WorldWideScience

Sample records for host galaxy classification

  1. Host Galaxy Identification for Supernova Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope (LSST), which will discover SNe by the thousands. Spectroscopic resources are limited, so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  2. Enhancement classification of galaxy images

    Science.gov (United States)

    Jenkinson, John

    With the advent of astronomical imaging technology developments, and the increased capacity of digital storage, the production of photographic atlases of the night sky have begun to generate volumes of data which need to be processed autonomously. As part of the Tonantzintla Digital Sky Survey construction, the present work involves software development for the digital image processing of astronomical images, in particular operations that preface feature extraction and classification. Recognition of galaxies in these images is the primary objective of the present work. Many galaxy images have poor resolution or contain faint galaxy features, resulting in the misclassification of galaxies. An enhancement of these images by the method of the Heap transform is proposed, and experimental results are provided which demonstrate the image enhancement to improve the presence of faint galaxy features thereby improving classification accuracy. The feature extraction was performed using morphological features that have been widely used in previous automated galaxy investigations. Principal component analysis was applied to the original and enhanced data sets for a performance comparison between the original and reduced features spaces. Classification was performed by the Support Vector Machine learning algorithm.

  3. Galaxy Classifications with Deep Learning

    Science.gov (United States)

    Lukic, Vesna; Brüggen, Marcus

    2017-06-01

    Machine learning techniques have proven to be increasingly useful in astronomical applications over the last few years, for example in object classification, estimating redshifts and data mining. One example of object classification is classifying galaxy morphology. This is a tedious task to do manually, especially as the datasets become larger with surveys that have a broader and deeper search-space. The Kaggle Galaxy Zoo competition presented the challenge of writing an algorithm to find the probability that a galaxy belongs in a particular class, based on SDSS optical spectroscopy data. The use of convolutional neural networks (convnets), proved to be a popular solution to the problem, as they have also produced unprecedented classification accuracies in other image databases such as the database of handwritten digits (MNIST †) and large database of images (CIFAR ‡). We experiment with the convnets that comprised the winning solution, but using broad classifications. The effect of changing the number of layers is explored, as well as using a different activation function, to help in developing an intuition of how the networks function and to see how they can be applied to radio galaxy images.

  4. The host galaxy of GRB 990712

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    galaxy types shows that the host is similar to a moderately kreddened starburst galaxy with a young stellar population. The estimated internal extinction in the host is A(V) = 0.15 +/- 0.1 and the star-formation rate (SFR) from the UV continuum is 1.3 +/- 0.3 M-circle dot yr(-1) (not corrected......We present a comprehensive study of the z = 0.43 host galaxy of GRB 990712, involving ground-based photometry, spectroscopy, and HST imaging. The broad-band UBVRIJHKs photometry is used to determine the global spectral energy distribution (SED) of the host galaxy. Comparison with that of known...... for the effects of extinction). Other galaxy template spectra than starbursts failed to reproduce the observed SED. We also present VLT spectra leading to the detection of Halpha from the GRB host galaxy. A SFR of 2.8 +/- 0.7 M-circle dot yr(-1) is inferred from the Halpha line flux, and the presence of a young...

  5. Circumnuclear Structures in Megamaser Host Galaxies

    Science.gov (United States)

    Pjanka, Patryk; Greene, Jenny E.; Seth, Anil C.; Braatz, James A.; Henkel, Christian; Lo, Fred K. Y.; Läsker, Ronald

    2017-08-01

    Using the Hubble Space Telescope, we identify circumnuclear (100-500 pc scale) structures in nine new H2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the ˜100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks.

  6. Detailed Quantitative Classifications of Galaxy Morphology

    Science.gov (United States)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  7. Spectroscopy of superluminous supernova host galaxies

    DEFF Research Database (Denmark)

    Leloudas, G.; Kruehler, T.; Schulze, S

    2015-01-01

    Superluminous supernovae (SLSNe) are very bright explosions that were only discovered recently and that show a preference for occurring in faint dwarf galaxies. Understanding why stellar evolution yields different types of stellar explosions in these environments is fundamental in order to both...... uncover the elusive progenitors of SLSNe and to study star formation in dwarf galaxies. In this paper, we present the first results of our project to study SUperluminous Supernova Host galaxIES, focusing on the sample for which we have obtained spectroscopy. We show that SLSNe-I and SLSNe-R (hydrogen......-poor) often (~50% in our sample) occur in a class of galaxies that is known as Extreme Emission Line Galaxies (EELGs). The probability of this happening by chance is negligible and we therefore conclude that the extreme environmental conditions and the SLSN phenomenon are related. In contrast, SLSNe...

  8. Star Formation Quenching in Quasar Host Galaxies

    Directory of Open Access Journals (Sweden)

    Stefano Carniani

    2017-10-01

    Full Text Available Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN. In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionized and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ~ 2.4 obtained with SINFONI in the H- and K-band. All the quasars show [Oiii]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s, which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e., star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50–100 M⊙ yr−1, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2 ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2 transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  9. HOST GALAXIES AS GAMMA-RAY BURST DISTANCE INDICATORS

    Energy Technology Data Exchange (ETDEWEB)

    D. BAND; ET AL

    2001-01-01

    We calculate the distributions of the total burst energy, the peak luminosity and the X-ray afterglow energy using burst observations and distances to the associated host galaxies. To expand the sample, we include redshift estimates for host galaxies without spectroscopic redshifts. The methodology requires a model of the host galaxy population; we find that in the best model the burst rate is proportional to the host galaxy luminosity at the time of the burst.

  10. Statistical Properties of Gamma-Ray Burst Host Galaxies

    Indian Academy of Sciences (India)

    A statistical analysis of gamma-ray burst host galaxies is presented and a clear metallicity-stellar mass relation is found in our sample. A trend that a more massive host galaxy tends to have a higher star-formation rate is also found. No correlation is found between V and H. GRB host galaxies at a higher redshift also tend ...

  11. Host Galaxy Spectra and Consequences for SN Typing from the SDSS SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, Matthew D.; Brown, Peter J.; Sako, Masao; Bassett, Bruce; Bizyaev, Dmitry; Brinkmann, J.; Brownstein, Joel R.; Brewington, Howard; Campbell, Heather; D’Andrea, Chris B.; Dawson, Kyle S.; Ebelke, Garrett L.; Frieman, Joshua A.; Galbany, Lluís; Garnavich, Peter; Gupta, Ravi R.; Hlozek, Renee; Jha, Saurabh W.; Kunz, Martin; Lampeitl, Hubert; Malanushenko, Elena; Malanushenko, Viktor; Marriner, John; Miquel, Ramon; Montero-Dorta, Antonio D.; Nichol, Robert C.; Oravetz, Daniel J.; Pan, Kaike; Schneider, Donald P.; Simmons, Audrey E.; Smith, Mathew; Snedden, Stephanie A.

    2014-03-06

    We present the spectroscopy from 5254 galaxies that hosted supernovae (SNe) or other transient events in the Sloan Digital Sky Survey II (SDSS-II). Obtained during SDSS-I, SDSS-II, and the Baryon Oscillation Spectroscopic Survey (BOSS), this sample represents the largest systematic, unbiased, magnitude limited spectroscopic survey of supernova (SN) host galaxies. Using the host galaxy redshifts, we test the impact of photometric SN classification based on SDSS imaging data with and without using spectroscopic redshifts of the host galaxies. Following our suggested scheme, there are a total of 1166 photometrically classified SNe Ia when using a flat redshift prior and 1126 SNe Ia when the host spectroscopic redshift is assumed. For 1024 (87.8%) candidates classified as likely SNe Ia without redshift information, we find that the classification is unchanged when adding the host galaxy redshift. Using photometry from SDSS imaging data and the host galaxy spectra, we also report host galaxy properties for use in future nalysis of SN astrophysics. Finally, we investigate the differences in the interpretation of the light curve properties with and without knowledge of the redshift. When using the SALT2 light curve fitter, we find a 21% increase in the number of fits that converge when using the spectroscopic redshift. Without host galaxy redshifts, we find that SALT2 light curve fits are systematically biased towards lower photometric redshift estimates and redder colors in the limit of low signal-to-noise data. The general improvements in performance of the light curve fitter and the increased diversity of the host galaxy sample highlights the importance of host galaxy spectroscopy for current photometric SN surveys such as the Dark Energy Survey and future surveys such as the Large Synoptic Survey Telescope.

  12. The Swift GRB Host Galaxy Legacy Survey

    Science.gov (United States)

    Perley, Daniel A.

    I will describe the Swift Host Galaxy Legacy Survey (SHOALS), a comprehensive multiwavelengthprogram to characterize the demographics of the GRB host population and its redshift evolution from z=0 to z=7.Using unbiased selection criteria we have designated a subset of 119 Swift gamma-ray bursts which are now beingtargeted with intensive observational follow-up. Deep Spitzer imaging of every field has already been obtained andanalyzed, with major programs ongoing at Keck, GTC, Gemini, VLT, and Magellan to obtain complementaryoptical/NIR photometry and spectroscopy to enable full SED modeling and derivation of fundamental physicalparameters such as mass, extinction, and star-formation rate. Using these data I will present an unbiasedmeasurement of the GRB host-galaxy luminosity and mass distributions and their evolution with redshift, compareGRB hosts to other star-forming galaxy populations, and discuss implications for the nature of the GRB progenitor andthe ability of GRBs to serve as tools for measuring and studying cosmic star-formation in the distant universe.

  13. Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS

    Science.gov (United States)

    Simmons, B. D.; Lintott, Chris; Willett, Kyle W.; Masters, Karen L.; Kartaltepe, Jeyhan S.; Häußler, Boris; Kaviraj, Sugata; Krawczyk, Coleman; Kruk, S. J.; McIntosh, Daniel H.; Smethurst, R. J.; Nichol, Robert C.; Scarlata, Claudia; Schawinski, Kevin; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; Mortlock, Alice; Newman, Jeffrey A.; Bamford, Steven P.; Grogin, N. A.; Lucas, Ray A.; Hathi, Nimish P.; McGrath, Elizabeth; Peth, Michael; Pforr, Janine; Rizer, Zachary; Wuyts, Stijn; Barro, Guillermo; Bell, Eric F.; Castellano, Marco; Dahlen, Tomas; Dekel, Avishai; Ownsworth, Jamie; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grützbauch, Ruth; Koo, David; Lotz, Jennifer; Mobasher, Bahram; Mozena, Mark; Salvato, Mara; Wiklind, Tommy

    2017-02-01

    We present quantified visual morphologies of approximately 48 000 galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. 90 per cent of galaxies have z ≤ 3 and are observed in rest-frame optical wavelengths by CANDELS. Each galaxy received an average of 40 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly outlying classifications. After analysing the effect of varying image depth on reported classifications, we also provide depth-corrected classifications which both preserve the information in the deepest observations and also enable the use of classifications at comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous classifications of the same galaxies shows very good agreement; for some applications, the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of `smooth' galaxies with parametric morphologies to select a sample of featureless discs at 1 ≤ z ≤ 3, which may represent a dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

  14. Star Forming Galaxies and AGN Hosts: The Seagull Wings

    Science.gov (United States)

    Stasińska, Grazyna; Cid Fernandes, Roberto; Mateus, Abîlio; Sodré, Laerte; Asari, Natalia V.

    2007-05-01

    We discuss the spectral signatures of normal star forming (NSF) galaxies and of AGN hosts of and present physically motivated techniques to distinguish these two classes of galaxies. We have determined the emission line intensities for a complete sample of galaxies extracted from the Sloan Digital sky Survey, after subtracting the stellar continuum obtained from spectral synthesis. With the help of sequences of photoionization models, we explain why, in the famous [OIII]/Hbeta vs [NII]/Halpha diagram, NSF galaxies and AGN hosts form two separate sequences, which look like the open wings of a seagull. We also examine other techniques to distinguish star forming galaxies from AGN hosts. Finally, we propose a new diagnostic diagram which can be used with optical spectra of galaxies with redshifts up to z=1.3. This new diagram has also the advantage of allowing one to show all the galaxies of a sample in one plot, including passive galaxies.

  15. Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population

    Science.gov (United States)

    Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.; Foley, Ryan J.

    2017-11-01

    We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ∼500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-starburst galaxies by creating matched galaxy samples. Accounting for possible selection effects due to black hole (BH) mass, redshift completeness, strong active galactic nucleus presence, bulge colors, and surface brightness can reduce the apparent overrepresentation of TDEs in E+A host galaxies by a factor of ∼4 (from ∼×100–190 to ∼×25–48), but cannot fully explain the preference. We find that TDE host galaxies have atypical photometric properties compared to similar, “typical” galaxies. In particular, TDE host galaxies tend to live in or near the “green valley” between star-forming and passive galaxies, and have bluer bulge colors ({{Δ }}(g-r)≈ 0.3 mag), lower half-light surface brightnesses (by ∼1 mag/arcsec2), higher Sérsic indices ({{Δ }}{n}{{g}}≈ 3), and higher bulge-to-total-light ratios ({{Δ }}B/T≈ 0.5) than galaxies with matched BH masses. We find that TDE host galaxies appear more centrally concentrated and that all have high galaxy Sérsic indices and B/T fractions—on average in the top 10% of galaxies of the same BH mass—suggesting a higher nuclear stellar density. We identify a region in the Sérsic index and BH mass parameter space that contains ∼2% of our reference catalog galaxies but ≥slant 60 % of TDE host galaxies. The unique photometric properties of TDE host galaxies may be useful for selecting candidate TDEs for spectroscopic follow-up observations in large transient surveys.

  16. UV star-formation rates of GRB host galaxies

    DEFF Research Database (Denmark)

    Christensen, L.; Hjorth, J.; Gorosabel, J.

    2004-01-01

    We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43......We study a magnitude-limited sample of 10 gamma-ray burst (GRB) host galaxies with known spectroscopic redshifts (0.43...

  17. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    Science.gov (United States)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  18. Cosmic evolution and metal aversion in superluminous supernova host galaxies

    Science.gov (United States)

    Schulze, S.; Krühler, T.; Leloudas, G.; Gorosabel, J.; Mehner, A.; Buchner, J.; Kim, S.; Ibar, E.; Amorín, R.; Herrero-Illana, R.; Anderson, J. P.; Bauer, F. E.; Christensen, L.; de Pasquale, M.; de Ugarte Postigo, A.; Gallazzi, A.; Hjorth, J.; Morrell, N.; Malesani, D.; Sparre, M.; Stalder, B.; Stark, A. A.; Thöne, C. C.; Wheeler, J. C.

    2018-01-01

    The SUperluminous Supernova Host galaxIES survey aims to provide strong new constraints on the progenitors of superluminous supernovae (SLSNe) by understanding the relationship to their host galaxies. We present the photometric properties of 53 H-poor and 16 H-rich SLSN host galaxies out to z ∼ 4. We model their spectral energy distributions to derive physical properties, which we compare with other galaxy populations. At low redshift, H-poor SLSNe are preferentially found in very blue, low-mass galaxies with high average specific star formation rates. As redshift increases, the host population follows the general evolution of star-forming galaxies towards more luminous galaxies. After accounting for secular evolution, we find evidence for differential evolution in galaxy mass, but not in the B band and the far-ultraviolet luminosity (3σ confidence). Most remarkable is the scarcity of hosts with stellar masses above 1010 M⊙ for both classes of SLSNe. In case of H-poor SLSNe, we attribute this to a stifled production efficiency above ∼0.4 solar metallicity. However, we argue that, in addition to low metallicity, a short-lived stellar population is also required to regulate the SLSN production. H-rich SLSNe are found in a very diverse population of star-forming galaxies. Still, the scarcity of massive hosts suggests a stifled production efficiency above ∼0.8 solar metallicity. The large dispersion of the H-rich SLSNe host properties is in stark contrast to those of gamma-ray burst, regular core-collapse SN, and H-poor SLSNe host galaxies. We propose that multiple progenitor channels give rise to this subclass.

  19. An HST study of three very faint GRB host galaxies

    DEFF Research Database (Denmark)

    Jaunsen, A.O.; Andersen, M.I.; Hjorth, J.

    2003-01-01

    . (2002). We obtain a revised and much higher probability that the galaxies identified as hosts indeed are related to the GRBs (P(n(chance))=0.69, following Bloom et al. 2002), thereby strengthening the conclusion that GRBs are preferentially located in star-forming regions in their hosts. Apart from......As part of the HST/STIS GRB host survey program we present the detection of three faint gamma-ray burst (GRB) host galaxies based on an accurate localisation using ground-based data of the optical afterglows (OAs). A common property of these three hosts is their extreme faintness. The location...... at which GRBs occur with respect to their host galaxies and surrounding environments are robust indicators of the nature of GRB progenitors. The bursts studied here are among the four most extreme outliers, in terms of relative distance from the host center, in the recent comprehensive study of Bloom et al...

  20. Average Spectral Properties of Type Ia Supernova Host Galaxies

    Science.gov (United States)

    Uddin, Syed A.; Mould, Jeremy; Wang, Lifan

    2017-12-01

    We construct the average spectra of host galaxies of slower, faster, bluer, and redder Type Ia supernovae (SNe Ia) from the SDSS-II supernova survey. The average spectrum of slower declining (broader light curve width or higher stretch) SN Ia hosts shows stronger emission lines compared to the average spectrum of faster declining (narrower light curve width or lower stretch) SN Ia hosts. Using pPXF, we find that hosts of slower declining SNe Ia have metallicities that are, on average, 0.24 dex lower than average metallicities of faster declining SN Ia hosts. Similarly, redder SN Ia hosts have slightly higher metallicities than bluer SN Ia hosts. Lick index analysis of metallic lines and Balmer lines shows that faster declining SN Ia hosts have relatively higher metal content and have relatively older stellar populations compared with slower declining SN Ia hosts. We calculate average {{{H}}}α star formation rate (SFR), stellar mass, and the specific SFR (sSFR) of host galaxies in these subgroups of SNe Ia. We find that slower declining SN Ia hosts have significantly higher (> 5σ ) sSFR than faster declining SN Ia hosts. A Kolmogorov-Smirnov test shows that these two types of hosts originate from different parent distributions. Our results, when compared with the models of Childress et al., indicate that slower declining SNe Ia, being hosted in actively star-forming galaxies, are young (prompt) SNe Ia, originating from similar progenitor age groups.

  1. Gas Kinematics in GRB Host Galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam

    The star formation history of the Universe is one of the most complex and interesting chapters in our quest to understand galaxy formation and evolution. Gamma Ray Bursts (GRBs) are beacons of actively star forming galaxies from redshifts near zero back to the cosmic dawn. In addition, they provide...

  2. HOST GALAXIES OF X-SHAPED RADIO SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Springmann, A.; Cheung, C.

    2007-01-01

    Most radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, active galaxies that emit much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies has an “X”-or winged-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being a realignment of the black hole within the AGN and the second positing that the radio jets are expanding into an asymmetric medium, causing backflow and producing secondary wings. By analyzing radio host galaxy shapes, the distribution of the stellar mass is compared to the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN. Results show elliptical host galaxies with an orthogonal offset between the semi-major axis of the host galaxy and the secondary radio wings, which lends support to the hydrodynamical model. However, results also show circular host galaxies with radio wings, making the realignment scenario a more likely model to describe the formation of these X-shaped radio sources.

  3. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    Science.gov (United States)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  4. Associating Fast Radio Bursts with Their Host Galaxies

    Science.gov (United States)

    Eftekhari, T.; Berger, E.

    2017-11-01

    The first precise localization of a fast radio burst (FRB) sheds light on the nature of these mysterious bursts and the physical mechanisms that power them. Increasing the sample of FRBs with robust host galaxy associations is the key impetus behind ongoing and upcoming searches and facilities. Here, we quantify the robustness of FRB host galaxy associations as a function of localization area and galaxy apparent magnitude. We also explore the use of FRB dispersion measures to constrain the source redshift, thereby reducing the number of candidate hosts. We use these results to demonstrate that even in the absence of a unique association, a constraint can be placed on the maximum luminosity of a host galaxy as a function of localization and dispersion measure (DM). We find that localizations of ≲ 0.5\\text{'}\\text{'} are required for a chance coincidence probability of ≲ 1 % for dwarf galaxies at z≳ 0.1; if some hosts have luminosities of ∼ {L}\\ast , then localizations of up to ≈ 5\\prime\\prime may suffice at z∼ 0.1. Constraints on the redshift from the DM only marginally improve the association probability unless the DM is low, ≲ 400 pc cm‑3. This approach also relies on the determination of galaxy redshifts, which is challenging at z≳ 0.5 if the hosts are dwarf galaxies. Finally, interesting limits on the maximum host luminosity require localizations of ≲ 5\\prime\\prime at z≳ 0.1. Even a few such localizations will explain the nature of FRB progenitors, their possible diversity, and their use as cosmological tools.

  5. A Visual Galaxy Classification Interface and its Classroom Application

    Science.gov (United States)

    Kautsch, Stefan J.; Phung, Chau; VanHilst, Michael; Castro, Victor H

    2014-06-01

    Galaxy morphology is an important topic in modern astronomy to understand questions concerning the evolution and formation of galaxies and their dark matter content. In order to engage students in exploring galaxy morphology, we developed a web-based, graphical interface that allows students to visually classify galaxy images according to various morphological types. The website is designed with HTML5, JavaScript, PHP, and a MySQL database. The classification interface provides hands-on research experience and training for students and interested clients, and allows them to contribute to studies of galaxy morphology. We present the first results of a pilot study and compare the visually classified types using our interface with that from automated classification routines.

  6. Stellar Populations of Quasar Host Galaxies Using WIYN

    Science.gov (United States)

    Mosby, Gregory; Moravec, E.; Kotulla, R. C.

    2013-06-01

    We now know that most galaxies have supermassive black holes (SMBH) in their centers, and somewhat unexpectedly, there are relationships—such as the M-sigma relation—between the mass of the central black hole and the velocity dispersion of the host galaxy's stellar spheroid (bulge), even though they lie outside the black hole's influence. Galaxy merger models show reasonable evidence for coevolution of the bulge and black hole since the merging process initiates simultaneous growth of the black hole and galaxy by supplying gas to the nucleus for accretion onto the black hole and triggering bursts of star formation. The merging process truncates the growth of both by removing the gas reservoir via feedback from these processes. But recently, it’s been shown that this relation could arise from central limit-like arguments alone. To really judge connections between SMBH and their host, it’s crucial to study these galaxies at the peak of black hole growth—during the quasar phase. Using 3-d spectroscopy methods, namely Sparsepak, an integral field units (IFU) on WIYN, it is possible to successfully recover information about the host galaxy's integrated star formation history that can be used to check merger-induced galaxy evolution predicted by the models. However, it is critical to have a robust and careful analysis of the stellar population modeling. The research presented in this poster focuses on new results from Sparsepak and preliminary WHIRC H-band light profiles of select quasar host galaxies. The stellar populations are derived using a new statistical method called diffusion k-means, and the WHIRC data are analyzed using a Python code written by Ralf Kotulla.

  7. Large Host-galaxy Dispersion Measure of Fast Radio Bursts

    Science.gov (United States)

    Yang, Yuan-Pei; Luo, Rui; Li, Zhuo; Zhang, Bing

    2017-04-01

    Fast radio bursts (FRBs) have excessive dispersion measures (DMs) and an all-sky distribution, which point toward an extragalactic or even a cosmological origin. We develop a method to extract the mean host galaxy DM ( ) and the characterized luminosity (L) of FRBs using the observed DM-flux data, based on the assumption of a narrow luminosity distribution. Applying Bayesian inference to the data of 21 FRBs, we derive a relatively large mean host DM, i.e., ˜ 270 {pc} {{cm}}-3 with a large dispersion. A relatively large DMHG of FRBs is also supported by the millisecond scattering times of some FRBs and the relatively small redshift z = 0.19273 of FRB 121102 (which gives {{DM}}{HG,{loc}}˜ 210 {pc} {{cm}}-3). The large host galaxy DM may be contributed by the interstellar medium (ISM) or a near-source plasma in the host galaxy. If it is contributed by the ISM, the type of the FRB host galaxies would not be Milky Way-like, consistent with the detected host of FRB 121102. We also discuss the possibility of having a near-source supernova remnant, pulsar wind nebula, or H ii region that gives a significant contribution to the observed DMHG.

  8. Star-forming AGN host galaxies

    NARCIS (Netherlands)

    Barthel, P

    2001-01-01

    The symbiosis of nuclear activity and star-formation in galaxies, as manifested in their spectral energy distributions (SEDs) is reviewed. Attention is drawn to an Hertzsprung-Russell diagram - equivalent for such objects, as well as to the importance of the SEDs in cosmological context. (C) 2001

  9. Simple stellar population modelling of low S/N galaxy spectra and quasar host galaxy applications

    Science.gov (United States)

    Mosby, G.; Tremonti, C. A.; Hooper, E. J.; Wolf, M. J.; Sheinis, A. I.; Richards, J. W.

    2015-02-01

    To study the effect of supermassive black holes (SMBHs) on their host galaxies it is important to study the hosts when the SMBH is near its peak activity. A method to investigate the host galaxies of high luminosity quasars is to obtain optical spectra at positions offset from the nucleus where the relative contribution of the quasar and host is comparable. However, at these extended radii the galaxy surface brightness is often low (20-22 mag arcsec-2) and the resulting spectrum might have such low signal-to-noise ratio (S/N) that it hinders analysis with standard stellar population modelling techniques. To address this problem, we have developed a method that can recover galaxy star formation histories (SFHs) from rest-frame optical spectra with S/N ˜ 5 Å-1. This method uses the statistical technique diffusion k-means to tailor the stellar population modelling basis set. Our diffusion k-means minimal basis set, composed of four broad age bins, is successful in recovering a range of galaxy SFHs. Additionally, using an analytic prescription for seeing conditions, we are able to simultaneously model scattered quasar light and the SFH of quasar host galaxies (QHGs). We use synthetic data to compare results of our novel method with previous techniques. We also present the modelling results on a previously published QHG and show that galaxy properties recovered from a diffusion k-means basis set are less sensitive to noise added to this QHG spectrum. Our new method has a clear advantage in recovering information from QHGs and could also be applied to the analysis of other low S/N galaxy spectra such as those typically obtained for high redshift objects or integral field spectroscopic surveys.

  10. Host galaxies are the obscurers of Gamma-ray bursts

    Science.gov (United States)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-08-01

    The luminous, high-energy emission of gamma-ray bursts (GRBs) makes them efficient probes of the high-redshift universe. The origin of the obscuration of gamma-ray burst afterglow is still unclear. We study the afterglows metal column densities along the line-of-sight of all Swift-detected long GRBs with an improved hierarchical Bayesian analysis methodology. We characterise follow-up biases and side-step them using SHOALS, an unbiased sub-sample with highly complete follow-up. That survey also measures Spitzer host masses. Overall, the column densities shows little redshift evolution but a significant correlation with host stellar mass. A simple geometrical model explains the width and shape of the column density distribution and the trend with galaxy mass correlation. Our findings implicate the host's galaxy-scale metal gas as the dominant obscurer. From a galaxy evolution perspective, our study places new constraints on the metal gas mass inside galaxies at z=0.5-4. We compare these with modern cosmological simulations (Illustris and EAGLE) and discuss implications for the obscuration of other sources inside high redshift galaxies, such as active galactic nuclei.

  11. Host Galaxies of X-Shaped Radio Sources

    Energy Technology Data Exchange (ETDEWEB)

    Springmann, Alessondra; /Wellesley Coll. /SLAC

    2006-09-27

    The majority of radiation from galaxies containing active galactic nuclei (AGNs) is emitted not by the stars composing the galaxy, but from an active source at the galactic center, most likely a supermassive black hole. Of particular interest are radio galaxies, the active galaxies emitting much of their radiation at radio wavelengths. Within each radio galaxy, an AGN powers a pair of collimated jets of relativistic particles, forming a pair of giant lobes at the end of the jets and thus giving a characteristic double-lobed appearance. A particular class of radio galaxies have an ''X''-shaped morphology: in these, two pairs of lobes appear to originate from the galactic center, producing a distinctive X-shape. Two main mechanisms have been proposed to explain the X-shape morphology: one being through the merger of a binary supermassive black hole system and the second being that the radio jets are expanding into an asymmetric medium. By analyzing radio host galaxy shapes, we probe the distribution of the stellar mass to compare the differing model expectations regarding the distribution of the surrounding gas and stellar material about the AGN.

  12. Atomic Hydrogen Properties of AGN Host Galaxies: HI in 16 NUclei of GAlaxies (NUGA) Sources

    OpenAIRE

    S. de Haan; Schinnerer, E.; Mundell, C. G.; Garcia-Burillo, S.; Combes, F.

    2007-01-01

    We present a comprehensive spectroscopic imaging survey of the distribution and kinematics of atomic hydrogen (HI) in 16 nearby spiral galaxies hosting low luminosity AGN, observed with high spectral and spatial resolution (resolution: ~20 arcsec, 5 km/s) using the NRAO Very Large Array (VLA). The sample contains a range of nuclear types, ranging from Seyfert to star-forming nuclei and was originally selected for the NUclei of GAlaxies project (NUGA) - a spectrally and spatially resolved inte...

  13. The blue host galaxy of the red GRB 000418

    DEFF Research Database (Denmark)

    Gorosabel, J.; Klose, S.; Christensen, L.

    2003-01-01

    We report on multi-band (UBVRIZJ(s)K(s)) observations of the host galaxy of the April 18, 2000 gamma-ray burst. The Spectral Energy Distribution (SED) is analysed by fitting empirical and synthetic spectral templates. We find that: (i) the best SED fit is obtained with a starburst template, (ii) ...

  14. On the dynamical basis of the classification of normal galaxies.

    Science.gov (United States)

    Haass, J; Bertin, G; Lin, C C

    1982-06-01

    Some realistic galaxy models have been found to support discrete unstable spiral modes. Here, through the study of the relevant physical mechanisms and an extensive numerical investigation of the properties of the dominant modes in a wide class of galactic equilibria, we show how spiral structures are excited with different morphological features, depending on the properties of the equilibrium model. We identify the basic dynamical parameters and mechanisms and compare the resulting morphology of spiral modes with the actual classification of galaxies. The present study suggests a dynamical basis for the transition among various types and subclasses of normal and barred spiral galaxies.

  15. Statistical Properties of Gamma-Ray Burst Host Galaxies Jie-Min ...

    Indian Academy of Sciences (India)

    Abstract. A statistical analysis of gamma-ray burst host galaxies is pre- sented and a clear metallicity-stellar mass relation is found in our sample. A trend that a more massive host galaxy tends to have a higher star- formation rate is also found. No correlation is found between AV and NH. GRB host galaxies at a higher ...

  16. A Local Baseline of the Black Hole Mass - Host Galaxy Scaling Relations for Active Galaxies

    Science.gov (United States)

    Bennert, Vardha

    2017-08-01

    The discovery of relations between supermassive black holes (BHs) and their host-galaxy properties has sparked many observational studies pertaining both to the local Universe and cosmic history. Nevertheless, a clear understanding of their origin and fundamental drivers still eludes us. Studying the evolution of these relations depends on our understanding of the slope and scatter of local relations for active galaxies (AGNs). We propose a SNAP program of a unique sample of 84 local type-1 AGNs, spanning a wide range of BH masses (MBH), morphologies, and stellar masses. The high resolution WFC3/F814W images are essential for a detailed decomposition of the host-galaxy in the presence of a bright AGN point source, resulting in precise measurements of the different host-galaxy components and AGN luminosity free of host-galaxy contamination for a robust determination of MBH. When complemented with spatially-resolved Keck spectra to determine stellar-velocity dispersion within bulge effective radius, this yields a most complete baseline of host-galaxy properties over the entire range of MBH scaling relations. A typical SNAP completion rate results in a sample of 30 objects which will be used to calibrate existing Gemini NIRI and SDSS images. We will study slope and scatter of the relations, dependencies and fundamental drivers. The frequency of pseudo-bulges, bars, and (minor) mergers will reveal the dominant growth mechanism of spheroids. The homogeneous sample will identify any selection biases in the reverberation-mapped AGN sample which serves as a MBH calibrator for the entire Universe. Results will be compared with state-of-the-art semi-analytical models.

  17. Revisiting The First Galaxies: The effects of Population III stars on their host galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-12

    We revisit the formation and evolution of the first galaxies using new hydrodynamic cosmological simulations with the adaptive refinement tree code. Our simulations feature a recently developed model for H2 formation and dissociation, and a star formation recipe that is based on molecular rather than atomic gas. Here, we develop and implement a recipe for the formation of metal-free Population III (Pop III) stars in galaxy-scale simulations that resolve primordial clouds with sufficiently high density. We base our recipe on the results of prior zoom-in simulations that resolved the protostellar collapse in pre-galactic objects. We find the epoch during which Pop III stars dominated the energy and metal budget of the first galaxies to be short-lived. Galaxies that host Pop III stars do not retain dynamical signatures of their thermal and radiative feedback for more than 108 years after the lives of the stars end in pair-instability supernovae, even when we consider the maximum reasonable efficiency of the feedback. Though metals ejected by the supernovae can travel well beyond the virial radius of the host galaxy, they typically begin to fall back quickly, and do not enrich a large fraction of the intergalactic medium. Galaxies with a total mass in excess of 3 × 106 M re-accrete most of their baryons and transition to metal-enriched Pop II star formation.

  18. Galactic rings revisited - I. CVRHS classifications of 3962 ringed galaxies from the Galaxy Zoo 2 Database

    Science.gov (United States)

    Buta, Ronald J.

    2017-11-01

    Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series that re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular evolution of galaxy structure. The series begins with a new sample of 3962 galaxies drawn from the Galaxy Zoo 2 citizen science data base, selected because zoo volunteers recognized a ring-shaped pattern in the morphology as seen in Sloan Digital Sky Survey colour images. The galaxies are classified within the framework of the Comprehensive de Vaucouleurs revised Hubble-Sandage system. It is found that zoo volunteers cued on the same kinds of ring-like features that were recognized in the 1995 Catalogue of Southern Ringed Galaxies. This paper presents the full catalogue of morphological classifications, comparisons with other sources of classifications and some histograms designed mainly to highlight the content of the catalogue. The advantages of the sample are its large size and the generally good quality of the images; the main disadvantage is the low physical resolution that limits the detectability of linearly small rings such as nuclear rings. The catalogue includes mainly inner and outer disc rings and lenses. Cataclysmic (`encounter-driven') rings (such as ring and polar ring galaxies) are recognized in less than 1 per cent of the sample.

  19. VizieR Online Data Catalog: Properties of SN host galaxies (Kelly+, 2014)

    Science.gov (United States)

    Kelly, P. L.; Filippenko, A. V.; Modjaz, M.; Kocevski, D.

    2017-03-01

    We study the host galaxies of both nearby (zFactory (PTF); Rau et al., 2009PASP..121.1334R; Law et al., 2009PASP..121.1395L), which do not target specific potential hosts or zforming galaxies and SDSS photometry and spectroscopy to measure properties of both the sample of low-redshift star-forming galaxies and the host galaxies of the nearby SNe. For the host galaxies of z<1.2 LGRBs, we estimate host properties using published photometry and HST imaging. (2 data files).

  20. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  1. Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging

    Science.gov (United States)

    Willett, Kyle W.; Galloway, Melanie A.; Bamford, Steven P.; Lintott, Chris J.; Masters, Karen L.; Scarlata, Claudia; Simmons, B. D.; Beck, Melanie; Cardamone, Carolin N.; Cheung, Edmond; Edmondson, Edward M.; Fortson, Lucy F.; Griffith, Roger L.; Häußler, Boris; Han, Anna; Hart, Ross; Melvin, Thomas; Parrish, Michael; Schawinski, Kevin; Smethurst, R. J.; Smith, Arfon M.

    2017-02-01

    We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour-composite images. Images in GZH were selected from various publicly released Hubble Space Telescope legacy programmes conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to z ˜ 1. The bulk of the sample is selected to have mI814W = 0.9 ± 0.6, with a tail extending out to z ≃ 4. The GZH morphological data include measurements of both bulge- and disc-dominated galaxies, details on spiral disc structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119 849 galaxies, providing the largest data set to date suitable for large-scale studies of galaxy evolution out to z ˜ 1.

  2. Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning

    Science.gov (United States)

    Sreejith, Sreevarsha; Pereverzyev, Sergiy, Jr.; Kelvin, Lee S.; Marleau, Francine R.; Haltmeier, Markus; Ebner, Judith; Bland-Hawthorn, Joss; Driver, Simon P.; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Moffett, Amanda J.; Pimbblet, Kevin A.; Taylor, Edward N.; Wang, Lingyu; Wright, Angus H.

    2018-03-01

    We apply four statistical learning methods to a sample of 7941 galaxies (z galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ˜ 9 per cent of ellipticals, ˜ 9 per cent of little blue spheroids, ˜ 14 per cent of early-type spirals, ˜ 21 per cent of intermediate-type spirals, and ˜ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are : E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.

  3. Host galaxies of high-redshift quasars with extreme outflows

    Science.gov (United States)

    Zakamska, Nadia

    2016-10-01

    Feedback from accreting supermassive black holes is now a standard ingredient in galaxy formation models. It has long been speculated that powerful quasars, triggered in major gas-rich mergers, had a profound impact on galaxy formation via quasar-driven winds. This process must have been at its peak during the epoch of most active galaxy formation and quasar activity at z=2-3, yet there is not yet any direct observational support for this long-hypothesized process. We have discovered a population of extremely luminous (L>1e47 erg/s) red quasars with peculiar line properties at z=2-3 which show unprecedented signatures of powerful v>2000 km/s outflows in their [OIII]5007A lines. We propose to image eleven of these objects with the HST in two filters, one probing rest-frame UV and one probing the rest-frame optical. The rest-frame optical observations will directly probe the dynamical state and extent of the hosts of luminous obscured quasars and search for companions and merger signatures. We will determine the masses of the stellar component to determine if the bulges of the quasar hosts have already become apparent in this epoch. Using the rest-frame UV observations, we will probe the distribution of the gas in quasar hosts by observing the morphology of ongoing star formation and scattered light from the central engine. Our targets are the best candidates to probe the long-speculated merger-driven scenario for quasar activity, and our proposed HST observations will definitively determine whether this process drives the evolution of massive galaxies.

  4. Evolving Neural Networks for the Classification of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Paz, E; Kamath, C

    2002-01-23

    The FIRST survey (Faint Images of the Radio Sky at Twenty-cm) is scheduled to cover 10,000 square degrees of the northern and southern galactic caps. Until recently, astronomers classified radio-emitting galaxies through a visual inspection of FIRST images. Besides being subjective, prone to error and tedious, this manual approach is becoming infeasible: upon completion, FIRST will include almost a million galaxies. This paper describes the application of six methods of evolving neural networks (NNs) with genetic algorithms (GAs) to identify bent-double galaxies. The objective is to demonstrate that GAs can successfully address some common problems in the application of NNs to classification problems, such as training the networks, choosing appropriate network topologies, and selecting relevant features. The results indicate that most of the methods perform equally well on our data, but the feature selection method gives superior results.

  5. Spiral galaxy HI models, rotation curves and kinematic classifications

    Science.gov (United States)

    Wiegert, Theresa B. V.

    Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolution since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, constraining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Extensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination >40 degrees, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC. To assess the relationship between DM content and the kinematic classes, we generate mass models for 10 galaxies from the THINGS and WHISP surveys, and J. Irwin's sample. In most cases mass models using GalAPAGOS RCs were similar to those using traditional "tilted-ring'' method RCs. The kinematic classes are mainly distinguished by their rotational velocity. We confirm correlations between increasing velocity and B-magnitude, optical disk size, and find earlier type galaxies among the strong rotators. SFR also increases with maximum rotational velocity. Given our limited subsample, we cannot discern a

  6. Galaxy Zoo: Morphological Classification of Galaxy Images from the Illustris  Simulation

    Science.gov (United States)

    Dickinson, Hugh; Fortson, Lucy; Lintott, Chris; Scarlata, Claudia; Willett, Kyle; Bamford, Steven; Beck, Melanie; Cardamone, Carolin; Galloway, Melanie; Simmons, Brooke; Keel, William; Kruk, Sandor; Masters, Karen; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory F.

    2018-02-01

    Modern large-scale cosmological simulations model the universe with increasing sophistication and at higher spatial and temporal resolutions. These ongoing enhancements permit increasingly detailed comparisons between the simulation outputs and real observational data. Recent projects such as Illustris are capable of producing simulated images that are designed to be comparable to those obtained from local surveys. This paper tests the degree to which Illustris achieves this goal across a diverse population of galaxies using visual morphologies derived from Galaxy Zoo citizen scientists. Morphological classifications provided by these volunteers for simulated galaxies are compared with similar data for a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey. This paper investigates how simple morphological characterization by human volunteers asked to distinguish smooth from featured systems differs between simulated and real galaxy images. Significant differences are identified, which are most likely due to the limited resolution of the simulation, but which could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Specifically, for stellar masses {M}\\star ≲ {10}11 {M}ȯ , a substantially larger proportion of Illustris galaxies that exhibit disk-like morphology or visible substructure, relative to their SDSS counterparts. Toward higher masses, the visual morphologies for simulated and observed galaxies converge and exhibit similar distributions. The stellar mass threshold indicated by this divergent behavior confirms recent works using parametric measures of morphology from Illustris simulated images. When {M}\\star ≳ {10}11 {M}ȯ , the Illustris data set contains substantially fewer galaxies that classifiers regard as unambiguously featured. In combination, these results suggest that comparison between the detailed properties of observed and simulated galaxies

  7. [Galaxy/quasar classification based on nearest neighbor method].

    Science.gov (United States)

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  8. The Influence of Host Galaxies in Type Ia Supernova Cosmology

    Science.gov (United States)

    Uddin, Syed A.; Mould, Jeremy; Lidman, Chris; Ruhlmann-Kleider, Vanina; Zhang, Bonnie R.

    2017-10-01

    We use a sample of 1338 spectroscopically confirmed and photometrically classified Type Ia supernovae (SNe Ia) sourced from Carnegie Supernova Project, Center for Astrophysics Supernova Survey, Sloan Digital Sky Survey-II, and SuperNova Legacy Survey SN samples to examine the relationships between SNe Ia and the galaxies that host them. Our results provide confirmation with improved statistical significance that SNe Ia, after standardization, are on average more luminous in massive hosts (significance >5σ), and decline more rapidly in massive hosts (significance >9σ) and in hosts with low specific star formation rates (significance >8σ). We study the variation of these relationships with redshift and detect no evolution. We split SNe Ia into pairs of subsets that are based on the properties of the hosts and fit cosmological models to each subset. Including both systematic and statistical uncertainties, we do not find any significant shift in the best-fit cosmological parameters between the subsets. Among different SN Ia subsets, we find that SNe Ia in hosts with high specific star formation rates have the least intrinsic scatter (σ int = 0.08 ± 0.01) in luminosity after standardization.

  9. Simple Stellar Population Modeling of Quasar Host Galaxies with Diffusion K-Means Test Results

    Science.gov (United States)

    Mosby, Gregory; Moravec, E. A.; Tremonti, C. A.; Wolf, M. J.

    2013-01-01

    In the last decade, the correlation of the masses of supermassive black holes (SMBHs) and their host galaxy stellar spheroid velocity dispersions (the M-sigma relation) was greeted as clear evidence for the co-evolution of host galaxies and their SMBHs. However, studies in the last five years have posited that this relation could arise from central-limit properties of hierarchical formation alone. To address the question of whether and how often the SMBHs evolve with their host galaxies, it is necessary to look at galaxies whose SMBHs are actively growing—quasars—and determine the host galaxy properties. The central nuclei of quasar host galaxies complicate this type of study because their high luminosity tends to wash out their host galaxies. But, by using 3-D spectroscopy with the integral field unit (IFU) Sparsepak on the WIYN telescope, we have shown that the quasar light can be mostly isolated to one fiber in order to obtain the spectra of the quasar and the host galaxy concurrently. We can then model simultaneously the scattered quasar light and the stellar populations in the host galaxy fiber using a new simple stellar population (SSP) modeling method called diffusion k-means (DFK). The objectives of the research presented in this poster are to model synthetic quasar host galaxies using a DFK basis and a more traditional basis, compare the accuracy of both modeling methods, and test the affects of various prescriptions for masking the quasar lines in the host galaxy fiber. We present results from our SSP modeling and Markov Chain Monte Carlo (MCMC) results for DFK and traditional modeling schemes using synthetic data. By determining and then using the more robust stellar population modeling method, we can more confidently study quasar host galaxies to answer remaining questions in galaxy evolution. This work was partially supported by a National Science Foundation Graduate Fellowship (NSF Grant DGE-0718123) and through the NSF's REU program (NSF Award

  10. Black hole masses of tidal disruption event host galaxies

    Science.gov (United States)

    Wevers, Thomas; van Velzen, Sjoert; Jonker, Peter G.; Stone, Nicholas C.; Hung, Tiara; Onori, Francesca; Gezari, Suvi; Blagorodnova, Nadejda

    2017-10-01

    The mass of the central black hole in a galaxy that hosted a tidal disruption event (TDE) is an important parameter in understanding its energetics and dynamics. We present the first homogeneously measured black hole masses of a complete sample of 12 optically/UV-selected TDE host galaxies (down to ghost ≤ 22 mag and z = 0.37) in the Northern sky. The mass estimates are based on velocity dispersion measurements, performed on late time optical spectroscopic observations. We find black hole masses in the range of 3 × 105 M⊙ ≤ MBH ≤ 2 × 107 M⊙. The TDE host galaxy sample is dominated by low-mass black holes (∼ 106 M⊙), as expected from theoretical predictions. The blackbody peak luminosity of TDEs with MBH ≤ 107.1 M⊙ is consistent with the Eddington limit of the supermassive black hole (SMBH), whereas the two TDEs with MBH ≥ 107.1 M⊙ have peak luminosities below their SMBH Eddington luminosity, in line with the theoretical expectation that the fallback rate for MBH ≥ 107.1 M⊙ is sub-Eddington. In addition, our observations suggest that TDEs around lower mass black holes evolve faster. These findings corroborate the standard TDE picture in 106 M⊙ black holes. Our results imply an increased tension between observational and theoretical TDE rates. By comparing the blackbody emission radius with theoretical predictions, we conclude that the optical/UV emission is produced in a region consistent with the stream self-intersection radius of shallow encounters, ruling out a compact accretion disc as the direct origin of the blackbody radiation at peak brightness.

  11. HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

    2013-06-20

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and H{alpha}-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M{sub *}/M{sub Sun }) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  12. Supernovae and their host galaxies - V. The vertical distribution of supernovae in disc galaxies

    Science.gov (United States)

    Hakobyan, A. A.; Barkhudaryan, L. V.; Karapetyan, A. G.; Mamon, G. A.; Kunth, D.; Adibekyan, V.; Aramyan, L. S.; Petrosian, A. R.; Turatto, M.

    2017-10-01

    We present an analysis of the height distributions of the different types of supernovae (SNe) from the plane of their host galaxies. We use a well-defined sample of 102 nearby SNe appearing inside high-inclined (i ≥ 85°), morphologically non-disturbed S0-Sd host galaxies from the Sloan Digital Sky Survey. For the first time, we show that in all the subsamples of spirals, the vertical distribution of core-collapse (CC) SNe is about twice closer to the plane of the host disc than the distribution of SNe Ia. In Sb-Sc hosts, the exponential scale height of CC SNe is consistent with those of the younger stellar population in the Milky Way (MW) thin disc, while the scale height of SNe Ia is consistent with those of the old population in the MW thick disc. We show that the ratio of scale lengths to scale heights of the distribution of CC SNe is consistent with those of the resolved young stars with ages from ∼10 up to ∼100 Myr in nearby edge-on galaxies and the unresolved stellar population of extragalactic thin discs. The corresponding ratio for SNe Ia is consistent with the same ratios of the two populations of resolved stars with ages from a few 100 Myr up to a few Gyr and from a few Gyr up to ∼10 Gyr, as well as with the unresolved population of the thick disc. These results can be explained considering the age-scale height relation of the distribution of stellar population and the mean age difference between Type Ia and CC SNe progenitors.

  13. A probabilistic approach to emission-line galaxy classification

    Science.gov (United States)

    de Souza, R. S.; Dantas, M. L. L.; Costa-Duarte, M. V.; Feigelson, E. D.; Killedar, M.; Lablanche, P.-Y.; Vilalta, R.; Krone-Martins, A.; Beck, R.; Gieseke, F.

    2017-12-01

    We invoke a Gaussian mixture model (GMM) to jointly analyse two traditional emission-line classification schemes of galaxy ionization sources: the Baldwin-Phillips-Terlevich (BPT) and WH α versus [N II]/H α (WHAN) diagrams, using spectroscopic data from the Sloan Digital Sky Survey Data Release 7 and SEAGal/STARLIGHT data sets. We apply a GMM to empirically define classes of galaxies in a three-dimensional space spanned by the log [O III]/H β, log [N II]/H α and log EW(H α) optical parameters. The best-fitting GMM based on several statistical criteria suggests a solution around four Gaussian components (GCs), which are capable to explain up to 97 per cent of the data variance. Using elements of information theory, we compare each GC to their respective astronomical counterpart. GC1 and GC4 are associated with star-forming galaxies, suggesting the need to define a new starburst subgroup. GC2 is associated with BPT's active galactic nuclei (AGN) class and WHAN's weak AGN class. GC3 is associated with BPT's composite class and WHAN's strong AGN class. Conversely, there is no statistical evidence - based on four GCs - for the existence of a Seyfert/low-ionization nuclear emission-line region (LINER) dichotomy in our sample. Notwithstanding, the inclusion of an additional GC5 unravels it. The GC5 appears associated with the LINER and passive galaxies on the BPT and WHAN diagrams, respectively. This indicates that if the Seyfert/LINER dichotomy is there, it does not account significantly to the global data variance and may be overlooked by standard metrics of goodness of fit. Subtleties aside, we demonstrate the potential of our methodology to recover/unravel different objects inside the wilderness of astronomical data sets, without lacking the ability to convey physically interpretable results. The probabilistic classifications from the GMM analysis are publicly available within the COINtoolbox at https://cointoolbox.github.io/GMM_Catalogue/.

  14. A multi-colour study of the dark GRB 000210 host galaxy and its environment

    DEFF Research Database (Denmark)

    Gorosabel, J.; Christensen, Lise; Hjorth, J.

    2003-01-01

    We present UBVRIZJsHKs broad band photometry of the host galaxy of the dark gamma-ray burst (GRB) of February 10, 2000. These observations represent the most exhaustive photometry given to date of any GRB host galaxy. A grid of spectral templates have been fitted to the Spectral Energy Distribution...

  15. Understanding the Host Galaxies of Tidal Disruption Flares

    Science.gov (United States)

    Stone, Nicholas; Generozov, Aleksey; Vasiliev, Eugene; Metzger, Brian

    2018-01-01

    Recent observations suggest that stellar tidal disruption events (TDE) are strongly overrepresented in rare, post-starburst galaxies. Several dynamical mechanisms have been proposed to elevate their TDE rates, ranging from central stellar overdensities to the presence of supermassive black hole (SMBH) binaries. These, and other, dynamical hypotheses can be disentangled by comparing observations to theoretical predictions for the TDE delay time distribution (DTD). We show that SMBH binaries are a less plausible solution for the post-starburst preference, as they can only reproduce the observed DTD with extensive fine-tuning. The overdensity hypothesis produces a reasonable match to the observed DTD (based on the limited data currently available), provided that the initial stellar density profile created during the starburst, ρ(r), is exceptional in both steepness and normalization. In particular, explaining the post-starburst preference requires ρ∝r‑γ with γ>2.5, i.e. much steeper than the classic Bahcall-Wolf equilibrium profile of γ=7/4. Radial velocity anisotropies also represent a promising explanation, provided that initial anisotropy parameters of β0≈0.5 are sustainable against the radial orbit instability. As the sample of TDEs with well-studied host galaxies grows, the DTD will become a powerful tool for constraining the exceptional dynamical properties of post-starburst galactic nuclei.

