WorldWideScience

Sample records for host factors crucial

  1. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections.

    Directory of Open Access Journals (Sweden)

    Lorena Tuchscherr

    2015-04-01

    Full Text Available Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs, which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, ΔsigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy

  2. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections.

    Science.gov (United States)

    Tuchscherr, Lorena; Bischoff, Markus; Lattar, Santiago M; Noto Llana, Mariangeles; Pförtner, Henrike; Niemann, Silke; Geraci, Jennifer; Van de Vyver, Hélène; Fraunholz, Martin J; Cheung, Ambrose L; Herrmann, Mathias; Völker, Uwe; Sordelli, Daniel O; Peters, Georg; Löffler, Bettina

    2015-04-01

    Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, ΔsigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections.

  3. Host restriction factors in retroviral infection: promises in virus-host interaction

    Directory of Open Access Journals (Sweden)

    Zheng Yong-Hui

    2012-12-01

    Full Text Available Abstract Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs, and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.

  4. Late effects of radiation: host factors

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.

    1983-01-01

    The paper discusses the influence of host factors on radiation late effects and in particular cancer. Radiation induces cellular changes that result in initiated cells with a potential to become cancers. The expression of the initiated cells as tumors is influenced, if not determined, by both tissue and systemic factors that are sex-, age-, and species-dependent

  5. Targeting host factors to treat West Nile and dengue viral infections.

    Science.gov (United States)

    Krishnan, Manoj N; Garcia-Blanco, Mariano A

    2014-02-10

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.

  6. Novel host restriction factors implicated in HIV-1 replication.

    Science.gov (United States)

    Ghimire, Dibya; Rai, Madhu; Gaur, Ritu

    2018-04-01

    Human immunodeficiency virus-1 (HIV-1) is known to interact with multiple host cellular proteins during its replication in the target cell. While many of these host cellular proteins facilitate viral replication, a number of them are reported to inhibit HIV-1 replication at various stages of its life cycle. These host cellular proteins, which are known as restriction factors, constitute an integral part of the host's first line of defence against the viral pathogen. Since the discovery of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G) as an HIV-1 restriction factor, several human proteins have been identified that exhibit anti-HIV-1 restriction. While each restriction factor employs a distinct mechanism of inhibition, the HIV-1 virus has equally evolved complex counter strategies to neutralize their inhibitory effect. APOBEC3G, tetherin, sterile alpha motif and histidine-aspartate domain 1 (SAMHD1), and trim-5α are some of the best known HIV-1 restriction factors that have been studied in great detail. Recently, six novel restriction factors were discovered that exhibit significant antiviral activity: endoplasmic reticulum α1,2-mannosidase I (ERManI), translocator protein (TSPO), guanylate-binding protein 5 (GBP5), serine incorporator (SERINC3/5) and zinc-finger antiviral protein (ZAP). The focus of this review is to discuss the antiviral mechanism of action of these six restriction factors and provide insights into the probable counter-evasion strategies employed by the HIV-1 virus. The recent discovery of new restriction factors substantiates the complex host-pathogen interactions occurring during HIV-1 pathogenesis and makes it imperative that further investigations are conducted to elucidate the molecular basis of HIV-1 replication.

  7. Targeting Host Factors to Treat West Nile and Dengue Viral Infections

    Directory of Open Access Journals (Sweden)

    Manoj N. Krishnan

    2014-02-01

    Full Text Available West Nile (WNV and Dengue (DENV viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans.

  8. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  9. The Poxvirus C7L Host Range Factor Superfamily

    OpenAIRE

    Liu, Jia; Rothenburg, Stefan; McFadden, Grant

    2012-01-01

    Host range factors, expressed by the poxvirus family, determine the host tropism of species, tissue, and cell specificity. C7L family members exist in the genomes of most sequenced mammalian poxviruses, suggesting an evolutionarily conserved effort adapting to the hosts. In general, C7L orthologs influence the host tropism in mammalian cell culture, and for some poxviruses it is essential for the complete viral life cycle in vitro and in vivo. The C7L family members lack obvious sequence homo...

  10. CD151, a novel host factor of nuclear export signaling in influenza virus infection.

    Science.gov (United States)

    Qiao, Yongkang; Yan, Yan; Tan, Kai Sen; Tan, Sheryl S L; Seet, Ju Ee; Arumugam, Thiruma Valavan; Chow, Vincent T K; Wang, De Yun; Tran, Thai

    2018-05-01

    Despite advances in our understanding of the mechanisms of influenza A virus (IAV) infection, the crucial virus-host interactions during the viral replication cycle still remain incomplete. Tetraspanin CD151 is highly expressed in the human respiratory tract, but its pathological role in IAV infection is unknown. We sought to characterize the functional role and mechanisms of action of CD151 in IAV infection of the upper and lower respiratory tracts with H1N1 and H3N2 strains. We used CD151-null mice in an in vivo model of IAV infection and clinical donor samples of in vitro-differentiated human nasal epithelial cells cultured at air-liquid interface. As compared with wild-type infected mice, CD151-null infected mice exhibited a significant reduction in virus titer and improvement in survival that is associated with pronounced host antiviral response and inflammasome activation together with accelerated lung repair. Interestingly, we show that CD151 complexes newly synthesized viral proteins with host nuclear export proteins and stabilizes microtubule complexes, which are key processes necessary for the polarized trafficking of viral progeny to the host plasma membrane for assembly. Our results provide new mechanistic insights into our understanding of IAV infection. We show that CD151 is a critical novel host factor of nuclear export signaling whereby the IAV nuclear export uses it to complement its own nuclear export proteins (a site not targeted by current therapy), making this regulation unique, and holds promise for the development of novel alternative/complementary strategies to reduce IAV severity. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Darkness: A Crucial Factor in Fungal Taxol Production

    Directory of Open Access Journals (Sweden)

    Sameh S. M. Soliman

    2018-03-01

    Full Text Available Fungal Taxol acquired lots of attention in the last few decades mainly because of the hope that fungi could be manipulated more easily than yew trees to scale up the production level of this valuable anticancer drug. Several researchers have studied diverse factors to enhance fungal Taxol production. However, up to date fungal Taxol production has never been enhanced to the commercial level. We have hypothesized that optimization of fungal Taxol production may require clear understanding of the fungal habitat in its original host plant. One major feature shared by all fungal endophytes is that they are located in the internal plant tissues where darkness is prominent; hence here the effect of light on fungal Taxol production was tested. Incubation of Taxol-producing endophytic SSM001 fungus in light prior to inoculation in Taxol production culture media showed dramatic loss of Taxol accumulation, significant reduction in Taxol-containing resin bodies and reduction in the expression of genes known to be involved in Taxol biosynthesis. The loss of Taxol production was accompanied by production of dark green pigments. Pigmentation is a fungal protection mechanism which is photoreceptor mediated and induced by light. Opsin, a known photoreceptor involved in light perception and pigment production, was identified in SSM001 by genome sequencing. SSM001 opsin gene expression was induced by white light. The results from this study indicated that the endophytic fungus SSM001 required the dark habitat of its host plant for Taxol production and hence this biosynthetic pathway shows a negative response to light.

  12. Requirement for Vibrio cholerae Integration Host Factor in Conjugative DNA Transfer

    OpenAIRE

    McLeod, Sarah M.; Burrus, Vincent; Waldor, Matthew K.

    2006-01-01

    The requirement for host factors in the transmission of integrative and conjugative elements (ICEs) has not been extensively explored. Here we tested whether integration host factor (IHF) or Fis, two host-encoded nucleoid proteins, are required for transfer of SXT, a Vibrio cholerae-derived ICE that can be transmitted to many gram-negative species. Fis did not influence the transfer of SXT to or from V. cholerae. In contrast, IHF proved to be required for V. cholerae to act as an SXT donor. I...

  13. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins

    OpenAIRE

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-01-01

    Productive viral replication requires overcoming many barriers posed by the host innate immune system. Human sterile alpha motif domain-containing 9 (SAMD9) is a newly identified antiviral factor that is specifically targeted by poxvirus proteins belonging to the C7 family of host-range factors. Here we provide the first, to our knowledge, atomic view of two functionally divergent proteins from the C7 family and determine the molecular basis that dictates whether they can target SAMD9 effecti...

  14. Host and Viral Factors in HIV-Mediated Bystander Apoptosis

    Science.gov (United States)

    Garg, Himanshu; Joshi, Anjali

    2017-01-01

    Human immunodeficiency virus (HIV) infections lead to a progressive loss of CD4 T cells primarily via the process of apoptosis. With a limited number of infected cells and vastly disproportionate apoptosis in HIV infected patients, it is believed that apoptosis of uninfected bystander cells plays a significant role in this process. Disease progression in HIV infected individuals is highly variable suggesting that both host and viral factors may influence HIV mediated apoptosis. Amongst the viral factors, the role of Envelope (Env) glycoprotein in bystander apoptosis is well documented. Recent evidence on the variability in apoptosis induction by primary patient derived Envs underscores the role of Env glycoprotein in HIV disease. Amongst the host factors, the role of C-C Chemokine Receptor type 5 (CCR5), a coreceptor for HIV Env, is also becoming increasingly evident. Polymorphisms in the CCR5 gene and promoter affect CCR5 cell surface expression and correlate with both apoptosis and CD4 loss. Finally, chronic immune activation in HIV infections induces multiple defects in the immune system and has recently been shown to accelerate HIV Env mediated CD4 apoptosis. Consequently, those factors that affect CCR5 expression and/or immune activation in turn indirectly regulate HIV mediated apoptosis making this phenomenon both complex and multifactorial. This review explores the complex role of various host and viral factors in determining HIV mediated bystander apoptosis. PMID:28829402

  15. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host.

    Science.gov (United States)

    Pila, Emmanuel A; Gordy, Michelle A; Phillips, Valerie K; Kabore, Alethe L; Rudko, Sydney P; Hanington, Patrick C

    2016-05-10

    Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection.

  16. Foreign Direct Investment, Host Country Factors and Economic Growth

    OpenAIRE

    Edna Maeyen Solomon

    2011-01-01

    This paper analyses how the levels of economic development, human capital, financial development and the qualities of the economic and political environments in host countries simultaneously affects the impact of aggregate inflows of Foreign Direct Investment (FDI) on economic growth. Multiple interaction terms are employed between inward FDI and each of the host country factors mentioned above. The System GMM estimator is applied to a panel of 111 countries from 1981 to 2005. The results sho...

  17. Borrelia host adaptation Regulator (BadR) regulates rpoS to modulate host adaptation and virulence factors in Borrelia burgdorferi

    OpenAIRE

    Miller, Christine L.; Rajasekhar Karna, S. L.; Seshu, J.

    2013-01-01

    The RpoS transcription factor of Borrelia burgdorferi is a “gatekeeper” because it activates genes required for spirochetes to transition from tick to vertebrate hosts. However, it remains unknown how RpoS becomes repressed to allow the spirochetes to transition back from the vertebrate host to the tick vector. Here we show that a putative carbohydrate-responsive regulatory protein, designated BadR (Borrelia host adaptation Regulator), is a transcriptional repressor of rpoS. BadR levels are e...

  18. Host Factors in Ebola Infection.

    Science.gov (United States)

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  19. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens.

    Science.gov (United States)

    Kers, Jannigje G; Velkers, Francisca C; Fischer, Egil A J; Hermes, Gerben D A; Stegeman, J A; Smidt, Hauke

    2018-01-01

    The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenced, and the sequencing platforms used. Furthermore, part of this variation in microbiota composition may also be explained by different host characteristics and environmental factors. To facilitate the improvement of design, reproducibility and interpretation of poultry microbiota studies, we have reviewed the literature on confounding factors influencing the observed intestinal microbiota in chickens. First, it has been identified that host-related factors, such as age, sex, and breed, have a large effect on intestinal microbiota. The diversity of chicken intestinal microbiota tends to increase most during the first weeks of life, and corresponding colonization patterns seem to differ between layer- and meat-type chickens. Second, it has been found that environmental factors, such as biosecurity level, housing, litter, feed access and climate also have an effect on the composition of the intestinal microbiota. As microbiota studies have to deal with many of these unknown or hidden host and environmental variables, the choice of study designs can have a great impact on study outcomes and interpretation of the data. Providing details on a broad range of host and environmental factors in articles and sequence data repositories is highly recommended. This creates opportunities to

  20. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens

    Directory of Open Access Journals (Sweden)

    Jannigje G. Kers

    2018-02-01

    Full Text Available The initial development of intestinal microbiota in poultry plays an important role in production performance, overall health and resistance against microbial infections. Multiplexed sequencing of 16S ribosomal RNA gene amplicons is often used in studies, such as feed intervention or antimicrobial drug trials, to determine corresponding effects on the composition of intestinal microbiota. However, considerable variation of intestinal microbiota composition has been observed both within and across studies. Such variation may in part be attributed to technical factors, such as sampling procedures, sample storage, DNA extraction, the choice of PCR primers and corresponding region to be sequenced, and the sequencing platforms used. Furthermore, part of this variation in microbiota composition may also be explained by different host characteristics and environmental factors. To facilitate the improvement of design, reproducibility and interpretation of poultry microbiota studies, we have reviewed the literature on confounding factors influencing the observed intestinal microbiota in chickens. First, it has been identified that host-related factors, such as age, sex, and breed, have a large effect on intestinal microbiota. The diversity of chicken intestinal microbiota tends to increase most during the first weeks of life, and corresponding colonization patterns seem to differ between layer- and meat-type chickens. Second, it has been found that environmental factors, such as biosecurity level, housing, litter, feed access and climate also have an effect on the composition of the intestinal microbiota. As microbiota studies have to deal with many of these unknown or hidden host and environmental variables, the choice of study designs can have a great impact on study outcomes and interpretation of the data. Providing details on a broad range of host and environmental factors in articles and sequence data repositories is highly recommended. This creates

  1. Requirement for Vibrio cholerae integration host factor in conjugative DNA transfer.

    Science.gov (United States)

    McLeod, Sarah M; Burrus, Vincent; Waldor, Matthew K

    2006-08-01

    The requirement for host factors in the transmission of integrative and conjugative elements (ICEs) has not been extensively explored. Here we tested whether integration host factor (IHF) or Fis, two host-encoded nucleoid proteins, are required for transfer of SXT, a Vibrio cholerae-derived ICE that can be transmitted to many gram-negative species. Fis did not influence the transfer of SXT to or from V. cholerae. In contrast, IHF proved to be required for V. cholerae to act as an SXT donor. In the absence of IHF, V. cholerae displayed a modest defect for serving as an SXT recipient. Surprisingly, SXT integration into or excision from the V. cholerae chromosome, which requires an SXT-encoded integrase related to lambda integrase, did not require IHF. Therefore, the defect in SXT transmission in the V. cholerae IHF mutant is probably not related to IHF's ability to promote DNA recombination. The V. cholerae IHF mutant was also highly impaired as a donor of RP4, a broad-host-range conjugative plasmid. Thus, the V. cholerae IHF mutant appears to have a general defect in conjugation. Escherichia coli IHF mutants were not impaired as donors or recipients of SXT or RP4, indicating that IHF is a V. cholerae-specific conjugation factor.

  2. DMPD: The interferon regulatory factor family in host defense: mechanism of action. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17502370 The interferon regulatory factor family in host defense: mechanism of acti....html) (.csml) Show The interferon regulatory factor family in host defense: mechanism of action. PubmedID 1...7502370 Title The interferon regulatory factor family in host defense: mechanism

  3. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins.

    Science.gov (United States)

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-12-01

    Human sterile alpha motif domain-containing 9 (SAMD9) protein is a host restriction factor for poxviruses, but it can be overcome by some poxvirus host-range proteins that share homology with vaccinia virus C7 protein. To understand the mechanism of action for this important family of host-range factors, we determined the crystal structures of C7 and myxoma virus M64, a C7 family member that is unable to antagonize SAMD9. Despite their different functions and only 23% sequence identity, the two proteins have very similar overall structures, displaying a previously unidentified fold comprised of a compact 12-stranded antiparallel β-sandwich wrapped in two short α helices. Extensive structure-guided mutagenesis of C7 identified three loops clustered on one edge of the β sandwich as critical for viral replication and binding with SAMD9. The loops are characterized with functionally important negatively charged, positively charged, and hydrophobic residues, respectively, together forming a unique "three-fingered molecular claw." The key residues of the claw are not conserved in two C7 family members that do not antagonize SAMD9 but are conserved in distantly related C7 family members from four poxvirus genera that infect diverse mammalian species. Indeed, we found that all in the latter group of proteins bind SAMD9. Taken together, our data indicate that diverse mammalian poxviruses use a conserved molecular claw in a C7-like protein to target SAMD9 and overcome host restriction.

  4. Host factors in nidovirus replication

    NARCIS (Netherlands)

    Wilde, Adriaan Hugo de

    2013-01-01

    The interplay between nidoviruses and the infected host cell was investigated. Arterivirus RNA-synthesising activity was shown to depend on intact membranes and on a cytosolic host protein which does not cosediment with the RTC. Furthermore, the immunosuppressant drug cyclosporin A (CsA) blocks

  5. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Directory of Open Access Journals (Sweden)

    Sudhir Kumar Rai

    2017-12-01

    Full Text Available Retroviruses and Long Terminal Repeat (LTR-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  6. Host factors that promote retrotransposon integration are similar in distantly related eukaryotes.

