinetic, magnetic, and cosmic-ray energies. An episode of star formation burst amplifies the magnetic field but only for a short time while increased star formation activity holds. We find that a substantial amount of gas is expelled from the galactic disk, and that the starburst events increase the efficiency of this process.

  12. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to gro...

  13. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  14. The environment and host haloes of the brightest z ˜ 6 Lyman-break galaxies

    Science.gov (United States)

    Hatfield, P. W.; Bowler, R. A. A.; Jarvis, M. J.; Hale, C. L.

    2018-04-01

    By studying the large-scale structure of the bright high-redshift Lyman-break galaxy (LBG) population it is possible to gain an insight into the role of environment in galaxy formation physics in the early Universe. We measure the clustering of a sample of bright (-22.7 model to measure their typical halo masses. We find that the clustering amplitude and corresponding HOD fits suggests that these sources are highly biased (b ˜ 8) objects in the densest regions of the high-redshift Universe. Coupled with the observed rapid evolution of the number density of these objects, our results suggest that the shape of high luminosity end of the luminosity function is related to feedback processes or dust obscuration in the early Universe - as opposed to a scenario where these sources are predominantly rare instances of the much more numerous MUV ˜ -19 population of galaxies caught in a particularly vigorous period of star formation. There is a slight tension between the number densities and clustering measurements, which we interpret this as a signal that a refinement of the model halo bias relation at high redshifts or the incorporation of quasi-linear effects may be needed for future attempts at modelling the clustering and number counts. Finally, the difference in number density between the fields (UltraVISTA has a surface density˜1.8 times greater than UDS) is shown to be consistent with the cosmic variance implied by the clustering measurements.

  15. Possible correlations between gamma-ray burst and its host galaxy offset

    Science.gov (United States)

    Wang, Fei-Fei; Zou, Yuan-Chuan; Liu, Yu; Liao, Bin; Moharana, Reetanjali

    2018-06-01

    We collected the information of 304 gamma-ray bursts (GRBs) from the literature, and analyzed the correlations among the host galaxy offsets (the distance from the site of the GRB to the center of its host galaxy), T90,i (the duration T90 in rest-frame), TR45,i (the duration TR45 in rest-frame), Eγ,iso (the isotropic equivalent energy), Lγ,iso (=Eγ,iso /T90,i, the isotropic equivalent luminosity) and Lpk (peak luminosity). We found that T90,i, TR45,i, Eγ,iso, Lpk have negative correlation with offset, which is consistent with origin of short GRBs (SGRBs) and long GRBs (LGRBs). On separate analysis, we found similar results for log ⁡Eγ,iso - log ⁡ (offset) and log ⁡Lpk - log ⁡ (offset) relations in case of SGRBs only, while no obvious relation for LGRBs. There is no correlations between offset and Lγ,iso. We also put the special GRB 170817A and GRB 060218A on the plots. The two GRBs both have low luminosity and small offset. In the log ⁡ (offset) - log ⁡T90,i plot, we found GRB 170817A locates in between the two regions of SGRBs and LGRBs and it is the outlier in the offset -Eγ,iso, offset -Lγ,iso and offset -Lpk plots. Together with GRB 060218A being an outlier in all plots, it indicates the speciality of GRBs 170817A and 060218A, and might imply more subgroups of the GRB samples.

  16. Active Galaxy Host Properties from a New H I 21-cm Survey of the Swift BAT-detected AGN

    Science.gov (United States)

    Winter, Lisa M.; George, E. R.; Zauderer, B.; Darling, J.

    2013-01-01

    Many questions remain open on how central supermassive black holes and their host galaxies form and affect each other's evolution. In order to answer these questions, we need to understand the observational properties of a complete sample of active galaxies. To this end, we have been collecting and studying multi-wavelength spectroscopy of a unique sample of active galaxies selected in the very hard X-rays with the Swift Burst Alert Telescope. Here we present an analysis of the 21-cm H I spectra, which we observed with the 100-m Green Bank Telescope in 2012, for a sample of 95 Swift-detected AGN. With this complete sample, we show evidence for differences in the host cold gas mass content between obscured and unobscured AGN.

  17. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Science.gov (United States)

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  18. Field dodder life cycle and interaction with host plants

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2017-01-01

    Full Text Available Field dodder is a parasitic plant that attaches to stems and leaves of broadleaf plants, including weeds, field crops, vegetables and ornamentals, across most agricultural regions of the world. Effective field dodder control is extremely difficult to achieve due to the nature of attachment and close association between the host and the parasite, which require a highly effective and selective herbicide to destroy the parasite without damaging its host. To establish a strategy for controlling parasite growth and restricting the spread of field dodder in crop fields, it is important to learn more about this weed, its life cycle and development.

  19. SDSS-II SUPERNOVA SURVEY: AN ANALYSIS OF THE LARGEST SAMPLE OF TYPE IA SUPERNOVAE AND CORRELATIONS WITH HOST-GALAXY SPECTRAL PROPERTIES

    International Nuclear Information System (INIS)

    Wolf, Rachel C.; Gupta, Ravi R.; Sako, Masao; Fischer, John A.; March, Marisa C.; Fischer, Johanna-Laina; D’Andrea, Chris B.; Smith, Mathew; Kessler, Rick; Scolnic, Daniel M.; Jha, Saurabh W.; Campbell, Heather; Nichol, Robert C.; Olmstead, Matthew D.; Richmond, Michael; Schneider, Donald P.

    2016-01-01

    Using the largest single-survey sample of Type Ia supernovae (SNe Ia) to date, we study the relationship between properties of SNe Ia and those of their host galaxies, focusing primarily on correlations with Hubble residuals (HRs). Our sample consists of 345 photometrically classified or spectroscopically confirmed SNe Ia discovered as part of the SDSS-II Supernova Survey (SDSS-SNS). This analysis utilizes host-galaxy spectroscopy obtained during the SDSS-I/II spectroscopic survey and from an ancillary program on the SDSS-III Baryon Oscillation Spectroscopic Survey that obtained spectra for nearly all host galaxies of SDSS-II SN candidates. In addition, we use photometric host-galaxy properties from the SDSS-SNS data release such as host stellar mass and star formation rate. We confirm the well-known relation between HR and host-galaxy mass and find a 3.6 σ significance of a nonzero linear slope. We also recover correlations between HR and host-galaxy gas-phase metallicity and specific star formation rate as they are reported in the literature. With our large data set, we examine correlations between HR and multiple host-galaxy properties simultaneously and find no evidence of a significant correlation. We also independently analyze our spectroscopically confirmed and photometrically classified SNe Ia and comment on the significance of similar combined data sets for future surveys.

  20. CORRELATION ANALYSIS OF A LARGE SAMPLE OF NARROW-LINE SEYFERT 1 GALAXIES: LINKING CENTRAL ENGINE AND HOST PROPERTIES

    International Nuclear Information System (INIS)

    Xu Dawei; Komossa, S.; Wang Jing; Yuan Weimin; Zhou Hongyan; Lu Honglin; Li Cheng; Grupe, Dirk

    2012-01-01

    We present a statistical study of a large, homogeneously analyzed sample of narrow-line Seyfert 1 (NLS1) galaxies, accompanied by a comparison sample of broad-line Seyfert 1 (BLS1) galaxies. Optical emission-line and continuum properties are subjected to correlation analyses, in order to identify the main drivers of the correlation space of active galactic nuclei (AGNs), and of NLS1 galaxies in particular. For the first time, we have established the density of the narrow-line region as a key parameter in Eigenvector 1 space, as important as the Eddington ratio L/L Edd . This is important because it links the properties of the central engine with the properties of the host galaxy, i.e., the interstellar medium (ISM). We also confirm previously found correlations involving the line width of Hβ and the strength of the Fe II and [O III] λ5007 emission lines, and we confirm the important role played by L/L Edd in driving the properties of NLS1 galaxies. A spatial correlation analysis shows that large-scale environments of the BLS1 and NLS1 galaxies of our sample are similar. If mergers are rare in our sample, accretion-driven winds, on the one hand, or bar-driven inflows, on the other hand, may account for the strong dependence of Eigenvector 1 on ISM density.

  1. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    International Nuclear Information System (INIS)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John; Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben; Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya; Price, Larry R.; Raymond, Vivien; Kasliwal, Mansi M.; Nissanke, Samaya; Coughlin, Michael; Urban, Alex L.; Vitale, Salvatore; Mohapatra, Satya; Graff, Philip

    2016-01-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  2. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-20

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  3. Host Galaxy Properties and Black Hole Mass of Swift J164449.3+573451 from Multi-wavelength Long-term Monitoring and HST Data

    Science.gov (United States)

    Yoon, Yongmin; Im, Myungshin; Jeon, Yiseul; Lee, Seong-Kook; Choi, Philip; Gehrels, Neil; Pak, Soojong; Sakamoto, Takanori; Urata, Yuji

    2015-07-01

    We study the host galaxy properties of the tidal disruption object Swift J164449.3+573451 using long-term optical to near-infrared (NIR) data. First, we decompose the galaxy surface brightness distribution and analyze the morphology of the host galaxy using high-resolution Hubble Space Telescope WFC3 images. We conclude that the host galaxy is bulge-dominant and well described by a single Sérsic model with Sérsic index n=3.43+/- 0.05. Adding a disk component, the bulge to total host galaxy flux ratio (B/ T) is 0.83 ± 0.03, which still indicates a bulge-dominant galaxy. Second, we estimate multi-band fluxes of the host galaxy through long-term light curves. Our long-term NIR light curves reveal the pure host galaxy fluxes ˜500 days after the burst. We fit spectral energy distribution models to the multi-band fluxes from the optical to NIR of the host galaxy and determine its properties. The stellar mass, the star formation rate, and the age of the stellar population are {log}({M}\\star /{M}⊙ )={9.14}-0.10+0.13, {0.03}-0.03+0.28 {M}⊙ yr-1, and {0.63}-0.43+0.95 Gyr. Finally, we estimate the mass of the central super massive black hole which is responsible for the tidal disruption event. The black hole mass is estimated to be {10}6.7+/- 0.4 {M}⊙ from {M}{BH}-{M}\\star ,{bul} and {M}{BH}-{L}{bul} relations for the K band, although a smaller value of ˜ {10}5 {M}⊙ cannot be excluded convincingly if the host galaxy harbors a pseudobulge.

  4. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    International Nuclear Information System (INIS)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-01-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.

  5. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  6. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel; Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa; Gladders, Michael D.; Rigby, Jane R.; Dahle, Hakon; Florian, Michael

    2017-01-01

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  7. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X.; Werk, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Perley, D.; Cao, Y. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Cardwell, A.; Turner, J. [Gemini South Observatory, AURA, Casilla 603, La Serena (Chile); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cobb, B. E., E-mail: acucchia@ucolick.org [The George Washington University, Washington, DC (United States)

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial

  8. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at contamination by the host galaxy light at short wavelengths so that the scenario with an extreme 2175 Å extinction bump can be excluded. We localise the GRB to be at a projected distance of approximately 4 kpc from the centre of the host galaxy. Based on emission-line diagnostics of the four detected nebular lines, Hα, Hβ, [O II] and [O III], we find the host to be a modestly star forming (SFR = 1.34 ± 0.04 M⊙ yr-1) and relatively metal poor (Z=0.35+0.15-0.11 Z⊙) galaxy with a large dust content, characterised by a measured visual attenuation of AV = 1.74 ± 0.41 mag. We compare the host to other GRB hosts at similar redshifts and find that it is unexceptional in all its physical properties. We model the extinction curve of the host-corrected afterglow and show that the standard dust properties causing the reddening seen in the Local Group are inadequate in describing the steep drop. We thus conclude that the steep extinction curve seen in the afterglow towards the GRB is of exotic origin and issightline-dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2

  9. The Faint Optical Afterglow and Host Galaxy of GRB 020124: Implications for the Nature of Dark Gamma-Ray Bursts

    Science.gov (United States)

    Berger, E.; Kulkarni, S. R.; Bloom, J. S.; Price, P. A.; Fox, D. W.; Frail, D. A.; Axelrod, T. S.; Chevalier, R. A.; Colbert, E.; Costa, E.; Djorgovski, S. G.; Frontera, F.; Galama, T. J.; Halpern, J. P.; Harrison, F. A.; Holtzman, J.; Hurley, K.; Kimble, R. A.; McCarthy, P. J.; Piro, L.; Reichart, D.; Ricker, G. R.; Sari, R.; Schmidt, B. P.; Wheeler, J. C.; Vanderppek, R.; Yost, S. A.

    2002-12-01

    We present ground-based optical observations of GRB 020124 starting 1.6 hr after the burst, as well as subsequent Very Large Array and Hubble Space Telescope (HST) observations. The optical afterglow of GRB 020124 is one of the faintest afterglows detected to date, and it exhibits a relatively rapid decay, Fν~t-1.60+/-0.04, followed by further steepening. In addition, a weak radio source was found coincident with the optical afterglow. The HST observations reveal that a positionally coincident host galaxy must be the faintest host to date, R>~29.5 mag. The afterglow observations can be explained by several models requiring little or no extinction within the host galaxy, AhostV~0-0.9 mag. These observations have significant implications for the interpretation of the so-called dark bursts (bursts for which no optical afterglow is detected), which are usually attributed to dust extinction within the host galaxy. The faintness and relatively rapid decay of the afterglow of GRB 020124, combined with the low inferred extinction, indicate that some dark bursts are intrinsically dim and not dust obscured. Thus, the diversity in the underlying properties of optical afterglows must be observationally determined before substantive inferences can be drawn from the statistics of dark bursts.

  10. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION

    International Nuclear Information System (INIS)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan; Bresolin, Fabio; Kudritzki, Rolf-Peter; Pastorello, Andrea; Valenti, Stefano

    2013-01-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M g = –17.42 ± 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 ± 0.1 dex as determined from the detection of the [O III] λ4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive 56 Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m AB ∼ 26, but do not detect SN 2010gx at these epochs. The limit implies that any 56 Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M ☉ of 56 Ni). The low volumetric rates of these supernovae (∼10 –4 of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z ☉ ), high progenitor mass (>60 M ☉ ) and high rotation rate (fastest 10% of rotators).

  11. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    International Nuclear Information System (INIS)

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P.

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ R . An evaluation of the galaxies in the λ R ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects

  12. CIFOG: Cosmological Ionization Fields frOm Galaxies

    Science.gov (United States)

    Hutter, Anne

    2018-03-01

    CIFOG is a versatile MPI-parallelised semi-numerical tool to perform simulations of the Epoch of Reionization. From a set of evolving cosmological gas density and ionizing emissivity fields, it computes the time and spatially dependent ionization of neutral hydrogen (HI), neutral (HeI) and singly ionized helium (HeII) in the intergalactic medium (IGM). The code accounts for HII, HeII, HeIII recombinations, and provides different descriptions for the photoionization rate that are used to calculate the residual HI fraction in ionized regions. This tool has been designed to be coupled to semi-analytic galaxy formation models or hydrodynamical simulations. The modular fashion of the code allows the user to easily introduce new descriptions for recombinations and the photoionization rate.

  13. Relativistic Particle Population and Magnetic Fields in Clusters of Galaxies

    Science.gov (United States)

    Kushnir, Doron

    2011-08-01

    We derive constrains on the cosmic ray (CR) population and magnetic fields (MF) in clusters of galaxies, based on: 1. The correlation between the radio and the X-ray luminosities: the former emitted by synchrotron of secondary electrons in a strong MF, >˜3 muG; In the core, the CR energy is ˜10^{-3} of the thermal energy; The source of CR is the accretion shock (AS), which accelerate CR with efficiency >˜1%. 2. The HXR luminosity: emitted by IC of CMB photons by electrons accelerated in AS with efficiency >˜1%. The constrains imply that gamma-ray emission from secondaries will be difficult to detect with existing/planned instruments. However, the extended emission from primary electrons might be detected by future HXR (NuStar, Simbol-X) and gamma-ray observations (Fermi, HESS, VERITAS).

  14. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}˜ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}⊙ , a mean stellar age greater than ˜3 Gyr, and a metallicity of about 20%-100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  15. THE OPTICAL AFTERGLOW AND z = 0.92 EARLY-TYPE HOST GALAXY OF THE SHORT GRB 100117A

    International Nuclear Information System (INIS)

    Fong, W.; Berger, E.; Chornock, R.; Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Graham, J. F.; Cucchiara, A.; Fox, D. B.

    2011-01-01

    We present the discovery of the optical afterglow and early-type host galaxy of the short-duration GRB 100117A. The faint afterglow is detected 8.3 hr after the burst with r AB = 25.46 ± 0.20 mag. Follow-up optical and near-infrared observations uncover a coincident compact red galaxy, identified as an early-type galaxy at a spectroscopic redshift of z ∼ 0.915 with a mass of ∼3 x 10 10 M sun , an age of ∼1 Gyr, and a luminosity of L B ≅ 0.5 L * . From a possible weak detection of [O II]λ3727 emission at z = 0.915 we infer an upper bound on the star formation rate of ∼0.1 M sun yr -1 , leading to a specific star formation rate of ∼ -1 . Thus, GRB 100117A is only the second short burst to date with a secure early-type host (the other being GRB 050724 at z = 0.257) and it has one of the highest short gamma-ray burst (GRB) redshifts. The offset between the host center and the burst position, 470 ± 310 pc, is the smallest to date. Combined with the old stellar population age, this indicates that the burst likely originated from a progenitor with no significant kick velocity. However, from the brightness of the optical afterglow we infer a relatively low density of n ∼ 3 x 10 -4 ε -3 e,-1 ε -1.75 B,-1 cm -3 . The combination of an optically faint afterglow and host suggests that previous such events may have been missed, thereby potentially biasing the known short GRB host population against z ∼> 1 early-type hosts.

  16. Galaxies in the Diffuse Baryon Field Approaching Reionization: A Joint Study with JWST, HST, and Large Telescopes

    Science.gov (United States)

    Simcoe, Robert

    2017-08-01

    Our team is conducting a dedicated survey for emission-line galaxies at 5 6 quasars, using JWST/NIRCAM's slitless grism in a 110 hour GTO allocation. We have acquired deep near-IR spectra of the QSOs, revealing multiple heavy-element absorption systems and probing the HI optical depth within each object's survey volume. These data will provide the first systematic view of the circumgalactic medium at z > 4, allowing us to study early metal enrichment, correlations of the intergalactic HI optical depth with galaxy density, and the environment of the quasar hosts. These fields generally do not have deep multicolor photometry that would facilitate selection of broadband dropout galaxies for future observation with JWST/NIRSPEC. However during long spectroscopic integrations with NIRCAM's long channel we will obtain deep JWST photometry in F115W and F200W, together with F356W for wavelength calibration. Here we request 30 orbits with HST/ACS to acquire deep optical photometry that (together with the JWST IR bands) will constrain SED models and enable dropout selection of fainter objects. For lower redshift objects the rest-UV ACS data will improve estimates of star formation rate and stellar mass. Within a Small-GO program scope we will obtain sensitivity similar to CANDELS-Deep in all six fields, and approximately double the size of our galaxy sample appropriate for JWST/NIRSPEC followup at redshifts approaching the reionization epoch.

  17. NO CORRELATION BETWEEN HOST GALAXY METALLICITY AND GAMMA-RAY ENERGY RELEASE FOR LONG-DURATION GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Levesque, Emily M.; Kewley, Lisa J.; Soderberg, Alicia M.; Berger, Edo

    2010-01-01

    We compare the redshifts, host galaxy metallicities, and isotropic (E γ,iso ) and beaming-corrected (E γ ) gamma-ray energy release of 16 long-duration gamma-ray bursts (LGRBs) at z γ,iso , or E γ . These results are at odds with previous theoretical and observational predictions of an inverse correlation between gamma-ray energy release and host metallicity, as well as the standard predictions of metallicity-driven wind effects in stellar evolutionary models. We consider the implications that these results have for LGRB progenitor scenarios, and discuss our current understanding of the role that metallicity plays in the production of LGRBs.

  18. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  19. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  20. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.; Voyer, Elysse N.; Mello, Duilia de; Soto, Emmaris; Petty, Sara; Kassin, Susan; Ravindranath, Swara

    2015-01-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation

  1. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Voyer, Elysse N. [Randstad at Google, 1129 San Antonio Road, Palo Alto, CA (United States); Mello, Duilia de; Soto, Emmaris [Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Petty, Sara [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Kassin, Susan; Ravindranath, Swara [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.

  2. Untangling the magnetic fields in spiral galaxy NGC 6946 with wide-band polarimetry

    NARCIS (Netherlands)

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    We present 13 cm polarization observations of nearby spiral galaxy NGC 6946. These data provide a new perspective into the magnetic field structure of this galaxy. Previous observations show strong depolarization between 6 cm and 22 cm, and we show that the morphology of the 13 cm polarization

  3. Asteroseismic Investigation of Known Planet Hosts in the Kepler Field

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jørgen; Kjeldsen, Hans; Brown, T. M.

    2010-01-01

    Asteroseismic Investigation of Known Planet Hosts in the Kepler Field .a{background-color: #ffff88}.h{background-color: #ffff00}.b{background-color: #ccccff}.i{background-color: #3333ff}.c{background-color: #ffcccc}.j{background-color: #ff3333}.d{background-color: #bbffff}.k{background-color: #00...

  4. Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z ≃ 1.5

    Science.gov (United States)

    Di Teodoro, E. M.; Grillo, C.; Fraternali, F.; Gobat, R.; Karman, W.; Mercurio, A.; Rosati, P.; Balestra, I.; Caminha, G. B.; Caputi, K. I.; Lombardi, M.; Suyu, S. H.; Treu, T.; Vanzella, E.

    2018-05-01

    We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy (Sp1149) hosting the supernova `Refsdal'. Sp1149 lies at z ≃ 1.49, has a stellar mass M* ≃ 5 × 109 M⊙, has a star formation rate (SFR) ˜eq 1-6 M_{⊙} yr^{-1}, and represents a likely progenitor of a Milky Way-like galaxy. All the four multiple images of Sp1149 in our data show strong [O II}-line emissions pointing to a clear rotation pattern. We take advantage of the gravitational lensing magnification effect (≃4×) on the [O II} emission of the least distorted image to fit three-dimensional kinematic models to the MUSE data cube and derive the rotation curve and the velocity dispersion profile of Sp1149. We find that the rotation curve steeply rises, peaks at R ≃ 1 kpc, and then (initially) declines and flattens to an average {V_flat}= 128^{+29}_{-19} km s-1. The shape of the rotation curve is well determined, but the actual value of Vflat is quite uncertain because of the nearly face-on configuration of the galaxy. The intrinsic velocity dispersion due to gas turbulence is almost constant across the entire disc with an average of 27 ± 5 km s-1. This value is consistent with z = 0 measurements in the ionized gas component and a factor of 2-4 lower than other estimates in different galaxies at similar redshifts. The average stellar-to-total mass fraction is of the order of one-fifth. Our kinematic analysis returns the picture of a regular star-forming, mildly turbulent, rotation-dominated (V/σ ≃ 5) spiral galaxy in a 4-Gyr-old Universe.

  5. Galaxies clustering around QSOs with z = 0.9-1.5 and the origin of blue field galaxies

    Science.gov (United States)

    Hintzen, Paul; Romanishin, W.; Valdes, Francisco

    1991-01-01

    Deep CCD images were obtained in Mould-Cousins R and I passbands of 16 radio quasars with z values between 0.9 and 1.5 and absolute values of b above 35 deg, chosen from the Veron-Cetty and Veron (1984) catalog. Results indicate that, in this population of radio quasars, there is a statistically significant excess of galaxies within 15 arcsec of the quasars and brighter than R = 23 and I = 22. However, contrary to the report of Tyson (1986), no excess was found of galaxies with R less than 21 lying within 30 arcsec of quasars in this redshift range. Data were also obtained for very blue galaxies seen among objects in the general field, all of which are bluer in R-I than Magellanic irregulars at any redshift less than 3. It is suggested that this population might be comprised of low-redshift low-luminosity (H II region) galaxies of the type studied by French (1980) and/or higher redshift galaxies with strong cooling flows and forbidden O II lines.