  16. Spectral classification and composites of galaxies in LAMOST DR4

    Science.gov (United States)

    Wang, Li-Li; Luo, A.-Li; Shen, Shi-Yin; Hou, Wen; Kong, Xiao; Song, Yi-Han; Zhang, Jian-Nan; Wu, Hong; Cao, Zi-Huang; Hou, Yong-Hui; Wang, Yue-Fei; Zhang, Yong; Zhao, Yong-Heng

    2018-02-01

    We study the classification and composite spectra of galaxies in the fourth data release (DR4) of the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST). We select 40 182 spectra of galaxies from LAMOST DR4, which have photometric information but no spectroscopic observations in the Sloan Digital Sky Survey (SDSS). These newly observed spectra are recalibrated and classified into six classes - passive, Hα-weak, star-forming, composite, LINER and Seyfert - using the line intensity (Hβ, [O III]λ5007, Hα and [N II]λ6585). We also study the correlation between spectral class and morphological type through three parameters: concentration index, (u - r) colour and D4000n index. We calculate composite spectra of high signal-to-noise ratio (S/N) for six spectral classes and, using these composites, we pick out some features that can differentiate the classes effectively, including Hβ, Fe5015, HγA, HK and the Mg2 band. In addition, we compare our composite spectra with the SDSS ones and analyse their differences. A galaxy catalogue of 40 182 newly observed spectra (36 601 targets) and the composite spectra of the six classes are available online.

  17. EARLY-TYPE HOST GALAXIES OF TYPE Ia SUPERNOVAE. I. EVIDENCE FOR DOWNSIZING

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook, E-mail: ywlee2@yonsei.ac.kr [Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-03-15

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  18. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence......Gamma-ray bursts (GRBs) have been proposed as a tool to study star formation in the Universe, so it is crucial to investigate whether their host galaxies and immediate environments are in any way special compared with other star-forming galaxies. Here we present spatially resolved maps of dust...... emission of the host galaxy of the closest known GRB 980425 at z=0.0085 using our new high-resolution observations from Herschel, APEX, ALMA and ATCA. We modeled the spectral energy distributions of the host and of the star-forming region displaying the Wolf-Rayet signatures in the spectrum (WR region...

  19. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    Energy Technology Data Exchange (ETDEWEB)

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  20. Type Ia supernova Hubble residuals and host-galaxy properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J. [Laboratoire de Physique Nucléaire et des Hautes Énergies, Université Pierre et Marie Curie Paris 6, Université Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M. [Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Childress, M. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon (France); Université de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucléaire de Lyon (France); and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  1. The Spiral Host Galaxy of the Double Radio Source 0313-192

    Science.gov (United States)

    Keel, William C.; White, Raymond E., III; Owen, Frazer N.; Ledlow, Michael J.

    2006-12-01

    We present new Hubble Space Telescope (HST), Gemini South, and Chandra observations of the radio galaxy 0313-192, which hosts a 350 kpc double source and jets, even though previous data have suggested that it is a spiral galaxy. We measure the bulge scale and the luminosity, radial, and vertical profiles of disk starlight and consider the distributions of H II regions and absorbing dust. In each case the HST data confirm its classification as an edge-on spiral galaxy, the only such system known to produce such an extended radio source of this kind. The Gemini near-IR images and Chandra spectral fit reveal a strongly obscured central active galactic nucleus (AGN), seen through the entire interstellar medium path length of the disk and showing X-ray evidence of additional absorption from warm or dense material close to the central object. We consider several possible mechanisms for producing such a rare combination of AGN and host properties, some combination of which may be at work. These include an unusually luminous bulge (suggesting a black hole of mass ~8×108 Msolar), the orientation of the jets near the pole of the gas-rich disk, and some evidence of a weak gravitational interaction that has warped the disk and could have enhanced fueling of the central engine. We detect an X-ray counterpart of the kiloparsec-scale radio jet emerging to the south; jet/counterjet limits on both radio and X-ray regimes allow them to be symmetric if seen more than 15° from the plane of the sky, still consistent with the jet axes being within ~30° of the poles of the gas-rich galaxy disk. A linear or disklike emission-line structure is seen around the nucleus, inclined by ~20° to the stellar disk but nearly perpendicular to the jets; this may represent the aftermath of a galaxy encounter, in which gas is photoionized by a direct view of the nuclear continuum. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute

  2. Modeling The GRB Host Galaxy Mass Distribution: Are GRBs Unbiased Tracers of Star Formation?

    Energy Technology Data Exchange (ETDEWEB)

    Kocevski, Daniel; /KIPAC, Menlo Park; West, Andrew A.; /UC, Berkeley, Astron. Dept. /MIT, MKI; Modjaz, Maryam; /UC, Berkeley, Astron. Dept.

    2009-08-03

    We model the mass distribution of long gamma-ray burst (GRB) host galaxies given recent results suggesting that GRBs occur in low metallicity environments. By utilizing measurements of the redshift evolution of the mass-metallicity (M-Z) relationship for galaxies, along with a sharp host metallicity cut-off suggested by Modjaz and collaborators, we estimate an upper limit on the stellar mass of a galaxy that can efficiently produce a GRB as a function of redshift. By employing consistent abundance indicators, we find that sub-solar metallicity cut-offs effectively limit GRBs to low stellar mass spirals and dwarf galaxies at low redshift. At higher redshifts, as the average metallicity of galaxies in the Universe falls, the mass range of galaxies capable of hosting a GRB broadens, with an upper bound approaching the mass of even the largest spiral galaxies. We compare these predicted limits to the growing number of published GRB host masses and find that extremely low metallicity cut-offs of 0.1 to 0.5 Z{sub {circle_dot}} are effectively ruled out by a large number of intermediate mass galaxies at low redshift. A mass function that includes a smooth decrease in the efficiency of producing GRBs in galaxies of metallicity above 12+log(O/H){sub KK04} = 8.7 can, however, accommodate a majority of the measured host galaxy masses. We find that at z {approx} 1, the peak in the observed GRB host mass distribution is inconsistent with the expected peak in the mass of galaxies harboring most of the star formation. This suggests that GRBs are metallicity biased tracers of star formation at low and intermediate redshifts, although our model predicts that this bias should disappear at higher redshifts due to the evolving metallicity content of the universe.

  3. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lampeitl, Hubert; /Portsmouth U., ICG; Smith, Mathew; /Cape Town U. /Portsmouth U., ICG; Nichol, Robert C.; /Portsmouth U., ICG; Bassett, Bruce; /South African Astron. Observ. /Cape Town U.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Foley, Ryan J.; /Harvard-Smithsonian Ctr. Astrophys.; Frieman, Joshua A.; /Chicago U. /Fermilab; Garnavich, Peter M.; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  4. ONGOING AND CO-EVOLVING STAR FORMATION IN zCOSMOS GALAXIES HOSTING ACTIVE GALACTIC NUCLEI

    NARCIS (Netherlands)

    Silverman, J. D.; Lamareille, F.; Maier, C.; Lilly, S. J.; Mainieri, V.; Brusa, M.; Cappelluti, N.; Hasinger, G.; Zamorani, G.; Scodeggio, M.; Bolzonella, M.; Contini, T.; Carollo, C. M.; Jahnke, K.; Kneib, J. -P.; Le Fevre, O.; Merloni, A.; Bardelli, S.; Bongiorno, A.; Brunner, H.; Caputi, K.; Civano, F.; Comastri, A.; Coppa, G.; Cucciati, O.; de la Torre, S.; de Ravel, L.; Elvis, M.; Finoguenov, A.; Fiore, F.; Franzetti, P.; Garilli, B.; Gilli, R.; Iovino, A.; Kampczyk, P.; Knobel, C.; Kovac, K.; Le Borgne, J. -F.; Le Brun, V.; Mignoli, M.; Pello, R.; Peng, Y.; Montero, E. Perez; Ricciardelli, E.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Vignali, C.; Zucca, E.; Bottini, D.; Cappi, A.; Cassata, P.; Fumana, M.; Griffiths, R.; Kartaltepe, J.; Koekemoer, A.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Oesch, P.; Porciani, C.; Salvato, M.

    2009-01-01

    We present a study of the host galaxies of active galactic nucleus (AGN) selected from the zCOSMOS survey to establish if accretion onto supermassive black holes (SMBHs) and star formation are explicitly linked up to z similar to 1. We identify 152 galaxies that harbor AGN, based on their X-ray

  5. On the relation between the mass of Compact Massive Objects and their host galaxies

    Science.gov (United States)

    Capuzzo-Dolcetta, R.; Tosta e Melo, I.

    2017-12-01

    Supermassive black holes and/or very dense stellar clusters are found in the central regions of galaxies. Nuclear star clusters (NSCs) are present mainly in faint galaxies, while supermassive black holes are common in galaxies with masses ≥1010 M⊙. In the intermediate galactic mass range, both types of compact massive objects (CMOs) are found. Here, we present our collection of a huge set of NSC and massive black hole data that enlarges significantly already existing data bases useful to investigate for correlations of their absolute magnitudes, velocity dispersions and masses with structural parameters of their host galaxies. In particular, we directed our attention to some differences between the correlations of NSCs and massive black holes as subsets of CMOs with hosting galaxies. In this context, the mass-velocity dispersion relation plays a relevant role because it seems the one that shows a clearer difference between the supermassive black holes and NSCs. The MMBH-σ has a slope of 5.19 ± 0.28, while MNSC-σ has the much smaller slope of 1.84 ± 0.64. The slopes of the CMO mass-host galaxy B magnitude of the two types of CMOs are indistinguishable within the errors, while that of the NSC mass-host galaxy mass relation is significantly smaller than for supermassive black holes. Another important result is the clear depauperation of the NSC population in bright galaxy hosts, which reflects also in a clear flattening of the NSC mass versus host galaxy mass at high host masses.

  6. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    Science.gov (United States)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  7. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  8. Spatially resolved analysis of superluminous supernovae PTF 11hrq and PTF 12dam host galaxies

    Science.gov (United States)

    Cikota, Aleksandar; De Cia, Annalisa; Schulze, Steve; Vreeswijk, Paul M.; Leloudas, Giorgos; Gal-Yam, Avishay; Perley, Daniel A.; Cikota, Stefan; Kim, Sam; Patat, Ferdinando; Lunnan, Ragnhild; Quimby, Robert; Yaron, Ofer; Yan, Lin; Mazzali, Paolo A.

    2017-08-01

    Superluminous supernovae (SLSNe) are the most luminous supernovae in the Universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendency to explode in very dense, UV-bright and blue regions. In this paper, we investigate the resolved host galaxy properties of two nearby hydrogen-poor SLSNe, PTF 11hrq and PTF 12dam. For both galaxies Hubble Space Telescope multifilter images were obtained. Additionally, we perform integral field spectroscopy of the host galaxy of PTF 11hrq using the Very Large Telescope Multi Unit Spectroscopic Explorer (VLT/MUSE), and investigate the line strength, metallicity and kinematics. Neither PTF 11hrq nor PTF 12dam occurred in the bluest part of their host galaxies, although both galaxies have overall blue UV-to-optical colours. The MUSE data reveal a bright starbursting region in the host of PTF 11hrq, although far from the SN location. The SN exploded close to a region with disturbed kinematics, bluer colour, stronger [O iii] and lower metallicity. The host galaxy is likely interacting with a companion. PTF 12dam occurred in one of the brightest pixels, in a starbursting galaxy with a complex morphology and a tidal tail, where interaction is also very likely. We speculate that SLSN explosions may originate from stars generated during star formation episodes triggered by interaction. High-resolution imaging and integral field spectroscopy are fundamental for a better understanding of SLSNe explosion sites and how star formation varies across their host galaxies.

  9. Classification of X-ray point sources in external galaxies

    Science.gov (United States)

    Vrtilek, Saeqa Dil; Islam, Nazma; Kim, Dong-Woo; McCollough, Michael

    2017-08-01

    The exquisite spatial resolution of the Chandra X-ray satellite allows us to resolve individual X-ray point sources in external galaxies. We have extracted data on extragalactic X-ray binary candidates from 150 external galaxies including a selection of elliptical, spiral, and starburst galaxies with a range of metallicities. By using X-ray binaries containing neutron stars or black holes from our own Galaxy that were multiply observed by Chandra as a training set we classify the accretion type of each object individually identified in the external galaxies. We find systematic differences in the binary populations of different classes of galaxy. Our study provides information on populations of X-ray sources in different galaxy types which has implications for the evolution of galaxies, as well as clues about how the different classes of XRBs are related to each other.

  10. Stacked Denoising Autoencoders Applied to Star/Galaxy Classification

    Science.gov (United States)

    Hao-ran, Qin; Ji-ming, Lin; Jun-yi, Wang

    2017-04-01

    In recent years, the deep learning algorithm, with the characteristics of strong adaptability, high accuracy, and structural complexity, has become more and more popular, but it has not yet been used in astronomy. In order to solve the problem that the star/galaxy classification accuracy is high for the bright source set, but low for the faint source set of the Sloan Digital Sky Survey (SDSS) data, we introduced the new deep learning algorithm, namely the SDA (stacked denoising autoencoder) neural network and the dropout fine-tuning technique, which can greatly improve the robustness and antinoise performance. We randomly selected respectively the bright source sets and faint source sets from the SDSS DR12 and DR7 data with spectroscopic measurements, and made preprocessing on them. Then, we randomly selected respectively the training sets and testing sets without replacement from the bright source sets and faint source sets. At last, using these training sets we made the training to obtain the SDA models of the bright sources and faint sources in the SDSS DR7 and DR12, respectively. We compared the test result of the SDA model on the DR12 testing set with the test results of the Library for Support Vector Machines (LibSVM), J48 decision tree, Logistic Model Tree (LMT), Support Vector Machine (SVM), Logistic Regression, and Decision Stump algorithm, and compared the test result of the SDA model on the DR7 testing set with the test results of six kinds of decision trees. The experiments show that the SDA has a better classification accuracy than other machine learning algorithms for the faint source sets of DR7 and DR12. Especially, when the completeness function is used as the evaluation index, compared with the decision tree algorithms, the correctness rate of SDA has improved about 15% for the faint source set of SDSS-DR7.

  11. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Patrick L.; /KIPAC, Menlo Park /SLAC; Hicken, Malcolm; /Harvard-Smithsonian Ctr. Astrophys.; Burke, David L.; /KIPAC, Menlo Park /SLAC; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  12. Do Typical Galaxies in Adolescence Already Host Growing Black Holes?

    Science.gov (United States)

    Trump, Jonathan

    2012-10-01

    This archival grism proposal achieves a 100-fold gain in high-quality {5+sigma} information for discovering which properties of adolescent {0.7galaxies of typical mass and SFR are linked to AGN activity. We propose to analyze 147 WFC3 G141 and 111 ACS 800L pointings of 2-orbit grism data in the CANDELS fields, for a sample of 3000 galaxies reaching SFR 5 Msun/yr and stellar masses of log{M*/Msun} 9 at z 1.5. We will leverage spatially-resolved line ratios to uniquely distinguish a nuclear AGN from extended low-metallicity or shocked gas. Compared to our 30-galaxy published sample that hints at AGNs in low-mass z 2 galaxies {Trump et al. 2011}, this 3000 galaxy sample enables a 100-fold gain in divisions by galaxy morphology, SFR, and stellar mass to discover which galaxy properties correlate most with rapid SMBH growth. We will stack the deep {0.8-4 Ms} Chandra data available in these fields as an independent check of the grism AGN/SF diagnostics. The unique ancillary data in these fields also include ACS+WFC3 imaging for morphologies, deep multiwavelength data for well-sampled SEDs and stellar masses, and previous optical {and future near-IR} spectroscopy to supplement the G141 coverage. Based on discussions with the GOODS-N and 3D-HST teams, our proposed AGN science does not overlap with their proposed or funded science goals. As a value-added product for the community we will release, via the public Rainbow-CANDELS database server, an atlas of spatial maps of emission lines and line ratios {and associated errors} for the entire sample of 3000 galaxies.

  13. Multi-Wavelength Studies on H 2 O Maser Host Galaxies

    Indian Academy of Sciences (India)

    Our work in this field focusses on two projects: X-ray data analysis of individual maser source using X-ray penetrability to explore maser host obscured AGN; ... scale, we find that: (1) maser host galaxies tend to have higher nuclear radio luminosity; (2) the spectral index of both samples is comparable (∼ 0.6), within the error ...

  14. Towards a library of synthetic galaxy spectra and preliminary results of classification and parametrization of unresolved galaxies for Gaia. II

    Science.gov (United States)

    Tsalmantza, P.; Kontizas, M.; Rocca-Volmerange, B.; Bailer-Jones, C. A. L.; Kontizas, E.; Bellas-Velidis, I.; Livanou, E.; Korakitis, R.; Dapergolas, A.; Vallenari, A.; Fioc, M.

    2009-09-01

    Aims: This paper is the second in a series, implementing a classification system for Gaia observations of unresolved galaxies. Our goals are to determine spectral classes and estimate intrinsic astrophysical parameters via synthetic templates. Here we describe (1) a new extended library of synthetic galaxy spectra; (2) its comparison with various observations; and (3) first results of classification and parametrization experiments using simulated Gaia spectrophotometry of this library. Methods: Using the PÉGASE.2 code, based on galaxy evolution models that take account of metallicity evolution, extinction correction, and emission lines (with stellar spectra based on the BaSeL library), we improved our first library and extended it to cover the domain of most of the SDSS catalogue. Our classification and regression models were support vector machines (SVMs). Results: We produce an extended library of 28 885 synthetic galaxy spectra at zero redshift covering four general Hubble types of galaxies, over the wavelength range between 250 and 1050 nm at a sampling of 1 nm or less. The library is also produced for 4 random values of redshift in the range of 0-0.2. It is computed on a random grid of four key astrophysical parameters (infall timescale and 3 parameters defining the SFR) and, depending on the galaxy type, on two values of the age of the galaxy. The synthetic library was compared and found to be in good agreement with various observations. The first results from the SVM classifiers and parametrizers are promising, indicating that Hubble types can be reliably predicted and several parameters estimated with low bias and variance.

  15. A statistical study of H i gas in nearby narrow-line AGN-hosting galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yi-Nan; Wu, Hong, E-mail: zyn@bao.ac.cn, E-mail: hwu@bao.ac.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2015-01-01

    As a quenching mechanism, active galactic nucleus (AGN) feedback could suppress on going star formation in host galaxies. On the basis of a sample of galaxies selected from the Arecibo Legacy Fast ALFA (ALFALFA) H i survey, the dependence of the H i mass (M{sub H} {sub i}), stellar mass (M{sub *}), and H i-to-stellar mass ratio (M{sub H} {sub i}/M{sub *}) on various tracers of AGN activity are presented and analyzed in this paper. Almost all the AGN hostings in this sample are gas-rich galaxies, and there is not any evidence to indicate that the AGN activity could increase or decrease either M{sub H} {sub i} or M{sub H} {sub i}/M{sub *}. The position of the cold neutral gas cannot be fixed accurately based only on available H i data, due to the large beam size of ALFALFA survey. In addition, even though AGN hostings are more easily detected by an H i survey compared with absorption line galaxies, these two types of galaxies show similar star formation history. If an AGN hosting would ultimately evolve into an old red galaxy with low cold gas, then when and how the gas has been exhausted must be solved by future hypotheses and observations.

  16. Radio Loudness of AGNs: Host Galaxy Morphology and the Spin Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Stawarz, L.; Sikora, M.; Lasota, J.-P.

    2007-10-15

    We investigate how the total radio luminosity of AGN-powered radio sources depends on their accretion luminosity and the central black hole mass. We find that AGNs form two distinct and well separated sequences on the radio-loudness -- Eddington-ratio plane. We argue that these sequences mark the real upper bounds of radio-loudness of two distinct populations of AGNs: those hosted respectively by elliptical and disk galaxies. Both sequences show the same dependence of the radio-loudness on the Eddington ratio (an increase with decreasing Eddington ratio), which suggests that another parameter in addition to the accretion rate must play a role in determining the jet production efficiency in active galactic nuclei, and that this parameter is related to properties of the host galaxy. The revealed host-related radio dichotomy breaks down at high accretion rates where the dominant fraction of luminous quasars hosted by elliptical galaxies is radio quiet. We argue that the huge difference between the radio-loudness reachable by AGNs in disc and elliptical galaxies can be explained by the scenario according to which the spin of a black hole determines the outflows power, and central black holes can reach large spins only in early type galaxies (following major mergers), and not (in a statistical sense) in spiral galaxies.

  17. The host galaxy and optical light curve of the gamma-ray burst GRB 980703

    DEFF Research Database (Denmark)

    Holland, S.; Fynbo, J.P.U.; Hjorth, J.

    2001-01-01

    -law decay having a slope of alpha = 1.37 +/-0.14. Due to the bright underlying host galaxy the late time properties of the light-curve are very poorly constrained. The decay of the optical light curve is consistent with a contribution from an underlying type Ic supernova like SN1998bw, or a dust echo......We present deep HST/STIS and ground-based photometry of the host galaxy of the gamma-ray burst GRB 980703 taken 17, 551, 710, and 716 days after the burst. We find that the host is a blue, slightly over-luminous galaxy with V-gal = 23.00 +/-0.10, (V - R)(gal) = 0.43 +/-0.13, and a centre...... that is approximate to0.2 mag bluer than the outer regions of the galaxy. The galaxy has a star-formation rate of 8-13 M-circle dot yr(-1), assuming no extinction in the host. We find that the galaxy is best fit by a Sersic R-1/n profile with n approximate to 1.0 and a half-light radius of 0." 13 (= 0:72h(100...

  18. Do Nuclear Star Clusters and Supermassive Black Holes Follow the Same Host-Galaxy Correlations?

    Directory of Open Access Journals (Sweden)

    Peter Erwin

    2012-01-01

    Full Text Available Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of the bulge component of galaxies, the masses of NSCs correlate much better with the total galaxy stellar mass. In addition, the mass ratio MNSC/M⋆, tot for NSCs in spirals (at least those with Hubble types Sc and later is typically an order of magnitude smaller than the mass ratio MBH/M⋆, bul of SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.

  19. Active galactic nuclei vs. host galaxy properties in the COSMOS field

    Science.gov (United States)

    Lanzuisi, G.; Delvecchio, I.; Berta, S.; Brusa, M.; Comastri, A.; Gilli, R.; Gruppioni, C.; Marchesi, S.; Perna, M.; Pozzi, F.; Salvato, M.; Symeonidis, M.; Vignali, C.; Vito, F.; Volonteri, M.; Zamorani, G.

    2017-06-01

    Context. The coeval active galactic nuclei (AGN) and galaxy evolution, and the observed local relations between super massive black holes (SMBHs) and galaxy properties suggest some sort of connection or feedback between SMBH growth (I.e., AGN activity) and galaxy build-up (I.e., star formation history). Aims: We looked for correlations between average properties of X-ray detected AGN and their far-IR (FIR) detected, star forming host galaxies in order to find quantitative evidence for this connection, which has been highly debated in recent years. Methods: We exploited the rich multiwavelength data set (from X-ray to FIR) available in the COSMOS field for a large sample (692 sources) of AGN and their hosts in the redshift range 0.1 average host LIRSF has a flat distribution in bins of AGN LX, while the average AGN LX increases in bins of host LIRSF with logarithmic slope of 0.7 in the redshift range 0.4 average column density (NH) shows a clear positive correlation with the host M∗ at all redshifts, but not with the SFR (or LIRSF). This translates into a negative correlation with specific SFR at all redshifts. The same is true if the obscured fraction is computed. Conclusions: Our results are in agreement with the idea, introduced in recent galaxy evolutionary models, that SMBH accretion and SFRs are correlated, but occur with different variability time scales. Finally, the presence of a positive correlation between NH and host M∗ suggests that the column density that we observe in the X-rays is not entirely due to the circumnuclear obscuring torus, but may also include a significant contribution from the host galaxy. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A123

  20. The nuclear properties and extended morphologies of powerful radio galaxies: the roles of host galaxy and environment

    Science.gov (United States)

    Miraghaei, H.; Best, P. N.

    2017-04-01

    Powerful radio Galaxies exist as either compact or extended sources, with the extended sources traditionally classified by their radio morphologies as Fanaroff-Riley (FR) type I and II sources. FRI/FRII and compact radio galaxies have also been classified by their optical spectra into two different types: high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode). We present a catalogue of visual morphologies for a complete sample of >1000 1.4-GHz-selected extended radio sources from the Sloan Digital Sky Survey. We study the environment and host galaxy properties of FRI/FRII and compact sources, classified into HERG/LERG types, in order to separate and distinguish the factors that drive the radio morphological variations from those responsible for the spectral properties. Comparing FRI LERGs with FRII LERGs at fixed stellar mass and radio luminosity, we show that FRIs typically reside in richer environments and are hosted by smaller galaxies with higher mass surface density; this is consistent with extrinsic effects of jet disruption driving the Fanaroff-Riley (FR) dichotomy. Using matched samples of HERGs and LERGs, we show that HERG host galaxies are more frequently star forming, with more evidence for disc-like structure than LERGs, in accordance with currently favoured models of fundamentally different fuelling mechanisms. Comparing FRI/FRII LERGs with compact LERGs, we find the primary difference is that compact objects typically harbour less massive black holes. This suggests that lower mass black holes may be less efficient at launching stable radio jets, or do so for shorter times. Finally, we investigate rarer sub-classes: wide-angle-tailed, head-tail, FR-hybrid and double-double sources.

  1. Radio brightening of FRB 150418 host galaxy candidate

    Science.gov (United States)

    Williams, P. K. G.; Berger, E.; Chornock, R.

    2016-02-01

    Keane et al. (2016 Nature 530 453) reported a fading radio transient in the z=0.498 galaxy WISE J071634.59-190039.2 (WISE 0716-19; Williams & Berger, arxiv:1602.08434) that they associated with the fast radio burst FRB 150418.

  2. The optical afterglow and host galaxy of GRB 000926

    DEFF Research Database (Denmark)

    Fynbo, J.U.; Gorosabel, J.; Dall, T.H.

    2002-01-01

    In this paper we illustrate with the case of GRB 000926 how Gamma Ray Bursts (GRBs) can be used as cosmological lighthouses to identify and study star forming galaxies at high redshifts. The optical afterglow of the burst was located with optical imaging at the Nordic Optical Telescope 20.7 hours...

  3. Formation and evolution of star clusters and their host galaxies

    NARCIS (Netherlands)

    Kruijssen, J.M.D.

    2011-01-01

    The vast majority of galaxies contains large populations of stellar clusters, which are bound groups of a few tens to millions of stars. A cluster is formed from a single giant molecular cloud and therefore its stars share the same age and chemical composition. The formation and evolution of star

  4. The host galaxies of active galactic nuclei with powerful relativistic jets

    Science.gov (United States)

    Olguín-Iglesias, A.; León-Tavares, J.; Kotilainen, J. K.; Chavushyan, V.; Tornikoski, M.; Valtaoja, E.; Añorve, C.; Valdés, J.; Carrasco, L.

    2016-08-01

    We present deep near-infrared (NIR) images of a sample of 19 intermediate-redshift (0.3 powerful relativistic jets (L1.4 GHz > 1027 W Hz-1), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities L1.4 GHz ˜ 1023.7-1028.3 W Hz-1, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the μe-Reff relation for ellipticals and bulges. The two populations of blazars show different behaviours in the MK,nuclear -MK,bulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, which could be interpreted in terms of AGN feedback. Our findings are consistent with semi-analytical models where low-luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high-luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.

  5. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Krühler, T.; Schulze, S.; de Ugarte Postigo, A.; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; Fong, W.; Fynbo, J. P. U.; Gorosabel, J.; Greiner, J.; Jakobsson, P.; Kim, S.; Laskar, T.; Levan, A. J.; Michałowski, M. J.; Milvang-Jensen, B.; Tanvir, N. R.; Thöne, C. C.; Wiersema, K.

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (“SHOALS”), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z\\gt 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z∼ 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z∼ 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  6. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    Science.gov (United States)

    Perley, D. A.; Kruhler, T.; Schulze, S.; Postigo, A. De Ugarte; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; hide

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS), a multi-observatory high redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z > 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z approx. 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z approx. 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  7. The Spitzer/Swift Gamma-Ray Burst Host Galaxy Legacy Survey

    Science.gov (United States)

    Perley, Daniel; Berger, Edo; Butler, Nathaniel; Cenko, S. Bradley; Chary, Ranga-Ram; Cucchiara, Antonino; Ellis, Richard; Fong, Wen-fai; Fruchter, Andrew; Fynbo, Johan; Gehrels, Neil; Graham, John; Greiner, Jochen; Hjorth, Jens; Hunt, Leslie; Jakobsson, Pall; Kruehler, Thomas; Laskar, Tanmoy; Le Floc'h, Emerich; Levan, Andrew; Levesque, Emily; Littlejohns, Owen; Malesani, Daniele; Michalowski, Michal; Milvang-Jensen, Bo; Prochaska, J. Xavier; Salvaterra, Ruben; Schulze, Steve; Schady, Patricia; Tanvir, Nial; de Ugarte Postigo, Antonio; Vergani, Susanna; Watson, Darach

    2016-08-01

    Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample - providing the definitive resource with which to examine all aspects of the GRB/galaxy connection for years to come and setting the stage for intensive JWST follow-up of the most interesting sources from our sample.

  8. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    Energy Technology Data Exchange (ETDEWEB)

    D' Andrea, Chris B. [Univ. of Pennsylvania, Philadelphia, PA (United States); et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  9. The Host Galaxy of the Low Mass Black Hole in UGC 06728

    Science.gov (United States)

    Bentz, Misty

    2017-08-01

    We propose to obtain high-resolution, multicolor imaging of the host-galaxy of UGC 06728, a nearby (z=0.0065) low-luminosity Seyfert. A recent reverberation-mapping campaign has constrained the black hole mass to 7x10^5 M_sun, but little is currently known about the host galaxy due to the lack of spatial resolution in existing, seeing-limited images. Based on the black hole mass and the bulge stellar velocity dispersion, it is likely that a black hole mass could also be derived from modeling the nuclear stellar dynamics of UGC 06728. The number of galaxies where comparison of stellar dynamics and reverberation mapping is possible is very small (time. They will also allow us to determine the central stellar surface brightness for follow-up AO-assisted near-IR integral field spectroscopy, accurately constrain the stellar mass-to-light ratio of the galaxy, and correct the AGN luminosity for starlight contamination (to include UGC 06728 at the low end of the AGN R-L relationship). We will also investigate the globular cluster population around the galaxy and the potential to determine its distance using the globular cluster luminosity function method. The proposed observations will facilitate the direct comparison of masses from reverberation mapping and stellar dynamics, which is critical to ensure that all black holes, from Local Group galaxies to z 7 quasars, are on the same mass scale.

  10. Nearby supernova host galaxies from the CALIFA Survey. I. Sample, data analysis, and correlation to star-forming regions

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; García-Benito, R.; Mast, D.; Mendoza, M. A.; Sánchez, S. F.; Badenes, C.; Barrera-Ballesteros, J.; Bland-Hawthorn, J.; Falcón-Barroso, J.; García-Lorenzo, B.; Gomes, J. M.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; López-Sánchez, A. R.; de Lorenzo-Cáceres, A.; Marino, R. A.; Meidt, S.; Mollá, M.; Papaderos, P.; Pérez-Torres, M. A.; Rosales-Ortega, F. F.; van de Ven, G.

    2014-01-01

    We use optical integral field spectroscopy (IFS) of nearby supernova (SN) host galaxies (0.005 2.4 Gyr, respectively) than the massive SN Ia hosts (0.04%, 2.01%, and 97.95% in these intervals). We estimate that the low-mass galaxies produce ten times fewer SNe Ia and three times fewer CC SNe than

  11. The Molecular ISM of Quasar Host Galaxies in the Early Universe

    Science.gov (United States)

    Riechers, D. A.

    2007-11-01

    Detailed studies of the molecular gas phase in the host galaxies of the highest redshift quasars are important for our understanding of the formation and evolution of quasars and their bulges, since the molecular gas is the prerequisite material for star formation. This investigation capitalizes on state-of-the-art observations in the radio/millimeter wavelength regime to study the key properties of the molecular interstellar medium in some of the most distant, gas-rich quasars. To search for evolutionary, luminosity-dependent, or galaxy type-dependent trends in the conditions under which star formation takes place, results are interpreted in the context of studies of nearby galaxies and high redshift galaxy populations. From the first high-resolution CO(J=1→0) spectroscopy of high-z quasars, the total molecular gas mass of their host galaxies is determined. By more than doubling the number of molecules known in the distant universe [from 2 (CO/HCN) to 5], it is found that multiple molecular probes of dense gas predict similar star formation rates within the dense molecular regions of high redshift galaxies, out to the first 2Gyr after the Big Bang. Together with other studies, these results indicate an increase in star formation efficiency toward the most luminous distant gas-rich systems, possibly due to a higher median gas density. In a connected, time consuming interferometric study, the host galaxies of three z>4 quasars are resolved, for the first time, both spatially (at up to 0.15", or 1.0 kpc) and in velocity space, revealing that the molecular reservoirs show a wealth of morphologies. The derived dynamical masses are large enough to account for both the central supermassive black holes and the full reservoirs of molecular gas, but do not leave much room for a stellar bulge as predicted by the local relation between black hole mass and bulge velocity dispersion. Quasar host galaxies are thus prime laboratories to study the coevolution of supermassive

  12. The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    DEFF Research Database (Denmark)

    Castro-Tirado, A.J.; Sokolov, V.V.; Gorosabel, J.

    2001-01-01

    a massive star origin. The absolute magnitude of the galaxy is M-B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of (11.5 +/- 7.1) M-circle dot yr(-1), which is much larger than the present-day rate in our Galaxy. The quasi simultaneous broad...... that GRB 991208 is at 3.7 Gpc (for H-0 = 60 km s(-1) Mpc(-1), Omega (0) = 1 and Lambda (0) = 0), implying an isotropic energy release of 1.15 10(53) erg which may. be relaxed by beaming by a factor >10(2). Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus supporting...

  13. The host galaxy of the gravitational wave recoiling black hole candidate 3C186

    Science.gov (United States)

    Chiaberge, Marco

    2017-08-01

    We discovered a gravitational wave (GW) recoiling black hole (BH) candidate in our HST WFC3 snapshot images of the radio-loud QSO 3C186. These events are expected to happen as a result of BH-BH mergers. This extremely energetic phenomenon leads to the production of an intense field of GWs, which in most cases are emitted anisotropically. As a result, the merged black hole may receive a kick and be displaced from the center of the host galaxy with velocities that can be as high as 4000 km/s. Depending on the relative orientation of the kick with respect to the line-of-sight, if the BH is active we expect to observe an offset QSO. Furthermore, the broad lines may be offset with respect to the narrow lines, which are emitted in the frame of the host. 3C186 shows all of the predicted observational features of a such an event. Spectra show offsets between narrow and broad emission lines of 2100km/s, and our HST image clearly shows that the QSO is offset by 1.3 with respect to the isophotal center of the host galaxy. Scenarios alternative to the GW kick as the origin for the observed features are unlikely, but still viable. Only HST allows us to obtain spatially resolved information, high sensitivity and stable PSF to better investigate the host galaxy properties. We will use ACS and WFC3 to obtain deep images and study the morphology of the host galaxy. We will unambiguously establish whether the host galaxy of 3C186 underwent a major merger and we will be able to set accurate constraints on the age of the merger. The proposed observations will have a tremendous impact on our knowledge of supermassive BH mergers and the associated emission of gravitational waves.

  14. Host galaxy properties of mergers of stellar binary black holes and their implications for advanced LIGO gravitational wave sources

    Science.gov (United States)

    Cao, Liang; Lu, Youjun; Zhao, Yuetong

    2018-03-01

    Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts. Here, we present a comprehensive analysis of the host galaxy properties of SBBHs by implementing semi-analytical recipes for SBBH formation and merger into cosmological galaxy formation model. If the time delay between SBBH formation and merger ranges from ≲ Gyr to the Hubble time, SBBH mergers at redshift z ≲ 0.3 occur preferentially in big galaxies with stellar mass M* ≳ 2 × 1010 M⊙ and metallicities Z peaking at ˜0.6 Z⊙. However, the host galaxy stellar mass distribution of heavy SBBH mergers (M•• ≳ 50 M⊙) is bimodal with one peak at ˜109 M⊙ and the other peak at ˜2 × 1010 M⊙. The contribution fraction from host galaxies with Z ≲ 0.2 Z⊙ to heavy mergers is much larger than that to less heavy mergers. If SBBHs were formed in the early Universe (e.g. z > 6), their mergers detected at z ≲ 0.3 occur preferentially in even more massive galaxies with M* > 3 × 1010 M⊙ and in galaxies with metallicities mostly ≳ 0.2 Z⊙ and peaking at Z ˜ 0.6 Z⊙, due to later cosmic assembly and enrichment of their host galaxies. SBBH mergers at z ≲ 0.3 mainly occur in spiral galaxies, but the fraction of SBBH mergers that occur in elliptical galaxies can be significant if those SBBHs were formed in the early Universe; and about two-thirds of those mergers occur in the central galaxies of dark matter haloes. We also present results on the host galaxy properties of SBBH mergers at higher redshift.

  15. e-MERLIN, VLBA and Subaru astrometry of the proposed host galaxy of FRB 150418

    Science.gov (United States)

    Bassa, C.; Beswick, R.; Tingay, S. J.; Bhandari, S.; Johnston, S.; Keane, E. F.; Stappers, B. W.; Tominaga, N.; Totani, T.

    2016-04-01

    We have obtained e-MERLIN and VLBA observations (observation code BT136) of the radio source associated with FRB 150418 by Keane et al. (2016, Nature, 530, 453), previously detected at low angular resolution (host galaxy WISE J071634.59-190039.2 at z=0.492).

  16. Nearby supernova host galaxies from the CALIFA survey. II. Supernova environmental metallicity

    NARCIS (Netherlands)

    Galbany, L.; Stanishev, V.; Mourão, A. M.; Rodrigues, M.; Flores, H.; Walcher, C. J.; Sánchez, S. F.; García-Benito, R.; Mast, D.; Badenes, C.; González Delgado, R. M.; Kehrig, C.; Lyubenova, M.; Marino, R. A.; Mollá, M.; Meidt, S.; Pérez, E.; van de Ven, G.; Vílchez, J. M.

    2016-01-01

    The metallicity of a supernova progenitor, together with its mass, is one of the main parameters that can rule the progenitor's fate. We present the second study of nearby supernova (SN) host galaxies (0.005 ⊙) > 10 dex) by targeted searches. We neither found evidence that the metallicity at the SN

  17. Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies

    NARCIS (Netherlands)

    Labiano, A.; O'Dea, C. P.; Barthel, P. D.; Vries, W. H. de; Baum, S. A.

    2007-01-01

    Abstract: AIMS: Search for star formation regions in the hosts of potentially young radio galaxies (Gigahertz Peaked Spectrum and Compact Steep Spectrum sources). METHODS: Near-UV imaging with the Hubble Space Telescope Advanced Camera for Surveys.} RESULTS: We find near-UV light which could be the

  18. Star formation in the hosts of GHz peaked spectrum and compact steep spectrum radio galaxies

    NARCIS (Netherlands)

    Labiano, A.; O'Dea, C. P.; Barthel, P. D.; de Vries, W. H.; Baum, S. A.

    Aims. We are searching for star formation regions in the hosts of potentially young radio galaxies (gigahertz peaked spectrum and compact steep spectrum sources). Methods. We used near-UV imaging with the Hubble Space Telescope Advanced Camera for Surveys. Results. We find near-UV light could be the

  19. Hubble Space Telescope NICMOS observations of the host galaxies of powerful radio sources : Does size matter?

    NARCIS (Netherlands)

    de Vries, WH; O'Dea, CP; Barthel, PD; Fanti, C; Fanti, R; Lehnert, MD

    2000-01-01

    We present near-infrared J- and K-band imaging of a sample of powerful radio source host galaxies with the Hubble Space Telescope NICMOS2 camera. These sources have been selected on their double-lobed radio structure and include a wide range of projected radio source sizes. The largest projected

  20. The metallicity and dust content of a redshift 5 gamma-ray burst host galaxy

    DEFF Research Database (Denmark)

    Sparre, M.; Hartoog, O. E.; Krühler, T.

    2014-01-01

    Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio and extinction of the GRB host...... galaxy at z=5.0. The host absorption system is a damped Lyman-alpha absorber (DLA) with a very large neutral hydrogen column density of log N(HI)/cm^(-2) = 22.30 +/- 0.06, and a metallicity of [S/H]= -1.70 +/- 0.10. It is the highest redshift GRB with such a precise metallicity measurement. The presence...... of fine-structure lines confirms the z=5.0 system as the GRB host galaxy, and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with A_V = 0.11 +/- 0.04 mag, and the host galaxy has a dust-to-metals ratio which is consistent with being...

  1. On the mass-metallicity relation, velocity dispersion and gravitational well depth of GRB host galaxies

    DEFF Research Database (Denmark)

    Arabsalmani, Maryam; Møller, Palle; Fynbo, Johan P. U.

    2015-01-01

    the same underlying population. GRB host galaxies and QSO-DLAs are found to have different impact parameter distributions and we briefly discuss how this may affect statistical samples. The impact parameter distribution has two effects. First any metallicity gradient will shift the measured metallicity...

  2. GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy

    NARCIS (Netherlands)

    Castro-Tirado, A.J.; Møller, P.; García-Segura, G.; Gorosabel, J.; Pérez, E.; de Ugarte Postigo, A.; Solano, E.; Barrado, D.; Klose, S.; Kann, D.A.; Castro Cerón, J.M.; Kouveliotou, C.; Fynbo, J.P.U.; Hjorth, J.; Pedersen, H.; Pian, E.; Rol, E.; Palazzi, E.; Masetti, N.; Tanvir, N.R.; Vreeswijk, P.M.; Andersen, M.I.; Fruchter, A.S.; Greiner, J.; Wijers, R.A.M.J.; van den Heuvel, E.P.J.

    2010-01-01

    Aims. We analyse the distribution of matter around the progenitor star of gamma-ray burst GRB 021004 and the properties of its host galaxy with high-resolution echelle and near-infrared spectroscopy. Methods. Observations were taken by the 8.2 m Very Large Telescope with the Ultraviolet and Visual

  3. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Tendulkar, S. P.; Kaspi, V. M. [Department of Physics and McGill Space Institute, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Bassa, C. G.; Adams, E. A. K.; Hessels, J. W. T.; Maddox, N. [ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Cordes, J. M.; Chatterjee, S. [Cornell Center for Astrophysics and Planetary Science and Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Bower, G. C. [Academia Sinica Institute of Astronomy and Astrophysics, 645 N. A’ohoku Place, Hilo, HI 96720 (United States); Law, C. J. [Department of Astronomy and Radio Astronomy Lab, University of California, Berkeley, CA 94720 (United States); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Burke-Spolaor, S.; Butler, B. J.; Demorest, P. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Marcote, B.; Paragi, Z. [Joint Institute for VLBI ERIC, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); McLaughlin, M. A. [Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 (United States); Ransom, S. M. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Scholz, P., E-mail: shriharsh@physics.mcgill.ca, E-mail: bassa@astron.nl [National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9 (Canada); and others

    2017-01-10

    The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10{sup −4}) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [O iii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, m{sub r′} = 25.1 AB mag dwarf galaxy at a redshift of z = 0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M {sub *} ∼ (4–7) × 10{sup 7} M {sub ⊙}, assuming a mass-to-light ratio between 2 to 3 M {sub ⊙} L {sub ⊙} {sup −1}. Based on the H α flux, we estimate the star formation rate of the host to be 0.4 M {sub ⊙} yr{sup −1} and a substantial host dispersion measure (DM) depth ≲324 pc cm{sup −3}. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

  4. The dark nature of GRB 130528A and its host galaxy

    Science.gov (United States)

    Jeong, S.; Castro-Tirado, A. J.; Bremer, M.; Winters, J. M.; Gorosabel, J.; Guziy, S.; Pandey, S. B.; Jelínek, M.; Sánchez-Ramírez, R.; Sokolov, Ilya V.; Orekhova, N. V.; Moskvitin, A. S.; Tello, J. C.; Cunniffe, R.; Lara-Gil, O.; Oates, S. R.; Pérez-Ramírez, D.; Bai, J.; Fan, Y.; Wang, C.; Park, I. H.

    2014-09-01

    Aims: We study the dark nature of GRB 130528A through multi-wavelength observations and conclude that the main reason for the optical darkness is local extinction inside of the host galaxy. Methods: Automatic observations were performed at the Burst Optical Observer and Transient Exploring System (BOOTES)-4/MET robotic telescope. We also triggered target of opportunity (ToO) observations at Observatorio de Sierra Nevada (OSN), IRAM Plateau de Bure Interferometer (PdBI) and Gran Telescopio Canarias (GTC + OSIRIS). The host galaxy photometric observations in optical to near-infrared (nIR) wavelengths were achieved through large ground-based aperture telescopes, such as 10.4 m Gran Telescopio Canarias (GTC), 4.2 m William Herschel Telescope (WHT), 6 m Bolshoi Teleskop Alt-azimutalnyi (BTA) telescope, and 2 m Liverpool Telescope (LT). Based on these observations, spectral energy distributions (SED) for the host galaxy and afterglow were constructed. Results: Thanks to millimetre (mm) observations at PdBI, we confirm the presence of a mm source within the XRT error circle that faded over the course of our observations and identify the host galaxy. However, we do not find any credible optical source within early observations with BOOTES-4/MET and 1.5 m OSN telescopes. Spectroscopic observation of this galaxy by GTC showed a single faint emission line that likely corresponds to [OII] 3727 Å at a redshift of 1.250 ± 0.001, implying a star formation rate (M⊙/yr) > 6.18 M⊙/yr without correcting for dust extinction. The probable line-of-sight extinction towards GRB 130528A is revealed through analysis of the afterglow SED, resulting in a value of A^GRBV≥ 0.9 at the rest frame; this is comparable to extinction levels found among other dark GRBs. The SED of the host galaxy is explained well (χ2/d.o.f. = 0.564) by a luminous (MB = -21.16), low-extinction (AV = 0, rest frame), and aged (2.6 Gyr) stellar population. We can explain this apparent contradiction in global and

  5. Elemental gas-phase abundances of intermediate redshift type Ia supernova star-forming host galaxies

    Science.gov (United States)

    Moreno-Raya, ME; Galbany, L.; López-Sánchez, ÁR; Mollá, M.; González-Gaitán, S.; Vílchez, JM; Carnero, A.

    2018-01-01

    The maximum luminosity of type Ia supernovae (SNe Ia) depends on the oxygen abundance of the regions of the host galaxies where they explode. This metallicity dependence reduces the dispersion in the Hubble diagram (HD) when included with the traditional two-parameter calibration of SN Ia light-curve (LC) parameters and absolute magnitude. In this work, we use empirical calibrations to carefully estimate the oxygen abundance of galaxies hosting SNe Ia from the SDSS-II/SNe Survey at intermediate redshift, by measuring their emission line intensities. We also derive electronic temperature with the direct method for a small fraction of objects for consistency. We find a trend of decreasing oxygen abundance with increasing redshift for the most massive galaxies. Moreover, we study the dependence of the HD residuals (HR) with galaxy oxygen abundance obtaining a correlation in line with those found in other works. In particular, the HR vs oxygen abundance shows a slope of -0.186±0.123 mag dex-1 (1.52σ), in good agreement with theoretical expectations. This implies smaller distance modulii after corrections for SNe Ia in metal-rich galaxies. Based on our previous results on local SNe Ia, we propose this dependence to be due to the lower luminosity of the SNe Ia produced in more metal-rich environments.

  6. The host galaxy and environment of a bright QSO at z=7.54

    Science.gov (United States)

    Banados, Eduardo

    2017-08-01

    After almost a decade of intense search, our team has finally discovered a bright QSO well within the epoch of reionization, at z=7.54. This is by far the most distant QSO known (previous record: 7.08), at a cosmic age of 690 Myr, i.e., only 5% of our universe's current age. This is the first QSO whose spectrum shows clear evidence of an intergalactic medium that is >10% neutral and that reionization is underway. We propose deep HST ACS and WFC/IR imaging of this unique source with two main goals. (i) Unveil the rest-frame UV stellar light from the host galaxy to directly probe supermassive black hole/galaxy co-evolution at the highest accessible redshift. (ii) Search for galaxies physically associated with the QSO and test whether this object resides in one of the densest and most biased environment at the peak of the reionization epoch. HST observations are indispensable to address these topics for two reasons: (a) only HST provides the spatial resolution to separate the central bright light source from the underlying host galaxy and (b) at this record-redshift, only space-based imaging can provide the depths necessary to constrain the environment. These HST observations will provide key insights into the formation and evolution of the first super massive black holes, galaxies, and large-scale structure of the universe.

  7. Host galaxies and environments of compact extragalactic radio sources

    NARCIS (Netherlands)

    Labiano Ortega, Alvaro

    2006-01-01

    The main goal of this thesis is to study the interrelation of powerful radio sources with their hosts. The objects of study are GPS and CSS sources. Due to their small size, GPS/CSS sources are excellent probes of this relation. Furthermore, their young age allows us to compare them to the larger,

  8. X-RAY SELECTED AGN HOST GALAXIES ARE SIMILAR TO INACTIVE GALAXIES OUT TO z = 3: RESULTS FROM CANDELS/CDF-S

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D. J.; Wuyts, S.; Nandra, K. [Max-Planck-Institute for Extraterrestrial Physics, Garching, D-85748 (Germany); Mozena, M.; Faber, S. M.; Koo, D. C. [Astronomy Department and UCO-Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Koekemoer, A.; Ferguson, H.; Grogin, N. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); McGrath, E. [Department of Physics, Colby College, Waterville, ME 04901 (United States); Hathi, N. P. [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States); Dekel, A. [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Donley, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dunlop, J. S. [Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Giavalisco, M.; Guo, Y. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Kocevski, D. D. [Department of Physics and Astronomy, University of Kentucky, Lexington KY 40506-0055 (United States); Laird, E.; Rangel, C. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Newman, J. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); and others

    2013-01-20

    We use multi-band spatially resolved photometry from the Cosmic Assembly Near-IR Deep Legacy Survey in the 4 Ms Chandra Deep Field-South to explore the nuclear and extended colors, color gradients, and stellar populations of the host galaxies of X-ray selected active galactic nuclei (AGNs) out to z = 3. Based on a study of their central light, we develop X-ray based criteria to exclude objects with strong AGN contamination. We use stellar masses from the FIREWORKS database to understand and account for stellar mass selection effects and carefully study, for the first time, the resolved host galaxy properties of AGNs at z {approx} 2 in their rest-frame optical light without substantial nuclear contamination. AGN hosts span a sizable range of stellar masses, colors, and color gradients at these redshifts. Their colors, color gradients, and stellar population properties are very similar to inactive galaxies of the same stellar mass. At z {approx} 1, we find a slightly narrower range in host colors compared to inactive galaxies, as well as hints of more recent star formation. These differences are weaker or non-existent among AGN hosts at z {approx} 2. We discuss the importance of AGN-driven feedback in the quenching of galaxies at z {approx}> 1 and speculate on possible evolution in the relationship between black hole accretion and the host galaxy toward high redshifts.

  9. The host galaxy of the gamma-ray narrow-line Seyfert 1 galaxy 1H 0323+342

    Energy Technology Data Exchange (ETDEWEB)

    León Tavares, J.; Chavushyan, V.; Puerari, I.; Patiño-Alvarez, V.; Carramiñana, A.; Carrasco, L.; Guichard, J.; Olguín-Iglesias, A.; Valdes, J. [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Kotilainen, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); Añorve, C. [Facultad de Ciencias de la Tierra y del Espacio (FACITE) de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa (Mexico); Cruz-González, I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ap. 70-264, 04510 DF (Mexico); Antón, S. [Instituto de Astrofísica de Andalucía-CSIC, E-18008 Granada (Spain); Karhunen, K.; Sanghvi, J., E-mail: leon.tavares@inaoep.mx [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland)

    2014-11-01

    We present optical and near-infrared (NIR) imaging data of the radio-loud, narrow-line Seyfert 1 galaxy 1H 0323+342, which shows intense and variable gamma-ray activity discovered by the Fermi satellite with the Large Area Telescope. Near-infrared and optical images are used to investigate the structural properties of the host galaxy of 1H 0323+342; this together with optical spectroscopy allows us to examine its black hole mass. Based on two-dimensional (2D) multiwavelength surface-brightness modeling, we find that statistically, the best model fit is a combination of a nuclear component and a Sérsic profile (n ∼ 2.8). However, the presence of a disk component (with a small bulge n ∼ 1.2) also remains a possibility and cannot be ruled out with the present data. Although at first glance a spiral-arm-like structure is revealed in our images, a 2D Fourier analysis of the imagery suggests that this structure corresponds to an asymmetric ring, likely associated with a recent violent dynamical interaction. We discuss our results in the context of relativistic jet production and galaxy evolution.