    Science.gov (United States)

    Rai, Sudhir Kumar; Sangesland, Maya; Lee, Michael; Esnault, Caroline; Cui, Yujin; Chatterjee, Atreyi Ghatak; Levin, Henry L

    2017-12-01

    Retroviruses and Long Terminal Repeat (LTR)-retrotransposons have distinct patterns of integration sites. The oncogenic potential of retrovirus-based vectors used in gene therapy is dependent on the selection of integration sites associated with promoters. The LTR-retrotransposon Tf1 of Schizosaccharomyces pombe is studied as a model for oncogenic retroviruses because it integrates into the promoters of stress response genes. Although integrases (INs) encoded by retroviruses and LTR-retrotransposons are responsible for catalyzing the insertion of cDNA into the host genome, it is thought that distinct host factors are required for the efficiency and specificity of integration. We tested this hypothesis with a genome-wide screen of host factors that promote Tf1 integration. By combining an assay for transposition with a genetic assay that measures cDNA recombination we could identify factors that contribute differentially to integration. We utilized this assay to test a collection of 3,004 S. pombe strains with single gene deletions. Using these screens and immunoblot measures of Tf1 proteins, we identified a total of 61 genes that promote integration. The candidate integration factors participate in a range of processes including nuclear transport, transcription, mRNA processing, vesicle transport, chromatin structure and DNA repair. Two candidates, Rhp18 and the NineTeen complex were tested in two-hybrid assays and were found to interact with Tf1 IN. Surprisingly, a number of pathways we identified were found previously to promote integration of the LTR-retrotransposons Ty1 and Ty3 in Saccharomyces cerevisiae, indicating the contribution of host factors to integration are common in distantly related organisms. The DNA repair factors are of particular interest because they may identify the pathways that repair the single stranded gaps flanking the sites of strand transfer following integration of LTR retroelements.

  7. Virulence on the fly: Drosophila melanogaster as a model genetic organism to decipher host-pathogen interactions.

    NARCIS (Netherlands)

    Limmer, S.; Quintin, J.; Hetru, C.; Ferrandon, D.

    2011-01-01

    To gain an in-depth grasp of infectious processes one has to know the specific interactions between the virulence factors of the pathogen and the host defense mechanisms. A thorough understanding is crucial for identifying potential new drug targets and designing drugs against which the pathogens

  8. Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors

    Science.gov (United States)

    Rahme, Laurence G.; Tan, Man-Wah; Le, Long; Wong, Sandy M.; Tompkins, Ronald G.; Calderwood, Stephen B.; Ausubel, Frederick M.

    1997-01-01

    We used plants as an in vivo pathogenesis model for the identification of virulence factors of the human opportunistic pathogen Pseudomonas aeruginosa. Nine of nine TnphoA mutant derivatives of P. aeruginosa strain UCBPP-PA14 that were identified in a plant leaf assay for less pathogenic mutants also exhibited significantly reduced pathogenicity in a burned mouse pathogenicity model, suggesting that P. aeruginosa utilizes common strategies to infect both hosts. Seven of these nine mutants contain TnphoA insertions in previously unknown genes. These results demonstrate that an alternative nonvertebrate host of a human bacterial pathogen can be used in an in vivo high throughput screen to identify novel bacterial virulence factors involved in mammalian pathogenesis. PMID:9371831

  9. Bacterial adhesion to host tissues : mechanisms and consequences

    National Research Council Canada - National Science Library

    Wilson, Michael, 1947

    2002-01-01

    "This book is about the adhesion of bacteria to their human hosts. Although adhesion is essential for maintaining members of the normal microflora in/on their host, it is also the crucial first stage in any infectious disease...

  10. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    Science.gov (United States)

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Differential Rickettsial Transcription in Bloodfeeding and Non-Bloodfeeding Arthropod Hosts.

    Directory of Open Access Journals (Sweden)

    Victoria I Verhoeve

    Full Text Available Crucial factors influencing the epidemiology of Rickettsia felis rickettsiosis include pathogenesis and transmission. Detection of R. felis DNA in a number of arthropod species has been reported, with characterized isolates, R. felis strain LSU and strain LSU-Lb, generated from the cat flea, Ctenocephalides felis, and the non-hematophagous booklouse, Liposcelis bostrychophila, respectively. While it is realized that strain influence on host biology varies, the rickettsial response to these distinct host environments remained undefined. To identify a panel of potential rickettsial transmission determinants in the cat flea, the transcriptional profile for these two strains of R. felis were compared in their arthropod hosts using RNAseq. Rickettsial genes with increased transcription in the flea as compared to the booklouse were identified. Genes previously associated with bacterial virulence including LPS biosynthesis, Type IV secretion system, ABC transporters, and a toxin-antitoxin system were selected for further study. Transcription of putative virulence-associated genes was determined in a flea infection bioassay for both strains of R. felis. A host-dependent transcriptional profile during bloodfeeding, specifically, an increased expression of selected transcripts in newly infected cat fleas and flea feces was detected when compared to arthropod cell culture and incubation in vertebrate blood. Together, these studies have identified novel, host-dependent rickettsial factors that likely contribute to successful horizontal transmission by bloodfeeding arthropods.

  12. A Global Interactome Map of the Dengue Virus NS1 Identifies Virus Restriction and Dependency Host Factors

    Directory of Open Access Journals (Sweden)

    Mohamed Lamine Hafirassou

    2017-12-01

    Full Text Available Dengue virus (DENV infections cause the most prevalent mosquito-borne viral disease worldwide, for which no therapies are available. DENV encodes seven non-structural (NS proteins that co-assemble and recruit poorly characterized host factors to form the DENV replication complex essential for viral infection. Here, we provide a global proteomic analysis of the human host factors that interact with the DENV NS1 protein. Combined with a functional RNAi screen, this study reveals a comprehensive network of host cellular processes involved in DENV infection and identifies DENV host restriction and dependency factors. We highlight an important role of RACK1 and the chaperonin TRiC (CCT and oligosaccharyltransferase (OST complexes during DENV replication. We further show that the OST complex mediates NS1 and NS4B glycosylation, and pharmacological inhibition of its N-glycosylation function strongly impairs DENV infection. In conclusion, our study provides a global interactome of the DENV NS1 and identifies host factors targetable for antiviral therapies.

  13. Host-Country Related Risk Factors in International Construction: Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Güzin AYDOGAN

    2014-09-01

    Full Text Available Internationalization has been on the agenda of construction firms as a strategic option in global competition. Due to globalization every sector including the construction industry has faced with high levels of competitiveness, uncertainty, and risk. International construction involves common risks to domestic construction, as well as risks that are related to the host country. These risks have serious effects on the performance of international projects. Since the sustainable competitiveness of international contractors depends largely on the effective management of these risks, their assessment becomes vital for the success of international contractors. The main aim of this study is to analyse the risks for international construction projects that are related to the host country. Meta-analysis technique is used in order to determine these risks. This paper, therefore, reviews the literature that has been published in four most respected construction and management journals, these being; Journal of Construction Engineering and Management, Journal of Management in Engineering, Construction Management and Economics, and International Journal of Project Management for the period of 2000-2010. International construction risk assessment models are also reviewed within the context of this study, since host country related risk factors were found to have serious effects on the profitability of international contractors due to literature review. As a result; political stability, law and regulations, exchange rate risk, cultural differences, inflation, expropriation, tax discrimination, language barrier, bribery and corruption, force majeure, and societal conflicts in the host country are found to be the most important risk factors in international construction. Findings of this study can be used in risk assessment models for international construction projects.

  14. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  15. Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection.

    Science.gov (United States)

    Xiang, Yang; Yan, Chao; Guo, Xiaolong; Zhou, Kaifeng; Li, Sheng'an; Gao, Qian; Wang, Xuan; Zhao, Feng; Liu, Jie; Lee, Wen-Hui; Zhang, Yun

    2014-05-06

    Aerolysins are virulence factors belonging to the bacterial β-pore-forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens.

  16. Host and parasite morphology influence congruence between host and parasite phylogenies.

    Science.gov (United States)

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  17. Implications for risk assessment of host factors causing large pharmacokinetic variations

    Energy Technology Data Exchange (ETDEWEB)

    Vesell, E.S.

    1985-12-01

    Normal human subjects vary widely in their capacity to eliminate many drugs and environmental chemicals. These variations range in magnitude from fourfold to fortyfold depending on the drug and the population studied. Pharmacogenetics deals with only one of many host factors responsible for these large pharmacokinetic differences. Age, sex, diet and exposure to other drugs and chemicals, including oral contraceptives, ethanol and cigarette smoking, can alter the genetically determined rate at which a particular subject eliminates drugs and environmental chemicals. These elimination rates, therefore, are dynamic and change even in the same subject with time and condition. Regulatory legislation has only recently begun to recognize this very broad spectrum of human susceptibility and the existence of multiple special subgroups of particularly sensitive subjects. In setting standards for environmental chemicals, EPA and NIOSH have attempted to protect the most sensitive humans and should be encouraged to continue this policy. For some drugs and environmental chemicals, the commonly used safety factor of 100 may be too low; for these chemicals large, interindividual pharmacokinetic variations produced by pharmacogenetic and other host factors may make a safety factor of 400 or 500 more adequate.

  18. Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

    Science.gov (United States)

    2014-01-01

    Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains. PMID:25186587

  19. Host factors influencing viral persistence

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Nansen, A; Ørding Andreasen, Susanne

    2000-01-01

    host were used. Our results reveal that very different outcomes may be observed depending on virus strain and immunocompetence of the host. Thus while CD4+ cells are not critical during the initial phase of virus control, infectious virus reappear in mice lacking CD4+ cells, B cells or CD40 ligand...... replication, mice lacking the ability to produce interferon-gamma may develop either a severe, mostly fatal, T-cell mediated wasting syndrome or a chronic infection characterized by long-term coexistence of antiviral cytotoxic T lymphocytes and infectious virus. Mathematical modelling indicates...

  20. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism?

    Directory of Open Access Journals (Sweden)

    Tadhg eÓ Cróinín

    2012-03-01

    Full Text Available Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the zipper over the trigger mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.

  1. Validation-based insertional mutagenesis for identification of Nup214 as a host factor for EV71 replication in RD cells

    International Nuclear Information System (INIS)

    Wang, Bei; Zhang, XiaoYu; Zhao, Zhendong

    2013-01-01

    Highlights: •We introduced a new mutagenesis strategy named VBIM to the viral research. •This method can identify either host factors or host restriction factors. •Using VBIM system, we identified Nup214 as a host factor for EV71 replication in RD cells. -- Abstract: Lentiviral validation-based insertional mutagenesis (VBIM) is a sophisticated, forward genetic approach that is used for the investigation of signal transduction in mammalian cells. Using VBIM, we conducted function-based genetic screening for host genes that affect enterovirus 71 (EV71) viral replication. This included host factors that are required for the life cycle of EV71 and host restriction factors that inhibit EV71 replication. Several cell clones, resistant to EV71, were produced using EV71 infection as a selection pressure and the nuclear pore protein 214 (Nup214) was identified as a host factor required for EV71 replication. In SD2-2, the corresponding VBIM lentivirus transformed clone, the expression of endogenous Nup214 was significantly down-regulated by the reverse inserted VBIM promoter. After Cre recombinase-mediated excision of the VBIM promoter, the expression of Nup214 recovered and the clone regained sensitivity to the EV71 infection. Furthermore, over-expression of Nup214 in the cells suggested that Nup214 was promoting EV71 replication. Results of this study indicate that a successful mutagenesis strategy has been established for screening host genes related to viral replication

  2. Validation-based insertional mutagenesis for identification of Nup214 as a host factor for EV71 replication in RD cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Zhang, XiaoYu; Zhao, Zhendong, E-mail: timjszzd@163.com

    2013-08-02

    Highlights: •We introduced a new mutagenesis strategy named VBIM to the viral research. •This method can identify either host factors or host restriction factors. •Using VBIM system, we identified Nup214 as a host factor for EV71 replication in RD cells. -- Abstract: Lentiviral validation-based insertional mutagenesis (VBIM) is a sophisticated, forward genetic approach that is used for the investigation of signal transduction in mammalian cells. Using VBIM, we conducted function-based genetic screening for host genes that affect enterovirus 71 (EV71) viral replication. This included host factors that are required for the life cycle of EV71 and host restriction factors that inhibit EV71 replication. Several cell clones, resistant to EV71, were produced using EV71 infection as a selection pressure and the nuclear pore protein 214 (Nup214) was identified as a host factor required for EV71 replication. In SD2-2, the corresponding VBIM lentivirus transformed clone, the expression of endogenous Nup214 was significantly down-regulated by the reverse inserted VBIM promoter. After Cre recombinase-mediated excision of the VBIM promoter, the expression of Nup214 recovered and the clone regained sensitivity to the EV71 infection. Furthermore, over-expression of Nup214 in the cells suggested that Nup214 was promoting EV71 replication. Results of this study indicate that a successful mutagenesis strategy has been established for screening host genes related to viral replication.

  3. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  4. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Azad A Sulaiman

    2016-11-01

    Full Text Available The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs in their evasion of antibody-dependent cell cytotoxicity (ADCC by reducing the NO response of macrophages-again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow

  5. Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.

    Science.gov (United States)

    Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F

    2018-04-03

    High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.

  6. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication

    Directory of Open Access Journals (Sweden)

    Julianna Han

    2018-04-01

    Full Text Available Summary: The emergence of influenza A viruses (IAVs from zoonotic reservoirs poses a great threat to human health. As seasonal vaccines are ineffective against zoonotic strains, and newly transmitted viruses can quickly acquire drug resistance, there remains a need for host-directed therapeutics against IAVs. Here, we performed a genome-scale CRISPR/Cas9 knockout screen in human lung epithelial cells with a human isolate of an avian H5N1 strain. Several genes involved in sialic acid biosynthesis and related glycosylation pathways were highly enriched post-H5N1 selection, including SLC35A1, a sialic acid transporter essential for IAV receptor expression and thus viral entry. Importantly, we have identified capicua (CIC as a negative regulator of cell-intrinsic immunity, as loss of CIC resulted in heightened antiviral responses and restricted replication of multiple viruses. Therefore, our study demonstrates that the CRISPR/Cas9 system can be utilized for the discovery of host factors critical for the replication of intracellular pathogens. : Using a genome-wide CRISPR/Cas9 screen, Han et al. demonstrate that the major hit, the sialic acid transporter SLC35A1, is an essential host factor for IAV entry. In addition, they identify the DNA-binding transcriptional repressor CIC as a negative regulator of cell-intrinsic immunity. Keywords: CRISPR/Cas9 screen, GeCKO, influenza virus, host factors, sialic acid pathway, SLC35A1, Capicua, CIC, cell-intrinsic immunity, H5N1

  7. Impact of sex on prognostic host factors in surgical patients with lung cancer.

    Science.gov (United States)

    Wainer, Zoe; Wright, Gavin M; Gough, Karla; Daniels, Marissa G; Choong, Peter; Conron, Matthew; Russell, Prudence A; Alam, Naveed Z; Ball, David; Solomon, Benjamin

    2017-12-01

    Lung cancer has markedly poorer survival in men. Recognized important prognostic factors are divided into host, tumour and environmental factors. Traditional staging systems that use only tumour factors to predict prognosis are of limited accuracy. By examining sex-based patterns of disease-specific survival in non-small cell lung cancer patients, we determined the effect of sex on the prognostic value of additional host factors. Two cohorts of patients treated surgically with curative intent between 2000 and 2009 were utilized. The primary cohort was from Melbourne, Australia, with an independent validation set from the American Surveillance, Epidemiology and End Results (SEER) database. Univariate and multivariate analyses of validated host-related prognostic factors were performed in both cohorts to investigate the differences in survival between men and women. The Melbourne cohort had 605 patients (61% men) and SEER cohort comprised 55 681 patients (51% men). Disease-specific 5-year survival showed men had statistically significant poorer survival in both cohorts (P < 0.001); Melbourne men at 53.2% compared with women at 68.3%, and SEER 53.3% men and 62.0% women were alive at 5 years. Being male was independently prognostic for disease-specific mortality in the Melbourne cohort after adjustment for ethnicity, smoking history, performance status, age, pathological stage and histology (hazard ratio = 1.54, 95% confidence interval: 1.10-2.16, P = 0.012). Sex differences in non-small cell lung cancer are important irrespective of age, ethnicity, smoking, performance status and tumour, node and metastasis stage. Epidemiological findings such as these should be translated into research and clinical paradigms to determine the factors that influence the survival disadvantage experienced by men. © 2016 Royal Australasian College of Surgeons.

  8. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands

    Science.gov (United States)

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David

    2014-01-01

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416

  9. Gut Microbiome and Infant Health: Brain-Gut-Microbiota Axis and Host Genetic Factors.

    Science.gov (United States)

    Cong, Xiaomei; Xu, Wanli; Romisher, Rachael; Poveda, Samantha; Forte, Shaina; Starkweather, Angela; Henderson, Wendy A

    2016-09-01

    The development of the neonatal gut microbiome is influenced by multiple factors, such as delivery mode, feeding, medication use, hospital environment, early life stress, and genetics. The dysbiosis of gut microbiota persists during infancy, especially in high-risk preterm infants who experience lengthy stays in the Neonatal intensive care unit (NICU). Infant microbiome evolutionary trajectory is essentially parallel with the host (infant) neurodevelopmental process and growth. The role of the gut microbiome, the brain-gut signaling system, and its interaction with the host genetics have been shown to be related to both short and long term infant health and bio-behavioral development. The investigation of potential dysbiosis patterns in early childhood is still lacking and few studies have addressed this host-microbiome co-developmental process. Further research spanning a variety of fields of study is needed to focus on the mechanisms of brain-gut-microbiota signaling system and the dynamic host-microbial interaction in the regulation of health, stress and development in human newborns.