  6. Rapid Coeval Black Hole and Host Galaxy Growth in MRC 1138-262 : The Hungry Spider

    NARCIS (Netherlands)

    Seymour, N.; Altieri, B.; De Breuck, C.; Barthel, P.; Coia, D.; Conversi, L.; Dannerbauer, H.; Dey, A.; Dickinson, M.; Drouart, G.; Galametz, A.; Greve, T. R.; Haas, M.; Hatch, N.; Ibar, E.; Ivison, R.; Jarvis, M.; Kovacs, A.; Kurk, J.; Lehnert, M.; Miley, G.; Nesvadba, N.; Rawlings, J. I.; Rettura, A.; Rottgering, H.; Rocca-Volmerange, B.; Sanchez-Portal, M.; Santos, J. S.; Stern, D.; Stevens, J.; Valtchanov, I.; Vernet, J.; Wylezalek, D.

    2012-01-01

    We present a detailed study of the infrared spectral energy distribution of the high-redshift radio galaxy MRC 1138-26 at z = 2.156, also known as the Spiderweb Galaxy. By combining photometry from Spitzer, Herschel, and LABOCA we fit the rest-frame 5-300 mu m emission using a two-component,

  7. Formation of a Quasar Host Galaxy through a Wet Merger 1.4 Billion Years after the Big Bang

    Science.gov (United States)

    Riechers, Dominik A.; Walter, Fabian; Carilli, Christopher L.; Bertoldi, Frank; Momjian, Emmanuel

    2008-10-01

    We present high-resolution Very Large Array imaging of the molecular gas in the host galaxy of the high-redshift quasar BRI 1335-0417 (z = 4.41). Our CO(J = 2→ 1) observations have a linear resolution of 0.15' ' (1.0 kpc) and resolve the molecular gas emission both spatially and in velocity. The molecular gas in BRI 1335-0417 is extended on scales of 5 kpc, and shows a complex structure. At least three distinct components encompassing about two-thirds of the total molecular mass of 9.2 × 1010 M⊙ are identified in velocity space, which are embedded in a structure that harbors about one-third of the total molecular mass in the system. The brightest CO(J = 2→ 1) line emission region has a peak brightness temperature of 61 ± 9 K within 1 kpc diameter, which is comparable to the kinetic gas temperature as predicted from the CO line excitation. This is also comparable to the gas temperatures found in the central regions of nearby ultraluminous infrared galaxies, which are however much more compact than 1 kpc. The spatial and velocity structure of the molecular reservoir in BRI 1335-0417 is inconsistent with a simple gravitationally bound disk, but resembles a merging system. Our observations are consistent with a major, gas-rich ("wet") merger that both feeds an accreting supermassive black hole (causing the bright quasar activity), and fuels a massive starburst that builds up the stellar bulge in this galaxy. Our study of this z > 4 quasar host galaxy may thus be the most direct observational evidence that wet mergers at high redshift are related to AGN activity.

  8. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Mawatari, K.; Inoue, A. K. [College of General Education, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka, 574-8530 (Japan); Kousai, K.; Hayashino, T. [Research Center for Neutrino Science, General School of Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Cooke, R.; Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Yamada, T. [Astronomical Institute, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Matsuda, Y., E-mail: mawatari@las.osaka-sandai.ac.jp [National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  9. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  10. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  11. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    Science.gov (United States)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  12. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  13. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  14. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  15. The Recent and Continuing Assembly of Field Elliptical Galaxies by Red Mergers

    Science.gov (United States)

    van Dokkum, Pieter G.

    2005-12-01

    We present a study of tidal debris associated with 126 nearby red galaxies, selected from the 1.2 deg2 Multiwavelength Survey by Yale-Chile and the 9.3 deg2 NOAO Deep Wide-Field Survey. In the full sample, 67 galaxies (53%) show morphological signatures of tidal interactions consisting of broad fans of stars, tails, and other asymmetries at very faint surface brightness levels. When restricting the sample to the 86 bulge-dominated early-type galaxies, the fraction of tidally disturbed galaxies rises to 71%, which implies that for every ``normal'' undisturbed elliptical there are two that show clear signs of interactions. The tidal features are red and smooth and often extend over >50 kpc. Of the tidally distorted galaxies, about two-thirds are remnants, and one-third are interacting with a companion galaxy. The companions are usually bright red galaxies as well; the median R-band luminosity ratio of the tidal pairs is 0.31, and the median color difference after correcting for the slope of the color-magnitude relation is -0.02 in B-R. If the ongoing mergers are representative for the progenitors of the remnants, ~35% of bulge-dominated galaxies experienced a merger with mass ratio >1:4 in the recent past. With further assumptions it is estimated that the present-day mass accretion rate of galaxies on the red sequence ΔM/M=0.09+/-0.04 Gyr-1. For a constant or increasing mass accretion rate with redshift, we find that red mergers may lead to an evolution of a factor of >~2 in the stellar mass density in luminous red galaxies over the redshift range 0interesting to determine whether this mode of merging only plays an important role at low redshift or is relevant for galaxies at any redshift if they exceed a critical mass scale.

  16. Galaxy kinematics in the XMMU J2235-2557 cluster field at z 1.4

    Science.gov (United States)

    Pérez-Martínez, J. M.; Ziegler, B.; Verdugo, M.; Böhm, A.; Tanaka, M.

    2017-09-01

    Aims: The relationship between baryonic and dark components in galaxies varies with the environment and cosmic time. Galaxy scaling relations describe strong trends between important physical properties. A very important quantitative tool in case of spiral galaxies is the Tully-Fisher relation (TFR), which combines the luminosity of the stellar population with the characteristic rotational velocity (Vmax) taken as proxy for the total mass. In order to constrain galaxy evolution in clusters, we need measurements of the kinematic status of cluster galaxies at the starting point of the hierarchical assembly of clusters and the epoch when cosmic star formation peaks. Methods: We took spatially resolved slit FORS2 spectra of 19 cluster galaxies at z 1.4, and 8 additional field galaxies at 1 200 km s-1). This mild evolution may be driven by younger stellar populations (SP) of distant galaxies with respect to their local counterparts, and thus, an increasing luminosity is expected toward higher redshifts. However, the low-mass subsample (Vmax medium. Based on observations with the European Southern Observatory Very Large Telescope (ESO-VLT), observing run ID 091.B-0778(B).

  17. Lyman Break Galaxies At z 2 In The GOODS Fields

    Science.gov (United States)

    Haberzettl, Lutz; Williger, G.; Lehnert, M.; Nesvadba, N.

    2009-12-01

    Lyman Break Galaxies (LBGs) have been the benchmarks against which other samples of high redshift galaxies have been compared for the last 2 decades. They are unique in that no other selection mechanism allows us to study galaxies selected in a consistent manner over the span of redshifts from z=0 to 7. An important remaining gap is the redshift range z ˜ 1.5-2.5, which includes near UV (NUV)-band drop-outs. We present first results of a search for LBGs at these redshifts using very sensitive multi-frequency data from the far UV to mid-IR of the GOODS CDF-S and HDF-N. We modelled colors of star-forming galaxies, and found only a small overlap with the BM/BX selection method (Adelberger et al. 2004, ApJ, 607, 226). We developed new color selection criteria using GALEX NUV and optical photometry to identify high star formation galaxies, including NUV-dropouts for 2.0methods, we identified a sample of ? z˜ 2 LBG candidates in both the GOODS CDF-S and the HDF-N. A first analysis of the mean SED of our LBG candidate sample shows results consistent with red LBGs at z ˜ 1, indicating massive galaxies with high star formation rates. Nearly 10% of our selected LBG candidates have mid-IR (IRAC+MIPS) colors comparable both to z ˜ 3 IR-luminous LBGs, which are believed to be dusty, vigorously star-forming massive progenitors of modern ellipticals.

  18. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, T.; Troja, E. [Center for Research and Exploration in Space Science and Technology (CRESST), NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Aoki, K. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Guiriec, S.; Barthelmy, S. D. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Im, M.; Jeon, Y. [Center for the Exploration of the Origin of the Universe (CEOU), Department of Physics and Astronomy, Seoul National University, Seoul, 151-747 (Korea, Republic of); Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Melandri, A.; D' Avanzo, P. [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); Urata, Y. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xu, D. [Department of Particle Physics and Astronomy, The Weizmann Institute of Science, Rehovot 76100 (Israel); Gorosabel, J.; Sanchez-Ramirez, R. [Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Bai, J. [Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan Province, 650011 (China); Briggs, M. S. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35805 (United States); Foley, S. [Max-Planck-Institut fuer extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  19. SUPPLEMENT: “GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP” (2016, ApJL, 829, L15)

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-01

    This is a supplement to the Letter of Singer et al., in which we demonstrated a rapid algorithm for obtaining joint 3D estimates of sky location and luminosity distance from observations of binary neutron star mergers with Advanced LIGO and Virgo. We argued that combining the reconstructed volumes with positions and redshifts of possible host galaxies can provide large-aperture but small field of view instruments with a manageable list of targets to search for optical or infrared emission. In this Supplement, we document the new HEALPix-based file format for 3D localizations of gravitational-wave transients. We include Python sample code to show the reader how to perform simple manipulations of the 3D sky maps and extract ranked lists of likely host galaxies. Finally, we include mathematical details of the rapid volume reconstruction algorithm.

  20. Active galactic nuclei. From the central engine to the host galaxy

    International Nuclear Information System (INIS)

    Gilbert, Didier

    2008-01-01

    After some recalls on galaxies, on their classification, on the Universe expansion and on the Hubble law, this academic report addresses active galactic nuclei (AGN) by describing their anatomy (central black hole, accretion disk, jets and winds, Broad Line Region, Narrow Line Region, molecular torus and dusts, radio lobes). The author also presents the unified model. In the next part, he proposes an overview of active galaxies and active galactic nuclei by distinguishing galaxies with a strong stellar activity, radio-quiet and radio-loud active galactic nuclei. Examples are presented for each of these types. In the last part, the author draws perspectives for research in cosmology, and outlines questions which are still to be answered

  1. Spatial distribution of dust in galaxies from the Integral field unit data

    Science.gov (United States)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  2. A new method to measure galaxy bias by combining the density and weak lensing fields

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-07-29

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  3. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    International Nuclear Information System (INIS)

    Martini, Paul; Miller, E. D.; Bautz, M.; Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Hickox, R. C.; Stern, D.; Eisenhardt, P. R.; Galametz, A.; Norman, D.; Dey, A.; Jannuzi, B. T.; Murray, S.; Jones, C.; Brown, M. J. I.

    2013-01-01

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M ≥ 10 14 M ☉ ) at 1 A = 3.0 +2.4 -1.4 % for AGNs with a rest-frame, hard X-ray luminosity greater than L X, H ≥ 10 44 erg s –1 . This fraction is measured relative to all cluster galaxies more luminous than M * 3.6 (z) + 1, where M * 3.6 (z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 μm bandpass. The cluster AGN fraction is 30 times greater than the 3σ upper limit on the value for AGNs of similar luminosity at z ∼ 0.25, as well as more than an order of magnitude greater than the AGN fraction at z ∼ 0.75. AGNs with L X, H ≥ 10 43 erg s –1 exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z ∼ 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  4. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  5. The distribution of mass for spiral galaxies in clusters and in the field

    International Nuclear Information System (INIS)

    Forbes, D.A.; Whitmore, B.C.

    1989-01-01

    A comparison is made between the mass distributions of spiral galaxies in clusters and in the field using Burstein's mass-type methodology. Both the H-alpha emission-line rotation curves and more extended H I rotation curves are used. The fitting technique for determining mass types used by Burstein and coworkers has been replaced by an objective chi-sq method. Mass types are shown to be a function of both the Hubble type and luminosity, contrary to earlier results. The present data show a difference in the distribution of mass types for spiral galaxies in the field and in clusters, in the sense that mass type I galaxies, where the inner and outer velocity gradients are similar, are generally found in the field rather than in clusters. This can be understood in terms of the results of Whitmore, Forbes, and Rubin (1988), who find that the rotation curves of galaxies in the central region of clusters are generally failing, while the outer galaxies in a cluster and field galaxies tend to have flat or rising rotation curves. 15 refs

  6. The Canada-France deep fields survey-II: Lyman-break galaxies and galaxy clustering at z ~ 3

    Science.gov (United States)

    Foucaud, S.; McCracken, H. J.; Le Fèvre, O.; Arnouts, S.; Brodwin, M.; Lilly, S. J.; Crampton, D.; Mellier, Y.

    2003-10-01

    We present a large sample of z ~ 3 U-band dropout galaxies extracted from the Canada-France deep fields survey (CFDF). Our catalogue covers an effective area of ~ 1700 arcmin2 divided between three large, contiguous fields separated widely on the sky. To IAB=24.5, the survey contains 1294 Lyman-break candidates, in agreement with previous measurements by other authors, after appropriate incompleteness corrections have been applied to our data. Based on comparisons with spectroscopic observations and simulations, we estimate that our sample of Lyman-break galaxies is contaminated by stars and interlopers (lower-redshift galaxies) at no more than { ~ } 30%. We find that omega (theta ) is well fitted by a power-law of fixed slope, gamma =1.8, even at small (theta University of Hawaii, and at the Cerro Tololo Inter-American Observatory and Mayall 4-meter Telescopes, divisions of the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.

  7. The Very Red Afterglow of GRB 000418: Further Evidence for Dust Extinction in a Gamma-Ray Burst Host Galaxy

    Science.gov (United States)

    Klose, S.; Stecklum, B.; Masetti, N.; Pian, E.; Palazzi, E.; Henden, A. A.; Hartmann, D. H.; Fischer, O.; Gorosabel, J.; Sánchez-Fernández, C.; Butler, D.; Ott, Th.; Hippler, S.; Kasper, M.; Weiss, R.; Castro-Tirado, A.; Greiner, J.; Bartolini, C.; Guarnieri, A.; Piccioni, A.; Benetti, S.; Ghinassi, F.; Magazzú, A.; Hurley, K.; Cline, T.; Trombka, J.; McClanahan, T.; Starr, R.; Goldsten, J.; Gold, R.; Mazets, E.; Golenetskii, S.; Noeske, K.; Papaderos, P.; Vreeswijk, P. M.; Tanvir, N.; Oscoz, A.; Muñoz, J. A.; Castro Cerón, J. M.

    2000-12-01

    We report near-infrared and optical follow-up observations of the afterglow of the GRB 000418 starting 2.5 days after the occurrence of the burst and extending over nearly 7 weeks. GRB 000418 represents the second case for which the afterglow was initially identified by observations in the near-infrared. During the first 10 days its R-band afterglow was well characterized by a single power-law decay with a slope of 0.86. However, at later times the temporal evolution of the afterglow flattens with respect to a simple power-law decay. Attributing this to an underlying host galaxy, we find its magnitude to be R=23.9 and an intrinsic afterglow decay slope of 1.22. The afterglow was very red with R-K~4 mag. The observations can be explained by an adiabatic, spherical fireball solution and a heavy reddening due to dust extinction in the host galaxy. This supports the picture that (long) bursts are associated with events in star-forming regions. Based on observations collected at the Bologna Astronomical Observatory in Loiano, Italy; at the TNG, Canary Islands, Spain; at the German-Spanish Astronomical Centre, Calar Alto, operated by the Max-Planck-Institut for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; at the US Naval Observatory; and at the UK Infrared Telescope.

  8. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul

    2009-01-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  9. R-band host galaxy contamination of TeV γ-ray blazar Mrk 501: effects of aperture size and seeing

    Science.gov (United States)

    Feng, Hai-Cheng; Liu, Hong-Tao; Zhao, Ying-He; Bai, Jin-Ming; Wang, Fang; Fan, Xu-Liang

    2018-02-01

    We simulated the R-band contribution of the host galaxy of TeV γ-ray BL Lac object Mrk 501 in different aperture sizes and seeing conditions. An intensive set of observations was acquired with the 1.02 m optical telescope, managed by Yunnan Observatories, from 2010 May 15 to 18. Based on the host subtraction data usually used in the literature, the subtraction of host galaxy contamination results in significant seeing-brightness correlations. These correlations would lead to illusive large amplitude variations at short timescales, which will mask the intrinsic microvariability, thus giving rise to difficulty in detecting the intrinsic microvariability. Both aperture size and seeing condition influence the flux measurements, but the aperture size impacts the result more significantly. Based on the parameters of an elliptical galaxy provided in the literature, we simulated the host contributions of Mrk 501 in different aperture sizes and seeing conditions. Our simulation data of the host galaxy obviously weaken these significant seeing-brightness correlations for the host-subtracted brightness of Mrk 501, and can help us discover the intrinsic short timescale microvariability. The pure nuclear flux is ∼8.0mJy in the R band, i.e., the AGN has a magnitude of R ∼ 13.96 mag.

  10. Evidence for merger remnants in early-type host galaxies of low-redshift QSOs

    Czech Academy of Sciences Publication Activity Database

    Bennert, N.; Canalizo, G.; Jungwiert, Bruno; Stockton, A.; Schweizer, F.; Peng, Ch.; Lacy, M.

    2008-01-01

    Roč. 677, č. 2 (2008), s. 846-857 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : galaxy mergers * quasars * photometry Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.331, year: 2008

  11. Spectacular Shells in the Host Galaxy of the QSO MC2 1635+119

    Czech Academy of Sciences Publication Activity Database

    Canalizo, G.; Bennert, N.; Jungwiert, Bruno; Stockton, A.; Schweizer, F.; Lacy, M.; Peng, Ch.

    2007-01-01

    Roč. 669, č. 2 (2007), s. 801-809 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : active galaxie s * interactions * evolution * quasars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.405, year: 2007

  12. What drives the evolution of Luminous Compact Blue Galaxies in Clusters vs. the Field?

    Science.gov (United States)

    Wirth, Gregory D.; Bershady, Matthew A.; Crawford, Steven M.; Hunt, Lucas; Pisano, Daniel J.; Randriamampandry, Solohery M.

    2018-06-01

    Low-mass dwarf ellipticals are the most numerous members of present-day galaxy clusters, but the progenitors of this dominant population remain unclear. A prime candidate is the class of objects known as Luminous Compact Blue Galaxies (LCBGs), common in intermediate-redshift clusters but virtually extinct today. Recent cosmological simulations suggest that present-day dwarf galaxies begin as irregular field galaxies, undergo an environmentally-driven starburst phase as they enter the cluster, and stop forming stars earlier than their counterparts in the field. This model predicts that cluster dwarfs should have lower stellar mass per unit dynamical mass than their counterparts in the field. We are undertaking a two-pronged archival research program to test this key prediction using the combination of precision photometry from space and high-quality spectroscopy. First, we are combining optical HST/ACS imaging of five z=0.55 clusters (including two HST Frontier Fields) with Spitzer IR imaging and publicly-released Keck/DEIMOS spectroscopy to measure stellar-to-dynamical-mass ratios for a large sample of cluster LCBGs. Second, we are exploiting a new catalog of LCBGs in the COSMOS field to gather corresponding data for a significant sample of field LCBGs. By comparing mass ratios from these datasets, we aim to test theoretical predictions and determine the primary physical driver of cluster dwarf-galaxy evolution.

  13. The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817

    Science.gov (United States)

    Hjorth, Jens; Levan, Andrew J.; Tanvir, Nial R.; Lyman, Joe D.; Wojtak, Radosław; Schrøder, Sophie L.; Mandel, Ilya; Gall, Christa; Bruun, Sofie H.

    2017-10-01

    The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be ˜10″ from the nucleus of the S0 galaxy NGC 4993. We report here the luminosity distance to this galaxy using two independent methods. (1) Based on our MUSE/VLT measurement of the heliocentric redshift (z helio = 0.009783 ± 0.000023), we infer the systemic recession velocity of the NGC 4993 group of galaxies in the cosmic microwave background (CMB) frame to be v CMB = 3231 ± 53 km s-1. Using constrained cosmological simulations we estimate the line-of-sight peculiar velocity to be v pec = 307 ± 230 km s-1, resulting in a cosmic velocity of v cosmic = 2924 ± 236 km s-1 (z cosmic = 0.00980 ± 0.00079) and a distance of D z = 40.4 ± 3.4 Mpc assuming a local Hubble constant of H 0 = 73.24 ± 1.74 km s-1 Mpc-1. (2) Using Hubble Space Telescope measurements of the effective radius (15.″5 ± 1.″5) and contained intensity and MUSE/VLT measurements of the velocity dispersion, we place NGC 4993 on the Fundamental Plane (FP) of E and S0 galaxies. Comparing to a frame of 10 clusters containing 226 galaxies, this yields a distance estimate of D FP = 44.0 ± 7.5 Mpc. The combined redshift and FP distance is D NGC 4993 = 41.0 ± 3.1 Mpc. This “electromagnetic” distance estimate is consistent with the independent measurement of the distance to GW170817 as obtained from the gravitational-wave signal ({D}{GW}={43.8}-6.9+2.9 Mpc) and confirms that GW170817 occurred in NGC 4993.

  14. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field

    Science.gov (United States)

    Kelley, Deborah S.; Karson, Jeffrey A.; Früh-Green, Gretchen L.; Yoerger, Dana R.; Shank, Timothy M.; Butterfield, David A.; Hayes, John M.; Schrenk, Matthew O.; Olson, Eric J.; Proskurowski, Giora; Jakuba, Mike; Bradley, Al; Larson, Ben; Ludwig, Kristin; Glickson, Deborah; Buckman, Kate; Bradley, Alexander S.; Brazelton, William J.; Roe, Kevin; Elend, Mitch J.; Delacour, Adélie; Bernasconi, Stefano M.; Lilley, Marvin D.; Baross, John A.; Summons, Roger E.; Sylva, Sean P.

    2005-03-01

    The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.

  15. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    Science.gov (United States)

    Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo

    2018-06-01

    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.

  16. The Carnegie Supernova Project I. Methods to estimate host-galaxy reddening of stripped-envelope supernovae

    Science.gov (United States)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.; Phillips, M. M.; Bersten, M.; Contreras, C.; Folatelli, G.; Holmbo, S.; Hsiao, E. Y.; Hoeflich, P.; Leloudas, G.; Morrell, N.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B-V)host 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction AVhost and RVhost. In the case of the SE SNe with relatively low amounts of reddening, a preferred value of RVhost is adopted for each sub-type, resulting in estimates of AVhost through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger RVhost values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation. Based on observations collected at Las Campanas Observatory.

  17. THE IMACS CLUSTER BUILDING SURVEY. III. THE STAR FORMATION HISTORIES OF FIELD GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr.; Dressler, Alan [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101-1292 (United States); Gladders, Michael G.; Abramson, Louis [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Poggianti, Bianca M.; Vulcani, Benedetta [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2013-06-10

    Using data from the IMACS Cluster Building Survey and from nearby galaxy surveys, we examine the evolution of the rate of star formation in field galaxies from z = 0.60 to the present. Fitting the luminosity function to a standard Schechter form, we find a rapid evolution of M{sub B}{sup *} consistent with that found in other deep surveys; at the present epoch M{sub B}{sup *} is evolving at the rate of 0.38 Gyr{sup -1}, several times faster than the predictions of simple models for the evolution of old, coeval galaxies. The evolution of the distribution of specific star formation rates (SSFRs) is also too rapid to explain by such models. We demonstrate that starbursts cannot, even in principle, explain the evolution of the SSFR distribution. However, the rapid evolution of both M{sub B}{sup *} and the SSFR distribution can be explained if some fraction of galaxies have star formation rates characterized by both short rise and fall times and by an epoch of peak star formation more recent than the majority of galaxies. Although galaxies of every stellar mass up to 1.4 Multiplication-Sign 10{sup 11} M{sub Sun} show a range of epochs of peak star formation, the fraction of ''younger'' galaxies falls from about 40% at a mass of 4 Multiplication-Sign 10{sup 10} M{sub Sun} to zero at a mass of 1.4 Multiplication-Sign 10{sup 11} M{sub Sun }. The incidence of younger galaxies appears to be insensitive to the density of the local environment; but does depend on group membership: relatively isolated galaxies are much more likely to be young than are group members.