  10. Automatic Galaxy Classification via Machine Learning Techniques: Parallelized Rotation/Flipping INvariant Kohonen Maps (PINK)

    Science.gov (United States)

    Polsterer, K. L.; Gieseke, F.; Igel, C.

    2015-09-01

    In the last decades more and more all-sky surveys created an enormous amount of data which is publicly available on the Internet. Crowd-sourcing projects such as Galaxy-Zoo and Radio-Galaxy-Zoo used encouraged users from all over the world to manually conduct various classification tasks. The combination of the pattern-recognition capabilities of thousands of volunteers enabled scientists to finish the data analysis within acceptable time. For up-coming surveys with billions of sources, however, this approach is not feasible anymore. In this work, we present an unsupervised method that can automatically process large amounts of galaxy data and which generates a set of prototypes. This resulting model can be used to both visualize the given galaxy data as well as to classify so far unseen images.

  11. Census of the Local Universe (CLU): Classification of Galaxy Candidates in Narrowband Images Using Machine Learning

    Science.gov (United States)

    Zhang, Chaoran; Van Sistine, Anglea; Kaplan, David; Brady, Patrick; Cook, David O.; Kasliwal, Mansi

    2018-01-01

    A complete catalog of galaxies in the local universe is critical for efficient electromagnetic follow-up of gravitational wave events (EMGW). The Census of the Local Universe (CLU; Cook et al. 2017, in preparation) aims to provide a galaxy catalog out to 200 Mpc that is as complete as possible. CLU has recently completed an Hα survey of ~3π of the sky with the goal of cataloging those galaxies that are likely hosts of EMGW events. Here, we present a tool we developed using machine learning technology to classify sources extracted from the Hα narrowband images within 200Mpc. In this analysis we find we are able to recover more galaxies compared to selections based on Hα colors alone.

  12. Supermassive black holes and their host galaxies. II. The correlation with near-infrared luminosity revisited

    Energy Technology Data Exchange (ETDEWEB)

    Läsker, Ronald; Van de Ven, Glenn [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Ferrarese, Laura [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E2E7 (Canada); Shankar, Francesco, E-mail: laesker@mpia.de [GEPI Observatoire de Paris, CNRS, Univ. Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon (France)

    2014-01-01

    We present an investigation of the scaling relations between supermassive black hole (SMBH) masses, M {sub •}, and their host galaxies' K-band bulge (L {sub bul}) and total (L {sub tot}) luminosities. The wide-field WIRCam imager at the Canada-France-Hawaii-Telescope was used to obtain the deepest and highest resolution near-infrared images available for a sample of 35 galaxies with securely measured M {sub •}, selected irrespective of Hubble type. For each galaxy, we derive bulge and total magnitudes using a two-dimensional image decomposition code that allows us to account, if necessary, for large- and small-scale disks, cores, bars, nuclei, rings, envelopes, and spiral arms. We find that the present-day M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations have consistent intrinsic scatter, suggesting that M {sub •} correlates equally well with bulge and total luminosity of the host. Our analysis provides only mild evidence of a decreased scatter if the fit is restricted to elliptical galaxies. The log-slopes of the M {sub •}-L {sub bul} and M {sub •}-L {sub tot} relations are 0.75 ± 0.10 and 0.92 ± 0.14, respectively. However, while the slope of the M {sub •}-L {sub bul} relation depends on the detail of the image decomposition, the characterization of M {sub •}-L {sub tot} does not. Given the difficulties and ambiguities of decomposing galaxy images into separate components, our results indicate that L {sub tot} is more suitable as a tracer of SMBH mass than L {sub bul}, and that the M {sub •}-L {sub tot} relation should be used when studying the co-evolution of SMBHs and galaxies.

  13. Deep Ly alpha imaging of two z=2.04 GRB host galaxy fields

    DEFF Research Database (Denmark)

    Fynbo, J.P.U.; Møller, Per; Thomsen, Bente

    2002-01-01

    We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest-frame equ......We report on the results of deep narrow-band Lyalpha and broad-band U and I imaging of the fields of two Gamma-Ray bursts at redshift z = 2.04 (GRB 000301C and GRB 000926). We find that the host galaxy of GRB 000926 is an extended (more than 2 arcsec), strong Lyalpha emitter with a rest...

  14. Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths

    Science.gov (United States)

    Leung, Andrew S.; Acquaviva, Viviana; Gawiser, Eric; Ciardullo, Robin; Komatsu, Eiichiro; Malz, A. I.; Zeimann, Gregory R.; Bridge, Joanna S.; Drory, Niv; Feldmeier, John J.; Finkelstein, Steven L.; Gebhardt, Karl; Gronwall, Caryl; Hagen, Alex; Hill, Gary J.; Schneider, Donald P.

    2017-07-01

    We present a Bayesian approach to the redshift classification of emission-line galaxies when only a single emission line is detected spectroscopically. We consider the case of surveys for high-redshift Lyα-emitting galaxies (LAEs), which have traditionally been classified via an inferred rest-frame equivalent width (EW {W}{Lyα }) greater than 20 Å. Our Bayesian method relies on known prior probabilities in measured emission-line luminosity functions and EW distributions for the galaxy populations, and returns the probability that an object in question is an LAE given the characteristics observed. This approach will be directly relevant for the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), which seeks to classify ˜106 emission-line galaxies into LAEs and low-redshift [{{O}} {{II}}] emitters. For a simulated HETDEX catalog with realistic measurement noise, our Bayesian method recovers 86% of LAEs missed by the traditional {W}{Lyα } > 20 Å cutoff over 2 types of binary classification error by adjusting the stringency of the probability requirement for classifying an observed object as an LAE. In our simulations of HETDEX, this method reduces the uncertainty in cosmological distance measurements by 14% with respect to the EW cut, equivalent to recovering 29% more cosmological information. Rather than using binary object labels, this method enables the use of classification probabilities in large-scale structure analyses. It can be applied to narrowband emission-line surveys as well as upcoming large spectroscopic surveys including Euclid and WFIRST.

  15. Classification of galaxy type from images using Microsoft R Server

    Science.gov (United States)

    de Vries, Andrie

    2017-06-01

    Many astronomers working in the field of AstroInformatics write code as part of their work. Although the programming language of choice is Python, a small number (8%) use R. R has its specific strengths in the domain of statistics, and is often viewed as limited in the size of data it can handle. However, Microsoft R Server is a product that removes these limitations by being able to process much larger amounts of data. I present some highlights of R Server, by illustrating how to fit a convolutional neural network using R. The specific task is to classify galaxies, using only images extracted from the Sloan Digital Skyserver.

  16. The effect of host cluster gravitational tidal forces on the internal dynamics of spiral galaxies

    Science.gov (United States)

    Mayer, Alexander

    2013-04-01

    New empirical observation by Bidin, Carraro, Mendez & Smith finds ``a lack of dark matter in the Solar neighborhood" (2012 ApJ 751, 30). This, and the discovery of a vast polar structure of Milky Way satellites by Pawlowski, Pflamm-Altenburg & Kroupa (2012 MNRAS 423, 1109), conflict with the prevailing interpretation of the measured Galactic rotation curve. Simulating the dynamical effects of host cluster tidal forces on galaxy disks reveals radial migration in a spiral structure and an orbital velocity that accelerates with increasing galactocentric radial coordinate. A virtual ``toy model,'' which is based on an Earth-orbiting system of particles and is physically realizable in principle, is available at GravitySim.net. Given the perturbing gravitational effect of the host cluster on a spiral galaxy disk and that a similar effect does not exist for the Solar System, the two systems represent distinct classes of gravitational dynamical systems. The observed `flat' and accelerating rotation curves of spiral galaxies can be attributed to gravitational interaction with the host cluster; no `dark matter halo' is required to explain the observable.

  17. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi [Tsinghua Center for Astrophysics, Department of Physics, Tsinghua University, Beijing 100084 (China); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  18. Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ˜ 0.5

    Science.gov (United States)

    Wylezalek, Dominika; Zakamska, Nadia L.; Liu, Guilin; Obied, Georges

    2016-03-01

    Luminous type-2 quasars in which the glow from the central black hole is obscured by dust are ideal targets for studying their host galaxies and the quasars' effect on galaxy evolution. Such feedback appears ubiquitous in luminous obscured quasars where high-velocity-ionized nebulae have been found. We present rest-frame yellow-band (˜5000 Å) observations using the Hubble Space Telescope (HST) for a sample of 20 luminous quasar host galaxies at 0.2 host galaxy observations with geometric measurements of quasar illumination using blue-band HST observations and [O III] integral field unit observations probing the quasar winds. The HST images reveal bright merger signatures in about half the galaxies; a significantly higher fraction than in comparison inactive ellipticals. We show that the host galaxies are primarily bulge-dominated, with masses close to M*, but belong to host galaxies' high star formation rates and bright merger signatures, we suggest that this low-redshift outbreak of luminous quasar activity is triggered by recent minor mergers. Combining these novel observations, we present new quasar unification tests, which are in agreement with expectations of the orientation-based unification model for quasars.

  19. From Enigma to Tool: Gamma-Ray Burst Reveals Secrets of Host Galaxy

    Science.gov (United States)

    2001-05-01

    Five years ago, astronomers knew almost nothing about Gamma Ray Bursts. Now, a team of observers using the National Science Foundation's Very Large Array (VLA) radio telescope has used a gamma-ray burst as a powerful tool to unveil the nature of the galaxy in which it occurred, more than 7 billion light-years away. VLA Images of GRB980703 Host Galaxy "We believe that gamma-ray bursts may become one of the best available tools for studying the history of star formation in the universe," said Edo Berger, a graduate student at Caltech. Berger worked with Caltech astronomy professor Shri Kulkarni and Dale Frail, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, to study a gamma-ray burst first seen on July 3, 1998. The astronomers presented their results at the American Astronomical Society's meeting in Pasadena, CA. "For the first time, we've seen the host galaxy of a gamma-ray burst with a radio telescope," Berger said. "Previously, gamma-ray-burst host galaxies have been seen with optical telescopes, but detecting this galaxy with a radio telescope has given us new clues about the nature of the galaxy itself -- clues we couldn't have gotten any other way," he added. For example, based on optical-telescope studies, astronomers estimated that new stars are forming in the host galaxy at the rate of about the mass equivalent of 20 suns per year. However, data from the radio observations show that the actual star-formation rate is 25 times greater -- the mass equivalent of 500 suns per year. "With the VLA, we are seeing the entire region of star formation in this galaxy, including the areas so dusty that visible light can't get out," said Frail. Gamma-ray bursts are the most powerful explosions since the Big Bang. First discovered in 1967 by a satellite launched to monitor compliance with the atmospheric nuclear test ban treaty, gamma-ray bursts remained one of astronomy's premier mysteries for 30 years. For three decades

  20. MORFOMETRYKA—A NEW WAY OF ESTABLISHING MORPHOLOGICAL CLASSIFICATION OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, F. [IMEF—FURG, Rio Grande, RS (Brazil); Carvalho, R. R. de; Trevisan, M., E-mail: fabricio@ferrari.pro.br [INPE/MCT, Divisão de Astrofi´sica, S. J. dos Campos (Brazil)

    2015-11-20

    We present an extended morphometric system to automatically classify galaxies from astronomical images. The new system includes the original and modified versions of the CASGM coefficients (Concentration C{sub 1}, Asymmetry A{sub 3}, and Smoothness S{sub 3}), and the new parameters entropy, H, and spirality σ{sub ψ}. The new parameters A{sub 3}, S{sub 3}, and H are better to discriminate galaxy classes than A{sub 1}, S{sub 1}, and G, respectively. The new parameter σ{sub ψ} captures the amount of non-radial pattern on the image and is almost linearly dependent on T-type. Using a sample of spiral and elliptical galaxies from the Galaxy Zoo project as a training set, we employed the Linear Discriminant Analysis (LDA) technique to classify EFIGI (Baillard et al. 4458 galaxies), Nair and Abraham (14,123 galaxies), and SDSS Legacy (779,235 galaxies) samples. The cross-validation test shows that we can achieve an accuracy of more than 90% with our classification scheme. Therefore, we are able to define a plane in the morphometric parameter space that separates the elliptical and spiral classes with a mismatch between classes smaller than 10%. We use the distance to this plane as a morphometric index (M{sub i}) and we show that it follows the human based T-type index very closely. We calculate morphometric index M{sub i} for ∼780k galaxies from SDSS Legacy Survey–DR7. We discuss how M{sub i} correlates with stellar population parameters obtained using the spectra available from SDSS–DR7.

  1. Rapidly growing black holes and host galaxies in the distant Universe from the Herschel Radio Galaxy Evolution Project

    NARCIS (Netherlands)

    Drouart, G.; De Breuck, C.; Vernet, J.; Seymour, N.; Lehnert, M.; Barthel, P.; Bauer, F. E.; Ibar, E.; Galametz, A.; Haas, M.; Hatch, N.; Mullaney, J. R.; Nesvadba, N.; Rocca-Volmerange, B.; Röttgering, H. J. A.; Stern, D.; Wylezalek, D.

    2014-01-01

    We present results from a comprehensive survey of 70 radio galaxies at redshifts 1 2.5 are higher than the sSFR of typical star forming galaxies over the same redshift range, but are similar or perhaps lower than the galaxy population for radio galaxies at z<2.5. By comparing the sSFR and the

  2. Using diffusion k-means for simple stellar population modeling of low S/N quasar host galaxy spectra

    Science.gov (United States)

    Mosby, Gregory; Tremonti, Christina A.; Hooper, Eric; Wolf, Marsha J.; Sheinis, Andrew; Richards, Joseph

    2016-01-01

    Quasar host galaxies (QHGs) represent a unique stage in galaxy evolution that can provide a glimpse into the relationship between an active supermassive black hole (SMBH) and its host galaxy. However, observing the hosts of high luminosity, unobscured quasars in the optical is complicated by the large ratio of quasar to host galaxy light. One strategy in optical spectroscopy is to use offset longslit observations of the host galaxy. This method allows the centers of QHGs to be analyzed apart from other regions of their host galaxies. But light from the accreting black hole's point spread function still enters the host galaxy observations, and where the contrast between the host and intervening quasar light is favorable, the host galaxy is faint, producing low signal-to-noise (S/N) data. This stymies traditional stellar population methods that might rely on high S/N features in galaxy spectra to recover key galaxy properties like its star formation history (SFH). In response to this challenge, we have developed a method of stellar population modeling using diffusion k-means (DFK) that can recover SFHs from rest frame optical data with S/N ~ 5 Å^-1. Specifically, we use DFK to cultivate a reduced stellar population basis set. This DFK basis set of four broad age bins is able to recover a range of SFHs. With an analytic description of the seeing, we can use this DFK basis set to simultaneously model the SFHs and the intervening quasar light of QHGs as well. We compare the results of this method with previous techniques using synthetic data and find that our new method has a clear advantage in recovering SFHs from QHGs. On average, the DFK basis set is just as accurate and decisively more precise. This new technique could be used to analyze other low S/N galaxy spectra like those from higher redshift or integral field spectroscopy surveys.This material is based upon work supported by the National Science Foundation under grant no. DGE -0718123 and the Advanced

  3. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Science.gov (United States)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})˜ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  4. Stellar Photometric Structures of the Host Galaxies of Nearby Type 1 Active Galactic Nuclei

    Science.gov (United States)

    Kim, Minjin; Ho, Luis C.; Peng, Chien Y.; Barth, Aaron J.; Im, Myungshin

    2017-10-01

    We present detailed image analysis of rest-frame optical images of 235 low-redshift (z ≲ 0.35) Type 1 active galactic nuclei (AGNs) observed with the Hubble Space Telescope. The high-resolution images enable us to perform rigorous two-dimensional image modeling to decouple the luminous central point source from the host galaxy, which, when warranted, is further decomposed into its principal structural components (bulge, bar, and disk). In many cases, care must be taken to account for structural complexities such as spiral arms, tidal features, and overlapping or interacting companion galaxies. We employ Fourier modes to characterize the degree of asymmetry of the light distribution of the stars as a quantitative measure of morphological distortion due to interactions or mergers. We examine the dependence of the physical parameters of the host galaxies on the properties of the AGNs, namely, radio-loudness and the width of the broad emission lines. In accordance with previous studies, narrow-line (Hβ FWHM ≤ 2000 km s-1) Type 1 AGNs, in contrast to their broad-line (Hβ FWHM > 2000 km s-1) counterparts, are preferentially hosted in later-type, lower-luminosity galaxies, which have a higher incidence of pseudo-bulges, are more frequently barred, and are less morphologically disturbed. This suggests that narrow-line Type 1 AGNs experienced a more quiescent evolutionary history driven primarily by internal secular evolution instead of external dynamical perturbations. The fraction of AGN hosts showing merger signatures is larger for more luminous sources. Radio-loud AGNs generally preferentially live in earlier-type (bulge-dominated), more massive hosts, although a minority of them appear to contain a significant disk component. We do not find convincing evidence for enhanced merger signatures in the radio-loud population. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute

  5. Quasar outflows at z ≥ 6: the impact on the host galaxies

    Science.gov (United States)

    Barai, Paramita; Gallerani, Simona; Pallottini, Andrea; Ferrara, Andrea; Marconi, Alessandro; Cicone, Claudia; Maiolino, Roberto; Carniani, Stefano

    2018-01-01

    We investigate quasar outflows at z ≥ 6 by performing zoom-in cosmological hydrodynamical simulations. By employing the smoothed particle hydrodynamics code GADGET-3, we zoom in the 2R200 region around a 2 × 1012 M⊙ halo at z = 6, inside a (500 Mpc)3 comoving volume. We compare the results of our active galactic nuclei (AGN) runs with a control simulation in which only stellar/SN feedback is considered. Seeding 105 M⊙ black holes (BHs) at the centres of 109 M⊙ haloes, we find the following results. BHs accrete gas at the Eddington rate over z = 9-6. At z = 6, our most-massive BH has grown to MBH = 4 × 109 M⊙. Fast (vr > 1000 km s-1), powerful (\\dot{M}_out ˜ 2000 M_{⊙} yr-1) outflows of shock-heated low-density gas form at z ∼ 7, and propagate up to hundreds kpc. Star formation is quenched over z = 8-6, and the total star formation rate (SFR surface density near the galaxy centre) is reduced by a factor of 5 (1000). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at z = 6. The inflowing gas mass fraction is reduced by ∼ 12 per cent, the high-density gas fraction is lowered by ∼ 13 per cent, and ∼ 20 per cent of the gas outflows at a speed larger than the escape velocity (500 km s-1). We conclude that quasar-host galaxies at z ≥ 6 are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.

  6. A tale of two feedbacks: Star formation in the host galaxies of radio AGNs

    Energy Technology Data Exchange (ETDEWEB)

    Karouzos, Marios; Im, Myungshin; Jeon, Yiseul; Kim, Ji Hoon [CEOU-Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Trichas, Markos [Airbus Defence and Space, Gunnels Wood Road, Stevenage SG1 2AS (United Kingdom); Goto, Tomo [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Malkan, Matt [Division of Astronomy and Astrophysics, 3-714 UCLA, CA 90095-1547 (United States); Ruiz, Angel [Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, 411 007 Pune (India); Lee, Hyung Mok; Kim, Seong Jin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Gwanak-gu, Seoul (Korea, Republic of); Oi, Nagisa; Matsuhara, Hideo; Takagi, Toshinobu; Murata, K.; Wada, Takehiko; Wada, Kensuke [Institute of Space and Astronautical Science, JAXA, Yoshino-dai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Shim, Hyunjin [Department of Earth Science Education, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hanami, Hitoshi [Physics Section, Faculty of Humanities, Iwate University, Ueda 3 chome, 18-34 Morioka, Morioka, Iwate 020-8550 (Japan); Serjeant, Stephen; White, Glenn J., E-mail: mkarouzos@astro.snu.ac.kr [Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes (United Kingdom); and others

    2014-04-01

    Several lines of argument support the existence of a link between activity at the nuclei of galaxies, in the form of an accreting supermassive black hole, and star formation activity in these galaxies. Radio jets have long been argued to be an ideal mechanism that allows active galactic nuclei (AGNs) to interact with their host galaxies and affect star formation. We use a sample of radio sources in the North Ecliptic Pole (NEP) field to study the nature of this putative link, by means of spectral energy distribution (SED) fitting. We employ the excellent spectral coverage of the AKARI infrared space telescope and the rich ancillary data available in the NEP to build SEDs extending from UV to far-IR wavelengths. We find a significant AGN component in our sample of relatively faint radio sources (host galaxy, independent of the radio luminosity. In contrast, for narrow redshift and AGN luminosity ranges, we find that increasing radio luminosity leads to a decrease in the specific star formation rate. The most radio-loud AGNs are found to lie on the main sequence of star formation for their respective redshifts. For the first time, we potentially see such a two-sided feedback process in the same sample. We discuss the possible suppression of star formation, but not total quenching, in systems with strong radio jets, that supports the maintenance nature of feedback from radio AGN jets.

  7. A Compact Group of Galaxies at z = 2.48 Hosting an AGN-driven Outflow

    Science.gov (United States)

    Shih, Hsin-Yi; Stockton, Alan

    2015-12-01

    We present observations of a remarkable compact group of galaxies at z = 2.48. Four galaxies, all within 40 kpc of each other, surround a powerful high-redshift radio source. This group comprises two compact red passive galaxies and a pair of merging galaxies. One of the red galaxies, with an apparent stellar mass of 3.6 × 1011M⊙ and an effective radius of 470 pc, is one of the most extreme examples of a massive quiescent compact galaxy found so far. One of the pair of merging galaxies hosts the active galactic nucleus (AGN) producing the large powerful radio structure. The merger is massive and enriched, consistent with the mass-metallicity relation expected at this redshift. Close to the merging nuclei, the emission lines exhibit broad and asymmetric profiles that suggest outflows powered either by a very young expanding radio jet or by AGN radiation. At ≳50 kpc from the system, we found a fainter extended-emission region that may be a part of a radio-jet-driven outflow. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The work is also based, in part, on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan, and on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  8. Detailed afterglow modelling and host galaxy properties of the dark GRB 111215A

    DEFF Research Database (Denmark)

    Horst, A. J. van der; Levan, A. J.; Pooley, G. G.

    2015-01-01

    , with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory. We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimeter observations from the literature to perform broadband modeling, and determined the macro......- and microphysical parameters of the GRB blast wave. By combining the broadband modeling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark...

  9. Can supermassive black holes influence the evolution of their host galaxies?

    Science.gov (United States)

    Tombesi, F.; Cappi, M.; Reeves, J.; Braito, V.; Veilleux, S.; Reynolds, C.; Lobban, A.

    2016-06-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this "quasar mode" feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in an ultraluminous infrared galaxy and its connection with a large-scale molecular outflow observed in the IR with Herschel, suggesting a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, suggest that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes, to investigate the possible acceleration mechanisms and dynamics of these winds. XMM-Newton provided a fundamental contribution to these studies and it will still provide the highest effective area in the critical Fe K band of the spectrum until the launch of Athena. Very important improvements are expected from the high energy resolution of the Hitomi X-ray Observatory.

  10. The host galaxies of ultra hard X-ray selected AGN

    Science.gov (United States)

    Koss, Michael J.

    One of the great mysteries surrounding active galactic nuclei (AGN) is their triggering mechanism. Since the discovery that almost all massive galaxies host nuclear supermassive black holes, it has become clear that a trigger mechanism is required to 'turn on' and continue to fuel the central black hole. While it is established that accretion processes are responsible for the energy emitted, the source of the accreting material is still controversial. Furthermore, the energy input from phases of black hole growth is thought to be a key regulator in the formation of galaxies and the establishment of various scaling relations. Theorists often invoke galaxy mergers as the violent mechanism to drive gas into the central regions and ignite luminous quasars, but among more common moderate luminosity AGN, there has been great controversy whether secular processes or mergers dominate AGN fueling. A survey in the ultra hard X-ray band (14--195 keV) is an important new way to answer the fundamental question of AGN fueling. This method is independent of selection effects such as dust extinction and obscuration that plague surveys at other wavelengths because of the ability of the primary continuum to easily pass through large columns of obscuring gas and dust (2 keV) imaging.

  11. Supermassive black holes and their host galaxies. I. Bulge luminosities from dedicated near-infrared data

    Energy Technology Data Exchange (ETDEWEB)

    Läsker, Ronald; Van de Ven, Glenn [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Ferrarese, Laura, E-mail: laesker@mpia.de [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E2E7 (Canada)

    2014-01-01

    In an effort to secure, refine, and supplement the relation between central supermassive black hole masses, M {sub •}, and the bulge luminosities of their host galaxies, L {sub bul}, we obtained deep, high spatial resolution K-band images of 35 nearby galaxies with securely measured M {sub •}, using the wide-field WIRCam imager at the Canada-France-Hawaii-Telescope. A dedicated data reduction and sky subtraction strategy was adopted to estimate the brightness and structure of the sky, a critical step when tracing the light distribution of extended objects in the near-infrared. From the final image product, bulge and total magnitudes were extracted via two-dimensional profile fitting. As a first order approximation, all galaxies were modeled using a simple Sérsic-bulge+exponential-disk decomposition. However, we found that such models did not adequately describe the structure that we observed in a large fraction of our sample galaxies which often include cores, bars, nuclei, inner disks, spiral arms, rings, and envelopes. In such cases, we adopted profile modifications and/or more complex models with additional components. The derived bulge magnitudes are very sensitive to the details and number of components used in the models, although total magnitudes remain almost unaffected. Usually, but not always, the luminosities and sizes of the bulges are overestimated when a simple bulge+disk decomposition is adopted in lieu of a more complex model. Furthermore, we found that some spheroids are not well fit when the ellipticity of the Sérsic model is held fixed. This paper presents the details of the image processing and analysis, while we discuss how model-induced biases and systematics in bulge magnitudes impact the M {sub •}-L {sub bul} relation in a companion paper.

  12. Challenges And Results of the Applications of Fuzzy Logic in the Classification of Rich Galaxy Clusters

    Science.gov (United States)

    Girola Schneider, R.

    2017-07-01

    The fuzzy logic is a branch of the artificial intelligence founded on the concept that everything is a matter of degree. It intends to create mathematical approximations on the resolution of certain types of problems. In addition, it aims to produce exact results obtained from imprecise data, for which it is particularly useful for electronic and computer applications. This enables it to handle vague or unspecific information when certain parts of a system are unknown or ambiguous and, therefore, they cannot be measured in a reliable manner. Also, when the variation of a variable can produce an alteration on the others The main focus of this paper is to prove the importance of these techniques formulated from a theoretical analysis on its application on ambiguous situations in the field of the rich clusters of galaxies. The purpose is to show its applicability in the several classification systems proposed for the rich clusters, which are based on criteria such as the level of richness of the cluster, the distribution of the brightest galaxies, whether there are signs of type-cD galaxies or not or the existence of sub-clusters. Fuzzy logic enables the researcher to work with "imprecise" information implementing fuzzy sets and combining rules to define actions. The control systems based on fuzzy logic join input variables that are defined in terms of fuzzy sets through rule groups that produce one or several output values of the system under study. From this context, the application of the fuzzy logic's techniques approximates the solution of the mathematical models in abstractions about the rich galaxy cluster classification of physical properties in order to solve the obscurities that must be confronted by an investigation group in order to make a decision.

  13. STELLAR POPULATIONS OF ULTRAVIOLET-SELECTED ACTIVE GALACTIC NUCLEI HOST GALAXIES AT z {approx} 2-3

    Energy Technology Data Exchange (ETDEWEB)

    Hainline, Kevin N.; Shapley, Alice E. [Department of Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90024 (United States); Greene, Jenny E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Steidel, Charles C. [Department of Astronomy, California Institute of Technology, MS 105-24, Pasadena, CA 91125 (United States); Reddy, Naveen A. [Department of Astronomy, University of California, Riverside, Riverside, CA 92521 (United States); Erb, Dawn K. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201 (United States)

    2012-11-20

    We use stellar population synthesis modeling to analyze the host-galaxy properties of a sample of 33 UV-selected, narrow-lined active galactic nuclei (AGNs) at z {approx} 2-3. In order to quantify the contribution of AGN emission to host galaxy broadband spectral energy distributions (SEDs), we use the subsample of 11 AGNs with photometric coverage spanning from rest-frame UV through near-IR wavelengths. Modeling the SEDs of these objects with a linear combination of stellar population and AGN templates, we infer the effect of the AGN on derived stellar population parameters. We also estimate the typical bias in derived stellar populations for AGNs lacking rest-frame near-IR wavelength coverage, and develop a method for inferring the true host-galaxy properties. We compare AGN host-galaxy properties to those of a sample of UV-selected, star-forming non-AGNs in the same redshift range, including a subsample carefully matched in stellar mass. Although the AGNs have higher masses and star-formation rates than the full non-active sample, their stellar population properties are consistent with those of the mass-selected sample, suggesting that the presence of an AGN is not connected with the cessation of star formation activity in star-forming galaxies at z {approx} 2-3. We suggest that a correlation between M {sub BH} and galaxy stellar mass is already in place at this epoch. Assuming a roughly constant Eddington ratio for AGNs at all stellar masses, we are unable to detect the AGNs in low-mass galaxies because they are simply too faint.

  14. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  15. THE ACS VIRGO CLUSTER SURVEY. XVII. THE SPATIAL ALIGNMENT OF GLOBULAR CLUSTER SYSTEMS WITH EARLY-TYPE HOST GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qiushi; Peng, Eric W. [Department of Astronomy, Peking University, Beijing 100871 (China); Blakeslee, John P.; Cote, Patrick; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Jordan, Andres [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Mei, Simona [University of Paris 7 Denis Diderot, F-75205 Paris Cedex 13 (France); West, Michael J., E-mail: peng@pku.edu.cn [Maria Mitchell Observatory, 4 Vestal Street, Nantucket, MA 02554 (United States)

    2013-06-01

    We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation ({epsilon} > 0.2) and intermediate to high luminosities (M{sub z} < -19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of being more strongly associated with disks rather than bulges. Surprisingly, we also find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and that the present-day major axis is an indicator of the preferred merging axis.

  16. Radio Galaxy Zoo: Compact and extended radio source classification with deep learning

    Science.gov (United States)

    Lukic, V.; Brüggen, M.; Banfield, J. K.; Wong, O. I.; Rudnick, L.; Norris, R. P.; Simmons, B.

    2018-01-01

    Machine learning techniques have been increasingly useful in astronomical applications over the last few years, for example in the morphological classification of galaxies. Convolutional neural networks have proven to be highly effective in classifying objects in image data. The current work aims to establish when multiple components are present, in the astronomical context of synthesis imaging observations of radio sources. To this effect, we design a convolutional neural network to differentiate between different morphology classes using sources from the Radio Galaxy Zoo (RGZ) citizen science project. In this first step, we focus on exploring the factors that affect the performance of such neural networks, such as the amount of training data, number and nature of layers and the hyperparameters. We begin with a simple experiment in which we only differentiate between two extreme morphologies, using compact and multiple component extended sources. We found that a three convolutional layer architecture yielded very good results, achieving a classification accuracy of 97.4% on a test data set. The same architecture was then tested on a four-class problem where we let the network classify sources into compact and three classes of extended sources, achieving a test accuracy of 93.5%. The best-performing convolutional neural network setup has been verified against RGZ Data Release 1 where a final test accuracy of 94.8% was obtained, using both original and augmented images. The use of sigma clipping does not offer a significant benefit overall, except in cases with a small number of training images.

  17. Revealing the AGN-Host Galaxy Connection: Preliminary Results from an Arecibo Survey of HI Absorption in AGN

    Science.gov (United States)

    Jones, Kristen M.

    2018-01-01

    The presence of an Active Galactic Nucleus (AGN) can have an extensive effect on a host galaxy, most notably through powerful outflows or jets that it produces. Such outflows often deposit kinetic energy into the interstellar medium of the host galaxy at sub-kpc, kpc, and 10s of kpc scales. While this can ionize the gaseous material, studies of absorption of neutral hydrogen (HI) have also detected kinematic outflows with velocities ranging from 100s to 1000s of km/s. Such outflows can be difficult to detect due to the diffuse nature of the HI gas, especially in galaxies with low radio brightnesses. The sensitivity of the Arecibo Observatory 305m, however, makes such a study feasible. We present preliminary results of a survey of AGN-dominated sources in the Arecibo sky that has revealed complex HI absorption structures in several objects, revealing complex HI absorption structures in several objects.

  18. Is Black Hole Growth a Universal Process? Exploring Selection Effects in Measurements of AGN Accretion Rates and Host Galaxies.

    Science.gov (United States)

    Jones, Mackenzie

    2018-01-01

    At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.

  19. Wide field imaging - I. Applications of neural networks to object detection and star/galaxy classification

    Science.gov (United States)

    Andreon, S.; Gargiulo, G.; Longo, G.; Tagliaferri, R.; Capuano, N.

    2000-12-01

    Astronomical wide-field imaging performed with new large-format CCD detectors poses data reduction problems of unprecedented scale, which are difficult to deal with using traditional interactive tools. We present here NExt (Neural Extractor), a new neural network (NN) based package capable of detecting objects and performing both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first distinguished from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold; they are then classified as stars or as galaxies through diagnostic diagrams having variables chosen according to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of `what an object is' (i.e. it keeps all structures composed of more than one pixel) and performs the detection via an unsupervised NN, approaching detection as a clustering problem that has been thoroughly studied in the artificial intelligence literature. The first part of the NExt procedure consists of an optimal compression of the redundant information contained in the pixels via a mapping from pixel intensities to a subspace individualized through principal component analysis. At magnitudes fainter than the completeness limit, stars are usually almost indistinguishable from galaxies, and therefore the parameters characterizing the two classes do not lie in disconnected subspaces, thus preventing the use of unsupervised methods. We therefore adopted a supervised NN (i.e. a NN that first finds the rules to classify objects from examples and then applies them to the whole data set). In practice, each object is classified depending on its membership of the regions mapping the input feature space in the training set. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features

  20. A glimpse at quasar host galaxy far-UV emission using damped Lyα's as natural coronagraphs

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zheng; Fan, Xiaohui; Wang, Ran; McGreer, Ian, E-mail: caize@arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Noterdaeme, Pasquier; Finley, Hayley; Petitjean, Patrick [Institut d' Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Carithers, Bill [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA (United States); Bian, Fuyan [Research School of Astronomy and Astrophysics, Australian National University, Canberra, Weston Creek, ACT, 2611 (Australia); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona (Spain); Pâris, Isabelle [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Zakamska, Nadia L. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Ge, Jian [Department of Astronomy, University of Florida, Gainesville, FL (United States); Slosar, Anze [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-10-01

    In merger-driven models of massive galaxy evolution, the luminous quasar phase is expected to be accompanied by vigorous star formation in quasar host galaxies. In this paper, we use high column density damped Lyα (DLA) systems along quasar sight lines as natural coronagraphs to directly study the far-UV (FUV) radiation from the host galaxies of luminous background quasars. We have stacked the spectra of ∼2000 DLA systems (N {sub H} {sub I} > 10{sup 20.6} cm{sup –2}) with a median absorption redshift (z) = 2.6 selected from quasars observed in the SDSS-III Baryon Oscillation Spectroscopic Survey. We detect residual flux in the dark troughs of the composite DLA spectra. The level of this residual flux significantly exceeds systematic errors in the Sloan Digital Sky Survey fiber sky subtraction; furthermore, the residual flux is strongly correlated with the continuum luminosity of the background quasar, while uncorrelated with DLA column density or metallicity. We conclude that the flux could be associated with the average FUV radiation from the background quasar host galaxies (with medium redshift (z) = 3.1) that is not blocked by the intervening DLA. Assuming that all of the detected flux originates from quasar hosts, for the highest quasar luminosity bin ((L) = 2.5 × 10{sup 13} L {sub ☉}), the host galaxy has an FUV intensity of 1.5 ± 0.2 × 10{sup 40} erg s{sup –1} Å{sup –1}; this corresponds to an unobscured UV star formation rate of 9 M {sub ☉} yr{sup –1}.

  1. Supermassive black holes in disc-dominated galaxies outgrow their bulges and co-evolve with their host galaxies

    Science.gov (United States)

    Simmons, B. D.; Smethurst, R. J.; Lintott, C.

    2017-09-01

    The deep connection between galaxies and their supermassive black holes is central to modern astrophysics and cosmology. The observed correlation between galaxy and black hole mass is usually attributed to the contribution of major mergers to both. We make use of a sample of galaxies whose disc-dominated morphologies indicate a major-merger-free history and show that such systems are capable of growing supermassive black holes at rates similar to quasars. Comparing black hole masses to conservative upper limits on bulge masses, we show that the black holes in the sample are typically larger than expected if processes creating bulges are also the primary driver of black hole growth. The same relation between black hole and total stellar mass of the galaxy is found for the merger-free sample as well as a sample that has experienced substantial mergers, indicating that major mergers do not play a significant role in controlling the co-evolution of galaxies and black holes. We suggest that more fundamental processes that contribute to galaxy assembly are also responsible for black hole growth.

  2. Co-evolution of Massive Black Holes and Their Host Galaxies

    Science.gov (United States)

    Chen, Y. M.

    2010-07-01

    A scenario of co-evolution of supermassive black holes (SMBHs) and galaxies has been clearly conducted by the important evidence from observational results of quasar host galaxies and the relation between spheroid and SMBH mass. There are a plenty of unresolved problems and questions, some being basic, to be addressed in this scenario. The main goal of the present thesis is focusing on the mysterious scenario including growth of primordial black holes, cosmological evolution of spins and duty cycle of SMBHs, and interaction between the SMBH activity and star formation in galaxies from low to high redshifts. We review the main progress of this field over the past decade since the discovery of Magorrian relation and present comments on some questions in light of our view of points. The key questions to be addressed in this thesis work are: (1) how does the fast growth of primordial black holes influence their evolution? (2) what is the equation to describe the co-evolution of SMBHs and galaxies? (3) what is the mechanism to control the co-evolution? (4) how to transport the fueling gas from kpc scale to the center? It has been suggested that fast growth of primordial black holes via super-Eddington accretion is a promising way to form SMBHs in high redshift universe. Neutrino cooling has been employed and expedites the growth. We consider the Compton heating of the surroundings of the primordial black holes. We find that the realistic accretion rate is only a few percent of the Eddington rate, and the accretion is episodic. It implies that the fast growth via super-Eddington is not feasible. These conclusions have been confirmed by the detailed numerical simulations of Milosavljevic et al. (2008). The difficulties of the fast growth via accretion of baryon particles make the formation of SMBHs elusive in high redshift universe. We developed a new formulation to calculate the duty cycle of SMBHs based on the Soltan argument. We show it can be expressed by the mass

  3. STAR FORMATION IN LINER HOST GALAXIES AT z {approx} 0.3

    Energy Technology Data Exchange (ETDEWEB)

    Tommasin, Silvia; Netzer, Hagai; Sternberg, Amiel [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Nordon, Raanan; Lutz, Dieter; Berta, Stefano; Magnelli, Benjamin [MPE, Postfach 1312, 85741 Garching (Germany); Bongiorno, Angela [INAF-Oservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone (Roma) (Italy); Le Floc' h, Emeric; Riguccini, Laurie [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat 709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Pozzi, Francesca [Dipartimento di Astronomia, Universita degli Studi di Bologna, via Ranzani 1, 40127 Bologna (Italy)

    2012-07-10

    We present the results of a Herschel-PACS study of a sample of 97 low-ionization nuclear emission-line regions (LINERs) at redshift z {approx} 0.3 selected from the zCOSMOS survey. Of these sources, 34 are detected in at least one PACS band, enabling reliable estimates of the far-infrared L{sub FIR} luminosities, and a comparison to the FIR luminosities of local LINERs. Many of our PACS-detected LINERs are also UV sources detected by GALEX. Assuming that the FIR is produced in young dusty star-forming regions, the typical star formation rates (SFRs) for the host galaxies in our sample are {approx}10 M{sub Sun} yr{sup -1}, 1-2 orders of magnitude larger than in many local LINERs. Given stellar masses inferred from optical/NIR photometry of the (unobscured) evolved stellar populations, we find that the entire sample lies close to the star-forming 'main sequence' for galaxies at redshift 0.3. For young star-forming regions, the H{alpha}- and UV-based estimates of the SFRs are much smaller than the FIR-based estimates, by factors {approx}30, even assuming that all of the H{alpha} emission is produced by O-star ionization rather than by the active galactic nuclei (AGNs). These discrepancies may be due to large (and uncertain) extinctions toward the young stellar systems. Alternatively, the H{alpha} and UV emissions could be tracing residual star formation in an older, less obscured population with decaying star formation. We also compare L{sub SF} and L(AGN) in local LINERs and in our sample. Finally, we comment on the problematic use of several line diagnostic diagrams in cases with an estimated obscuration similar to that in the sample under study.

  4. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  5. Spatially Resolved Patchy Lyα Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Science.gov (United States)

    Bayliss, Matthew B.; Sharon, Keren; Acharyya, Ayan; Gladders, Michael D.; Rigby, Jane R.; Bian, Fuyan; Bordoloi, Rongmon; Runnoe, Jessie; Dahle, Hakon; Kewley, Lisa; Florian, Michael; Johnson, Traci; Paterno-Mahler, Rachel

    2017-08-01

    We report the detection of extended Lyα emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Lyα in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ˜200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Lyα emission to its physical origin on one side of the host galaxy at radii ˜0.5-2 kpc from the central AGN. There are clear morphological differences between the Lyα and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Lyα, host galaxy Lyα, and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  6. Galactic-scale Feedback Observed in the 3C 298 Quasar Host Galaxy

    Science.gov (United States)

    Vayner, Andrey; Wright, Shelley A.; Murray, Norman; Armus, Lee; Larkin, James E.; Mieda, Etsuko

    2017-12-01

    We present high angular resolution multiwavelength data of the 3C 298 radio-loud quasar host galaxy (z = 1.439) taken using the W.M. Keck Observatory OSIRIS integral field spectrograph (IFS) with adaptive optics, the Atacama Large Millimeter/submillimeter Array (ALMA), the Hubble Space Telescope (HST) WFC3, and the Very Large Array (VLA). Extended emission is detected in the rest-frame optical nebular emission lines Hβ, [O III], Hα, [N II], and [S II], as well as in the molecular lines CO (J = 3‑2) and (J = 5‑4). Along the path of the relativistic jets of 3C 298, we detect conical outflows in ionized gas emission with velocities of up to 1700 {km} {{{s}}}-1 and an outflow rate of 450–1500 {M}ȯ {{yr}}-1 extended over 12 kpc. Near the spatial center of the conical outflow, CO (J = 3‑2) emission shows a molecular gas disk with a rotational velocity of ±150 {km} {{{s}}}-1 and total molecular mass ({M}{{{H}}2}) of 6.6+/- 0.36× {10}9 {M}ȯ . On the blueshifted side of the molecular disk, we observe broad extended emission that is due to a molecular outflow with a rate of 2300 {M}ȯ {{yr}}-1 and depletion timescale of 3 Myr. We detect no narrow Hα emission in the outflow regions, suggesting a limit on star formation of 0.3 {M}ȯ {{yr}}-1 {{kpc}}-2. Quasar-driven winds are evacuating the molecular gas reservoir, thereby directly impacting star formation in the host galaxy. The observed mass of the supermassive black hole is {10}9.37{--9.56} {M}ȯ , and we determine a dynamical bulge mass of {M}{bulge}=1{--}1.7× {10}10\\tfrac{R}{1.6 {kpc}} {M}ȯ . The bulge mass of 3C 298 lies 2–2.5 orders of magnitude below the expected value from the local galactic bulge—supermassive black hole mass ({M}{bulge}{--}{M}{BH}) relationship. A second galactic disk observed in nebular emission is offset from the quasar by 9 kpc, suggesting that the system is an intermediate-stage merger. These results show that galactic-scale negative feedback is occurring early in the merger

  7. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE {sup 56}Ni PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ting-Wan; Smartt, Stephen J.; Kotak, Rubina; McCrum, Matt; Fraser, Morgan [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Bresolin, Fabio; Kudritzki, Rolf-Peter [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Pastorello, Andrea [INAF-Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Valenti, Stefano [Las Cumbres Observatory Global Telescope Network, Inc., Santa Barbara, CA 93117 (United States)

    2013-02-01

    Super-luminous supernovae have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. While these extremely luminous explosions have been observed from z = 0.1 to 1.55, the closest explosions allow more detailed investigations of their host galaxies. We present a detailed analysis of the host galaxy of SN 2010gx (z = 0.23), one of the best studied super-luminous type Ic supernovae. The host is a dwarf galaxy (M{sub g} = -17.42 {+-} 0.17) with a high specific star formation rate. It has a remarkably low metallicity of 12 + log (O/H) = 7.5 {+-} 0.1 dex as determined from the detection of the [O III] {lambda}4363 line. This is the first reliable metallicity determination of a super-luminous stripped-envelope supernova host. We collected deep multi-epoch imaging with Gemini + GMOS between 240 and 560 days after explosion to search for any sign of radioactive {sup 56}Ni, which might provide further insights on the explosion mechanism and the progenitor's nature. We reach griz magnitudes of m{sub AB} {approx} 26, but do not detect SN 2010gx at these epochs. The limit implies that any {sup 56}Ni production was similar to or below that of SN 1998bw (a luminous type Ic SN that produced around 0.4 M{sub Sun} of {sup 56}Ni). The low volumetric rates of these supernovae ({approx}10{sup -4} of the core-collapse population) could be qualitatively matched if the explosion mechanism requires a combination of low-metallicity (below 0.2 Z{sub Sun }), high progenitor mass (>60 M{sub Sun }) and high rotation rate (fastest 10% of rotators).

  8. AGN-host connection at 0.5 < z < 2.5: A rapid evolution of AGN fraction in red galaxies during the last 10 Gyr

    Science.gov (United States)

    Wang, Tao; Elbaz, D.; Alexander, D. M.; Xue, Y. Q.; Gabor, J. M.; Juneau, S.; Schreiber, C.; Zheng, X.-Z.; Wuyts, S.; Shi, Y.; Daddi, E.; Shu, X.-W.; Fang, G.-W.; Huang, J.-S.; Luo, B.; Gu, Q.-S.

    2017-05-01

    We explore the dependence of the incidence of moderate-luminosity (L0.5-8 keV = 1041.9-43.7 erg s-1) active galactic nuclei (AGNs) and the distribution of their accretion rates on host color at 0.5 mass-complete parent galaxy sample down to M∗ > 1010 M⊙. We use extinction-corrected rest-frame U-V colors to divide both AGN hosts and non-AGN galaxies into red sequence (red), green valley (green), and blue cloud (blue) populations. We find that the fraction of galaxies hosting an AGN at fixed X-ray luminosity increases with stellar mass and redshift for all the three galaxy populations, independent of their colors. However, both the AGN fraction at fixed stellar mass and its evolution with redshift are clearly dependent on host colors. Most notably, red galaxies have the lowest AGN fraction ( 5%) at z 1 yet with most rapid evolution with redshift, increasing by a factor of 5 (24%) at z 2. Green galaxies exhibit the highest AGN fraction across all redshifts, which is most pronounced at z 2 with more than half of them hosting an AGN at M∗ > 1010.6 M⊙. Together with the high AGN fraction in red galaxies at z 2, this indicates that (X-ray) AGNs could be important in both transforming (quenching) star-forming galaxies into quiescent ones and subsequently maintaining their quiescence at high redshift. Furthermore, consistent with previous studies at lower redshifts, we show that the probability of hosting an AGN for the total galaxy population can be characterized by a universal Eddington ratio (as approximated by LX/M∗) distribution (p(λEdd) λEdd-0.4), which is independent on host mass. Yet consistent with their different AGN fractions, galaxies with different colors appear to also have different p(λEdd) with red galaxies exhibiting more rapid redshift evolution compared with that for green and blue galaxies. Evidence for a steeper power-law distribution of p(λEdd) in red galaxies (p(λEdd) λEdd-0.6) is also presented, though larger samples are needed to

  9. X-Ray bright active galactic nuclei in massive galaxy clusters - II. The fraction of galaxies hosting active nuclei

    DEFF Research Database (Denmark)

    Ehlert, S.; von der Linden, A.; Allen, S. W.

    2013-01-01

    regions of the clusters that is~3 times lower than the field value. This fraction increases with clustercentric distance before becoming consistent with the field at ~2.5r500. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies...

  10. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}˜ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}⊙ , a mean stellar age greater than ˜3 Gyr, and a metallicity of about 20%-100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  11. Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817

    Science.gov (United States)

    Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu; Lim, Gu; Ko, Jongwan; Shim, Hyunjin

    2017-11-01

    Recently, the optical counterpart of the gravitational-wave source GW170817 has been identified in the NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron stars (NSs). We analyze the multi-wavelength data to characterize the host galaxy property and its distance to examine if the properties of NGC 4993 are consistent with this picture. Our analysis shows that NGC 4993 is a bulge-dominated galaxy with {r}{eff}∼ 2{--}3 {kpc} and a Sérsic index of n=3{--}4 for the bulge component. The spectral energy distribution from 0.15 to 24 μm indicates that this galaxy has no significant ongoing star formation, a mean stellar mass of (0.3{--}1.2)× {10}11 {M}ȯ , a mean stellar age greater than ∼3 Gyr, and a metallicity of about 20%–100% of solar abundance. Optical images reveal dust lanes and extended features that suggest a past merging activity. Overall, NGC 4993 has characteristics of normal, but slightly disturbed elliptical galaxies. Furthermore, we derive the distance to NGC 4993 with the fundamental plane relation using 17 parameter sets of 7 different filters and the central stellar velocity dispersion from the literature, finding an angular diameter distance of 37.7 ± 8.7 Mpc. NGC 4993 is similar to some host galaxies of short gamma-ray bursts (GRBs) but much different from those of long GRBs, supporting the picture of GW170817 as a result of the merger of two NSs.

  12. Blending bias impacts the host halo masses derived from a cross-correlation analysis of bright submillimetre galaxies

    Science.gov (United States)

    Cowley, William I.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun; Wilkinson, Aaron

    2017-08-01

    Placing bright submillimetre galaxies (SMGs) within the broader context of galaxy formation and evolution requires accurate measurements of their clustering, which can constrain the masses of their host dark matter haloes. Recent work has shown that the clustering measurements of these galaxies may be affected by a 'blending bias', which results in the angular correlation function of the sources extracted from single-dish imaging surveys being boosted relative to that of the underlying galaxies. This is due to confusion introduced by the coarse angular resolution of the single-dish telescope and could lead to the inferred halo masses being significantly overestimated. We investigate the extent to which this bias affects the measurement of the correlation function of SMGs when it is derived via a cross-correlation with a more abundant galaxy population. We find that the blending bias is essentially the same as in the autocorrelation case and conclude that the best way to reduce its effects is to calculate the angular correlation function using SMGs in narrow redshift bins. Blending bias causes the inferred host halo masses of the SMGs to be overestimated by a factor of ∼6 when a redshift interval of δz = 3 is used. However, this reduces to a factor of ∼2 for δz = 0.5. The broadening of photometric redshift probability distributions with increasing redshift can therefore impart a mild halo 'downsizing' effect on to the inferred host halo masses, though this trend is not as strong as seen in recent observational studies.

  13. Detection of Lyman/alpha emission from a DLA galaxy

    DEFF Research Database (Denmark)

    Moller, P.; Fynbo, Johan Peter Uldall; Fall, S.M

    2004-01-01

    HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY......HIGH-REDSHIFT; BREAK GALAXIES; STARFORMATION; DISK GALAXIES; METAL ENRICHMENT; HOST GALAXY; ABSORPTION; ABSORBER; SYSTEMS; SPECTROSCOPY...

  14. Massive stars formed in atomic hydrogen reservoirs: H i observations of gamma-ray burst host galaxies

    DEFF Research Database (Denmark)

    Michałowski, M. J.; Gentile, G.; Hjorth, J.

    2015-01-01

    Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed to be th......Long gamma-ray bursts (GRBs), among the most energetic events in the Universe, are explosions of massive and short-lived stars, so they pinpoint locations of recent star formation. However, several GRB host galaxies have recently been found to be deficient in molecular gas (H2), believed......, implying high levels of atomic hydrogen (HI), which suggests that the connection between atomic gas and star formation is stronger than previously thought. In this case, it is possible that star formation is directly fuelled by atomic gas (or that the H1-to-H2 conversion is very efficient, which rapidly...