  10. Host Cell Restriction Factors that Limit Influenza A Infection

    Directory of Open Access Journals (Sweden)

    Fernando Villalón-Letelier

    2017-12-01

    Full Text Available Viral infection of different cell types induces a unique spectrum of host defence genes, including interferon-stimulated genes (ISGs and genes encoding other proteins with antiviral potential. Although hundreds of ISGs have been described, the vast majority have not been functionally characterised. Cellular proteins with putative antiviral activity (hereafter referred to as “restriction factors” can target various steps in the virus life-cycle. In the context of influenza virus infection, restriction factors have been described that target virus entry, genomic replication, translation and virus release. Genome wide analyses, in combination with ectopic overexpression and/or gene silencing studies, have accelerated the identification of restriction factors that are active against influenza and other viruses, as well as providing important insights regarding mechanisms of antiviral activity. Herein, we review current knowledge regarding restriction factors that mediate anti-influenza virus activity and consider the viral countermeasures that are known to limit their impact. Moreover, we consider the strengths and limitations of experimental approaches to study restriction factors, discrepancies between in vitro and in vivo studies, and the potential to exploit restriction factors to limit disease caused by influenza and other respiratory viruses.

  11. Induction of MAP Kinase Homologues during Growth and Morphogenetic Development of Karnal Bunt (Tilletia indica) under the Influence of Host Factor(s) from Wheat Spikes

    Science.gov (United States)

    Gupta, Atul K.; Seneviratne, J. M.; Joshi, G. K.; Kumar, Anil

    2012-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) in response to certain environmental conditions, play important role in mating type switching (Fus3) and pathogenicity (Pmk1) in many fungi. In order to determine the roles of such regulatory genes in Tilletia indica, the causal pathogen of Karnal bunt (KB) of wheat, semi-quantitative and quantitative RT-PCR was carried out to isolate and determine the expression of MAP kinase homologues during fungal growth and development under in vitro culture. Maximum expression of TiFus3 and TiPmk1 genes were observed at 14th and 21st days of culture and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinases upon interaction with plants, cultures were treated with 1% of host factors (extracted from S-2 stage of wheat spikes). Such treatment induced the expression of MAPks in time dependent manner compared to the absence of host factors. These results suggest that host factor(s) provide certain signal(s) which activate TiFus3 and TiPmk1 during morphogenetic development of T. indica. The results also provides a clue about the role of host factors in enhancing the disease potential due to induction of MAP kinases involved in fungal development and pathogenecity. PMID:22547988

  12. Characterization of joining sites of a viral histone H4 on host insect chromosomes.

    Directory of Open Access Journals (Sweden)

    Sunil Kumar

    Full Text Available A viral histone H4 (CpBV-H4 is encoded in a polydnavirus, Cotesia plutellae bracovirus (CpBV. It plays a crucial role in parasitism of an endoparasitoid wasp, C. plutellae, against diamondback moth, Plutella xylostella, by altering host gene expression in an epigenetic mode by its N-terminal tail after joining host nucleosomes. Comparative transcriptomic analysis between parasitized and nonparasitized P. xylostella by RNA-Seq indicated that 1,858 genes were altered at more than two folds in expression levels at late parasitic stage, including 877 up-regulated genes and 981 down-regulated genes. Among parasitic factors altering host gene expression, CpBV-H4 alone explained 16.3% of these expressional changes. To characterize the joining sites of CpBV-H4 on host chromosomes, ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing was applied to chromatins extracted from parasitized larvae. It identified specific 538 ChIP targets. Joining sites were rich (60.2% in AT sequence. Almost 40% of ChIP targets included short nucleotide repeat sequences presumably recognizable by transcriptional factors and chromatin remodeling factors. To further validate these CpBV-H4 targets, CpBV-H4 was transiently expressed in nonparasitized host at late larval stage and subjected to ChIP-Seq. Two kinds of ChIP-Seqs shared 51 core joining sites. Common targets were close (within 1 kb to genes regulated at expression levels by CpBV-H4. However, other host genes not close to CpBV-H4 joining sites were also regulated by CpBV-H4. These results indicate that CpBV-H4 joins specific chromatin regions of P. xylostella and controls about one sixth of the total host genes that were regulated by C. plutellae parasitism in an epigenetic mode.

  13. Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Depression

    Directory of Open Access Journals (Sweden)

    Roberto Salgado-Delgado

    2011-01-01

    Full Text Available Circadian factors might play a crucial role in the etiology of depression. It has been demonstrated that the disruption of circadian rhythms by lighting conditions and lifestyle predisposes individuals to a wide range of mood disorders, including impulsivity, mania and depression. Also, associated with depression, there is the impairment of circadian rhythmicity of behavioral, endocrine, and metabolic functions. Inspite of this close relationship between both processes, the complex relationship between the biological clock and the incidence of depressive symptoms is far from being understood. The efficiency and the timing of treatments based on chronotherapy (e.g., light treatment, sleep deprivation, and scheduled medication indicate that the circadian system is an essential target in the therapy of depression. The aim of the present review is to analyze the biological and clinical data that link depression with the disruption of circadian rhythms, emphasizing the contribution of circadian desynchrony. Therefore, we examine the conditions that may lead to circadian disruption of physiology and behavior as described in depressive states, and, according to this approach, we discuss therapeutic strategies aimed at treating the circadian system and depression.

  14. Yersinia virulence factors - a sophisticated arsenal for combating host defences [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Steve Atkinson

    2016-06-01

    Full Text Available The human pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica cause enterocolitis, while Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen.

  15. KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification

    DEFF Research Database (Denmark)

    Bürck, Carolin; Mund, Andreas; Berscheminski, Julia

    2016-01-01

    Once transported to the replication sites, HAdVs need to assure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characte......Once transported to the replication sites, HAdVs need to assure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly...... characterized, but represent a decisive moment in establishing a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin associated transcription factor regulates the dynamic organization of host chromatin structure via its ability to influence epigenetic marks...

  16. Host-specific interactions with environmental factors shape the distribution of symbiodinium across the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Linda Tonk

    Full Text Available The endosymbiotic dinoflagellates (genus Symbiodinium within coral reef invertebrates are critical to the survival of the holobiont. The genetic variability of Symbiodinium may contribute to the tolerance of the symbiotic association to elevated sea surface temperatures (SST. To assess the importance of factors such as the local environment, host identity and biogeography in driving Symbiodinium distributions on reef-wide scales, data from studies on reef invertebrate-Symbiodinium associations from the Great Barrier Reef (GBR were compiled.The resulting database consisted of 3717 entries from 26 studies. It was used to explore ecological patterns such as host-specificity and environmental drivers structuring community complexity using a multi-scalar approach. The data was analyzed in several ways: (i frequently sampled host species were analyzed independently to investigate the influence of the environment on symbiont distributions, thereby excluding the influence of host specificity, (ii host species distributions across sites were added as an environmental variable to determine the contribution of host identity on symbiont distribution, and (iii data were pooled based on clade (broad genetic groups dividing the genus Symbiodinium to investigate factors driving Symbiodinium distributions using lower taxonomic resolution. The results indicated that host species identity plays a dominant role in determining the distribution of Symbiodinium and environmental variables shape distributions on a host species-specific level. SST derived variables (especially SSTstdev most often contributed to the selection of the best model. Clade level comparisons decreased the power of the predictive model indicating that it fails to incorporate the main drivers behind Symbiodinium distributions.Including the influence of different host species on Symbiodinium distributional patterns improves our understanding of the drivers behind the complexity of Symbiodinium

  17. Trophic relationships between the parasitic plant species Phelipanche ramosa (L. and different hosts depending on host phenological stage and host growth rate

    Directory of Open Access Journals (Sweden)

    Delphine Moreau

    2016-07-01

    Full Text Available Phelipanche ramosa (L. Pomel (branched broomrape is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host's expense so that host-parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L. (oilseed rape and two weed species, Capsella bursa-pastoris (L. Medik. and Geranium dissectum (L.. Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34% to 84%. Brassica napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per

  18. Trophic Relationships between the Parasitic Plant Species Phelipanche ramosa (L.) and Different Hosts Depending on Host Phenological Stage and Host Growth Rate

    Science.gov (United States)

    Moreau, Delphine; Gibot-Leclerc, Stéphanie; Girardin, Annette; Pointurier, Olivia; Reibel, Carole; Strbik, Florence; Fernández-Aparicio, Mónica; Colbach, Nathalie

    2016-01-01

    Phelipanche ramosa (L.) Pomel (branched broomrape) is a holoparasitic plant that reproduces on crops and also on weeds, which contributes to increase the parasite seed bank in fields. This parasite extracts all its nutrients at the host’s expense so that host–parasite trophic relationships are crucial to determine host and parasite growth. This study quantified the intensity with which P. ramosa draws assimilates from its host and analyzed whether it varied with host species, host phenological stage and host growth rate. A greenhouse experiment was conducted on three host species: the crop species Brassica napus (L.) (oilseed rape) and two weed species, Capsella bursa-pastoris (L.) Medik. and Geranium dissectum (L.). Plants were grown with or without P. ramosa and under three light levels to modulate host growth rate. The proportion of host biomass loss due to parasitism by P. ramosa differed between host species (at host fructification, biomass loss ranged from 34 to 84%). B. napus and C. bursa-pastoris displayed a similar response to P. ramosa, probably because they belong to the same botanical family. The sensitivity to P. ramosa in each host species could be related to the precocity of P. ramosa development on them. Host compartments could be ranked as a function of their sensitivity to parasitism, with the reproductive compartment being the most severely affected, followed by stems and roots. The proportion of biomass allocated to leaves was not reduced by parasitism. The proportion of pathosystem biomass allocated to the parasite depended on host species. It generally increased with host stage progression but was constant across light induced-host growth rate, showing that P. ramosa adapts its growth to host biomass production. The rank order of host species in terms of sink strength differed from that in terms of host sensitivity. Finally, for B. napus, the biomass of individual parasite shoots decreased with increasing their number per host plant

  19. Remote sensing for landscape epidemiology : spatial analysis of plague hosts in Kazakhstan

    NARCIS (Netherlands)

    Wilschut, L.I.

    2015-01-01

    The spatial distribution of hosts is a crucial aspect for the understanding of infectious disease dynamics. In Kazakhstan, the great gerbil (Rhombomys opimus) is the main host for plague (Yersinia pestis infection) and poses a public health threat, yet their spatial distribution is unknown. Great

  20. Risk Factors in Host and Environment for Cervicitis Among Commercial Sex Workers

    OpenAIRE

    Saputra, Nazarwin; Widjanarko, Bagoes; Setyawan, Henry

    2016-01-01

    sexually transmitted infection (STI) remains a major health problem in some parts of the world. This study aimed to determine the host and environmental factors the effect on the incidence of cervicitis on sex workers. The study was observational case-control design with consecutive sampling technique. Risk factor for cervicitis is a history of sexually transmitted infections (p=0,0001), have couple (boy friend) different gender (p=0,014, OR=4,4; CI95%=1,3-14,3), history of oral sex/cunniling...

  1. Host Factors and Biomarkers Associated with Poor Outcomes in Adults with Invasive Pneumococcal Disease.

    Directory of Open Access Journals (Sweden)

    Shigeo Hanada

    Full Text Available Invasive pneumococcal disease (IPD causes considerable morbidity and mortality. We aimed to identify host factors and biomarkers associated with poor outcomes in adult patients with IPD in Japan, which has a rapidly-aging population.In a large-scale surveillance study of 506 Japanese adults with IPD, we investigated the role of host factors, disease severity, biomarkers based on clinical laboratory data, treatment regimens, and bacterial factors on 28-day mortality.Overall mortality was 24.1%, and the mortality rate increased from 10.0% in patients aged ˂50 years to 33.1% in patients aged ≥80 years. Disease severity also increased 28-day mortality, from 12.5% among patients with bacteraemia without sepsis to 35.0% in patients with severe sepsis and 56.9% with septic shock. The death rate within 48 hours after admission was high at 54.9%. Risk factors for mortality identified by multivariate analysis were as follows: white blood cell (WBC count <4000 cells/μL (odds ratio [OR], 6.9; 95% confidence interval [CI], 3.7-12.8, p < .001; age ≥80 years (OR, 6.5; 95% CI, 2.0-21.6, p = .002; serum creatinine ≥2.0 mg/dL (OR, 4.5; 95% CI, 2.5-8.1, p < .001; underlying liver disease (OR, 3.5; 95% CI, 1.6-7.8, p = .002; mechanical ventilation (OR, 3.0; 95% CI, 1.7-5.6, p < .001; and lactate dehydrogenase ≥300 IU/L (OR, 2.4; 95% CI, 1.4-4.0, p = .001. Pneumococcal serotype and drug resistance were not associated with poor outcomes.Host factors, disease severity, and biomarkers, especially WBC counts and serum creatinine, were more important determinants of mortality than bacterial factors.

  2. Host and environmental factors influencing "Candidatus Liberibacter asiaticus" acquisition in Diaphorina citri.

    Science.gov (United States)

    Wu, Fengnian; Huang, Jiaquan; Xu, Meirong; Fox, Eduardo G P; Beattie, G Andrew C; Holford, Paul; Cen, Yijing; Deng, Xiaoling

    2018-05-03

    Diaphorina citri is a vector of "Candidatus Liberibacter asiaticus" (CLas) associated with citrus Huanglongbing. In this study, the infection and titers of CLas in the psyllid, were monitored for life cycle stage, sex, host-plant CLas titer, host-plant genotype, and ambient temperature. Acquisition efficiency of CLas by D. citri was highest in nymphs reared at 25 °C on a host plant with high CLas titers but was independent of the host genotypes assessed and of vector sex. We further observed that D. citri nymphs acquired CLas more rapidly than adults based on acquisition access periods (AAPs). CLas did not multiply in the alimentary canal, hemolymph, and salivary glands of adults for 18 d after a 3-day AAP as adult. However, CLas multiplication was detected in hemolymph and salivary gland of adults after the bacterium was acquired by nymphs. Eighty percent of salivary glands of adults contained CLas 18 d after a 3-day AAP as nymph compared to 10% 18 d after a 3-day AAP as adults. Different factors tested herein influenced CLas acquisition efficiency of D. citri, CLas multiplication and spread inside the psyllid. These observations serve to better understand mechanisms of CLas infection in D. citri. This article is protected by copyright. All rights reserved.

  3. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions.

    Science.gov (United States)

    Duneau, David; Luijckx, Pepijn; Ben-Ami, Frida; Laforsch, Christian; Ebert, Dieter

    2011-02-22

    Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key force behind coevolutionary cycles. We discuss how different

  4. Resolving the infection process reveals striking differences in the contribution of environment, genetics and phylogeny to host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Laforsch Christian

    2011-02-01

    Full Text Available Abstract Background Infection processes consist of a sequence of steps, each critical for the interaction between host and parasite. Studies of host-parasite interactions rarely take into account the fact that different steps might be influenced by different factors and might, therefore, make different contributions to shaping coevolution. We designed a new method using the Daphnia magna - Pasteuria ramosa system, one of the rare examples where coevolution has been documented, in order to resolve the steps of the infection and analyse the factors that influence each of them. Results Using the transparent Daphnia hosts and fluorescently-labelled spores of the bacterium P. ramosa, we identified a sequence of infection steps: encounter between parasite and host; activation of parasite dormant spores; attachment of spores to the host; and parasite proliferation inside the host. The chances of encounter had been shown to depend on host genotype and environment. We tested the role of genetic and environmental factors in the newly described activation and attachment steps. Hosts of different genotypes, gender and species were all able to activate endospores of all parasite clones tested in different environments; suggesting that the activation cue is phylogenetically conserved. We next established that parasite attachment occurs onto the host oesophagus independently of host species, gender and environmental conditions. In contrast to spore activation, attachment depended strongly on the combination of host and parasite genotypes. Conclusions Our results show that different steps are influenced by different factors. Host-type-independent spore activation suggests that this step can be ruled out as a major factor in Daphnia-Pasteuria coevolution. On the other hand, we show that the attachment step is crucial for the pronounced genetic specificities of this system. We suggest that this one step can explain host population structure and could be a key

  5. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    Science.gov (United States)

    Griffiths, Samantha J; Koegl, Manfred; Boutell, Chris; Zenner, Helen L; Crump, Colin M; Pica, Francesca; Gonzalez, Orland; Friedel, Caroline C; Barry, Gerald; Martin, Kim; Craigon, Marie H; Chen, Rui; Kaza, Lakshmi N; Fossum, Even; Fazakerley, John K; Efstathiou, Stacey; Volpi, Antonio; Zimmer, Ralf; Ghazal, Peter; Haas, Jürgen

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to

  6. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication.

    Directory of Open Access Journals (Sweden)

    Samantha J Griffiths

    Full Text Available Herpes simplex virus type 1 (HSV-1 is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi screen with a druggable genome small interfering RNA (siRNA library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome

  7. Citizen science data reveal ecological, historical and evolutionary factors shaping interactions between woody hosts and wood-inhabiting fungi.

    Science.gov (United States)

    Heilmann-Clausen, Jacob; Maruyama, Pietro K; Bruun, Hans Henrik; Dimitrov, Dimitar; Laessøe, Thomas; Frøslev, Tobias Guldberg; Dalsgaard, Bo

    2016-12-01

    Woody plants host diverse communities of associated organisms, including wood-inhabiting fungi. In this group, host effects on species richness and interaction network structure are not well understood, especially not at large geographical scales. We investigated ecological, historical and evolutionary determinants of fungal species richness and network modularity, that is, subcommunity structure, across woody hosts in Denmark, using a citizen science data set comprising > 80 000 records of > 1000 fungal species on 91 genera of woody plants. Fungal species richness was positively related to host size, wood pH, and the number of species in the host genus, with limited influence of host frequency and host history, that is, time since host establishment in the area. Modularity patterns were unaffected by host history, but largely reflected host phylogeny. Notably, fungal communities differed substantially between angiosperm and gymnosperm hosts. Host traits and evolutionary history appear to be more important than host frequency and recent history in structuring interactions between hosts and wood-inhabiting fungi. High wood acidity appears to act as a stress factor reducing fungal species richness, while large host size, providing increased niche diversity, enhances it. In some fungal groups that are known to interact with live host cells in the establishment phase, host selectivity is common, causing a modular community structure. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  9. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection

    Science.gov (United States)

    Sun, Xingmin; Hirota, Simon A.