  18. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    Science.gov (United States)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; hide

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  19. Discovery of 21 New Changing-look AGNs: Study on Evolution of AGNs and AGN Host Galaxies

    Science.gov (United States)

    Yang, Qian; Wu, Xuebing; Fan, Xiaohui; Jiang, Linhua; McGreer, Ian; Shangguan, Jinyi; Yao, Su; Wang, Bingquan; Joshi, Ravi; Green, Richard F.; Wang, Feige; Feng, Xiaotong; Fu, Yuming; Yang, Jinyi; Liu, Yuanqi

    2018-01-01

    The rare case of changing-look (CL) AGNs, with the appearance or disappearance of broad Balmer emission lines within a few years, challenges our understanding of the AGN unified model. We present a sample of 21 new CL AGNs at 0.08 Survey Explorer (WISE), were detected in 15 CL AGNs during the transition. The optical and mid-infrared variability is not consistent with the scenario of variable obscuration in 10 CL AGNs at higher than 3σ confidence level. We confirm a bluer-when-brighter trend in the optical. However, the mid-infrared colors W1‑W2 become redder when the objects become brighter in the W1 band, possibly due to a stronger hot dust contribution in the W2 band when the AGN activity becomes stronger. The physical mechanism of type transition is important for understanding the evolution of AGNs. The rare CL AGNs provide exceptional cases for the black hole and host stellar velocity dispersion relation studies at higher redshift. The faint state spectrum can be used to obtain the host stellar velocity dispersion without contamination from AGN component, and the bright state spectrum can be used to calculate the black hole mass with broad Balmer emission lines. The images at the non-AGN phase of CL AGNs are useful for studies of AGN host galaxies avoiding contamination from the luminous central engines.

  20. Imprint of thawing scalar fields on the large scale galaxy overdensity

    Science.gov (United States)

    Dinda, Bikash R.; Sen, Anjan A.

    2018-04-01

    We investigate the observed galaxy power spectrum for the thawing class of scalar field models taking into account various general relativistic corrections that occur on very large scales. We consider the full general relativistic perturbation equations for the matter as well as the dark energy fluid. We form a single autonomous system of equations containing both the background and the perturbed equations of motion which we subsequently solve for different scalar field potentials. First we study the percentage deviation from the Λ CDM model for different cosmological parameters as well as in the observed galaxy power spectra on different scales in scalar field models for various choices of scalar field potentials. Interestingly the difference in background expansion results from the enhancement of power from Λ CDM on small scales, whereas the inclusion of general relativistic (GR) corrections results in the suppression of power from Λ CDM on large scales. This can be useful to distinguish scalar field models from Λ CDM with future optical/radio surveys. We also compare the observed galaxy power spectra for tracking and thawing types of scalar field using some particular choices for the scalar field potentials. We show that thawing and tracking models can have large differences in observed galaxy power spectra on large scales and for smaller redshifts due to different GR effects. But on smaller scales and for larger redshifts, the difference is small and is mainly due to the difference in background expansion.

  1. Linking black hole growth with host galaxies: the accretion-stellar mass relation and its cosmic evolution

    Science.gov (United States)

    Yang, G.; Brandt, W. N.; Vito, F.; Chen, C.-T. J.; Trump, J. R.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Koekemoer, A. M.; Schneider, D. P.; Vignali, C.; Wang, J.-X.

    2018-04-01

    Previous studies suggest that the growth of supermassive black holes (SMBHs) may be fundamentally related to host-galaxy stellar mass (M⋆). To investigate this SMBH growth-M⋆ relation in detail, we calculate long-term SMBH accretion rate as a function of M⋆ and redshift [\\overlineBHAR(M_{\\star }, z)] over ranges of log (M⋆/M⊙) = 9.5-12 and z = 0.4-4. Our \\overlineBHAR(M_{\\star }, z) is constrained by high-quality survey data (GOODS-South, GOODS-North and COSMOS), and by the stellar mass function and the X-ray luminosity function. At a given M⋆, \\overlineBHAR is higher at high redshift. This redshift dependence is stronger in more massive systems [for log (M⋆/M⊙) ≈ 11.5, \\overlineBHAR is three decades higher at z = 4 than at z = 0.5], possibly due to AGN feedback. Our results indicate that the ratio between \\overlineBHAR and average star formation rate (\\overlineSFR) rises towards high M⋆ at a given redshift. This \\overlineBHAR/\\overlineSFR dependence on M⋆ does not support the scenario that SMBH and galaxy growth are in lockstep. We calculate SMBH mass history [MBH(z)] based on our \\overlineBHAR(M_{\\star }, z) and the M⋆(z) from the literature, and find that the MBH-M⋆ relation has weak redshift evolution since z ≈ 2. The MBH/M⋆ ratio is higher towards massive galaxies: it rises from ≈1/5000 at log M⋆ ≲ 10.5 to ≈1/500 at log M⋆ ≳ 11.2. Our predicted MBH/M⋆ ratio at high M⋆ is similar to that observed in local giant ellipticals, suggesting that SMBH growth from mergers is unlikely to dominate over growth from accretion.

  2. Comparison between two scalar field models using rotation curves of spiral galaxies

    Science.gov (United States)

    Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh

    2018-04-01

    Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.

  3. DETERMINING TYPE Ia SUPERNOVA HOST GALAXY EXTINCTION PROBABILITIES AND A STATISTICAL APPROACH TO ESTIMATING THE ABSORPTION-TO-REDDENING RATIO R{sub V}

    Energy Technology Data Exchange (ETDEWEB)

    Cikota, Aleksandar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching b. München (Germany); Deustua, Susana [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marleau, Francine, E-mail: acikota@eso.org [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A-6020 Innsbruck (Austria)

    2016-03-10

    We investigate limits on the extinction values of Type Ia supernovae (SNe Ia) to statistically determine the most probable color excess, E(B – V), with galactocentric distance, and use these statistics to determine the absorption-to-reddening ratio, R{sub V}, for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-infrared Survey with Herschel (KINGFISH). We use SN Ia spectral templates to develop a Monte Carlo simulation of color excess E(B – V) with R{sub V} = 3.1 and investigate the color excess probabilities E(B – V) with projected radial galaxy center distance. Additionally, we tested our model using observed spectra of SN 1989B, SN 2002bo, and SN 2006X, which occurred in three KINGFISH galaxies. Finally, we determined the most probable reddening for Sa–Sap, Sab–Sbp, Sbc–Scp, Scd–Sdm, S0, and irregular galaxy classes as a function of R/R{sub 25}. We find that the largest expected reddening probabilities are in Sab–Sb and Sbc–Sc galaxies, while S0 and irregular galaxies are very dust poor. We present a new approach for determining the absorption-to-reddening ratio R{sub V} using color excess probability functions and find values of R{sub V} = 2.71 ± 1.58 for 21 SNe Ia observed in Sab–Sbp galaxies, and R{sub V} = 1.70 ± 0.38, for 34 SNe Ia observed in Sbc–Scp galaxies.

  4. PEARS Emission Line Galaxies

    Science.gov (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 galaxies down to a limiting flux of approx 10 - 18 erg/s/sq cm . The ELRs have also been compared to the properties of the host galaxy, including morphology, luminosity, and mass. From this analysis we find three key results: 1) The computed line luminosities show evidence of a flattening in the luminosity function with increasing redshift; 2) The star forming systems show evidence of disturbed morphologies, with star formation occurring predominantly within one effective (half-light) radius. However, the morphologies show no correlation with host stellar mass; and 3) The number density of star forming galaxies with M(*) >= 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  5. STRUCTURAL TRANSITION IN THE NGC 6251 JET: AN INTERPLAY WITH THE SUPERMASSIVE BLACK HOLE AND ITS HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Chih-Yin; Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping, E-mail: cytseng@asiaa.sinica.edu.tw [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2016-12-20

    The structure of the NGC 6251 jet on the milliarcsecond scale is investigated using images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1–2) × 10{sup 5} times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M87 jet, suggests a fundamental process of structural transition in the jets of active galactic nuclei (AGNs). Collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  6. Massive stars formed in atomic hydrogen reservoirs: H i observations of gamma-ray burst host galaxies

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.

    2015-01-01

    to be the fuel of star formation. Moreover, optical spectroscopy of GRB afterglows implies that the molecular phase constitutes only a small fraction of the gas along the GRB line of sight. Here we report the first ever 21 cm line observations of GRB host galaxies, using the Australia Telescope Compact Array......, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H1-to-H2 conversion is very efficient, which rapidly...... exhaust molecular gas), as has been theoretically shown to be possible. This can happen in low-metallicity gas near the onset of star formation because cooling of gas (necessary for star formation) is faster than the H1-to-H2 conversion. Indeed, large atomic gas reservoirs, together with low molecular gas...

  7. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  8. Physical properties of distant red galaxies in the COSMOS/UltraVISTA field

    Science.gov (United States)

    Ma, Zhongyang; Fang, Guanwen; Kong, Xu; Fan, Lulu

    2015-10-01

    We present a study on physical properties for a large distant red galaxy (DRG) sample, using the K-selected multi-band photometry catalog of the COSMOS/UltraVISTA field and the CANDELS near-infrared data. Our sample includes 4485 DRGs with (J - K)AB > 1.16 and KAB DRG morphology are consistent with our rest-frame UVJ color classification; quiescent DRGs are generally compact while star-forming DRGs tend to have extended structures. We find the star formation rate (SFR) and the stellar mass of star-forming DRGs present tight "main sequence" relations in all redshift bins. Moreover, the specific SFR (sSFR) of DRGs increases with redshift in all stellar mass bins and DRGs with higher stellar masses generally have lower sSFRs, which indicates that galaxies were much more active on average in the past, and star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. The infrared-derived SFR dominates the total SFR of DRGs which occupy the high-mass range, implying that the J - K color criterion effectively selects massive and dusty galaxies. DRGs with higher M* generally have redder (U - V)rest colors, and the (U - V)rest colors of DRGs become bluer at higher redshifts, suggesting high-mass galaxies have higher internal dust extinctions or older stellar ages and they evolve with time. Finally, we find that DRGs have different overlap among extremely red objects, BzK galaxies, IRAC-selected extremely red objects, and high-z ultraluminous infrared galaxies, indicating that DRGs are not a special population and they can also be selected by other color criteria.

  9. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) HDF, and one with an I-814(AB)=19.9 star, while a further 11 are associated with objects in the Hubble Flanking Fields (10 galaxies...... and one star), Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals....

  10. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  11. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  12. Automated Morphological Classification in Deep Hubble Space Telescope UBVI Fields: Rapidly and Passively Evolving Faint Galaxy Populations

    Science.gov (United States)

    Odewahn, Stephen C.; Windhorst, Rogier A.; Driver, Simon P.; Keel, William C.

    1996-11-01

    We analyze deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2) images in U, B, V, I using artificial neural network (ANN) classifiers, which are based on galaxy surface brightness and light profile (but not on color nor on scale length, rhl). The ANN distinguishes quite well between E/S0, Sabc, and Sd/Irr+M galaxies (M for merging systems) for BJ ~ 24 mag. The faint blue galaxy counts in the B band are dominated by Sd/Irr+M galaxies and can be explained by a moderately steep local luminosity function (LF) undergoing strong luminosity evolution. We suggest that these faint late-type objects (24 mag <~ BJ <~ 28 mag) are a combination of low-luminosity lower redshift dwarf galaxies, plus compact star-forming galaxies and merging systems at z ~= 1--3, possibly the building blocks of the luminous early-type galaxies seen today.

  13. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    Science.gov (United States)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  14. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    Science.gov (United States)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  15. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  16. Multi-Wavelength Studies on H2O Maser Host Galaxies J. S. Zhang ...

    Indian Academy of Sciences (India)

    on two projects: X-ray data analysis of individual maser source using. X-ray penetrability to explore maser host obscured AGN; multi- wavelength ... Figure 1. Adaptively smoothed three-color image in 0.3–8.0keV and spectra with fitting ... It provides a perspective to improve the accuracy of the Hubble constant H0 and to.

  17. A multi-colour study of the dark GRB 000210 host galaxy and its environment

    DEFF Research Database (Denmark)

    Gorosabel, J.; Christensen, Lise; Hjorth, J.

    2003-01-01

    (SED) of the host. The derived photometric redshift is z = 0.842(-0.042)(+0.014), which is in excellent agreement with the spectroscopic redshift (z = 0.8463 +/- 0.0002) proposed by Piro et al. (2002) based on a single emission line. Furthermore, we have determined the photometric redshift of all...

  18. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions

  19. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  20. Wide-field kinematic structure of early-type galaxy halos

    Science.gov (United States)

    Arnold, Jacob Antony

    2013-12-01

    The stellar halos of nearby galaxies bare the signatures of the mass-assembly processes that have driven galaxy evolution over the last ˜10 Gyr. Finding and interpreting these relict clues in galaxies within and beyond the local group offers one of the most promising avenues for understanding how galaxies accumulate their stars over time. To tackle this problem we have performed a systematic study of the wide-field kinematic structure of nearby (Dspectroscopy out to several effective radii (˜3 R e). The 22 galaxies presented here span a range of environments (field, group, and cluster), intrinsic luminosities (-22.4 infrared Calcium II triplet. For each spectrum, we parameterize the line-of-sight velocity distribution (LOSVD) as a truncated Gauss-Hermite series convolved with an optimally weighted combination of stellar templates. These kinematic measurements (V, sigma, h3, and h4) are combined with literature values to construct spatially resolved maps of large-scale kinematic structure. A variety of kinematic behaviors are observed beyond ~1 Re, potentially reflecting the stochastic and chaotic assembly of stellar bulges and halos in early-type galaxies. Next, we describe a global analysis (out to 5 Re) of kinematics and metallicity in the nearest S0 galaxy, NGC 3115, along with implications for its assembly history. The data include high-quality wide-field imaging and multi-slit spectra of the field stars and globular clusters (GCs). Within two effective radii, the bulge (as traced by the stars and metal-rich GCs) is flattened and rotates rapidly. At larger radii, the rotation declines dramatically, while the characteristic GC metallicities also decrease with radius. We argue that this pattern is not naturally explained by a binary major merger, but instead by a two-phase assembly process where the inner regions have formed in an early violent, dissipative phase, followed by the protracted growth of the outer parts via minor mergers. To test this hypothesis

  1. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.

    1981-01-01

    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  2. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    Science.gov (United States)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  3. A DEEP, WIDE-FIELD Hα SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    International Nuclear Information System (INIS)

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-01-01

    We present the results of a wide-field Hα imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured Hα fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M ☉ yr –1 . This paper describes the observations, data processing, and source identification procedures, and presents an Hα and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted Hα emission in more distant clusters.

  4. Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ˜ 1-2

    Science.gov (United States)

    Fossati, M.; Wilman, D. J.; Mendel, J. T.; Saglia, R. P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J. C. C.; Fabricius, M.; Bandara, K.; Brammer, G. B.; Davies, R.; Förster Schreiber, N. M.; Genzel, R.; Hartley, W.; Kulkarni, S. K.; Lang, P.; Momcheva, I. G.; Nelson, E. J.; Skelton, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.; Wisnioski, E.; Whitaker, K. E.; Wuyts, E.; Wuyts, S.

    2017-02-01

    We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-Hubble Space Telescope (HST)/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multiwavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than {{JH}}140< 24 mag in the redshift range 0.5< z< 3.0. By linking observed galaxies to a mock sample, selected to reproduce the 3D-HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that it is a central or a satellite galaxy. The same procedure is applied to a z = 0 sample selected from Sloan Digital Sky Survey. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is {t}{quench}˜ 2{--}5 {Gyr}; it is longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample ({M}h≲ {10}14 {M}⊙ ), satellites are quenched by exhaustion of their gas reservoir in the absence of cosmological accretion. We find that the quenching times can be separated into a delay phase, during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ({τ }f˜ 0.4{--}0.6 Gyr), as shown previously at z = 0. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.

  5. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  6. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  7. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    Energy Technology Data Exchange (ETDEWEB)

    Donato, D.; Troja, E. [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Cenko, S. B.; Fox, O. [Astrophysics Science Division, NASA/GSFC, Mail Code 661, Greenbelt, MD 20771 (United States); Covino, S. [INAF, Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Pursimo, T. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Kutyrev, A. [Observational Cosmology Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771-2400 (United States); Campana, S.; Fugazza, D. [Joint Space Science Institute, University of Maryland, College Park, MD 20742 (United States); Landt, H. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Butler, N. R., E-mail: davide.donato-1@nasa.gov [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2014-02-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10{sup 6} K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M {sub BH}/M {sub ☉}) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  8. A tidal disruption event in a nearby galaxy hosting an intermediate mass black hole

    International Nuclear Information System (INIS)

    Donato, D.; Troja, E.; Cenko, S. B.; Fox, O.; Covino, S.; Pursimo, T.; Cheung, C. C.; Kutyrev, A.; Campana, S.; Fugazza, D.; Landt, H.; Butler, N. R.

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 keV flux declined by a factor of ∼2300 over a time span of 6 yr, following a power-law decay with index ∼2.44 ± 0.40. The Chandra data alone vary by a factor of ∼20. The spectrum is well fit by a blackbody with a constant temperature of kT ∼ 0.09 keV (∼10 6 K). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1σ level with the cluster (z = 0.062476). We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log (M BH /M ☉ ) ∼ 5.5 ± 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  9. Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors

    Science.gov (United States)

    Howell, E. J.; Chan, M. L.; Chu, Q.; Jones, D. H.; Heng, I. S.; Lee, H.-M.; Blair, D.; Degallaix, J.; Regimbau, T.; Miao, H.; Zhao, C.; Hendry, M.; Coward, D.; Messenger, C.; Ju, L.; Zhu, Z.-H.

    2018-03-01

    The detection of black hole binary coalescence events by Advanced LIGO allows the science benefits of future detectors to be evaluated. In this paper, we report the science benefits of one or two 8 km arm length detectors based on the doubling of key parameters in an Advanced LIGO-type detector, combined with realizable enhancements. It is shown that the total detection rate for sources similar to those already detected would increase to ˜ 103-105 per year. Within 0.4 Gpc, we find that around 10 of these events would be localizable to within ˜10-1 deg2. This is sufficient to make unique associations or to rule out a direct association with the brightest galaxies in optical surveys (at r-band magnitudes of 17 or above) or for deeper limits (down to r-band magnitudes of 20) yield statistically significant associations. The combination of angular resolution and event rate would benefit precision testing of formation models, cosmic evolution, and cosmological studies.

  10. LOW-POWER RADIO GALAXIES IN THE DISTANT UNIVERSE: A SEARCH FOR FR I AT 1 < z < 2 IN THE COSMOS FIELD

    International Nuclear Information System (INIS)

    Chiaberge, Marco; Tremblay, Grant; Macchetto, F. Duccio; Sparks, W. B.; Capetti, Alessandro; Tozzi, Paolo

    2009-01-01

    We present a search for FR I radio galaxies between 1 < z < 2 in the COSMOS field. In absence of spectroscopic redshift measurements, the selection method is based on multiple steps which make use of both radio and optical constraints. The basic assumptions are that (1) the break in radio power between low-power FR Is and the more powerful FR IIs does not change with redshift, and (2) that the photometric properties of the host galaxies of low-power radio galaxies in the distant universe are similar to those of FR IIs in the same redshift bin, as is the case for nearby radio galaxies. We describe the results of our search, which yields 37 low-power radio galaxy candidates that are possibly FR Is. We show that a large fraction of these low-luminosity radio galaxies display a compact radio morphology that does not correspond to the FR I morphological classification. Furthermore, our objects are apparently associated with galaxies that show clear signs of interactions, at odds with the typical behavior observed in low-z FR I hosts. The compact radio morphology might imply that we are observing intrinsically small and possibly young objects that will eventually evolve into the giant FR Is we observe in the local universe. One of the objects appears as pointlike in Hubble Space Telescope (HST) images. This might belong to a population of FR I-QSOs, which however would represent a tiny minority of the overall population of high-z FR Is. As for the local FR Is, a large fraction of our objects are likely to be associated with groups or clusters, making them 'beacons' for high-redshift clusters of galaxies. Our search for candidate high-z FR Is we present in this paper constitutes a pilot study for objects to be observed with future high-resolution and high-sensitivity instruments such as the EVLA and ALMA in the radio band, HST/WFC3 in the optical and IR, James Webb Space Telescope in the IR, as well as future generation X-ray satellites.

  11. GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES

    International Nuclear Information System (INIS)

    Krick, J. E.; Surace, J. A.; Yan, L.; Thompson, D.; Ashby, M. L. N.; Hora, J. L.; Gorjian, V.

    2009-01-01

    We present infrared (IR) luminosities, star formation rates (SFR), colors, morphologies, locations, and active galactic nuclei (AGNs) properties of 24 μm detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation (SF) and AGN evolution in cluster galaxies. We use three newly identified z = 1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep Hubble Space Telescope imaging and deep wide-area Spitzer MIPS 24 μm imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGNs and the rest dominated by SF. We find that 43% of the star-forming sample have IR luminosities L IR > 10 11 L sun (luminous IR galaxies). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS-detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other two clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increase from redshift zero to one, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not affect the IR luminosities or morphologies of the MIPS sample. SF happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.

  12. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Miller, E. D.; Bautz, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Stanford, S. A. [Department of Physics, University of California, One Shields Avenue, Davis, CA 95616 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Stern, D.; Eisenhardt, P. R. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Galametz, A. [INAF-Osservatorio di Roma, Via Frascati 33, I-00040 Monteporzio (Italy); Norman, D.; Dey, A. [NOAO, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Jannuzi, B. T. [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Murray, S.; Jones, C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brown, M. J. I., E-mail: martini@astronomy.ohio-state.edu [School of Physics, Monash University, Clayton, Victoria 3800 (Australia)

    2013-05-01

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M {>=} 10{sup 14} M{sub Sun }) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z {approx} 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f{sub A} = 3.0{sup +2.4}{sub -1.4}% for AGNs with a rest-frame, hard X-ray luminosity greater than L{sub X,{sub H}} {>=} 10{sup 44} erg s{sup -1}. This fraction is measured relative to all cluster galaxies more luminous than M{sup *}{sub 3.6}(z) + 1, where M{sup *}{sub 3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 {mu}m bandpass. The cluster AGN fraction is 30 times greater than the 3{sigma} upper limit on the value for AGNs of similar luminosity at z {approx} 0.25, as well as more than an order of magnitude greater than the AGN fraction at z {approx} 0.75. AGNs with L{sub X,{sub H}} {>=} 10{sup 43} erg s{sup -1} exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z {approx} 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  13. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    International Nuclear Information System (INIS)

    Lora, V.; Magaña, Juan

    2014-01-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m φ <8) ×10 -22 eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m φ ≈2×10 -21 eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero

  14. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    Science.gov (United States)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  15. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    Science.gov (United States)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  16. A Photometrically Detected Forming Cluster of Galaxies at Redshift 1.6 in the GOODS Field

    Science.gov (United States)

    Castellano, M.; Salimbeni, S.; Trevese, D.; Grazian, A.; Pentericci, L.; Fiore, F.; Fontana, A.; Giallongo, E.; Santini, P.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2007-12-01

    We report the discovery of a localized overdensity at z~1.6 in the GOODS-South field, presumably a poor cluster in the process of formation. The three-dimensional galaxy density has been estimated on the basis of well-calibrated photometric redshifts from the multiband photometric GOODS-MUSIC catalog using the (2+1)-dimensional technique. The density peak is embedded in the larger scale overdensity of galaxies known to exist at z=1.61 in the area. The properties of the member galaxies are compared to those of the surrounding field, and we find that the two populations are significantly different, supporting the reality of the structure. The reddest galaxies, once evolved according to their best-fit models, have colors consistent with the red sequence of lower redshift clusters. The estimated M200 total mass of the cluster is in the range 1.3×1014-5.7×1014 Msolar, depending on the assumed bias factor b. An upper limit for the 2-10 keV X-ray luminosity, based on the 1 Ms Chandra observations, is LX=0.5×1043 erg s-1, suggesting that the cluster has not yet reached the virial equilibrium.