  15. A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: Implications for the use of GRBs as tracers of cosmic star formation

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Cenko, S. B.; Bloom, J. S.; Filippenko, A. V.; Morgan, A. N. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Hjorth, J.; Krühler, T.; Fynbo, J. P. U.; Milvang-Jensen, B. [Dark Cosmology Centre, Niels Bohr Institute, Copenhagen (Denmark); Fruchter, A.; Kalirai, J. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Silverman, J. M., E-mail: dperley@astro.caltech.edu [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2013-12-01

    We present observations and analysis of the host galaxies of 23 heavily dust-obscured gamma-ray bursts (GRBs) observed by the Swift satellite during the years 2005-2009, representing all GRBs with an unambiguous host-frame extinction of A{sub V} > 1 mag from this period. Deep observations with Keck, Gemini, Very Large Telescope, Hubble Space Telescope, and Spitzer successfully detect the host galaxies and establish spectroscopic or photometric redshifts for all 23 events, enabling us to provide measurements of the intrinsic host star formation rates, stellar masses, and mean extinctions. Compared to the hosts of unobscured GRBs at similar redshifts, we find that the hosts of dust-obscured GRBs are (on average) more massive by about an order of magnitude and also more rapidly star forming and dust obscured. While this demonstrates that GRBs populate all types of star-forming galaxies, including the most massive, luminous systems at z ≈ 2, at redshifts below 1.5 the overall GRB population continues to show a highly significant aversion to massive galaxies and a preference for low-mass systems relative to what would be expected given a purely star-formation-rate-selected galaxy sample. This supports the notion that the GRB rate is strongly dependent on metallicity, and may suggest that the most massive galaxies in the universe underwent a transition in their chemical properties ∼9 Gyr ago. We also conclude that, based on the absence of unobscured GRBs in massive galaxies and the absence of obscured GRBs in low-mass galaxies, the dust distributions of the lowest-mass and the highest-mass galaxies are relatively homogeneous, while intermediate-mass galaxies (∼10{sup 9} M {sub ☉}) have diverse internal properties.

  16. Is the metallicity of their host galaxies a good measure of the metallicity of Type Ia supernovae?

    OpenAIRE

    Bravo Guil, Eduardo; Badenes Montoliu, Carles

    2011-01-01

    The efficient use of Type Ia supernovae (SNIa) for cosmological studies requires knowledge of any parameter that can affect their luminosity in either systematic or statistical ways. Observational samples of SNIa commonly use the metallicity of the host galaxy, Zhost, as an estimator of the supernova progenitor metallicity, ZIa, that is one of the primary factors affecting SNIa magnitude. Here, we present a theoretical study of the relationship between ZIa and Zhost. We follow ...

  17. Obscured Supermassive Black Hole Growth - Connections to Host Galaxies and Evolutionary Models

    Science.gov (United States)

    DiPompeo, Michael A.; Hickox, Ryan C.; Myers, Adam D.

    2017-08-01

    A large fraction of the supermassive black hole growth in the Universe is hidden from view behind thick columns of dust. The most heavily obscured quasars can be challenging to detect even with current high energy X-ray observatories such as NuSTAR - however with infrared observations that can detect the hot nuclear dust in even the most enshrouded systems, we are now beginning to characterize large populations of these hidden monsters.With roughly half-a-million quasars selected with WISE, we have found via clustering and CMB lensing cross-correlation measurements that obscured quasars reside in dark matter halos 0.5 dex more massive than unobscured quasars. This implies that obscuration is directly linked to host galaxy properties, and not simply the dust geometry around the quasar. Using cross-correlations we accurately characterize the redshift distribution of the obscured quasar population, confirming that it peaks at z = 1, and using long-wavelength bands find that it has a similar bolometric luminosity distribution as unobscured quasars as well. Finally, using a simple model based on empirical relationships between halo, stellar, and black hole masses, we show that an evolutionary sequence from obscured to unobscured quasar, combined with a flux limit, can predict the observed halo mass differences.Studies of the most obscured quasars provide valuable insights on the rapid growth of the most massive black holes in the Universe, and motivates future work with the next generation high energy observatories such as eROSITA, Athena, and Lynx.

  18. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third Laser Interferometer Gravitational Wave Observatory (LIGO) detections (36-29 M⊙ and 32-19 M⊙) suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches ∼90 per cent at ∼0.5 kpc from the galaxy centre, compared to a benchmark value of ∼5 per cent outside the core. The predicted merger rates inside bulges is ∼60 × βIII Gpc-3 yr-1 (βIII is the Pop III binarity fraction). To match the 90 per cent credible range of LIGO merger rates, we obtain: 0.03 < βIII < 0.88. Future advances in GW observatories and the discovery of possible electromagnetic counterparts could allow the localization of such sources within their host galaxies. The preferential concentration of GW events within the bulge of galaxies would then provide an indirect proof for the existence of Pop III stars.

  19. Gravitational wave sources from Pop III stars are preferentially located within the cores of their host Galaxies

    Science.gov (United States)

    Pacucci, Fabio; Loeb, Abraham; Salvadori, Stefania

    2017-10-01

    The detection of gravitational waves (GWs) generated by merging black holes has recently opened up a new observational window into the Universe. The mass of the black holes in the first and third LIGO detections, ($36-29 \\, \\mathrm{M_{\\odot}}$ and $32-19 \\, \\mathrm{M_{\\odot}}$), suggests low-metallicity stars as their most likely progenitors. Based on high-resolution N-body simulations, coupled with state-of-the-art metal enrichment models, we find that the remnants of Pop III stars are preferentially located within the cores of galaxies. The probability of a GW signal to be generated by Pop III stars reaches $\\sim 90\\%$ at $\\sim 0.5 \\, \\mathrm{kpc}$ from the galaxy center, compared to a benchmark value of $\\sim 5\\%$ outside the core. The predicted merger rates inside bulges is $\\sim 60 \\times \\beta_{III} \\, \\mathrm{Gpc^{-3} \\, yr^{-1}}$ ($\\beta_{III}$ is the Pop III binarity fraction). To match the $90\\%$ credible range of LIGO merger rates, we obtain: $0.03 < \\beta_{III} < 0.88$. Future advances in GW observatories and the discovery of possible electromagnetic counterparts could allow the localization of such sources within their host galaxies. The preferential concentration of GW events within the bulge of galaxies would then provide an indirect proof for the existence of Pop III stars.

  20. H0LiCOW VII: cosmic evolution of the correlation between black hole mass and host galaxy luminosity

    Science.gov (United States)

    Ding, Xuheng; Treu, Tommaso; Suyu, Sherry H.; Wong, Kenneth C.; Morishita, Takahiro; Park, Daeseong; Sluse, Dominique; Auger, Matthew W.; Agnello, Adriano; Bennert, Vardha N.; Collett, Thomas E.

    2017-11-01

    Strongly lensed active galactic nuclei (AGN) provide a unique opportunity to make progress in the study of the evolution of the correlation between the mass of supermassive black holes (M_BH) and their host galaxy luminosity (Lhost). We demonstrate the power of lensing by analysing two systems for which state-of-the-art lens modelling techniques have been applied to deep Hubble Space Telescope imaging data. We use (i) the reconstructed images to infer the total and bulge luminosity of the host and (ii) published broad-line spectroscopy to estimate M_BH using the so-called virial method. We then enlarge our sample with new calibration of previously published measurements to study the evolution of the correlation out to z ∼ 4.5. Consistent with previous work, we find that without taking into account passive luminosity evolution, the data points lie on the local relation. Once the passive luminosity evolution is taken into account, we find that black holes in the more distant Universe reside in less luminous galaxies than today. Fitting this offset as M_BH/Lhost ∝ (1 + z)γ, and taking into account selection effects, we obtain γ = 0.6 ± 0.1 and 0.8 ± 0.1 for the case of M_BH-Lbulge and M_BH-Ltotal, respectively. To test for systematic uncertainties and selection effects we also consider a reduced sample that is homogeneous in data quality. We find consistent results but with considerably larger uncertainty due to the more limited sample size and redshift coverage (γ = 0.7 ± 0.4 and 0.2 ± 0.5 for M_BH-Lbulge and M_BH-Ltotal, respectively), highlighting the need to gather more high-quality data for high-redshift lensed quasar hosts. Our result is consistent with a scenario where the growth of the black hole predates that of the host galaxy.

  1. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    Science.gov (United States)

    Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.

    2017-06-01

    Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at z< 0.10. The conventional linear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.

  2. THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Hjorth, J.; Fynbo, J. P. U.; Krühler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 København Ø (Denmark); Laskar, T.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chary, R. [US Planck Data Center, MS220-6, Pasadena, CA 91125 (United States); Postigo, A. de Ugarte [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Schulze, S., E-mail: dperley@dark-cosmology.dk [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago 22 (Chile)

    2016-01-20

    We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.

  3. High-mass X-ray binaries and the cosmic 21-cm signal: impact of host galaxy absorption

    Science.gov (United States)

    Das, Arpan; Mesinger, Andrei; Pallottini, Andrea; Ferrara, Andrea; Wise, John H.

    2017-07-01

    By heating the intergalactic medium (IGM) before reionization, X-rays are expected to play a prominent role in the early Universe. The cosmic 21-cm signal from this 'epoch of heating' (EoH) could serve as a clean probe of high-energy processes inside the first galaxies. Here, we improve on prior estimates of this signal by using high-resolution hydrodynamic simulations to calculate the X-ray absorption due to the interstellar medium (ISM) of the host galaxy, typically residing in haloes with mass 107.5-8.5 M⊙ at z ˜ 8-15. X-rays absorbed inside the host galaxy are unable to escape into the IGM and contribute to the EoH. We find that the X-ray opacity through these galaxies can be approximated by a metal-free ISM with a typical column density of log [N_{H I}/cm^{-2}] = 21.4^{+0.40}_{-0.65}. We compute the resulting 21-cm signal by combining these ISM opacities with public spectra of high-mass X-ray binaries (thought to be important X-ray sources in the early Universe). Our results support 'standard scenarios' in which the X-ray heating of the IGM is inhomogeneous, and occurs before the bulk of reionization. The large-scale (k ˜ 0.1 Mpc-1) 21-cm power reaches a peak of ≈100 mK2 at z ˜ 10-15, with the redshift depending on the cosmic star formation history. Our main results can be reproduced by approximating the X-ray emission from high-mass X-ray binaries by a power law with energy index α ≈ 1, truncated at energies below 0.5 keV.

  4. Evaluation of host and viral factors associated with severe dengue based on the 2009 WHO classification.

    Science.gov (United States)

    Pozo-Aguilar, Jorge O; Monroy-Martínez, Verónica; Díaz, Daniel; Barrios-Palacios, Jacqueline; Ramos, Celso; Ulloa-García, Armando; García-Pillado, Janet; Ruiz-Ordaz, Blanca H

    2014-12-11

    Dengue fever (DF) is the most prevalent arthropod-borne viral disease affecting humans. The World Health Organization (WHO) proposed a revised classification in 2009 to enable the more effective identification of cases of severe dengue (SD). This was designed primarily as a clinical tool, but it also enables cases of SD to be differentiated into three specific subcategories (severe vascular leakage, severe bleeding, and severe organ dysfunction). However, no study has addressed whether this classification has advantage in estimating factors associated with the progression of disease severity or dengue pathogenesis. We evaluate in a dengue outbreak associated risk factors that could contribute to the development of SD according to the 2009 WHO classification. A prospective cross-sectional study was performed during an epidemic of dengue in 2009 in Chiapas, Mexico. Data were analyzed for host and viral factors associated with dengue cases, using the 1997 and 2009 WHO classifications. The cost-benefit ratio (CBR) was also estimated. The sensitivity in the 1997 WHO classification for determining SD was 75%, and the specificity was 97.7%. For the 2009 scheme, these were 100% and 81.1%, respectively. The 2009 classification showed a higher benefit (537%) with a lower cost (10.2%) than the 1997 WHO scheme. A secondary antibody response was strongly associated with SD. Early viral load was higher in cases of SD than in those with DF. Logistic regression analysis identified predictive SD factors (secondary infection, disease phase, viral load) within the 2009 classification. However, within the 1997 scheme it was not possible to differentiate risk factors between DF and dengue hemorrhagic fever or dengue shock syndrome. The critical clinical stage for determining SD progression was the transition from fever to defervescence in which plasma leakage can occur. The clinical phenotype of SD is influenced by the host (secondary response) and viral factors (viral load). The 2009

  5. The host galaxies and explosion sites of long-duration gamma ray bursts: Hubble Space Telescope near-infrared imaging

    Science.gov (United States)

    Lyman, J. D.; Levan, A. J.; Tanvir, N. R.; Fynbo, J. P. U.; McGuire, J. T. W.; Perley, D. A.; Angus, C. R.; Bloom, J. S.; Conselice, C. J.; Fruchter, A. S.; Hjorth, J.; Jakobsson, P.; Starling, R. L. C.

    2017-05-01

    We present the results of a Hubble Space Telescope WFC3/F160W Snapshot survey of the host galaxies of 39 long-duration gamma-ray bursts (LGRBs) at z evidence for evolution of the population of LGRB hosts towards lower luminosity, higher concentrated hosts at lower redshifts. Their half-light radii are consistent with other LGRB host samples where measurements were made on rest-frame UV observations. In agreement with recent work, we find their 80 per cent enclosed flux radii distribution to be more extended than previously thought, making them intermediate between core-collapse supernova (CCSN) and superluminous supernova (SLSN) hosts. The galactocentric projected-offset distribution confirms LGRBs as centrally concentrated, much more so than CCSNe and similar to SLSNe. LGRBs are strongly biased towards the brighter regions in their host light distributions, regardless of their offset. We find a correlation between the luminosity of the LGRB explosion site and the intrinsic column density, NH, towards the burst.

  6. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    Science.gov (United States)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  7. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  8. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  9. AGNs and Their Host Galaxies in the Local Universe: Two Mass-independent Eddington Ratio Distribution Functions Characterize Black Hole Growth

    Science.gov (United States)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Wong, O. Ivy; Treister, Ezequiel; Trakhtenbrot, Benny

    2017-08-01

    We use a phenomenological model to show that black hole growth in the local universe (z≲ 0.1) can be described by two separate, mass-independent Eddington ratio distribution functions (ERDFs). We assume that black holes can be divided into two independent groups: those with radiatively efficient accretion, primarily hosted by optically blue and green galaxies, and those with radiatively inefficient accretion, which are mainly found in red galaxies. With observed galaxy stellar mass functions as input, we show that the observed active galactic nucleus (AGN) luminosity functions can be reproduced by using mass-independent, broken power-law-shaped ERDFs. We use the observed hard X-ray and 1.4 GHz radio luminosity functions to constrain the ERDF for radiatively efficient and inefficient AGNs, respectively. We also test alternative ERDF shapes and mass-dependent models. Our results are consistent with a mass-independent AGN fraction and AGN hosts being randomly drawn from the galaxy population. We argue that the ERDF is not shaped by galaxy-scale effects, but by how efficiently material can be transported from the inner few parsecs to the accretion disc. Our results are incompatible with the simplest form of mass quenching where massive galaxies host higher accretion rate AGNs. Furthermore, if reaching a certain Eddington ratio is a sufficient condition for maintenance mode, it can occur in all red galaxies, not just the most massive ones.

  10. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    Energy Technology Data Exchange (ETDEWEB)

    Levan, A. J. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Tanvir, N. R.; Wiersema, K. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom); Fruchter, A. S.; Hounsell, R. A.; Graham, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hjorth, J.; Fynbo, J. P. U. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Pian, E. [INAF, Trieste Astronomical Observatory, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, IC2 Liverpool Science Park 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd., Pasadena, CA 91125 (United States); Cano, Z. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Kouveliotou, C. [Science and Technology Office, ZP12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Pe' er, A. [Department of Physics, University College Cork, Cork (Ireland); Misra, K., E-mail: a.j.levan@warwick.ac.uk [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital-263 002 (India)

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  11. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    Science.gov (United States)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; hide

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  12. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission

    Energy Technology Data Exchange (ETDEWEB)

    Vreeswijk, Paul M.; Gal-Yam, Avishay; De Cia, Annalisa; Rubin, Adam; Yaron, Ofer; Tal, David; Ofek, Eran O. [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Savaglio, Sandra [Max Planck Institute for Extraterrestrial Physics, D-85748 Garching bei München (Germany); Quimby, Robert M. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 (Japan); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Cenko, S. Bradley; Filippenko, Alexei V.; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Perley, Daniel A.; Cao, Yi [Astronomy Department, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Taddia, Francesco; Sollerman, Jesper; Leloudas, Giorgos [Department of Astronomy, The Oskar Klein Center, Stockholm University, AlbaNova 10691 Stockholm (Sweden); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Kasliwal, Mansi M., E-mail: paul.vreeswijk@weizmann.ac.il [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-12-10

    We present imaging and spectroscopy of a hydrogen-poor superluminous supernova (SLSN) discovered by the intermediate Palomar Transient Factory, iPTF 13ajg. At a redshift of z = 0.7403, derived from narrow absorption lines, iPTF 13ajg peaked at an absolute magnitude of M {sub u,} {sub AB} = –22.5, one of the most luminous supernovae to date. The observed bolometric peak luminosity of iPTF 13ajg is 3.2 × 10{sup 44} erg s{sup –1}, while the estimated total radiated energy is 1.3 × 10{sup 51} erg. We detect narrow absorption lines of Mg I, Mg II, and Fe II, associated with the cold interstellar medium in the host galaxy, at two different epochs with X-shooter at the Very Large Telescope. From Voigt profile fitting, we derive the column densities log N(Mg I) =11.94 ± 0.06, log N(Mg II) =14.7 ± 0.3, and log N(Fe II) =14.25 ± 0.10. These column densities, as well as the Mg I and Mg II equivalent widths of a sample of hydrogen-poor SLSNe taken from the literature, are at the low end of those derived for gamma-ray bursts (GRBs) whose progenitors are also thought to be massive stars. This suggests that the environments of hydrogen-poor SLSNe and GRBs are different. From the nondetection of Fe II fine-structure absorption lines, we derive a lower limit on the distance between the supernova and the narrow-line absorbing gas of 50 pc. The neutral gas responsible for the absorption in iPTF 13ajg exhibits a single narrow component with a low velocity width, ΔV = 76 km s{sup –1}, indicating a low-mass host galaxy. No host galaxy emission lines are detected, leading to an upper limit on the unobscured star formation rate (SFR) of SFR{sub [O} {sub II]}<0.07M{sub ⊙}yr{sup −1}. Late-time imaging shows the iPTF 13ajg host galaxy to be faint, with g {sub AB} ≈ 27.0 and R {sub AB} ≥ 26.0 mag, corresponding to M {sub B,} {sub Vega} ≳ –17.7 mag.

  13. The luminous, massive and solar metallicity galaxy hosting the Swift γ-ray burst GRB 160804A at z = 0.737

    Science.gov (United States)

    Heintz, K. E.; Malesani, D.; Wiersema, K.; Jakobsson, P.; Fynbo, J. P. U.; Savaglio, S.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Hammer, F.; Kaper, L.; Milvang-Jensen, B.; Møller, P.; Piranomonte, S.; Selsing, J.; Rhodin, N. H. P.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.; Watson, D.

    2018-02-01

    We here present the spectroscopic follow-up observations with VLT/X-shooter of the Swift long-duration gamma-ray burst GRB 160804A at z = 0.737. Typically, GRBs are found in low-mass, metal-poor galaxies that constitute the sub-luminous population of star-forming galaxies. For the host galaxy of the GRB presented here, we derive a stellar mass of log (M*/ M⊙) = 9.80 ± 0.07, a roughly solar metallicity (12 + log (O/H) = 8.74 ± 0.12) based on emission line diagnostics, and an infrared luminosity of M3.6/(1 + z) = -21.94 mag, but find it to be dust-poor (E(B - V) < 0.05 mag). This establishes the galaxy hosting GRB 160804A as one of the most luminous, massive and metal-rich GRB hosts at z < 1.5. Furthermore, the gas-phase metallicity is found to be representative of the physical conditions of the gas close to the explosion site of the burst. The high metallicity of the host galaxy is also observed in absorption, where we detect several strong Fe II transitions as well as Mg II and Mg I. Although host galaxy absorption features are common in GRB afterglow spectra, we detect absorption from strong metal lines directly in the host continuum (at a time when the afterglow was contributing to < 15 per cent). Finally, we discuss the possibility that the geometry and state of the absorbing and emitting gas are indicative of a galactic scale outflow expelled at the final stage of two merging galaxies.

  14. CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5

    Energy Technology Data Exchange (ETDEWEB)

    Perley, D. A. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Perley, R. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Hjorth, J.; Malesani, D. [Dark Cosmology Centre, Niels Bohr Institute, DK-2100 Copenhagen (Denmark); Michałowski, M. J. [Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ (United Kingdom); Cenko, S. B. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavík (Iceland); Krühler, T. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Tanvir, N. R., E-mail: dperley@astro.caltech.edu [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2015-03-10

    Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M {sub ☉} yr{sup –1}. Three of the four detections correspond to events consistent with being optically obscured 'dark' bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S {sub 3GHz} > 10 μJy, corresponding to SFR > 50 M {sub ☉} yr{sup –1} at z ∼ 1 or >250 M {sub ☉} yr{sup –1} at z ∼ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.

  15. Steep extinction towards GRB 140506A reconciled from host galaxy observations: Evidence that steep reddening laws are local

    Science.gov (United States)

    Heintz, K. E.; Fynbo, J. P. U.; Jakobsson, P.; Krühler, T.; Christensen, L.; Watson, D.; Ledoux, C.; Noterdaeme, P.; Perley, D. A.; Rhodin, H.; Selsing, J.; Schulze, S.; Tanvir, N. R.; Møller, P.; Goldoni, P.; Xu, D.; Milvang-Jensen, B.

    2017-05-01

    We present the spectroscopic and photometric late-time follow-up of the host galaxy of the long-duration Swift γ-ray burst GRB 140506A at z = 0.889. The optical and near-infrared afterglow of this GRB had a peculiar spectral energy distribution (SED) with a strong flux-drop at 8000 Å (4000 Å rest-frame) suggesting an unusually steep extinction curve. By analysing the contribution and physical properties of the host galaxy, we here aim at providing additional information on the properties and origin of this steep, non-standard extinction. We find that the strong flux-drop in the GRB afterglow spectrum at dependent only, further confirming that this type of reddening is present only at very local scales and that it is solely a consequence of the circumburst environment. Based on observations carried out under programme IDs 095.D-0043(A, C) and 095.A-0045(A) with the X-shooter spectrograph and the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) installed at the Cassegrain Very Large Telescope (VLT), Unit 2 - Kueyen and Unit 1 - Antu, respectively, operated by the European Southern Observatory (ESO) on Cerro Paranal, Chile.The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A83

  16. Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection

    Science.gov (United States)

    Nicholl, M.; Williams, P. K. G.; Berger, E.; Villar, V. A.; Alexander, K. D.; Eftekhari, T.; Metzger, B. D.

    2017-07-01

    The localization of the repeating fast radio burst (FRB) 121102 to a low-metallicity dwarf galaxy at z = 0.193, and its association with a luminous quiescent radio source, suggests the possibility that FRBs originate from magnetars, formed by the unusual supernovae that occur in such galaxies. We investigate this possibility via a comparison of magnetar birth rates, the FRB volumetric rate, and host galaxy demographics. We calculate average volumetric rates of possible millisecond magnetar production channels, such as superluminous supernovae (SLSNe), long and short gamma-ray bursts (GRBs), and general magnetar production via core-collapse supernovae (CCSNe). For each channel, we also explore the expected host galaxy demographics using their known properties. We determine for the first time the number density of FRB emitters (the product of their volumetric birth rate and lifetime), {R}{FRB}τ ≈ {10}4 Gpc-3, assuming that FRBs are predominantly emitted from repetitive sources similar to FRB 121102 and adopting a beaming factor of 0.1. By comparing rates, we find that production via rare channels (SLSNe, GRBs) implies a typical FRB lifetime of ˜30-300 years, in good agreement with other lines of argument. The total energy emitted over this time is consistent with the available energy stored in the magnetic field. On the other hand, any relation to magnetars produced via normal CCSNe leads to a very short lifetime of ˜0.5 years, in conflict with both theory and observation. We demonstrate that due to the diverse host galaxy distributions of the different progenitor channels, many possible sources of FRB birth can be ruled out with ≲ 10 host galaxy identifications. Conversely, targeted searches of galaxies that have previously hosted decades-old SLSNe and GRBs may be a fruitful strategy for discovering new FRBs and related quiescent radio sources, and determining the nature of their progenitors.

  17. The Optically Unbiased GRB Host (TOUGH) Survey. VI. Radio Observations at z <~ 1 and Consistency with Typical Star-forming Galaxies

    Science.gov (United States)

    Michałowski, M. J.; Kamble, A.; Hjorth, J.; Malesani, D.; Reinfrank, R. F.; Bonavera, L.; Castro Cerón, J. M.; Ibar, E.; Dunlop, J. S.; Fynbo, J. P. U.; Garrett, M. A.; Jakobsson, P.; Kaplan, D. L.; Krühler, T.; Levan, A. J.; Massardi, M.; Pal, S.; Sollerman, J.; Tanvir, N. R.; van der Horst, A. J.; Watson, D.; Wiersema, K.

    2012-08-01

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z 500 M ⊙ yr-1. For the undetected hosts the mean radio flux (~ 88% of the z <~ 1 GRB hosts have ultraviolet dust attenuation A UV < 6.7 mag (visual attenuation AV < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A UV of GRB hosts are consistent with those of Lyman break galaxies, Hα emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z <~ 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Large Programme 177.A-0591), the Australian Telescope Compact Array, the Giant Metrewave Radio Telescope, the Very Large Array, and the Westerbork Synthesis Radio Telescope.

  18. Mid-Infrared Galaxy Classification Based on Silicate Obscuration and PAH Equivalent Width

    OpenAIRE

    Spoon, H. W. W.; Marshall, J. A.; Houck, J. R.; Elitzur, M.; Hao, L.; Armus, L.; Brandl, B. R.; Charmandaris, V.

    2007-01-01

    We present a new diagnostic diagram for mid-infrared spectra of infrared galaxies based on the equivalent width of the 6.2 μm PAH emission feature and the strength of the 9.7 μm silicate feature. Based on the positions in this diagram, we classify galaxies into nine classes ranging from continuum-dominated AGN hot dust spectra and PAH-dominated starburst spectra to absorption-dominated spectra of deeply obscured galactic nuclei. We find that galaxies are systematically distributed along two d...

  19. Mid-IR Galaxy Classification Based on Silicate Obscuration and PAH Equivalent Width

    OpenAIRE

    Spoon, H. W. W.; Marshall, J. A.; Houck, J. R.; Elitzur, M.; Hao, L.; Armus, L.; Brandl, B. R.; Charmandaris, V.

    2006-01-01

    We present a new diagnostic diagram for mid-infrared spectra of infrared galaxies based on the equivalent width of the 6.2 micron PAH emission feature and the strength of the 9.7 micron silicate feature. Based on the position in this diagram we classify galaxies into 9 classes ranging from continuum-dominated AGN hot dust spectra and PAH-dominated starburst spectra to absorption-dominated spectra of deeply obscured galactic nuclei. We find that galaxies are systematically distributed along tw...

  20. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof......Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  1. Active Galaxies

    DEFF Research Database (Denmark)

    Kilerci Eser, Ece

    one is related to the mass estimates of supermassive black holes (SMBHs). Mass estimates of SMBHs are important to understand the formation and evolution of SMBHs and their host galaxies. Black hole masses in Type 1 AGN are measured with the reverberation mapping (RM) technique. Reverberation mapping......Galaxy formation and evolution is one of the main research themes of modern astronomy. Active galaxies such as Active Galactic Nuclei (AGN) and Ultraluminous Infrared Galaxies (ULIRGs) are important evolutionary stages of galaxies. The ULIRG stage is mostly associated with galaxy mergers...... and interactions. During the interactions of gas-rich galaxies, the gas inflows towards the centers of the galaxies and can trigger both star formation and AGN activity. The ULIRG stage includes rapid star formation activity and fast black hole growth that is enshrouded by dust. Once the AGN emission...

  2. The Carnegie Supernova Project I. Methods to estimate host-galaxy reddening of stripped-envelope supernovae

    Science.gov (United States)

    Stritzinger, M. D.; Taddia, F.; Burns, C. R.; Phillips, M. M.; Bersten, M.; Contreras, C.; Folatelli, G.; Holmbo, S.; Hsiao, E. Y.; Hoeflich, P.; Leloudas, G.; Morrell, N.; Sollerman, J.; Suntzeff, N. B.

    2018-02-01

    We aim to improve upon contemporary methods to estimate host-galaxy reddening of stripped-envelope (SE) supernovae (SNe). To this end the Carnegie Supernova Project (CSP-I) SE SN photometry data release, consisting of nearly three dozen objects, is used to identify a minimally reddened sub-sample for each traditionally defined spectroscopic sub-type (i.e., SNe IIb, SNe Ib, SNe Ic). Inspection of the optical and near-infrared (NIR) colors and color evolution of the minimally reddened sub-samples reveals a high degree of homogeneity, particularly between 0 d to +20 d relative to B-band maximum. This motivated the construction of intrinsic color-curve templates, which when compared to the colors of reddened SE SNe, yields an entire suite of optical and NIR color excess measurements. Comparison of optical/optical vs. optical/NIR color excess measurements indicates the majority of the CSP-I SE SNe suffer relatively low amounts of reddening (i.e., E(B-V)host 0.20 mag) objects with the Fitzpatrick (1999, PASP, 111, 63) reddening law model provides robust estimates of the host visual-extinction AVhost and RVhost. In the case of the SE SNe with relatively low amounts of reddening, a preferred value of RVhost is adopted for each sub-type, resulting in estimates of AVhost through Fitzpatrick (1999) reddening law model fits to the observed color excess measurements. Our analysis suggests SE SNe reside in galaxies characterized by a range of dust properties. We also find evidence that SNe Ic are more likely to occur in regions characterized by larger RVhost values compared to SNe IIb/Ib and they also tend to suffer more extinction. The later finding is consistent with work in the literature suggesting SNe Ic tend to occur in regions of on-going star formation. Based on observations collected at Las Campanas Observatory.

  3. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    Energy Technology Data Exchange (ETDEWEB)

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States); Ryan, R. E.; Koekemoer, A. M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Schneider, G.; Fan, X. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Hathi, N. P. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Keel, W. C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Roettgering, H. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Schneider, D. P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Strauss, M. A. [Princeton University Observatory, Princeton, NJ 08544 (United States); Yan, H. J. [Department of Physics and Astronomy, The University of Missouri, 701 South College Ave, Columbia, MO 65211 (United States)

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  4. Investigating the host galaxies of luminous AGN in the local universe with integral field spectroscopy

    Science.gov (United States)

    McElroy, Rebecca; Croom, Scott; Husemann, Bernd; Close AGN Reference Survey; SAMI Galaxy Survey

    2017-01-01

    This thesis investigates how galaxies and their super massive black holes coevolve. We use integral field spectroscopy to search for evidence of AGN feedback and triggering. We demonstrate that outflows are ubiquitous among luminous local type 2 AGN using observations from the AAT's SPIRAL instrument. Using multiple component Gaussian emission line decomposition we are able to disentangle the kinematic and ionisation properties of these winds. This allows us to argue that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. We search for evidence of AGN triggering using data from The Close AGN Reference Survey (CARS). CARS aims to provide a detailed multi-wavelength view of 40 nearby (0.01 physics behind AGN spectral types.

  5. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z {approx}< 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Michalowski, M. J.; Dunlop, J. S. [SUPA (Scottish Universities Physics Alliance), Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh EH9 3HJ (United Kingdom); Kamble, A.; Kaplan, D. L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Hjorth, J.; Malesani, D.; Fynbo, J. P. U.; Kruehler, T. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Reinfrank, R. F. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Bonavera, L. [Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, E-39005 Santander (Spain); Castro Ceron, J. M. [Department of Radio Astronomy, Madrid Deep Space Communications Complex (INTA-NASA/INSA), Ctra. M-531, km. 7, E-28.294 Robledo de Chavela (Madrid) (Spain); Ibar, E. [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Garrett, M. A. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Jakobsson, P. [Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik (Iceland); Levan, A. J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Massardi, M. [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Pal, S. [ICRAR, University of Western Australia, 35 Stirling Highway, Crawley, WA (Australia); Sollerman, J. [Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-10691 Stockholm (Sweden); Tanvir, N. R. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Van der Horst, A. J., E-mail: mm@roe.ac.uk [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098XH Amsterdam (Netherlands); and others

    2012-08-20

    The objective of this paper is to determine the level of obscured star formation activity and dust attenuation in a sample of gamma-ray burst (GRB) hosts, and to test the hypothesis that GRB hosts have properties consistent with those of the general star-forming galaxy populations. We present a radio continuum survey of all z < 1 GRB hosts in The Optically Unbiased GRB Host (TOUGH) sample supplemented with radio data for all (mostly pre-Swift) GRB-SN hosts discovered before 2006 October. We present new radio data for 22 objects and have obtained a detection for three of them (GRB 980425, 021211, 031203; none in the TOUGH sample), increasing the number of radio-detected GRB hosts from two to five. The star formation rate (SFR) for the GRB 021211 host of {approx}825 M{sub Sun} yr{sup -1}, the highest ever reported for a GRB host, places it in the category of ultraluminous infrared galaxies. We found that at least {approx}63% of GRB hosts have SFR < 100 M{sub Sun} yr{sup -1} and at most {approx}8% can have SFR > 500 M{sub Sun} yr{sup -1}. For the undetected hosts the mean radio flux (<35 {mu}Jy 3{sigma}) corresponds to an average SFR < 15 M{sub Sun} yr{sup -1}. Moreover, {approx}> 88% of the z {approx}< 1 GRB hosts have ultraviolet dust attenuation A{sub UV} < 6.7 mag (visual attenuation A{sub V} < 3 mag). Hence, we did not find evidence for large dust obscuration in a majority of GRB hosts. Finally, we found that the distributions of SFRs and A{sub UV} of GRB hosts are consistent with those of Lyman break galaxies, H{alpha} emitters at similar redshifts, and of galaxies from cosmological simulations. The similarity of the GRB population with other star-forming galaxies is consistent with the hypothesis that GRBs, a least at z {approx}< 1, trace a large fraction of all star formation, and are therefore less biased indicators than once thought.

  6. Structural Transition in the NGC 6251 Jet: an Interplay with the Supermassive Black Hole and Its Host Galaxy

    Science.gov (United States)

    Tseng, Chih-Yin; Asada, Keiichi; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping

    2016-12-01

    The structure of the NGC 6251 jet on the milliarcsecond scale is investigated using images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1-2) × 105 times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M87 jet, suggests a fundamental process of structural transition in the jets of active galactic nuclei (AGNs). Collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  7. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs

    DEFF Research Database (Denmark)

    Bentz, Misty C.; Peterson, Bradley M.; Netzer, Hagai

    2009-01-01

    We present high-resolution Hubble Space Telescope images of all 35 active galactic nuclei (AGNs) with optical reverberation-mapping results, which we have modeled to create a nucleus-free image of each AGN host galaxy. From the nucleus-free images, we determine the host-galaxy contribution...... by the uncertainties. This is consistent with our previous findings, and thus still consistent with the naive assumption that all AGNs are simply luminosity-scaled versions of each other. We discuss various consistency checks relating to the galaxy modeling and starlight contributions, as well as possible systematic...... errors in the current set of reverberation measurements from which we determine the form of the R BLR-L relationship....

  8. Water Vapor Emission Reveals a Highly Obscured, Star-forming Nuclear Region in the QSO Host Galaxy APM 08279+5255 at z = 3.9

    NARCIS (Netherlands)

    van der Werf, Paul P.; Berciano Alba, A.; Spaans, M.; Loenen, A. F.; Meijerink, Rowin; Riechers, D. A.; Cox, P.; Weiß, A.; Walter, F.

    2011-01-01

    We present the detection of four rotational emission lines of water vapor, from energy levels E-u/k = 101-454 K, in the gravitationally lensed z = 3.9 QSO host galaxy APM 08279+5255. While the lowest H2O lines are collisionally excited in clumps of warm, dense gas (density of hydrogen nuclei n(H) =

  9. Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Energy Technology Data Exchange (ETDEWEB)

    Galbany, Lluis [Institut de Fisica d' Altes Energies (IFAE), Barcelona (Spain); et al.

    2012-08-20

    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

  10. A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. I. Method description

    Science.gov (United States)

    Huertas-Company, M.; Rouan, D.; Tasca, L.; Soucail, G.; Le Fèvre, O.

    2008-02-01

    Context: Morphology is the most accessible tracer of the physical structure of galaxies, but its interpretation in the framework of galaxy evolution still remains a problem. Its dependence on wavelength renders the comparison between local and high redshift populations difficult. Furthermore, the quality of the measured morphology being strongly dependent on the image resolution, the comparison between different surveys is also a problem. Aims: We present a new non-parametric method to quantify morphologies of galaxies based on a particular family of learning machines called support vector machines. The method, which can be seen as a generalization of the classical C/A classification but with an unlimited number of dimensions and non-linear boundaries between decision regions, is fully automated and thus particularly well adapted to large cosmological surveys. The source code is available for download at http://www.lesia.obspm.fr/~huertas/galsvm.html Methods: To test the method, we use a seeing limited near-infrared (Ks band, 2,16 μm) sample observed with WIRCam at CFHT at a median redshift of z ~ 0.8. The machine is trained with a simulated sample built from a local visually classified sample from the SDSS, chosen in the high-redshift sample's rest-frame (i band, 0.77 μm) and artificially redshifted to match the observing conditions. We use a 12-dimensional volume, including 5 morphological parameters, and other characteristics of galaxies such as luminosity and redshift. A fraction of the simulated sample is used to test the machine and assess its accuracy. Results: We show that a qualitative separation in two main morphological types (late type and early type) can be obtained with an error lower than 20% up to the completeness limit of the sample (KAB ~ 22), which is more than 2 times better that what would be obtained with a classical C/A classification on the same sample and indeed comparable to space data. The method is optimized to solve a specific problem

  11. The host of the Type I SLSN 2017egm. A young, sub-solar metallicity environment in a massive spiral galaxy

    Science.gov (United States)

    Izzo, L.; Thöne, C. C.; García-Benito, R.; de Ugarte Postigo, A.; Cano, Z.; Kann, D. A.; Bensch, K.; Della Valle, M.; Galadí-Enríquez, D.; Hedrosa, R. P.

    2018-02-01

    Context. Type I superluminous supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming (SF) dwarfs. One of the current key questions is whether Type I SLSNe can only occur in such environments and hosts. Aims: Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest Type I SLSN known to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star formation in this non-starburst spiral galaxy. Methods: We map the physical properties of different H II regions throughout the galaxy and characterise their stellar populations using the STARLIGHT fitting code. Kinematical information allows us to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN. Results: NGC 3191 shows intense star formation in the western part with three large SF regions of low metallicity. Taking only the properties of emitting gas, the central regions of the host have a higher metallicity, a lower specific star formation rate, and lower ionisation. Modelling the stellar populations gives a different picture: the SLSN region has two dominant stellar populations with different ages, the younger one with an age of 2-10 Myr and lower metallicity, likely the population from which the SN progenitor originated. Emission line kinematics of NGC 3191 show indications of interaction with its neighbour MCG+08-19-017 at 45 kpc, which might be responsible for the recent starburst. In fact, this galaxy pair has hosted a total of four SNe, 1988B (Type Ia), SN 2003ds (Type Ic in MCG+08-19-017), PTF10bgl (Type II), and 2017egm, underlying the enhanced SF in both galaxies due to interaction. Conclusions: Our study shows that care should be taken when interpreting global host and even gas properties without looking at the stellar population history of the region

  12. Morphology of Seyfert Galaxies

    OpenAIRE

    Chen, Yen-Chen; Hwang, Chorng-Yuan

    2017-01-01

    We probed the relation between properties of Seyfert nuclei and morphology of their host galaxies. We selected Seyfert galaxies from the Sloan Digital Sky Survey with redshifts less 0.2 identified by the V\\'{e}ron Catalog (13th). We used the "{\\it{FracDev}}" parameter from SDSS galaxy fitting models to represent the bulge fractions of the Seyfert host galaxies. We found that the host galaxies of Seyfert 1 and Seyfert 2 are dominated by large bulge fractions, and Seyfert 2 galaxies are more li...

  13. Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy

    Science.gov (United States)

    Kokubo, Mitsuru; Mitsuda, Kazuma; Sugai, Hajime; Ozaki, Shinobu; Minowa, Yosuke; Hattori, Takashi; Hayano, Yutaka; Matsubayashi, Kazuya; Shimono, Atsushi; Sako, Shigeyuki; Doi, Mamoru

    2017-08-01

    We present the Hα intensity map of the host galaxy of the repeating fast radio burst FRB 121102 at a redshift of z = 0.193 obtained with the AO-assisted Kyoto 3DII optical integral-field unit mounted on the 8.2 m Subaru Telescope. We detected a compact Hα-emitting (I.e., star-forming) region in the galaxy, which has a much smaller angular size (universe as {{{Ω }}}{IGM}> 0.012. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  14. The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    Science.gov (United States)

    Pan, Y.-C.; Kilpatrick, C. D.; Simon, J. D.; Xhakaj, E.; Boutsia, K.; Coulter, D. A.; Drout, M. R.; Foley, R. J.; Kasen, D.; Morrell, N.; Murguia-Berthier, A.; Osip, D.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.

    2017-10-01

    We present an analysis of the host-galaxy environment of Swope Supernova Survey 2017a (SSS17a), the discovery of an electromagnetic counterpart to a gravitational-wave source, GW170817. SSS17a occurred 1.9 kpc (in projection; 10.″2) from the nucleus of NGC 4993, an S0 galaxy at a distance of 40 Mpc. We present a Hubble Space Telescope (HST) pre-trigger image of NGC 4993, Magellan optical spectroscopy of the nucleus of NGC 4993 and the location of SSS17a, and broadband UV-through-IR photometry of NGC 4993. The spectrum and broadband spectral-energy distribution indicate that NGC 4993 has a stellar mass of {log}(M/{M}⊙ )={10.49}-0.20+0.08 and star formation rate of 0.003 {M}⊙ yr-1, and the progenitor system of SSS17a likely had an age of >2.8 Gyr. There is no counterpart at the position of SSS17a in the HST pre-trigger image, indicating that the progenitor system had an absolute magnitude {M}V> -5.8 mag. We detect dust lanes extending out to almost the position of SSS17a and >100 likely globular clusters associated with NGC 4993. The offset of SSS17a is similar to many short gamma-ray-burst offsets, and its progenitor system was likely bound to NGC 4993. The environment of SSS17a is consistent with an old progenitor system such as a binary neutron star system. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  15. Globular clusters as tracers of the host galaxy mass distribution: the Fornax dSph test case

    Science.gov (United States)

    Arca-Sedda, M.; Capuzzo-Dolcetta, R.

    2016-10-01

    The Fornax dwarf spheroidal galaxy is the most massive satellites of the Milky Way, claimed to be embedded in a huge dark matter halo, and the only among the Milky Way satellites hosting five globular clusters. Interestingly, their estimated masses, ages and positions seem hardly compatible with the presence of a significant dark matter component, as expected in the ΛCDM scheme. Indeed, if Fornax would have a CDM halo with a standard density profile, all its globular clusters should have sunk to the galactic centre many Gyr ago due to dynamical friction. Due to this, some authors proposed that the most massive clusters may have formed out of Fornax and later tidally captured. In this paper, we investigate the past evolution of the Fornax GC system by using both a recently developed, semi-analytical treatment of dynamical friction and direct N-body simulations of the orbital evolution of the globular clusters within Fornax and of Fornax galaxy around the Milky Way. Our results suggest that an `in situ' origin for all the clusters is likely if their observed positions are close to their spatial ones and their orbits are almost circular. Moreover, the Milky Way seems to accelerate the GC decay reducing the decay time of 15 per cent. Nevertheless, our results indicate that the GCs survival probability exceeds 50 per cent, even in the case of cuspy density profiles. We conclude that more detailed data are required to shed light on the Fornax dark matter content, to distinguish between a cuspy or a cored profile.

  16. A Tidal Disruption Event in a Nearby Galaxy Hosting an Intermediate Mass Black Hole

    Science.gov (United States)

    Donato, D; Cenko, S. B.; Covino, S.; Troja, E.; Pursimo, T.; Cheung, C. C.; Fox, O.; Kutyrev, A.; Campana, S.; Fugazza, D.; hide

    2014-01-01

    We report the serendipitous discovery of a bright point source flare in the Abell cluster A1795 with archival EUVE and Chandra observations. Assuming the EUVE emission is associated with the Chandra source, the X-ray 0.5-7 kiloelectronvolt flux declined by a factor of approximately 2300 over a time span of 6 years, following a power-law decay with index approximately equal to 2.44 plus or minus 0.40. The Chandra data alone vary by a factor of approximately 20. The spectrum is well fit by a blackbody with a constant temperature of kiloteslas approximately equal to 0.09 kiloelectronvolts (approximately equal to 10 (sup 6) Kelvin). The flare is spatially coincident with the nuclear region of a faint, inactive galaxy with a photometric redshift consistent at the 1 sigma level with the cluster (redshift = 0.062476).We argue that these properties are indicative of a tidal disruption of a star by a black hole (BH) with log(M (sub BH) / M (sub 1 solar mass)) approximately equal to 5.5 plus or minus 0.5. If so, such a discovery indicates that tidal disruption flares may be used to probe BHs in the intermediate mass range, which are very difficult to study by other means.

  17. Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors

    Science.gov (United States)

    Howell, E. J.; Chan, M. L.; Chu, Q.; Jones, D. H.; Heng, I. S.; Lee, H.-M.; Blair, D.; Degallaix, J.; Regimbau, T.; Miao, H.; Zhao, C.; Hendry, M.; Coward, D.; Messenger, C.; Ju, L.; Zhu, Z.-H.

    2018-03-01

    The detection of black hole binary coalescence events by Advanced LIGO allows the science benefits of future detectors to be evaluated. In this paper, we report the science benefits of one or two 8 km arm length detectors based on the doubling of key parameters in an Advanced LIGO-type detector, combined with realizable enhancements. It is shown that the total detection rate for sources similar to those already detected would increase to ˜ 103-105 per year. Within 0.4 Gpc, we find that around 10 of these events would be localizable to within ˜10-1 deg2. This is sufficient to make unique associations or to rule out a direct association with the brightest galaxies in optical surveys (at r-band magnitudes of 17 or above) or for deeper limits (down to r-band magnitudes of 20) yield statistically significant associations. The combination of angular resolution and event rate would benefit precision testing of formation models, cosmic evolution, and cosmological studies.

  18. A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations

    Science.gov (United States)

    Cantiello, Michele; Jensen, J. B.; Blakeslee, J. P.; Berger, E.; Levan, A. J.; Tanvir, N. R.; Raimondo, G.; Brocato, E.; Alexander, K. D.; Blanchard, P. K.; Branchesi, M.; Cano, Z.; Chornock, R.; Covino, S.; Cowperthwaite, P. S.; D’Avanzo, P.; Eftekhari, T.; Fong, W.; Fruchter, A. S.; Grado, A.; Hjorth, J.; Holz, D. E.; Lyman, J. D.; Mandel, I.; Margutti, R.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.

    2018-02-01

    The joint detection of gravitational waves (GWs) and electromagnetic radiation from the binary neutron star (BNS) merger GW170817 has provided unprecedented insight into a wide range of physical processes: heavy element synthesis via the r-process; the production of relativistic ejecta; the equation of state of neutron stars and the nature of the merger remnant; the binary coalescence timescale; and a measurement of the Hubble constant via the “standard siren” technique. In detail, all of these results depend on the distance to the host galaxy of the merger event, NGC 4993. In this Letter we measure the surface brightness fluctuation (SBF) distance to NGC 4993 in the F110W and F160W passbands of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). For the preferred F110W passband we derive a distance modulus of (m-M) =33.05+/- 0.08+/- 0.10 mag, or a linear distance d = 40.7 ± 1.4 ± 1.9 Mpc (random and systematic errors, respectively); a virtually identical result is obtained from the F160W data. This is the most precise distance to NGC 4993 available to date. Combining our distance measurement with the corrected recession velocity of NGC 4993 implies a Hubble constant H 0 = 71.9 ± 7.1 km s‑1 Mpc‑1. A comparison of our result to the GW-inferred value of H 0 indicates a binary orbital inclination of i ≳ 137°. The SBF technique can be applied to early-type host galaxies of BNS mergers to ∼100 Mpc with HST and possibly as far as ∼300 Mpc with the James Webb Space Telescope, thereby helping to break the inherent distance-inclination degeneracy of the GW data at distances where many future BNS mergers are likely to be detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Program #15329 (PI: E

  19. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    Science.gov (United States)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  20. PROVIDING STRINGENT STAR FORMATION RATE LIMITS OF z ∼ 2 QSO HOST GALAXIES AT HIGH ANGULAR RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vayner, Andrey; Wright, Shelley A. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Larkin, James E. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Armus, Lee [Spitzer Science Center, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Gallagher, S. C. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2016-04-10

    We present integral field spectrograph (IFS) with laser guide star adaptive optics (LGS-AO) observations of z ∼ 2 quasi-stellar objects (QSOs) designed to resolve extended nebular line emission from the host galaxy. Our data was obtained with W. M. Keck and Gemini North Observatories, using OSIRIS and NIFS coupled with the LGS-AO systems, respectively. We have conducted a pilot survey of five QSOs, three observed with NIFS+AO and two observed with OSIRIS+AO at an average redshift of z = 2.2. We demonstrate that the combination of AO and IFSs provides the necessary spatial and spectral resolutions required to separate QSO emission from its host. We present our technique for generating a point-spread function (PSF) from the broad-line region of the QSO and performing PSF subtraction of the QSO emission to detect the host galaxy emission at a separation of ∼0.″2 (∼1.4 kpc). We detect Hα narrow-line emission for two sources, SDSS J1029+6510 (z{sub Hα} = 2.182) and SDSS J0925+0655 (z{sub Hα} = 2.197), that have evidence for both star formation and extended narrow-line emission. Assuming that the majority of narrow-line Hα emission is from star formation, we infer a star formation rate (SFR) for SDSS J1029+6510 of 78.4 M{sub ⊙} yr{sup −1} originating from a compact region that is kinematically offset by 290–350 km s{sup −1}. For SDSS J0925+0655 we infer a SFR of 29 M{sub ⊙} yr{sup −1} distributed over three clumps that are spatially offset by ∼7 kpc. The null detections on three of the QSOs are used to infer surface brightness limits and we find that at 1.4 kpc from the QSO the un-reddened star formation limit is ≲0.3 M{sub ⊙} yr{sup −1} kpc{sup −2}. If we assume typical extinction values for z = 2 type-1 QSOs, the dereddened SFR for our null detections would be ≲0.6 M{sub ⊙} yr{sup −1} kpc{sup −2}. These IFS observations indicate that while the central black hole is accreting mass at 10%–40% of the Eddington rate, if

  1. A Wide Dispersion in Star Formation Rate and Dynamical Mass of 108 Solar Mass Black Hole Host Galaxies at Redshift 6

    Science.gov (United States)

    Willott, Chris J.; Bergeron, Jacqueline; Omont, Alain

    2017-11-01

    Atacama Large Millimeter Array [C II] line and continuum observations of five redshift z> 6 quasars are presented. This sample was selected to probe quasars with lower black hole mass than most previous studies. We find a wide dispersion in properties with CFHQS J0216-0455, a low-luminosity quasar with absolute magnitude {M}1450=-22.2, remaining undetected implying a limit on the star formation rate in the host galaxy of ≲ 10 {M}⊙ {{yr}}-1, whereas other host galaxies have star formation rates up to hundreds of solar masses per year. Two other quasars have particularly interesting properties. VIMOS2911 is one of the least luminous z> 6 quasars known with {M}1450=-23.1, yet its host galaxy is experiencing a very powerful starburst. PSO J167-13 has a broad and luminous [C II] line and a neighboring galaxy a projected distance of 5 kpc away that is also detected in the [C II] line and continuum. Combining with similar observations from the literature, we study the ratio of the [C II] line to the far-infrared luminosity, finding that this ratio increases at high redshift at a fixed far-infrared luminosity, likely due to lower dust content, lower metallicity and/or higher gas masses. We compile a sample of 21 high-redshift quasars with dynamical masses and investigate the relationship between black hole mass and dynamical mass. The new observations presented here reveal dynamical masses consistent with the relationship defined by local galaxies. However, the full sample shows a very wide scatter across the black hole mass-dynamical mass plane, whereas both the local relationship and simulations of high-redshift quasars show a much lower dispersion in dynamical mass.