    2014-01-01

    Clostridium difficile (C. difficile) is the most common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous colitis. The clinical manifestation of Clostridium difficile infection (CDI) is highly variable, from asymptomatic carriage, to mild self-limiting diarrhea, to the more severe pseudomembranous colitis. Furthermore, in extreme cases, colonic inflammation and tissue damage can lead to toxic megacolon, a condition requiring surgical intervention. C. difficile expresses two key virulence factors; the exotoxins, toxin A (TcdA) and toxin B (TcdB), which are glucosyltransferases that target host-cell monomeric GTPases. In addition, some hypervirulent strains produce a third toxin, binary toxin or C. difficile transferase (CDT), which may contribute to the pathogenesis of CDI. More recently, other factors such as surface layer proteins (SLPs) and flagellin have also been linked to the inflammatory responses observed in CDI. Although the adaptive immune response can influence the severity of CDI, the innate immune responses to C. difficile and its toxins play crucial roles in CDI onset, progression, and overall prognosis. Despite this, the innate immune responses in CDI have drawn relatively little attention from clinical researchers. Targeting these responses may prove useful clinically as adjuvant therapies, especially in refractory and/or recurrent CDI. This review will focus on recent advances in our understanding of how C. difficile and its toxins modulate innate immune responses that contribute to CDI pathogenesis. PMID:25242213

  10. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Kessler, Richard; Goldstein, Daniel A.; Liotine, Camille; Pomian, Katarzyna; D’Andrea, Chris B.; Sullivan, Mark; Carretero, Jorge; Castander, Francisco J.; Nichol, Robert C.; Finley, David A.; Fischer, John A.; Foley, Ryan J.; Kim, Alex G.; Papadopoulos, Andreas; Sako, Masao; Scolnic, Daniel M.; Smith, Mathew; Tucker, Brad E.; Uddin, Syed; Wolf, Rachel C.; Yuan, Fang; Abbott, Tim M. C.; Abdalla, Filipe B.; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Rosell, Aurelio Carnero; Kind, Matias Carrasco; Cunha, Carlos E.; Costa, Luiz N. da; Desai, Shantanu; Doel, Peter; Eifler, Tim F.; Evrard, August E.; Flaugher, Brenna; Fosalba, Pablo; Gaztañaga, Enrique; Gruen, Daniel; Gruendl, Robert; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Maia, Marcio A. G.; Marshall, Jennifer L.; Miquel, Ramon; Plazas, Andrés A.; Romer, A. Kathy; Sánchez, Eusebio; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Sobreira, Flávia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Walker, Alistair R.; Wester, William

    2016-11-08

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate "hostless" SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  11. HOST GALAXY IDENTIFICATION FOR SUPERNOVA SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravi R.; Kuhlmann, Steve; Kovacs, Eve; Spinka, Harold; Liotine, Camille; Pomian, Katarzyna [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kessler, Richard; Scolnic, Daniel M. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Goldstein, Daniel A. [Department of Astronomy, University of California, Berkeley, 501 Campbell Hall #3411, Berkeley, CA 94720 (United States); D’Andrea, Chris B.; Nichol, Robert C.; Papadopoulos, Andreas [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sullivan, Mark [Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Carretero, Jorge; Castander, Francisco J. [Institut de Ciències de l’Espai, IEEC-CSIC, Campus UAB, Carrer de Can Magrans, s/n, E-08193 Bellaterra, Barcelona (Spain); Finley, David A. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fischer, John A.; Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Foley, Ryan J. [Department of Astronomy, University of Illinois, 1002 W. Green Street, Urbana, IL 61801 (United States); Kim, Alex G., E-mail: raviryan@gmail.com [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); and others

    2016-12-01

    Host galaxy identification is a crucial step for modern supernova (SN) surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope, which will discover SNe by the thousands. Spectroscopic resources are limited, and so in the absence of real-time SN spectra these surveys must rely on host galaxy spectra to obtain accurate redshifts for the Hubble diagram and to improve photometric classification of SNe. In addition, SN luminosities are known to correlate with host-galaxy properties. Therefore, reliable identification of host galaxies is essential for cosmology and SN science. We simulate SN events and their locations within their host galaxies to develop and test methods for matching SNe to their hosts. We use both real and simulated galaxy catalog data from the Advanced Camera for Surveys General Catalog and MICECATv2.0, respectively. We also incorporate “hostless” SNe residing in undetected faint hosts into our analysis, with an assumed hostless rate of 5%. Our fully automated algorithm is run on catalog data and matches SNe to their hosts with 91% accuracy. We find that including a machine learning component, run after the initial matching algorithm, improves the accuracy (purity) of the matching to 97% with a 2% cost in efficiency (true positive rate). Although the exact results are dependent on the details of the survey and the galaxy catalogs used, the method of identifying host galaxies we outline here can be applied to any transient survey.

  12. Host-Mediated Mechanisms of Resistance to Antitumor Therapies

    NARCIS (Netherlands)

    Daenen, L.G.M.

    2013-01-01

    In addition to their direct effects on tumor cells, certain anticancer therapies elicit a prosurvival response in benign tissues in the tumor microenvironment. This host response can be seen as an attempt of the body to diminish chemotherapy-induced damage in tissues crucial for functioning.

  13. Microbiota promote secretory cell determination in the intestinal epithelium by modulating host Notch signaling.

    Science.gov (United States)

    Troll, Joshua V; Hamilton, M Kristina; Abel, Melissa L; Ganz, Julia; Bates, Jennifer M; Stephens, W Zac; Melancon, Ellie; van der Vaart, Michiel; Meijer, Annemarie H; Distel, Martin; Eisen, Judith S; Guillemin, Karen

    2018-02-23

    Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer. © 2018. Published by The Company of Biologists Ltd.

  14. Large-Scale Investigation of Leishmania Interaction Networks with Host Extracellular Matrix by Surface Plasmon Resonance Imaging

    Science.gov (United States)

    Fatoux-Ardore, Marie; Peysselon, Franck; Weiss, Anthony; Bastien, Patrick; Pratlong, Francine

    2014-01-01

    We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ∼70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania. PMID:24478075

  15. Ebola virus host cell entry.

    Science.gov (United States)

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  16. Gradual adaptation of HIV to human host populations: good or bad news?

    Science.gov (United States)

    Brander, Christian; Walker, Bruce D

    2003-11-01

    The continuous evolution and adaptation of HIV to its host has produced extensive global viral diversity. Understanding the kinetics and directions of this continuing adaptation and its impact on viral fitness, immunogenicity and pathogenicity will be crucial to the successful design of effective HIV vaccines. Here we discuss some potential scenarios of viral and host coevolution.

  17. Posthodiplostomum cuticola (Digenea: Diplostomatidae) in intermediate fish hosts: factors contributing to the parasite infection and prey selection by the definitive bird host

    Czech Academy of Sciences Publication Activity Database

    Ondračková, Markéta; Šimková, A.; Gelnar, M.; Jurajda, Pavel

    2004-01-01

    Roč. 129, č. 6 (2004), s. 761-770 ISSN 0031-1820 R&D Projects: GA ČR GA524/02/0924; GA ČR GP524/03/P108 Institutional research plan: CEZ:AV0Z6093917 Keywords : fish assemblages * intermediate host * complex life-cycle Subject RIV: EG - Zoology Impact factor: 1.685, year: 2004

  18. Host Phylogeny Determines Viral Persistence and Replication in Novel Hosts

    Science.gov (United States)

    Longdon, Ben; Hadfield, Jarrod D.; Webster, Claire L.

    2011-01-01

    Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae) to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts. PMID:21966271

  19. Host phylogeny determines viral persistence and replication in novel hosts.

    Directory of Open Access Journals (Sweden)

    Ben Longdon

    2011-09-01

    Full Text Available Pathogens switching to new hosts can result in the emergence of new infectious diseases, and determining which species are likely to be sources of such host shifts is essential to understanding disease threats to both humans and wildlife. However, the factors that determine whether a pathogen can infect a novel host are poorly understood. We have examined the ability of three host-specific RNA-viruses (Drosophila sigma viruses from the family Rhabdoviridae to persist and replicate in 51 different species of Drosophilidae. Using a novel analytical approach we found that the host phylogeny could explain most of the variation in viral replication and persistence between different host species. This effect is partly driven by viruses reaching a higher titre in those novel hosts most closely related to the original host. However, there is also a strong effect of host phylogeny that is independent of the distance from the original host, with viral titres being similar in groups of related hosts. Most of this effect could be explained by variation in general susceptibility to all three sigma viruses, as there is a strong phylogenetic correlation in the titres of the three viruses. These results suggest that the source of new emerging diseases may often be predictable from the host phylogeny, but that the effect may be more complex than simply causing most host shifts to occur between closely related hosts.

  20. Free amino acids exhibit anthozoan "host factor" activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro.

    Science.gov (United States)

    Gates, R D; Hoegh-Guldberg, O; McFall-Ngai, M J; Bil, K Y; Muscatine, L

    1995-08-01

    Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation.

  1. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Science.gov (United States)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  2. Pseudomonas predators: understanding and exploiting phage-host interactions.

    Science.gov (United States)

    De Smet, Jeroen; Hendrix, Hanne; Blasdel, Bob G; Danis-Wlodarczyk, Katarzyna; Lavigne, Rob

    2017-09-01

    Species in the genus Pseudomonas thrive in a diverse set of ecological niches and include crucial pathogens, such as the human pathogen Pseudomonas aeruginosa and the plant pathogen Pseudomonas syringae. The bacteriophages that infect Pseudomonas spp. mirror the widespread and diverse nature of their hosts. Therefore, Pseudomonas spp. and their phages are an ideal system to study the molecular mechanisms that govern virus-host interactions. Furthermore, phages are principal catalysts of host evolution and diversity, which directly affects the ecological roles of environmental and pathogenic Pseudomonas spp. Understanding these interactions not only provides novel insights into phage biology but also advances the development of phage therapy, phage-derived antimicrobial strategies and innovative biotechnological tools that may be derived from phage-bacteria interactions.

  3. Factors affecting patterns of Amblyomma triste (Acari: Ixodidae) parasitism in a rodent host.

    Science.gov (United States)

    Colombo, Valeria C; Nava, Santiago; Antoniazzi, Leandro R; Monje, Lucas D; Racca, Andrea L; Guglielmone, Alberto A; Beldomenico, Pablo M

    2015-07-30

    Here we offer a multivariable analysis that explores associations of different factors (i.e., environmental, host parameters, presence of other ectoparasites) with the interaction of Amblyomma triste immature stages and one of its main hosts in Argentina, the rodent Akodon azarae. Monthly and for two years, we captured and sampled rodents at 16 points located at 4 different sites in the Parana River Delta region. The analyses were conducted with Generalized Linear Mixed Models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were: (a) environmental: trapping year, season, presence of cattle; type of vegetation (natural grassland or implanted forest); rodent abundance; (b) host parameters: body length; sex; body condition; blood cell counts; natural antibody titres; and (c) co-infestation with other ectoparasites: other stage of A. triste; Ixodes loricatus; lice; mites; and fleas. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Larvae were affected by all environmental variables assessed and by the presence of other ectoparasites (lice, fleas and other tick species). Host factors significantly associated with larval count were sex and levels of natural antibodies. Nymphs were associated with season, presence of cattle, body condition, body length and with burdens of I. loricatus. In most cases, the direction and magnitude of the associations were context-dependent (many interaction terms were significant). The findings of greater significance and implications of our study are two. Firstly, as burdens of A. triste larvae and nymphs were greater where cattle were present, and larval tick burdens were higher in implanted forests, silvopastoral practices developing in the region may affect the population dynamics of A. triste, and consequently the eco-epidemiology of Rickettsia parkeri. Secondly, strong associations and numerous interactions with other ectoparasites suggest that

  4. Location of Host and Host Habitat by Fruit Fly Parasitoids

    Directory of Open Access Journals (Sweden)

    Pascal Rousse

    2012-11-01

    Full Text Available Augmentative releases of parasitoids may be a useful tool for the area-wide management of tephritid pests. The latter are parasitized by many wasp species, though only a few of them are relevant for augmentative biocontrol purposes. To date, nearly all the actual or potential biocontrol agents for such programs are egg or larval Opiinae parasitoids (Hymenoptera: Braconidae. Here, we review the literature published on their habitat and host location behavior, as well as the factors that modulate this behavior, which is assumed to be sequential; parasitoids forage first for the host habitat and then for the host itself. Parasitoids rely on chemical, visual, and mechanical stimuli, often strongly related to their ecology. Behavioral modulation factors include biotic and abiotic factors including learning, climatic conditions and physiological state of the insect. Finally, conclusions and perspectives for future research are briefly highlighted. A detailed knowledge of this behavior may be very useful for selecting the release sites for both inundative/augmentative releases of mass-reared parasitoids and inoculative releases for classical biocontrol.

  5. The bigger, the better? Volume measurements of parasites and hosts: Parasitic barnacles (Cirripedia, Rhizocephala and their decapod hosts.

    Directory of Open Access Journals (Sweden)

    Christina Nagler

    Full Text Available Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa, and a trophic, root like system situated inside the hosts body (the interna. Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost. Using advanced imaging methods (micro-CT in conjunction with 3D modeling, we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass and the volume of the entire host. Our results show positive correlations between the volume of (1 entire rhizocephalan (externa + interna and host body, (2 rhizocephalan externa and host body, (3 rhizocephalan visceral mass and rhizocephalan body, (4 egg mass and rhizocephalan externa, (5 rhizocephalan egg mass and their egg number. Comparing the rhizocephalan Sylon hippolytes, a parasite of caridean shrimps, and representatives of Peltogaster, parasites of hermit crabs, we could match their different traits on a reconstructed relationship. With this study we add new and significant information to our global understanding of the evolution of parasitic castrators, of interactions between a parasitic castrator and its host and of different parasitic strategies within parasitic castrators exemplified by rhizocephalans.

  6. The bigger, the better? Volume measurements of parasites and hosts

    DEFF Research Database (Denmark)

    Nagler, Christina; Hörnig, Marie K.; Haug, Joachim T.

    2017-01-01

    ), and a trophic, root like system situated inside the hosts body (the interna). Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost......Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa....... Using advanced imaging methods (micro-CT in conjunction with 3D modeling), we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass) and the volume of the entire host. Our results show positive correlations between the volume of (1) entire rhizocephalan...

  7. Identification of the key weather factors affecting overwintering success of Apolygus lucorum eggs in dead host tree branches.

    Directory of Open Access Journals (Sweden)

    Hongsheng Pan

    Full Text Available Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba. Under laboratory conditions, rainfall (simulated via soaking was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches, very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009-2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in

  8. Identification of the key weather factors affecting overwintering success of Apolygus lucorum eggs in dead host tree branches.

    Science.gov (United States)

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009-2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer.

  9. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    Science.gov (United States)

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  10. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  11. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    Science.gov (United States)

    Nuss, Jonathan E; Kehn-Hall, Kylene; Benedict, Ashwini; Costantino, Julie; Ward, Michael; Peyser, Brian D; Retterer, Cary J; Tressler, Lyal E; Wanner, Laura M; McGovern, Hugh F; Zaidi, Anum; Anthony, Scott M; Kota, Krishna P; Bavari, Sina; Hakami, Ramin M

    2014-01-01

    Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  12. Multi-faceted proteomic characterization of host protein complement of Rift Valley fever virus virions and identification of specific heat shock proteins, including HSP90, as important viral host factors.

    Directory of Open Access Journals (Sweden)

    Jonathan E Nuss

    Full Text Available Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV. Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90, as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.

  13. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    Science.gov (United States)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  14. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J., E-mail: ortoleva@indiana.edu [Center for Cell and Virus Theory, Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405 (United States)

    2014-02-21

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  15. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    International Nuclear Information System (INIS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-01-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation

  16. Tumor necrosis factor in sepsis: mediator of multiple organ failure or essential part of host defense?

    NARCIS (Netherlands)

    van der Poll, T.; Lowry, S. F.

    1995-01-01

    Tumor necrosis factor-alpha (TNF) exerts numerous influences which, in association with severe infection, subserve both detrimental as well as beneficial host responses. The current review addresses recent insights into the structure and function of this pleiotropic cytokine, with a particular

  17. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-01-01

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  18. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2016-05-01

    Full Text Available As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  19. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions.

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-04-26

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.

  20. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira

    Science.gov (United States)

    Xu, Yinghua; Zhu, Yongzhang; Wang, Yuezhu; Chang, Yung-Fu; Zhang, Ying; Jiang, Xiugao; Zhuang, Xuran; Zhu, Yongqiang; Zhang, Jinlong; Zeng, Lingbing; Yang, Minjun; Li, Shijun; Wang, Shengyue; Ye, Qiang; Xin, Xiaofang; Zhao, Guoping; Zheng, Huajun; Guo, Xiaokui; Wang, Junzhi

    2016-01-01

    Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp. PMID:26833181

  1. Relevance of genetically determined host factors to the prognosis of meningococcal disease.

    Science.gov (United States)

    Domingo, P; Muñiz-Diaz, E; Baraldès, M A; Arilla, M; Barquet, N; Pericas, R; Juárez, C; Madoz, P; Vázquez, G

    2004-08-01

    To assess the relevance of genetically determined host factors for the prognosis of meningococcal disease, Fc gamma receptor IIA (FcgammaRIIA), the tumor necrosis factor alpha (TNF-alpha) gene promoter region, and plasminogen-activator-inhibitor-1 (PAI-1) gene polymorphisms were studied in 145 patients with meningococcal disease and in 290 healthy controls matched by sex. Distribution of FcgammaRIIA, TNF-alpha, and PAI-1 alleles was not significantly different between patients and controls. Patients with the FcgammaRIIA-R/R 131 allotype scored > or =1 point in the Barcelona prognostic system more frequently than patients with other allotypes (odds ratio, 18.6; 95% confidence interval, 7.1-49.0, PFc gamma receptor IIA polymorphism was associated with markers of disease severity, but TNF-alpha and PAI-1 polymorphisms were not.