  17. Further constraints on the evolution of K-s-selected galaxies in the GOODS/CDFS field

    NARCIS (Netherlands)

    Caputi, KI; McLure, RJ; Dunlop, JS; Cirasuolo, M; Schael, AM

    2006-01-01

    We have selected and analysed the properties of a sample of 2905 K-s <21.5 galaxies in similar to 131 arcmin(2) of the Great Observatories Origins Deep Survey (GOODS) Chandra Deep Field South (CDFS), to obtain further constraints on the evolution of K-s-selected galaxies with respect to the results

  18. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    Science.gov (United States)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  19. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xufen [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, 230026 (China); Wang, Yougang [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Feix, Martin [CNRS, UMR 7095 and UPMC, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014 Paris (France); Zhao, HongSheng, E-mail: xufenwu@ustc.edu.cn [School of Physics and Astronomy, University of St Andrews, North Haugh, Fife, KY16 9SS (United Kingdom)

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  20. Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters

    Science.gov (United States)

    Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng

    2017-08-01

    Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.

  1. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    Science.gov (United States)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  2. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  3. THE ASSEMBLY OF GALAXY CLUSTERS

    International Nuclear Information System (INIS)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2009-01-01

    We study the formation of 53 galaxy cluster-size dark matter halos (M = 10 14.0-14.76 M sun ) formed within a pair of cosmological Λ cold dark matter N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host ∼0.3 L * galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'preprocessing' in the group environment prior to their accretion into the cluster. On average, 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; less than 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past (∼<6 Gyr) than a field halo of the same mass. These results suggest that local cluster processes such as ram pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass, and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with ∼20% incorporated into the cluster halo more than 7 Gyr ago and ∼20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate timescale for late-type to early-type transformation within the cluster environment to be ∼6 Gyr.

  4. The magnetic field in the central parsec of the Galaxy

    Science.gov (United States)

    Roche, P. F.; Lopez-Rodriguez, E.; Telesco, C. M.; Schödel, R.; Packham, C.

    2018-05-01

    We present a polarization map of the warm dust emission from the minispiral in the central parsec of the Galactic Centre. The observations were made at a wavelength of 12.5 μm with CanariCam mounted on the 10.4-m Gran Telescopio Canarias. The magnetic field traced by the polarized emission from aligned dust grains is consistent with previous observations, but the increased resolution of the present data reveals considerably more information on the detailed structure of the B field and its correspondence with the filamentary emission seen in both mid-infrared continuum emission and free-free emission at cm wavelengths. The magnetic field appears to be compressed and pushed by the outflows from luminous stars in the Northern Arm, but it is not disordered by them. We identify some magnetically coherent filaments that cross the Northern Arm at a position angle of ˜45°, and which may trace orbits inclined to the primary orientation of the Northern Arm and circumnuclear disc. In the east-west bar, the magnetic fields implied by the polarization in the lower intensity regions lie predominantly along the bar at a position angle of 130°-140°. In contrast to the Northern Arm, the brighter regions of the bar tend to have lower degrees of polarization with a greater divergence in position angle compared to the local diffuse emission. It appears that the diffuse emission in the east-west bar traces the underlying field and that the bright compact sources are unrelated objects presumably projected on to the bar and with different field orientations.

  5. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 (United States); Rafelski, Marc [NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Teplitz, Harry I. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Acquaviva, Viviana [New York City College of Technology, Brooklyn, NY 11201 (United States); Brown, Thomas M.; Coe, Dan; Grogin, Norman A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Lee, Kyoung-soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Siana, Brian D. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)

    2014-09-20

    We estimate the UV continuum slope, β, for 923 galaxies in the range 1 < z < 8 in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at 1 < z < 2 down to an absolute magnitude M{sub UV}=−14(∼0.006 L{sub z=1}{sup ∗};0.02 L{sub z=0}{sup ∗}), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range 1 < z < 2 are significantly bluer than local dwarf galaxies. We find their mean (median) values <β > = – 1.382(– 1.830) ± 0.002 (random) ± 0.1 (systematic). We find comparable scatter in β (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than z > 2 galaxies. We study the trends of β with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, dβ/dM = –0.11 ± 0.01, and no evolution in dβ/dM with redshift. A modest increase in dust reddening with redshift and luminosity, ΔE(B – V) ∼ 0.1, and a comparable increase in the dispersion of dust reddening at z < 2, appears likely to explain the observed trends. At z > 2, we find trends that are consistent with previous works; combining our data with the literature in the range 1 < z < 8, we find a color evolution with redshift, dβ/dz = –0.09 ± 0.01 for low luminosity (0.05 L{sub z=3}{sup ∗}), and dβ/dz = –0.06 ± 0.01 for medium luminosity (0.25 L{sub z=3}{sup ∗}) galaxies.

  6. New calibration and some predictions of the scaling relations between the mass of supermassive black holes and the properties of the host galaxies

    Science.gov (United States)

    Benedetto, E.; Fallarino, M. T.; Feoli, A.

    2013-10-01

    We present a new determination of the slope and normalization of three popular scaling laws between the mass of supermassive black holes and stellar velocity dispersion, bulge mass and kinetic energy of the host galaxies. To this aim we have collected 72 objects taken from three different samples and we have used three fitting methods applying the statistical analysis also to the subset of early type galaxies and spirals separately. We find that the relation involving kinetic energy has a slightly better χ2 and linear correlation coefficient than the other two laws. Furthermore, its Hertzsprung-Russell-like behavior is confirmed by the location of young and old galaxies in two different parts of the diagram. A test of its predictive power with the two giant galaxies NGC 3842 and NGC 4889 shows that the mass of the black hole inferred using the kinetic energy law is the closest to the experimental value. The subset of early type galaxies satisfies the theoretical models regarding the black hole mass vs stellar velocity dispersion relation, better than the full sample. Tables 1 and 7 are available in electronic form at http://www.aanda.org

  7. Remarks on the spherical scalar field halo in galaxies

    International Nuclear Information System (INIS)

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-01-01

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  8. Transient field for W ions traversing Fe hosts and for Os ions traversing Fe and Ni hosts

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Bolotin, H.H.; Doran, C.E.

    1987-02-01

    Transient field strengths were measured for 184 W and 186 W ions traversing thin, magnetized Fe foils with velocities in the range 1.8 ≤ v/v>=o ≤ 5.7 (v>=o Bohr velocity) and for 188 Os, 190 Os, 192 Os ions traversing polarized Ni hosts with average velocities =o> ∼ 4. The present measured transient field strengths, together with previously measured results for W, Os ions, are compared with transient-field strength parametrizations, and discussed in terms of microscopic models of the transient field

  9. Lyman Break Galaxies in the Hubble Ultra Deep Field through Deep U-Band Imaging

    Science.gov (United States)

    Rafelski, Marc; Wolfe, A. M.; Cooke, J.; Chen, H. W.; Armandroff, T. E.; Wirth, G. D.

    2009-12-01

    We introduce an extremely deep U-band image taken of the Hubble Ultra Deep Field (HUDF), with a one sigma depth of 30.7 mag arcsec-2 and a detection limiting magnitude of 28 mag arcsec-2. The observations were carried out on the Keck I telescope using the LRIS-B detector. The U-band image substantially improves the accuracy of photometric redshift measurements of faint galaxies in the HUDF at z=[2.5,3.5]. The U-band for these galaxies is attenuated by lyman limit absorption, allowing for more reliable selections of candidate Lyman Break Galaxies (LBGs) than from photometric redshifts without U-band. We present a reliable sample of 300 LBGs at z=[2.5,3.5] in the HUDF. Accurate redshifts of faint galaxies at z=[2.5,3.5] are needed to obtain empirical constraints on the star formation efficiency of neutral gas at high redshift. Wolfe & Chen (2006) showed that the star formation rate (SFR) density in damped Ly-alpha absorption systems (DLAs) at z=[2.5,3.5] is significantly lower than predicted by the Kennicutt-Schmidt law for nearby galaxies. One caveat to this result that we wish to test is whether LBGs are embedded in DLAs. If in-situ star formation is occurring in DLAs, we would see it as extended low surface brightness emission around LBGs. We shall use the more accurate photometric redshifts to create a sample of LBGs around which we will look for extended emission in the more sensitive and higher resolution HUDF images. The absence of extended emission would put limits on the SFR density of DLAs associated with LBGs at high redshift. On the other hand, detection of faint emission on scales large compared to the bright LBG cores would indicate the presence of in situ star formation in those DLAs. Such gas would presumably fuel the higher star formation rates present in the LBG cores.

  10. Young Galaxy Candidates in the Hubble Frontier Fields. III. MACS J0717.5+3745

    Science.gov (United States)

    Laporte, N.; Infante, L.; Troncoso Iribarren, P.; Zheng, W.; Molino, A.; Bauer, F. E.; Bina, D.; Broadhurst, Tom; Chilingarian, I.; Huang, X.; Garcia, S.; Kim, S.; Marques-Chaves, R.; Moustakas, J.; Pelló, R.; Pérez-Fournon, I.; Shu, X.; Streblyanska, A.; Zitrin, A.

    2016-04-01

    In this paper we present the results of our search for and study of z≳ 6 galaxy candidates behind the third Frontier Fields (FFs) cluster, MACS J0717.5+3745, and its parallel field, combining data from Hubble and Spitzer. We select 39 candidates using the Lyman break technique, for which the clear non-detection in optical make the extreme mid-z interlopers hypothesis unlikely. We also take benefit from z≳ 6 samples selected using the previous FF data sets of Abell 2744 and MACS 0416 to improve the constraints on the properties of very high redshift objects. We compute the redshift and the physical properties such emission lines properties, star formation rate, reddening, and stellar mass for all FF objects from their spectral energy distribution using templates including nebular emission lines. We study the relationship between several physical properties and confirm the trend already observed in previous surveys for evolution of star formation rate with galaxy mass and between the size and the UV luminosity of our candidates. The analysis of the evolution of the UV luminosity function with redshift seems more compatible with an evolution of density. Moreover, no robust z≥slant 8.5 object is selected behind the cluster field and few z˜ 9 candidates have been selected in the two previous data sets from this legacy survey, suggesting a strong evolution in the number density of galaxies between z˜ 8 and 9. Thanks to the use of the lensing cluster, we study the evolution of the star formation rate density produced by galaxies with L > 0.03 {L}\\star , and confirm the strong decrease observed between z˜ 8 and 9.

  11. Gas inflow and outflow in an interacting high-redshift galaxy. The remarkable host environment of GRB 080810 at z = 3.35

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Krühler, T.; Yates, R. M.; Greiner, J.

    2017-11-01

    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH I ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH I ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A107

  12. Black hole variability and the star formation-active galactic nucleus connection: Do all star-forming galaxies host an active galactic nucleus?

    International Nuclear Information System (INIS)

    Hickox, Ryan C.; Chen, Chien-Ting J.; Civano, Francesca M.; Hainline, Kevin N.; Mullaney, James R.; Alexander, David M.; Goulding, Andy D.

    2014-01-01

    We investigate the effect of active galactic nucleus (AGN) variability on the observed connection between star formation and black hole accretion in extragalactic surveys. Recent studies have reported relatively weak correlations between observed AGN luminosities and the properties of AGN hosts, which has been interpreted to imply that there is no direct connection between AGN activity and star formation. However, AGNs may be expected to vary significantly on a wide range of timescales (from hours to Myr) that are far shorter than the typical timescale for star formation (≳100 Myr). This variability can have important consequences for observed correlations. We present a simple model in which all star-forming galaxies host an AGN when averaged over ∼100 Myr timescales, with long-term average AGN accretion rates that are perfectly correlated with the star formation rate (SFR). We show that reasonable prescriptions for AGN variability reproduce the observed weak correlations between SFR and L AGN in typical AGN host galaxies, as well as the general trends in the observed AGN luminosity functions, merger fractions, and measurements of the average AGN luminosity as a function of SFR. These results imply that there may be a tight connection between AGN activity and SFR over galaxy evolution timescales, and that the apparent similarities in rest-frame colors, merger rates, and clustering of AGNs compared to 'inactive' galaxies may be due primarily to AGN variability. The results provide motivation for future deep, wide extragalactic surveys that can measure the distribution of AGN accretion rates as a function of SFR.

  13. On the universality of MOG weak field approximation at galaxy cluster scale

    Directory of Open Access Journals (Sweden)

    Ivan De Martino

    2017-07-01

    Full Text Available In its weak field limit, Scalar-tensor-vector gravity theory introduces a Yukawa-correction to the gravitational potential. Such a correction depends on the two parameters, α which accounts for the modification of the gravitational constant, and μ⁎−1 which represents the scale length on which the scalar field propagates. These parameters were found to be universal when the modified gravitational potential was used to fit the galaxy rotation curves and the mass profiles of galaxy clusters, both without Dark Matter. We test the universality of these parameters using the temperature anisotropies due to the thermal Sunyaev–Zeldovich effect. In our model the intra-cluster gas is in hydrostatic equilibrium within the modified gravitational potential well and it is described by a polytropic equation of state. We predict the thermal Sunyaev–Zeldovich temperature anisotropies produced by Coma cluster, and we compare them with those obtained using the Planck 2013 Nominal maps. In our analysis, we find α and the scale length, respectively, to be consistent and to depart from their universal values. Our analysis points out that the assumption of the universality of the Yukawa-correction to the gravitational potential is ruled out at more than 3.5σ at galaxy clusters scale, while demonstrating that such a theory of gravity is capable to fit the cluster profile if the scale dependence of the gravitational potential is restored.

  14. Cosmological implication of wide field Sunyaev-Zel'dovich galaxy clusters survey: exploration by simulation

    International Nuclear Information System (INIS)

    Juin, Jean-Baptiste

    2005-01-01

    The goal of my Phd research is to prepare the data analysis of the near future wide-field observations of galaxy clusters detected by Sunyaev Zel'dovitch effect. I set up a complete chain of original tools to carry out this study. These tools allow me to highlight critical and important points of selection effects that has to be taken into account in future analysis. Analysis chain is composed by: a simulation of observed millimeter sky, state-of-the-art algorithms of SZ galaxy clusters extraction from observed maps, a statistical model of selection effects of the whole detection chain and, finally, tools to constrain, from detected SZ sources catalog, the cosmological parameters. I focus myself on multi-channel experiments equipped with large bolometer camera. I use these tools for a prospecting on Olimpo experiment. (author) [fr

  15. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    Science.gov (United States)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  16. THE RADIUS-LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI: THE EFFECT OF HOST-GALAXY STARLIGHT ON LUMINOSITY MEASUREMENTS. II. THE FULL SAMPLE OF REVERBERATION-MAPPED AGNs

    International Nuclear Information System (INIS)

    Bentz, Misty C.; Peterson, Bradley M.; Pogge, Richard W.; Netzer, Hagai; Vestergaard, Marianne

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution to ground-based spectroscopic luminosity measurements at 5100 A. After correcting the luminosities of the AGNs for the contribution from starlight, we re-examine the Hβ R BLR -L relationship. Our best fit for the relationship gives a power-law slope of 0.52 with a range of 0.45-0.59 allowed by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic errors in the current set of reverberation measurements from which we determine the form of the R BLR -L relationship.

  17. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  18. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    International Nuclear Information System (INIS)

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A.; Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-01-01

    We present the faintest spectroscopically confirmed sample of z ∼ 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Lyα emission properties of our sample. We find that Lyα emission is detected in ∼1/4 of the sample, and that the liberal V-dropout color selection includes ∼55% of previously published line-selected Lyα sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended (∼1'') Lyα emission is not a generic property of these LBGs, but that a modest extension of the Lyα photosphere (compared to the starlight) may be present in those galaxies with prominent Lyα emission.

  19. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    OpenAIRE

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we sho...

  20. Field Validation of the Host Country National Liaison Role

    DEFF Research Database (Denmark)

    van Bakel, Marian; Andersen, Torben; Vance, Charles

    resource for guiding the selection, training, and management of HCNL performance to ultimately benefit the local subsidiary. However, although the development of this local HCNL role model was based both on theoretical constructs and the authors’ international experience, it remains to be validated......Recent conceptual work by Vance et al. (2014) has explored various aspects of the important liaison role of HCN managers and other HCN support staff between the assigned expatriate and local employees as well as the surrounding host country work environment. They identified five different...... components for this important HCNL role, including cultural interpreter, communication manager, information resource broker, talent manager, and internal change agent. They further identified specific behavioral functions for each role component. This behavior-based model provides a potentially valuable...

  1. Recently Quenched Galaxies at z = 0.2–4.8 in the COSMOS UltraVISTA Field

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Akie; Matsuoka, Yoshiki, E-mail: ichikawa@cosmos.phys.sci.ehime-u.ac.jp [Research Center for Space and Cosmic Evolution, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2017-07-01

    We present a new analysis of the stellar mass function and morphology of recently quenched galaxies (RQGs), whose star formation has been recently quenched for some reason. The COSMOS2015 catalog was exploited to select those galaxies at 0.2 < z < 4.8, over 1.5 deg{sup 2} of the Cosmic Evolution Survey (COSMOS) UltraVISTA field. This is the first time that RQGs are consistently selected and studied in such a wide range of redshift. We find increasing number density of RQGs with time in a broad mass range at z > 1, while low-mass RQGs start to grow very rapidly at z < 1. We also demonstrate that the migration of RQGs may largely drive the evolution of the stellar mass function of passive galaxies. Moreover, we find that the morphological type distribution of RQGs are intermediate between those of star-forming and passive galaxies. These results indicate that RQGs represent a major transitional phase of galaxy evolution, in which star-forming galaxies turn into passive galaxies, accompanied by the build up of spheroidal component.

  2. The Lyman continuum escape fraction of galaxies at z = 3.3 in the VUDS-LBC/COSMOS field

    Science.gov (United States)

    Grazian, A.; Giallongo, E.; Gerbasi, R.; Fiore, F.; Fontana, A.; Le Fèvre, O.; Pentericci, L.; Vanzella, E.; Zamorani, G.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Tasca, L. A. M.; Thomas, R.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Giavalisco, M.; Hathi, N. P.; Ilbert, O.; Lemaux, B. C.; Paltani, S.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Bonchi, A.; Boutsia, K.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Merlin, E.; Paris, D.; Pforr, J.; Pilo, S.; Santini, P.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-01-01

    Context. The ionizing Lyman continuum flux escaping from high-redshift galaxies into the intergalactic medium is a fundamental quantity to understand the physical processes involved in the reionization epoch. However, from an observational point of view, direct detections of HI ionizing photons at high redshifts are feasible for galaxies mainly in the interval z ~ 3-4. Aims: We have investigated a sample of star-forming galaxies at z ~ 3.3 to search for possible detections of Lyman continuum ionizing photons escaping from galaxy halos. Methods: We used deep ultraviolet (UV) imaging in the COSMOS field, obtained with the prime focus camera LBC at the LBT telescope, along with a catalogue of spectroscopic redshifts obtained by the VIMOS Ultra Deep Survey (VUDS) to build a sample of 45 galaxies at z ~ 3.3 with L> 0.5 L∗. We obtained deep LBC images of galaxies with spectroscopic redshifts in the interval 3.27 28%, but a detailed analysis of their properties reveals that, with the exception of two marginal detections (S/N ~ 2) in the U-band, all the other eight galaxies are most likely contaminated by the UV flux of low-redshift interlopers located close (in angular position) to the high-z targets. The average escape fraction derived from the stacking of the cleaned sample was constrained to fescrel Chile, under Large Programme 185.A-0791 and on observations made at the Large Binocular Telescope (LBT) at Mt. Graham (Arizona, USA).

  3. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Valenti, S.; Smartt, S.; Botticella, M. T. [Astrophysics Research Centre, School of Maths and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Barthelmy, S. D.; Gehrels, N.; Cline, T. [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Levesque, E. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Narayan, G. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Briggs, M. S.; Connaughton, V. [CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Terada, Y. [Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570 (Japan); Golenetskii, S.; Mazets, E., E-mail: nsanders@cfa.harvard.edu [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St. Petersburg 194021 (Russian Federation); and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  4. Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at z ≳ 6 studied with ALMA

    Science.gov (United States)

    Izumi, Takuma; Onoue, Masafusa; Shirakata, Hikari; Nagao, Tohru; Kohno, Kotaro; Matsuoka, Yoshiki; Imanishi, Masatoshi; Strauss, Michael A.; Kashikawa, Nobunari; Schulze, Andreas; Silverman, John D.; Fujimoto, Seiji; Harikane, Yuichi; Toba, Yoshiki; Umehata, Hideki; Nakanishi, Kouichiro; Greene, Jenny E.; Tamura, Yoichi; Taniguchi, Akio; Yamaguchi, Yuki; Goto, Tomotsugu; Hashimoto, Yasuhiro; Ikarashi, Soh; Iono, Daisuke; Iwasawa, Kazushi; Lee, Chien-Hsiu; Makiya, Ryu; Minezaki, Takeo; Tang, Ji-Jia

    2018-04-01

    We present our ALMA Cycle 4 measurements of the [C II] emission line and the underlying far-infrared (FIR) continuum emission from four optically low-luminosity (M1450 > -25) quasars at z ≳ 6 discovered by the Subaru Hyper Suprime Cam (HSC) survey. The [C II] line and FIR continuum luminosities lie in the ranges L_[C II] = (3.8-10.2)× 108 L_{⊙} and LFIR = (1.2-2.0) × 1011 L_{⊙}, which are at least one order of magnitude smaller than those of optically-luminous quasars at z ≳ 6. We estimate the star formation rates (SFRs) of our targets as ≃ 23-40 M_{⊙} yr-1. Their line and continuum-emitting regions are marginally resolved, and found to be comparable in size to those of optically-luminous quasars, indicating that their SFR or likely gas mass surface densities (key controlling parameter of mass accretion) are accordingly different. The L_[C II]/L_FIR ratios of the hosts, ≃ (2.2-8.7) × 10-3, are fully consistent with local star-forming galaxies. Using the [C II] dynamics, we derived their dynamical masses within a radius of 1.5-2.5 kpc as ≃ (1.4-8.2) × 1010 M_{⊙}. By interpreting these masses as stellar ones, we suggest that these faint quasar hosts are on or even below the star-forming main sequence at z ˜ 6, i.e., they appear to be transforming into quiescent galaxies. This is in contrast to the optically-luminous quasars at those redshifts, which show starburst-like properties. Finally, we find that the ratios of black hole mass to host galaxy dynamical mass of most of the low-luminosity quasars, including the HSC ones, are consistent with the local value. The mass ratios of the HSC quasars can be reproduced by a semi-analytical model that assumes merger-induced black hole host galaxy evolution.