  2. The Dependence of Type Ia Supernova Luminosity on Host Galaxy Properties from a Sample without the Local-Global Difference in Star Formation

    Science.gov (United States)

    Kim, Younglo; Smith, Mathew; Sullivan, Mark; Lee, Young-Wook

    2018-01-01

    Recent studies suggest that the difference between local and global properties of galaxies might play an important role in the Type Ia supernova (SN Ia) host galaxy studies. Obtaining local spectroscopic measurements for hosts at high redshift, however, is difficult. Here we will introduce a more efficient way to infer the local properties from global galaxy measurements. We find that when the globally star-forming galaxies are restricted to a low-mass subset (≤ 10^10 M⊙), a sample without the local-global difference in star formation is efficiently selected. From this sample, we confirm that SNe Ia in locally star-forming environments are 0.080 ± 0.018 mag fainter (4.4 σ) than those in locally passive environments. Our results are, however, statistically more significant than previous results, because of ~5 times larger sample across a wider redshift range. Considering the significant difference in the mean stellar population age between these environments, the result would imply a possible luminosity evolution of SNe Ia.

  3. The 7 Ms Chandra Deep Field-South Survey: Cosmic Black-Hole Growth is Mainly Linked to Host-Galaxy Stellar Mass

    Science.gov (United States)

    Brandt, W. Niel; Yang, Guang; Chen, Chien-Ting; Vito, Fabio

    2017-08-01

    The Chandra exposure on the Chandra Deep Field-South (CDF-S) has recently been increased to 7 Ms, allowing unmatched X-ray and multiwavelength characterization of cosmic black-hole growth in active galactic nuclei (AGNs). We have used these data to investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M*) at z = 0.5-2. Our sample consists of 18,000 galaxies with SFR and M* measurements, and we use sample-mean BHAR for these galaxies to approximate their long-term average BHAR. Our sample-mean BHARs are derived from the CDF-S observations via both direct spectral analysis and stacking. The average BHAR is correlated positively with both SFR and M*, and the BHAR-SFR and BHAR-M* relations can both be described acceptably by linear models with a slope of unity. However, according to partial-correlation analyses, BHAR is correlated more strongly with M* than SFR. This result indicates that M* is the primary host-galaxy property related to black-hole growth, and the well-known BHAR-SFR relation is largely a secondary effect due to the "star-forming main sequence". Among our sources, massive galaxies have significantly higher BHAR/SFR ratios than less-massive galaxies, indicating the former have higher black-hole fueling efficiency and/or higher SMBH occupation fraction than the latter; e.g., the deeper potential wells in higher mass galaxies may promote black-hole accretion and counteract AGN/supernova feedback. Our results can naturally explain the observed proportionality between MBH and M* for local giant ellipticals, and suggest their MBH/M* ratios are higher than those of local star-forming galaxies. Finally, prospects for extending this work will be discussed; e.g., by further investigating the redshift evolution of the primary BHAR-M* relation and measuring this relation for even higher values of M*, above ~ 1011 solar masses, using wide-field X-ray surveys.

  4. Gas inflow and outflow in an interacting high-redshift galaxy. The remarkable host environment of GRB 080810 at z = 3.35

    Science.gov (United States)

    Wiseman, P.; Perley, D. A.; Schady, P.; Prochaska, J. X.; de Ugarte Postigo, A.; Krühler, T.; Yates, R. M.; Greiner, J.

    2017-11-01

    We reveal multiple components of an interacting galaxy system at z ≈ 3.35 through a detailed analysis of the exquisite high-resolution Keck/HIRES spectrum of the afterglow of a gamma-ray burst (GRB). Through Voigt-profile fitting of absorption lines from the Lyman series, we constrain the neutral hydrogen column density to NH I ≤ 1018.35 cm-2 for the densest of four distinct systems at the host redshift of GRB 080810, which is among the lowest NH I ever observed in a GRB host, even though the line of sight passes within a projected 5 kpc of the galaxy centres. By detailed analysis of the corresponding metal absorption lines, we derive chemical, ionic, and kinematic properties of the individual absorbing systems, and thus build a picture of the host as a whole. Striking differences between the systems imply that the line of sight passes through several phases of gas: the star-forming regions of the GRB host; enriched material in the form of a galactic outflow; the hot and ionised halo of a second interacting galaxy falling towards the host at a line-of-sight velocity of 700 km s-1; and a cool metal-poor cloud that may represent one of the best candidates yet for the inflow of metal-poor gas from the intergalactic medium. The reduced spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A107

  5. The Fastest Galaxy Evolution in an Unbiased Compact Group Sample with WISE

    Science.gov (United States)

    Lee, Gwang-Ho; Hwang, Ho Seong; Sohn, Jubee; Lee, Myung Gyoon

    2017-02-01

    We study the mid-infrared (MIR) properties of galaxies in compact groups and their environmental dependence using the Wide-field Infrared Survey Explorer (WISE) data. We use a volume-limited sample of 670 compact groups and their 2175 member galaxies with {M}rSohn et al., which were identified using a friends-of-friends algorithm. Among the 2175 galaxies, 1541 galaxies are detected at WISE 12 μ {{m}} with a signal-to-noise ratio greater than 3. Among the 1541 galaxies, 433 AGN-host galaxies are identified by using both optical and MIR classification schemes. Using the remaining 1108 non-AGN galaxies, we find that the MIR [3.4]-[12] colors of compact group early-type galaxies are on average bluer than those of cluster early-type galaxies. When compact groups have both early- and late-type member galaxies, the MIR colors of the late-type members in those compact groups are bluer than the MIR colors of cluster late-type galaxies. As compact groups are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends are also seen for neighboring galaxies around compact groups. However, compact group member galaxies always have larger early-type galaxy fractions and bluer MIR colors than their neighboring galaxies. Our findings suggest that the properties of compact group galaxies depend on both internal and external environments of compact groups, and that galaxy evolution is faster in compact groups than in the central regions of clusters.

  6. A Zoo of Galaxies

    Science.gov (United States)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  7. GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Leo P.; Cenko, S. Bradley; Gehrels, Neil; Cannizzo, John [Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Chen, Hsin-Yu; Holz, Daniel E.; Farr, Ben [Department of Physics, Enrico Fermi Institute, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Farr, Will M.; Veitch, John; Berry, Christopher P. L.; Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT (United Kingdom); Price, Larry R.; Raymond, Vivien [LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nissanke, Samaya [Institute of Mathematics, Astrophysics and Particle Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Coughlin, Michael [Department of Physics and Astronomy, Harvard University, Cambridge, MA 02138 (United States); Urban, Alex L. [Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201 (United States); Vitale, Salvatore; Mohapatra, Satya [LIGO Laboratory, Massachusetts Institute of Technology, 185 Albany Street, Cambridge, MA 02139 (United States); Graff, Philip [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2016-09-20

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves (GWs) from a binary black hole merger in 2015 September and may soon observe signals from neutron star mergers. There is considerable interest in searching for their faint and rapidly fading electromagnetic (EM) counterparts, though GW position uncertainties are as coarse as hundreds of square degrees. Because LIGO’s sensitivity to binary neutron stars is limited to the local universe, the area on the sky that must be searched could be reduced by weighting positions by mass, luminosity, or star formation in nearby galaxies. Since GW observations provide information about luminosity distance, combining the reconstructed volume with positions and redshifts of galaxies could reduce the area even more dramatically. A key missing ingredient has been a rapid GW parameter estimation algorithm that reconstructs the full distribution of sky location and distance. We demonstrate the first such algorithm, which takes under a minute, fast enough to enable immediate EM follow-up. By combining the three-dimensional posterior with a galaxy catalog, we can reduce the number of galaxies that could conceivably host the event by a factor of 1.4, the total exposure time for the Swift X-ray Telescope by a factor of 2, the total exposure time for a synoptic optical survey by a factor of 2, and the total exposure time for a narrow-field optical telescope by a factor of 3. This encourages us to suggest a new role for small field of view optical instruments in performing targeted searches of the most massive galaxies within the reconstructed volumes.

  8. Cancer Biochemistry and Host-Tumor Interactions: A Decimal Classification, (Categories 51.6, 51.7, and 51.8).

    Science.gov (United States)

    Schneider, John H.

    This is a hierarchical decimal classification of information related to cancer biochemistry, to host-tumor interactions (including cancer immunology), and to occurrence of cancer in special types of animals and plants. It is a working draft of categories taken from an extensive classification of many fields of biomedical information. Because the…

  9. SN 2010ay IS A LUMINOUS AND BROAD-LINED TYPE Ic SUPERNOVA WITHIN A LOW-METALLICITY HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, N. E.; Soderberg, A. M.; Foley, R. J.; Chornock, R.; Chomiuk, L.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Valenti, S.; Smartt, S.; Botticella, M. T. [Astrophysics Research Centre, School of Maths and Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Hurley, K. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Barthelmy, S. D.; Gehrels, N.; Cline, T. [NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771 (United States); Levesque, E. M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Narayan, G. [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Briggs, M. S.; Connaughton, V. [CSPAR, University of Alabama in Huntsville, Huntsville, AL (United States); Terada, Y. [Department of Physics, Saitama University, Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570 (Japan); Golenetskii, S.; Mazets, E., E-mail: nsanders@cfa.harvard.edu [Ioffe Physico-Technical Institute, Laboratory for Experimental Astrophysics, 26 Polytekhnicheskaya, St. Petersburg 194021 (Russian Federation); and others

    2012-09-10

    We report on our serendipitous pre-discovery detection and follow-up observations of the broad-lined Type Ic supernova (SN Ic) 2010ay at z = 0.067 imaged by the Pan-STARRS1 3{pi} survey just {approx}4 days after explosion. The supernova (SN) had a peak luminosity, M{sub R} Almost-Equal-To -20.2 mag, significantly more luminous than known GRB-SNe and one of the most luminous SNe Ib/c ever discovered. The absorption velocity of SN 2010ay is v{sub Si} Almost-Equal-To 19 Multiplication-Sign 10{sup 3} km s{sup -1} at {approx}40 days after explosion, 2-5 times higher than other broad-lined SNe and similar to the GRB-SN 2010bh at comparable epochs. Moreover, the velocity declines {approx}2 times slower than other SNe Ic-BL and GRB-SNe. Assuming that the optical emission is powered by radioactive decay, the peak magnitude implies the synthesis of an unusually large mass of {sup 56}Ni, M{sub Ni} = 0.9 M{sub Sun }. Applying scaling relations to the light curve, we estimate a total ejecta mass, M{sub ej} Almost-Equal-To 4.7 M{sub Sun }, and total kinetic energy, E{sub K} Almost-Equal-To 11 Multiplication-Sign 10{sup 51} erg. The ratio of M{sub Ni} to M{sub ej} is {approx}2 times as large for SN 2010ay as typical GRB-SNe and may suggest an additional energy reservoir. The metallicity (log (O/H){sub PP04} + 12 = 8.19) of the explosion site within the host galaxy places SN 2010ay in the low-metallicity regime populated by GRB-SNe, and {approx}0.5(0.2) dex lower than that typically measured for the host environments of normal (broad-lined) SNe Ic. We constrain any gamma-ray emission with E{sub {gamma}} {approx}< 6 Multiplication-Sign 10{sup 48} erg (25-150 keV), and our deep radio follow-up observations with the Expanded Very Large Array rule out relativistic ejecta with energy E {approx}> 10{sup 48} erg. We therefore rule out the association of a relativistic outflow like those that accompanied SN 1998bw and traditional long-duration gamma-ray bursts (GRBs), but we place less

  10. Multiple Signal Classification (MUSIC) Algorithm Hosted On The High Speed Systolic Array Processor (HISSAP)

    Science.gov (United States)

    Loughlin, Joseph P.

    1989-12-01

    A direction of arrival estimator based on the MUSIC algorithm hosted on a microprogrammed systolic array processor testbed system will be presented. The mapping approach is discussed and the major parts of the algorithm demonstration application are identified. The impact of manipulating complex sample data within the MUSIC algorithm is also discussed. The use of parallel programming tools custom built to translate, debug and evaluate systolically hosted signal processing algorithms will be described.

  11. Classification

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  12. Galaxy clusters: Falling into line

    Science.gov (United States)

    Sifón, Cristóbal

    2017-07-01

    Analysis of Hubble Space Telescope observations shows that the well-known alignment between the central galaxy of a galaxy cluster and its host cluster has been in place for at least ten billion years.

  13. Holistic Network Defense: Fusing Host and Network Features for Attack Classification

    Science.gov (United States)

    2011-03-01

    is, it tries to log in, to install a clandestine “back door” to the internet, and then to contact a server in Denmark or Malaysia for instructions...sniffer also used by Erskine to monitor a network device for inbound and outbound network packets and save the entire session into a PCAP file for later...Engineering Conference, Chiang Mai, Thailand , (2000). 27. Kim, H. "Internet Traffic Classification Demystified: Myths, Caveats, and Best Practices

  14. Redshift determination of the BL Lac object 3C 66A by the detection of its host galaxy cluster at z = 0.340

    Science.gov (United States)

    Torres-Zafra, Juanita; Cellone, Sergio A.; Buzzoni, Alberto; Andruchow, Ileana; Portilla, José G.

    2018-03-01

    The BL Lac object 3C 66A is one of the most luminous extragalactic sources at TeV γ-rays (very high energy, i.e. E > 100 GeV). Since TeV γ-ray radiation is absorbed by the extragalactic background light (EBL), it is crucial to know the redshift of the source in order to reconstruct its original spectral energy distribution, as well as to constrain EBL models. However, the optical spectrum of this BL Lac is almost featureless, so a direct measurement of z is very difficult; in fact, the published redshift value for this source (z = 0.444) has been strongly questioned. Based on EBL absorption arguments, several constraints to its redshift, in the range 0.096 type galaxies that are members of groups or clusters, we have analysed spectro-photometrically the environment of 3C 66A, with the goal of finding the galaxy group hosting this blazar. This study was made using optical images of a 5.5 × 5.5 arcmin2 field centred on the blazar, and spectra of 24 sources obtained with Gemini/GMOS-N multi-object spectroscopy. We found spectroscopic evidence of two galaxy groups along the blazar's line of sight: one at z ≃ 0.020 and the second one at z ≃ 0.340. The first one is consistent with a known foreground structure, while the second group presented here has six spectroscopically confirmed members. Their location along a red sequence in the colour-magnitude diagram allows us to identify 34 additional candidate members of the more distant group. The blazar's spectrum shows broad absorption features that we identify as arising in the intergalactic medium, thus allowing us to tentatively set a redshift lower limit at z_3C66A ≳ 0.33. As a consequence, we propose that 3C 66A is hosted in a galaxy that belongs to a cluster at z = 0.340.

  15. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 1. Effect of Seed BH Mass

    Science.gov (United States)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Makiya, Ryu; Ishiyama, Tomoaki; Matsuoka, Yoshiki; Nagashima, Masahiro; Enoki, Motohiro; Oogi, Taira; Kobayashi, Masakazu A. R.

    2017-09-01

    We explore the effect of varying the mass of a seed black hole on the resulting black hole mass - bulge mass relation at z ˜ 0, using a semi-analytic model of galaxy formation combined with large cosmological N-body simulations. When the mass of the seed is set at 10^5 M_⊙, we find that the model results become inconsistent with recent observational results of the black hole mass - bulge mass relation for dwarf galaxies. On the other hand, when we employ seed black holes of 10^3 M_⊙ or select their mass randomly within a 10^{3 -5} M_⊙ range, the resulting relation is consistent with observational results including the dispersion. We also find that black hole mass - bulge mass relations for less massive bulges at z ˜ 0 put stronger constraints on the seed BH mass than the relations at higher redshifts.

  16. Classification

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    This article presents and discusses definitions of the term “classification” and the related concepts “Concept/conceptualization,”“categorization,” “ordering,” “taxonomy” and “typology.” It further presents and discusses theories of classification including the influences of Aristotle...... and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly...

  17. Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II. Star formation rates and metallicities at z < 1

    Science.gov (United States)

    Japelj, J.; Vergani, S. D.; Salvaterra, R.; D'Avanzo, P.; Mannucci, F.; Fernandez-Soto, A.; Boissier, S.; Hunt, L. K.; Atek, H.; Rodríguez-Muñoz, L.; Scodeggio, M.; Cristiani, S.; Le Floc'h, E.; Flores, H.; Gallego, J.; Ghirlanda, G.; Gomboc, A.; Hammer, F.; Perley, D. A.; Pescalli, A.; Petitjean, P.; Puech, M.; Rafelski, M.; Tagliaferri, G.

    2016-05-01

    Aims: Long gamma-ray bursts (LGRBs) are associated with the deaths of massive stars and might therefore be a potentially powerful tool for tracing cosmic star formation. However, especially at low redshifts (zextinction, star formation rate (SFR), and nebular metallicity (Z) of the hosts and supplemented the data set with previously measured stellar masses M⋆. The distributions of the obtained properties and their interrelations (e.g. mass-metallicity and SFR-M⋆ relations) are compared to samples of field star-forming galaxies. Results: We find that LGRB hosts at zmass-metallicity relation at similar mean redshift and stellar masses. The cutoff against high metallicities (and high masses) can explain the low SFR values of LGRB hosts. We find a hint of an increased incidence of starburst galaxies in the Swift/BAT6 zmasses. Nevertheless, the limits on the completeness and metallicity availability of current surveys, coupled with the limited number of LGRB host galaxies, prevents us from investigating more quantitatively whether the starburst incidence is such as expected after taking into account the high-metallicity aversion of LGRB host galaxies. Based on observations at ESO, Program IDs: 077.D-0425, 177.A-0591, 080.D-0526, 081.A-0856, 082.D-0276, 083.D-0069, 084.A-0303, 084.A-0260, 086.A-0644, 086.B-0954, 089.A-0868, 090.A-0760, 095.D-0560.The reduced spectra are available in the ESO archive as Phase 3 data products and in the GTC archive.

  18. Cepheids in External Galaxies. I. The Maser-Host Galaxy NGC 4258 and the Metallicity Dependence of Period-Luminosity and Period-Wesenheit Relations

    Science.gov (United States)

    Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I.

    2008-09-01

    We perform a detailed analysis of Cepheids in NGC 4258, the Magellanic Clouds, and Milky Way in order to verify the reliability of the theoretical scenario based on a large set of nonlinear convective pulsation models. We derive Wesenheit functions from the synthetic BVI magnitudes of the pulsators, and we show that the sign and the extent of the metallicity effect on the predicted period-Wesenheit (P - W) relations change according to the adopted passbands. These P - W relations are applied to measured BVI magnitudes of NGC 4258, Magellanic, and Galactic Cepheids available in the literature. We find that Magellanic and Galactic Cepheids agree with the metallicity dependence of the predicted P - W relations. Concerning the NGC 4258 Cepheids, the results strongly depend on the adopted metallicity gradient across the galactic disk. The most recent nebular oxygen abundances support a shallower gradient and provide a metallicity dependence that agrees well with current pulsation predictions. Moreover, the comparison of Cepheid distances based on VI magnitudes with distance estimates based on the revised TRGB method for external galaxies, on the HST trigonometric parallaxes for Galactic Cepheids, and on eclipsing binaries in the Magellanic Clouds seems to favor the metallicity correction predicted by pulsation models. The sign and the extent of the metallicity dependence of the P - W and of the period-luminosity (P - L) relations change according to the adopted passbands. Therefore, distances based on different methods and/or bands should not be averaged. The use of extragalactic Cepheids to constrain the metallicity effect requires new accurate and extensive nebular oxygen measurements.

  19. ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    Science.gov (United States)

    Moffett, Amanda J.; Kannappan, Sheila J.; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David V.; Hendel, David; Norris, Mark A.; Grogin, Norman A.

    2015-10-01

    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜ {10}11.5 {M}⊙ , implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites.

  20. A tight relation between the age distributions of stellar clusters and the properties of the interstellar medium in the host galaxy

    Science.gov (United States)

    Miholics, Meghan; Kruijssen, J. M. Diederik; Sills, Alison

    2017-09-01

    The age distributions of stellar cluster populations have long been proposed to probe the recent formation history of the host galaxy. However, progress is hampered by the limited understanding of cluster disruption by evaporation and tidal shocks. We study the age distributions of clusters in smoothed particle hydrodynamics simulations of isolated disc galaxies, which include a self-consistent, physical model for the formation and dynamical evolution of the cluster population and account for the variation of cluster disruption in time and space. We show that the downward slope of the cluster age distribution due to disruption cannot be reproduced with a single functional form, because the disruption rate exhibits systematic trends with cluster age (the 'cruel cradle effect'). This problem is resolved by using the median cluster age to trace cluster disruption. Across 120 independent galaxy snapshots and simulated cluster populations, we perform two-dimensional power-law fits of the median cluster age to various macroscopic physical quantities and find that it scales as t_med∝ Σ ^{-0.51± 0.03}σ _1D^{-0.85± 0.10}M_min^γ, for the gas surface density Σ, gas velocity dispersion σ1D, and minimum cluster mass Mmin. This scaling accurately describes observed cluster populations and indicates disruption by impulsive tidal shocks from the interstellar medium. The term M_min^γ provides a model-independent way to measure the mass dependence of the cluster disruption time γ. Finally, the ensemble-average cluster lifetime depends on the gas density less strongly than the instantaneous disruption time of single clusters. These results reflect the variation of cluster disruption in time and space. We provide quantitative ways of accounting for these physics in cluster population studies.

  1. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-16

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at $\\gtrsim 10$ Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M$_{\\odot}$ yr$^{-1}$, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of $11.2^{+0.7}_{-1.4}$ Gyr, with a 90% confidence range of $6.8-13.6$ Gyr. This in turn indicates an initial binary separation of $\\approx 4.5$ R$_{\\odot}$, comparable to the inferred values for Galactic BNS systems. We also use new and archival $Hubble$ $Space$ $Telescope$ images to measure a projected offset of the optical counterpart of $2.1$ kpc (0.64$r_{e}$) from the center of NGC 4993 and to place a limit of $M_{r} \\gtrsim -7.2$ mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of $\\sim 200$ km s$^{-1}$. Future GW$-$EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of $r$-process enrichment in the Universe.

  2. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Science.gov (United States)

    Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G.; Doctor, Z.; Chornock, R.; Villar, V. A.; Cowperthwaite, P. S.; Annis, J.; Brout, D.; Brown, D. A.; Chen, H.-Y.; Eftekhari, T.; Frieman, J. A.; Holz, D. E.; Metzger, B. D.; Rest, A.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational-wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at ≳ 10 {Gyr} ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 {M}⊙ yr-1, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of {11.2}-1.4+0.7 Gyr, with a 90% confidence range of 6.8{--}13.6 {Gyr}. This in turn indicates an initial binary separation of ≈ 4.5 {R}⊙ , comparable to the inferred values for Galactic BNS systems. We also use new and archival Hubble Space Telescope images to measure a projected offset of the optical counterpart of 2.1 kpc (0.64r e ) from the center of NGC 4993 and to place a limit of {M}r≳ -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of ˜200 km s-1. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of r-process enrichment in the universe.

  3. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  4. The properties of radio galaxies and the effect of environment in large-scale structures at z ˜ 1

    Science.gov (United States)

    Shen, Lu; Miller, Neal A.; Lemaux, Brian C.; Tomczak, Adam R.; Lubin, Lori M.; Rumbaugh, Nicholas; Fassnacht, Christopher D.; Becker, Robert H.; Gal, Roy R.; Wu, Po-Feng.; Squires, Gordon

    2017-11-01

    In this study, we investigate 89 radio galaxies that are spectroscopically confirmed to be members of five large-scale structures (LSSs) in the redshift range of 0.65 ≤ z ≤ 0.96. Based on a two-stage classification scheme, the radio galaxies are classified into three sub-classes: active galactic nucleus (AGN), Hybrid, and star-forming galaxy (SFG). We study the properties of the three radio sub-classes and their global and local environmental preferences. We find AGN hosts are the most massive population and exhibit quiescence in their star formation activity. The SFG population has a comparable stellar mass to those hosting a radio AGN but are unequivocally powered by star formation. Hybrids, though selected as an intermediate population in our classification scheme, were found in almost all analyses to be a unique type of radio galaxies rather than a mixture of AGN and SFGs. They are dominated by a high-excitation radio galaxy population. We discuss environmental effects and scenarios for each sub-class. AGN tend to be preferentially located in locally dense environments and in the cores of clusters/groups, with these preferences persisting when comparing to galaxies of similar colour and stellar mass, suggesting that their activity may be ignited in the cluster/group virialized core regions. Conversely, SFGs exhibit a strong preference for intermediate-density global environments, suggesting that dusty starbursting activity in LSSs is largely driven by galaxy-galaxy interactions and merging.

  5. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    Energy Technology Data Exchange (ETDEWEB)

    Willott, Chris J. [Herzberg Institute of Astrophysics, National Research Council, 5071 West Saanich Rd, Victoria, BC V9E 2E7 (Canada); Omont, Alain; Bergeron, Jacqueline, E-mail: chris.willott@nrc.ca [UPMC Univ Paris 06 and CNRS, UMR7095, Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  6. LOFAR MSSS: Discovery of a 2.56 Mpc giant radio galaxy associated with a disturbed galaxy group

    Science.gov (United States)

    Clarke, A. O.; Heald, G.; Jarrett, T.; Bray, J. D.; Hardcastle, M. J.; Cantwell, T. M.; Scaife, A. M. M.; Brienza, M.; Bonafede, A.; Breton, R. P.; Broderick, J. W.; Carbone, D.; Croston, J. H.; Farnes, J. S.; Harwood, J. J.; Heesen, V.; Horneffer, A.; van der Horst, A. J.; Iacobelli, M.; Jurusik, W.; Kokotanekov, G.; McKean, J. P.; Morabito, L. K.; Mulcahy, D. D.; Nikiel-Wroczyñski, B. S.; Orrú, E.; Paladino, R.; Pandey-Pommier, M.; Pietka, M.; Pizzo, R.; Pratley, L.; Riseley, C. J.; Rottgering, H. J. A.; Rowlinson, A.; Sabater, J.; Sendlinger, K.; Shulevski, A.; Sridhar, S. S.; Stewart, A. J.; Tasse, C.; van Velzen, S.; van Weeren, R. J.; Wise, M. W.

    2017-05-01

    We report on the discovery in the LOFAR Multifrequency Snapshot Sky Survey (MSSS) of a giant radio galaxy (GRG) with a projected size of 2.56 ± 0.07 Mpc projected on the sky. It is associated with the galaxy triplet UGC 9555, within which one is identified as a broad-line galaxy in the Sloan Digital Sky Survey (SDSS) at a redshift of 0.05453 ± 1 × 10-5, and with a velocity dispersion of 215.86 ± 6.34 km s-1. From archival radio observations we see that this galaxy hosts a compact flat-spectrum radio source, and we conclude that it is the active galactic nucleus (AGN) responsiblefor generating the radio lobes. The radio luminosity distribution of the jets, and the broad-line classification of the host AGN, indicate this GRG is orientated well out of the plane of the sky, making its physical size one of the largest known for any GRG. Analysis of the infrared data suggests that the host is a lenticular type galaxy with a large stellar mass (log M/M⊙ = 11.56 ± 0.12), and a moderate star formation rate (1.2 ± 0.3 M⊙/ year). Spatially smoothing the SDSS images shows the system around UGC 9555 to be significantly disturbed, with a prominent extension to the south-east. Overall, the evidence suggests this host galaxy has undergone one or more recent moderate merger events and is also experiencing tidal interactions with surrounding galaxies, which have caused the star formation and provided the supply of gas to trigger and fuel the Mpc-scale radio lobes.

  7. Impact of seeing and host galaxy into the analysis of photo-polarimetric microvariability in blazars. Case study of the nearby blazars 1ES 1959+650 and HB89 2201+044

    Science.gov (United States)

    Sosa, M. S.; von Essen, C.; Andruchow, I.; Cellone, S. A.

    2017-11-01

    Blazars, a type of Active Galactic Nuclei, present a particular orientation of their jets close to the line of sight. Their radiation is thus relativistically beamed, giving rise to extreme behaviors, specially strong variability on very short timescales (I.e., microvariability). Here we present simultaneous photometric and polarimetric observations of two relatively nearby blazars, 1ES 1959+650 and HB89 2201+044, that were obtained using the Calar Alto Faint Object Spectrograph mounted at the 2.2 m telescope in Calar Alto, Spain. An outstanding characteristic of these two blazars is the presence of well resolved host galaxies. This particular feature allows us to produce a study of their intrinsic polarization, a measurement of the polarization state of the galactic nucleus unaffected by the host galaxy. To carry out this work, we computed photometric fluxes from which we calculated the degree and orientation of the blazars polarization. Then, we analyzed the depolarizing effect introduced by the host galaxy with the main goal to recover the intrinsic polarization of the galactic nucleus, carefully taking into consideration the spurious polarimetric variability introduced by changes in seeing along the observing nights. We find that the two blazars do not present intra-night photo-polarimetric variability, although we do detect a significant inter-night variability. Comparing polarimetric values before and after accounting for the host galaxies, we observe a significant difference in the polarization degree of about 1% in the case of 1ES 1959+650, and 0.3% in the case of HB89 2201+044, thus evidencing the non-negligible impact introduced by the host galaxies. We note that this host galaxy effect depends on the waveband, and varies with changing seeing conditions, so it should be particularly considered when studying frequency-dependent polarization in blazars. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated

  8. Matching Supernovae to Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    One of the major challenges for modern supernova surveys is identifying the galaxy that hosted each explosion. Is there an accurate and efficient way to do this that avoids investing significant human resources?Why Identify Hosts?One problem in host galaxy identification. Here, the supernova lies between two galaxies but though the centroid of the galaxy on the right is closer in angular separation, this may be a distant background galaxy that is not actually near the supernova. [Gupta et al. 2016]Supernovae are a critical tool for making cosmological predictions that help us to understand our universe. But supernova cosmology relies on accurately identifying the properties of the supernovae including their redshifts. Since spectroscopic followup of supernova detections often isnt possible, we rely on observations of the supernova host galaxies to obtain redshifts.But how do we identify which galaxy hosted a supernova? This seems like a simple problem, but there are many complicating factors a seemingly nearby galaxy could be a distant background galaxy, for instance, or a supernovas host could be too faint to spot.The authors algorithm takes into account confusion, a measure of how likely the supernova is to be mismatched. In these illustrations of low (left) and high (right) confusion, the supernova is represented by a blue star, and the green circles represent possible host galaxies. [Gupta et al. 2016]Turning to AutomationBefore the era of large supernovae surveys, searching for host galaxies was done primarily by visual inspection. But current projects like the Dark Energy Surveys Supernova Program is finding supernovae by the thousands, and the upcoming Large Synoptic Survey Telescope will likely discover hundreds of thousands. Visual inspection will not be possible in the face of this volume of data so an accurate and efficient automated method is clearly needed!To this end, a team of scientists led by Ravi Gupta (Argonne National Laboratory) has recently

  9. The Host Galaxies of X-Ray Selected Active Galactic Nuclei to z - 2.5: Structure, Star-Formation and Their Relationships from CANDELS and Herschel/Pacs

    Science.gov (United States)

    Rosario, D.J.; McIntosh, D. H.; van der Wel, A.; Kartaltepe, J.; Lang, P.; Santini, P.; Wuyts, S.; Lutz, D.; Rafelski, M.; Villforth, C.; hide

    2014-01-01

    We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z is approximately 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z greater than 1.5. At z less than 1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift towards a minor role for mergers and interactions at z greater than 15

  10. A Classification Scheme for Young Stellar Objects Using the WIDE-FIELD INFRARED SURVEY EXPLORER ALLWISE Catalog: Revealing Low-Density Star Formation in the Outer Galaxy

    Science.gov (United States)

    Koening, X. P.; Leisawitz, D. T.

    2014-01-01

    We present an assessment of the performance of WISE and the AllWISE data release in a section of the Galactic Plane. We lay out an approach to increasing the reliability of point source photometry extracted from the AllWISE catalog in Galactic Plane regions using parameters provided in the catalog. We use the resulting catalog to construct a new, revised young star detection and classification scheme combining WISE and 2MASS near and mid-infrared colors and magnitudes and test it in a section of the Outer Milky Way. The clustering properties of the candidate Class I and II stars using a nearest neighbor density calculation and the two-point correlation function suggest that the majority of stars do form in massive star forming regions, and any isolated mode of star formation is at most a small fraction of the total star forming output of the Galaxy. We also show that the isolated component may be very small and could represent the tail end of a single mechanism of star formation in line with models of molecular cloud collapse with supersonic turbulence and not a separate mode all to itself.

  11. A robust morphological classification of high-redshift galaxies using support vector machines on seeing limited images. II. Quantifying morphological k-correction in the COSMOS field at 1 < z < 2: Ks band vs. I band

    Science.gov (United States)

    Huertas-Company, M.; Tasca, L.; Rouan, D.; Pelat, D.; Kneib, J. P.; Le Fèvre, O.; Capak, P.; Kartaltepe, J.; Koekemoer, A.; McCracken, H. J.; Salvato, M.; Sanders, D. B.; Willott, C.

    2009-04-01

    Context: Morphology is the most accessible tracer of galaxies physical structure, but its interpretation in the framework of galaxy evolution still remains problematic. Its quantification at high redshift requires deep high-angular resolution imaging, which is why space data (HST) are usually employed. At z > 1, the HST visible cameras however probe the UV flux, which is dominated by the emission of young stars, which could bias the estimated morphologies towards late-type systems. Aims: In this paper we quantify the effects of this morphological k-correction at 1 Methods: In Paper I we presented a new non-parametric method of quantifying morphologies of galaxies on seeing-limited images based on support vector machines. Here we use this method to classify ~50 000 Ks selected galaxies in the COSMOS area observed with WIRCam at CFHT. We use a 10-dimensional volume, including 5 morphological parameters, and other characteristics of galaxies such as luminosity and redshift. The obtained classification is used to investigate the redshift distributions and number counts per morphological type up to z ~ 2 and to compare them to the results obtained with HST/ACS in the I-band on the same objects. We associate to every galaxy with Ks find less early-type galaxies than the Ks-band one by a factor ~1.5, which might be a consequence of morphological k-correction effects. Conclusions: We argue therefore that studies based on I-band HST/ACS classifications at z > 1 could be underestimating the elliptical population. Using our method in a Ks ≤ 21.5 magnitude-limited sample, we observe that the fraction of the early-type population is (21.9% ± 8%) at z ~ 1.5-2 and (32.0% ± 5%) at the present time. We will discuss the evolution of the fraction of galaxies in types from volume-limited samples in a forthcoming paper. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des

  12. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    Science.gov (United States)

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  13. Three types of galaxy disks

    NARCIS (Netherlands)

    Pohlen, M.; Erwin, P.; Trujillo, I.; Beckman, J. E.; Knapen, JH; Mahoney, TJ; Vazdekis, A

    2008-01-01

    We present our new scheme for the classification of radial stellar surface brightness profiles for disk galaxies. We summarize the current theoretical attempts to understand their origin and give an example of an application by comparing local galaxies with their counterparts at high redshift (z

  14. AGN feedback in galaxy formation

    CERN Document Server

    Antonuccio-Delogu, Vincenzo

    2010-01-01

    During the past decade, convincing evidence has been accumulated concerning the effect of active galactic nuclei (AGN) activity on the internal and external environment of their host galaxies. Featuring contributions from well-respected researchers in the field, and bringing together work by specialists in both galaxy formation and AGN, this volume addresses a number of key questions about AGN feedback in the context of galaxy formation. The topics covered include downsizing and star-formation time scales in massive elliptical galaxies, the connection between the epochs of supermassive black h

  15. Mysterious Blob Galaxies Revealed

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3 This image composite shows a giant galactic blob (red, figure 2) and the three merging galaxies NASA's Spitzer Space Telescope discovered within it (yellow, figure 3). Blobs are intensely glowing clouds of hot hydrogen gas that envelop faraway galaxies. They are about 10 times as large as the galaxies they surround. Visible-light images like the one shown in figure 2, reveal the vast extent of blobs, but don't provide much information about their host galaxies. Using its heat-seeking infrared eyes, Spitzer was able to see the dusty galaxies tucked inside one well-known blob located 11 billion light-years away. The findings reveal three monstrously bright galaxies, trillions of times brighter than the Sun, in the process of merging together (figure 3). Spitzer also observed three other blobs located in the same cosmic neighborhood, all of which were found to be glaringly bright. One of these blobs is also known to be a galactic merger, only between two galaxies instead of three. It remains to be seen whether the final two blobs studied also contain mergers. The Spitzer data were acquired by its multiband imaging photometer. The visible-light image was taken by the Blanco Telescope at the Cerro Tololo Inter-American Observatory, Chile.

  16. Tracking Galaxy Evolution Through Low-Frequency Radio ...

    Indian Academy of Sciences (India)

    Galaxies: active—galaxies: evolution—galaxies: individual: Speca—galaxies: individual: NGC ..... AGN-heated hot gas bubbles is nearly 1056 ergs and that is comparable to ener- getic impact of low-power ..... the probability may be, can create the central engines capable of launching massive energy feedback to the host ...

  17. Occurrence of LINER galaxies within the galaxy group environment

    Science.gov (United States)

    Coldwell, Georgina V.; Pereyra, Luis; Alonso, Sol; Donoso, Emilio; Duplancic, Fernanda

    2017-05-01

    We study the properties of a sample of 3967 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR7, with respect to their proximity to galaxy groups. The host galaxies of LINERs have been analysed and compared with a well-defined control sample of 3841 non-LINER galaxies matched in redshift, luminosity, colour, morphology, age and stellar mass content. We find no difference between LINER and control galaxies in terms of the colour and age of stellar population as a function of the virial mass and distance to the geometric centre of the group. However, we find that LINERs are more likely to populate low-density environments in spite of their morphology, which is typical of high-density regions such as rich galaxy clusters. For rich (poor) galaxy groups, the occurrence of LINERs is approximately two times lower (higher) than the occurrence of matched, non-LINER galaxies. Moreover, LINER hosts do not seem to follow the expected morphology-density relation in groups of high virial mass. The high frequency of LINERs in low-density regions could be due to the combination of a sufficient gas reservoir to power the low-ionization emission and/or enhanced galaxy interaction rates benefiting the gas flow towards their central regions.

  18. GRB hosts through cosmic time. VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1

    Science.gov (United States)

    Krühler, T.; Malesani, D.; Fynbo, J. P. U.; Hartoog, O. E.; Hjorth, J.; Jakobsson, P.; Perley, D. A.; Rossi, A.; Schady, P.; Schulze, S.; Tanvir, N. R.; Vergani, S. D.; Wiersema, K.; Afonso, P. M. J.; Bolmer, J.; Cano, Z.; Covino, S.; D'Elia, V.; de Ugarte Postigo, A.; Filgas, R.; Friis, M.; Graham, J. F.; Greiner, J.; Goldoni, P.; Gomboc, A.; Hammer, F.; Japelj, J.; Kann, D. A.; Kaper, L.; Klose, S.; Levan, A. J.; Leloudas, G.; Milvang-Jensen, B.; Nicuesa Guelbenzu, A.; Palazzi, E.; Pian, E.; Piranomonte, S.; Sánchez-Ramírez, R.; Savaglio, S.; Selsing, J.; Tagliaferri, G.; Vreeswijk, P. M.; Watson, D. J.; Xu, D.

    2015-09-01

    We present data and initial results from VLT/X-Shooter emission-line spectroscopy of 96 galaxies selected by long γ-ray bursts (GRBs) at 0.1 Swift and 76% are at 0.5 2 by ~0.4 dex. These properties of GRB hosts and their evolution with redshift can be understood in a cosmological context of star-forming galaxies and a picture in which the hosts' properties at low redshift are influenced by the tendency of GRBs to avoid the most metal-rich environments. Based on observations at ESO, Program IDs: 084.A-0260, 084.A-0303, 085.A-0009, 086.B-0954, 086.A-0533, 086.A-0874, 087.A-0055, 087.A-0451, 087.B-0737, 088.A-0051, 088.A-0644, 089.A-0067, 089.A-0120, 089.D-0256, 089.A-0868, 090.A-0088, 090.A-0760, 090.A-0825, 091.A-0342, 091.A-0703, 091.A-0877, 091.C-0934, 092.A-0076, 092.A-0124, 092.A-0231, 093.A-0069, 094.A-0593.Tables 1-4 and appendices are available in electronic form at http://www.aanda.orgThe reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A125

  19. Asiago Supernova classification program: Blowing out the first two hundred candles

    Science.gov (United States)

    Tomasella , L.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Turatto, M.; Barbon, R.; Elias-Rosa, N.; Harutyunyan, A.; Ochner, P.; Tartaglia, L.; Valenti, S.

    2014-10-01

    We present the compilation of the first 221 supernovae classified during the Asiago Classification Program (ACP). The details of transients classification and the preliminarily reduced spectra, in fits format, are immediately posted on the Padova-Asiago SN group web site. The achieved performances for the first 2 years of the ACP are analysed, showing that half of all our classifications were made within 5 days from transient detection. The distribution of the supernova types of this sample resembles the distribution of the general list of all the supernovae listed in the Asiago SN catalog (ASNC, Barbon et al. 1999). Finally, we use our subsample of 78 core-collapse supernovae, for which we retrieve the host-galaxy morphology and r-band absolute magnitudes, to study the observed subtype distribution in dwarf compared to giant galaxies. This ongoing program will give its contribution to the classification of the large number of transients that will be soon delivered by the Gaia mission.

  20. Jets in Active Galaxies

    Indian Academy of Sciences (India)

    tended regions of emission. These jets, which occur across the electromagnetic spectrum, are powered by supermassive black holes in the centres of the host galaxies. Jets are seen on the scale of parsecs in the nuclear regions to those which power the giant radio sources extending over several mega- parsecs. These jets ...

  1. The co-evolution of the obscured quasar PKS 1549-79 and its host galaxy : evidence for a high accretion rate and warm outflow

    NARCIS (Netherlands)

    Holt, J.; Tadhunter, C. N.; Morganti, R.; Bellamy, M.; González-Delgado, R. M.; Tzioumis, A.; Inskip, K. J.

    2006-01-01

    We use deep optical, infrared and radio observations to explore the symbiosis between nuclear activity and galaxy evolution in the southern compact radio source PKS 1549-79 (z = 0.1523). The optical imaging observations reveal the presence of tidal tail features which provide strong evidence that

  2. The Morphology of Passively Evolving Galaxies at Z approximately 2 from HST/WFC3 Deep Imaging in the Hubble Ultradeep Field

    Science.gov (United States)

    Cassata, P.; Giavalisco, M.; Guo, Yicheng; Ferguson, H.; Koekemoer, A.; Renzini, A.; Fontana, A.; Salimbeni, S.; Dickinson, M.; Casertano, S.; hide

    2010-01-01

    We present near-IR images of six passive galaxies (SSFRmorphology of such systems to date. We find that the light profile of these galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approximately 2: four out of six galaxies have r(sub e) approximately 1 kpc or less. The images reach limiting surface brightness mu approximates 26.5 mag/square arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the galaxies of our sample, even in their stacked image. We also find very weak "morphological k-correction" in the galaxies between the rest-frame UV (from the ACS z-band), and the rest-frame optical (WFC3 H-band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors. The presence of an active nucleus is suspected in two out of six galaxies (33%), opening the intriguing possibility that a large, presently unaccounted population of AGN is hosted in these galaxies, possibly responsible for the cessation of star formation.

  3. GREEN GALAXIES IN THE COSMOS FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail: panzz@mail.ustc.edu.cn, E-mail: xkong@ustc.edu.cn [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  4. Radio Galaxy Zoo: A Search for Hybrid Morphology Radio Galaxies

    Science.gov (United States)

    Kapińska, A. D.; Terentev, I.; Wong, O. I.; Shabala, S. S.; Andernach, H.; Rudnick, L.; Storer, L.; Banfield, J. K.; Willett, K. W.; de Gasperin, F.; Lintott, C. J.; López-Sánchez, Á. R.; Middelberg, E.; Norris, R. P.; Schawinski, K.; Seymour, N.; Simmons, B.

    2017-12-01

    Hybrid morphology radio sources (HyMoRS) are a rare type of radio galaxy that display different Fanaroff-Riley classes on opposite sides of their nuclei. To enhance the statistical analysis of HyMoRS, we embarked on a large-scale search of these sources within the international citizen science project, Radio Galaxy Zoo (RGZ). Here, we present 25 new candidate hybrid morphology radio galaxies. Our selected candidates are moderate power radio galaxies ({L}{median}=4.7× {10}24 W Hz-1 sr-1) at redshifts 0.14 1 Mpc) radio galaxies, one resides at the center of a galaxy cluster, and one is hosted by a rare green bean galaxy. Although the origin of the hybrid morphology radio galaxies is still unclear, this type of radio source starts depicting itself as a rather diverse class. We discuss hybrid radio morphology formation in terms of the radio source environment (nurture) and intrinsically occurring phenomena (nature; activity cessation and amplification), showing that these peculiar radio galaxies can be formed by both mechanisms. While high angular resolution follow-up observations are still necessary to confirm our candidates, we demonstrate the efficacy of the RGZ in the pre-selection of these sources from all-sky radio surveys, and report the reliability of citizen scientists in identifying and classifying complex radio sources.

  5. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    Science.gov (United States)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  6. The HIX galaxy survey II: HI kinematics of HI eXtreme galaxies

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.

    2018-02-01

    By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in HIX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The H I content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.

  7. Internal and environmental secular evolution of disk galaxies

    Science.gov (United States)

    Kormendy, John

    2015-03-01

    that are available to them. They do this by spreading - the inner parts shrink while the outer parts expand. Significant changes happen only if some process efficiently transports energy or angular momentum outward. The consequences are very general: evolution by spreading happens in stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks. This meeting is about disk galaxies, so the evolution most often involves the redistribution of angular momentum. We now have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the center. Numerical simulations reproduce observed morphologies very well. Gas that is transported to small radii reaches high densities that are seen in CO observations. Star formation rates measured (e.g.) in the mid-infrared show that many barred and oval galaxies grow, on timescales of a few Gyr, dense central `pseudobulges' that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). Our resulting picture of secular evolution accounts for the richness observed in morphological classification schemes such as those of de Vaucouleurs (1959) and Sandage (1961). State-of-the art morphology discussions include the de Vaucouleurs Atlas of Galaxies (Buta et al. 2007) and Buta (2012, 2013). Pseudobulges as disk-grown alternatives to merger-built classical bulges are important because they impact many aspects of our understanding of galaxy evolution. For example, they are observed to contain supermassive black holes (BHs), but they do not show the well known, tight correlations between BH mass and host properties (Kormendy et al. 2011). We can distinguish between classical and pseudo bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of

  8. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen,; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ.

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that

  9. A molecular phylogeny for yponomeutoidea (insecta, Lepidoptera, ditrysia) and its implications for classification, biogeography and the evolution of host plant use.

    Science.gov (United States)

    Sohn, Jae-Cheon; Regier, Jerome C; Mitter, Charles; Davis, Donald; Landry, Jean-François; Zwick, Andreas; Cummings, Michael P

    2013-01-01

    Yponomeutoidea, one of the early-diverging lineages of ditrysian Lepidoptera, comprise about 1,800 species worldwide, including notable pests and insect-plant interaction models. Yponomeutoids were one of the earliest lepidopteran clades to evolve external feeding and to extensively colonize herbaceous angiosperms. Despite the group's economic importance, and its value for tracing early lepidopteran evolution, the biodiversity and phylogeny of Yponomeutoidea have been relatively little studied. Eight nuclear genes (8 kb) were initially sequenced for 86 putative yponomeutoid species, spanning all previously recognized suprageneric groups, and 53 outgroups representing 22 families and 12 superfamilies. Eleven to 19 additional genes, yielding a total of 14.8 to 18.9 kb, were then sampled for a subset of taxa, including 28 yponomeutoids and 43 outgroups. Maximum likelihood analyses were conducted on data sets differing in numbers of genes, matrix completeness, inclusion/weighting of synonymous substitutions, and inclusion/exclusion of "rogue" taxa. Monophyly for Yponomeutoidea was supported very strongly when the 18 "rogue" taxa were excluded, and moderately otherwise. Results from different analyses are highly congruent and relationships within Yponomeutoidea are well supported overall. There is strong support overall for monophyly of families previously recognized on morphological grounds, including Yponomeutidae, Ypsolophidae, Plutellidae, Glyphipterigidae, Argyresthiidae, Attevidae, Praydidae, Heliodinidae, and Bedelliidae. We also assign family rank to Scythropiinae (Scythropiidae stat. rev.), which in our trees are strongly grouped with Bedelliidae, in contrast to all previous proposals. We present a working hypothesis of among-family relationships, and an informal higher classification. Host plant family associations of yponomeutoid subfamilies and families are non-random, but show no trends suggesting parallel phylogenesis. Our analyses suggest that previous

  10. Growing Galaxies Gently

    Science.gov (United States)

    2010-10-01

    of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and

  11. Galaxy Zoo: Exploring the Motivations of Citizen Science Volunteers

    Science.gov (United States)

    Raddick, M. Jordan; Bracey, Georgia; Gay, Pamela L.; Lintott, Chris J.; Murray, Phil; Schawinski, Kevin; Szalay, Alexander S.; Vandenberg, Jan

    2010-01-01

    The Galaxy Zoo citizen science website invites anyone with an Internet connection to participate in research by classifying galaxies from the Sloan Digital Sky Survey. As of April 2009, more than 200,000 volunteers have made more than 100 million galaxy classifications. In this article, we present results of a pilot study into the motivations and…

  12. QUALITATIVE INTERPRETATION OF GALAXY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Almeida, J.; Morales-Luis, A. B. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Terlevich, R.; Terlevich, E. [Instituto Nacional de Astrofisica, Optica y Electronica, Tonantzintla, Puebla (Mexico); Cid Fernandes, R., E-mail: jos@iac.es, E-mail: abml@iac.es, E-mail: rjt@ast.cam.ac.uk, E-mail: eterlevi@inaoep.mx, E-mail: cid@astro.ufsc.br [Departamento de Fisica-CFM, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900 Florianopolis, SC (Brazil)

    2012-09-10

    We describe a simple step-by-step guide to qualitative interpretation of galaxy spectra. Rather than an alternative to existing automated tools, it is put forward as an instrument for quick-look analysis and for gaining physical insight when interpreting the outputs provided by automated tools. Though the recipe is for general application, it was developed for understanding the nature of the Automatic Spectroscopic K-means-based (ASK) template spectra. They resulted from the classification of all the galaxy spectra in the Sloan Digital Sky Survey data release 7, thus being a comprehensive representation of the galaxy spectra in the local universe. Using the recipe, we give a description of the properties of the gas and the stars that characterize the ASK classes, from those corresponding to passively evolving galaxies, to H II galaxies undergoing a galaxy-wide starburst. The qualitative analysis is found to be in excellent agreement with quantitative analyses of the same spectra. We compare the mean ages of the stellar populations with those inferred using the code STARLIGHT. We also examine the estimated gas-phase metallicity with the metallicities obtained using electron-temperature-based methods. A number of byproducts follow from the analysis. There is a tight correlation between the age of the stellar population and the metallicity of the gas, which is stronger than the correlations between galaxy mass and stellar age, and galaxy mass and gas metallicity. The galaxy spectra are known to follow a one-dimensional sequence, and we identify the luminosity-weighted mean stellar age as the affine parameter that describes the sequence. All ASK classes happen to have a significant fraction of old stars, although spectrum-wise they are outshined by the youngest populations. Old stars are metal-rich or metal-poor depending on whether they reside in passive galaxies or in star-forming galaxies.