  2. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy.

    Science.gov (United States)

    Kuo, Shu-Ming; Chen, Chi-Jene; Chang, Shih-Cheng; Liu, Tzu-Jou; Chen, Yi-Hsiang; Huang, Sheng-Yu; Shih, Shin-Ru

    2017-06-13

    Avian influenza A viruses generally do not replicate efficiently in human cells, but substitution of glutamic acid (Glu, E) for lysine (Lys, K) at residue 627 of avian influenza virus polymerase basic protein 2 (PB2) can serve to overcome host restriction and facilitate human infectivity. Although PB2 residue 627 is regarded as a species-specific signature of influenza A viruses, host restriction factors associated with PB2 627 E have yet to be fully investigated. We conducted immunoprecipitation, followed by differential proteomic analysis, to identify proteins associating with PB2 627 K (human signature) and PB2 627 E (avian signature) of influenza A/WSN/1933(H1N1) virus, and the results indicated that Tu elongation factor, mitochondrial (TUFM), had a higher binding affinity for PB2 627 E than PB2 627 K in transfected human cells. Stronger binding of TUFM to avian-signature PB2 590 G/ 591 Q and PB2 627 E in the 2009 swine-origin pandemic H1N1 and 2013 avian-origin H7N9 influenza A viruses was similarly observed. Viruses carrying avian-signature PB2 627 E demonstrated increased replication in TUFM-deficient cells, but viral replication decreased in cells overexpressing TUFM. Interestingly, the presence of TUFM specifically inhibited the replication of PB2 627 E viruses, but not PB2 627 K viruses. In addition, enhanced levels of interaction between TUFM and PB2 627 E were noted in the mitochondrial fraction of infected cells. Furthermore, TUFM-dependent autophagy was reduced in TUFM-deficient cells infected with PB2 627 E virus; however, autophagy remained consistent in PB2 627 K virus-infected cells. The results suggest that TUFM acts as a host restriction factor that impedes avian-signature influenza A virus replication in human cells in a manner that correlates with autophagy. IMPORTANCE An understanding of the mechanisms that influenza A viruses utilize to shift host tropism and the identification of host restriction factors that can limit infection are both

  3. Uveal melanoma in relation to ultraviolet light exposure and host factors.

    Science.gov (United States)

    Holly, E A; Aston, D A; Char, D H; Kristiansen, J J; Ahn, D K

    1990-09-15

    We conducted a case-control interview study among 1277 subjects (407 patients, 870 controls selected by using random digit dial) in 11 western United States to determine whether uveal melanoma and cutaneous melanoma shared common risk factors. After adjustment for other factors, the risk of uveal melanoma was increased for those with green, gray, or hazel eyes [relative risk (RR) = 2.5, P less than 0.001] or blue eyes (RR = 2.2, P less than 0.001) when compared to brown. A tendency to sunburn after 0.5 h midday summer sun exposure increased risk for uveal melanoma (burn with tanning RR = 1.5, P = 0.02; burn with little tanning RR = 1.8, P less than 0.001; burn with no tanning RR = 1.7, P = 0.002); as did exposure to UV or black lights (RR = 3.7, P = 0.003); and welding burn, sunburn of the eye, or snow blindness (RR = 7.2, P less than 0.001). An association with uveal melanoma was also noted with an increasing number of large nevi (P = 0.04 for trend), although the individual risk estimates were not remarkable. These data suggest that host factors and exposure to UV light are risk factors for uveal melanoma.

  4. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review.

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-11-07

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.

  5. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  6. Host-bacterial interplay in periodontal disease

    Directory of Open Access Journals (Sweden)

    Rudrakshi Chickanna

    2015-01-01

    Full Text Available A literature search was performed using MEDLINE (PubMed and other electronic basis from 1991 to 2014. Search included books and journals based on the systematic and critical reviews, in vitro and in vivo clinical studies on molecular basis of host microbial interactions. Clearly, an understanding of the host susceptibility factor in addition to microbial factors by elucidating the molecular basis offers opportunity for therapeutic manipulation of advancing periodontal destruction. One of the hallmarks of pathogenesis is the ability of pathogenic organisms to invade surrounding tissues and to evade the host defence. This paper focuses the general overview of molecular mechanisms involved in the microbiota and host response to bacterial inimical behavior in periodontics.

  7. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    Science.gov (United States)

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  8. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The Impact of Host Metabolic Factors on Treatment Outcome in Chronic Hepatitis C

    Directory of Open Access Journals (Sweden)

    Savvidou Savvoula

    2012-01-01

    Full Text Available Background. Recent data suggest that chronic hepatitis C has to be considered a metabolic disease further to a viral infection. The aim of this study was to elaborate on the complex interactions between hepatitis C virus, host metabolic factors, and treatment response. Methods. Demographic, virological, and histological data from 356 consecutive patients were analyzed retrospectively. Hepatic steatosis, obesity, and insulin resistance were examined in relation to their impact on treatment outcome. Comparison between genotype 1 and 3 patients was performed to identify differences in the determinants of hepatic steatosis. Results. Histological evidence of hepatic steatosis was found in 113 patients, distributed in 20.3%, 9.0%, and 2.5% for grades I, II, and III, respectively. Hepatic steatosis was associated with past alcohol abuse (P=0.003 and histological evidence of advanced fibrosis (P<0.001. Older age (OR 2.51, P=0.002, genotype (OR 3.28, P<0.001, cirrhosis (OR 4.23, P=0.005, and hepatic steatosis (OR 2.48, P=0.001 were independent predictors for nonresponse. Correlations of hepatic steatosis with alcohol, insulin resistance, and fibrosis stage were found similar for both genotypes 1 and 3. Conclusions. Host metabolic factors may predict treatment outcome, and this impact remains significant even in genotype 3, where steatosis has been believed to be exclusively virus related.

  10. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.

    Science.gov (United States)

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-07-29

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.

  11. Spitzer Observations of GRB Hosts: A Legacy Approach

    Science.gov (United States)

    Perley, Daniel; Tanvir, Nial; Hjorth, Jens; Berger, Edo; Laskar, Tanmoy; Michalowski, Michal; Chary, Ranga-Ram; Fynbo, Johan; Levan, Andrew

    2012-09-01

    The host galaxies of long-duration GRBs are drawn from uniquely broad range of luminosities and redshifts. Thus they offer the possibility of studying the evolution of star-forming galaxies without the limitations of other luminosity-selected samples, which typically are increasingly biased towards the most massive systems at higher redshift. However, reaping the full benefits of this potential requires careful attention to the selection biases affecting host identification. To this end, we propose observations of a Legacy sample of 70 GRB host galaxies (an additional 70 have already been observed by Spitzer), in order to constrain the mass and luminosity function in GRB-selected galaxies at high redshift, including its dependence on redshift and on properties of the afterglow. Crucially, and unlike previous Spitzer surveys, this sample is carefully designed to be uniform and free of optical selection biases that have caused previous surveys to systematically under-represent the role of luminous, massive hosts. We also propose to extend to larger, more powerfully constraining samples the study of two science areas where Spitzer observations have recently shown spectacular success: the hosts of dust-obscured GRBs (which promise to further our understanding of the connection between GRBs and star-formation in the most luminous galaxies), and the evolution of the mass-metallicity relation at z>2 (for which GRB host observations provide particularly powerful constraints on high-z chemical evolution).

  12. Viral and Host Factors Required for Avian H5N1 Influenza A Virus Replication in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2013-06-01

    Full Text Available Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions.

  13. Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Microbiota and Host Chloride Channels.

    Science.gov (United States)

    Zhang, Yong; Kang, Chao; Wang, Xiao-Lan; Zhou, Min; Chen, Meng-Ting; Zhu, Xiao-Hui; Liu, Kai; Wang, Bin; Zhang, Qian-Yong; Zhu, Jun-Dong; Mi, Man-Tian

    2018-03-01

    In recent decades, the association among diet, gut microbiota, and the risk of colorectal cancer (CRC) has been established. Gut microbiota and associated metabolites, such as bile acids and butyrate, are now known to play a key role in CRC development. The aim of this study is to identify that the progression to CRC is influenced by cholic acid, sodium butyrate, a high-fat diet, or different dose of dihydromyricetin (DMY) interacted with gut microbiota. An AOM/DSS (azoxymethan/dextran sodium sulfate) model is established to study the gut microbiota compsition before and after tumor formation during colitis-induced tumorigenesis. All above dietary factors profoundly influence the composition of gut microbiota and host colonic tumorigenesis. In addition, mice with DMY-modified initial microbiota display different degrees of chemically induced tumorigenesis. Mechanism analysis reveals that gut microbiota-associated chloride channels participated in colon tumorigenesis. Gut microbiota changes occur in the hyperproliferative stage before tumor formation. Gut microbiota and host chloride channels, both of which are regulated by dietary factors, are associated with CRC development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    Science.gov (United States)

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  15. Use of habitat odour by host-seeking insects.

    Science.gov (United States)

    Webster, Ben; Cardé, Ring T

    2017-05-01

    Locating suitable feeding or oviposition sites is essential for insect survival. Understanding how insects achieve this is crucial, not only for understanding the ecology and evolution of insect-host interactions, but also for the development of sustainable pest-control strategies that exploit insects' host-seeking behaviours. Volatile chemical cues are used by foraging insects to locate and recognise potential hosts but in nature these resources usually are patchily distributed, making chance encounters with host odour plumes rare over distances greater than tens of metres. The majority of studies on insect host-seeking have focussed on short-range orientation to easily detectable cues and it is only recently that we have begun to understand how insects overcome this challenge. Recent advances show that insects from a wide range of feeding guilds make use of 'habitat cues', volatile chemical cues released over a relatively large area that indicate a locale where more specific host cues are most likely to be found. Habitat cues differ from host cues in that they tend to be released in larger quantities, are more easily detectable over longer distances, and may lack specificity, yet provide an effective way for insects to maximise their chances of subsequently encountering specific host cues. This review brings together recent advances in this area, discussing key examples and similarities in strategies used by haematophagous insects, soil-dwelling insects and insects that forage around plants. We also propose and provide evidence for a new theory that general and non-host plant volatiles can be used by foraging herbivores to locate patches of vegetation at a distance in the absence of more specific host cues, explaining some of the many discrepancies between laboratory and field trials that attempt to make use of plant-derived repellents for controlling insect pests. © 2016 Cambridge Philosophical Society.

  16. Prevalence of inter-appointment endodontic flare-ups and host-related factors.

    Science.gov (United States)

    Azim, Adham A; Azim, Katharina A; Abbott, Paul V

    2017-04-01

    The aims of this study were to report the prevalence of inter-appointment flare-ups following adequate root canal disinfection and to investigate the host factors contributing to its occurrence. One thousand five hundred patient records were reviewed and the prevalence of flare-up was recorded. Patients' root canal space status (vital, non-vital or retreatment), medical condition and demographics (age, gender, tooth type and position) were recorded from their dental records. Statistical analyses were performed to determine the impact of the recorded factors on flare-up occurrence. Nine hundred fifty-one patient records met the inclusion criteria. The prevalence of flare-up was 2.3 %. There was a correlation between the canal space status and patient's age with flare-up development (P flare-up occurrence and tooth type, location, gender or medical condition (P > 0.5). The root canal space status was the primary factor affecting flare-up occurrence. Patients >50 years had the highest risk in developing flare-ups. This article provides evidence that patients suffering from inflamed pulp will not develop flare-up if adequate cleaning and shaping of the root canal space was performed. It also shows that patients above the age of 50 are a high-risk group that is prone to flare-up development.

  17. Genome-Wide Search for Host Association Factors during Ovine Progressive Pneumonia Virus Infection.

    Directory of Open Access Journals (Sweden)

    Jesse Thompson

    Full Text Available Ovine progressive pneumonia virus (OPPV is an important virus that causes serious diseases in sheep and goats with a prevalence of 36% in the USA. Although OPPV was discovered more than half of a century ago, little is known about the infection and pathogenesis of this virus. In this report, we used RNA-seq technology to conduct a genome-wide probe for cellular factors that are associated with OPPV infection. A total of approximately 22,000 goat host genes were detected of which 657 were found to have been significantly up-regulated and 889 down-regulated at 12 hours post-infection. In addition to previously known restriction factors from other viral infections, a number of factors which may be specific for OPPV infection were uncovered. The data from this RNA-seq study will be helpful in our understanding of OPPV infection, and also for further study in the prevention and intervention of this viral disease.

  18. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    Science.gov (United States)

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  19. Biotic mortality factors affecting emerald ash borer (Agrilus planipennis) are highly dependent on life stage and host tree crown condition.

    Science.gov (United States)

    Jennings, D E; Duan, J J; Shrewsbury, P M

    2015-10-01

    Emerald ash borer (EAB), Agrilus planipennis, is a serious invasive forest pest in North America responsible for killing tens to hundreds of millions of ash trees since it was accidentally introduced in the 1990 s. Although host-plant resistance and natural enemies are known to be important sources of mortality for EAB in Asia, less is known about the importance of different sources of mortality at recently colonized sites in the invaded range of EAB, and how these relate to host tree crown condition. To further our understanding of EAB population dynamics, we used a large-scale field experiment and life-table analyses to quantify the fates of EAB larvae and the relative importance of different biotic mortality factors at 12 recently colonized sites in Maryland. We found that the fates of larvae were highly dependent on EAB life stage and host tree crown condition. In relatively healthy trees (i.e., with a low EAB infestation) and for early instars, host tree resistance was the most important mortality factor. Conversely, in more unhealthy trees (i.e., with a moderate to high EAB infestation) and for later instars, parasitism and predation were the major sources of mortality. Life-table analyses also indicated how the lack of sufficient levels of host tree resistance and natural enemies contribute to rapid population growth of EAB at recently colonized sites. Our findings provide further evidence of the mechanisms by which EAB has been able to successfully establish and spread in North America.

  20. Spatial structures in a simple model of population dynamics for parasite-host interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.

    2015-08-01

    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.

  1. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    Science.gov (United States)

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  2. Characterization of host immune responses in Ebola virus infections.

    Science.gov (United States)

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  3. Host molecular factors and viral genotypes in the mother-to-child HIV-1 transmission in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Linda Chapdeleine M. Mouafo

    2017-07-01

    Full Text Available Maternal viral load and immune status, timing and route of delivery, viral subtype, and host genetics are known to influence the transmission, acquisition and disease progression of human immunodeficiency virus-1 (HIV-1 infection. This review summarizes the findings from published works on host molecular factors and virus genotypes affecting mother to child transmission (MTCT in Africa and identifies the gaps that need to be addressed in future research. Articles in PubMed, Google and AIDSearch and relevant conference abstracts publications were searched. Accessible articles on host factors and viral genetics impacting the MTCT of HIV, done on African populations till 2015 were downloaded. Forty-six articles were found and accessed; 70% described host genes impacting the transmission. The most studied gene was the CCR5 promoter, followed by the CCR2-64I found to reduce MTCT; then SDF1-3’A shown to have no effect on MTCT and others like the DC-SIGNR, CD4, CCL3 and IP- 10. The HLA class I was most studied and was generally linked to the protective effect on MTCT. Breast milk constituents were associated to protection against MTCT. However, existing studies in Sub Saharan Africa were done just in few countries and some done without control groups. Contradictory results obtained may be due to different genetic background, type of controls, different socio-cultural and economic environment and population size. More studies are thus needed to better understand the mechanism of transmission or prevention.

  4. Risk Factors in Host and Environment for Cervicitis Among Commercial Sex Workers

    Directory of Open Access Journals (Sweden)

    Nazarwin Saputra

    2017-09-01

    Full Text Available sexually transmitted infection (STI remains a major health problem in some parts of the world. This study aimed to determine the host and environmental factors the effect on the incidence of cervicitis on sex workers. The study was observational case-control design with consecutive sampling technique. Risk factor for cervicitis is a history of sexually transmitted infections (p=0,0001, have couple (boy friend different gender (p=0,014, OR=4,4; CI95%=1,3-14,3, history of oral sex/cunnilingus (p=0,003, OR=6,8;CI95%=1,9-24,8, smokers (p=0,0001, CI95%=5,6; CI95%=2,4-13,1. Condom use last sex behavior is a protective factor affecting the incidence of cervicitis (p=0,0001, OR= 0,198; CI95 %=0,07- 0,5. The conclusion of this study is to prevent servisitis at-risk groups of commercial sex workers it should avoid from exposure of agents that cause sexually transmitted infections, does not have a spouse who is not authorized (girlfriend that leads to sex behavior, avoid behaviors oral sex / cunnilingus, no smoke. At-risk behavior should use condoms for prevention servisitis

  5. Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach

    Directory of Open Access Journals (Sweden)

    Aws Alshamsan

    2017-12-01

    Full Text Available Collecting evidence suggests that the intercellular infection of Chlamydia pneumoniae in lungs contributes to the etiology of lung cancer. Many proteins of Chlamydia pneumoniae outmanoeuvre the various system of the host. The infection may regulate various factors, which can influence the growth of lung cancer in affected persons. In this in-silico study, we predict potential targeting of Chlamydia pneumoniae proteins in mitochondrial and cytoplasmic comportments of host cell and their possible involvement in growth and development of lung cancer. Various cellular activities are controlled in mitochondria and cytoplasm, where the localization of Chlamydia pneumoniae proteins may alter the normal functioning of host cells. The rationale of this study is to find out and explain the connection between Chlamydia pneumoniae infection and lung cancer. A sum of 183 and 513 proteins were predicted to target in mitochondria and cytoplasm of host cell out of total 1112 proteins of Chlamydia pneumoniae. In particular, many targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of program cell death. Present article provides a potential connection of Chlamydia pneumoniae protein targeting and proposed that various targeted proteins may play crucial role in lung cancer etiology through diverse mechanisms.