  5. Accounting for Cosmic Variance in Studies of Gravitationally Lensed High-redshift Galaxies in the Hubble Frontier Field Clusters

    Science.gov (United States)

    Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  6. MID-INFRARED PROPERTIES OF OH MEGAMASER HOST GALAXIES. I. SPITZER IRS LOW- AND HIGH-RESOLUTION SPECTROSCOPY

    International Nuclear Information System (INIS)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-01-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 10 2.3 L sun . The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H 2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO 2 , HCN, C 2 H 2 , and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  7. Mid-Infrared Properties of OH Megamaser Host Galaxies. I. Spitzer IRS Low- and High-Resolution Spectroscopy

    Science.gov (United States)

    Willett, Kyle W.; Darling, Jeremy; Spoon, Henrik W. W.; Charmandaris, Vassilis; Armus, Lee

    2011-03-01

    We present mid-infrared spectra and photometry from the Infrared Spectrograph on the Spitzer Space Telescope for 51 OH megamasers (OHMs), along with 15 galaxies confirmed to have no megamaser emission above L OH = 102.3 L sun. The majority of galaxies display moderate-to-deep 9.7 μm amorphous silicate absorption, with OHM galaxies showing stronger average absorption and steeper 20-30 μm continuum emission than non-masing galaxies. Emission from multiple polycyclic aromatic hydrocarbons (PAHs), especially at 6.2, 7.7, and 11.3 μm, is detected in almost all systems. Fine-structure atomic emission (including [Ne II], [Ne III], [S III], and [S IV]) and multiple H2 rotational transitions are observed in more than 90% of the sample. A subset of galaxies show emission from rarer atomic lines, such as [Ne V], [O IV], and [Fe II]. Fifty percent of the OHMs show absorption from water ice and hydrogenated amorphous carbon grains, while absorption features from CO2, HCN, C2H2, and crystalline silicates are also seen in several OHMs. Column densities of OH derived from 34.6 μm OH absorption are similar to those derived from 1667 MHz OH absorption in non-masing galaxies, indicating that the abundance of masing molecules is similar for both samples. This data paper presents full mid-infrared spectra for each galaxy, along with measurements of line fluxes and equivalent widths, absorption feature depths, and spectral indices.

  8. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshiaki; Ouchi, Masami [Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa 277-8582 (Japan); Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Schenker, Matthew A.; Ellis, Richard S. [Department of Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Robertson, Brant E.; Schneider, Evan; Stark, Daniel P. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Koekemoer, Anton M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Charlot, Stephane [UPMC-CNRS, UMR7095, Institut d' Astrophysique, F-75014 Paris (France); Shimasaku, Kazuhiro [Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan); Furlanetto, Steven R., E-mail: ono@icrr.u-tokyo.ac.jp [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

    2013-11-10

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) {sup s}, we obtain a best-fit index of s=-1.30{sup +0.12}{sub -0.14} over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L{sub z=3}. The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies.

  9. EVOLUTION OF THE SIZES OF GALAXIES OVER 7 < z < 12 REVEALED BY THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN

    International Nuclear Information System (INIS)

    Ono, Yoshiaki; Ouchi, Masami; Curtis-Lake, Emma; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Rogers, Alexander B.; Cirasuolo, Michele; Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Stark, Daniel P.; Koekemoer, Anton M.; Charlot, Stephane; Shimasaku, Kazuhiro; Furlanetto, Steven R.

    2013-01-01

    We analyze the redshift- and luminosity-dependent sizes of dropout galaxy candidates in the redshift range z ∼ 7-12 using deep images from the 2012 Hubble Ultra Deep Field (UDF12) campaign, which offers two advantages over that used in earlier work. First, we utilize the increased signal-to-noise ratio offered by the UDF12 imaging to provide improved measurements for known galaxies at z ≅ 6.5-8 in the HUDF. Second, because the UDF12 data have allowed the construction of the first robust galaxy sample in the HUDF at z > 8, we have been able to extend the measurement of average galaxy size out to higher redshifts. Restricting our measurements to sources detected at >15σ, we confirm earlier indications that the average half-light radii of z ∼ 7-12 galaxies are extremely small, 0.3-0.4 kpc, comparable to the sizes of giant molecular associations in local star-forming galaxies. We also confirm that there is a clear trend of decreasing half-light radius with increasing redshift, and provide the first evidence that this trend continues beyond z ≅ 8. Modeling the evolution of the average half-light radius as a power law, ∝(1 + z) s , we obtain a best-fit index of s=-1.30 +0.12 -0.14 over z ∼ 4-12. A clear size-luminosity relation is evident in our dropout samples. This relation can be interpreted in terms of a constant surface density of star formation over a range in luminosity of 0.05-1.0 L z=3 . The average star formation surface density in dropout galaxies is 2-3 orders of magnitude lower than that found in extreme starburst galaxies, but is comparable to that seen today in the centers of normal disk galaxies

  10. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field

    International Nuclear Information System (INIS)

    Yan Haojing; Windhorst, Rogier A.; Cohen, Seth H.; Hathi, Nimish P.; Ryan, Russell E.; O'Connell, Robert W.; McCarthy, Patrick J.

    2010-01-01

    We present a large sample of candidate galaxies at z ∼ 7-10, selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3 that was recently installed on the Hubble Space Telescope. Our sample is composed of 20 z 850 -dropouts (four new discoveries), 15 Y 105 -dropouts (nine new discoveries) and 20 J 125 -dropouts (all new discoveries). The surface densities of the z 850 -dropouts are close to what was predicted by earlier studies, however, those of the Y 105 - and J 125 -dropouts are quite unexpected. While no Y 105 - or J 125 -dropouts have been found at AB ≤ 28.0 mag, their surface densities seem to increase sharply at fainter levels. While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed, the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z ∼ 7 to 10. Motivated by such steep increases, we tentatively propose a set of Schechter function parameters to describe the luminosity functions at z ∼ 8 and 10. As compared to their counterpart at z ∼ 7, here L * decreases by a factor of ∼ 6.5 and φ * increases by a factor of 17-90. Although such parameters are not yet demanded by the existing observations, they are allowed and seem to agree with the data better than other alternatives. If these luminosity functions are still valid beyond our current detection limit, this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z ∼ 10, which, while seemingly exotic, would naturally fit in the picture of the cosmic hydrogen reionization. These early galaxies could easily account for the ionizing photon budget required by the reionization, and they would imply that the global star formation rate density might start from a very high value at z ∼ 10, rapidly reach the minimum at z ∼ 7, and start to rise again

  11. Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters

    Science.gov (United States)

    Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles

    2018-01-01

    Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.

  12. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    Science.gov (United States)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; hide

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  13. CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE'S WIDE FIELD CAMERA 3

    International Nuclear Information System (INIS)

    Szomoru, Daniel; Franx, Marijn; Bouwens, Rychard J.; Van Dokkum, Pieter G.; Trenti, Michele; Illingworth, Garth D.; Labbe, Ivo; Oesch, Pascal A.; Carollo, C. Marcella

    2010-01-01

    We present very deep Wide Field Camera 3 (WFC3) photometry of a massive, compact galaxy located in the Hubble Ultra Deep Field. This quiescent galaxy has a spectroscopic redshift z = 1.91 and has been identified as an extremely compact galaxy by Daddi et al. We use new H F160W imaging data obtained with Hubble Space Telescope/WFC3 to measure the deconvolved surface brightness profile to H ∼ 28 mag arcsec -2 . We find that the surface brightness profile is well approximated by an n = 3.7 Sersic profile. Our deconvolved profile is constructed by a new technique which corrects the best-fit Sersic profile with the residual of the fit to the observed image. This allows for galaxy profiles which deviate from a Sersic profile. We determine the effective radius of this galaxy: r e = 0.42 ± 0.14 kpc in the observed H F160W band. We show that this result is robust to deviations from the Sersic model used in the fit. We test the sensitivity of our analysis to faint 'wings' in the profile using simulated galaxy images consisting of a bright compact component and a faint extended component. We find that due to the combination of the WFC3 imaging depth and our method's sensitivity to extended faint emission we can accurately trace the intrinsic surface brightness profile, and that we can therefore confidently rule out the existence of a faint extended envelope around the observed galaxy down to our surface brightness limit. These results confirm that the galaxy lies a factor ∼10 off from the local mass-size relation.

  14. The AKARI FU-HYU galaxy evolution program: first results from the GOODS-N field

    Science.gov (United States)

    Pearson, C. P.; Serjeant, S.; Negrello, M.; Takagi, T.; Jeong, W.-S.; Matsuhara, H.; Wada, T.; Oyabu, S.; Lee, H. M.; Im, M. S.

    2010-05-01

    The AKARI FU-HYU mission program carried out mid-infrared imaging of several well studied Spitzer fields preferentially selecting fields already rich in multi-wavelength data from radio to X-ray wavelengths filling in the wavelength desert between the Spitzer IRAC and MIPS bands. We present the initial results for the FU-HYU survey in the GOODS-N field. We utilize the supreme multiwavelength coverage in the GOODS-N field to produce a multiwavelength catalogue from infrared to ultraviolet wavelengths, containing more than 4393 sources, including photometric redshifts. Using the FU-HYU catalogue we present colour-colour diagrams that map the passage of PAH features through our observation bands. We find that the longer mid-infrared bands from AKARI (IRC-L18W 18 micron band) and Spitzer (MIPS24 24 micron band) provide an accurate measure of the total MIR emission of the sources and therefore their probable total mid-infrared luminosity. We also find that colours incorporating the AKARI IRC-S11 11 micron band produce a bimodal distribution where an excess at 11 microns preferentially selects moderate redshift star-forming galaxies. These powerful colour-colour diagnostics are further used as tools to extract anomalous colour populations, in particular a population of Silicate Break galaxies from the GOODS-N field showing that dusty starbursts can be selected of specific redshift ranges (z = 1.2-1.6) by mid-infrared drop-out techniques. The FU-HYU catalogue will be made publically available to the astronomical community.

  15. The Co-evolution of QSOs and Galaxies

    Science.gov (United States)

    Coziol, R.; Torres-Papaqui, J. P.; Andernach, H.

    2015-07-01

    Using two large samples of QSOs detected in the mid-infrared (MIR) with WISE, we find that the change of W2-W3 colors with redshift suggests that star formation in their host galaxies increases by a factor of 3 from z = 0 to 2.7, then stays constant up to z = 4, and decreases above z=4. This behavior is slightly different from the best fits for the star formation history of field galaxies as deduced from the Optical-UV and IR, but is consistent with what is observed for sub-mm galaxies at high z. Our results constitute the clearest evidence, so far, that QSO host galaxies form their stars before field galaxies, and are in good agreement with the hierarchical biased structure formation paradigm.

  16. RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM

    International Nuclear Information System (INIS)

    Giodini, S.; Finoguenov, A.; Boehringer, H.; Pierini, D.; Smolcic, V.; Massey, R.; BIrzan, L.; Zamorani, G.; Oklopcic, A.; Pratt, G. W.; Schinnerer, E.; Koekemoer, A. M.; Salvato, M.; Sanders, D. B.; Kartaltepe, J. S.; Thompson, D.

    2010-01-01

    We quantify the importance of the mechanical energy released by radio galaxies inside galaxy groups. We use scaling relations to estimate the mechanical energy released by 16 radio-active galactic nuclei located inside X-ray-detected galaxy groups in the COSMOS field. By comparing this energy output to the host groups' gravitational binding energy, we find that radio galaxies produce sufficient energy to unbind a significant fraction of the intragroup medium. This unbinding effect is negligible in massive galaxy clusters with deeper potential wells. Our results correctly reproduce the breaking of self-similarity observed in the scaling relation between entropy and temperature for galaxy groups.

  17. Galaxy Detection in 2MASS: Global Expectations and Results from Several Fields

    Science.gov (United States)

    Chester, T.; Jarrett, T.

    1995-01-01

    An alogorithm has been developed and used to find galaxies in the 2MASS data. It uses the central surface brightness and measured size to discriminate galaxies from the much larger stellar population.

  18. Alignments of galaxies within cosmic filaments from SDSS DR7

    International Nuclear Information System (INIS)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; Van den Bosch, Frank C.

    2013-01-01

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  19. Alignments of galaxies within cosmic filaments from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Yang, Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lei [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: yczhang@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  20. TURBULENCE AND DYNAMO IN GALAXY CLUSTER MEDIUM: IMPLICATIONS ON THE ORIGIN OF CLUSTER MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Xu Hao; Collins, David C.; Norman, Michael L.; Li Hui; Li Shengtai

    2009-01-01

    We present self-consistent cosmological magnetohydrodynamic (MHD) simulations that simultaneously follow the formation of a galaxy cluster and the magnetic field ejection by an active galactic nucleus (AGN). We find that the magnetic fields ejected by the AGNs, though initially distributed in relatively small volumes, can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process. The ICM turbulence is shown to be generated and sustained by the frequent mergers of smaller halos. Furthermore, a cluster-wide dynamo process is shown to exist in the ICM and amplify the magnetic field energy and flux. The total magnetic energy in the cluster can reach ∼10 61 erg while micro Gauss (μG) fields can distribute over ∼ Mpc scales throughout the whole cluster. This finding shows that magnetic fields from AGNs, being further amplified by the ICM turbulence through small-scale dynamo processes, can be the origin of cluster-wide magnetic fields.

  1. Galaxies at z~7-8: z850-Dropouts in the Hubble Ultra Deep Field

    Science.gov (United States)

    Bouwens, R. J.; Thompson, R. I.; Illingworth, G. D.; Franx, M.; van Dokkum, P. G.; Fan, X.; Dickinson, M. E.; Eisenstein, D. J.; Rieke, M. J.

    2004-12-01

    We have detected likely z~7-8 galaxies in the 144''×144'' Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) observations of the Hubble Ultra Deep Field. Objects are required to be >=3 σ detections in both NICMOS bands, J110 and H160. The selection criteria for this sample are (z850-J110)AB>0.8, (z850-J110)AB>0.66(J110-H160)AB+0.8, (J110-H160)ABdropout galaxies and are clustered within a 1 arcmin2 region. Because all five sources are near the limit of the NICMOS data, we have carefully evaluated their reality. Each of the candidates is visible in different splits of the data and a median stack. We analyzed several noise images and estimate the number of spurious sources to be 1+/-1. A search using an independent reduction of this same data set clearly revealed three of the five candidates and weakly detected a fourth candidate, suggesting that the contamination could be higher. For comparison with predictions from lower redshift samples, we take a conservative approach and adopt four z~7-8 galaxies as our sample. With the same detection criteria on simulated data sets, assuming no evolution from z~3.8, we predict 10 sources at z~7-8, or 14 if we use a more realistic (1+z)-1 size scaling. We estimate that the rest-frame continuum UV (~1800 Å) luminosity density at z~7.5 (integrated down to 0.3L*z=3) is just 0.20+0.12-0.08 times that found at z~3.8 (or 0.20+0.23-0.12 times this quantity including cosmic variance). Effectively this sets an upper limit on the luminosity density down to 0.3L*z=3 and is consistent with significant evolution at the bright end of the luminosity function from z~7.5 to 3.8. Even with the lower UV luminosity density at z~7.5, it appears that galaxies could still play an important role in reionization at these redshifts, although definitive measurements remain to be made. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under

  2. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  3. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    Science.gov (United States)

    Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu

    2017-07-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  4. Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography

    International Nuclear Information System (INIS)

    Ideguchi, Shinsuke; Ryu, Dongsu; Tashiro, Yuichi; Takahashi, Keitaro; Akahori, Takuya

    2017-01-01

    Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length) 2 , the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.

  5. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Science.gov (United States)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  6. The Kormendy relation of galaxies in the Frontier Fields clusters: Abell S1063 and MACS J1149.5+2223

    Science.gov (United States)

    Tortorelli, Luca; Mercurio, Amata; Paolillo, Maurizio; Rosati, Piero; Gargiulo, Adriana; Gobat, Raphael; Balestra, Italo; Caminha, G. B.; Annunziatella, Marianna; Grillo, Claudio; Lombardi, Marco; Nonino, Mario; Rettura, Alessandro; Sartoris, Barbara; Strazzullo, Veronica

    2018-06-01

    We analyse the Kormendy relations (KRs) of the two Frontier Fields clusters, Abell S1063, at z = 0.348, and MACS J1149.5+2223, at z = 0.542, exploiting very deep Hubble Space Telescope photometry and Very Large Telescope (VLT)/Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy. With this novel data set, we are able to investigate how the KR parameters depend on the cluster galaxy sample selection and how this affects studies of galaxy evolution based on the KR. We define and compare four different galaxy samples according to (a) Sérsic indices: early-type (`ETG'), (b) visual inspection: `ellipticals', (c) colours: `red', (d) spectral properties: `passive'. The classification is performed for a complete sample of galaxies with mF814W ≤ 22.5 ABmag (M* ≳ 1010.0 M⊙). To derive robust galaxy structural parameters, we use two methods: (1) an iterative estimate of structural parameters using images of increasing size, in order to deal with closely separated galaxies and (2) different background estimations, to deal with the intracluster light contamination. The comparison between the KRs obtained from the different samples suggests that the sample selection could affect the estimate of the best-fitting KR parameters. The KR built with ETGs is fully consistent with the one obtained for ellipticals and passive. On the other hand, the KR slope built on the red sample is only marginally consistent with those obtained with the other samples. We also release the photometric catalogue with structural parameters for the galaxies included in the present analysis.

  7. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    Science.gov (United States)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  8. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    Science.gov (United States)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  9. Field #3 of the Palomar-Groningen Survey; 1, Variable stars at the edge of the Sagittarius dwarf galaxy

    NARCIS (Netherlands)

    Schultheis, M.

    1996-01-01

    Submitted to: Astron. Astrophys. Abstract: A catalogue is presented with variable (RR Lyrae, semiregular and Mira) stars located inside field #3 of the Palomar-Groningen Survey, at the outer edge of the Sagittarius dwarf galaxy. One of the semiregular variables is a carbon star, comparable with

  10. QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z ∼ 2–3 MASSIVE GALAXIES HOSTING QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Marie Wingyee; Prochaska, J. Xavier [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Hennawi, Joseph F., E-mail: lwymarie@ucolick.org [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69115 Heidelberg (Germany)

    2016-10-01

    We characterize the physical properties of the cool T  ∼ 10{sup 4} K circumgalactic medium (CGM) surrounding z  ∼ 2–3 quasar host galaxies, which are predicted to evolve into present-day massive ellipticals. Using a statistical sample of 14 quasar pairs with projected separation <300 kpc and spectra of high dispersion and high signal-to-noise ratio, we find extreme kinematics with low metal ion lines typically spanning ≈500 km s{sup −1}, exceeding any previously studied galactic population. The CGM is significantly enriched, even beyond the virial radius, with a median metallicity [M/H] ≈ −0.6. The α /Fe abundance ratio is enhanced, suggesting that halo gas is primarily enriched by core-collapse supernovae. The projected cool gas mass within the virial radius is estimated to be 1.9 × 10{sup 11} M {sub ⊙} ( R {sub ⊥}/160 kpc){sup 2}, accounting for ≈1/3 of the baryonic budget of the galaxy halo. The ionization state of CGM gas increases with projected distance from the foreground quasars, contrary to expectation if the quasar dominates the ionizing radiation flux. However, we also found peculiarities not exhibited in the CGM of other galaxy populations. In one absorption system, we may be detecting unresolved fluorescent Ly α emission, and another system shows strong N v lines. Taken together, these anomalies suggest that transverse sightlines are—at least in some cases—possibly illuminated. We also discovered a peculiar case where detection of the C ii fine-structure line implies an electron density >100 cm{sup −3} and sub-parsec-scale gas clumps.

  11. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN/HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.

  12. A Massive Molecular Gas Reservoir in the Z = 2.221 Type-2 Quasar Host Galaxy SMM J0939+8315 Lensed by the Radio Galaxy 3C220.3

    Science.gov (United States)

    Leung, T. K. Daisy; Riechers, Dominik A.

    2016-02-01

    We report the detection of CO(J = 3 \\to 2) line emission in the strongly lensed submillimeter galaxy (SMG) SMM J0939+8315 at z = 2.221, using the Combined Array for Research in Millimeter-wave Astronomy. SMM J0939+8315 hosts a type-2 quasar, and is gravitationally lensed by the radio galaxy 3C220.3 and its companion galaxy at z = 0.685. The 104 GHz continuum emission underlying the CO line is detected toward 3C220.3 with an integrated flux density of Scont = 7.4 ± 1.4 mJy. Using the CO(J = 3 \\to 2) line intensity of ICO(3-2) = (12.6 ± 2.0) Jy km s-1, we derive a lensing- and excitation-corrected CO line luminosity of {L}{{CO(1-0)}}\\prime = (3.4 ± 0.7) × 1010 (10.1/μL) K km s-1 pc2 for the SMG, where μL is the lensing magnification factor inferred from our lens modeling. This translates to a molecular gas mass of Mgas = (2.7 ± 0.6) × 1010 (10.1/μL) M⊙. Fitting spectral energy distribution models to the (sub)-millimeter data of this SMG yields a dust temperature of T = 63.1{}-1.3+1.1 K, a dust mass of Mdust = (5.2 ± 2.1) × 108 (10.1/μL) M⊙, and a total infrared luminosity of LIR = (9.1 ± 1.2) ×1012 (10.1/μL) L⊙. We find that the properties of the interstellar medium of SMM J0939+8315 overlap with both SMGs and type-2 quasars. Hence, SMM J0939+8315 may be transitioning from a starbursting phase to an unobscured quasar phase as described by the “evolutionary link” model, according to which this system may represent an intermediate stage in the evolution of present-day galaxies at an earlier epoch.

  13. The Far-Infrared Luminosity Function and Star Formation Rate Density for Dust Obscured Galaxies in the Bootes Field

    Science.gov (United States)

    Calanog, Jae Alyson; Wardlow, J. L.; Fu, H.; Cooray, A. R.; HerMES

    2013-01-01

    We present the far-Infrared (FIR) luminosity function (LF) and the star-formation rate density (SFRD) for dust-obscured galaxies (DOGs) in the Bootes field at redshift 2. These galaxies are selected by having a large rest frame mid-IR to UV flux density ratio ( > 1000) and are expected to be some of the most luminous and heavily obscured galaxies in the Universe at this epoch. Photometric redshifts for DOGs are estimated from optical and mid-IR data using empirically derived low resolution spectral templates for AGN and galaxies. We use HerMES Herschel-SPIRE data to fit a modified blackbody to calculate the FIR luminosity (LFIR) and dust temperature (Td) for all DOGs individually detected in SPIRE maps. A stacking analyses was implemented to measure a median sub-mm flux of undetected DOGs. We find that DOGs have LIR and Td that are similar with the sub-millimeter galaxy (SMG) population, suggesting these two populations are related. The DOG LF and SFRD at 2 are calculated and compared to SMGs.

  14. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    International Nuclear Information System (INIS)

    Ryan, R. E. Jr.; McCarthy, P. J.; Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Bond, H. E.; Bushouse, H.; O'Connell, R. W.; Balick, B.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; Holtzman, J. A.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z ∼ 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z ∼> 1.5. We identify 30 galaxies in ∼40 arcmin 2 to H obs ∼ * ∼ 10 11 M ☉ ) undergo the strongest evolution from z ∼ 2 to the present. Parameterizing the size evolution as (1 + z) –α , we find a tentative scaling of α ≈ (– 0.6 ± 0.7) + (0.9 ± 0.4)log (M * /10 9 M ☉ ), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M * -R e relation for red galaxies.