  13. Lopsided Collections of Satellite Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    You might think that small satellite galaxies would be distributed evenly around their larger galactic hosts but local evidence suggests otherwise. Are satellite distributions lopsided throughout the universe?Satellites in the Local GroupThe distribution of the satellite galaxies orbiting Andromeda, our neighboring galaxy, is puzzling: 21 out of 27 ( 80%) of its satellites are on the side of Andromeda closest to us. In a similar fashion, 4 of the 11 brightest Milky Way satellites are stacked on the side closest to Andromeda.It seems to be the case, then, that satellites around our pair of galaxies preferentially occupy the space between the two galaxies. But is this behavior specific to the Local Group? Or is it commonplace throughout the universe? In a recent study, a team of scientists led by Noam Libeskind (Leibniz Institute for Astrophysics Potsdam, Germany) set out to answer this question.Properties of the galaxies included in the authors sample. Left: redshifts for galaxy pairs. Right: Number of satellite galaxies around hosts. [Adapted from Libeskind et al. 2016]Asymmetry at LargeLibeskind and collaborators tested whether this behavior is common by searching through Sloan Digital Sky Survey observations for galaxy pairs that are similar to the Milky Way/Andromeda pair. The resulting sample consists of 12,210 pairs of galaxies, which have 46,043 potential satellites among them. The team then performed statistical tests on these observations to quantify the anisotropic distribution of the satellites around the host galaxies.Libeskind and collaborators find that roughly 8% more galaxies are seen within a 15 angle facing the other galaxy of a pair than would be expected in a uniform distribution. The odds that this asymmetric behavior is randomly produced, they show, are lower than 1 in 10 million indicating that the lopsidedness of satellites around galaxies in pairs is a real effect and occurs beyond just the Local Group.Caution for ModelingProbability that

  14. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  15. The Assembly of Galaxy Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2008-05-16

    We study the formation of fifty-three galaxy cluster-size dark matter halos (M = 10{sup 14.0-14.76} M{sub {circle_dot}}) formed within a pair of cosmological {Lambda}CDM N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host {approx} 0.1L{sub *} galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'pre-processing' in the group environment prior to their accretion into the cluster. On average, {approx} 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; and less than {approx} 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past ({approx}< 6 Gyr) than a field halo of the same mass. These results suggest that local, cluster processes like ram-pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass; and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with {approx} 20% incorporated into the cluster halo more than 7 Gyr ago and {approx} 20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate time-scale for late-type to early-type transformation within the cluster environment to be {approx} 6 Gyr.

  16. Demise of faint satellites around isolated early-type galaxies

    Science.gov (United States)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  17. DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  18. GALAXY EVOLUTION. An over-massive black hole in a typical star-forming galaxy, 2 billion years after the Big Bang.

    Science.gov (United States)

    Trakhtenbrot, Benny; Urry, C Megan; Civano, Francesca; Rosario, David J; Elvis, Martin; Schawinski, Kevin; Suh, Hyewon; Bongiorno, Angela; Simmons, Brooke D

    2015-07-10

    Supermassive black holes (SMBHs) and their host galaxies are generally thought to coevolve, so that the SMBH achieves up to about 0.2 to 0.5% of the host galaxy mass in the present day. The radiation emitted from the growing SMBH is expected to affect star formation throughout the host galaxy. The relevance of this scenario at early cosmic epochs is not yet established. We present spectroscopic observations of a galaxy at redshift z = 3.328, which hosts an actively accreting, extremely massive BH, in its final stages of growth. The SMBH mass is roughly one-tenth the mass of the entire host galaxy, suggesting that it has grown much more efficiently than the host, contrary to models of synchronized coevolution. The host galaxy is forming stars at an intense rate, despite the presence of a SMBH-driven gas outflow. Copyright © 2015, American Association for the Advancement of Science.

  19. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters

    2009-01-01

    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  20. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S

    2008-01-01

    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  1. AGN feedback in dwarf galaxies?

    Science.gov (United States)

    Dashyan, Gohar; Silk, Joseph; Mamon, Gary A.; Dubois, Yohan; Hartwig, Tilman

    2018-02-01

    Dwarf galaxy anomalies, such as their abundance and cusp-core problems, remain a prime challenge in our understanding of galaxy formation. The inclusion of baryonic physics could potentially solve these issues, but the efficiency of stellar feedback is still controversial. We analytically explore the possibility of feedback from active galactic nuclei (AGNs) in dwarf galaxies and compare AGN and supernova (SN) feedback. We assume the presence of an intermediate-mass black hole within low-mass galaxies and standard scaling relations between the relevant physical quantities. We model the propagation and properties of the outflow and explore the critical condition for global gas ejection. Performing the same calculation for SNe, we compare the ability of AGNs and SNe to drive gas out of galaxies. We find that a critical halo mass exists below which AGN feedback can remove gas from the host halo and that the critical halo mass for an AGN is greater than the equivalent for SNe in a significant part of the parameter space, suggesting that an AGN could provide an alternative and more successful source of negative feedback than SNe, even in the most massive dwarf galaxies.

  2. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    Science.gov (United States)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  3. Secular Evolution in Disk Galaxies

    Science.gov (United States)

    Kormendy, John

    2013-10-01

    bulges because the latter retain a `memory' of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions with respect to the Faber-Jackson correlation between velocity dispersion and bulge luminosity, (4) spiral structure or nuclear bars in the `bulge' part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognisable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgeless giant galaxies are common in field environments. We now realise that many dense centres of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well-known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to

  4. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.

    2006-01-01

    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  5. Galaxy evolution. Isolated compact elliptical galaxies: stellar systems that ran away.

    Science.gov (United States)

    Chilingarian, Igor; Zolotukhin, Ivan

    2015-04-24

    Compact elliptical galaxies form a rare class of stellar system (~30 presently known) characterized by high stellar densities and small sizes and often harboring metal-rich stars. They were thought to form through tidal stripping of massive progenitors, until two isolated objects were discovered where massive galaxies performing the stripping could not be identified. By mining astronomical survey data, we have now found 195 compact elliptical galaxies in all types of environment. They all share similar dynamical and stellar population properties. Dynamical analysis for nonisolated galaxies demonstrates the feasibility of their ejection from host clusters and groups by three-body encounters, which is in agreement with numerical simulations. Hence, isolated compact elliptical and isolated quiescent dwarf galaxies are tidally stripped systems that ran away from their hosts. Copyright © 2015, American Association for the Advancement of Science.

  6. TESTING DIAGNOSTICS OF NUCLEAR ACTIVITY AND STAR FORMATION IN GALAXIES AT z > 1

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Barro, Guillermo; Koo, David C.; Faber, S. M. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Konidaris, Nicholas P. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kocevski, Dale D.; Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Juneau, Stephanie [Irfu/Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); McLean, Ian S. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Perez-Gonzalez, Pablo G.; Villar, Victor [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2013-01-20

    We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z {approx} 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/H{beta} ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/H{beta} versus [N II]/H{alpha} and [S II]/H{alpha}) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that 'composite' galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly {approx}2/3 of the z {approx} 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.

  7. The SAMI Galaxy Survey: disc-halo interactions in radio-selected star-forming galaxies

    Science.gov (United States)

    Leslie, S. K.; Bryant, J. J.; Ho, I.-T.; Sadler, E. M.; Medling, A. M.; Groves, B.; Kewley, L. J.; Bland-Hawthorn, J.; Croom, S. M.; Wong, O. I.; Brough, S.; Tescari, E.; Sweet, S. M.; Sharp, R.; Green, A. W.; López-Sánchez, Á. R.; Allen, J. T.; Fogarty, L. M. R.; Goodwin, M.; Lawrence, J. S.; Konstantopoulos, I. S.; Owers, M. S.; Richards, S. N.

    2017-10-01

    In this paper, we compare the radio emission at 1.4 GHz with optical outflow signatures of edge-on galaxies. We report observations of six edge-on star-forming galaxies in the Sydney-AAO Multiobject Integral-field spectrograph Galaxy Survey with 1.4 GHz luminosities >1 × 1021 W Hz-1. Extended minor axis optical emission is detected with enhanced [N II]/H α line ratios and velocity dispersions consistent with galactic winds in three of six galaxies. These galaxies may host outflows driven by a combination of thermal and cosmic ray processes. We find that galaxies with the strongest wind signatures have extended radio morphologies. Our results form a baseline for understanding the driving mechanisms of galactic winds.

  8. The HIX Galaxy Survey: The Most HI Rich Galaxies In The Southern Hemisphere

    Science.gov (United States)

    Lutz, Katharina

    2016-10-01

    When comparing the gas content of galaxies with their current star formation rate, it has been found that the gas consumption time scale is much smaller than the age of galaxies. In addition, the metallicity within galaxies is much smaller than expected from closed box modelling of galaxies. These discrepancies suggest that galaxies must replenish their gas reservoirs by accretion of metal-poor gas from the intergalactic medium.In order to investigate this process of gas accretion in more detail we target local galaxies that host an atomic hydrogen (HI) disc at least 2.5 times more massive than expected from their optical properties using scaling relations. For this sample of galaxies, we have been collecting a multiwavelength data set consisting of deep ATCA HI interferometry, ANU SSO 2.3m WiFeS optical integral field spectroscopy and publicly available photometry from GALEX (ultraviolet), WISE and 2MASS (both infrared).We find that these galaxies are normal star-forming spiral galaxies. However, their specific angular momentum is higher than in control galaxies, which allows these galaxies to support a massive HI disc.With the help of the HI interferometry and the optical IFU spectra, we are searching for signs of recent gas accretion. These signs may include among other things non-circular motion of HI, warped or lopsided HI discs, both of which can be identified through tilted-ring modelling of the HI disc or inhomogeneities in the IFU-based metallicity maps.In my talk I will first compare the HI rich galaxies to the control sample and the general galaxy population. I will then move on to the most HI massive galaxy in our sample and discuss its HI kinematics and its gas-phase oxygen abundance distribution in more detail. To conclude I will give an outlook on the more detailed HI kinematics of the remaining HI rich sample.

  9. Massive relic galaxies prefer dense environments

    Science.gov (United States)

    Peralta de Arriba, Luis; Quilis, Vicent; Trujillo, Ignacio; Cebrián, María; Balcells, Marc

    2016-09-01

    We study the preferred environments of z ∼ 0 massive relic galaxies (M⋆ ≳ 1010 M⊙ galaxies with little or no growth from star formation or mergers since z ∼ 2). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since z ∼ 2 is ∼0.04 per cent for the whole massive galaxy population with M⋆ ≳ 1010 M⊙. This fraction rises to ∼0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as M⋆ ≳ 1010 M⊙ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find 1.11 ± 0.05 per cent of relics among massive galaxies. This fraction rises to 2.4 ± 0.4 per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.

  10. INVESTIGATING THE CORE MORPHOLOGY-SEYFERT CLASS RELATIONSHIP WITH HUBBLE SPACE TELESCOPE ARCHIVAL IMAGES OF LOCAL SEYFERT GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. J.; Hegel, P. R.; Kim, Hwihyun; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Tamura, Kazuyuki [Naruto University of Education, Nakashima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2013-07-01

    The unified model of active galactic nuclei (AGNs) has provided a successful explanation for the observed diversity of AGNs in the local universe. However, recent analysis of multi-wavelength spectral and image data suggests that the unified model is only a partial theory of AGNs, and may need to be augmented to remain consistent with all observations. Recent studies using high spatial resolution ground- and space-based observations of local AGNs show that Seyfert class and the ''core'' (r {approx}< 1 kpc) host-galaxy morphology are correlated. Currently, this relationship has only been established qualitatively, by visual inspection of the core morphologies of low-redshift (z < 0.035) Seyfert host galaxies. We re-establish this empirical relationship in Hubble Space Telescope optical imaging by visual inspection of a catalog of 85 local (D < 63 Mpc) Seyfert galaxies. We also attempt to re-establish the core morphology-Seyfert class relationship using an automated, non-parametric technique that combines both existing classification parameter methods (the adapted CAS and G-M {sub 20}) and a new method which implements the Source Extractor software for feature detection in unsharp-mask images. This new method is designed explicitly to detect dust features in the images. We use our automated approach to classify the morphology of the AGN cores and determine that Sy2 galaxies visually appear, on average, to have more dust features than Sy1. With the exception of this ''dustiness'' however, we do not measure a strong correlation between the dust morphology and the Seyfert class of the host galaxy using quantitative techniques. We discuss the implications of these results in the context of the unified model.

  11. The HIX galaxy survey I: Study of the most gas rich galaxies from HIPASS

    Science.gov (United States)

    Lutz, K. A.; Kilborn, V. A.; Catinella, B.; Koribalski, B. S.; Brown, T. H.; Cortese, L.; Dénes, H.; Józsa, G. I. G.; Wong, O. I.

    2017-05-01

    We present the H I eXtreme (HIX) galaxy survey targeting some of the most H I rich galaxies in the Southern hemisphere. The 13 HIX galaxies have been selected to host the most massive H I discs at a given stellar luminosity. We compare these galaxies to a control sample of average galaxies detected in the H I Parkes All Sky Survey (HIPASS). As the control sample is matched in stellar luminosity, we find that the stellar properties of HIX galaxies are similar to the control sample. Furthermore, the specific star formation rate and optical morphology do not differ between HIX and control galaxies. We find, however, the HIX galaxies to be less efficient in forming stars. For the most H I massive galaxy in our sample (ESO075-G006, log M_{H I} [M⊙] = (10.8 ± 0.1)), the kinematic properties are the reason for inefficient star formation and H I excess. Examining the Australian Telescope Compact Array (ATCA) H I imaging and Wide Field Spectrograph (WiFeS) optical spectra of ESO075-G006 reveals an undisturbed galaxy without evidence for recent major, violent accretion events. A tilted ring fitted to the H I disc together with the gas-phase oxygen abundance distribution supports the scenario that gas has been constantly accreted on to ESO075-G006 but the high specific angular momentum makes ESO075-G006 very inefficient in forming stars. Thus, a massive H I disc has been built up.

  12. Evolution in the Dust Lane Fraction of Edge-on L* V Spiral Galaxies Since z = 0.8

    Science.gov (United States)

    Holwerda, B. W.; Dalcanton, J. J.; Radburn-Smith, D.; de Jong, R. S.; Guhathakurta, P.; Koekemoer, A.; Allen, R. J.; Böker, T.

    2012-07-01

    The presence of a well-defined and narrow dust lane in an edge-on spiral galaxy is the observational signature of a thin and dense molecular disk, in which gravitational collapse has overcome turbulence. Using a sample of galaxies out to z ~ 1 extracted from the COSMOS survey, we identify the fraction of massive (L* V ) disks that display a dust lane. Our goal is to explore the evolution in the stability of the molecular interstellar medium (ISM) disks in spiral galaxies over a cosmic timescale. We check the reliability of our morphological classifications against changes in rest-frame wavelength, resolution, and cosmic dimming with (artificially redshifted) images of local galaxies from the Sloan Digital Sky Survey. We find that the fraction of L* V disks with dust lanes in COSMOS is consistent with the local fraction (≈80%) out to z ~ 0.7. At z = 0.8, the dust lane fraction is only slightly lower. A somewhat lower dust lane fraction in starbursting galaxies tentatively supports the notion that a high specific star formation rate can efficiently destroy or inhibit a dense molecular disk. A small subsample of higher redshift COSMOS galaxies display low internal reddening (E[B - V]), as well as a low incidence of dust lanes. These may be disks in which the growth of the dusty ISM disk lags behind that of the stellar disk. We note that at z = 0.8, the most massive galaxies display a lower dust lane fraction than lower mass galaxies. A small contribution of recent mergers or starbursts to this most massive population may be responsible. The fact that the fraction of galaxies with dust lanes in COSMOS is consistent with little or no evolution implies that models to explain the spectral energy distribution or the host galaxy dust extinction of supernovae based on local galaxies are still applicable to higher redshift spirals. It also suggests that dust lanes are long-lived phenomena or can be reformed over very short timescales.

  13. Green valley galaxies as a transition population in different environments

    Science.gov (United States)

    Coenda, Valeria; Martínez, Héctor J.; Muriel, Hernán

    2018-02-01

    We present a comparative analysis of the properties of passive, star-forming and transition (green valley) galaxies in four discrete environments: field, groups, the outskirts and the core of X-ray clusters. We construct samples of galaxies from the Sloan Digital Sky Survey in these environments so that they are bound to have similar redshift distributions. The classification of galaxies into the three sequences is based on the UV-optical colour NUV - r. We study a number of galaxy properties: stellar mass, morphology, specific star formation rate and the history of star formation. The analysis of green valley (GV) galaxies reveals that the physical mechanisms responsible for external quenching become more efficient moving from the field to denser environments. We confirm previous findings that GV galaxies have intermediate morphologies; moreover, we find that this appears to be independent of the environment. Regarding the stellar mass of GV galaxies, we find that they tend to be more massive in the field than in denser environments. On average, GV galaxies account for ∼ 20 per cent of all galaxies in groups and X-ray clusters. We find evidence that the field environment is inefficient in transforming low-mass galaxies. GV galaxies have average star formation histories intermediate between passive and star-forming galaxies, and have a clear and consistent dependence on the environment: both, the quenching time and the amplitude of the star formation rate, decrease towards higher density environments.

  14. Dwarf spheroidal galaxies: Keystones of galaxy evolution

    Science.gov (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.

    1994-01-01

    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  15. Reading the Chemical Evolution of Stellar Populations in Dwarf Galaxies

    OpenAIRE

    Hendricks, Benjamin Thomas

    2015-01-01

    In this thesis I present observations and analyses addressed to understand the individual evolution of dwarf galaxies and the interdependency with their local environment. My study focuses on the Fornax dwarf spheroidal galaxy, which is the most massive galaxy of its type in the Local Group, hosting stars with a broad range in age and metallicity. Additionally, it is the only intact dwarf spheroidal with an own globular cluster system. Therefore, it provides a superb laboratory to...

  16. AO Observations of Three Powerful Radio Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, W; van Bruegel, W; Quirrenbach, A

    2002-08-01

    The host galaxies of powerful radio sources are ideal laboratories to study active galactic nuclei (AGN). The galaxies themselves are among the most massive systems in the universe, and are believed to harbor supermassive black holes (SMBH). If large galaxies are formed in a hierarchical way by multiple merger events, radio galaxies at low redshift represent the end-products of this process. However, it is not clear why some of these massive ellipticals have associated radio emission, while others do not. Both are thought to contain SMBHs, with masses proportional to the total luminous mass in the bulge. It either implies every SMBH has recurrent radio-loud phases, and the radio-quiet galaxies happen to be in the ''low'' state, or that the radio galaxy nuclei are physically different from radio-quiet ones, i.e. by having a more massive SMBH for a given bulge mass. Here we present the first results from our adaptive optics imaging and spectroscopy pilot program on three nearby powerful radio galaxies. Initiating a larger, more systematic AO survey of radio galaxies (preferentially with Laser Guide Star equipped AO systems) has the potential of furthering our understanding of the physical properties of radio sources, their triggering, and their subsequent evolution.

  17. Dwarf Galaxies in the Chandra COSMOS Legacy Survey

    Science.gov (United States)

    Civano, Francesca Maria; Mezcua, Mar; Fabbiano, Giuseppina; Marchesi, Stefano; Suh, Hyewon; Volonteri, Marta; cyrille

    2018-01-01

    The existence of intermediate mass black holes (100 7. While detecting these seed black holes in the young Universe is observationally challenging, the nuclei of local dwarf galaxies are among the best places where to look for them as these galaxies resemble in mass and metallicity the first galaxies and they have not significantly grown through merger and accretion processes. We present a sample of 40 AGN in dwarf galaxies (107 Legacy survey. Once the star formation contribution to the X-ray emission is subtracted, the AGN luminosities of the 40 dwarf galaxies are in the range L(0.5-10 keV)~1039 - 1044 erg/s. With 12 sources at z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. One of the dwarf galaxies is the least massive galaxy (M* = 6.6x107 Msun) found so far to host an active BH. We also present for the first time the evolution of the AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to z = 0.7, finding that it decreases with X-ray luminosity and stellar mass. Unlike massive galaxies, the AGN fraction is found to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies.

  18. Alignments of galaxies within cosmic filaments from SDSS DR7

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Youcai; Yang, Xiaohu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China); Wang, Huiyuan [Key Laboratory for Research in Galaxies and Cosmology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang, Lei [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China); Mo, H. J. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Van den Bosch, Frank C., E-mail: yczhang@shao.ac.cn, E-mail: xyang@sjtu.edu.cn [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2013-12-20

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  19. Alignments of Galaxies within Cosmic Filaments from SDSS DR7

    Science.gov (United States)

    Zhang, Youcai; Yang, Xiaohu; Wang, Huiyuan; Wang, Lei; Mo, H. J.; van den Bosch, Frank C.

    2013-12-01

    Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7, we examine the alignment between the orientation of galaxies and their surrounding large-scale structure in the context of the cosmic web. The latter is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments and strongly suggest that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.

  20. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic

  1. Galaxy Zoo: Observing secular evolution through bars

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Edmond; Faber, S. M.; Koo, David C. [Department of Astronomy and Astrophysics, 1156 High Street, University of California, Santa Cruz, CA 95064 (United States); Athanassoula, E.; Bosma, A. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Lintott, Chris [Oxford Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Schawinski, Kevin [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Skibba, Ramin A. [Center for Astrophysics and Space Sciences, Department of Physics, 9500 Gilman Drive, University of California, San Diego, CA 92093 (United States); Willett, Kyle W., E-mail: ec2250@gmail.com [School of Physics and Astronomy, University of Minnesota, MN 55455 (United States)

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  2. Galaxy Zoo: Infrared and Optical Morphology

    Science.gov (United States)

    Carla Shanahan, Jesse; Lintott, Chris; Zoo, Galaxy

    2018-01-01

    We present the detailed, visual morphologies of approximately 60,000 galaxies observed by the UKIRT Infrared Deep Sky Survey and then classified by participants in the Galaxy Zoo project. Our sample is composed entirely of nearby objects with redshifts of z ≤ 0.3, which enables us to robustly analyze their morphological characteristics including smoothness, bulge properties, spiral structure, and evidence of bars or rings. The determination of these features is made via a consensus-based analysis of the Galaxy Zoo project data in which inconsistent and outlying classifications are statistically down-weighted. We then compare these classifications of infrared morphology to the objects’ optical classifications in the Galaxy Zoo 2 release (Willett et al. 2013). It is already known that morphology is an effective tool for uncovering a galaxy’s dynamical past, and previous studies have shown significant correlations with physical characteristics such as stellar mass distribution and star formation history. We show that majority of the sample has agreement or expected differences between the optical and infrared classifications, but also present a preliminary analysis of a subsample of objects with striking discrepancies.

  3. Galaxy Mergers Moulding the CGM

    Science.gov (United States)

    Hani, Maan H.; Sparre, Martin; Ellison, Sara L.; Torrey, Paul; Vogelsberger, Mark

    2017-07-01

    Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extra-galactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM: We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z=0 descendant is a Milky Way-like galaxy, and then re-simulated at a 40 times higher mass resolution. We include post-processing ionization modelling. This work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus. The case study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity and observed column densities of the CGM (Hani et al. in prep).

  4. Merging Galaxies Create a Binary Quasar

    Science.gov (United States)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  5. Massive Black Holes in Central Cluster Galaxies

    Science.gov (United States)

    Volonteri, Marta; Ciotti, Luca

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as "CCGs"). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M BH) deviate from the expected correlations with velocity dispersion (σ) and mass of the bulge (M bulge) of the host galaxy: MBHs in CCGs appear to be "overmassive." This discrepancy is more pronounced when considering the M BH-σ relation than the M BH-M bulge one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  6. MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Volonteri, Marta [Institut d' Astrophysique de Paris, 98bis Bd. Arago, F-75014 Paris (France); Ciotti, Luca [Dipartimento di Fisica e Astronomia, Universita di Bologna, via Ranzani 1, I-40127 Bologna (Italy)

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M{sub BH}) deviate from the expected correlations with velocity dispersion ({sigma}) and mass of the bulge (M{sub bulge}) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the M{sub BH}-{sigma} relation than the M{sub BH}-M{sub bulge} one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  7. Ultramassive black hole feedback in compact galaxies

    Science.gov (United States)

    Ishibashi, W.; Fabian, A. C.

    2017-12-01

    Recent observations confirm the existence of ultra-massive black holes (UMBH) in the nuclei of compact galaxies, with physical properties similar to NGC 1277. The nature of these objects poses a new puzzle to the `black hole-host galaxy co-evolution' scenario. We discuss the potential link between UMBH and galaxy compactness, possibly connected via extreme active galactic nucleus (AGN) feedback at early times ($z > 2$). In our picture, AGN feedback is driven by radiation pressure on dust. We suggest that early UMBH feedback blows away all the gas beyond a $\\sim$kpc or so, while triggering star formation at inner radii, eventually leaving a compact galaxy remnant. Such extreme UMBH feedback can also affect the surrounding environment on larger scales, e.g. the outflowing stars may form a diffuse stellar halo around the compact galaxy, or even escape into the intergalactic or intracluster medium. On the other hand, less massive black holes will drive less powerful feedback, such that the stars formed within the AGN feedback-driven outflow remain bound to the host galaxy, and contribute to its size growth over cosmic time.

  8. Globular Clusters for Faint Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    .The most striking feature of these galaxies, however, is that they are surrounded by a large number of compact objects that appear to be globular clusters. From the observations, Van Dokkum and collaborators estimate that Dragonfly 44 and DFX1 have approximately 74 and 62 globulars, respectively significantly more than the low numbers expected for galaxies of this luminosity.Armed with this knowledge, the authors went back and looked at archival observations of 14 other UDGs also located in the Coma cluster. They found that these smaller and fainter galaxies dont host quite as many globular clusters as Dragonfly 44 and DFX1, but more than half also show significant overdensities of globulars.Main panel: relation between the number of globular clusters and total absolute magnitude for Coma UDGs (solid symbols) compared to normal galaxies (open symbols). Top panel: relation between effective radius and absolute magnitude. The UDGs are significantly larger and have more globular clusters than normal galaxies of the same luminosity. [van Dokkum et al. 2017]Evidence of FailureIn general, UDGs appear to have more globular clusters than other galaxies of the same total luminosity, by a factor of nearly 7. These results are consistent with the scenario in which UDGs are failed galaxies: they likely have the halo mass to have formed a large number of globular clusters, but they were quenched before they formed a disk and bulge. Because star formation never got going in UDGs, they are now much dimmer than other galaxies of the same size.The authors suggest that the next step is to obtain dynamical measurements of the UDGs to determine whether these faint galaxies really do have the halo mass suggested by their large numbers of globulars. Future observations will continue to help us pin down the origin of these dim giants.CitationPieter van Dokkum et al 2017 ApJL 844 L11. doi:10.3847/2041-8213/aa7ca2

  9. Mining the Galaxy Zoo Database: Machine Learning Applications

    Science.gov (United States)

    Borne, Kirk D.; Wallin, J.; Vedachalam, A.; Baehr, S.; Lintott, C.; Darg, D.; Smith, A.; Fortson, L.

    2010-01-01

    The new Zooniverse initiative is addressing the data flood in the sciences through a transformative partnership between professional scientists, volunteer citizen scientists, and machines. As part of this project, we are exploring the application of machine learning techniques to data mining problems associated with the large and growing database of volunteer science results gathered by the Galaxy Zoo citizen science project. We will describe the basic challenge, some machine learning approaches, and early results. One of the motivators for this study is the acquisition (through the Galaxy Zoo results database) of approximately 100 million classification labels for roughly one million galaxies, yielding a tremendously large and rich set of training examples for improving automated galaxy morphological classification algorithms. In our first case study, the goal is to learn which morphological and photometric features in the Sloan Digital Sky Survey (SDSS) database correlate most strongly with user-selected galaxy morphological class. As a corollary to this study, we are also aiming to identify which galaxy parameters in the SDSS database correspond to galaxies that have been the most difficult to classify (based upon large dispersion in their volunter-provided classifications). Our second case study will focus on similar data mining analyses and machine leaning algorithms applied to the Galaxy Zoo catalog of merging and interacting galaxies. The outcomes of this project will have applications in future large sky surveys, such as the LSST (Large Synoptic Survey Telescope) project, which will generate a catalog of 20 billion galaxies and will produce an additional astronomical alert database of approximately 100 thousand events each night for 10 years -- the capabilities and algorithms that we are exploring will assist in the rapid characterization and classification of such massive data streams. This research has been supported in part through NSF award #0941610.

  10. Dwarf Galaxies in Voids: Dark Matter Halos and Gas Cooling

    Directory of Open Access Journals (Sweden)

    Matthias Hoeft

    2010-01-01

    Full Text Available Galaxy surveys have shown that luminous galaxies are mainly distributed in large filaments and galaxy clusters. The remaining large volumes are virtually devoid of luminous galaxies. This is in concordance with the formation of the large-scale structure in the universe as derived from cosmological simulations. However, the numerical results indicate that cosmological voids are abundantly populated with dark matter haloes which may in principle host dwarf galaxies. Observational efforts have in contrast revealed that voids are apparently devoid of dwarf galaxies. We investigate the formation of dwarf galaxies in voids by hydrodynamical cosmological simulations. Due to the cosmic ultraviolet background radiation low-mass haloes show generally a reduced baryon fraction. We determine the characteristic mass below which dwarf galaxies are baryon deficient. We show that the circular velocity below which the accretion of baryons is suppressed is approximately 40 kms−1. The suppressed baryon accretion is caused by the photo-heating due to the UV background. We set up a spherical halo model and show that the effective equation of the state of the gas in the periphery of dwarf galaxies determines the characteristic mass. This implies that any process which heats the gas around dwarf galaxies increases the characteristic mass and thus reduces the number of observable dwarf galaxies.

  11. In Pursuit of the Least Luminous Galaxies

    Directory of Open Access Journals (Sweden)

    Beth Willman

    2010-01-01

    Full Text Available The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as 10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.

  12. Galaxy Zoo: Comparing the visual morphology of synthetic galaxies from the Illustris simulation with those in the real Universe.

    Science.gov (United States)

    Dickinson, Hugh; Lintott, Chris; Scarlata, Claudia; Fortson, Lucy; Bamford, Steven; Cardamone, Carolin; Keel, William C.; Kruk, Sandor; Masters, Karen; Simmons, Brooke D.; Vogelsberger, Mark; Torrey, Paul; Snyder, Gregory; Galaxy Zoo Science Team

    2018-01-01

    We present a comparision between the Illustris simulations and classifications from Galaxy Zoo, aiming to test the ability of modern large-scale cosmological simulations to accurately reproduce the local galaxy population. This comparison is enabled by the increasingly high spatial and temporal resolution obtained by such surveys.Using classifications that were accumulated via the Galaxy Zoo citizen science interface, we compare the visual morphologies for simulated images of Illustris galaxies with a compatible sample of images drawn from the Sloan Digital Sky Survey (SDSS) Legacy Survey.For simulated galaxies with stellar masses less than 1011 M⊙, significant differences are identified, which are most likely due to the limited resolution of the simulation, but could be revealing real differences in the dynamical evolution of populations of galaxies in the real and model universes. Above 1011 M⊙, Illustris galaxy morphologies correspond better with those of their SDSS counterparts, although even in this mass range the simulation appears to underproduce obviously disk-like galaxies. Morphologies of Illustris galaxies less massive than 1011 M⊙ should be treated with care.

  13. Spontaneous formation of double bars in dark matter dominated galaxies

    OpenAIRE

    Saha, Kanak; Maciejewski, Witold

    2013-01-01

    Although nearly one-third of barred galaxies host an inner, secondary bar, the formation and evolution of double barred galaxies remain unclear. We show here an example model of a galaxy, dominated by a live dark matter halo, in which double bars form naturally, without requiring gas, and we follow its evolution for a Hubble time. The inner bar in our model galaxy rotates almost as slowly as the outer bar, and it can reach up to half of its length. The route to the formation of a double bar m...

  14. Jet-induced star formation in gas-rich galaxies

    OpenAIRE

    Gaibler, Volker; Khochfar, Sadegh; Krause, Martin; Silk, Joseph

    2011-01-01

    Feedback from active galactic nuclei (AGN) has become a major component in simulations of galaxy evolution, in particular for massive galaxies. AGN jets have been shown to provide a large amount of energy and are capable of quenching cooling flows. Their impact on the host galaxy, however, is still not understood. Subgrid models of AGN activity in a galaxy evolution context so far have been mostly focused on the quenching of star formation. To shed more light on the actual physics of the "rad...

  15. The dark side of galaxy colour: evidence from new SDSS measurements of galaxy clustering and lensing

    Energy Technology Data Exchange (ETDEWEB)

    Hearin, Andrew P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics; Watson, Douglas F. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Becker, Matthew R. [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); KICP, Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Reyes, Reinabelle [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Berlind, Andreas A. [Vanderbilt Univ., Nashville, TN (United States). Dept. of Physics and Astronomy; Zentner, Andrew R. [Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), PA (United States)

    2014-08-12

    The age matching model has recently been shown to predict correctly the luminosity L and g-r color of galaxies residing within dark matter halos. The central tenet of the model is intuitive: older halos tend to host galaxies with older stellar populations. In this paper, we demonstrate that age matching also correctly predicts the g-r color trends exhibited in a wide variety of statistics of the galaxy distribution for stellar mass M* threshold samples. In particular, we present new measurements of the galaxy two-point correlation function and the galaxy-galaxy lensing signal as a function of M* and g-r color from the Sloan Digital Sky Survey, and show that age matching exhibits remarkable agreement with these and other statistics of low-redshift galaxies. In so doing, we also demonstrate good agreement between the galaxy-galaxy lensing observed by SDSS and the signal predicted by abundance matching, a new success of this model. We describe how age matching is a specific example of a larger class of Conditional Abundance Matching models (CAM), a theoretical framework we introduce here for the first time. CAM provides a general formalism to study correlations at fixed mass between any galaxy property and any halo property. The striking success of our simple implementation of CAM provides compelling evidence that this technique has the potential to describe the same set of data as alternative models, but with a dramatic reduction in the required number of parameters. CAM achieves this reduction by exploiting the capability of contemporary N-body simulations to determine dark matter halo properties other than mass alone, which distinguishes our model from conventional approaches to the galaxy-halo connection.

  16. Galaxy Evolution with Stellar Disks, Halos, and Streams in Nearby Galaxies

    Science.gov (United States)

    Staudaher, Shawn M.

    This thesis begins with a deep-dive into the stellar properties of the nearby spiral galaxy, M 63, a member of the EDGES (Extended Disk Galaxy Exploration Science) survey. Deep ( 28 AB mag arcsec-2) 3.6 mum imaging from the Spitzer Space Telescope reveals that the spiral structure of this galaxy is enveloped by an extended stellar halo, the result of the accretion of smaller galaxies. The mass of this stellar halo agrees well with results from the latest large scale LambdaCDM based galaxy evolution models. M 63 is also host to a tidal stream, an actively accreting satellite. The mass of the progenitor satellite is large enough that only sixteen similarly sized accretion events would account for the mass in the stellar halo. In addition, the majority of satellite accretion must have happened in the past as the average accretion rate derived from the stellar halo is significantly larger than the average accretion rate derived from the more recent tidal stream. The scope of the thesis is then extended to include the full sample of 92 nearby galaxies from EDGES. This is the largest Spitzer Space Telescope survey to probe the extended stellar properties of nearby galaxies. The surface brightness profiles of EDGES galaxies contain an unprecedented number of breaks (transitions from one galactic component to the next) given the sample size of EDGES, proving that studies of break statistics are incomplete without significantly deep imaging. The surface brightness profiles are decomposed into their individual components and the stellar mass for each component is measured. Seven galaxies contain strong evidence for the presence of stellar halos, and the masses of these halos agree with predictions from LambdaCDM based galaxy evolution models. However, the lack of stellar halos in general may be evidence that simulations continue to suffer from the so-called "missing satellite problem", where the number of satellite galaxies is overpredicted compared to observations.

  17. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    Science.gov (United States)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  18. Multivariate Approaches to Classification in Extragalactic Astronomy

    Directory of Open Access Journals (Sweden)

    Didier eFraix-Burnet

    2015-08-01

    Full Text Available Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono- or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.

  19. Multivariate Approaches to Classification in Extragalactic Astronomy

    Science.gov (United States)

    Fraix-Burnet, Didier; Thuillard, Marc; Chattopadhyay, Asis Kumar

    2015-08-01

    Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono- or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.

  20. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngsoo [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krause, Elisabeth [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Dodelson, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Jain, Bhuvnesh [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Amara, Adam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Becker, Matt [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bridle, Sarah [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Clampitt, Joseph [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Crocce, Martin [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Honscheid, Klaus [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gaztanaga, Enrique [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sanchez, Carles [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wechsler, Risa [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  1. Automatic Detection of Galaxy Type From Datasets of Galaxies Image Based on Image Retrieval Approach.

    Science.gov (United States)

    Abd El Aziz, Mohamed; Selim, I M; Xiong, Shengwu

    2017-06-30

    This paper presents a new approach for the automatic detection of galaxy morphology from datasets based on an image-retrieval approach. Currently, there are several classification methods proposed to detect galaxy types within an image. However, in some situations, the aim is not only to determine the type of galaxy within the queried image, but also to determine the most similar images for query image. Therefore, this paper proposes an image-retrieval method to detect the type of galaxies within an image and return with the most similar image. The proposed method consists of two stages, in the first stage, a set of features is extracted based on shape, color and texture descriptors, then a binary sine cosine algorithm selects the most relevant features. In the second stage, the similarity between the features of the queried galaxy image and the features of other galaxy images is computed. Our experiments were performed using the EFIGI catalogue, which contains about 5000 galaxies images with different types (edge-on spiral, spiral, elliptical and irregular). We demonstrate that our proposed approach has better performance compared with the particle swarm optimization (PSO) and genetic algorithm (GA) methods.

  2. Hubble's Menagerie of Galaxies

    Indian Academy of Sciences (India)

    Srimath

    typ es form an evolutionary sequence: does one type of galaxy evolve into another? 1. T he D iscovery of G alaxies. A stronom ers began to ponder these issues only after they discovered w hat w as m eant by a galaxy. It w as in the 1920s that astronom ers realised that w e live in a separate galaxy, and that other galaxies w ...

  3. Accretion by the Galaxy

    NARCIS (Netherlands)

    Binney, J.; Fraternali, F.; Reylé, C.; Robin, A.; Schultheis, M.

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated

  4. Galaxy morphology and the associated stellar properties in PEARS Survey at 0.6 < z < 1.2

    Science.gov (United States)

    Kim, Keunho; Joshi, Bhavin; Rhoads, James; Malhotra, Sangeeta; Pasquali, Anna; Ferreras, Ignacio; PEARS team

    2018-01-01

    We explored the D4000 strength and photometrically-derived properties of our sample galaxies with their morphology classification. Our sample of galaxies consist of 350 galaxies with log (M_*/M) > 9.44 at 0.6 properties such as the D4000 strength, stellar mass, sSFR, surface density within the effective radius, and Sérsic index. We discuss the implications of our results in the context of galaxy morphology and the associated stellar properties at intermediate redshift.

  5. On the morphological dichotomies observed in the powerful radio galaxies

    Science.gov (United States)

    Miraghaei, H.; Best, P. N.

    2017-06-01

    We study environment and host galaxy properties of powerful radio galaxies with different radio morphologies from compact sources to very extended double lobed radio galaxies and with different optical spectra classified as high excitation (HERG; quasar-mode) and low excitation (LERG; jet-mode) radio galaxies. We use a complete sample of morphologically classified radio sources from [1] and perform three different analyses: i) we compare compact radio sources with the extended sources from the same class of excitation. ii) we compare HERGs with the LERGs using a combined sample of compact and extended sources. iii) we investigate the origin of different morphologies observed in the very extended powerful radio galaxies, historically classified as Fanaroff-Riley (FR) radio galaxies of type I and type II by comparing a sample of FRIs with the FRIIs from the same excitation class. We discuss the results and what causes the differences in each comparison. The role of host galaxy and the central super massive black hole, and the galaxy interactions are all investigated.

  6. Stellar-to-halo mass relation of cluster galaxies

    Science.gov (United States)

    Niemiec, Anna; Jullo, Eric; Limousin, Marceau; Giocoli, Carlo; Erben, Thomas; Hildebrant, Hendrik; Kneib, Jean-Paul; Leauthaud, Alexie; Makler, Martin; Moraes, Bruno; Pereira, Maria E. S.; Shan, Huanyuan; Rozo, Eduardo; Rykoff, Eli; Van Waerbeke, Ludovic

    2017-10-01

    In the formation of galaxy groups and clusters, the dark matter haloes containing satellite galaxies are expected to be tidally stripped in gravitational interactions with the host. We use galaxy-galaxy weak lensing to measure the average mass of dark matter haloes of satellite galaxies as a function of projected distance to the centre of the host, since stripping is expected to be greater for satellites closer to the centre of the cluster. We further classify the satellites according to their stellar mass: Assuming that the stellar component of the galaxy is less disrupted by tidal stripping, stellar mass can be used as a proxy of the infall mass. We study the stellar-to-halo mass relation of satellites as a function of the cluster-centric distance to measure tidal stripping. We use the shear catalogues of the Dark Energy Survey (DES) science verification archive, the Canada-France-Hawaii Lensing Survey (CFHTLenS) and the CFHT Stripe 82 surveys, and we select satellites from the redMaPPer catalogue of clusters. For galaxies located in the outskirts of clusters, we find a stellar-to- halo mass relation in good agreement with the theoretical expectations from Moster et al. for central galaxies. In the centre of the cluster, we find that this relation is shifted to smaller halo mass for a given stellar mass. We interpret this finding as further evidence for tidal stripping of dark matter haloes in high-density environments.

  7. Brightest galaxies as halo centre tracers in SDSS DR7

    Science.gov (United States)

    Lange, Johannes U.; van den Bosch, Frank C.; Hearin, Andrew; Campbell, Duncan; Zentner, Andrew R.; Villarreal, Antonio; Mao, Yao-Yuan

    2018-01-01

    Determining the positions of halo centres in large-scale structure surveys is crucial for many cosmological studies. A common assumption is that halo centres correspond to the location of their brightest member galaxies. In this paper, we study the dynamics of brightest galaxies with respect to other halo members in the Sloan Digital Sky Survey DR7. Specifically, we look at the line-of-sight velocity and spatial offsets between brightest galaxies and their neighbours. We compare those to detailed mock catalogues, constructed from high-resolution, dark-matter-only N-body simulations, in which it is assumed that satellite galaxies trace dark matter subhaloes. This allows us to place constraints on the fraction fBNC of haloes in which the brightest galaxy is not the central. Compared to previous studies, we explicitly take into account the unrelaxed state of the host haloes, velocity offsets of halo cores and correlations between fBNC and the satellite occupation. We find that fBNC strongly decreases with the luminosity of the brightest galaxy and increases with the mass of the host halo. Overall, in the halo mass range 1013-1014.5 h- 1M⊙ we find fBNC ∼ 30 per cent, in good agreement with a previous study by Skibba et al. We discuss the implications of these findings for studies inferring the galaxy-halo connection from satellite kinematics, models of the conditional luminosity function and galaxy formation in general.

  8. Revisiting The First Galaxies: The Epoch of Population III Stars

    Science.gov (United States)

    Muratov, Alexander; Gnedin, O. Y.; Gnedin, N. Y.; Zemp, M. K.

    2013-01-01

    We study the formation of the first galaxies using new hydrodynamic cosmological simulations with the ART code. Our simulations feature a recently developed model for dust-based formation of molecular gas. Here, we develop and implement a new recipe for the formation of metal-free Pop III stars. We reach a spatial resolution of 2 pc at z=10 and resolve star-forming galaxies with the masses above 10^6 solar masses. We find the epoch during which Pop III stars dominate the energy and metal budget of the universe to be short-lived. While these stars seed their host galaxies with metals, they cannot drive significant outflows to enrich the IGM in our simulations. Feedback from pair instability supernovae causes Pop III star formation to self-terminate within their host galaxies, but is not strong enough to suppress star formation in external galaxies. Within any individual galaxy, Pop II stars overtake Pop III stars within ~50-150 Myr. A threshold of M = 3 * 10^6 solar masses separates galaxies that lose a significant fraction of their baryons due to Pop III feedback from those that do not. Understanding the nature of the transition between Pop III and Pop II star formation is of key importance for studying the dawn of galaxy formation.

  9. Classifying the Optical Morphology of Shocked POststarburst Galaxies

    Science.gov (United States)

    Stewart, Tess; SPOGs Team

    2018-01-01

    The Shocked POststarburst Galaxy Survey (SPOGS) is a sample of galaxies in transition from blue, star forming spirals to red, inactive ellipticals. These galaxies are earlier in the transition than classical poststarburst samples. We have classified the physical characteristics of the full sample of 1067 SPOGs in 7 categories, covering (1) their shape; (2) the relative prominence of their nuclei; (3) the uniformity of their optical color; (4) whether the outskirts of the galaxy were indicative of on-going star formation; (5) whether they are engaged in interactions with other galaxies, and if so, (6) the kinds of galaxies with which they are interacting; and (7) the presence of asymmetrical features, possibly indicative of recent interactions. We determined that a plurality of SPOGs are in elliptical galaxies, indicating morphological transformations may tend to conclude before other indicators of transitions have faded. Further, early-type SPOGs also tend to have the brightest optical nuclei. Most galaxies do not show signs of current or recent interactions. We used these classifications to search for correlations between qualitative and quantitative characteristics of SPOGs using Sloan Digital Sky Survey and Wide-field Infrared Survey Explorer magnitudes. We find that relative optical nuclear brightness is not a good indicator of the presence of an active galactic nuclei and that galaxies with visible indications of active star formation also cluster in optical color and diagnostic line ratios.

  10. Selections from 2016: A Very Dark Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.A High Stellar Velocity Dispersion and 100 Globular Clusters for the Ultra-Diffuse Galaxy Dragonfly 44Published August2016Main takeaway:Using the Keck Observatory and the Gemini North telescope in Hawaii, a team led by Pieter van Dokkum (Yale University) discovered the very dim galaxy Dragonfly 44, located in the Coma cluster. The team estimated the center of this galaxys disk to be a whopping 98% dark matter.Why its interesting:Dragonfly 44, though dim, was discovered to host around 100 globular clusters. Measuring the dynamics of these clusters allowed van Dokkum and collaborators to estimate the mass of Dragonfly 44: roughly a trillion times the mass of the Sun. This is similar to the mass of the Milky Way, and yet the Milky Way has over a hundred times more stars than this intriguing galaxy. Its very unexpected to find a galaxy this massive that has a dark-matter fraction this high.What we can learn from this:How do ultra-faint galaxies like these form? One theory is that theyre failed normal galaxies: they have the sizes, dark-matter content, and globular cluster systems of much more luminous galaxies, but they were prevented from building up a normal stellar population. So far, Dragonfly 44s properties seem consistent with this picture.CitationPieter van Dokkum et al 2016 ApJL 828 L6. doi:10.3847/2041-8205/828/1/L6

  11. ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    Science.gov (United States)

    Wang, Huiyuan; Mo, H. J.; Chen, Sihan; Yang, Yang; Yang, Xiaohu; Wang, Enci; van den Bosch, Frank C.; Jing, Yipeng; Kang, Xi; Lin, Weipeng; Lim, S. H.; Huang, Shuiyao; Lu, Yi; Li, Shijie; Cui, Weiguang; Zhang, Youcai; Tweed, Dylan; Wei, Chengliang; Li, Guoliang; Shi, Feng

    2018-01-01

    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large-scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of the local universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the “environmental quenching efficiency,” which quantifies the quenched fraction as a function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass independence of density-based quenching efficiency found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population, and that the difference between the two populations found previously arises mainly from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these effects of halo mass and stellar mass, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.

  12. Black Hole Caught Zapping Galaxy into Existence?

    Science.gov (United States)

    2009-11-01

    Which come first, the supermassive black holes that frantically devour matter or the enormous galaxies where they reside? A brand new scenario has emerged from a recent set of outstanding observations of a black hole without a home: black holes may be "building" their own host galaxy. This could be the long-sought missing link to understanding why the masses of black holes are larger in galaxies that contain more stars. "The 'chicken and egg' question of whether a galaxy or its black hole comes first is one of the most debated subjects in astrophysics today," says lead author David Elbaz. "Our study suggests that supermassive black holes can trigger the formation of stars, thus 'building' their own host galaxies. This link could also explain why galaxies hosting larger black holes have more stars." To reach such an extraordinary conclusion, the team of astronomers conducted extensive observations of a peculiar object, the nearby quasar HE0450-2958 (see eso0523 for a previous study of this object), which is the only one for which a host galaxy has not yet been detected [1]. HE0450-2958 is located some 5 billion light-years away. Until now, it was speculated that the quasar's host galaxy was hidden behind large amounts of dust, and so the astronomers used a mid-infrared instrument on ESO's Very Large Telescope for the observations [2]. At such wavelengths, dust clouds shine very brightly, and are readily detected. "Observing at these wavelengths would allow us to trace dust that might hide the host galaxy," says Knud Jahnke, who led the observations performed at the VLT. "However, we did not find any. Instead we discovered that an apparently unrelated galaxy in the quasar's immediate neighbourhood is producing stars at a frantic rate." These observations have provided a surprising new take on the system. While no trace of stars is revealed around the black hole, its companion galaxy is extremely rich in bright and very young stars. It is forming stars at a rate

  13. Satellite Dwarf Galaxies in a Hierarchical Universe: The Prevalence of Dwarf-Dwarf Major Mergers

    OpenAIRE

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-01-01

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ~10% of satellite dwarf galaxies with M_star > 10^6 M_sun that are within the host...

  14. Morphology and Interaction of Galaxies using Deep Learning

    Science.gov (United States)

    Caro, Fernando; Huertas-Company, Marc; Cabrera, Guillermo

    2017-06-01

    In order to understand how galaxies form and evolve, the measurement of the parameters related to their morphologies and also to the way they interact is one of the most relevant requirements. Due to the huge amount of data that is generated by surveys, the morphological and interaction analysis of galaxies can no longer rely on visual inspection. For dealing with such issue, new approaches based on machine learning techniques have been proposed in the last years with the aim of automating the classification process. We tested Deep Learning using images of galaxies obtained from CANDELS to study the accuracy achieved by this tool considering two different frameworks. In the first, galaxies were classified in terms of their shapes considering five morphological categories, while in the second, the way in which galaxies interact was employed for defining other five categories. The results achieved in both cases are compared and discussed.

  15. A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology

    Science.gov (United States)

    Müller, Oliver; Pawlowski, Marcel S.; Jerjen, Helmut; Lelli, Federico

    2018-02-01

    Massive galaxies like our Milky Way are orbited by satellite dwarf galaxies. Standard cosmological simulations of galaxy formation predict that these satellites should move randomly around their host. Müller et al. examined the satellites of the nearby elliptical galaxy Centaurus A (see the Perspective by Boylan-Kolchin). They found that the satellites are distributed in a planar arrangement, and the members of the plane are orbiting in a coherent direction. This is inconsistent with more than 99% of comparable galaxies in simulations. Centaurus A, the Milky Way, and Andromeda all have highly statistically unlikely satellite systems. This observational evidence suggests that something is wrong with standard cosmological simulations.

  16. A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    Energy Technology Data Exchange (ETDEWEB)

    Buta, Ronald J. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487-0324 (United States); Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Kim, Taehyun [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Athanassoula, E.; Bosma, A. [Aix Marseille Universite, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Knapen, Johan H. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna (Spain); Laurikainen, Eija; Salo, Heikki; Laine, Jarkko; Comerón, Sébastien [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu, FI-90014 (Finland); Elmegreen, Debra [Vassar College, Deparment of Physics and Astronomy, Poughkeepsie, NY 12604 (United States); Ho, Luis C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Zaritsky, Dennis; Hinz, Joannah L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Courtois, Helene [Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire, Lyon (France); Regan, Michael W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Paz, Armando Gil de [Departmento de Astrofisica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Menéndez-Delmestre, Karín [University of Rio de Janeiro, Observatorio de Valongo, Ladeira Pedro Antonio, 43, CEP 20080-090, Rio de Janeiro (Brazil); and others

    2015-04-15

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S{sup 4}G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S{sup 4}G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. The most common family classification for mid-IR types S0/a to Sc is SA while that for types Scd to Sm is SB. The bars in these two type domains are very different in mid-IR structure and morphology. This paper examines the bar, ring, and type classification fractions in the sample, and also includes several montages of images highlighting the various kinds of “stellar structures” seen in mid-IR galaxy morphology.