  6. The role of host genetic factors in respiratory tract infectious diseases: systematic review, meta-analyses and field synopsis

    NARCIS (Netherlands)

    Patarčić, Inga; Gelemanović, Andrea; Kirin, Mirna; Kolčić, Ivana; Theodoratou, Evropi; Baillie, Kenneth J.; de Jong, Menno D.; Rudan, Igor; Campbell, Harry; Polašek, Ozren

    2015-01-01

    Host genetic factors have frequently been implicated in respiratory infectious diseases, often with inconsistent results in replication studies. We identified 386 studies from the total of 24,823 studies identified in a systematic search of four bibliographic databases. We performed meta-analyses of

  7. HOST PLANT UTILIZATION, HOST RANGE OSCILLATIONS AND DIVERSIFICATION IN NYMPHALID BUTTERFLIES: A PHYLOGENETIC INVESTIGATION

    Science.gov (United States)

    Nylin, Sören; Slove, Jessica; Janz, Niklas

    2014-01-01

    It has been suggested that phenotypic plasticity is a major factor in the diversification of life, and that variation in host range in phytophagous insects is a good model for investigating this claim. We explore the use of angiosperm plants as hosts for nymphalid butterflies, and in particular the evidence for past oscillations in host range and how they are linked to host shifts and to diversification. At the level of orders of plants, a relatively simple pattern of host use and host shifts emerges, despite the 100 million years of history of the family Nymphalidae. We review the evidence that these host shifts and the accompanying diversifications were associated with transient polyphagous stages, as suggested by the “oscillation hypothesis.” In addition, we investigate all currently polyphagous nymphalid species and demonstrate that the state of polyphagy is rare, has a weak phylogenetic signal, and a very apical distribution in the phylogeny; we argue that these are signs of its transient nature. We contrast our results with data from the bark beetles Dendroctonus, in which a more specialized host use is instead the apical state. We conclude that plasticity in host use is likely to have contributed to diversification in nymphalid butterflies. PMID:24372598

  8. [Validation of the modified algorithm for predicting host susceptibility to viruses taking into account susceptibility parameters of primary target cell cultures and natural immunity factors].

    Science.gov (United States)

    Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A

    2010-01-01

    The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.

  9. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Science.gov (United States)

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  10. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    Directory of Open Access Journals (Sweden)

    Molly C. Bletz

    2017-08-01

    Full Text Available Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae was enriched on aquatic frogs, and Agrobacterium

  11. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar.

    Science.gov (United States)

    Bletz, Molly C; Archer, Holly; Harris, Reid N; McKenzie, Valerie J; Rabemananjara, Falitiana C E; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Using amplicon-based sequencing, we evaluate how multiple host species traits and site factors affect host bacterial diversity and community structure. Madagascar is home to over 400 native frog species, all of which are endemic to the island; more than 100 different species are known to occur in sympatry within multiple rainforest sites. We intensively sampled frog skin bacterial communities, from over 800 amphibians from 89 species across 30 sites in Madagascar during three field visits, and found that skin bacterial communities differed strongly from those of the surrounding environment. Richness of bacterial operational taxonomic units (OTUs) and phylogenetic diversity differed among host ecomorphs, with arboreal frogs exhibiting lower richness and diversity than terrestrial and aquatic frogs. Host ecomorphology was the strongest factor influencing microbial community structure, with host phylogeny and site parameters (latitude and elevation) explaining less but significant portions of the observed variation. Correlation analysis and topological congruency analyses revealed little to no phylosymbiosis for amphibian skin microbiota. Despite the observed geographic variation and low phylosymbiosis, we found particular OTUs that were differentially abundant between particular ecomorphs. For example, the genus Pigmentiphaga (Alcaligenaceae) was significantly enriched on arboreal frogs, Methylotenera (Methylophilaceae) was enriched on aquatic frogs, and Agrobacterium (Rhizobiaceae

  12. Host DNA synthesis-suppressing factor in culture fluid of tissue cultures infected with measles virus

    International Nuclear Information System (INIS)

    Minagawa, T.; Nakaya, C.; Iida, H.

    1974-01-01

    Host DNA synthesis is suppressed by the culture fluid of cell cultures infected with measles virus. This activity in the culture fluid is initiated somewhat later than the growth of infectious virus. Ninety percent of host DNA synthesis in HeLa cells is inhibited by culture fluid of 3-day-old cell cultures of Vero or HeLa cells infected with measles virus. This suppressing activity is not a property of the virion, but is due to nonvirion-associated componentnent which shows none of the activities of measles virus such as hemagglutination, hemolysis, or cell fusion nor does it have the antigenicity of measles virus as tested by complement-fixation or hemagglutination-inhibiting antibody blocking tests. Neutralization of the activity of this component is not attained with the pooled sera of convalescent measles patients. This component has molecular weights of about 45,000, 20,000, and 3,000 and appears to be a heat-stable protein. The production of host DNA suppressing factor (DSF) is blocked by cycloheximide. Neither uv-inactivated nor antiserum-neutralized measles virus produce DSF. Furthermore, such activity of nonvirion-associated component is not detected in the culture fluid of cultures infected with other RNA viruses such as poliovirus, vesicular stomatitis virus, or Sindbis virus. (auth)

  13. The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris.

    Science.gov (United States)

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-04-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. (13)C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. A place for host-microbe symbiosis in the comparative physiologist's toolbox.

    Science.gov (United States)

    Kohl, Kevin D; Carey, Hannah V

    2016-11-15

    Although scientists have long appreciated that metazoans evolved in a microbial world, we are just beginning to appreciate the profound impact that host-associated microbes have on diverse aspects of animal biology. The enormous growth in our understanding of host-microbe symbioses is rapidly expanding the study of animal physiology, both technically and conceptually. Microbes associate functionally with various body surfaces of their hosts, although most reside in the gastrointestinal tract. Gut microbes convert dietary and host-derived substrates to metabolites such as short-chain fatty acids, thereby providing energy and nutrients to the host. Bacterial metabolites incorporated into the host metabolome can activate receptors on a variety of cell types and, in doing so, alter host physiology (including metabolism, organ function, biological rhythms, neural activity and behavior). Given that host-microbe interactions affect diverse aspects of host physiology, it is likely that they influence animal ecology and, if they confer fitness benefits, the evolutionary trajectory of a species. Multiple variables - including sampling regime, environmental parameters, host metadata and analytical methods - can influence experimental outcomes in host-microbiome studies, making careful experimental design and execution crucial to ensure reproducible and informative studies in the laboratory and field. Integration of microbiomes into comparative physiology and ecophysiological investigations can reveal the potential impacts of the microbiota on physiological responses to changing environments, and is likely to bring valuable insights to the study of host-microbiome interactions among a broad range of metazoans, including humans. © 2016. Published by The Company of Biologists Ltd.

  15. Time resolved bovine host reponse to virulence factors mapped in milk by selected reaction monitoring

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    . In this study, we present a sensitive selected reaction monitoring (SRM) proteomics approach, targeting proteins suggested to play key roles in the bovine host response to mastitis. 17 biomarker candidates related to inflammatory response and mastitis were selected. The 17 candidate proteins were quantified......TIME RESOLVED BOVINE HOST RESPONSE TO VIRULENCE FACTORS, MAPPED IN MILK BY SELECTED REACTION MONITORING S.L. Bislev1, U. Kusebauch2, M.C. Codrea1, R. Moritz2, C.M. Røntved1, E. Bendixen1 1 Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, Denmark; 2...... Institute for Systems Biology, Seattle, Washington, USA Mastitis is beyond doubt the largest health problem in modern milk production. Many different pathogens can cause infections in the mammary gland, and give rise to severe toll on animal welfare, economic gain as well as on excessive use of antibiotics...

  16. Host preference of the bean weevil Zabrotes subfasciatus

    Institute of Scientific and Technical Information of China (English)

    Isabel Ribeiro do Valle Teixeira; Angel Roberto Barchuk; Fernando Sérgio Zucoloto

    2008-01-01

    It is largely known that the range of an insect diet is mostly determined by oviposition behavior, mainly in species with endophytic larvae such as Zabrotes subfasciatus.However, the proximate factors determining host choice and the subsequent steps leading to the expansion or reduction of the host number and occasional host shifts are largelyun known. We analyzed various factors determining host preference of Z. subfasciatus through the evaluation of: (i) oviposition preference of a wild population of Z. subfasciatus on the usual host (bean) and unusual hosts (lentil, chickpea and soy), and the performance of the offspring; (ii) artificial selection for increasing preference for hosts initially less frequently chosen; (iii) comparison of oviposition behavior between two different popula-tions (reared for~30 generations in beans or chickpeas, respectively); (iv) oviposition timing on usual and unusual hosts; and (v) identification of preference hierarchies. We found that when using unusual hosts, there is no correlation between performance and preference and that the preference hierarchy changes only slightly when the population passes through several generations on the less frequently accepted host. We also found a positive response to artificial selection for increasing oviposition on the less preferred host; however, when the host-choice experiment involved two varieties of the usual host, the response was faster than when the choice involved usual and unusual hosts. Finally, beetles reared on an unusual host (chickpea) for 26 generations showed similar good fitness on both usual and unusual hosts,indicating that the use of a new host does not necessarily result in the loss of performance on the original host. Nevertheless, this population showed lower fitness on the usual host than that of the original population, suggesting an underlying partial trade-off phenomenon which may contribute to a broadening of diet of this insect species.

  17. Corporate Governance as a Crucial Factor in Achieving Sustainable Corporate Performance

    Directory of Open Access Journals (Sweden)

    Julija Bistrova

    2014-06-01

    Full Text Available In the developed stock markets the corporate governance aspect is crucial in the stock portfolio selection process for investor seeking to achieve shareholder value sustainability. In the emerging markets the importance of the corporate governance role just starts to be realized by the investors and by the corporate managers. The present research, looking at the stock performance leaders and laggards, analyzes whether the corporate governance system matters to achieve long-term shareholder value within the Central and Eastern European stock markets universe. Corporate governance quality was assessed and compared among the out- and underperformers. The financial results plausibility and the ownership structure were considered as well. Additionally, the authors analyzed whether the quality of corporate governance influences the economic performance of the company. The obtained results provide the proof that the corporate governance does matter as the market outperformers have above average corporate governance quality and provide trustworthy financial results more often than the underperforming companies. Besides, well-governed companies are also able to deliver more attractive financial results.

  18. Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system.

    Science.gov (United States)

    Kusmierek, Maria; Dersch, Petra

    2018-02-01

    A successful colonization of specific hosts requires a rapid and efficient adaptation of the virulence-relevant gene expression program by bacterial pathogens. An important element in this endeavor is the Csr/Rsm system. This multi-component, post-transcriptional control system forms a central hub within complex regulatory networks and coordinately adjusts virulence properties with metabolic and physiological attributes of the pathogen. A key function is elicited by the RNA-binding protein CsrA/RsmA. CsrA/RsmA interacts with numerous target mRNAs, many of which encode crucial virulence factors, and alters their translation, stability or elongation of transcription. Recent studies highlighted that important colonization factors, toxins, and bacterial secretion systems are under CsrA/RsmA control. CsrA/RsmA deficiency impairs host colonization and attenuates virulence, making this post-transcriptional regulator a suitable drug target. The CsrA/RsmA protein can be inactivated through sequestration by non-coding RNAs, or via binding to specific highly abundant mRNAs and interacting proteins. The wide range of interaction partners and RNA targets, as well as the overarching, interlinked genetic control circuits illustrate the complexity of this regulatory system in the different pathogens. Future work addressing spatio-temporal changes of Csr/Rsm-mediated control during the course of an infection will help us to understand how bacteria reprogram their expression profile to cope with continuous changes experienced in colonized niches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Along for the ride or missing it altogether: exploring the host specificity and diversity of haemogregarines in the Canary Islands.

    Science.gov (United States)

    Tomé, Beatriz; Pereira, Ana; Jorge, Fátima; Carretero, Miguel A; Harris, D James; Perera, Ana

    2018-03-19

    Host-parasite relationships are expected to be strongly shaped by host specificity, a crucial factor in parasite adaptability and diversification. Because whole host communities have to be considered to assess host specificity, oceanic islands are ideal study systems given their simplified biotic assemblages. Previous studies on insular parasites suggest host range broadening during colonization. Here, we investigate the association between one parasite group (haemogregarines) and multiple sympatric hosts (of three lizard genera: Gallotia, Chalcides and Tarentola) in the Canary Islands. Given haemogregarine characteristics and insular conditions, we hypothesized low host specificity and/or occurrence of host-switching events. A total of 825 samples were collected from the three host taxa inhabiting the seven main islands of the Canarian Archipelago, including locations where the different lizards occurred in sympatry. Blood slides were screened to assess prevalence and parasitaemia, while parasite genetic diversity and phylogenetic relationships were inferred from 18S rRNA gene sequences. Infection levels and diversity of haplotypes varied geographically and across host groups. Infections were found in all species of Gallotia across the seven islands, in Tarentola from Tenerife, La Gomera and La Palma, and in Chalcides from Tenerife, La Gomera and El Hierro. Gallotia lizards presented the highest parasite prevalence, parasitaemia and diversity (seven haplotypes), while the other two host groups (Chalcides and Tarentola) harbored one haplotype each, with low prevalence and parasitaemia levels, and very restricted geographical ranges. Host-sharing of the same haemogregarine haplotype was only detected twice, but these rare instances likely represent occasional cross-infections. Our results suggest that: (i) Canarian haemogregarine haplotypes are highly host-specific, which might have restricted parasite host expansion; (ii) haemogregarines most probably reached the

  20. Lipoarabinomannan in urine during tuberculosis treatment: association with host and pathogen factors and mycobacteriuria

    Directory of Open Access Journals (Sweden)

    Wood Robin

    2012-02-01

    Full Text Available Abstract Background Detection of lipoarabinomannan (LAM, a Mycobacterium tuberculosis (Mtb cell wall antigen, is a potentially attractive diagnostic. However, the LAM-ELISA assay has demonstrated variable sensitivity in diagnosing TB in diverse clinical populations. We therefore explored pathogen and host factors potentially impacting LAM detection. Methods LAM-ELISA assay testing, sputum smear and culture status, HIV status, CD4 cell count, proteinuria and TB outcomes were prospectively determined in adults diagnosed with TB and commencing TB treatment at a South African township TB clinic. Sputum TB isolates were characterised by IS61110-based restriction fragment length polymorphism (RFLP and urines were tested for mycobacteriuria by Xpert® MTB/RIF assay. Results 32/199 (16.1% of patients tested LAM-ELISA positive. Median optical density and proportion testing LAM positive remained unchanged during 2 weeks of treatment and then declined over 24 weeks. LAM was associated with positive sputum smear and culture status, HIV infection and low CD4 cell counts but not proteinuria, RFLP strain or TB treatment outcome. The sensitivity of LAM for TB in HIV-infected patients with CD4 counts of ≥ 200, 100-199, 50-99, and Conclusions Urinary LAM was related to host immune factors, was unrelated to Mtb strain and declined steadily after an initial 2 weeks of TB treatment. The strong association of urine LAM with mycobacteriuria is a new finding, indicating frequent TB involvement of the renal tract in advanced HIV infection.

  1. A Sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Chang

    Full Text Available Hepatitis C virus (HCV is a species-specific pathogenic virus that infects only humans and chimpanzees. Previous studies have indicated that interactions between the HCV E2 protein and CD81 on host cells are required for HCV infection. To determine the crucial factors for species-specific interactions at the molecular level, this study employed in silico molecular docking involving molecular dynamic simulations of the binding of HCV E2 onto human and rat CD81s. In vitro experiments including surface plasmon resonance measurements and cellular binding assays were applied for simple validations of the in silico results. The in silico studies identified two binding regions on the HCV E2 loop domain, namely E2-site1 and E2-site2, as being crucial for the interactions with CD81s, with the E2-site2 as the determinant factor for human-specific binding. Free energy calculations indicated that the E2/CD81 binding process might follow a two-step model involving (i the electrostatic interaction-driven initial binding of human-specific E2-site2, followed by (ii changes in the E2 orientation to facilitate the hydrophobic and van der Waals interaction-driven binding of E2-site1. The sequence of the human-specific, stronger-binding E2-site2 could serve as a candidate template for the future development of HCV-inhibiting peptide drugs.

  2. THE BIOTIC FACTOR OF TREMATOD OPISTHORHIS FELINEUS INVASION INFLUENCE ON HOST IMMUNE STATUS AND SOMATIC CELLS PROLIFERATIVE ACTIVITY

    Directory of Open Access Journals (Sweden)

    A. G. Rybka

    2016-01-01

    Full Text Available The paper confirms long-time opisthorhis invasion role as a risk factor of host immune system reconstitution as well as an important factor in holangiocarcinomas development. It was shown that opisthorhosis invasion primal stage induce host immune system reconstitution. Host immune B-cells system is activated by metacercaria antigens, while the same antigens inhibits T-cells activity. Opisthorhis metabolites stimulate proliferative mithogen-induced T-cells acti vity. Chronic opisthorchis invasion leads to immune system disbalance. It means: decrease of specific and non-speci fic natural killers activity, number of high proliferative activity T-lymphocytes and the shift of regulatory T-cells subset to suppressors prevalence. At the same time specific as well as non-specific T-suppressors functional ability is very low. It was shown T-cells helper-amplifier activation. Despite of circulating B-cells decrease the antibody produced cells number is spleen increases significantly at the same time with circulating immune complexes accumulation. Even 3–6 month after dehelmintisation the immune system disbalance decreases but lefts. In addition, chronic opisthorhis invasion leads to the proliferative processes activation in ductal epithelium, liver, lymph nodes and in other organs which leads to cancer proliferation. According to the results obtained the opisthorhis infected patients needs to be immunocorrected before as well as after dehelmintisation for holangiocancerogenesis profylaxis.