  15. Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey

    Science.gov (United States)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III

    2002-05-01

    We study the topology of the publicly available data released by the Two Degree Field Galaxy Redshift Survey team (2dF GRS). The 2dF GRS data contain over 100,000 galaxy redshifts with a magnitude limit of bJ=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75° strips) but only within a narrow range of declination (10° and 15° strips). This allows measurements of the two-dimensional genus to be made. We find that the genus curves of the north Galactic pole (NGP) and south Galactic pole (SGP) are slightly different. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble-like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions is found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble volume ΛCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 σ level. The average genus curve of the 2dF GRS agrees well with that extracted from the ΛCDM mock catalogs. We also use the simulations to assess how the current incompleteness of the survey (the strips are not completely filled in) affects the measurement of the genus and find that we are not sensitive to the geometry; there are enough data in the current sample to trace the isolated high- and low-density regions. We compare the amplitude of the 2dF GRS genus curve to the amplitude of the genus curve of a Gaussian random field that we construct to have the same power spectrum as the 2dF GRS. In previous three-dimensional analyses, it was found that the genus curve of observed samples was lower than the Gaussian random field curve, presumably because of high-order correlations present in the data. However, we find that the 2dF GRS genus curve has an amplitude that is slightly higher than that of the power-spectrum-matched Gaussian

  16. The GOODS UV Legacy Fields: A Full Census of Faint Star-Forming Galaxies at z~0.5-2

    Science.gov (United States)

    Oesch, Pascal

    2014-10-01

    Deep HST imaging has shown that the overall star formation density and UV light density at z>3 is dominated by faint, blue galaxies. Remarkably, very little is known about the equivalent galaxy population at lower redshifts. Understanding how these galaxies evolve across the epoch of peak cosmic star-formation is key to a complete picture of galaxy evolution. While we and others have been making every effort to use existing UV imaging data, a large fraction of the prior data were taken without post-flash and are not photometric. We now propose to obtain a robust legacy dataset for a complete census of faint star-forming galaxies at z~0.5-2, akin to what is achieved at z>3, using the unique capabilities of the WFC3/UVIS camera to obtain very deep UV imaging to 27.5-28.0 mag over the CANDELS Deep fields in GOODS North and South. We directly sample the FUV at z>~0.5 and we make these prime legacy fields for JWST with unique and essential UV/blue HST coverage. Together with the exquisite ancillary multi-wavelength data at high spatial resolution from ACS and WFC3/IR our program will result in accurate photometric redshifts for very faint sources and will enable a wealth of research by the community. This includes tracing the evolution of the FUV luminosity function over the peak of the star formation rate density from z~3 down to z~0.5, measuring the physical properties of sub-L* galaxies, and characterizing resolved stellar populations to decipher the build-up of the Hubble sequence from sub-galactic clumps. The lack of a future UV space telescope makes the acquisition of such legacy data imperative for the JWST era and beyond.

  17. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  18. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Science.gov (United States)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳ 10 {Gyr} ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 {M}⊙ yr-1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of {11.2}-1.4+0.7 Gyr, with a 90% confidence range of 6.8{--}13.6 {Gyr}. This in turn indicates an initial binary separation of ≈ 4.5 {R}⊙ , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of {M}r≳ -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ˜200 km s-1. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.

  19. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-16

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at $\\gtrsim 10$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$_{\\odot}$ yr$^{-1}$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $11.2^{+0.7}_{-1.4}$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $\\approx 4.5$ R$_{\\odot}$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$r_{e}$) from the center of NGC 4993 and to place a limit of $M_{r} \\gtrsim -7.2$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $\\sim 200$ km s$^{-1}$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.

  20. Hyperfine Fields on Actinide Impurities in Ferromagnetic Fe and Ni Hosts

    International Nuclear Information System (INIS)

    Oliveira, A.L. de; Oliveira, N.A. de; Troper, A.

    2003-01-01

    We discuss the local magnetic moments and magnetic hyperfine fields on actinide impurities diluted in Fe and Ni hosts. One adopts a Anderson- Moriya model in which a localized 5f level is hybridized with a spin polarized and charge perturbed d-conduction band. Our self-consistent numerical calculations for the hyperfine fields on the impurity sites are in good agreement with the available experimental data. (author)

  1. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third Laser Interferometer Gravitational Wave Observatory (LIGO) detections (36-29 M⊙ and 32-19 M⊙) suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches ∼90 per cent at ∼0.5 kpc from the galaxy centre, compared to a benchmark value of ∼5 per cent outside the core. The predicted merger rates inside bulges is ∼60 × βIII Gpc-3 yr-1 (βIII is the Pop III binarity fraction). To match the 90 per cent credible range of LIGO merger rates, we obtain: 0.03 proof for the existence of Pop III stars.

  2. A redshift survey of very faint (B <= 22.5) field galaxies, radio sources, and quasars

    International Nuclear Information System (INIS)

    Koo, D.C.

    1983-01-01

    As part of a three year program to study the evolution of quasars, radio sources and galaxies, a 10 night redshift survey has been carried out. A few preliminary results are presented (a magnitude-redshift plot of 54 galaxies). (Auth.)

  3. Search and modelling of remnant radio galaxies in the LOFAR Lockman Hole field

    NARCIS (Netherlands)

    Brienza, M.; Godfrey, L.; Morganti, R.; Prandoni, I.; Harwood, J.; Mahony, E. K.; Hardcastle, M. J.; Murgia, M.; Röttgering, H. J. A.; Shimwell, T. W.; Shulevski, A.

    2017-01-01

    Context. The phase of radio galaxy evolution after the jets have switched off, often referred to as the remnant phase, is poorly understood and very few sources in this phase are known. Aims: In this work we present an extensive search for remnant radio galaxies in the Lockman Hole, a well-studied

  4. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6

    Science.gov (United States)

    Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; Michel-Dansac, L.; Pello, R.; Steinmetz, M.; Weilbacher, P. M.; Wisotzki, L.; Carollo, M.

    2017-11-01

    We provide, for the first time, robust observational constraints on the galaxy major merger fraction up to z ≈ 6 using spectroscopic close pair counts. Deep Multi Unit Spectroscopic Explorer (MUSE) observations in the Hubble Ultra Deep Field (HUDF) and Hubble Deep Field South (HDF-S) are used to identify 113 secure close pairs of galaxies among a parent sample of 1801 galaxies spread over a large redshift range (0.2 separation limit of 109.5 M⊙ or the median value of stellar mass computed in each redshift bin. Overall, the major close pair fraction for low-mass and massive galaxies follows the same trend. These new, homogeneous, and robust estimates of the major merger fraction since z ≈ 6 are in good agreement with recent predictions of cosmological numerical simulations. Based on observations made with ESO telescopes at the La Silla-Paranal Observatory under programmes 094.A-0289(B), 095.A-0010(A), 096.A-0045(A) and 096.A-0045(B).

  5. Can the large-scale magnetic field lines cross the spiral arms in our Milky Way galaxy?

    International Nuclear Information System (INIS)

    Vallee, J.P.

    1988-01-01

    For the Sgr, Ori, and Per spiral arms, the pitch angle (i.e., deviation from a tangent parallel to a circular orbit around the center of the Galaxy) of the magnetic-field lines differs from the pitch angle of the spiral arms. For the spiral arms, the pitch angle of the magnetic-field lines can be measured independently from both quasars and galaxies as well as from pulsars, yielding a small (-6 deg) pitch angle, as predicted in the roughly circular oval gas streamline model of the density-wave theory. Meanwhile, the pitch angle of the spiral arms can be measured independently from both the O type stars and from the H II regions, yielding a large (-18 deg) pitch angle, also as predicted in the density-wave theory. Thus for these arms, the magnetic-field lines cross the spiral arms, to leave them outwardly at a sizable mean angle (+12 deg). 19 references

  6. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics

    Science.gov (United States)

    Yin, Jian; Fenley, Andrew T.; Henriksen, Niel M.; Gilson, Michael K.

    2015-01-01

    Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by non-optimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery. PMID:26181208

  7. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    International Nuclear Information System (INIS)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.

    2014-01-01

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z phot = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z phot = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M * = (8 ± 1) × 10 10 M ☉ , although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M H distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  8. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Bertoldi, F.; Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); De Breuck, C. [European Southern Observatory, Karl-Schwarzschild Straße, D-85748 Garching bei München (Germany); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Da Cunha, E.; Hodge, J. A.; Schinnerer, E. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dannerbauer, H. [Universität Wien, Institut für Astrophysik, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Ivison, R. J. [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Knudsen, K. K. [Department of Earth and Space Science, Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden); Poggianti, B. M., E-mail: j.m.simpson@dur.ac.uk [INAF-Astronomical Observatory of Padova, I-35122 Padova (Italy); and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  9. Comparison of field-collected ascovirus isolates by DNA hybridization, host range, and histopathology.

    Science.gov (United States)

    Hamm, J J; Styer, E L; Federici, B A

    1998-09-01

    Six field-collected ascovirus isolates obtained from five noctuid species in the continental United States were compared with respect to the general relatedness of their DNA, host range, and histopathology. Two isolates were from Spodoptera frugiperda, and the other four were from Autographa precationis, Heliothis virescens, Helicoverpa zea, and Trichoplusia ni. DNA-DNA hybridization studies showed that the six isolates belonged to three distinct viral species, with the isolates from S. frugiperda composing one species, those from A. precationis and H. virescens a second species, and those from H. zea and T. ni a third species. The host range and histopathology of each isolate was studied in eight noctuid species, S. frugiperda, Spodoptera ornithogalli, Spodoptera exigua, Spodoptera eridania, H. virescens, H. zea, A. precationis, and Feltia subterranea. Though some variation existed between the different isolates of each viral species, distinct patterns were apparent for each. The viral species from S. frugiperda had a host range that was limited primarily to Spodoptera species and both isolates of this virus only replicated and caused significant pathology in the fat body, whereas the viral species from A. precationis and H. virescens had a much broader host range that included most of the species tested, but also had a tissue tropism primarily restricted to the fat body. The viral species from T. ni and H. zea readily infected all the hosts tested, where the principal site of replication and significant pathology was the epidermis. In many test hosts, however, this viral species also replicated and caused significant pathology in the tracheal epithelium and to a lesser extent in the fat body. Aside from contributing to knowledge of ascovirus biology, these studies indicate that DNA hybridization profiles combined with studies of host range and tissue tropism can be used as characters for defining ascovirus species. Copyright 1998 Academic Press.

  10. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Brant E.; Stark, Dan P. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Ellis, Richard S. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Dunlop, James S.; McLure, Ross J.; McLeod, Derek, E-mail: brant@email.arizona.edu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom)

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  11. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    International Nuclear Information System (INIS)

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-01-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program

  12. In Pursuit of the Least Luminous Galaxies

    Directory of Open Access Journals (Sweden)

    Beth Willman

    2010-01-01

    Full Text Available The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as 10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.

  13. VizieR Online Data Catalog: Galaxy candidates in the Hubble Frontier Fields (Laporte+, 2016)

    Science.gov (United States)

    Laporte, N.; Infante, L.; Troncoso Iribarren, P.; Zheng, W.; Molino, A.; Bauer, F. E.; Bina, D.; Broadhurst, T.; Chilingarian, I.; Garcia, S.; Kim, S.; Marques-Chaves, R.; Moustakas, J.; Pello, R.; Perez-Fournon, I.; Shu, X.; Streblyanska, A.; Zitrin, A.

    2018-02-01

    The Frontier Field (FF) project is carried out using HST Director's Discretionary Time and will use 840 orbits during Cycles 21, 22, and 23 with six strong-lensing galaxy clusters as the main targets. For each cluster, the final data set is composed of three images from ACS/HST (F435W, F606W, and F814W) and four images from WFC3/HST (F105W, F125W, F140W, and F160W) reaching depths of ~29 mag at 5σ in a 0.4" diameter aperture. In this study, we used the final data release on MACS J0717.5+3745 (z=0.551, Ebeling et al. 2004ApJ...609L..49E; Medezinski et al. 2013ApJ...777...43M) made public on 2015 April 1. This third cluster in the FF list has been observed by HST through several observing programs, mainly those related to CLASH (ID: 12103, PI: M. Postman) and the FFs (ID: 13498, PI: J. Lotz). We matched the HST data with deep Spitzer/IRAC images obtained from observations (ID: 90259) carried out from 2013 August to 2015 January combined with archival data from 2007 November to 2013 June. (6 data files).

  14. Polar ring galaxies in the Galaxy Zoo

    Science.gov (United States)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  15. Optical colours of AGN in the Extended Chandra Deep Field South: Obscured black holes in early type galaxies

    OpenAIRE

    Rovilos, E.; Georgantopoulos, I.

    2007-01-01

    We investigate the optical colours of X-ray sources from the Extended Chandra Deep Field South (ECDFS) using photometry from the COMBO-17 survey, aiming to explore AGN - galaxy feedback models. The X-ray sources populate both the ``blue'' and the ``red sequence'' on the colour-magnitude diagram. However, sources in the ``red sequence'' appear systematically more obscured. HST imaging from the GEMS survey demonstrates that the nucleus does not affect significantly the observed colours, and the...

  16. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  17. Redshift determination of the BL Lac object 3C 66A by the detection of its host galaxy cluster at z = 0.340

    Science.gov (United States)

    Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.

    2018-03-01

    The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.

  18. 0114 + 074 - A very asymmetric galaxy in the field of an intermediate-redshift QSO

    International Nuclear Information System (INIS)

    Akujor, C.E.

    1989-01-01

    New radio-continuum observations of 0114 + 074 (4C 07.4) are presented. It is shown that this radio source consists of two distinct objects: a point source identified with an 18.0 mag QSO and a highly asymmetric 18.5 mag galaxy. The patently asymmetric structure of the galaxy is most plausibly due to intrinsically asymmetric energy funding of the lobes by the central machine or nucleus, rather than external influences. 41 refs

  19. Surface Brightness Profiles of Composite Images of Compact Galaxies at Z approximately equal 4-6 in the Hubble Ultra Deep Field

    National Research Council Canada - National Science Library

    Hathi, N. P; Jansen, R. A; Windhorst, R. A; Cohen, S. H; Keel, W. C; Corbin, M. R; Ryan, Jr, R. E

    2007-01-01

    The Hubble Ultra Deep Field (HUDF) contains a significant number of B-, V-, and iota'-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at Z approximately equal 4-6...

  20. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    Science.gov (United States)

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole. Copyright © 2015, American Association for the Advancement of Science.

  1. CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH ∼800 SPECTRA OF MEMBER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Balestra, I.; Sartoris, B.; Girardi, M.; Nonino, M.; Biviano, A. [INAF—Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34131, Trieste (Italy); Mercurio, A. [INAF—Osservatorio Astronomico di Capodimonte, Via Moiariello 16, I-80131 Napoli (Italy); Grillo, C. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Rosati, P. [Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44122, Ferrara (Italy); Ettori, S.; Vanzella, E. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Forman, W.; Jones, C.; Ogrean, G. A.; Weeren, R. J. van [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koekemoer, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21208 (United States); Medezinski, E.; Zitrin, A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Merten, J. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Tozzi, P. [INAF—Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze (Italy); Umetsu, K., E-mail: balestra@oats.inaf.it [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); and others

    2016-06-01

    We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 ( z  = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ∼600 arcmin{sup 2}, including ∼800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ∼2.2 r {sub 200} (∼4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster ( M {sub 200} ∼ 0.9 × 10{sup 15} M {sub ⊙} and σ{sub V,r200} ∼ 1000 km s{sup −1}) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Δ V {sub rf} ∼ 1100 km s{sup −1} with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE–SW direction, with a prominent sub-clump ∼600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z  ∼ 0.390, ∼10′ south of the cluster center, projected at ∼3 Mpc, with a relative line-of-sight velocity of Δ V{sub rf} ∼ −1700 km s{sup −1}. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the “universal” NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we

  2. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth.

    Science.gov (United States)

    Knudsen, Geir K; Norli, Hans R; Tasin, Marco

    2017-01-01

    Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear) or unrelated to the host (Pinaceae, spruce) and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E)-4,8-Dimethyl-1

  3. The Ratio between Field Attractive and Background Volatiles Encodes Host-Plant Recognition in a Specialist Moth

    Directory of Open Access Journals (Sweden)

    Geir K. Knudsen

    2017-12-01

    Full Text Available Volatiles emitted by plants convey an array of information through different trophic levels. Animals such as host-seeking herbivores encounter plumes with filaments from both host and non-host plants. While studies showed a behavioral effect of non-host plants on herbivore host location, less information is available on how a searching insect herbivore perceives and flies upwind to a host-plant odor plume within a background of non-host volatiles. We hypothesized here that herbivorous insects in search of a host-plant can discriminate plumes of host and non-host plants and that the taxonomic relatedness of the non-host have an effect on finding the host. We also predicted that the ratio between certain plant volatiles is cognized as host-plant recognition cue by a receiver herbivorous insect. To verify these hypotheses we measured the wind tunnel response of the moth Argyresthia conjugella to the host plant rowan, to non-host plants taxonomically related (Rosaceae, apple and pear or unrelated to the host (Pinaceae, spruce and to binary combination of host and non-host plants. Volatiles were collected from all plant combinations and delivered to the test insect via an ultrasonic sprayer as an artificial plume. While the response to the rowan as a plant was not affected by the addition of any of the non-host plants, the attraction to the corresponding sprayed headspace decreased when pear or apple but not spruce were added to rowan. A similar result was measured toward the odor exiting a jar where freshly cut plant material of apple or pear or spruce was intermixed with rowan. Dose-response gas-chromatography coupled to electroantennography revealed the presence of seven field attractive and seven background non-attractive antennally active compounds. Although the abundance of field attractive and of some background volatiles decreased in all dual combinations in comparison with rowan alone, an increased amount of the background compounds (3E-4

  4. Observing and Simulating Galaxy Evolution

    DEFF Research Database (Denmark)

    Olsen, Karen Pardos

    and temperature structure of these, with locally resolved radiation fields. In the first study, SÍGAME is combined with the radiative transfer code LIME to model the spectral line energy distribution (SLED) of CO. A CO SLED close to that of the Milky Way is found for normal star-forming massive galaxies at z _ 2......, but 50% smaller _CO factors, with the latter decreasing towards the center of each model galaxy. In a second study, SÍGAME is adapted to model the fine-structure line of singly ionized carbon, [CII] at 158 _m, the most powerful emission line of neutral ISM. Applying SÍGAME to the same type of galaxies......, and sheds light on the AGN-host co-evolution by connecting the fraction and luminosity of AGNs with galaxy properties. By analyzing a large survey in X-ray, AGNs of high and low X-ray luminosity are extracted among massive galaxies at z _ 2 via AGN classification methods, and stacking techniques of non...

  5. Impact of seeing and host galaxy into the analysis of photo-polarimetric microvariability in blazars. Case study of the nearby blazars 1ES 1959+650 and HB89 2201+044

    Science.gov (United States)

    Sosa, M. S.; von Essen, C.; Andruchow, I.; Cellone, S. A.

    2017-11-01

    Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line of sight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short timescales (I.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 and HB89 2201+044, that were obtained using the Calar Alto Faint Object Spectrograph mounted at the 2.2 m telescope in Calar Alto, Spain. An outstanding characteristic of these two blazars is the presence of well resolved host galaxies. This particular feature allows us to produce a study of their intrinsic polarization, a measurement of the polarization state of the galactic nucleus unaffected by the host galaxy. To carry out this work, we computed photometric fluxes from which we calculated the degree and orientation of the blazars polarization. Then, we analyzed the depolarizing effect introduced by the host galaxy with the main goal to recover the intrinsic polarization of the galactic nucleus, carefully taking into consideration the spurious polarimetric variability introduced by changes in seeing along the observing nights. We find that the two blazars do not present intra-night photo-polarimetric variability, although we do detect a significant inter-night variability. Comparing polarimetric values before and after accounting for the host galaxies, we observe a significant difference in the polarization degree of about 1% in the case of 1ES 1959+650, and 0.3% in the case of HB89 2201+044, thus evidencing the non-negligible impact introduced by the host galaxies. We note that this host galaxy effect depends on the waveband, and varies with changing seeing conditions, so it should be particularly considered when studying frequency-dependent polarization in blazars. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated

  6. USING COLORS TO IMPROVE PHOTOMETRIC METALLICITY ESTIMATES FOR GALAXIES

    International Nuclear Information System (INIS)

    Sanders, N. E.; Soderberg, A. M.; Levesque, E. M.

    2013-01-01

    There is a well known correlation between the mass and metallicity of star-forming galaxies. Because mass is correlated with luminosity, this relation is often exploited, when spectroscopy is not available, to estimate galaxy metallicities based on single band photometry. However, we show that galaxy color is typically more effective than luminosity as a predictor of metallicity. This is a consequence of the correlation between color and the galaxy mass-to-light ratio and the recently discovered correlation between star formation rate (SFR) and residuals from the mass-metallicity relation. Using Sloan Digital Sky Survey spectroscopy of ∼180, 000 nearby galaxies, we derive 'LZC relations', empirical relations between metallicity (in seven common strong line diagnostics), luminosity, and color (in 10 filter pairs and four methods of photometry). We show that these relations allow photometric metallicity estimates, based on luminosity and a single optical color, that are ∼50% more precise than those made based on luminosity alone; galaxy metallicity can be estimated to within ∼0.05-0.1 dex of the spectroscopically derived value depending on the diagnostic used. Including color information in photometric metallicity estimates also reduces systematic biases for populations skewed toward high or low SFR environments, as we illustrate using the host galaxy of the supernova SN 2010ay. This new tool will lend more statistical power to studies of galaxy populations, such as supernova and gamma-ray burst host environments, in ongoing and future wide-field imaging surveys

  7. Galaxy angular momentum

    International Nuclear Information System (INIS)

    Thompson, L.A.

    1974-01-01

    In order to test the theories which purport to explain the origin of galaxy angular momentum, this study presents new data for about 1000 individual galaxies in eight rich clusters. The clusters which are studied include Virgo, A 119, A 400, A 1656 (Coma), A 2147, A 2151 (Hercules), A 2197, and A 2199. Selected samples of these data are used to investigate systematic alignment effects in clusters of galaxies and to investigate the intrinsic ellipticities of E, SO, and spiral galaxies. The following new results are reported: Galaxies in the cluster A 2197 show a significant alignment effect (chi 2 probability less than 0.0002), and the preferential direction of alignment corresponds approximately to the major axis of the overall cluster elongation. None of the other seven clusters show any significant alignment trends. The spiral galaxy samples in four clusters (Virgo, A 1656, A 2151, and A 2197) were large enough to analyze the number distributions of forward and reverse winding spirals. Large and small spiral galaxies have identical ellipticity distributions. Large E and SO galaxies tend to be more spherical, and small E and SO galaxies more flattened. The intrinsic ellipticities of E, SO, and spiral galaxies are the same for galaxies in the ''field'' and for galaxies in rich clusters. Six models of galaxy formation are reviewed, and the major []mphasis is placed on how each model explains the origin of galaxy angular momentum. (Diss. Abstr. Int., B)

  8. The SLUGGS survey: wide-field stellar kinematics of early-type galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Jacob A. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Romanowsky, Aaron J.; Brodie, Jean P.; Woodley, Kristin A. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Forbes, Duncan A.; Blom, Christina; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Usher, Christopher [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Strader, Jay [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Spitler, Lee R. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Foster, Caroline, E-mail: romanow@ucolick.org [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW (Australia)

    2014-08-20

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ∼2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σ{sub inst} ∼ 25 km s{sup –1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h {sub 3}, and h {sub 4}) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.