  17. A Spatially Resolved Study of the GRB 020903 Host Complex

    OpenAIRE

    Thorp, Mallory; Levesque, Emily

    2017-01-01

    GRB 020903 is a long-duration gamma ray burst (LGRB) with a host galaxy close enough and extended enough for spatially-resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially-resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles we were able to obtain ...

  18. ALMA Examines a Distant Quasar Host

    Science.gov (United States)

    Kohler, Susanna

    2017-04-01

    The dust continuum (top) and the [CII] emission (bottom) maps for the region around J1120+0641. [Adapted from Venemans et al. 2017]A team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the host galaxy of the most distant quasar known. Their observations may help us to build a picture of how the first supermassive black holes in the universe formed and evolved.Faraway Monsters and Their GalaxiesWe know that quasars the incredibly luminous and active centers of some distant galaxies are powered by accreting, supermassive black holes. These monstrous powerhouses have been detected out to redshifts of z 7, when the universe was younger than a billion years old.Though weve observed over a hundred quasars at high redshift, we still dont understand how these early supermassive black holes formed, or whether the black holes and the galaxies that host them co-evolved. In order to answer questions like these, however, we first need to gather information about the properties and behavior of various supermassive black holes and their host galaxies.A team of scientists led by Bram Venemans (Max-Planck Institute for Astronomy, Germany) recently used the unprecedented sensitivity and angular resolution of ALMA as well as the Very Large Array and the IRAM Plateau de Bure Interferometer to examine the most distant quasar currently known, J1120+0641, located at a redshift of z = 7.1.A High-Resolution LookThe teams observations of the dust and gas emission from the quasars host galaxy revealed a number of intriguing things:The red and blue sides of the [CII] emission line are shown here as contours, demonstrating that theres no ordered rotational motion of the gas on kpc scales. [Adapted from Venemans et al. 2017]The majority of the galaxys emission is very compact. Around 80% of the observed flux came from a region of only 11.5 kpc in diameter.Despite the fact that the 2.4-billion-solar-mass black hole at the galaxys center is accreting at

  19. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, K. D.; Rieke, G. H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bai, L. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street Room 101, Toronto, Ontario M5S 3H4 (Canada)

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  20. Which Galaxies Are the Most Habitable?

    Science.gov (United States)

    Kohler, Susanna

    2015-09-01

    Habitable zones are a hot topic in exoplanet studies: where, around a given star, could a planet exist that supports life? But if you scale this up, you get a much less common question: which type of galaxy is most likely to host complex life in the universe? A team of researchers from the UK believes it has the answer.Criteria for HabitabilityLed by Pratika Dayal of the University of Durham, the authors of this study set out to estimate the habitability of a large population of galaxies. The first step in this process is to determine what elements contribute to a galaxys habitability. The authors note three primary factors:Total number of starsMore stars means more planets!Metallicity of the starsPlanets are more likely to form in stellar vicinities with higher metallicities, since planet formation requires elements heavier than iron.Likelihood of Type II supernovae nearbyPlanets that are located out of range of supernovae have a higher probability of being habitable, since a major dose of cosmic radiation is likely to cause mass extinctions or delay evolution of complex life. Galaxies supernova rates can be estimated from their star formation rates (the two are connected via the initial mass function).Hospitable Cosmic GiantsLower panel: the number of Earth-like habitable planets (given by the color bar, which shows the log ratio relative to the Milky Way) increases in galaxies with larger stellar mass and lower star formation rates. Upper panel: the larger stellar-mass galaxies tend to be elliptical (blue line) rather than spiral (red line). Click for larger view. [Dayal et al. 2015]Interestingly, these three conditions have previously been shown to be linked via something termed the fundamental metallicity relation, which relates the total stellar masses, metallicities, and star formation rates of galaxies. By using this relation, the authors were able to create predictions for the number of habitable planets in more than 100,000 galaxies in the local universe

  1. The morphological transformation of red sequence galaxies in clusters since z ˜ 1

    Science.gov (United States)

    Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R.

    2017-11-01

    The study of galaxy morphology is fundamental to understand the physical processes driving the structural evolution of galaxies. It has long been known that dense environments host high fractions of early-type galaxies and low fractions of late-type galaxies, indicating that the environment affects the structural evolution of galaxies. In this paper, we present an analysis of the morphological composition of red sequence galaxies in a sample of nine galaxy clusters at 0.8 WINGS) and ESO Distant Cluster Survey (EDisCS). We find that, while the HCS red sequence is dominated by elliptical galaxies at all luminosities and stellar masses, the WINGS red sequence is dominated by elliptical galaxies only at its bright end (MV WINGS) and high (HCS) redshift samples, although their fraction increases up to 40 per cent at 0.4 < z < 0.8 (EDisCS). We find a 20 per cent increase in the fraction of S0 galaxies from z ∼ 1.5 to 0.05 on the red sequence. These results suggest that elliptical and S0 galaxies follow different evolutionary histories and, in particular, that S0 galaxies result, at least at intermediate luminosities (-22.0 < MV < -20.0), from the morphological transformation of quiescent spiral galaxies.

  2. Companions of Bright Barred Shapley Ames Galaxies

    OpenAIRE

    Garcia-Barreto, J. Antonio; Carrillo, Rene; Vera-Villamizar, Nelson

    2003-01-01

    Companion galaxy environment for a subset of 78 bright and nearby barred galaxies from the Shapley Ames Catalog is presented. Among spiral barred galaxies there are Seyfert galaxies, galaxies with circumnuclear structures, galaxies not associated with any large scale galaxy cloud structure, galaxies with peculiar disk morphology (crooked arms) and galaxies with normal disk morphology; the list includes all Hubble types. The companion galaxy list includes number of companion galaxies within 20...

  3. Galaxy rotation curves with lognormal density distribution

    Science.gov (United States)

    Marr, John H.

    2015-04-01

    The lognormal distribution represents the probability of finding randomly distributed particles in a micro canonical ensemble with high entropy. To a first approximation, a modified form of this distribution with a truncated termination may represent an isolated galactic disc, and this disc density distribution model was therefore run to give the best fit to the observational rotation curves for 37 representative galaxies. The resultant curves closely matched the observational data for a wide range of velocity profiles and galaxy types with rising, flat or descending curves in agreement with Verheijen's classification of `R', `F' and `D' type curves, and the corresponding theoretical total disc masses could be fitted to a baryonic Tully-Fisher relation. Nine of the galaxies were matched to galaxies with previously published masses, suggesting a mean excess dynamic disc mass of dex 0.61 ± 0.26 over the baryonic masses. Although questionable with regard to other measurements of the shape of disc galaxy gravitational potentials, this model can accommodate a scenario in which the gravitational mass distribution, as measured via the rotation curve, is confined to a thin plane without requiring a dark matter halo or the use of modified Newtonian dynamics.

  4. Early-type galaxies with extended HI reservoirs

    Science.gov (United States)

    Donovan Meyer, Jennifer

    2018-01-01

    I will present observations of NGC 404 and ESO 381-47, both early-type galaxies known for hosting extended HI rings and recent star formation in their outskirts. Thanks to the Green Bank Telescope, an instrument uniquely suited to observing diffuse, low column density HI around nearby galaxies, we report new measurements of the extent of the disk around NGC 404 as well as the presence of a large, coherent HI filament which appears to be accreting onto the ring surrounding the galaxy. We compare the environments of the two systems and interpret the potential utility of such gas-bearing field early-type galaxies as tracers of galaxy accretion and growth.

  5. Dwarf elliptical galaxies with kinematically decoupled cores

    Science.gov (United States)

    De Rijcke, S.; Dejonghe, H.; Zeilinger, W. W.; Hau, G. K. T.

    2004-10-01

    We present, for the first time, photometric and kinematical evidence, obtained with FORS2 on the VLT, for the existence of kinematically decoupled cores (KDCs) in two dwarf elliptical galaxies; FS76 in the NGC 5044 group and FS373 in the NGC 3258 group. Both kinematically peculiar subcomponents rotate in the same sense as the main body of their host galaxy but betray their presence by a pronounced bump in the rotation velocity profiles at a radius of about 1''. The KDC in FS76 rotates at 10 ± 3 km s-1, with the host galaxy rotating at 15 ± 6 km s-1; the KDC in FS373 has a rotation velocity of 6 ± 2 km s-1 while the galaxy itself rotates at 20 ± 5 km s-1. FS373 has a very complex rotation velocity profile with the velocity changing sign at 1.5 Re. The velocity and velocity dispersion profiles of FS76 are asymmetric at larger radii. This could be caused by a past gravitational interaction with the giant elliptical NGC 5044, which is at a projected distance of 50 kpc. We argue that these decoupled cores are most likely not produced by mergers in a group or cluster environment because of the prohibitively large relative velocities. A plausible alternative is offered by flyby interactions between a dwarf elliptical or its disky progenitor and a massive galaxy. The tidal forces during an interaction at the relative velocities and impact parameters typical for a group environment exert a torque on the dwarf galaxy that, according to analytical estimates, transfers enough angular momentum to its stellar envelope to explain the observed peculiar kinematics.

  6. Spatial and Kinematic Distributions of Transition Populations in Intermediate Redshift Galaxy Clusters

    Science.gov (United States)

    Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A.

    2014-05-01

    We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters have similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. The Merger-Free Growth of Galaxies and Supermassive Black Holes

    Science.gov (United States)

    Simmons, Brooke; Smethurst, Rebecca; Lintott, Chris; Martin, Garreth; Kaviraj, Sugata; Devriendt, Julien; Galaxy Zoo Team

    2018-01-01

    There is now clear evidence that the merger-driven pathway to black hole and galaxy growth is only half the story. Merger-free evolution contributes roughly equally to the overall growth of black holes in the Universe and is also responsible for a significant amount of galaxy growth over cosmic time. A recent study examining the growth of black holes in unambiguously disk-dominated galaxies shows these black holes reach quasar-like luminosities and black hole masses typical of those hosted in bulge-dominated and elliptical galaxies with major mergers in their evolutionary histories. However, while there appears to be no correlation between the size of the black hole and upper limits on the host galaxy bulges, the fitted correlation between black hole mass and total galaxy stellar mass in these merger-free systems is fully consistent with the canonical relationship based on merger-driven systems. There is further evidence via comparison between observed populations and cosmological simulations confirming that bulgeless systems are generally consistent with having merger-free histories. If bulgeless and disk-dominated galaxies are indeed signatures of systems with no violent mergers in their formation histories, the same correlation between black hole and galaxy in these systems versus that seen in elliptical galaxy samples indicates the black hole-galaxy connection must originate with a process more fundamental than the dynamical configuration of a galaxy's stars.

  8. Evolution since z=0.5 of the morphology-density relation for clusters of galaxies

    NARCIS (Netherlands)

    Dressler, A; Oemler, A; Couch, WJ; Smail, [No Value; Ellis, RS; Barger, A; Butcher, H; Poggianti, BM; Sharples, RM

    1997-01-01

    Using traditional morphological classifications of galaxies in 10 intermediate-redshift (z similar to 0.5) clusters observed with WFPC2 on the Hubble Space Telescope, we derive relations between morphology and local galaxy density similar to that found by Dressier for low-redshift clusters. Taken

  9. STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes Sodi, Bernardo, E-mail: b.cervantes@crya.unam.mx [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, A.P. 3-72, C.P. 58089 Michoacán, México (Mexico)

    2017-01-20

    We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H i mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10{sup 10} M {sub ⊙}, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H i disk extent).

  10. Properties of Active Galaxies Deduced from H I Observations

    Science.gov (United States)

    Ho, Luis C.; Darling, Jeremy; Greene, Jenny E.

    2008-07-01

    We have completed a new survey for H I emission for a large, well-defined sample of 154 nearby (zlesssim 0.1) galaxies with type 1 (broad-line) active galactic nuclei (AGNs). We make use of the extensive database of H I and optical parameters, presented in a companion paper, to perform a comprehensive appraisal of the cold gas content in active galaxies and to seek new strategies to investigate the global properties of the host galaxies and their relationship to their central black holes. After excluding objects with kinematically anomalous line profiles, which occur with high frequency in the sample, we show that the black hole mass obeys a strong, roughly linear relation with the host galaxy's dynamical mass, calculated by combining the H I line width and the optical size of the galaxy. Black hole mass follows a looser, though still highly significant, correlation with the maximum rotation velocity of the galaxy, as expected from the known scaling between rotation velocity and central velocity dispersion. Neither of these H I-based correlations is as tight as the more familiar relations between black hole mass and bulge luminosity or velocity dispersion, but they offer the advantage of being insensitive to the glare of the nucleus and therefore are promising new tools for probing the host galaxies of both nearby and distant AGNs. We present evidence for substantial ongoing black hole growth in the most actively accreting AGNs. In these nearby systems, black hole growth appears to be delayed with respect to the assembly of the host galaxy but otherwise has left no detectable perturbation to its mass-to-light ratio, as judged from the Tully-Fisher relation, or its global gas content. The host galaxies of type 1 AGNs, including those luminous enough to qualify as quasars, are generally gas-rich systems, possessing a cold interstellar medium reservoir at least as abundant as that in inactive galaxies of the same morphological type. This calls into question current

  11. Galaxy formation and evolution

    CERN Document Server

    Mo, Houjun; White, Simon

    2010-01-01

    The rapidly expanding field of galaxy formation lies at the interface between astronomy, particle physics, and cosmology. Covering diverse topics from these disciplines, all of which are needed to understand how galaxies form and evolve, this book is ideal for researchers entering the field. Individual chapters explore the evolution of the Universe as a whole and its particle and radiation content; linear and nonlinear growth of cosmic structure; processes affecting the gaseous and dark matter components of galaxies and their stellar populations; the formation of spiral and elliptical galaxies; central supermassive black holes and the activity associated with them; galaxy interactions; and the intergalactic medium. Emphasizing both observational and theoretical aspects, this book provides a coherent introduction for astronomers, cosmologists, and astroparticle physicists to the broad range of science underlying the formation and evolution of galaxies.

  12. Classic Galaxy with Glamour

    Science.gov (United States)

    2005-01-01

    This color composite image of nearby NGC 300 combines the visible-light pictures from Carnegie Institution of Washington's 100-inch telescope at Las Campanas Observatory (colored red and yellow), with ultraviolet views from NASA's Galaxy Evolution Explorer. Galaxy Evolution Explorer detectors image far ultraviolet light (colored blue). This composite image traces star formation in progress. Young hot blue stars dominate the outer spiral arms of the galaxy, while the older stars congregate in the nuclear regions which appear yellow-green. Gases heated by hot young stars and shocks due to winds from massive stars and supernova explosions appear in pink, as revealed by the visible-light image of the galaxy. Located nearly 7 million light years away, NGC 300 is a member of a nearby group of galaxies known as the Sculptor Group. It is a spiral galaxy like our own Milky Way.

  13. Analysis of the star formation histories of galaxies in different environments: from low to high density

    Science.gov (United States)

    Ortega-Minakata, René A.

    2015-11-01

    In this thesis, a value-added cataloge of 403,372 SDSS-DR7 galaxies is presented. This catalogue incorporates information on their stellar populations, including their star formation histories, their dominant emission-line activity type, inferred morphology and a measurement of their environmental density. The sample that formed this catalogue was selected from the SDSS-DR7 (Legacy) spectroscopic catalogue of galaxies in the Northern Galactic Cap, selecting only galaxies with high-quality spectra and redshift determination, and photometric measurements with small errors. Also, galaxies near the edge of the photometric survey footprint were excluded to avoid errors in the determination of their environment. Only galaxies in the 0.03-0.30 redshift range were considered. Starlight fits of the spectra of these galaxies were used to obtain information on their star formation history and stellar mass, velocity dispersion and mean age. From the fit residuals, emission-line fluxes were measured and used to obtain the dominant activity type of these galaxies using the BPT diagnostic diagram. A neighbour search code was written and applied to the catalogue to measure the local environmental density of these galaxies. This code counts the number of neighbours within a fixed search radius and a radial velocity range centered at each galaxy's radial velocity. A projected radius of 1.5 Mpc and a range of ± 2,500 km/s, both centered at the redshift of the target galaxy, were used to search and count all the neighbours of each galaxy in the catalogue. The neighbours were counted from the photometric catalogue of the SDSS-DR7 using photometric redshifts, to avoid incompleteness of the spectroscopic catalogue. The morphology of the galaxies in the catalogue was inferred by inverting previously found relations between subsamples of galaxies with visual morphology classification and their optical colours and concentration of light. The galaxies in the catalogue were matched to six

  14. An over-massive black hole in the compact lenticular galaxy NGC 1277.

    Science.gov (United States)

    van den Bosch, Remco C E; Gebhardt, Karl; Gültekin, Kayhan; van de Ven, Glenn; van der Wel, Arjen; Walsh, Jonelle L

    2012-11-29

    Most massive galaxies have supermassive black holes at their centres, and the masses of the black holes are believed to correlate with properties of the host-galaxy bulge component. Several explanations have been proposed for the existence of these locally established empirical relationships, including the non-causal, statistical process of galaxy-galaxy merging, direct feedback between the black hole and its host galaxy, and galaxy-galaxy merging and the subsequent violent relaxation and dissipation. The empirical scaling relations are therefore important for distinguishing between various theoretical models of galaxy evolution, and they furthermore form the basis for all black-hole mass measurements at large distances. Observations have shown that the mass of the black hole is typically 0.1 per cent of the mass of the stellar bulge of the galaxy. Until now, the galaxy with the largest known fraction of its mass in its central black hole (11 per cent) was the small galaxy NGC 4486B. Here we report observations of the stellar kinematics of NGC 1277, which is a compact, lenticular galaxy with a mass of 1.2 × 10(11) solar masses. From the data, we determine that the mass of the central black hole is 1.7 × 10(10) solar masses, or 59 per cent of its bulge mass. We also show observations of five other compact galaxies that have properties similar to NGC 1277 and therefore may also contain over-massive black holes. It is not yet known if these galaxies represent a tail of a distribution, or if disk-dominated galaxies fail to follow the usual black-hole mass scaling relations.

  15. (Almost) Dark Galaxies in the ALFALFA Survey: HI-bearing Ultra-Diffuse Galaxies, and Beyond

    Science.gov (United States)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2017-01-01

    Scaling relations between HI and stars in galaxies suggest strong ties between their atomic gas content and star formation laws. The Arecibo Legacy Fast ALFA (ALFALFA) blind extragalactic HI survey is well positioned to locate very low surface brightness sources that lie off these relations, the most extreme of which may fall below optical detection limits. Thus, the ALFALFA (Almost) Darks Project has been investigating extreme outliers from these relations by studying the ~1% of ALFALFA sources without apparent stellar counterparts in major optical surveys. We have obtained deep HI and optical imaging of 25 of these candidate "dark" sources. We find that most "dark" sources are not extreme "(almost) dark" galaxies. A few are rare OH Megamasers, redshifted into the ALFALFA bandpass, and many are part of large galactic plumes, stretching as far as 600 kpc from their host galaxy. However, a small handful of sources appear to be galaxies with extreme stellar systems. We find multiple systems with HI mass to stellar mass ratios an order of magnitude larger than typical gas rich dwarfs. Further, we find an isolated population of HI-bearing "ultra diffuse" galaxies (UDGs), with stellar masses of dwarfs, but HI and optical radii of L* galaxies. We suggest that these sources may be related to recently reported gas poor, quiescent UDGs.

  16. A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy.

    Science.gov (United States)

    Ibata, Rodrigo A; Lewis, Geraint F; Conn, Anthony R; Irwin, Michael J; McConnachie, Alan W; Chapman, Scott C; Collins, Michelle L; Fardal, Mark; Ferguson, Annette M N; Ibata, Neil G; Mackey, A Dougal; Martin, Nicolas F; Navarro, Julio; Rich, R Michael; Valls-Gabaud, David; Widrow, Lawrence M

    2013-01-03

    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. It has previously been suspected that dwarf galaxies may not be isotropically distributed around our Galaxy, because several are correlated with streams of H I emission, and may form coplanar groups. These suspicions are supported by recent analyses. It has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence of a planar subgroup of satellites in the Andromeda galaxy (M 31), comprising about half of the population. The structure is at least 400 kiloparsecs in diameter, but also extremely thin, with a perpendicular scatter of less than 14.1 kiloparsecs. Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and with the vector between the Milky Way and Andromeda.

  17. The Fueling of Active Galaxies: A Near-Infrared Imaging Survey of Seyfert and Normal Galaxies

    Science.gov (United States)

    Kundu, A.; Mulchaey, J. S.; Regan, M. W.

    1996-12-01

    Galactic bars are frequently invoked as a candidate for facilitating the transfer of mass from the interstellar medium of active galaxies to their central engines. However, studies of large Seyfert samples show little evidence that Seyferts occur preferentially in barred systems. The failure to find evidence for bars in many Seyfert galaxies may be due to the fact that most studies have concentrated on optical wavelengths where the presence of extinction or a young stellar population might mask any bar structures. In contrast, the near-infrared is expected to be a good place to study the host galaxy of Seyferts because neither dust nor young stars strongly affect the observed emission at these wavelengths. To study the role bars play in the fueling of active galaxies, we have obtained K' images of a large sample of nearby Seyfert and `` normal'' \\ galaxies, matched in redshift, Hubble type, inclination and blue luminosity. We use these images to compare the incidence of bars in Seyfert and normal galaxies and constrain the importance of bars in the fueling of nuclear activity.

  18. Spectrophotometric Properties of E+A Galaxies in SDSS-IV MaNGA

    Science.gov (United States)

    Marinelli, Mariarosa; Dudley, Raymond; Edwards, Kay; Gonzalez, Andrea; Johnson, Amalya; Kerrison, Nicole; Melchert, Nancy; Ojanen, Winonah; Weaver, Olivia; Liu, Charles; SDSS-IV MaNGA

    2018-01-01

    Quenched post-starburst galaxies, or E+A galaxies, represent a unique and informative phase in the evolution of galaxies. We used a qualitative rubric-based methodology, informed by the literature, to manually select galaxies from the SDSS-IV IFU survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) using the single-fiber spectra from the Sloan Digital Sky Survey Data Release 8. Of the 2,812 galaxies observed so far in MaNGA, we found 39 galaxies meeting our criteria for E+A classification. Spectral energy distributions of these 39 galaxies from the far-UV to the mid-infrared demonstrate a heterogeneity in our sample emerging in the infrared, indicating many distinct paths to visually similar optical spectra. We used SDSS-IV MaNGA Pipe3D data products to analyze stellar population ages, and found that 34 galaxies exhibited stellar populations that were older at 1 effective radius than at the center of the galaxy. Given that our sample was manually chosen based on E+A markers in the single-fiber spectra aimed at the center of each galaxy, our E+A galaxies may have only experienced their significant starbursts in the central region, with a disk of quenched or quenching material further outward. This work was supported by grants AST-1460860 from the National Science Foundation and SDSS FAST/SSP-483 from the Alfred P. Sloan Foundation to the CUNY College of Staten Island.

  19. Galaxy evolution. Galactic paleontology.

    Science.gov (United States)

    Tolstoy, Eline

    2011-07-08

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution.

  20. Galaxies: The Long Wavelength View

    National Research Council Canada - National Science Library

    Fischer, J

    2000-01-01

    ... (more than 2 orders of magnitude) in the [C II]/FIR ratios in galaxies extending from blue compact dwarfs, to normal and starburst galaxies, down to elliptical and ultraluminous galaxies (ULICs...

  1. THE SINS/zC-SINF SURVEY OF z {approx} 2GALAXY KINEMATICS: THE NATURE OF DISPERSION-DOMINATED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Sarah F.; Genzel, Reinhard [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Foerster Schreiber, Natascha M.; Buschkamp, Peter; Davies, Ric; Eisenhauer, Frank; Kurk, Jaron; Lutz, Dieter [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Shapiro Griffin, Kristen [Space Sciences Research Group, Northrop Grumman Aerospace Systems, Redondo Beach, CA 90278 (United States); Mancini, Chiara; Renzini, Alvio [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, Padova I-35122 (Italy); Lilly, Simon J.; Carollo, C. Marcella; Peng, Yingjie [Institute of Astronomy, Department of Physics, Eidgenoessische Technische Hochschule, ETH Zuerich CH-8093 (Switzerland); Bouche, Nicolas [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Burkert, Andreas [Universitaets-Sternwarte Ludwig-Maximilians-Universitaet (USM), Scheinerstr. 1, Muenchen D-81679 (Germany); Cresci, Giovanni [Istituto Nazionale di Astrofisica Osservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy); Genel, Shy [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hicks, Erin K. S. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195-1580 (United States); Naab, Thorsten, E-mail: sfnewman@berkeley.edu [Max-Planck Institute for Astrophysics, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2013-04-20

    We analyze the spectra, spatial distributions, and kinematics of H{alpha}, [N II], and [S II] emission in a sample of 38, z {approx} 2.2 UV/optically selected star-forming galaxies (SFGs) from the SINS and zC-SINF surveys, 34 of which were observed in the adaptive optics mode of SINFONI and 30 of those contain data presented for the first time here. This is supplemented by kinematic data from 43 z {approx} 1-2.5 galaxies from the literature. None of these 81 galaxies is an obvious major merger. We find that the kinematic classification of high-z SFGs as ''dispersion dominated'' or ''rotation dominated'' correlates most strongly with their intrinsic sizes. Smaller galaxies are more likely ''dispersion-dominated'' for two main reasons: (1) the rotation velocity scales linearly with galaxy size but intrinsic velocity dispersion does not depend on size or may even increase in smaller galaxies, and as such, their ratio is systematically lower for smaller galaxies, and (2) beam smearing strongly decreases large-scale velocity gradients and increases observed dispersion much more for galaxies with sizes at or below the resolution. Dispersion-dominated SFGs may thus have intrinsic properties similar to ''rotation-dominated'' SFGs, but are primarily more compact, lower mass, less metal enriched, and may have higher gas fractions, plausibly because they represent an earlier evolutionary state.

  2. How do galaxies build up their spin in the cosmic web?

    Science.gov (United States)

    Welker, Charlotte; Dubois, Yohan; Pichon, Christophe; Devriendt, Julien; Peirani, Sebastien

    2016-10-01

    Using the Horizon-AGN simulation we find a mass dependent spin orientation trend for galaxies: the spin of low-mass, rotation-dominated, blue, star-forming galaxies are preferentially aligned with their closest filament, whereas high-mass, velocity dispersion- supported, red quiescent galaxies tend to possess a spin perpendicular to these filaments. We explore the physical mechanisms driving galactic spin swings and quantify how much mergers and smooth accretion re-orient them relative to their host filaments.

  3. The SAMI Galaxy Survey: kinematics of dusty early-type galaxies

    Science.gov (United States)

    Bassett, R.; Bekki, K.; Cortese, L.; Couch, W. J.; Sansom, A. E.; van de Sande, J.; Bryant, J. J.; Foster, C.; Croom, S. M.; Brough, S.; Sweet, S. M.; Medling, A. M.; Owers, M. S.; Driver, S. P.; Davies, L. J. M.; Wong, O. I.; Groves, B. A.; Bland-Hawthorn, J.; Richards, S. N.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.

    2017-09-01

    Recently, large samples of visually classified early-type galaxies (ETGs) containing dust have been identified using space-based infrared observations with the Herschel Space Telescope. The presence of large quantities of dust in massive ETGs is peculiar as X-ray haloes of these galaxies are expected to destroy dust in ˜107 yr (or less). This has sparked a debate regarding the origin of the dust: Is it internally produced by asymptotic giant branch stars, or is it accreted externally through mergers? We examine the 2D stellar and ionized gas kinematics of dusty ETGs using integral field spectroscopy observations from the SAMI Galaxy Survey, and integrated star formation rates, stellar masses and dust masses from the GAMA survey. Only 8 per cent (4/49) of visually classified ETGs are kinematically consistent with being dispersion-supported systems. These 'dispersion-dominated galaxies' exhibit discrepancies between stellar and ionized gas kinematics, either offsets in the kinematic position angle or large differences in the rotational velocity, and are outliers in star formation rate at a fixed dust mass compared to normal star-forming galaxies. These properties are suggestive of recent merger activity. The remaining ˜90 per cent of dusty ETGs have low velocity dispersions and/or large circular velocities, typical of 'rotation-dominated galaxies'. These results, along with the general evidence of published works on X-ray emission in ETGs, suggest that they are unlikely to host hot, X-ray gas consistent with their low M* when compared to dispersion-dominated galaxies. This means that dust will be long-lived and thus these galaxies do not require external scenarios for the origin of their dust content.

  4. Dwarf Galaxies from Deep Fields to the Near Field

    Science.gov (United States)

    Boylan-Kolchin, Michael

    2017-08-01

    We propose to use cosmological hydrodynamical simulations - both zoom-in and large-volume - to study the connections between the faintest observable galaxies in the high-redshift Universe and dwarf galaxies locally.Studies of the likely descendants of very faint HUDF / Frontier Field galaxies will provide a powerful complement to direct observations at z 8 for investigating the physical processes in the high-redshift Universe and, in connection with properties of low-mass galaxies in the nearby Universe, will produce strong constraints on reionization scenarios and dark matter models. Understanding the relationship between high-redshift and local galaxy populations through simulations requires an accurate knowledge of the links between galaxy populations at cosmic dawn and those locally. All existing results on this topic either suffer from poor statistics or are unable to resolve the hosts of Frontier Field galaxies, however. Our program will address this shortcoming by combining a series of zoom-in hydrodynamical simulations with the next generation of large-volume hydrodynamical simulations of the galaxy population from the Illustris project.HST has made unique and invaluable contributions to surveys of galaxies at high redshifts and to detailed, resolved-star studies of individual galaxies in the very nearby Universe. Our study will help cement links between these two HST legacies. We will quantify the relationships between faint populations at low and high redshifts, characterize the merger histories of dwarf galaxies (both forward and backward in time), and test the validity of various popular models such as abundance matching based on UV luminosity functions.

  5. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory/NAASC, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Hinz, Joannah L.; Zaritsky, Dennis [Steward Observatory University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Lee, Myung Gyoon [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Gadotti, Dimitri A. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Knapen, Johan H. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Schinnerer, Eva [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany); Ho, Luis C.; Madore, Barry F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Laurikainen, Eija; Salo, Heikki [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu FIN-90014 (Finland); Athanassoula, E.; Bosma, Albert [Laboratoire d' Astrophysique de Marseille (LAM), UMR6110, Universite de Provence/CNRS, Technopole de Marseille Etoile, 38 rue Frederic Joliot Curie, 13388 Marseille Cedex 20 (France); De Swardt, Bonita [South African Astronomical Observatory, Observatory 7935, Cape Town (South Africa); Comeron, Sebastien [Korea Astronomy and Space Science Institute, 61-1 Hwaamdong, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Regan, Michael W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Menendez-Delmestre, Karin [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio, 43, Saude CEP 20080-090 Rio de Janeiro, RJ (Brazil); De Paz, Armando Gil [Departamento de Astrofisica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); and others

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigate the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.

  6. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hsu, Alexander D. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States)

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  7. Fossil evidence for spin alignment of Sloan Digital Sky Survey galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J. T.; van de Weijgaert, Marinus; Aragon-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This indicates the fact that the action of large-scale tidal torques affected the alignments of galaxies located in cosmic filaments. To this

  8. Cold gas & mergers: fundamental difference in HI properties of different types of radio galaxies?

    NARCIS (Netherlands)

    Emonts, Bjorn; Morganti, Raffaella; Oosterloo, Tom; van Gorkom, Jacqueline

    2008-01-01

    We present results of a study of large-scale neutral hydrogen (HI) gas in nearby radio galaxies. We find that the early-type host galaxies of different types of radio sources (compact, FR-I and FR-II) appear to contain fundamentally different large-scale HI properties: enormous regular rotating

  9. Lopsided spiral galaxies

    Indian Academy of Sciences (India)

    Lopsided spiral galaxies · Outline of the talk: · Collaborators · Background : · Lopsided distribution highlighted first: Baldwin, Lynden-Bell, & Sancisi (1980) · Lopsidedness also seen in an edge-on galaxy : NGC 891 · Slide 7 · Origin of m=1 disk distribution? Early Theoretical models: · Disk response to a lopsided halo ...

  10. Galaxies in Fligh t

    Indian Academy of Sciences (India)

    In the constellation of Corona Borealis, for example, there is a cluster containing some 400 galaxies. Our Milky Way is a member of a small cluster which embraces among others, the Andromeda Nebula and the two galaxies known as the Magellanic Clouds, which are of a relatively rare type that has no well- defined shape.

  11. NUCLEAR ACTIVITY IS MORE PREVALENT IN STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, D. J.; Lutz, D.; Berta, S.; Popesso, P.; Genzel, R.; Saintonge, A.; Tacconi, L.; Wuyts, S., E-mail: rosario@mpe.mpg.de, E-mail: lutz@mpe.mpg.de, E-mail: berta@mpe.mpg.de, E-mail: popesso@mpe.mpg.de, E-mail: genzel@mpe.mpg.de, E-mail: amelie@mpe.mpg.de, E-mail: linda@mpe.mpg.de, E-mail: swuyts@mpe.mpg.de [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Postfach 1312, D-85741 Garching (Germany); and others

    2013-07-01

    We explore the question of whether low and moderate luminosity active galactic nuclei (AGNs) are preferentially found in galaxies that are undergoing a transition from active star formation (SF) to quiescence. This notion has been suggested by studies of the UV-optical colors of AGN hosts, which find them to be common among galaxies in the so-called Green Valley, a region of galaxy color space believed to be composed mostly of galaxies undergoing SF quenching. Combining the deepest current X-ray and Herschel/PACS far-infrared (FIR) observations of the two Chandra Deep Fields with redshifts, stellar masses, and rest-frame photometry derived from the extensive and uniform multi-wavelength data in these fields, we compare the rest-frame U - V color distributions and star formation rate distributions of AGNs and carefully constructed samples of inactive control galaxies. The UV-to-optical colors of AGNs are consistent with equally massive inactive galaxies at redshifts out to z {approx} 2, but we show that such colors are poor tracers of SF. While the FIR distributions of both star-forming AGNs and star-forming inactive galaxies are statistically similar, we show that AGNs are preferentially found in star-forming host galaxies, or, in other words, AGNs are less likely to be found in weakly star-forming or quenched galaxies. We postulate that, among X-ray-selected AGNs of low and moderate accretion luminosities, the supply of cold gas primarily determines the accretion rate distribution of the nuclear black holes.

  12. MULTIPLE GALAXY COLLISIONS

    Science.gov (United States)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  13. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  14. Discovery and Classification in Astronomy

    Science.gov (United States)

    Dick, Steven J.

    2012-01-01

    Three decades after Martin Harwit's pioneering Cosmic Discovery (1981), and following on the recent IAU Symposium "Accelerating the Rate of Astronomical Discovery,” we have revisited the problem of discovery in astronomy, emphasizing new classes of objects. 82 such classes have been identified and analyzed, including 22 in the realm of the planets, 36 in the realm of the stars, and 24 in the realm of the galaxies. We find an extended structure of discovery, consisting of detection, interpretation and understanding, each with its own nuances and a microstructure including conceptual, technological and social roles. This is true with a remarkable degree of consistency over the last 400 years of telescopic astronomy, ranging from Galileo's discovery of satellites, planetary rings and star clusters, to the discovery of quasars and pulsars. Telescopes have served as "engines of discovery” in several ways, ranging from telescope size and sensitivity (planetary nebulae and spiral galaxies), to specialized detectors (TNOs) and the opening of the electromagnetic spectrum for astronomy (pulsars, pulsar planets, and most active galaxies). A few classes (radiation belts, the solar wind and cosmic rays), were initially discovered without the telescope. Classification also plays an important role in discovery. While it might seem that classification marks the end of discovery, or a post-discovery phase, in fact it often marks the beginning, even a pre-discovery phase. Nowhere is this more clearly seen than in the classification of stellar spectra, long before dwarfs, giants and supergiants were known, or their evolutionary sequence recognized. Classification may also be part of a post-discovery phase, as in the MK system of stellar classification, constructed after the discovery of stellar luminosity classes. Some classes are declared rather than discovered, as in the case of gas and ice giant planets, and, infamously, Pluto as a dwarf planet.

  15. The galaxy ancestor problem

    Science.gov (United States)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  16. A Galaxy Zoo - WorldWide Telescope Mashup: Expanding User Defined Exploration

    Science.gov (United States)

    Luebbert, Jarod; Sands, M.; Fay, J.; Smith, A.; Gay, P. L.; Galaxy Zoo Team

    2010-01-01

    We present a new way of exploring your favorite Galaxy Zoo galaxies within the context of the sky using Microsoft Research's WorldWide Telescope. Galaxy Zoo has a fantastic community that is eager to learn and contribute to science through morphological classifications of galaxies. WorldWide Telescope is an interactive observatory that allows users to explore the sky. WorldWide Telescope uses images from the world's best telescopes, including the galaxies of the Sloan Digital Sky Survey. WorldWide Telescope provides a fantastic sense of size and distance that is hard to experience in Galaxy Zoo. Creating tours from favorite galaxies directly from Galaxy Zoo aims to solve this dilemma.The incorporation of Galaxy Zoo and WorldWide telescope provides a great resource for users to learn more about the galaxies they are classifying. Users can now explore the areas around certain galaxies and view information about that location from within WorldWide Telescope. Not only does this encourage self-motivated research but after tours are created they can be shared with anyone. We hope this will help spread citizen science to different audiences via email, Facebook, and Twitter.Without the WorldWide Telescope team at Microsoft Research this project would not have been possible. Please go start exploring at http://wwt.galaxyzoo.org. This project was funded through the Microsoft Research Academic Program.

  17. The shell galaxy NGC4104 in an X-ray group

    Science.gov (United States)

    Lima Neto, G. B.; Durret, F.; Laganá, T.; Machado, R. E. G.; Martinet, N.

    2017-07-01

    Groups of galaxies are expected to collapse early in the history of the universe, in particular the so-called Fossil Groups, with a central galaxy that grows at the bottom of the gravitational potential well by cannibalizing smaller galaxies and/or by major mergers. An evidence of galactic cannibalism is the feature known as shells or ripples in early-type galaxies Shell galaxies are believed to be the result of a minor merger of a dwarf with an elliptical galaxy, resulting in a series of faint concentric ripples in surface brightness observed throughout the main stellar component. This contribution presents very deep r and g imaging of NGC 4104 - the brightest galaxy of an X-ray emitting group - obtained with MegaCam on the 3.6 m CFHT. Using both iraf/ellipse and galfit 2D image-fitting programs, we show the presence of strong shell features and an extended stellar halo around the group brightest galaxy. We have run a series of N-body simulations in order to gain insight on the dynamical process that shaped NGC 4104. Numerical modeling suggests a recent (around 5 Gyrs ago) collision occurred with a dwarf galaxy, which may have also led to a central absorption feature observed in the galaxy center. Moreover, given the magnitude gap between the first and second brightest galaxies, it seems that we are witnessing the formation of an object that falls within the fossil group classification.

  18. The Influence of Galaxy Environment on the Stellar Initial Mass Function of Early-Type Galaxies

    Science.gov (United States)

    Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre

    2018-02-01

    In this paper we investigate whether the stellar initial mass function of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al. and used their optical SDSS spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths to predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and "bimodal" (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky-Way-like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3″ SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.

  19. Neutral Hydrogen Radio Propperties of ASAS-SN Supernovae Hosts

    Science.gov (United States)

    Ross, Timothy W.; Salter, Chris; Ghosh, Tapasi; Minchin, Robert; Jones, Kristen; All-Sky Automated Survey for Supernovae (ASAS-SN)

    2018-01-01

    We compiled properties of the galaxies containing recent supernovae. The galaxies were observed in the Hydrogen 21-cm region using the Arecibo 305-m Radio Telescope, and the supernovae were found by the All-Sky Automated Survey for Supernovae (ASAS-SN) project. We were able to detect the neutral hydrogen hyperfine transition in 50 new galaxies to date, and retrieved information on 52 host galaxies with previous detections. Including archival detections, the detection rates of Type CC SNe was 96.9%, that of Type Ia was 76.3%, while no Tidal Disruption Events (TDEs) had detections. In all we calculated the integrated HI flux of 102 host galaxies in the Arecibo sky. With the integrated HI flux we calculated mass values. The median HI mass, log [MHI/(h‑2C M⊙)], with h =.73, for all SN host galaxies was 9.47±0.02, with the median for Type Ia hosts being 9.55±0.02 and the median for Type CC being 9.30±0.02.

  20. Astronomy and big data a data clustering approach to identifying uncertain galaxy morphology

    CERN Document Server

    Edwards, Kieran Jay

    2014-01-01

    With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as “Uncertain”. This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Select...

  1. The gravitational dynamics of galaxies

    Indian Academy of Sciences (India)

    one could arrive at the number of galaxies of this size in the observable Universe – again around 1011. A few galaxies are bigger and brighter than our own, but many more are smaller, going down to dwarf galaxies which could be ten thousand times less luminous. Nevertheless, galaxies do form a distinct and unique unit ...

  2. GALAXY SPIN ALIGNMENT IN FILAMENTS AND SHEETS: OBSERVATIONAL EVIDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, Elmo [Tartu Observatory, Observatooriumi 1, 61602 Tõravere (Estonia); Libeskind, Noam I., E-mail: elmo@to.ee, E-mail: nlibeskind@aip.de [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany)

    2013-10-01

    The properties of galaxies are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the Sloan Digital Sky Survey to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments, a marked point process with interactions (the {sup B}isous model{sup )} is used. Sheets are found by detecting 'flattened' filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical galaxies formed via mergers, which predominantly occurred along the filaments. The spin axis of spiral galaxies is found to align with the host filament, with no correlation between spiral spin and sheet normal. When examined as a function of distance from the filament axis, a much stronger correlation is found in the outer parts, suggesting that the alignment is driven by the laminar infall of gas from sheets to filaments. When compared with numerical simulations, our results suggest that the connection between dark matter halo and galaxy spin is not straightforward. Our results provide an important input to the understanding of how galaxies acquire their angular momentum.

  3. The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos

    Science.gov (United States)

    Zehavi, Idit; Contreras, Sergio; Padilla, Nelson; Smith, Nicholas J.; Baugh, Carlton M.; Norberg, Peder

    2018-01-01

    We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these distributions and measure the occupation functions for the galaxies they host. We find distinct differences among these occupation functions. The main effect with environment is that central galaxies (and in one model, also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass–halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the occupation of satellite galaxies where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy samples. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical modeling of galaxy assembly bias and attempts to detect it in the real universe.

  4. The distribution of early- and late-type galaxies in the Coma cluster

    Science.gov (United States)

    Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.

    1995-01-01

    The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.

  5. Featured Image: Central Black Holes in Late-Type Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    The images above show just 8 of 51 different nearby, late-type galaxies found to host X-ray cores near their centers. The main images are optical views and the insets show Chandra X-ray images of the same galaxies. The cross marks identify the near-infrared/optical nucleus of each galaxy, and the green ellipses show the source regions for the X-rays. A recent publication led by Rui She (Tsinghua University, China) presents a search for low-mass (106 solar masses) black holes lurking in the centers of nearby late-type, low-mass galaxies. Many of the 51 X-ray cores discovered represent such hidden black holes. The authors use the statistics of this sample to estimate that at least 21% of late-type galaxies likethose studied here host low-mass black holes at their centers. You can view the full set of X-ray core hosts below; for more information, check out the paper linked at the bottom of the page.All 51 X-ray cores (displayed in 3 sets); see the article below for the originals.CitationRui She et al 2017 ApJ 842 131. doi:10.3847/1538-4357/aa7634

  6. Multimessenger Signatures of Massive Black Holes in Dwarf Galaxies

    Science.gov (United States)

    Bellovary, Jillian; Cleary, Colleen; Tremmel, Michael; Munshi, Ferah

    2018-01-01

    Inspired by the recent discovery of several nearby dwarf galaxies hosting active galactic nuclei, we present results from a series of cosmological hydrodynamic simulations focusing on dwarf galaxies which host supermassive black holes (SMBHs). Cosmological simulations are a vital tool for predicting SMBH populations and merger events which will eventually be observed by LISA. Dwarf galaxies are the most numerous in the universe, so even though the occupation fraction of SMBHs in dwarfs is less than unity, their contribution to the gravitational wave background could be non-negligible. We find that electromagnetic signatures from SMBH accretion are not common among most SMBH-hosting dwarfs, but the gravitational wave signatures can be substantial. The most common mass ratio for SMBH mergers in low-mass galaxy environments is ~1:20, which is an unexplored region of gravitational waveform parameter space. We discuss the occupation fraction of SMBHs in low-mass galaxies as well as differences in field and satellite populations, providing clues to search for and characterize these elusive giants lurking in the dwarfs.

  7. Dwarf galaxies : Important clues to galaxy formation

    NARCIS (Netherlands)

    Tolstoy, E

    2003-01-01

    The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous

  8. The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs

    Science.gov (United States)

    Geha, Marla; Wechsler, Risa H.; Mao, Yao-Yuan; Tollerud, Erik J.; Weiner, Benjamin; Bernstein, Rebecca; Hoyle, Ben; Marchi, Sebastian; Marshall, Phil J.; Muñoz, Ricardo; Lu, Yu

    2017-09-01

    We present the survey strategy and early results of the “Satellites Around Galactic Analogs” (SAGA) Survey. The SAGA Survey’s goal is to measure the distribution of satellite galaxies around 100 systems analogous to the Milky Way down to the luminosity of the Leo I dwarf galaxy ({M}rsatellite luminosity functions for eight Milky-Way-analog galaxies between 20 and 40 Mpc. These systems have nearly complete spectroscopic coverage of candidate satellites within the projected host virial radius down to {r}osatellite galaxies: 14 new satellite galaxies meet our formal criteria around our complete host systems, plus 11 additional satellites in either incompletely surveyed hosts or below our formal magnitude limit. Combined with 13 previously known satellites, there are a total of 27 satellites around 8 complete Milky-Way-analog hosts. We find a wide distribution in the number of satellites per host, from 1 to 9, in the luminosity range for which there are 5 Milky Way satellites. Standard abundance matching extrapolated from higher luminosities predicts less scatter between hosts and a steeper luminosity function slope than observed. We find that the majority of satellites (26 of 27) are star-forming. These early results indicate that the Milky Way has a different satellite population than typical in our sample, potentially changing the physical interpretation of measurements based only on the Milky Way’s satellite galaxies.

  9. Rock suitability classification RSC 2012

    Energy Technology Data Exchange (ETDEWEB)

    McEwen, T. (ed.) [McEwen Consulting, Leicester (United Kingdom); Kapyaho, A. [Geological Survey of Finland, Espoo (Finland); Hella, P. [Saanio and Riekkola, Helsinki (Finland); Aro, S.; Kosunen, P.; Mattila, J.; Pere, T.

    2012-12-15

    This report presents Posiva's Rock Suitability Classification (RSC) system, developed for locating suitable rock volumes for repository design and construction. The RSC system comprises both the revised rock suitability criteria and the procedure for the suitability classification during the construction of the repository. The aim of the classification is to avoid such features of the host rock that may be detrimental to the favourable conditions within the repository, either initially or in the long term. This report also discusses the implications of applying the RSC system for the fulfilment of the regulatory requirements concerning the host rock as a natural barrier and the site's overall suitability for hosting a final repository of spent nuclear fuel.

  10. ACS Nearby Galaxy Survey

    Science.gov (United States)

    Dalcanton, Julianne

    2006-07-01

    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  11. Accretion by the Galaxy

    Directory of Open Access Journals (Sweden)

    Binney J.

    2012-02-01

    Full Text Available Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model’s parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies “red and dead.”

  12. Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙

    Science.gov (United States)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2017-08-01

    Star formation in galaxies relies on the availability of cold, dense gas, which, in turn, relies on factors internal and external to the galaxies. In order to provide a simple model for how star formation is regulated by various physical processes in galaxies, we analyse data at redshift z = 0 from a hydrodynamical cosmological simulation that includes prescriptions for star formation and stellar evolution, active galactic nuclei, and their associated feedback processes. This model can determine the star formation rate (SFR) as a function of galaxy stellar mass, gas mass, black hole mass, and environment. We find that gas mass is the most important quantity controlling star formation in low-mass galaxies, and star-forming galaxies in dense environments have higher SFR than their counterparts in the field. In high-mass galaxies, we find that black holes more massive than ˜ 107.5 M⊙ can be triggered to quench star formation in their host; this mass scale is emergent in our simulations. Furthermore, this black hole mass corresponds to a galaxy bulge mass ˜ 2 × 1010 M⊙, consistent with the mass at which galaxies start to become dominated by early types ( ˜ 3 × 1010 M⊙, as previously shown in observations by Kauffmann et al.). Finally, we demonstrate that our model can reproduce well the SFR measured from observations of galaxies in the Galaxy And Mass Assembly and Arecibo Legacy Fast ALFA surveys.

  13. The environment of barred galaxies in the low-redshift universe

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ye; Sodi, Bernardo Cervantes; Li, Cheng; Wang, Lixin; Wang, Enci, E-mail: sodi@kias.re.kr, E-mail: leech@shao.ac.cn [Partner Group of the Max Planck Institute for Astrophysics at the Shanghai Astronomical Observatory and Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Nandan Road 80, Shanghai 200030 (China)

    2014-12-01

    We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ∼50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  14. Updated Nearby Galaxy Catalog

    OpenAIRE

    Karachentsev, Igor D.; Makarov, Dmitry I.; Kaisina, Elena I.

    2013-01-01

    We present an all-sky catalog of 869 nearby galaxies, having individual distance estimates within 11 Mpc or corrected radial velocities V_{LG} < 600 km/s. The catalog is a renewed and expanded version of the "Catalog of Neighboring Galaxies" by Karachentsev et al. (2004). It collects data on the following observables for the galaxies: angular diameters, apparent magnitudes in FUV-, B-, and K_s- bands, H_alpha and HI fluxes, morphological types, HI-line widths, radial velocities and distance e...

  15. Revisiting The First Galaxies: The epoch of Population III stars

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, Alexander L. [U. Michigan, Dept. Astron.; Gnedin, Oleg Y. [U. Michigan, Dept. Astron.; Gnedin, Nickolay Y. [Chicago U., Astron. Astrophys. Ctr.; Zemp, Marcel [Beijing, KITPC

    2013-07-19

    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars in 20-200 Myr, depending on galaxy mass.

  16. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  17. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  18. The Porosity of the neutral ISM in 20 THINGS Galaxies

    Science.gov (United States)

    Bagetakos, I.; Brinks, E.; Walter, F.; de Blok, W. J. G.; Usero, A.; Leroy, A. K.; Rich, J. W.; Kennicutt, R. C.

    2011-11-01

    We present an analysis of the properties of H i holes detected in 20 galaxies that are part of "The H i Nearby Galaxy Survey". We detected more than 1000 holes in total in the sampled galaxies. The holes are found throughout the disks of the galaxies, out to the edge of the H i disk. We find that shear limits the age of holes in spirals. Shear is less important in dwarf galaxies which explains why H i holes in dwarfs are rounder, on average than in spirals. Shear is particularly strong in the inner part of spiral galaxies, limiting the lifespan of holes there and explaining why we find that holes outside R25 are larger and older. We proceed to derive the surface and volume porosity and find that this correlates with the type of the host galaxy: later Hubble types tend to be more porous. The size distribution of the holes in our sample follows a power law with a slope of aν ~ -2.9. Assuming that the holes are the result of massive star formation, we derive values for the supernova rate (SNR) and star formation rate (SFR) which scales with the SFR derived based on other tracers. If we extrapolate the observed number of holes to include those that fall below our resolution limit, down to holes created by a single supernova, we find that our results are compatible with the hypothesis that H i holes result from star formation.