  3. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  4. Metabolomic insights into the intricate gut microbial–host interaction in the development of obesity and type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Magali ePalau-Rodriguez

    2015-10-01

    Full Text Available Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial-host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e. niacin, purines and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial-host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.

  5. Genetic Factors in Rhizobium Affecting the Symbiotic Carbon Costs of N2 Fixation and Host Plant Biomass Production

    DEFF Research Database (Denmark)

    Skøt, L.; Hirsch, P. R.; Witty, J. F.

    1986-01-01

    The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different ...

  6. The Host Plant Metabolite Glucose Is the Precursor of Diffusible Signal Factor (DSF) Family Signals in Xanthomonas campestris

    OpenAIRE

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-01-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous ad...

  7. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

    KAUST Repository

    Wilson, S. K.; Adjeroud, M.; Bellwood, D. R.; Berumen, Michael L.; Booth, D.; Bozec, Y.-M.; Chabanet, P.; Cheal, A.; Cinner, J.; Depczynski, M.; Feary, D. A.; Gagliano, M.; Graham, N. A. J.; Halford, A. R.; Halpern, B. S.; Harborne, A. R.; Hoey, A. S.; Holbrook, S. J.; Jones, G. P.; Kulbiki, M.; Letourneur, Y.; De Loma, T. L.; McClanahan, T.; McCormick, M. I.; Meekan, M. G.; Mumby, P. J.; Munday, P. L.; Ohman, M. C.; Pratchett, M. S.; Riegl, B.; Sano, M.; Schmitt, R. J.; Syms, C.

    2010-01-01

    Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef

  8. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    Science.gov (United States)

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  9. Experimental investigation of alternative transmission functions: Quantitative evidence for the importance of nonlinear transmission dynamics in host-parasite systems.

    Science.gov (United States)

    Orlofske, Sarah A; Flaxman, Samuel M; Joseph, Maxwell B; Fenton, Andy; Melbourne, Brett A; Johnson, Pieter T J

    2018-05-01

    Understanding pathogen transmission is crucial for predicting and managing disease. Nonetheless, experimental comparisons of alternative functional forms of transmission remain rare, and those experiments that are conducted are often not designed to test the full range of possible forms. To differentiate among 10 candidate transmission functions, we used a novel experimental design in which we independently varied four factors-duration of exposure, numbers of parasites, numbers of hosts and parasite density-in laboratory infection experiments. We used interactions between amphibian hosts and trematode parasites as a model system and all candidate models incorporated parasite depletion. An additional manipulation involving anaesthesia addressed the effects of host behaviour on transmission form. Across all experiments, nonlinear transmission forms involving either a power law or a negative binomial function were the best-fitting models and consistently outperformed the linear density-dependent and density-independent functions. By testing previously published data for two other host-macroparasite systems, we also found support for the same nonlinear transmission forms. Although manipulations of parasite density are common in transmission studies, the comprehensive set of variables tested in our experiments revealed that variation in density alone was least likely to differentiate among competing transmission functions. Across host-pathogen systems, nonlinear functions may often more accurately represent transmission dynamics and thus provide more realistic predictions for infection. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  10. Differential effects of lichens versus liverworts epiphylls on host leaf traits in the tropical montane rainforest, Hainan Island, China.

    Science.gov (United States)

    Zhou, Lingyan; Liu, Fude; Yang, Wenjie; Liu, Hong; Shao, Hongbo; Wang, Zhongsheng; An, Shuqing

    2014-01-01

    Epiphylls widely colonize vascular leaves in moist tropical forests. Understanding the effects of epiphylls on leaf traits of host plants is critical for understanding ecological function of epiphylls. A study was conducted in a rain forest to investigate leaf traits of the host plants Photinia prunifolia colonized with epiphyllous liverworts and foliicolous lichens as well as those of uncolonized leaves. Our results found that the colonization of lichens significantly decreased leaf water content (LWC), chlorophyll (Chl) a and a + b content, and Chl a/b of P. prunifolia but increased Chl b content, while that of liverworts did not affect them as a whole. The variations of net photosynthetic rates (P n ) among host leaves colonized with different coverage of lichens before or after removal treatment (a treatment to remove epiphylls from leaf surface) were greater than that colonized with liverworts. The full cover of lichens induced an increase of light compensation point (LCP) by 21% and a decrease of light saturation point (LSP) by 54% for their host leaves, whereas that of liverworts displayed contrary effects. Compared with the colonization of liverworts, lichens exhibited more negative effects on the leaf traits of P. prunifolia in different stages of colonization. The results suggest that the responses of host leaf traits to epiphylls are affected by the epiphyllous groups and coverage, which are also crucial factors in assessing ecofunctions of epiphylls in tropical forests.

  11. Chlamydia infection across host species boundaries promotes distinct sets of transcribed anti-apoptotic factors.

    Directory of Open Access Journals (Sweden)

    Joshua eMessinger

    2015-12-01

    Full Text Available Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis and respiratory associated disease (C. pneumoniae. The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the arms race of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases.

  12. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  13. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway.

    Science.gov (United States)

    Reed, Shawna C O; Serio, Alisa W; Welch, Matthew D

    2012-04-01

    Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion. © 2011 Blackwell Publishing Ltd.

  15. Genetic Factors and Host Traits Predict Spore Morphology for a Butterfly Pathogen

    Directory of Open Access Journals (Sweden)

    Jacobus C. de Roode

    2013-08-01

    Full Text Available Monarch butterflies (Danaus plexippus throughout the world are commonly infected by the specialist pathogen Ophryocystis elektroscirrha (OE. This protozoan is transmitted when larvae ingest infectious stages (spores scattered onto host plant leaves by infected adults. Parasites replicate internally during larval and pupal stages, and adult monarchs emerge covered with millions of dormant spores on the outsides of their bodies. Across multiple monarch populations, OE varies in prevalence and virulence. Here, we examined geographic and genetic variation in OE spore morphology using clonal parasite lineages derived from each of four host populations (eastern and western North America, South Florida and Hawaii. Spores were harvested from experimentally inoculated, captive-reared adult monarchs. Using light microscopy and digital image analysis, we measured the size, shape and color of 30 replicate spores per host. Analyses examined predictors of spore morphology, including parasite source population and clone, parasite load, and the following host traits: family line, sex, wing area, and wing color (orange and black pigmentation. Results showed significant differences in spore size and shape among parasite clones, suggesting genetic determinants of morphological variation. Spore size also increased with monarch wing size, and monarchs with larger and darker orange wings tended to have darker colored spores, consistent with the idea that parasite development depends on variation in host quality and resources. We found no evidence for effects of source population on variation in spore morphology. Collectively, these results provide support for heritable variation in spore morphology and a role for host traits in affecting parasite development.

  16. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Science.gov (United States)

    de Chassey, Benoît; Aublin-Gex, Anne; Ruggieri, Alessia; Meyniel-Schicklin, Laurène; Pradezynski, Fabrine; Davoust, Nathalie; Chantier, Thibault; Tafforeau, Lionel; Mangeot, Philippe-Emmanuel; Ciancia, Claire; Perrin-Cocon, Laure; Bartenschlager, Ralf; André, Patrice; Lotteau, Vincent

    2013-01-01

    Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  17. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication.

    Directory of Open Access Journals (Sweden)

    Benoît de Chassey

    Full Text Available Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1 appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.

  18. Host habitat assessment by a parasitoid using fungal volatiles

    Directory of Open Access Journals (Sweden)

    Steidle Johannes LM

    2007-02-01

    patches. The female response to fungal volatiles is innate, suggesting that host-associated fungi played a crucial role in the evolution of host finding strategies of L. distinguendus. Research on the role of host-associated microorganisms in the chemically mediated orientation of parasitoids is still at the beginning. We expect an increasing recognition of this issue in the future.

  19. Host behaviour and physiology underpin individual variation in avian influenza virus infection in migratory Bewick's swans

    NARCIS (Netherlands)

    Hoye, B.J.; Fouchier, R.A.M; Klaassen, M.R.J.

    2012-01-01

    Individual variation in infection modulates both the dynamics of pathogens and their impact on host populations. It is therefore crucial to identify differential patterns of infection and understand the mechanisms responsible. Yet our understanding of infection heterogeneity in wildlife is limited,

  20. Host-Plant Specialization Mediates the Influence of Plant Abundance on Host Use by Flower Head-Feeding Insects.

    Science.gov (United States)

    Nobre, Paola A F; Bergamini, Leonardo L; Lewinsohn, Thomas M; Jorge, Leonardo R; Almeida-Neto, Mário

    2016-02-01

    Among-population variation in host use is a common phenomenon in herbivorous insects. The simplest and most trivial explanation for such variation in host use is the among-site variation in plant species composition. Another aspect that can influence spatial variation in host use is the relative abundance of each host-plant species compared to all available hosts. Here, we used endophagous insects that develop in flower heads of Asteraceae species as a study system to investigate how plant abundance influences the pattern of host-plant use by herbivorous insects with distinct levels of host-range specialization. Only herbivores recorded on three or more host species were included in this study. In particular, we tested two related hypotheses: 1) plant abundance has a positive effect on the host-plant preference of herbivorous insects, and 2) the relative importance of plant abundance to host-plant preference is greater for herbivorous species that use a wider range of host-plant species. We analyzed 11 herbivore species in 20 remnants of Cerrado in Southeastern Brazil. For 8 out of 11 herbivore species, plant abundance had a positive influence on host use. In contrast to our expectation, both the most specialized and the most generalist herbivores showed a stronger positive effect of plant species abundance in host use. Thus, we found evidence that although the abundance of plant species is a major factor determining the preferential use of host plants, its relative importance is mediated by the host-range specialization of herbivores.

  1. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size

    Directory of Open Access Journals (Sweden)

    Sara M. Rodríguez

    2017-08-01

    Full Text Available Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm than large molecrabs (<15 mm. Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host

  2. Interaction between microbiome and host genetics in psoriatic arthritis.

    Science.gov (United States)

    Chimenti, Maria Sole; Perricone, Carlo; Novelli, Lucia; Caso, Francesco; Costa, Luisa; Bogdanos, Dimitrios; Conigliaro, Paola; Triggianese, Paola; Ciccacci, Cinzia; Borgiani, Paola; Perricone, Roberto

    2018-03-01

    Psoriatic arthritis (PsA) is a chronic inflammatory joint disease, seen in combination with psoriasis. Both genetic and environmental factors are responsible for the development of PsA, however little is known about the different weight of these two distinctive components in the pathogenesis of the disease. Genomic variability in PsA is associated with the disease and/or some peculiar clinical phenotypes. Candidate genes involved are crucial in inflammation, immune system, and epithelial permeability. Moreover, the genesis and regulation of inflammation are influenced by the composition of the human intestinal microbiome that is able to modulate both mucosal and systemic immune system. It is possible that pro-inflammatory responses initiated in gut mucosa could contribute to the induction and progression of autoimmune conditions. Given such premises, the aim of this review is to summarize immune-mediated response and specific bacterial changes in the composition of fecal microbiota in PsA patients and to analyze the relationships between bacterial changes, immune system, and host genetic background. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Archana Shrestha

    2016-12-01

    Full Text Available Clostridium perfringens enterotoxin (CPE binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease.

  4. Promiscuous Diffusible Signal Factor Production and Responsiveness of the Xylella fastidiosa Rpf System

    OpenAIRE

    Ionescu, Michael; Yokota, Kenji; Antonova, Elena; Garcia, Angelica; Beaulieu, Ellen; Hayes, Terry; Iavarone, Anthony T.; Lindow, Steven E.

    2016-01-01

    © 2016 Ionescu et al. Cell density-dependent regulation of gene expression in Xylella fastidiosa that is crucial to its switching between plant hosts and insect vectors is dependent on RpfF and its production of 2-enoic acids known as diffusible signal factor (DSF). We show that X. fastidiosa produces a particularly large variety of similar, relatively long-chain-length 2-enoic acids that are active in modulating gene expression. Both X. fastidiosa itself and a Pantoea agglomerans surrogate h...

  5. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Directory of Open Access Journals (Sweden)

    Beatriz M. A. Fontoura

    2013-07-01

    Full Text Available Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.

  6. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  7. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse.

    Science.gov (United States)

    Miraghazadeh, Bahar; Cook, Matthew C

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.

  8. Experimental infections with Mycoplasma agalactiae identify key factors involved in host-colonization.

    Directory of Open Access Journals (Sweden)

    Eric Baranowski

    Full Text Available Mechanisms underlying pathogenic processes in mycoplasma infections are poorly understood, mainly because of limited sequence similarities with classical, bacterial virulence factors. Recently, large-scale transposon mutagenesis in the ruminant pathogen Mycoplasma agalactiae identified the NIF locus, including nifS and nifU, as essential for mycoplasma growth in cell culture, while dispensable in axenic media. To evaluate the importance of this locus in vivo, the infectivity of two knock-out mutants was tested upon experimental infection in the natural host. In this model, the parental PG2 strain was able to establish a systemic infection in lactating ewes, colonizing various body sites such as lymph nodes and the mammary gland, even when inoculated at low doses. In these PG2-infected ewes, we observed over the course of infection (i the development of a specific antibody response and (ii dynamic changes in expression of M. agalactiae surface variable proteins (Vpma, with multiple Vpma profiles co-existing in the same animal. In contrast and despite a sensitive model, none of the knock-out mutants were able to survive and colonize the host. The extreme avirulent phenotype of the two mutants was further supported by the absence of an IgG response in inoculated animals. The exact role of the NIF locus remains to be elucidated but these data demonstrate that it plays a key role in the infectious process of M. agalactiae and most likely of other pathogenic mycoplasma species as many carry closely related homologs.

  9. Spatial and Temporal Epidemiology of Nephropathia Epidemica Incidence and Hantavirus Seroprevalence in Rodent Hosts: Identification of the Main Environmental Factors in Europe.

    Science.gov (United States)

    Monchatre-Leroy, E; Crespin, L; Boué, F; Marianneau, P; Calavas, D; Hénaux, V

    2017-08-01

    In Europe, the increasing number of nephropathia epidemica (NE) infections in humans, caused by Puumala virus carried by bank voles (Myodes glareolus), has triggered studies of environmental factors driving these infections. NE infections have been shown to occur in specific geographical areas characterized by environmental factors that influence the distribution and dynamics of host populations and virus persistence in the soil. Here, we review the influence of environmental conditions (including climate factors, food availability and habitat conditions) with respect to incidence in humans and seroprevalence in rodents, considering both direct and indirect transmission pathways. For each type of environmental factor, results and discrepancies between studies are presented and examined in the light of biological hypotheses. Overall, food availability and temperature appear to be the main drivers of host seroprevalence and NE incidence, but data quality and statistical approaches varied greatly among studies. We highlight the issues that now need to be addressed and suggest improvements for study design in regard to the current knowledge on hantavirus epidemiology. © 2016 Blackwell Verlag GmbH.

  10. The predictability of phytophagous insect communities: host specialists as habitat specialists.

    Directory of Open Access Journals (Sweden)

    Jörg Müller

    Full Text Available The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local environmental factors and species composition of the vegetation for predicting the species composition of phytophagous moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing 820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species composition of the vegetation was a better predictor of the composition of these assemblages than the environmental variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall, our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant generalists follow two different models of

  11. HostPhinder: A Phage Host Prediction Tool

    Directory of Open Access Journals (Sweden)

    Julia Villarroel

    2016-05-01

    Full Text Available The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within reach. Here, we present HostPhinder, a tool aimed at predicting the bacterial host of phages by examining the phage genome sequence. Using a reference database of 2196 phages with known hosts, HostPhinder predicts the host species of a query phage as the host of the most genomically similar reference phages. As a measure of genomic similarity the number of co-occurring k-mers (DNA sequences of length k is used. Using an independent evaluation set, HostPhinder was able to correctly predict host genus and species for 81% and 74% of the phages respectively, giving predictions for more phages than BLAST and significantly outperforming BLAST on phages for which both had predictions. HostPhinder predictions on phage draft genomes from the INTESTI phage cocktail corresponded well with the advertised targets of the cocktail. Our study indicates that for most phages genomic similarity correlates well with related bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2].

  12. Simultaneous Identification of Potential Pathogenicity Factors of Mycoplasma agalactiae in the Natural Ovine Host by Negative Selection

    OpenAIRE

    Hegde, Shivanand; Hegde, Shrilakshmi; Zimmermann, Martina; Flöck, Martina; Spergser, Joachim; Rosengarten, Renate; Chopra-Dewasthaly, Rohini

    2015-01-01

    Mycoplasmas possess complex pathogenicity determinants that are largely unknown at the molecular level. Mycoplasma agalactiae serves as a useful model to study the molecular basis of mycoplasma pathogenicity. The generation and in vivo screening of a transposon mutant library of M. agalactiae were employed to unravel its host colonization factors. Tn4001mod mutants were sequenced using a novel sequencing method, and functionally heterogeneous pools containing 15 to 19 selected mutants were sc...

  13. No Major Host Genetic Risk Factor Contributed to A(H1N12009 Influenza Severity.

    Directory of Open Access Journals (Sweden)

    Koldo Garcia-Etxebarria

    Full Text Available While most patients affected by the influenza A(H1N1 pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10-8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course.

  14. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter?