  9. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    Science.gov (United States)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  10. The spatial distribution and velocity field of the molecular hydrogen line emission from the centre of the Galaxy

    International Nuclear Information System (INIS)

    Gatley, I.; Krisciunas, K.; Jones, T.J.; Hyland, A.R.; Geballe, T.R.; Rijksuniversiteit Groningen

    1986-01-01

    In an earlier paper the existence of a ring of molecular hydrogen-line emission surrounding the nucleus of the Galaxy was demonstrated. Here are presented the first detailed maps of the surface brightness and the velocity field, made in the upsilon=1-0 S(1) line of molecular hydrogen with a spatial resolution of 18 arcsec and a velocity resolution of 130 km s -1 . It is found that the molecular ring is tilted approximately 20 0 out of the plane of the Galaxy, has a broken and clumpy appearance, rotates at 100 km s -1 in the sense of galactic rotation, and exhibits radial motion at a velocity of 50 km s -1 . (author)

  11. Organic tissues, graphite, and hydrocarbons in host rocks of the Rum Jungle Uranium Field, northern Australia

    Science.gov (United States)

    Foster, C.B.; Robbins, E.I.; Bone, Y.

    1990-01-01

    The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.

  12. A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 μm SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Cassata, P.; Le Fevre, O.; Salvato, M.; Scoville, N. Z.; Capak, P.; Surace, J.; Yan, L.; Caputi, K.; Carollo, C. M.; Lilly, S.; Civano, F.; Hasinger, G.; Koekemoer, A. M.

    2010-01-01

    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 8 IR (8 - 1000 μm) 14 L sun with a median luminosity of 10 11.4 L sun . In general, these galaxies are massive, with a stellar mass range of 10 10 -10 12 M sun , and luminous, with -25 K IR , with the fraction at the highest luminosity (L IR > 10 12 L sun ) being up to ∼50%. We also find that the fraction of spirals drops dramatically with L IR . Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L IR 11.5 L sun ). The precise fraction of mergers in any given L IR bin varies by redshift due to sources at z > 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U - V color of the galaxies in our sample peaks in the green valley ((U - V) = 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals ( 12 M sun ) to have been

  13. ALMA view of RX J1131-1231: Sub-kpc CO (2-1) mapping of a molecular disk in a lensed star-forming quasar host galaxy

    Science.gov (United States)

    Paraficz, D.; Rybak, M.; McKean, J. P.; Vegetti, S.; Sluse, D.; Courbin, F.; Stacey, H. R.; Suyu, S. H.; Dessauges-Zavadsky, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2018-05-01

    We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z = 0.654 star-forming/quasar composite RX J1131-1231 at 240-400 mas angular resolution. The continuum emission is found to be compact and coincident with the optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-parsec-scales resolution using a Bayesian pixelated visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a large rotating disk with a major-axis FWHM 9.4 kpc at an inclination angle of i = 54° and with a maximum rotational velocity of 280 km s-1. From dynamical model fitting we find an enclosed mass within 5 kpc of M(r conversion factor of α = 5.5 ± 2.0 M⊙ (K km s-1 pc2)-1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR = 69-25+41 × (7.3/μIR) M⊙ yr-1, which demonstrates the composite star-forming and AGN nature of this system.

  14. Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Blakeslee, J. P.; Broadhurst, T. J.; Franx, M.

    2004-08-01

    We use the exceptional depth of the Ultra Deep Field (UDF) and UDF-parallel Advanced Camera for Surveys fields to study the sizes of high-redshift (z~2-6) galaxies and address long-standing questions about possible biases in the cosmic star formation rate due to surface brightness dimming. Contrasting B-, V-, and i-dropout samples culled from the deeper data with those obtained from the shallower Great Observatories Origins Deep Survey fields, we demonstrate that the shallower data are essentially complete at bright magnitudes to z~0.4", >~3 kpc) low surface brightness galaxies are rare. A simple comparison of the half-light radii of the Hubble Deep Field-North + Hubble Deep Field-South U-dropouts with B-, V-, and i-dropouts from the UDF shows that the sizes follow a (1+z)-1.05+/-0.21 scaling toward high redshift. A more rigorous measurement compares different scalings of our U-dropout sample with the mean profiles for a set of intermediate-magnitude (26.0dropouts from the UDF. The best fit is found with a (1+z)-0.94+0.19-0.25 size scaling (for fixed luminosity). This result is then verified by repeating this experiment with different size measures, low-redshift samples, and magnitude ranges. Very similar scalings are found for all comparisons. A robust measurement of size evolution is thereby demonstrated for galaxies from z~6 to 2.5 using data from the UDF. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  15. Properties of DRGs, LBGs, and BzK Galaxies in the GOODS South Field

    Science.gov (United States)

    Grazian, A.; Salimbeni, S.; Pentericci, L.; Fontana, A.; Santini, P.; Giallongo, E.; de Santis, C.; Gallozzi, S.; Nonino, M.; Cristiani, S.; Vanzella, E.

    2007-12-01

    We use the GOODS-MUSIC catalog with multi-wavelength coverage extending from the U band to the Spitzer 8 μm band, and spectroscopic or accurate photometric redshifts to select samples of BM/BX/LBGs, DRGs, and BzK galaxies. We discuss the overlap and the limitations of these selection criteria, which can be overcome with a criterion based on physical parameters (age and star formation timescale). We show that the BzK-PE criterion is not optimal for selecting early type galaxies at the faint end. We also find that LBGs and DRGs contribute almost equally to the global Stellar Mass Density (SMD) at z≥ 2 and in general that star forming galaxies form a substantial fraction of the universal SMD.

  16. Molecular interrogation of the feeding behaviour of field captured individual insects for interpretation of multiple host plant use.

    Directory of Open Access Journals (Sweden)

    James P Hereward

    Full Text Available The way in which herbivorous insect individuals use multiple host species is difficult to quantify under field conditions, but critical to understanding the evolutionary processes underpinning insect-host plant relationships. In this study we developed a novel approach to understanding the host plant interactions of the green mirid, Creontiades dilutus, a highly motile heteropteran bug that has been associated with many plant species. We combine quantified sampling of the insect across its various host plant species within particular sites and a molecular comparison between the insects' gut contents and available host plants. This approach allows inferences to be made as to the plants fed upon by individual insects in the field. Quantified sampling shows that this "generalist" species is consistently more abundant on two species in the genus Cullen (Fabaceae, its primary host species, than on any other of its numerous listed hosts. The chloroplast intergenic sequences reveal that C. dilutus frequently feeds on plants additional to the one from which it was collected, even when individuals were sampled from the primary host species. These data may be reconciled by viewing multiple host use in this species as an adaptation to survive spatiotemporally ephemeral habitats. The methodological framework developed here provides a basis from which new insights into the feeding behaviour and host plant relationships of herbivorous insects can be derived, which will benefit not only ecological interpretation but also our understanding of the evolution of these relationships.

  17. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  18. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen,; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ.

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that

  19. The SCUBA-2 Cosmology Legacy Survey: The EGS deep field - II. Morphological transformation and multiwavelength properties of faint submillimetre galaxies

    Science.gov (United States)

    Zavala, J. A.; Aretxaga, I.; Dunlop, J. S.; Michałowski, M. J.; Hughes, D. H.; Bourne, N.; Chapin, E.; Cowley, W.; Farrah, D.; Lacey, C.; Targett, T.; van der Werf, P.

    2018-04-01

    We present a multiwavelength analysis of galaxies selected at 450 and 850 μm from the deepest SCUBA-2 observations in the Extended Groth Strip (EGS) field, which have an average depth of σ450 = 1.9 and σ850 = 0.46 mJy beam- 1 over ˜70 arcmin2. The final sample comprises 95 sources: 56 (59 per cent) are detected at both wavelengths, 31 (33 per cent) are detected only at 850 μm, and 8 (8 per cent) are detected only at 450 μm. We identify counterparts for 75 per cent of the whole sample. The redshift distributions of the 450 and 850 μm samples peak at different redshifts with median values of \\bar{z}=1.66± 0.18 and \\bar{z}=2.30± 0.20, respectively. However, the two populations have similar IR luminosities, SFRs, and stellar masses, with mean values of 1.5 ± 0.2 × 1012 L⊙, 150 ± 20 M⊙ yr-1, and 9.0 ± 0.6 × 1010 M⊙, respectively. This places most of our sources (≳85 per cent) on the high-mass end of the main sequence of star-forming galaxies. Exploring the IR excess versus UV-slope (IRX-β) relation we find that the most luminous galaxies are consistent with the Meurer law, while the less luminous galaxies lie below this relation. Using the results of a two-dimensional modelling of the HSTH160-band imaging, we derive a median Sérsic index of n=1.4^{+0.3}_{-0.1} and a median half-light radius of r1/2 = 4.8 ± 0.4 kpc. Based on a visual-like classification in the same band, we find that the dominant component for most of the galaxies at all redshifts is a disc-like structure, although there is a transition from irregular discs to discs with a spheroidal component at z ˜ 1.4, which morphologically supports the scenario of SMGs as progenitors of massive elliptical galaxies.

  20. Deep Keck u-Band Imaging of the Hubble Ultra Deep Field: A Catalog of z ~ 3 Lyman Break Galaxies

    Science.gov (United States)

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, Hsiao-Wen; Armandroff, Taft E.; Wirth, Gregory D.

    2009-10-01

    We present a sample of 407 z ~ 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1σ depth of 30.7 mag arcsec-2, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of ~50% of the z ~ 3 LBGs, significantly reducing the traditional degeneracy of colors between z ~ 3 and z ~ 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z ~ 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  1. NARROW-LINE X-RAY-SELECTED GALAXIES IN THE CHANDRA -COSMOS FIELD. I. OPTICAL SPECTROSCOPIC CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Pons, E.; Watson, M. G. [University of Leicester, Leicester (United Kingdom); Elvis, M.; Civano, F. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2016-04-20

    The COSMOS survey is a large and deep survey with multiwavelength observations of sources from X-rays to the UV, allowing an extensive study of their properties. The central 0.9 deg{sup 2} of the COSMOS field have been observed by Chandra with a sensitivity up to 1.9 × 10{sup −16} erg cm{sup −2} s{sup −1} in the full (0.5–10 keV) band. Photometric and spectroscopic identification of the Chandra -COSMOS (C-COSMOS) sources is available from several catalogs and campaigns. Despite the fact that the C-COSMOS galaxies have a reliable spectroscopic redshift in addition to a spectroscopic classification, the emission-line properties of this sample have not yet been measured. We present here the creation of an emission-line catalog of 453 narrow-line sources from the C-COSMOS spectroscopic sample. We have performed spectral fitting for the more common lines in galaxies ([O ii] λ 3727, [Ne iii] λ 3869, H β , [O iii] λλ 4959, 5007, H α , and [N ii] λλ 6548, 6584). These data provide an optical classification for 151 (i.e., 33%) of the C-COSMOS narrow-line galaxies based on emission-line diagnostic diagrams.

  2. Are Wolf-Rayet Stars Able to Pollute the Interstellar Medium of Galaxies? Results from Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Enrique Pérez-Montero

    2013-01-01

    Full Text Available We investigate the spatial distribution of chemical abundances in a sample of low metallicity Wolf-Rayet (WR galaxies selected from the SDSS. We used the integral field spectroscopy technique in the optical spectral range (3700 Å–6850 Å with PMAS attached to the CAHA 3.5 m telescope. Our statistical analysis of the spatial distributions of O/H and N/O, as derived using the direct method or strong-line parameters consistent with it, indicates that metallicity is homogeneous in five out of the six analysed objects in scales of the order of several kpc. Only in the object WR404 is a gradient of metallicity found in the direction of the low surface brightness tail. In contrast, we found an overabundance of N/O in spatial scales of the order of hundreds of pc associated with or close to the positions of the WR stars in 4 out of the 6 galaxies. We exclude possible hydrodynamical causes, such as the metal-poor gas inflow, for this local pollution by means of the analysis of the mass-metallicity relation (MZR and mass-nitrogen-to-oxygen relation (MNOR for the WR galaxies catalogued in the SDSS.

  3. A COMPREHENSIVE, WIDE-FIELD STUDY OF PULSATING STARS IN THE CARINA DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Vivas, A. Katherina [Centro de Investigaciones de Astronomía (CIDA), Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Mateo, Mario, E-mail: akvivas@cida.ve, E-mail: mmateo@umich.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States)

    2013-12-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dwarf spheroidal galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids (DCs), which are mostly located ∼2.5 mag below the horizontal branch and have very short periods (<0.1 days), typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal DCs were found in our survey up to a distance of ∼1° from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids, some of which were found outside the galaxy's tidal radius as well. This supports past works that suggest that Carina is undergoing tidal disruption. We use the period-luminosity relationship for DCs to estimate a distance modulus of μ{sub 0} = 20.17 ± 0.10 mag, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the DCs of Carina and those in Fornax and the LMC, the only extragalactic samples of DCs currently known. These differences may reflect a metallicity spread, depth along the line of sight, and/or different evolutionary paths of the DC stars.

  4. Weak Lensing Calibrated M-T Scaling Relation of Galaxy Groups in the COSMOS Field

    NARCIS (Netherlands)

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J.; Spinelli, P.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H.; Koekemoer, A.

    2013-01-01

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10

  5. OASIS integral-field spectroscopy of the central kpc in 11 Seyfert 2 galaxies

    Czech Academy of Sciences Publication Activity Database

    Stoklasová, Ivana; Ferruit, P.; Emsellem, E.; Jungwiert, Bruno; Pécontal, E.; Sánchez, Sebastián F.

    2009-01-01

    Roč. 500, č. 3 (2009), s. 1287-1325 ISSN 0004-6361 R&D Projects: GA MŠk(CZ) LC06014; GA ČR GD205/03/H144 Institutional research plan: CEZ:AV0Z10030501 Keywords : active galaxies * spectroscopy * kinematics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  6. A LABOCA SURVEY OF THE EXTENDED CHANDRA DEEP FIELD SOUTH-SUBMILLIMETER PROPERTIES OF NEAR-INFRARED SELECTED GALAXIES

    International Nuclear Information System (INIS)

    Greve, T. R.; Walter, F.; Bell, E. F.; Dannerbauer, H.; Rix, H.-W.; Schinnerer, E.; Weiss, A.; Kovacs, A.; Smail, I.; Coppin, K. E. K.; Alexander, D.; Zheng, X. Z.; Knudsen, K. K.; Bertoldi, F.; De Breuck, C.; Dickinson, M.; Gawiser, E.; Lutz, D.; Brandt, N.; Chapman, S. C.

    2010-01-01

    Using the 330 hr ESO-MPG 870 μm survey of the Extended Chandra Deep Field South (ECDF-S) obtained with the Large Apex BOlometer CAmera (LABOCA) on the Atacama Pathfinder EXperiment (APEX), we have carried out a stacking analysis at submillimeter (submm) wavelengths of a sample of 8266 near-infra-red (near-IR) selected (K vega ≤ 20) galaxies, including 893 BzK galaxies, 1253 extremely red objects (EROs), and 737 distant red galaxies (DRGs), selected from the Multi-wavelength Survey by Yale-Chile (MUSYC). We measure average 870 μm fluxes of 0.22 ± 0.01 mJy (22.0σ), 0.48 ± 0.04 mJy (12.0σ), 0.39 ± 0.03 mJy (13.0σ), and 0.43 ± 0.04 mJy (10.8σ) for the K vega ≤ 20, BzK, ERO, and DRG samples, respectively. For the BzK, ERO, and DRG sub-samples, which overlap to some degree and are likely to be at z ≅ 1-2, this implies an average far-IR luminosity of ∼(1-5) x 10 11 L sun and star formation rate (SFR) of ∼20-90 M sun . Splitting the BzK galaxies into star-forming (sBzK) and passive (pBzK) galaxies, the former is significantly detected (0.50 ± 0.04 mJy, 12.5σ) while the latter is only marginally detected (0.34 ± 0.10 mJy, 3.4σ), thus confirming that the sBzK and pBzK criteria to some extent select obscured, star-forming, and truly passive galaxies, respectively. The K vega ≤ 20 galaxies are found to contribute 7.27 ± 0.34 Jy deg -2 (16.5% ± 5.7%) to the 870 μm extragalactic background light (EBL). sBzK and pBzK galaxies contribute 1.49 ± 0.22 Jy deg -2 (3.4% ± 1.3%) and 0.20 ± 0.14 Jy deg -2 (0.5% ± 0.3%) to the EBL. We present the first delineation of the average submm signal from the K vega ≤ 20 selected galaxies and their contribution to the submm EBL as a function of (photometric) redshift, and find a decline in the average submm signal (and therefore IR luminosity and SFR) by a factor ∼2-3 from z ∼ 2 to z ∼ 0. This is in line with a cosmic star formation history in which the star formation activity in galaxies increases

  7. ON THE ANTICORRELATION BETWEEN GALAXY LIGHT CONCENTRATION AND X-RAY-TO-OPTICAL FLUX RATIO

    International Nuclear Information System (INIS)

    Povic, M.; Perez Garcia, A. M.; Bongiovanni, A.; Fernandez Lorenzo, M.; Lara-Lopez, M. A.; Sanchez-Portal, M.; Cepa, J.; Gonzalez-Serrano, J. I.; Alfaro, E. J.

    2009-01-01

    Active galactic nuclei (AGNs) play an important role in many aspects of modern cosmology, and of particular interest is the issue of the interplay between AGNs and their host galaxy. Using X-ray and optical data sets, we have explored the properties of a large sample of AGNs in the Subaru/XMM-Newton Deep Survey field, and studied their evolution in relation with the evolution of their host galaxy. We present here an anticorrelation between X-ray-to-optical flux (X/O) ratio and galaxy light concentration (C), which has been found for the first time and might suggest that early-type galaxies, having poor matter supply to feed the AGN activity, have lower Eddington rates than those of late-type galaxies.

  8. z ~ 7-10 Galaxies in the HUDF and GOODS Fields: UV Luminosity Functions

    Science.gov (United States)

    Bouwens, Rychard J.; Illingworth, Garth D.; Franx, Marijn; Ford, Holland

    2008-10-01

    We use all available deep optical ACS and near-IR data over both the HUDF and the two GOODS fields to search for star-forming galaxies at zgtrsim 7 and constrain the UV LF within the first 700 Myr. Our data set includes ~23 arcmin2 of deep NICMOS J + H data and ~248 arcmin2 of ground-based (ISAAC+MOIRCS) data, coincident with ACS optical data of greater or equal depths. In total, we find eight ~ 7.3 z-dropouts in our search fields, but no z ~ 9 J-dropout candidates. A careful consideration of a wide variety of different contaminants suggest an overall contamination level of just ~12% for our z-dropout selection. After performing detailed simulations to accurately estimate the selection volumes, we derive constraints on the UV LFs at z ~ 7 and z ~ 9. For a faint-end slope α = - 1.74, our most likely values for MUV* and phiv* at z ~ 7 are -19.8 +/- 0.4 mag and 1.1+ 1.7-0.7 × 10-3 Mpc-3, respectively. Our search results for z ~ 9 J-dropouts set a 1 σ lower limit on MUV* of -19.6 mag assuming that phiv* and α are the same as their values at slightly later times. This lower limit on MUV* is 1.4 mag fainter than our best-fit value at z ~ 4, suggesting that the UV LF has undergone substantial evolution over this time period. No evolution is ruled out at 99% confidence from z ~ 7 to z ~ 6 and at 80% confidence from z ~ 9 to z ~ 7. We find that the mass-to-light ratio of halos evolves as ~(1 + z)-1 if we require that the observed brightening in MUV* with redshift [i.e., MUV* = (- 21.02 +/- 0.09) + (0.36 +/- 0.08) (z - 3.8) ] be consistent with the expected evolution in the halo mass function. Finally, we consider the shape of the UV LF at zgtrsim 5 and discuss the implications of the Schechter-like form of the observed LFs, particularly the unexpected abrupt cutoff at the bright end. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5

  9. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    Science.gov (United States)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  10. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter

    Science.gov (United States)

    Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.

    2018-04-01

    Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 motivated framework additional or alternative to the FDM profile.

  11. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Greene, Jenny E.; Murphy, Jeremy D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); McConnell, Nicholas [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Janish, Ryan [Department of Physics, University of California, Berkeley, CA 94720 (United States); Blakeslee, John P. [Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7 (Canada); Thomas, Jens, E-mail: cpma@berkeley.edu [Max Planck-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany)

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  12. Clusters of galaxies associated with quasars. I. 3C 206

    International Nuclear Information System (INIS)

    Ellingson, E.; Yee, H.K.C.; Green, R.F.; Kinman, T.D.

    1989-01-01

    Multislit spectroscopy and three-color CCD photometry of the galaxies in the cluster associated with the quasar 3C 206 (PKS 0837-12) at z = 0.198 are presented. This cluster is the richest environment of any low-redshift quasar observed in an Abell richness class 1 cluster. The cluster has a very flattened structure and a very concentrated core about the quasar. Most of the galaxies in this field have colors and luminosities consistent with normal galaxies at this redshift. The background-corrected blue fraction of galaxies is consistent with values for other rich clusters. The existence of several blue galaxies in the concentrated cluster core is an anomaly for a region of such high galaxy density, however, suggesting the absence of a substantial intracluster medium. This claim is supported by the Fanaroff-Riley (1974) class II morphology of the radio source. The velocity dispersion calculated from 11 spectroscopically confirmed cluster members is 500 + or - 110 km/s, which is slightly lower than the average for Abell class 1 clusters. A high frequency of interaction between the quasar host galaxy and cluster core members at low relative velocities, and a low intracluster gas pressure, may comprise a favorable environment for quasar activity. The properties of the cluster of galaxies associated with 3C 206 are consistent with this model. 59 refs

  13. THE MASS-DEPENDENT CLUSTERING HISTORY OF K-SELECTED GALAXIES AT z < 4 IN THE SXDS/UDS FIELD

    International Nuclear Information System (INIS)

    Furusawa, Junko; Sekiguchi, Kazuhiro; Takata, Tadafumi; Furusawa, Hisanori; Shimasaku, Kazuhiro; Simpson, Chris; Akiyama, Masayuki

    2011-01-01

    We investigate mass-dependent galaxy evolution based on a large sample of (more than 50,000) K-band selected galaxies in a multi-wavelength catalog of the Subaru/XMM-Newton Deep Survey and the UKIRT Infrared Deep Sky Survey/Ultra Deep Survey. We employ optical to near-infrared photometry to determine photometric redshifts of these galaxies. Then, we estimate the stellar mass of our sample galaxies using a standard fitting procedure as we used for estimation of the photometric redshift. From the sample galaxies, we obtain the stellar mass function of galaxies and the cosmic stellar mass density up to z ∼ 4. Our results are consistent with previous studies and we find a considerable number of low-mass galaxies (M * ∼ 10 10.5 ) at the redshift range 3 14 M sun ) to low (10 13 M sun ) with decreasing redshift at around z ∼ 2. We also find some high-mass density regions of massive galaxies at 1.4 ≤ z < 2.5 in our sample. These concentrations of massive galaxies may be candidate progenitors of the present-day clusters of galaxies. At this redshift range, massive star-forming galaxies are the dominant population making up the structures and the passively evolving galaxies show stronger clustering and they may have formed earlier than those star-forming galaxies.

  14. 3D galaxy clustering with future wide-field surveys: Advantages of a spherical Fourier-Bessel analysis

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2015-06-01

    Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the

  15. Transient-field strength measurements for 52Cr traversing Fe hosts at high velocity and polarization transfer mechanisms

    International Nuclear Information System (INIS)

    Stuchbery, A.E.; Doran, C.E.; Byrne, A.P.; Bolotin, H.H.; Dracoulis, G.D.