  19. The Universe's Most Extreme Star-forming Galaxies

    Science.gov (United States)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  20. ALMA Explores How Supermassive Black Holes Talk to Their Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-03-01

    We believe that supermassive black holes evolve in tandem with their host galaxies but how do the two communicate? Observations from the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed new clues about how a monster black hole talks to its galaxy.A Hubble image of the central galaxy in the Phoenix cluster. [Adapted from Russell et al. 2017]Observing FeedbackActive galactic nuclei (AGN), the highly luminous centers of some galaxies, are thought to radiate due to active accretion onto the supermassive black hole at their center.Its long been suspected that the radiation and outflowing material which often takes the form of enormous bipolar radio jets emitted into the surroundings influence the AGNs host galaxy, affecting star formation rates and the evolution of the galaxy. This AGN feedback has been alternately suggested to trigger star formation, quench it, and truncate the growth of massive galaxies.The details of this feedback process, however, have yet to be thoroughly understood in part because its difficult to obtain detailed observations of how AGN outflows interact with the galactic gas surrounding them. Now, a team of scientists led by Helen Russell (Institute of Astronomy in Cambridge, UK) has published the results of a new, high-resolution look at the gas in a massive galaxy in the center of the Phoenix cluster.Many Uses for FuelThe Phoenix cluster, a nearby (z = 0.596) group of star-forming galaxies, is the most luminous X-ray cluster known. The central galaxy in the cluster is especially active: it hosts a starburst of 500800 solar masses per year, the largest starburst found in any galaxy below a redshift of z= 1.The star formation in this galaxy is sustained by an enormous reservoir of cold molecular gas roughly 20 billion solar masses worth. This reservoir also powers the galaxys central black hole, fueling powerful radio jets that extend into the hot atmosphere of the galaxy and blow a giant bubble into the hot gas at each pole

  1. Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling

    Science.gov (United States)

    Pogge, Richard W.; Martini, Paul

    2002-01-01

    We present archival Hubble Space Telescope (HST) images of the nuclear regions of 43 of the 46 Seyfert galaxies found in the volume limited,spectroscopically complete CfA Redshift Survey sample. Using an improved method of image contrast enhancement, we created detailed high-quality " structure maps " that allow us to study the distributions of dust, star clusters, and emission-line gas in the circumnuclear regions (100-1000 pc scales) and in the associated host galaxy. Essentially all of these Seyfert galaxies have circumnuclear dust structures with morphologies ranging from grand-design two-armed spirals to chaotic dusty disks. In most Seyfert galaxies there is a clear physical connection between the nuclear dust spirals on hundreds of parsec scales and large-scale bars and spiral arms in the host galaxies proper. These connections are particularly striking in the interacting and barred galaxies. Such structures are predicted by numerical simulations of gas flows in barred and interacting galaxies and may be related to the fueling of active galactic nuclei by matter inflow from the host galaxy disks. We see no significant differences in the circumnuclear dust morphologies of Seyfert 1s and 2s, and very few Seyfert 2 nuclei are obscured by large-scale dust structures in the host galaxies. If Sevfert 2s are obscured Sevfert Is, then the obscuration must occur on smaller scales than those probed by HST.

  2. J-Plus: Morphological Classification Of Compact And Extended Sources By Pdf Analysis

    Science.gov (United States)

    López-Sanjuan, C.; Vázquez-Ramió, H.; Varela, J.; Spinoso, D.; Cristóbal-Hornillos, D.; Viironen, K.; Muniesa, D.; J-PLUS Collaboration

    2017-10-01

    We present a morphological classification of J-PLUS EDR sources into compact (i.e. stars) and extended (i.e. galaxies). Such classification is based on the Bayesian modelling of the concentration distribution, including observational errors and magnitude + sky position priors. We provide the star / galaxy probability of each source computed from the gri images. The comparison with the SDSS number counts support our classification up to r 21. The 31.7 deg² analised comprises 150k stars and 101k galaxies.

  3. A Catalog of Edge-on Disk Galaxies: From Galaxies with a Bulge to Superthin Galaxies

    OpenAIRE

    Kautsch, S. J.; Grebel, E. K.; Barazza, F. D.; Gallagher, J. S.

    2005-01-01

    The formation and evolution of disk-dominated galaxies is difficult to explain, yet these objects exist. We therefore embarked on a study aimed at a better understanding of these enigmatic objects. We used data from the SDSS DR1 in order to identify edge-on galaxies with disks in a uniform, reproducible, automated fashion. We identified 3169 edge-on disk galaxies, which we subdivided into disk galaxies with bulge, intermediate types, and simple disk galaxies without any obvious bulge componen...

  4. 'Nomadic' nuclei of galaxies

    Science.gov (United States)

    Silchenko, O. K.; Lipunov, V. M.

    1985-12-01

    In this paper the authors discuss observational and theoretical arguments in favour of hypothesis on "nomad life" of active nuclei inside and outside galaxies as well as its consequences. It may be the anisotropic collapse of a supermassive star, or the disruption of a supermassive binary system after the collapse of one companion that would give birth to such nuclei. The authors predict the existence of veritable quasi-stellar active objects without any ghost galaxies.

  5. Dark matter in galaxies

    OpenAIRE

    Zasov, A. V.; Saburova, A. S.; Khoperskov, A. V.; Khoperskov, S. A.

    2017-01-01

    Dark matter in galaxies, its abundance, and its distribution remain a subject of long-standing discussion, especially in view of the fact that neither dark matter particles nor dark matter bodies have yet been found. Experts' opinions range from a very large number of completely dark galaxies exist to nonbaryonic dark matter does not exist at all in any significant amounts. We discuss astronomical evidence for the existence of dark matter and its connection with visible matter and examine att...

  6. Galaxies at High Redshift

    Science.gov (United States)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  7. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Quan; Libeskind, N. I. [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany); Tempel, E., E-mail: qguo@aip.de [Tartu Observatory, Observatooriumi 1, 61602 Tõravere (Estonia)

    2015-02-20

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M {sub sat.} < M {sub prim.} + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  8. Galaxies in Filaments have More Satellites: The Influence of the Cosmic Web on the Satellite Luminosity Function in the SDSS

    Science.gov (United States)

    Guo, Quan; Tempel, E.; Libeskind, N. I.

    2015-02-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. 2.0) by a factor of ~2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation.

  9. Dwarf elliptical galaxies

    Science.gov (United States)

    Ferguson, Henry C.; Binggeli, Bruno

    1994-01-01

    Dwarf elliptical (dE) galaxies, with blue absolute magnitudes typically fainter than M(sub B) = -16, are the most numerous type of galaxy in the nearby universe. Tremendous advances have been made over the past several years in delineating the properties of both Local Group satellite dE's and the large dE populations of nearby clusters. We review some of these advances, with particular attention to how well currently availiable data can constrain (a) models for the formation of dE's, (b) the physical and evolutionary connections between different types of galaxies that overlap in the same portion of the mass-spectrum of galaxies, (c) the contribution of dE's to the galaxy luminosity functions in clusters and the field, (d) the star-forming histories of dE's and their possible contribution to faint galaxy counts, and (e) the clustering properties of dE's. In addressing these issues, we highlight the extent to which selection effects temper these constraints, and outline areas where new data would be particularly valuable.

  10. An introduction to galaxies and cosmology

    CERN Document Server

    Lambourne, Robert J A; Serjeant, Stephen

    2015-01-01

    This well-received textbook has been designed by a team of experts for introductory courses in astronomy and astrophysics. Starting with a detailed discussion of our Galaxy, the Milky Way, it goes on to give a general introduction to normal and active galaxies including models for their formation and evolution. The second part of the book provides an overview of cosmological models, discussing the Big Bang, dark energy and the expansion of the Universe. This second edition has been updated to reflect the latest developments and observations, while still probing the unresolved questions at the forefront of research. It contains numerous learning features such as boxed summaries, exercises with full solutions, a glossary and a supporting website hosting further teaching materials. Written in an accessible style that avoids complex mathematics, and illustrated in colour throughout, this text is suitable for self-study and will appeal to amateur astronomers as well as students.

  11. Unsupervised feature-learning for galaxy SEDs with denoising autoencoders

    Science.gov (United States)

    Frontera-Pons, J.; Sureau, F.; Bobin, J.; Le Floc'h, E.

    2017-07-01

    With the increasing number of deep multi-wavelength galaxy surveys, the spectral energy distribution (SED) of galaxies has become an invaluable tool for studying the formation of their structures and their evolution. In this context, standard analysis relies on simple spectro-photometric selection criteria based on a few SED colors. If this fully supervised classification already yielded clear achievements, it is not optimal to extract relevant information from the data. In this article, we propose to employ very recent advances in machine learning, and more precisely in feature learning, to derive a data-driven diagram. We show that the proposed approach based on denoising autoencoders recovers the bi-modality in the galaxy population in an unsupervised manner, without using any prior knowledge on galaxy SED classification. This technique has been compared to principal component analysis (PCA) and to standard color/color representations. In addition, preliminary results illustrate that this enables the capturing of extra physically meaningful information, such as redshift dependence, galaxy mass evolution and variation over the specific star formation rate. PCA also results in an unsupervised representation with physical properties, such as mass and sSFR, although this representation separates out less other characteristics (bimodality, redshift evolution) than denoising autoencoders.

  12. The Black Hole Safari: Big Game Hunting in 30+ Massive Galaxies

    Science.gov (United States)

    McConnell, Nicholas J.; Ma, Chung-Pei; Janish, Ryan; Gebhardt, Karl; Lauer, Tod R.; Graham, James R.

    2015-01-01

    The current census of the most massive black holes in the local universe turns up an odd variety of galaxy hosts: central galaxies in rich clusters, second- or lower-ranked cluster members, and compact relics from the early universe. More extensive campaigns are required to explore the number density and environmental distribution of these monsters. Over the past three years we have collected a large set of stellar kinematic data with sufficient resolution to detect the gravitational signatures of supermassive black holes with MBH > 109 MSun. This Black Hole Safari targets enormous galaxies at the centers of nearby galaxy clusters, as well as their similarly luminous counterparts in weaker galaxy groups. To date we have observed more than 30 early-type galaxies with integral-field spectrographs on the Keck, Gemini North, and Gemini South telescopes. Here I present preliminary stellar kinematics from 10 objects.

  13. The Galaxy Evolution Probe

    Science.gov (United States)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the

  14. H1 in RSA galaxies

    Science.gov (United States)

    Richter, OTTO-G.

    1993-01-01

    The original Revised Shapley-Ames (RSA) galaxy sample of almost 1300 galaxies has been augmented with further bright galaxies from the RSA appendix as well as newer galaxy catalogs. A complete and homogeneous, strictly magnitude-limited all-sky sample of 2345 galaxies brighter than 13.4 in apparent blue magnitude was formed. New 21 cm H1 line observations for more than 600 RSA galaxies have been combined with all previously available H1 data from the literature. This new extentise data act allows detailed tests of widely accepted 'standard' reduction and analysis techniques.

  15. Cosmic axion background propagation in galaxies

    Directory of Open Access Journals (Sweden)

    Francesca V. Day

    2016-02-01

    Full Text Available Many extensions of the Standard Model include axions or axion-like particles (ALPs. Here we study ALP to photon conversion in the magnetic field of the Milky Way and starburst galaxies. By modelling the effects of the coherent and random magnetic fields, the warm ionized medium and the warm neutral medium on the conversion process, we simulate maps of the conversion probability across the sky for a range of ALP energies. In particular, we consider a diffuse cosmic ALP background (CAB analogous to the CMB, whose existence is suggested by string models of inflation. ALP–photon conversion of a CAB in the magnetic fields of galaxy clusters has been proposed as an explanation of the cluster soft X-ray excess. We therefore study the phenomenology and expected photon signal of CAB propagation in the Milky Way. We find that, for the CAB parameters required to explain the cluster soft X-ray excess, the photon flux from ALP–photon conversion in the Milky Way would be unobservably small. The ALP–photon conversion probability in galaxy clusters is 3 orders of magnitude higher than that in the Milky Way. Furthermore, the morphology of the unresolved cosmic X-ray background is incompatible with a significant component from ALP–photon conversion. We also consider ALP–photon conversion in starburst galaxies, which host much higher magnetic fields. By considering the clumpy structure of the galactic plasma, we find that conversion probabilities comparable to those in clusters may be possible in starburst galaxies.

  16. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    Science.gov (United States)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  17. Gamma-ray emitting narrow-line Seyfert 1 galaxies and their place in the AGN zoo

    Science.gov (United States)

    D'Ammando, Filippo; Orienti, Monica; Finke, Justin; Giroletti, Marcello; Larsson, Josefin

    2016-08-01

    Relativistic jets are usually produced by radio-loud AGN hosted in giant elliptical galaxies such as blazars and radio galaxies. The discovery by Fermi-LAT of variable gamma-ray emission from narrow-line Seyfert 1 (NLSy1) galaxies revealed the presence of a new class of AGN with relativistic jets. Considering that NLSy1 are usually hosted in spiral galaxies, this finding poses intriguing questions about the nature of these objects and the formation of relativistic jets. In this talk I discuss the radio-to-gamma-ray properties of the gamma-ray NLSy1 detected during the first 7 years of Fermi operation, the observations of their host galaxies, and the estimation of their black hole masses.

  18. Strong Lensing Analysis of the Galaxy Cluster MACS J1319.9+7003 and the Discovery of a Shell Galaxy

    Science.gov (United States)

    Zitrin, Adi

    2017-01-01

    We present a strong-lensing (SL) analysis of the galaxy cluster MACS J1319.9+7003 (z = 0.33, also known as Abell 1722), as part of our ongoing effort to analyze massive clusters with archival Hubble Space Telescope (HST) imaging. We spectroscopically measured with Keck/Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) two galaxies multiply imaged by the cluster. Our analysis reveals a modest lens, with an effective Einstein radius of {θ }e(z=2)=12+/- 1\\prime\\prime , enclosing 2.1+/- 0.3× {10}13 M⊙. We briefly discuss the SL properties of the cluster, using two different modeling techniques (see the text for details), and make the mass models publicly available (ftp://wise-ftp.tau.ac.il/pub/adiz/MACS1319/). Independently, we identified a noteworthy, young shell galaxy (SG) system forming around two likely interacting cluster members, 20″ north of the brightest cluster galaxy. SGs are rare in galaxy clusters, and indeed, a simple estimate reveals that they are only expected in roughly one in several dozen, to several hundred, massive galaxy clusters (the estimate can easily change by an order of magnitude within a reasonable range of characteristic values relevant for the calculation). Taking advantage of our lens model best-fit, mass-to-light scaling relation for cluster members, we infer that the total mass of the SG system is ˜ 1.3× {10}11 {M}⊙ , with a host-to-companion mass ratio of about 10:1. Despite being rare in high density environments, the SG constitutes an example to how stars of cluster galaxies are efficiently redistributed to the intra-cluster medium. Dedicated numerical simulations for the observed shell configuration, perhaps aided by the mass model, might cast interesting light on the interaction history and properties of the two galaxies. An archival HST search in galaxy cluster images can reveal more such systems.

  19. The impact of galaxy harassment on the globular cluster systems of early-type cluster dwarf galaxies

    Science.gov (United States)

    Smith, R.; Sánchez-Janssen, R.; Fellhauer, M.; Puzia, T. H.; Aguerri, J. A. L.; Farias, J. P.

    2013-02-01

    The dynamics of globular cluster systems (GCSs) around galaxies are often used to assess the total enclosed mass, and even to constrain the dark matter distribution. The GCS of a galaxy is typically assumed to be in dynamical equilibrium within the potential of the host galaxy. However cluster galaxies are subjected to a rapidly evolving and, at times, violently destructive tidal field. We investigate the impact of the harassment on the dynamics of GCs surrounding early-type cluster dwarfs, using numerical simulations. We find that the dynamical behaviour of the GCS is strongly influenced by the fraction of bound dark matter fDM remaining in the galaxy. Only when fDM falls to ˜15 per cent do stars and GCs begin to be stripped. Still the observed GC velocity dispersion can be used to measure the true enclosed mass to within a factor of 2, even when fDM falls as low as ˜3 per cent. This is possible partly because unbound GCs quickly separate from the galaxy body. However even the distribution of bound GCs may spatially expand by a factor of 2-3. Once fDM falls into the <3 per cent regime, the galaxy is close to complete disruption, and GCS dynamics can no longer be used to reliably estimate the enclosed mass. In this regime, the remaining bound GCS may spatially expand by a factor of 4 to 8. It may be possible to test if a galaxy is in this regime by measuring the dynamics of the stellar disc. We demonstrate that if a stellar disc is rotationally supported, it is likely that a galaxy has sufficient dark matter that the dynamics of the GCS can be used to reliably estimate the enclosed mass.

  20. Classifying Radio Galaxies with the Convolutional Neural Network

    Science.gov (United States)

    Aniyan, A. K.; Thorat, K.

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff-Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ˜200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  1. Galaxy Evolution in the Cluster Abell 85: New Insights from the Dwarf Population

    Science.gov (United States)

    Habas, Rebecca; Fadda, Dario; Marleau, Francine R.; Biviano, Andrea; Durret, Florence

    2018-01-01

    We present the first results of a new spectroscopic survey of the cluster Abell 85 targeting 1466 candidate cluster members within the central ˜1 deg2 of the cluster and having magnitudes mr cluster members or part of an infalling population. A significant fraction are low mass; the median stellar mass of the sample is 109.6 M⊙, and 25% have stellar masses below 109 M⊙ (i.e. 133 dwarf galaxies). We also identify seven active galactic nuclei (AGN), four of which reside in dwarf host galaxies. We probe the evolution of star formation rates, based on Hα emission and continuum modeling, as a function of both mass and environment. We find that more star forming galaxies are observed at larger clustercentric distances, while infalling galaxies show evidence for recently enhanced star forming activity. Main sequence galaxies, defined by their continuum star formation rates, show different evolutionary behavior based on their mass. At the low mass end, the galaxies have had their star formation recently quenched, while more massive galaxies show no significant change. The timescales probed here favor fast quenching mechanisms, such as ram-pressure stripping. Galaxies within the green valley, defined similarly, do not show evidence of quenching. Instead, the low mass galaxies maintain their levels of star forming activity, while the more massive galaxies have experienced a recent burst.

  2. STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)

    Science.gov (United States)

    Holwerda, Benne

    2014-10-01

    Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.

  3. Seeing Baby Dwarf Galaxies

    Science.gov (United States)

    2009-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Visible/DSS Click on image for larger version Ultraviolet/GALEX Click on image for larger version Poster Version Click on image for larger version The unique ultraviolet vision of NASA's Galaxy Evolution Explorer reveals, for the first time, dwarf galaxies forming out of nothing more than pristine gas likely leftover from the early universe. Dwarf galaxies are relatively small collections of stars that often orbit around larger galaxies like our Milky Way. The forming dwarf galaxies shine in the far ultraviolet spectrum, rendered as blue in the call-out on the right hand side of this image. Near ultraviolet light, also obtained by the Galaxy Evolution Explorer, is displayed in green, and visible light from the blue part of the spectrum here is represented by red. The clumps (in circles) are distinctively blue, indicating they are primarily detected in far ultraviolet light. The faint blue overlay traces the outline of the Leo Ring, a huge cloud of hydrogen and helium that orbits around two massive galaxies in the constellation Leo (left panel). The cloud is thought likely to be a primordial object, an ancient remnant of material that has remained relatively unchanged since the very earliest days of the universe. Identified about 25 years ago by radio waves, the ring cannot be seen in visible light. Only a portion of the Leo Ring has been imaged in the ultraviolet, but this section contains the telltale ultraviolet signature of recent massive star formation within this ring of pristine gas. Astronomers have previously only seen dwarf galaxies form out of gas that has already been cycled through a galaxy and enriched with metals elements heavier than helium produced as stars evolve. The visible data come from the Digitized Sky Survey of the Space Telescope Science Institute in Baltimore, Md. The Leo Ring visible image (left

  4. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  5. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems

    Science.gov (United States)

    Henkel, C.; Javanmardi, B.; Martínez-Delgado, D.; Kroupa, P.; Teuwen, K.

    2017-07-01

    The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a discriminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way-class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless. Deep images of NGC 3669 (small bulge, with NGC 3625 at the edge of the image) and NGC 7814 (prominent bulge), obtained with a 0.4 m aperture, are also presented, resulting in the discovery of two new dwarf galaxy candidates, NGC 3669-DGSAT-3 and NGC 7814-DGSAT-7. Eleven additional low surface brightness galaxies are identified, previously notified with low quality measurement flags in the Sloan Digital Sky Survey (SDSS). Integrated magnitudes, surface brightnesses, effective radii, Sersic indices, axis ratios, and projected distances to their putative major hosts are displayed. At least one of the galaxies, NGC 3625-DGSAT-4, belongs with a surface brightness of μr ≈ 26 mag arcsec-2 and effective radius >1.5 kpc to the class of ultra-diffuse galaxies (UDGs). NGC 3669-DGSAT-3, the galaxy with the lowest surface brightness in our sample, may also be an UDG.

  6. Velocity-metallicity correlation for high-z DLA galaxies

    DEFF Research Database (Denmark)

    Ledoux, C.; Petitjean, P.; Fynbo, J.P.U.

    2006-01-01

    Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct.......Galaxies: halos, galaxies: high-redshift, galaxies: ISM, quasars: absorption lines, cosmology: observations Udgivelsesdato: Oct....

  7. Improving galaxy morphologies for SDSS with Deep Learning

    Science.gov (United States)

    Domínguez Sánchez, H.; Huertas-Company, M.; Bernardi, M.; Tuccillo, D.; Fischer, J. L.

    2018-02-01

    We present a morphological catalogue for ˜ 670,000 galaxies in the Sloan Digital Sky Survey in two flavours: T-Type, related to the Hubble sequence, and Galaxy Zoo 2 (GZ2 hereafter) classification scheme. By combining accurate existing visual classification catalogues with machine learning, we provide the largest and most accurate morphological catalogue up to date. The classifications are obtained with Deep Learning algorithms using Convolutional Neural Networks (CNNs). We use two visual classification catalogues, GZ2 and Nair & Abraham (2010), for training CNNs with colour images in order to obtain T-Types and a series of GZ2 type questions (disk/features, edge-on galaxies, bar signature, bulge prominence, roundness and mergers). We also provide an additional probability enabling a separation between pure elliptical (E) from S0, where the T-Type model is not so efficient. For the T-Type, our results show smaller offset and scatter than previous models trained with support vector machines. For the GZ2 type questions, our models have large accuracy (> 97%), precision and recall values (> 90%) when applied to a test sample with the same characteristics as the one used for training. The catalogue is publicly released with the paper.

  8. The SAURON project : XV. Modes of star formation in early-type galaxies and the evolution of the red sequence

    NARCIS (Netherlands)

    Shapiro, Kristen L.; Falcon-Barroso, Jesus; van de Ven, Glenn; de Zeeuw, P. Tim; Sarzi, Marc; Bacon, Roland; Bolatto, Alberto; Cappellari, Michele; Croton, Darren; Davies, Roger L.; Emsellem, Eric; Fakhouri, Onsi; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van der Wolk, Guido

    We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/Infrared Array Camera imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star

  9. Young, metal-enriched cores in early-type dwarf galaxies in the Virgo cluster based on colour gradients

    NARCIS (Netherlands)

    Urich, Linda; Lisker, Thorsten; Janz, Joachim; van de Ven, Glenn; Leaman, Ryan; Boselli, Alessandro; Paudel, Sanjaya; Sybilska, Agnieszka; Peletier, Reynier F.; den Brok, Mark; Hensler, Gerhard; Toloba, Elisa; Falcón-Barroso, Jesús; Niemi, Sami-Matias

    2017-01-01

    Early-type dwarf galaxies are not simply featureless, old objects, but were found to be much more diverse, hosting substructures and a variety of stellar population properties. To explore the stellar content of faint early-type galaxies, and to investigate in particular those with recent central

  10. The SAURON project - XV. Modes of star formation in early-type galaxies and the evolution of the red sequence

    NARCIS (Netherlands)

    Shapiro, Kristen L.; Falcón-Barroso, Jesús; van de Ven, Glenn; de Zeeuw, P. Tim; Sarzi, Marc; Bacon, Roland; Bolatto, Alberto; Cappellari, Michele; Croton, Darren; Davies, Roger L.; Emsellem, Eric; Fakhouri, Onsi; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van der Wolk, Guido

    We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/Infrared Array Camera imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star

  11. PEARS Emission Line Galaxies

    Science.gov (United States)

    Pirzkal, Nor; Rothberg, Barry; Ly, Chun; Rhoads, James E.; Malhotra, Sangeeta; Grogin, Norman A.; Dahlen, Tomas; Meurer, Gerhardt R.; Walsh, Jeremy; Hathi, Nimish P.; hide

    2012-01-01

    We present a full analysis of the Probing Evolution And Reionization Spectroscopically (PEARS) slitless grism spectroscopic data obtained vl'ith the Advanced Camera for Surveys on HST. PEARS covers fields within both the Great Observatories Origins Deep Survey (GOODS) North and South fields, making it ideal as a random surveY of galaxies, as well as the availability of a wide variety of ancillary observations to support the spectroscopic results. Using the PEARS data we are able to identify star forming galaxies within the redshift volume 0 = 10(exp 9) Solar M decreases by an order of magnitude at z<=0.5 relative to the number at 0.5 < z < 0.9 in support of the argument for galaxy downsizing.

  12. WIDESPREAD AND HIDDEN ACTIVE GALACTIC NUCLEI IN STAR-FORMING GALAXIES AT REDSHIFT >0.3

    Energy Technology Data Exchange (ETDEWEB)

    Juneau, Stephanie; Bournaud, Frederic; Daddi, Emanuele; Elbaz, David [CEA-Saclay, DSM/IRFU/SAp, F-91191 Gif-sur-Yvette (France); Dickinson, Mark; Kartaltepe, Jeyhan S. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Alexander, David M.; Mullaney, James R. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Magnelli, Benjamin [Max-Planck-Instituet fuer extraterrestrische Physik, Postfach 1312, D-85741 Garching bei Muenchen (Germany); Hwang, Ho Seong; Willner, S. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Coil, Alison L. [Department of Physics, Center for Astrophysics and Space Sciences, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093 (United States); Rosario, David J. [Max-Planck-Instituet fuer extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching bei Muenchen (Germany); Trump, Jonathan R.; Faber, S. M.; Kocevski, Dale D. [University of California Observatories/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Weiner, Benjamin J.; Willmer, Christopher N. A. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California-Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Frayer, David T., E-mail: stephanie.juneau@cea.fr [National Radio Astronomy Observatory, P.O. Box 2, Green Bank, WV 24944 (United States); and others

    2013-02-20

    We characterize the incidence of active galactic nuclei (AGNs) in 0.3 < z < 1 star-forming galaxies by applying multi-wavelength AGN diagnostics (X-ray, optical, mid-infrared, radio) to a sample of galaxies selected at 70 {mu}m from the Far-Infrared Deep Extragalactic Legacy survey (FIDEL). Given the depth of FIDEL, we detect 'normal' galaxies on the specific star formation rate (sSFR) sequence as well as starbursting systems with elevated sSFR. We find an overall high occurrence of AGN of 37% {+-} 3%, more than twice as high as in previous studies of galaxies with comparable infrared luminosities and redshifts but in good agreement with the AGN fraction of nearby (0.05 < z < 0.1) galaxies of similar infrared luminosities. The more complete census of AGNs comes from using the recently developed Mass-Excitation (MEx) diagnostic diagram. This optical diagnostic is also sensitive to X-ray weak AGNs and X-ray absorbed AGNs, and reveals that absorbed active nuclei reside almost exclusively in infrared-luminous hosts. The fraction of galaxies hosting an AGN appears to be independent of sSFR and remains elevated both on the sSFR sequence and above. In contrast, the fraction of AGNs that are X-ray absorbed increases substantially with increasing sSFR, possibly due to an increased gas fraction and/or gas density in the host galaxies.

  13. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity

    Science.gov (United States)

    Gonzalez Ortiz, Andrea

    2017-01-01

    We investigate active galactic nuclei (AGN) as a primary mechanism affecting star formation in MaNGA galaxies. Using the Pipe3D code, we modeled the stellar population from MaNGA spectra and derived the star formation histories of 53 AGN host galaxies. We seek to compare the star formation histories of the host galaxies of AGN with the ages of their radio lobes to better understand the role of AGN feedback in the star formation histories of MaNGA galaxies. MaNGA (Mapping Nearby Galaxies at APO) is one of the three core programs in the fourth generation Sloan Digital Sky Survey(SDSS). MaNGA will investigate the internal kinematics of nearly 10,000 local galaxies through dithered observations using fiber integral field units (IFUs) that vary in diameter from 12" (19 fibers) to 32" (127 fibers). In this poster, we present initial results on the star formation histories of MaNGA AGN host galaxies. This work was supported by the SDSS Research Experience for Undergraduates program, which is funded by a grant from Sloan Foundation to the Astrophysical Research Consortium.

  14. The Lopsidedness of Satellite Galaxy Systems in ΛCDM Simulations

    Science.gov (United States)

    Pawlowski, Marcel S.; Ibata, Rodrigo A.; Bullock, James S.

    2017-12-01

    The spatial distribution of satellite galaxies around pairs of galaxies in the Sloan Digital Sky Survey (SDSS) have been found to bulge significantly toward the respective partner. Highly anisotropic, planar distributions of satellite galaxies are in conflict with expectations derived from cosmological simulations. Does the lopsided distribution of satellite systems around host galaxy pairs constitute a similar challenge to the standard model of cosmology? We investigate whether such satellite distributions are present around stacked pairs of hosts extracted from the ΛCDM simulations Millennium-I, Millennium-II, Exploring the Local Volume in Simulations, and Illustris-1. By utilizing this set of simulations covering different volumes, resolutions, and physics, we implicitly test whether a lopsided signal exists for different ranges of satellite galaxy masses, and whether the inclusion of hydrodynamical effects produces significantly different results. All simulations display a lopsidedness similar to the observed situation. The signal is highly significant for simulations containing a sufficient number of hosts and resolved satellite galaxies (up to 5 σ for Millennium-II). We find a projected signal that is up to twice as strong as that reported for the SDSS systems for certain opening angles (∼16% more satellites in the direction between the pair than expected for uniform distributions). Considering that the SDSS signal is a lower limit owing to likely back- and foreground contamination, the ΛCDM simulations appear to be consistent with this particular empirical property of galaxy pairs.

  15. The Connection between Galaxies and Dark Matter Structures in the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Reddick, Rachel M.; Wechsler, Risa H.; Tinker, Jeremy L.; Behroozi, Peter S.

    2012-07-11

    We provide new constraints on the connection between galaxies in the local Universe, identified by the Sloan Digital Sky Survey (SDSS), and dark matter halos and their constituent substructures in the {Lambda}CDM model using WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos, and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this technique including (a) which halo property is most closely associated with galaxy stellar masses and luminosities, (b) how much scatter is in this relationship, and (c) how much subhalos can be stripped before their galaxies are destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data, when scatter of 0.20 {+-} 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several alternative abundance matching models that have been considered. This will yield important constraints for galaxy formation models, and also provides encouraging indications that the galaxy - halo connection can be modeled with sufficient fidelity for future precision studies of the dark Universe.

  16. Rapid growth of black holes in massive star-forming galaxies.

    Science.gov (United States)

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-07

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  17. The relationships between galaxies/AGN and the circum-/intergalactic medium at z<1

    Science.gov (United States)

    Johnson, Sean; Chen, Hsiao-Wen; Mulchaey, John S.

    2016-01-01

    The growth and evolution of galaxies is governed by gas accretion from circum-/intergalactic gas reservoirs and satellites that is regulated by feedback from stars and active galactic nuclei. To constrain the relationship between these gas reservoirs and galaxy properties, I have carried out deep and highly complete surveys of several thousand galaxies in fields with high quality absorption spectra of background quasars from the Cosmic Origins Spectrograph. The survey results imply that (1) highly ionized, heavy-element enriched gas traced by OVI absorption primarily arise in low-mass, gas-rich galaxy groups rather than the warm-hot phase of the intergalactic medium and that (2) galaxies with nearby neighbors exhibit more extened OVI absorbing gas than isolated galaxies. Together, these observations suggest that galaxy and group interactions play a role in stripping bound, heavy element enriched halo gas to enrich the intergalactic medium. In addition, I carried out the first large survey of circumgalactic gas around active galactic nuclei (AGN) and quasars. The cool, heavy-element enriched gas content of AGN and quasar host halos is strongly correlated with AGN luminosity, and the gas exhibit extreme kinematics with velocity spread inconsistent with gas bound to the AGN host. These observations provide tantalizing hints at the widespread impact of AGN feedback on the extended gas reservoirs around galaxies.

  18. A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations

    Science.gov (United States)

    Rong, Yu; Guo, Qi; Gao, Liang; Liao, Shihong; Xie, Lizhi; Puzia, Thomas H.; Sun, Shuangpeng; Pan, Jun

    2017-10-01

    A particular population of galaxies have drawn much interest recently, which are as faint as typical dwarf galaxies but have the sizes as large as L* galaxies, the so called ultradiffuse galaxies (UDGs). The lack of tidal features of UDGs in dense environments suggests that their host haloes are perhaps as massive as that of the Milky Way. On the other hand, galaxy formation efficiency should be much higher in the haloes of such masses. Here, we use the model galaxy catalogue generated by populating two large simulations: the Millennium-II cosmological simulation and Phoenix simulations of nine big clusters with the semi-analytic galaxy formation model. This model reproduces remarkably well the observed properties of UDGs in the nearby clusters, including the abundance, profile, colour and morphology, etc. We search for UDG candidates using the public data and find two UDG candidates in our Local Group and 23 in our Local Volume, in excellent agreement with the model predictions. We demonstrate that UDGs are genuine dwarf galaxies, formed in the haloes of ˜1010 M⊙. It is the combination of the late formation time and high spins of the host haloes that results in the spatially extended feature of this particular population. The lack of tidal disruption features of UDGs in clusters can also be explained by their late infall-time.

  19. The Illustris simulation: supermassive black hole-galaxy connection beyond the bulge

    Science.gov (United States)

    Mutlu-Pakdil, Burçin; Seigar, Marc S.; Hewitt, Ian B.; Treuthardt, Patrick; Berrier, Joel C.; Koval, Lauren E.

    2018-02-01

    We study the spiral arm morphology of a sample of the local spiral galaxies in the Illustris simulation and explore the supermassive black hole-galaxy connection beyond the bulge (e.g. spiral arm pitch angle, total stellar mass, dark matter mass, and total halo mass), finding good agreement with other theoretical studies and observational constraints. It is important to study the properties of supermassive black holes and their host galaxies through both observations and simulations and compare their results in order to understand their physics and formative histories. We find that Illustris prediction for supermassive black hole mass relative to pitch angle is in rather good agreement with observations and that barred and non-barred galaxies follow similar scaling relations. Our work shows that Illustris presents very tight correlations between supermassive black hole mass and large-scale properties of the host galaxy, not only for early-type galaxies but also for low-mass, blue and star-forming galaxies. These tight relations beyond the bulge suggest that halo properties determine those of a disc galaxy and its supermassive black hole.

  20. THE COSMIC EVOLUTION OF FAINT SATELLITE GALAXIES AS A TEST OF GALAXY FORMATION AND THE NATURE OF DARK MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Nierenberg, A. M.; Treu, T. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Menci, N. [NAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy); Lu, Y. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94309 (United States); Wang, W., E-mail: amn01@physics.ucsb.edu [Key Laboratory for Research in Galaxies and Cosmology of Chinese Academy of Sciences, Max-Planck-Institute Partner Group, Shanghai Astronomical Observatory, Nandan Road 80, Shanghai 200030 (China)

    2013-08-01

    The standard cosmological model based on cold dark matter (CDM) predicts a large number of subhalos for each galaxy-size halo. Matching the subhalos to the observed properties of luminous satellites of galaxies in the local universe poses a significant challenge to our understanding of the astrophysics of galaxy formation. We show that the cosmic evolution and host mass dependence of the luminosity function of satellites provide a powerful new diagnostic to disentangle astrophysical effects from variations in the underlying dark matter mass function. We illustrate this by comparing recent observations of satellites between redshifts 0.1 < z < 0.8 based on Hubble Space Telescope images, with predictions from three different state-of-the-art semi-analytic models applied to CDM power spectra, with one model also applied to a warm dark matter (WDM) spectrum. We find that even though CDM models provide a reasonable fit to the local luminosity function of satellites around galaxies comparable to the Milky Way, they do not reproduce the data as well for different redshifts and host galaxy stellar masses, indicating that further improvements in the description of star formation are likely needed. The WDM model matches the observed mass dependence and redshift evolution of satellite galaxies more closely, indicating that a modification of the underlying power spectrum may offer an alternative solution to this tension. We conclude by presenting predictions for the color distribution of satellite galaxies to demonstrate how future observations will be able to further distinguish between these models and to help constrain baryonic and non-baryonic physics.

  1. A New Dataset of Automatically Extracted Structure of Arms and Bars in Spiral Galaxies

    Science.gov (United States)

    Hayes, Wayne B.; Davis, D.

    2012-05-01

    We present an algorithm capable of automatically extracting quantitative structure (bars and arms) from images of spiral galaxies. We have run the algorithm on 30,000 galaxies and compared the results to human classifications generously provided pre-publication by the Galaxy Zoo 2 team. In all available measures, our algorithm agrees with the humans about as well as they agree with each other. In addition we provide objective, quantitative measures not available in human classifications. We provide a preliminary analysis of this dataset to see how the properties of arms and bars vary as a function of basic variables such as environment, redshift, absolute magnitude, and color. We also show how structure can vary across wavebands as well as along and across individual arms and bars. Finally, we present preliminary results of a measurement of the total angular momentum present in our observed set of galaxies with an eye towards determining if there is a preferred "handedness" in the universe.

  2. Double-Barred Galaxies

    OpenAIRE

    Erwin, Peter

    2009-01-01

    I present a brief review of what is known about double-barred galaxies, where a small ("inner") bar is nested inside a larger ("outer") bar; the review is focused primarily on their demographics and photometric properties. Roughly 20% of S0--Sb galaxies are double-barred; they may be rarer in later Hubble types. Inner bars are typically ~ 500 pc in radius (~ 12% the size of outer bars), but sizes range from ~ 100 pc to > 1 kpc. The structure of at least some inner bars appears very similar to...

  3. Galaxy S II

    CERN Document Server

    Gralla, Preston

    2011-01-01

    Unlock the potential of Samsung's outstanding smartphone with this jargon-free guide from technology guru Preston Gralla. You'll quickly learn how to shoot high-res photos and HD video, keep your schedule, stay in touch, and enjoy your favorite media. Every page is packed with illustrations and valuable advice to help you get the most from the smartest phone in town. The important stuff you need to know: Get dialed in. Learn your way around the Galaxy S II's calling and texting features.Go online. Browse the Web, manage email, and download apps with Galaxy S II's 3G/4G network (or create you

  4. TANGO I: Interstellar medium in nearby radio galaxies. Molecular gas

    Science.gov (United States)

    Ocaña Flaquer, B.; Leon, S.; Combes, F.; Lim, J.

    2010-07-01

    Context. Powerful radio-AGN are hosted by massive elliptical galaxies that are usually very poor in molecular gas. Nevertheless, gas is needed at their very center to feed the nuclear activity. Aims: We study the molecular gas properties (i.e., mass, kinematics, distribution, origin) of these objects, and compare them with results for other known samples. Methods: At the IRAM-30m telescope, we performed a survey of the CO(1-0) and CO(2-1) emission from the most powerful radio galaxies of the Local Universe, selected only on the basis of their radio continuum fluxes. Results: The main result of our survey is that the molecular gas content of these galaxies is very low compared to spiral or FIR-selected galaxies. The median value of the molecular gas mass, including detections and upper limits, is 2.2 × 108 M⊙. When separated into FR-I and FR-II types, a difference in their H2 masses is found. The median value of FR-I galaxies is about 1.9 × 108 M⊙ and higher for FR-II galaxies, at about 4.5 × 108 M⊙. Which is probably entirely because of a Malmquist bias. Our results contrast with those of previous surveys, whose targets were mainly selected by means of their FIR emission, implying that we measure higher observed masses of molecular gas. Moreover, the shape of CO spectra suggest that a central molecular gas disk exists in 30% of these radio galaxies, a lower rate than in other active galaxy samples. Conclusions: We find a low level of molecular gas in our sample of radio-selected AGNs, indicating that galaxies do not need much molecular gas to host an AGN. The presence of a molecular gas disk in some galaxies and the wide range of molecular gas masses may be indicative of different origins for the gas, which we can not exclude at present (e.g., minor/major mergers, stellar mass loss, or accretion). Appendices and Figure 15 are only available in electronic form at http://www.aanda.org

  5. Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias

    Science.gov (United States)

    Hart, Ross E.; Bamford, Steven P.; Willett, Kyle W.; Masters, Karen L.; Cardamone, Carolin; Lintott, Chris J.; Mackay, Robert J.; Nichol, Robert C.; Rosslowe, Christopher K.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2016-10-01

    The majority of galaxies in the local Universe exhibit spiral structure with a variety of forms. Many galaxies possess two prominent spiral arms, some have more, while others display a many-armed flocculent appearance. Spiral arms are associated with enhanced gas content and star formation in the discs of low-redshift galaxies, so are important in the understanding of star formation in the local universe. As both the visual appearance of spiral structure, and the mechanisms responsible for it vary from galaxy to galaxy, a reliable method for defining spiral samples with different visual morphologies is required. In this paper, we develop a new debiasing method to reliably correct for redshift-dependent bias in Galaxy Zoo 2, and release the new set of debiased classifications. Using these, a luminosity-limited sample of ˜18 000 Sloan Digital Sky Survey spiral galaxies is defined, which are then further sub-categorized by spiral arm number. In order to explore how different spiral galaxies form, the demographics of spiral galaxies with different spiral arm numbers are compared. It is found that whilst all spiral galaxies occupy similar ranges of stellar mass and environment, many-armed galaxies display much bluer colours than their two-armed counterparts. We conclude that two-armed structure is ubiquitous in star-forming discs, whereas many-armed spiral structure appears to be a short-lived phase, associated with more recent, stochastic star-formation activity.

  6. SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies

    Science.gov (United States)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Ge, J.; Aragón-Salamanca, A.; Greco, J.; Lin, Y.-T.; Mao, S.; Masters, K.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.; Yan, R.; van den Bosch, F.

    2018-01-01

    We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. group catalog, we identify central and satellite galaxies in groups with halo masses in the range {10}12.5 {h}-1 {M}ȯ {10}11 {h}-2 {M}ȯ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ∼30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties, except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of central and satellite galaxies with group finders systematically lower differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group-finding methods will have to be forward-modeled via mock catalogs.

  7. What Are S0 Galaxies?

    OpenAIRE

    Bergh, Sidney van den

    2009-01-01

    The data collected in the Shapley-Ames catalog of bright galaxies show that lenticular (S0) galaxies are typically about a magnitude fainter than both elliptical (E) and early spiral (Sa) galaxies. Hubble (1936) was therefore wrong to regard S0 galaxies as being intermediate between morphological types E and Sa. The observation that E5-E7 galaxies are significantly fainter than objects of sub-types E0-E5 suggests that many of the flattest 'ellipticals' may actually be misclassified lenticular...

  8. ISSVA classification.

    Science.gov (United States)

    Dasgupta, Roshni; Fishman, Steven J

    2014-08-01

    Mulliken and Glowacki, in 1982 created a classification system of vascular anomalies which divided vascular anomalies into tumors and malformations which provided the framework for great advances in the management of these patients. This classification system was recently expanded at the 2014 ISSVA workshop in Melbourne. This revision again provides much greater detail including newly named anomalies and identified genes to account for recent advances in knowledge and clinical associations. Copyright © 2014. Published by Elsevier Inc.

  9. Featured Image: Identifying Weird Galaxies

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    Hoags Object, an example of a ring galaxy. [NASA/Hubble Heritage Team/Ray A. Lucas (STScI/AURA)]The above image (click for the full view) shows PanSTARRSobservationsof some of the 185 galaxies identified in a recent study as ring galaxies bizarre and rare irregular galaxies that exhibit stars and gas in a ring around a central nucleus. Ring galaxies could be formed in a number of ways; one theory is that some might form in a galaxy collision when a smaller galaxy punches through the center of a larger one, triggering star formation around the center. In a recent study, Ian Timmis and Lior Shamir of Lawrence Technological University in Michigan explore ways that we may be able to identify ring galaxies in the overwhelming number of images expected from large upcoming surveys. They develop a computer analysis method that automatically finds ring galaxy candidates based on their visual appearance, and they test their approach on the 3 million galaxy images from the first PanSTARRS data release. To see more of the remarkable galaxies the authors found and to learn more about their identification method, check out the paper below.CitationIan Timmis and Lior Shamir 2017 ApJS 231 2. doi:10.3847/1538-4365/aa78a3

  10. SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment

    Science.gov (United States)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.

    2017-02-01

    We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.

  11. The Hooked Galaxy

    Science.gov (United States)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook

  12. Formation of Triaxial Galaxy

    Directory of Open Access Journals (Sweden)

    Jang-Hyeon Park

    1987-06-01

    Full Text Available Results of N-body simulation of dissipationless cold collapse of spherical gravitating system are presented. We compared the results with properties of elliptical galaxies. The system gradually evolved to triaxial system. The projected density profile is in good agreement with observations. In addition to triaxial instability, it seems that there is another instability.

  13. Outskirts of galaxies

    CERN Document Server

    Lee, Janice; Paz, Armando

    2017-01-01

    This book consists of invited reviews written by world-renowned experts on the subject of the outskirts of galaxies, an upcoming field which has been understudied so far. These regions are faint and hard to observe, yet hide a tremendous amount of information on the origin and early evolution of galaxies. They thus allow astronomers to address some of the most topical problems, such as gaseous and satellite accretion, radial migration, and merging. The book is published in conjunction with the celebration of the end of the four-year DAGAL project, an EU-funded initial training network, and with a major international conference on the topic held in March 2016 in Toledo. It thus reflects not only the views of the experts, but also the scientific discussions and progress achieved during the project and the meeting. The reviews in the book describe the most modern observations of the outer regions of our own Galaxy, and of galaxies in the local and high-redshift Universe. They tackle disks, haloes, streams, and a...

  14. The Mutable Galaxies -10 ...

    Indian Academy of Sciences (India)

    Perhaps one could then compare this with what is observed in galaxies. Let us find out how this can be quantified in order to be able to compare with observations. The second type of stars tend to 'lock up' a fraction of mass since they do not recycle their processed material. Let us call this fraction the 'lock-up fraction', 0:. Let.

  15. True Chemical Abundances of Galaxies in the Nearby Universe: A Comparison of Abundance Methods, Interstellar Processes, and Galaxy Types

    Science.gov (United States)

    Berg, Danielle Amanda

    2013-12-01

    Peeples et al. (2008) identified low-mass, high oxygen abundance outliers from the mass-metallicity (M-Z) relationship. We present new MMT spectroscopy of four of these dwarf galaxy outliers. We re-examined these anomalous spectra and compared to the parameter space for which standard strong-line methods are calibrated. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the "Wolf-Rayet galaxy" phase. To address the issue of securing the low-luminosity end of the M-Z relationship, we present MMT spectroscopic observations of HII regions in 42 low-luminosity galaxies in the Spitzer LVL survey. Direct oxygen abundances were determined based on the temperature sensitive [O III] lambda4363 line, measured at a strength of 4sigma or greater, for 31 of the 42 galaxies in our sample. Combining our results with previous direct abundance studies, we present a further refined sample, requiring reliable distance determinations. We characterize the direct L-Z and M-Z relationships at low-luminosity using the resulting 38 object sample. We show that the luminosity of a low-luminosity galaxy is often a better indicator of metallicity than strong-line methods. Additionally, our results provide the first direct estimates of oxygen abundance for 19 local volume dwarf galaxies. Properties of the ISM of spiral galaxies are known to show radial variations. Motivated by the need to place gradients on the same scale for comparisons amongst galaxies, we present direct oxygen abundance gradients of the nearby spiral galaxies NGC 628 and NGC 2403. A bi-modal N/O gradient pattern is measured for NGC 628. Notably, the N/O ratio plateaus beyond R25, demonstrating that primary nitrogen production is the dominant mechanism in the outer disk. The outer disk beyond R 25 was not

  16. Study of galaxies in the Lynx-Cancer void - I. Sample description

    Science.gov (United States)

    Pustilnik, S. A.; Tepliakova, A. L.

    2011-08-01

    The evolution of galaxies is influenced by the environment in which they reside. This effect should be strongest for the lowest-mass and -luminosity galaxies. To study dwarf galaxies in extremely low density environments, we have compiled a deep catalogue of dwarf galaxies in the nearby Lynx-Cancer void. This void hosts some of the most metal-poor dwarfs known to date. It borders the Local Volume at negative supergalactic Z(SGZ) coordinates and has a size of more than 16 Mpc. With a distance to its centre of only 18 Mpc, it is close enough to allow a search for the faintest dwarfs. Within the void 75 dwarf (-11.9 > MB > -18.0) and four subluminous (-18.0 > MB > -18.4) galaxies have been identified. We present the parameters of the void galaxies and a detailed analysis of the completeness of the catalogue as a function of magnitude and surface brightness. The catalogue appears almost complete to MB < -14 mag, but misses part of the fainter low surface brightness (LSB) face-on galaxies. This sample of void galaxies builds the basis of forthcoming observational studies that will provide insight into the main stellar population, H I mass-to-light ratio, metallicity and age for comparison with dwarfs in higher density regions. We briefly summarize the information on the unusual objects in the void and conclude that their concentration hints that voids are environments that are favourable for finding and studying unevolved dwarf galaxies.

  17. Star Clusters as Tracers of the Evolution of Local Group Galaxies

    Science.gov (United States)

    Grebel, Eva K.

    2015-08-01

    Only 12 of the more than 76 Local Group galaxies contain old globular clusters. These galaxies show a surprisingly large range of globular cluster specific frequencies. It is unclear why the specific frequencies vary widely even among galaxies of the same type and comparable luminosity. Many of the host galaxies contain ancient globulars, but in some globular cluster formation may have been delayed by a few Gyr. There is growing evidence for light element abundance variations also in extragalactic globular clusters, supporting the case for multiple stellar populations. The distribution of globular clusters in Local Group galaxies often reveals radial metallicity gradients. Also, remote globular clusters tend to be more extended and diffuse. There is ample direct and indirect evidence for globular cluster accretion from dwarf galaxies onto more massive galaxies, although too simplistic interpretations should be avoided. The spatial distribution of globular clusters in dwarf galaxies seems to support cored dark matter halos. Younger star clusters, including both open and populous clusters, are found in a much wider range of Local Group galaxies and can serve as valuable tracers of their star formation histories over cosmic time, complementing but not always following field star formation histories. In this review, some of the key properties of Local Group star clusters will be summarized.

  18. Emission line gas in early-type galaxies: Kinematics and physical conditions

    Science.gov (United States)

    Deustua, S. E.; Koratkar, A. P.; Macalpine, G.

    1993-01-01

    Recent studies have found line emission gas in nearby early-type galaxies, but the properties of the emission-line gas in these 'normal' galaxies remain enigmatic. In terms of activity in the nucleus, these LINER-like galaxies form an important link between giant H 2 region galaxies and low-luminosity Seyferts. Despite their large numbers and evolutionary significance, we do not know whether these galaxies form a homogeneous class of objects; nor do we know how the distribution and kinematics of the line emission gas are affected by the host galaxy's environment or by the properties of the central engine, if present. To address these issues we are conducting a magnitude and volume limited survey of nearby early-type galaxies at Lick Observatory and the Michigan-Dartmouth-MIT Observatory. We have selected approximately 100 galaxies from radio catalogs. A large sample is necessary because while studies of individual 'LINERS' have led to a certain understanding of the phenomenon, these studies have not provided a global framework. Here we present results from our first run of medium resolution (approximately 5 A FWHM) spectroscopy. Kinematic data and line ratios determined along the major and minor axes of 6 galaxies are discussed. The information gleaned from spectroscopic data, when combined with data at other wavelengths, will enable a thorough investigation into the nature of low luminosity nuclear activity.

  19. NGC 5291: Implications for the Formation of Dwarf Galaxies

    Science.gov (United States)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  20. Spectroscopic classification of SNhunt168

    Science.gov (United States)

    Ochner, P.; Blagorodnova, N.; Tomasella, L.; Benetti, S.; Cappellaro, E.; Pastorello, A.; Turatto, M.

    2013-01-01

    We report that optical spectroscopy (range 340-800 nm; resolution 0.7 nm), obtained on Jan. 29.86 UT with the Asiago 1.22-m Galileo Telescope (+ Boller & Chivens spectrograph), shows that PSN J09133717+2959587 (SNhunt168) is most likely a type-Ic supernova. Adopting for the host galaxy (MCG +5-22-20) the redshift z = 0.024537 (Mahdavi & Geller 2004, ApJ 607, 202; via NED), the best match is with the type-Ic SN 2004aw (Taubenberger et al 2006, MNRAS 371, 1459) around maximum light.