    1986-12-01

    Transient-field strengths were measured for 52 Cr ions traversing polarized Fe hosts at velocities up to 12v>=o (v>=o = c/137 = Bohr velocity). The results are compared with predictions of various transient field parametrizations and discussed in terms of possible mechanisms by which polarization might be transferred from the Fe host to inner vacancies of the moving Cr ions. The g-factor of the first 2 + state of 52 Cr was also measured by the transient field technique and found to be in accord with shell-model calculations

  16. Host-seeking behavior and dispersal of Triatoma infestans, a vector of Chagas disease, under semi-field conditions.

    Directory of Open Access Journals (Sweden)

    Ricardo Castillo-Neyra

    2015-01-01

    Full Text Available Chagas disease affects millions of people in Latin America. The control of this vector-borne disease focuses on halting transmission by reducing or eliminating insect vector populations. Most transmission of Trypanosoma cruzi, the causative agent of Chagas disease, involves insects living within or very close to households and feeding mostly on domestic animals. As animal hosts can be intermittently present it is important to understand how host availability can modify transmission risk to humans and to characterize the host-seeking dispersal of triatomine vectors on a very fine scale. We used a semi-field system with motion-detection cameras to characterize the dispersal of Triatoma infestans, and compare the behavior of vector populations in the constant presence of hosts (guinea pigs, and after the removal of the hosts. The emigration rate - net insect population decline in original refuge - following host removal was on average 19.7% of insects per 10 days compared to 10.2% in constant host populations (p = 0.029. However, dispersal of T. infestans occurred in both directions, towards and away from the initial location of the hosts. The majority of insects that moved towards the original location of guinea pigs remained there for 4 weeks. Oviposition and mortality were observed and analyzed in the context of insect dispersal, but only mortality was higher in the group where animal hosts were removed (p-value <0.01. We discuss different survival strategies associated with the observed behavior and its implications for vector control. Removing domestic animals in infested areas increases vector dispersal from the first day of host removal. The implications of these patterns of vector dispersal in a field setting are not yet known but could result in movement towards human rooms.

  17. Discovery of z ~ 8 Galaxies in the Hubble Ultra Deep Field from Ultra-Deep WFC3/IR Observations

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Oesch, P. A.; Stiavelli, M.; van Dokkum, P.; Trenti, M.; Magee, D.; Labbé, I.; Franx, M.; Carollo, C. M.; Gonzalez, V.

    2010-02-01

    We utilize the newly acquired, ultra-deep WFC3/IR observations over the Hubble Ultra Deep Field (HUDF) to search for star-forming galaxies at z ~ 8-8.5, only 600 million years from recombination, using a Y 105-dropout selection. The new 4.7 arcmin2 WFC3/IR observations reach to ~28.8 AB mag (5σ) in the Y 105 J 125 H 160 bands. These remarkable data reach ~1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman break selection technique to identify z ~ 8-8.5Y 105-dropouts. We find five likely z ~ 8-8.5 candidates. The sources have H 160-band magnitudes of ~28.3 AB mag and very blue UV-continuum slopes, with a median estimated β of lsim-2.5 (where f λ vprop λβ). This suggests that z ~ 8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y 105-dropout candidates is smaller than the 20 ± 6 sources expected assuming no evolution from z ~ 6, but is consistent with the five expected extrapolating the Bouwens et al. luminosity function (LF) results to z ~ 8. These results provide evidence that the evolution in the LF seen from z ~ 7 to z ~ 3 continues to z ~ 8. The remarkable improvement in the sensitivity of WFC3/IR has enabled Hubble Space Telescope to cross a threshold, revealing star-forming galaxies at z~ 8-9. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11563, 9797.

  18. DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS

    International Nuclear Information System (INIS)

    Bouwens, R. J.; Illingworth, G. D.; Magee, D.; Gonzalez, V.; Oesch, P. A.; Carollo, C. M.; Stiavelli, M.; Van Dokkum, P.; Trenti, M.; Labbe, I.; Franx, M.

    2010-01-01

    We utilize the newly acquired, ultra-deep WFC3/IR observations over the Hubble Ultra Deep Field (HUDF) to search for star-forming galaxies at z ∼ 8-8.5, only 600 million years from recombination, using a Y 105 -dropout selection. The new 4.7 arcmin 2 WFC3/IR observations reach to ∼28.8 AB mag (5σ) in the Y 105 J 125 H 160 bands. These remarkable data reach ∼1.5 AB mag deeper than the previous data over the HUDF, and now are an excellent match to the HUDF optical ACS data. For our search criteria, we use a two-color Lyman break selection technique to identify z ∼ 8-8.5Y 105 -dropouts. We find five likely z ∼ 8-8.5 candidates. The sources have H 160 -band magnitudes of ∼28.3 AB mag and very blue UV-continuum slopes, with a median estimated β of ∼ λ ∝ λ β ). This suggests that z ∼ 8 galaxies are not only essentially dust free but also may have very young ages or low metallicities. The observed number of Y 105 -dropout candidates is smaller than the 20 ± 6 sources expected assuming no evolution from z ∼ 6, but is consistent with the five expected extrapolating the Bouwens et al. luminosity function (LF) results to z ∼ 8. These results provide evidence that the evolution in the LF seen from z ∼ 7 to z ∼ 3 continues to z ∼ 8. The remarkable improvement in the sensitivity of WFC3/IR has enabled Hubble Space Telescope to cross a threshold, revealing star-forming galaxies at z∼ 8-9.

  19. BROAD-LINE REVERBERATION IN THE KEPLER-FIELD SEYFERT GALAXY Zw 229-015

    International Nuclear Information System (INIS)

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Choi, Jieun; Duchene, Gaspard; Ganeshalingam, Mohan; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Childress, Michael; Cucciara, Antonino; Comerford, Julia M.; Da Silva, Robert; Fumagalli, Michele; Gates, Elinor L.; Gerke, Brian F.

    2011-01-01

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86 +0.69 -0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σ line = 1590 ± 47 km s -1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00 +0.19 -0.24 x 10 7 M sun for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  20. z ~ 7-10 Galaxies Behind Lensing Clusters: Contrast with Field Search Results

    Science.gov (United States)

    Bouwens, Rychard J.; Illingworth, Garth D.; Bradley, Larry D.; Ford, Holland; Franx, Marijn; Zheng, Wei; Broadhurst, Tom; Coe, Dan; Jee, M. James

    2009-01-01

    We conduct a search for z gsim 7 dropout galaxies behind 11 massive lensing clusters using 21 arcmin2 of deep Hubble Space Telescope NICMOS, ACS, and WFPC2 image data. In total, over this entire area, we find only one robust z ~ 7 z-dropout candidate (previously reported around Abell 1689). Four less robust z-dropout and J-dropout candidates are also found. The nature of the four weaker candidates could not be precisely determined due to the limited depth of the available optical data, but detailed simulations suggest that all four are likely to be low-redshift interlopers. By contrast, we estimate that our robust candidate A1689-zD1 has dropouts and 0.3 z ~ 9 J-dropouts over our cluster search area, in reasonable agreement with our observational results, given the small numbers. The number of z gsim 7 candidates we find in the present search is much lower than that which has been reported in several previous studies of the prevalence of z gsim 7 galaxies behind lensing clusters. To understand these differences, we examined z gsim 7 candidates in other studies and conclude that only a small fraction are likely to be z gsim 7 galaxies. Our findings support models that show that gravitational lensing from clusters is of the most value for detecting galaxies at magnitudes brighter than L* (H lsim 27) where the LF is expected to be very steep. Use of these clusters to constrain the faint-end slope or determine the full LF is likely of less value due to the shallower effective slope measured for the LF at fainter magnitudes, as well as significant uncertainties introduced from modeling both the gravitational lensing and incompleteness. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #5352, 5935, 6488, 8249, 8882, 9289, 9452, 9717, 10150, 10154, 10200, 10325, 10504, 10863, 10996.

  1. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  2. The role of interactions in galaxy evolution: A new perspective from the CALIFA and MaNGA Integral Field Spectroscopic surveys.

    Science.gov (United States)

    Barrera-Ballesteros, J. K.; Sanchez, S. F.; Califa Collaboration

    2016-06-01

    Interactions and mergers have been playing a paramount role to understand how galaxies evolve. In recent years integral field spectroscopic (IFS) observations have become routinely allowing researchers to conduct large IFS surveys. In this context, these surveys are providing a new observational scenario to probe the properties of galaxies at different stages of the interaction —from close pairs to post-merger galaxies. Even more, these surveys also include homogeneous observations of non-interacting galaxies which in turns allows to distinguish the processes induce by secular evolution from those driven by interactions. In this talk, We review the studies of interacting studies from the CALIFA survey. They consider from the thorough analysis of a single interactive systems (e.g., the Mice, Wild et al. 2014) to the the statistical study of physical properties of a large sample of interacting/merging galaxies such as their internal structure via their stellar and gas line-of-sight kinematic maps (Barrera-Ballesteros et al. 2015a) or the spatial distribution of the star-forming gas in these galaxies (Barrera-Ballesteros et al. 2015b). Then we present some of the on-going studies within the MaNGA survey. Due to its statistical power (sample size ~10000 objects), this survey will allow us to probe the properties of galaxies in a wide range of the interaction-parameter space. This in turn provides a unique view on the key parameters that affect the internal structure and properties of galaxies during the interaction and subsequent merger.

  3. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    International Nuclear Information System (INIS)

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A.; Kaviraj, S.; Crockett, R. M.; Silk, J.; O'Connell, R. W.; Hathi, N. P.; McCarthy, P. J.; Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E.; Yan, H.; Kimble, R. A.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.

    2012-01-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 ∼ 11 * [M ☉ ] 12 . By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV–V) = 3.5 and (NUV–V) = 3.3, with 1σ standard deviations ≅1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent (∼<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  4. Spectroscopic Observations of Lyman Break Galaxies at Redshifts ~4, 5, and 6 in the Goods-South Field

    Science.gov (United States)

    Vanzella, E.; Giavalisco, M.; Dickinson, M.; Cristiani, S.; Nonino, M.; Kuntschner, H.; Popesso, P.; Rosati, P.; Renzini, A.; Stern, D.; Cesarsky, C.; Ferguson, H. C.; Fosbury, R. A. E.

    2009-04-01

    morphology of the UV light and the spectroscopic properties. However, galaxies with deep ISLs and strong Lyα absorption appear to be more diffuse than galaxies with Lyα in emission. Based on observations made at the European Southern Observatory Very Large Telescope, Paranal, Chile (ESO programme 170.A-0788 The Great Observatories Origins Deep Survey: ESO Public Observations of the SST Legacy/HST Treasury/Chandra Deep Field-South). Also based on observations obtained with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under NASA contract NAS 5-26555.

  5. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    Science.gov (United States)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  6. WIDE-FIELD VLBI OBSERVATIONS OF M31: A UNIQUE PROBE OF THE IONIZED INTERSTELLAR MEDIUM OF A NEARBY GALAXY

    International Nuclear Information System (INIS)

    Morgan, John S.; Argo, Megan K.; Trott, Cathryn M.; Macquart, Jean-Pierre; Miller-Jones, James; Tingay, Steven J.; Deller, Adam; Middelberg, Enno

    2013-01-01

    The Very Long Baseline Array was used at 1.6 GHz to observe a target field 50' in diameter including the core of M31. Novel very long baseline interferometry correlation techniques were used to observe 200 sources simultaneously, of which 16 were detected. We classify all 16 as background active galactic nuclei based on their X-ray properties and arcsecond- and mas-scale morphology. The detected sources were then analyzed for evidence of scatter-broadening due to the ionized interstellar medium (ISM) of M31. The detection of a compact background source only 0.25 kpc projected distance from M31* places a constraint on the extent of any extreme scattering region associated with the center of M31. However, the two sources closest to the core show evidence of scatter broadening consistent with that which would be seen for a compact source if it were observed through the inner disk of our Galaxy, at the inclination of M31. We interpret this as a detection of the ionized ISM of M31 along two lines of sight. With the increases in bandwidth and sensitivity envisaged for future long-baseline interferometers, this should prove to be a remarkably powerful technique for understanding the ionized ISM in external galaxies.

  7. Starbursts and IRAS galaxies

    International Nuclear Information System (INIS)

    Belfort, P.

    1987-01-01

    Several observational hints suggest that most of the IRAS galaxies are undergoing bursts of star formation. A simple photometric model of starburst galaxy was developed in order to check whether starburst events are really able to account for the far-infrared and optical properties of all the IRAS galaxies with HII region-like spectra. FIR activities up to a few hundred are actually easily reached with rather small bursts in red host-galaxies, and L IR /L B , EW(Hα) and U-B) versus (B-V) diagrams can be used to estimate burst strength and extinction. But more observations are required to conclude about the most extreme cases. Four typical infrared-selected IRAS galaxies are presented and their burst strength and extinction estimated

  8. NEW CONSTRAINTS ON THE GALACTIC HALO MAGNETIC FIELD USING ROTATION MEASURES OF EXTRAGALACTIC SOURCES TOWARD THE OUTER GALAXY

    International Nuclear Information System (INIS)

    Mao, S. A.; McClure-Griffiths, N. M.; Gaensler, B. M.; Brown, J. C.; Van Eck, C. L.; Stil, J. M.; Taylor, A. R.; Haverkorn, M.; Kronberg, P. P.; Shukurov, A.

    2012-01-01

    We present a study of the Milky Way disk and halo magnetic field, determined from observations of Faraday rotation measure (RM) toward 641 polarized extragalactic radio sources in the Galactic longitude range 100°-117°, within 30° of the Galactic plane. For |b| –2 and –62 ± 5 rad m –2 in the northern and southern Galactic hemispheres, respectively. If the RM distribution is a signature of the large-scale field parallel to the Galactic plane, then this suggests that the halo magnetic field toward the outer Galaxy does not reverse direction across the mid-plane. The variation of RM as a function of Galactic latitude in this longitude range is such that RMs become more negative at larger |b|. This is consistent with an azimuthal magnetic field of strength 2 μG (7 μG) at a height 0.8-2 kpc above (below) the Galactic plane between the local and the Perseus spiral arm. We propose that the Milky Way could possess spiral-like halo magnetic fields similar to those observed in M51.

  9. Maintenance of host DNA integrity in field-preserved mosquito (Diptera: Culicidae) blood meals for identification by DNA barcoding.

    Science.gov (United States)

    Reeves, Lawrence E; Holderman, Chris J; Gillett-Kaufman, Jennifer L; Kawahara, Akito Y; Kaufman, Phillip E

    2016-09-15

    Determination of the interactions between hematophagous arthropods and their hosts is a necessary component to understanding the transmission dynamics of arthropod-vectored pathogens. Current molecular methods to identify hosts of blood-fed arthropods require the preservation of host DNA to serve as an amplification template. During transportation to the laboratory and storage prior to molecular analysis, genetic samples need to be protected from nucleases, and the degradation effects of hydrolysis, oxidation and radiation. Preservation of host DNA contained in field-collected blood-fed specimens has an additional caveat: suspension of the degradative effects of arthropod digestion on host DNA. Unless effective preservation methods are implemented promptly after blood-fed specimens are collected, host DNA will continue to degrade. Preservation methods vary in their efficacy, and need to be selected based on the logistical constraints of the research program. We compared four preservation methods (cold storage at -20 °C, desiccation, ethanol storage of intact mosquito specimens and crushed specimens on filter paper) for field storage of host DNA from blood-fed mosquitoes across a range of storage and post-feeding time periods. The efficacy of these techniques in maintaining host DNA integrity was evaluated using a polymerase chain reaction (PCR) to detect the presence of a sufficient concentration of intact host DNA templates for blood meal analysis. We applied a logistic regression model to assess the effects of preservation method, storage time and post-feeding time on the binomial response variable, amplification success. Preservation method, storage time and post-feeding time all significantly impacted PCR amplification success. Filter papers and, to a lesser extent, 95 % ethanol, were the most effective methods for the maintenance of host DNA templates. Amplification success of host DNA preserved in cold storage at -20 °C and desiccation was poor. Our data

  10. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C. [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Biggs, A. D.; Ivison, R. J. [European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching (Germany); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 (Canada); Coppin, K. E. K. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Dannerbauer, H. [Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, A-1180 Wien (Austria); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Karim, A. [Argelander-Institute for Astronomy, Bonn University, Auf dem Hügel 71, D-53121 Bonn (Germany); Menten, Karl M. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Schinnerer, E.; Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Wardlow, J. L. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  11. The Magellanic Analog Dwarf Companions and Stellar Halos (MADCASH) Survey: Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    Science.gov (United States)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Peter, Annika; Price, Paul A.; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2017-01-01

    We discuss the first results of our observational program to comprehensively map nearly the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. These will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. We will detail our discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  12. Field behavior of parasitic Coelioxys chichimeca (Hymenoptera: Megachilidae) toward the host bee Centris bicornuta (Hymenoptera: Apidae)

    OpenAIRE

    Vinson , S.; Frankie , Gordon; Rao , Asha

    2011-01-01

    International audience; Coelioxys chichimeca is a cleptoparasite and an important cause of mortality for several woodhole nesting pollinator bees in Costa Rica. We studied the behavior of this parasitic bee towards one of the more common host bee, Centris (Heterocentris) bicornuta. The female parasitic C. chichimeca were attracted to host bee, C. bicornuta nest cells that contained pollen, but only exhibited interest in entering and ovipositing when these host cells contained nectar. This int...

  13. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Kaviraj, S.; Crockett, R. M.; Silk, J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); O' Connell, R. W. [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Hathi, N. P.; McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Kimble, R. A. [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Disney, M. J. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Physics and Astronomy, The Australian National University, ACT 2611 (Australia); Frogel, J. A. [Astronomy Department, King Abdulaziz University, P.O. Box 80203, Jeddah (Saudi Arabia); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  14. EVOLUTION AND DISTRIBUTION OF MAGNETIC FIELDS FROM ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS. II. THE EFFECTS OF CLUSTER SIZE AND DYNAMICAL STATE

    International Nuclear Information System (INIS)

    Xu Hao; Li Hui; Collins, David C.; Li, Shengtai; Norman, Michael L.

    2011-01-01

    Theory and simulations suggest that magnetic fields from radio jets and lobes powered by their central super massive black holes can be an important source of magnetic fields in the galaxy clusters. This is Paper II in a series of studies where we present self-consistent high-resolution adaptive mesh refinement cosmological magnetohydrodynamic simulations that simultaneously follow the formation of a galaxy cluster and evolution of magnetic fields ejected by an active galactic nucleus. We studied 12 different galaxy clusters with virial masses ranging from 1 x 10 14 to 2 x 10 15 M sun . In this work, we examine the effects of the mass and merger history on the final magnetic properties. We find that the evolution of magnetic fields is qualitatively similar to those of previous studies. In most clusters, the injected magnetic fields can be transported throughout the cluster and be further amplified by the intracluster medium (ICM) turbulence during the cluster formation process with hierarchical mergers, while the amplification history and the magnetic field distribution depend on the cluster formation and magnetism history. This can be very different for different clusters. The total magnetic energies in these clusters are between 4 x 10 57 and 10 61 erg, which is mainly decided by the cluster mass, scaling approximately with the square of the total mass. Dynamically older relaxed clusters usually have more magnetic fields in their ICM. The dynamically very young clusters may be magnetized weakly since there is not enough time for magnetic fields to be amplified.

  15. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  16. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Montaña, Alfredo; Aretxaga, Itziar; Hughes, David [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro 1, Sta. Ma. Tonantzintla, 72840 Puebla (Mexico); Limousin, Marceau [Aix Marseille Univ, CNRS, LAM, Laboratoire d' Astrophysique de Marseille, Marseille (France); Marchesini, Danilo; Kado-Fong, Erin [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Alberts, Stacey [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Avila-Reese, Vladimir [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, CDMX (Mexico); Bermejo-Climent, José Ramón [Departamento de Astrofísica, Universidad de La Laguna. Vía Láctea s/n, La Laguna 38200, Tenerife (Spain); Brammer, Gabriel [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bravo-Alfaro, Hector [Departamento de Astronomia, Universidad de Guanajuato, Apdo. Postal 144, Guanajuato 36000 (Mexico); Chary, Ranga-Ram [Infrared Processing and Analysis Center, MS314-6, California Institute of Technology, Pasadena, CA 91125 (United States); Keller, Erica, E-mail: pope@astro.umass.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); and others

    2017-04-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10{sup 10} L {sub ⊙} and an obscured star formation rate of 14.6 ± 4.5 M {sub ⊙} yr{sup −1}. The unobscured star formation rate from the UV is only 4.1 ± 0.3 M {sub ⊙} yr{sup −1}, which means the total star formation rate (18.7 ± 4.5 M {sub ⊙} yr{sup −1}) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10{sup 9} M {sub ⊙}, MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  17. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    International Nuclear Information System (INIS)

    Pope, Alexandra; Battisti, Andrew; Wilson, Grant W.; Calzetti, Daniela; Cybulski, Ryan; Giavalisco, Mauro; Kirkpatrick, Allison; Montaña, Alfredo; Aretxaga, Itziar; Hughes, David; Limousin, Marceau; Marchesini, Danilo; Kado-Fong, Erin; Alberts, Stacey; Avila-Reese, Vladimir; Bermejo-Climent, José Ramón; Brammer, Gabriel; Bravo-Alfaro, Hector; Chary, Ranga-Ram; Keller, Erica

    2017-01-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717-Az9, is at z > 4 and the strong lensing model ( μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 10 10 L ⊙ and an obscured star formation rate of 14.6 ± 4.5 M ⊙ yr −1 . The unobscured star formation rate from the UV is only 4.1 ± 0.3 M ⊙ yr −1 , which means the total star formation rate (18.7 ± 4.5 M ⊙ yr −1 ) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 10 9 M ⊙ , MACS0717-Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX- β ) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  18. The Hunt for Missing Dwarf Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    Theories of galaxy formation and evolution predict that there should be significantly more dwarf galaxies than have been observed. Are our theories wrong? Or are dwarf galaxies just difficult to detect? Recent results from a survey of a galaxy cluster 62 million light-years away suggest there may be lots of undiscovered dwarf galaxies hiding throughout the universe!Hiding in FaintnessThe missing dwarf problem has had hints of a resolution with the recent discovery of Ultra-Diffuse Galaxies (UDGs) in the Coma and Virgo galaxy clusters. UDGs have low masses and large radii, resulting in a very low surface brightness that makes them extremely difficult to detect. If many dwarfs are UDGs, this could well explain why weve been missing them!But the Coma and Virgo galaxy clusters are similar in that theyre both very massive. Are there UDGs in other galaxy clusters as well? To answer this question, an international team of scientists is running the Next Generation Fornax Survey (NGFS), a survey searching for faint dwarf galaxies in the central 30 square degrees of the Fornax galaxy cluster.The NGFS uses near-UV and optical observations from the Dark Energy Camera mounted on the 4m Blanco Telescope in Chile. The survey is still underway, but in a recent publication led by Roberto P. Muoz (Institute of Astrophysics at the Pontifical Catholic University of Chile), the team has released an overview of the first results from only the central 3 square degrees of the NGFS field.Surprising DetectionGalaxy radii vs. their absolute i-band magnitudes, for the dwarfs found in NGFS as well as other stellar systems in the nearby universe. The NGFS dwarfs are similar to the ultra-diffuse dwarfs found in the Virgo and Coma clusters, but are several orders of magnitude fainter. [Muoz et al. 2015]In just this small central field, the team has found an astounding 284 low-surface-brightness dwarf galaxy candidates 158 of them previously undetected. At the bright end of this sample are dwarf

  19. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    Science.gov (United States)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely

  20. Field-induced detrapping in disordered organic semiconducting host-guest systems

    NARCIS (Netherlands)

    Cottaar, J.; Coehoorn, R.; Bobbert, P.A.

    2010-01-01

    In a disordered organic semiconducting host-guest material, containing a relatively small concentration of guest molecules acting as traps, the charge transport may be viewed as resul