    Science.gov (United States)

    Stensgaard, Anna-Sofie; Utzinger, Jürg; Vounatsou, Penelope; Hürlimann, Eveline; Schur, Nadine; Saarnak, Christopher F L; Simoonga, Christopher; Mubita, Patricia; Kabatereine, Narcis B; Tchuem Tchuenté, Louis-Albert; Rahbek, Carsten; Kristensen, Thomas K

    2013-11-01

    The geographical ranges of most species, including many infectious disease agents and their vectors and intermediate hosts, are assumed to be constrained by climatic tolerances, mainly temperature. It has been suggested that global warming will cause an expansion of the areas potentially suitable for infectious disease transmission. However, the transmission of infectious diseases is governed by a myriad of ecological, economic, evolutionary and social factors. Hence, a deeper understanding of the total disease system (pathogens, vectors and hosts) and its drivers is important for predicting responses to climate change. Here, we combine a growing degree day model for Schistosoma mansoni with species distribution models for the intermediate host snail (Biomphalaria spp.) to investigate large-scale environmental determinants of the distribution of the African S. mansoni-Biomphalaria system and potential impacts of climatic changes. Snail species distribution models included several combinations of climatic and habitat-related predictors; the latter divided into "natural" and "human-impacted" habitat variables to measure anthropogenic influence. The predictive performance of the combined snail-parasite model was evaluated against a comprehensive compilation of historical S. mansoni parasitological survey records, and then examined for two climate change scenarios of increasing severity for 2080. Future projections indicate that while the potential S. mansoni transmission area expands, the snail ranges are more likely to contract and/or move into cooler areas in the south and east. Importantly, we also note that even though climate per se matters, the impact of humans on habitat play a crucial role in determining the distribution of the intermediate host snails in Africa. Thus, a future contraction in the geographical range size of the intermediate host snails caused by climatic changes does not necessarily translate into a decrease or zero-sum change in human

  15. Host genetic risk factors for West Nile virus infection and disease progression.

    Directory of Open Access Journals (Sweden)

    Abigail W Bigham

    Full Text Available West Nile virus (WNV, a category B pathogen endemic in parts of Africa, Asia and Europe, emerged in North America in 1999, and spread rapidly across the continental U.S. Outcomes of infection with WNV range from asymptomatic to severe neuroinvasive disease manifested as encephalitis, paralysis, and/or death. Neuroinvasive WNV disease occurs in less than one percent of cases, and although host genetic factors are thought to influence risk for symptomatic disease, the identity of these factors remains largely unknown. We tested 360 common haplotype tagging and/or functional SNPs in 86 genes that encode key regulators of immune function in 753 individuals infected with WNV including: 422 symptomatic WNV cases and 331 cases with asymptomatic infections. After applying a Bonferroni correction for multiple tests and controlling for population stratification, SNPs in IRF3 (OR 0.54, p = 0.035 and MX1, (OR 0.19, p = 0.014 were associated with symptomatic WNV infection and a single SNP in OAS1 (OR 9.79, p = 0.003 was associated with increased risk for West Nile encephalitis and paralysis (WNE/P. Together, these results suggest that genetic variation in the interferon response pathway is associated with both risk for symptomatic WNV infection and WNV disease progression.

  16. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions

    Science.gov (United States)

    2013-06-23

    equine hosts. Thus, the genes retained in B. mallei share a high sequence similarity to genes common to B. pseudomallei (3), and many virulence...oppor- tunistic infections in mammalian hosts. Even for the equine - adapted and, thus, more genetically constrained, B. mallei pathogen, we cannot...BioDrugs: Clin. Immunotherapeut., Biopharmaceut. Gene Therapy 17, 413–424 88. Anderson, D. M., and Frank, D. W. (2012) Five mechanisms of manipula

  17. HSPA5 is an essential host factor for Ebola virus infection.

    Science.gov (United States)

    Reid, St Patrick; Shurtleff, Amy C; Costantino, Julie A; Tritsch, Sarah R; Retterer, Cary; Spurgers, Kevin B; Bavari, Sina

    2014-09-01

    Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures. Published by Elsevier B.V.

  18. Host selection by the shiny cowbird

    Science.gov (United States)

    Wiley, J.W.

    1988-01-01

    Factors important in Shiny Cowbird (Molothrus bonariensis) host selection were examined within the mangrove community in Puerto Rico. Cowbirds did not parasitize birds in proportion to their abundance. The cowbird breeding season coincided with those of its major hosts, which were 'high-quality' foster species (i.e., species that fledge .gtoreq. 55% of cowbirds hatched: Yellow Warbler, Dendroica petechia; Yellow-shouldered Blackbird, Agelaius xanthomus; Black-whiskered Vireo, Vireo altiloquus; Black-cowled Oriole, Icterus dominicensis; Peurto Rican Flycatcher, Myiarchus antillarum; Troupial, Icterus icterus), and did not extend into other periods even though nests of 'low-quality: species (i.e., species that fledge < 55% of cowbird chicks that hatched: Bronze Mannikin, Lonchura cucullata; Greater Antillean Grackle, Quiscalus niger; Gray Kingbird, Tyrannus dominicensis; Northern Mockingbird, Mimus polyglottos; Red-legged Thrush, Turdus plumbeus) were available. Shiny Cowbird food habits and egg size were similar to those of their hosts, suggesting that cowbirds choose hosts partly on the basis of this combination. Cowbirds located host nests primarily by cryptically watching activities of birds in likely habitats. Other nest locating strategies were active searching of suitable habitat and 'flushing' of hosts by the cowbird's noisy approach. Cowbirds closely monitored nest status with frequent visits that peaked on the host's first day of egg laying. Hosts using covered nests (e.g., cavities, domed nests) were as vulnerable to cowbird parasitism as those building open nests.

  19. Dual RNA-sequencing of Eucalyptus nitens during Phytophthora cinnamomi challenge reveals pathogen and host factors influencing compatibility

    Directory of Open Access Journals (Sweden)

    Febe Elizabeth Meyer

    2016-03-01

    Full Text Available Damage caused by Phytophthora cinnamomi Rands remains an important concern on forest tree species. The pathogen causes root and collar rot, stem cankers and dieback of various economically important Eucalyptus spp. In South Africa, susceptible cold tolerant Eucalyptus plantations have been affected by various Phytophthora spp. with P. cinnamomi considered one of the most virulent. The molecular basis of this compatible interaction is poorly understood. In this study, susceptible Eucalyptus nitens plants were stem inoculated with P. cinnamomi and tissue was harvested five days post inoculation. Dual RNA-sequencing, a technique which allows the concurrent detection of both pathogen and host transcripts during infection, was performed. Approximately 1% of the reads mapped to the draft genome of P. cinnamomi while 78% of the reads mapped to the Eucalyptus grandis genome. The highest expressed P. cinnamomi gene in planta was a putative crinkler effector (CRN1. Phylogenetic analysis indicated the high similarity of this P. cinnamomi CRN1 to that of Phytophthora infestans. Some CRN effectors are known to target host nuclei to suppress defense. In the host, over 1400 genes were significantly differentially expressed in comparison to mock inoculated trees, including suites of pathogenesis related (PR genes. In particular, a PR-9 peroxidase gene with a high similarity to a Carica papaya PR-9 ortholog previously shown to be suppressed upon infection by Phytophthora palmivora was down-regulated two-fold. This PR-9 gene may represent a cross-species effector target during P. cinnamomi infection. This study identified pathogenicity factors, potential manipulation targets and attempted host defense mechanisms activated by E. nitens that contributed to the susceptible outcome of the interaction.

  20. The influence of "host release factor" on carbon release by zooxanthellae isolated from fed and starved Aiptasia pallida (Verrill).

    Science.gov (United States)

    Davy, S K; Cook, C B

    2001-06-01

    Symbiotic dinoflagellates (zooxanthellae) typically respond to extracts of host tissue with enhanced release of short-term photosynthetic products. We examined this "host release factor" (HRF) response using freshly isolated zooxanthellae of differing nutritional status. The nutritional status was manipulated by either feeding or starving the sea anemone Aiptasia pallida (Verrill). The release of fixed carbon from isolated zooxanthellae was measured using 14C in 30 min experiments. Zooxanthellae in filtered seawater alone released approximately 5% of photosynthate irrespective of host feeding history. When we used a 10-kDa ultrafiltrate of A. pallida host tissue as a source of HRF, approximately 14% of photosynthate was released to the medium. This increased to over 25% for zooxanthellae from anemones starved for 29 days or more. The cell-specific photosynthetic rate declined with starvation in these filtrate experiments, but the decline was offset by the increased percentage release. Indeed, the total amount of released photosynthate remained unchanged, or even increased, as zooxanthellae became more nutrient deficient. Similar trends were also observed when zooxanthellae from A. pallida were incubated in a 3-kDa ultrafiltrate of the coral Montastraea annularis, suggesting that HRF in the different filtrates operated in a similar manner. Our results support the suggestion that HRF diverts surplus carbon away from storage compounds to translocated compounds such as glycerol.

  1. Einstein and the "Crucial" Experiment

    Science.gov (United States)

    Holton, Gerald

    1969-01-01

    Examines the widespread view that it was the crucial Michelson-Morley experiment that led Einstein to formulate the special relativity theory. From Einstein's writings, evidence is presented that no such direct genetic connection exists. The author suggests that the historian of science must resist the experimenticist's fallacy of imposing a…

  2. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence.

    Science.gov (United States)

    Josefsson, Elisabet; Higgins, Judy; Foster, Timothy J; Tarkowski, Andrej

    2008-05-21

    We have earlier shown that clumping factor A (ClfA), a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336) and Y(338), were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336)Y(338) mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336)Y(338) mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336) and Y(338) were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336)Y(338) mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336)SY(338)A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.

  3. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity.

    Science.gov (United States)

    Wątły, Joanna; Potocki, Sławomir; Rowińska-Żyrek, Magdalena

    2016-11-02

    Zinc is one of the most important metal nutrients for species from all kingdoms, being a key structural or catalytic component of hundreds of enzymes, crucial for the survival of both pathogenic microorganisms and their hosts. This work is an overview of the homeostasis of zinc in bacteria and humans. It explains the importance of this metal nutrient for pathogens, describes the roles of zinc sensors, regulators, and transporters, and summarizes various uptake systems and different proteins involved in zinc homeostasis-both those used for storage, buffering, and signaling inside the cell and those excreted in order to obtain Zn II from the host. The human zinc-dependent immune system response is explained, with a special focus given to 'zinc nutritional immunity', a process that describes the competition between the bacteria or fungus and the host for this metal, during which both the pathogen and host make huge efforts to control zinc availability. This sophisticated tug of war over Zn II might be considered as a possible target for novel antibacterial therapies. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  5. Host-Directed Therapeutics as a Novel Approach for Tuberculosis Treatment.

    Science.gov (United States)

    Kim, Ye-Ram; Yang, Chul-Su

    2017-09-28

    Despite significant efforts to improve the treatment of tuberculosis (TB), it remains a prevalent infectious disease worldwide owing to the limitations of current TB therapeutic regimens. Recent work on novel TB treatment strategies has suggested that directly targeting host factors may be beneficial for TB treatment. Such strategies, termed host-directed therapeutics (HDTs), focus on host-pathogen interactions. HDTs may be more effective than the currently approved TB drugs, which are limited by the long durations of treatment needed and the emergence of drug-resistant strains. Targets of HDTs include host factors such as cytokines, immune checkpoints, immune cell functions, and essential enzyme activities. This review article discusses examples of potentially promising HDTs and introduces novel approaches for their development.

  6. Highlights Regarding Host Predisposing Factors to Recurrent Vulvovaginal Candidiasis: Chronic Stress and Reduced Antioxidant Capacity.

    Science.gov (United States)

    Akimoto-Gunther, Luciene; Bonfim-Mendonça, Patrícia de Souza; Takahachi, Gisele; Irie, Mary Mayumi T; Miyamoto, Sônia; Consolaro, Márcia Edilaine Lopes; Svidzinsk, Terezinha I Estivalet

    2016-01-01

    We studied host factors that could predispose women to develop recurrent vulvovaginal candidiasis (RVVC), including glycemia, insulin resistance, chronic stress, antioxidant capacity, overall immune status, local inflammation and vaginal microbiota. The presence of yeasts in vaginal culture was screened in 277 women, with or without signs and symptoms of VVC and RVVC. The presence of an inflammatory process and microbiota were analyzed through vaginal bacterioscopy and cervical-vaginal cytology, respectively. Fasting-blood samples were collected by standard venipuncture for biochemical analyses. Flow cytometry was employed to obtain the T helper/T cytotoxic lymphocyte ratio, and insulin resistance was assessed by the HOMA index (HI). Yeasts were isolated from 71 (26%) women: 23 (32.4%) with a positive culture but without symptoms (COL), 22 (31%) in an acute episode (VVC), and 26 (36.6%) with RVVC. C. albicans was the main yeast isolated in all clinical profiles. The control group (negative culture) comprised 206 women. Diabetes mellitus and insulin resistance were more associated with the positive-culture groups (COL, VVC and RVVC) than with negative ones. The RVVC group showed lower mean levels of cortisol than the control group and lower antioxidant capacity than all other groups. The T Helper/T cytotoxic lymphocyte ratio was similar in all groups. The RVVC group showed a similar level of vaginal inflammation to the control group, and lower than in the COL and VVC groups. Only the CVV group showed a reduction in vaginal lactobacillus microbiota. Our data suggest that both chronic stress (decreased early-morning cortisol levels) and reduced antioxidant capacity can be host predisposing factors to RVVC.

  7. Highlights Regarding Host Predisposing Factors to Recurrent Vulvovaginal Candidiasis: Chronic Stress and Reduced Antioxidant Capacity.

    Directory of Open Access Journals (Sweden)

    Luciene Akimoto-Gunther

    Full Text Available We studied host factors that could predispose women to develop recurrent vulvovaginal candidiasis (RVVC, including glycemia, insulin resistance, chronic stress, antioxidant capacity, overall immune status, local inflammation and vaginal microbiota. The presence of yeasts in vaginal culture was screened in 277 women, with or without signs and symptoms of VVC and RVVC. The presence of an inflammatory process and microbiota were analyzed through vaginal bacterioscopy and cervical-vaginal cytology, respectively. Fasting-blood samples were collected by standard venipuncture for biochemical analyses. Flow cytometry was employed to obtain the T helper/T cytotoxic lymphocyte ratio, and insulin resistance was assessed by the HOMA index (HI. Yeasts were isolated from 71 (26% women: 23 (32.4% with a positive culture but without symptoms (COL, 22 (31% in an acute episode (VVC, and 26 (36.6% with RVVC. C. albicans was the main yeast isolated in all clinical profiles. The control group (negative culture comprised 206 women. Diabetes mellitus and insulin resistance were more associated with the positive-culture groups (COL, VVC and RVVC than with negative ones. The RVVC group showed lower mean levels of cortisol than the control group and lower antioxidant capacity than all other groups. The T Helper/T cytotoxic lymphocyte ratio was similar in all groups. The RVVC group showed a similar level of vaginal inflammation to the control group, and lower than in the COL and VVC groups. Only the CVV group showed a reduction in vaginal lactobacillus microbiota. Our data suggest that both chronic stress (decreased early-morning cortisol levels and reduced antioxidant capacity can be host predisposing factors to RVVC.

  8. A loss of function analysis of host factors influencing Vaccinia virus replication by RNA interference.

    Directory of Open Access Journals (Sweden)

    Philippa M Beard

    Full Text Available Vaccinia virus (VACV is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics.

  9. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

    Directory of Open Access Journals (Sweden)

    Brett Williams

    2011-06-01

    Full Text Available Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA. Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT or potassium oxalate (KOA restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue

  10. Crucial roles of NGF in dorsal horn plasticity in partially deafferentated cats.

    Science.gov (United States)

    Liu, Jia; Chen, Shan-Shan; Dan, Qi-Qin; Rong, Rong; Zhou, Xue; Zhang, Lian-Feng; Wang, Ting-Hua

    2011-04-01

    Though exogenous nerve growth factor (NGF) has been implicated in spinal cord plasticity, whether endogenous NGF plays a crucial role has not been established in vivo. This study investigated first the role of endogenous NGF in spinal dorsal horn (DH) plasticity following removal of L1-L5 and L7-S2 dorsal root ganglions (DRGs) in cats. Co-culture of chick embryo DRG with DH condition media, protein band fishing by cells as well as western blot showed that NGF could promote neurite growth in vitro. Immunohistochemistry and in situ hybridization technique revealed an increase in the NGF and NGF mRNA immunoreactive cells in the DH after partial deafferentation. Lastly, after blocking with NGF antibody, choleragen subunit B horseradish peroxidase (CB-HRP) tracing showed a reduction in the neuronal sprouting observed in the DH. Our results demonstrated that in the cat, endogenous NGF plays a crucial role in DH plasticity after partial deafferentation.

  11. Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.

    Science.gov (United States)

    Marzinelli, Ezequiel M; Campbell, Alexandra H; Zozaya Valdes, Enrique; Vergés, Adriana; Nielsen, Shaun; Wernberg, Thomas; de Bettignies, Thibaut; Bennett, Scott; Caporaso, J Gregory; Thomas, Torsten; Steinberg, Peter D

    2015-10-01

    Interactions between hosts and associated microbial communities can fundamentally shape the development and ecology of 'holobionts', from humans to marine habitat-forming organisms such as seaweeds. In marine systems, planktonic microbial community structure is mainly driven by geography and related environmental factors, but the large-scale drivers of host-associated microbial communities are largely unknown. Using 16S-rRNA gene sequencing, we characterized 260 seaweed-associated bacterial and archaeal communities on the kelp Ecklonia radiata from three biogeographical provinces spanning 10° of latitude and 35° of longitude across the Australian continent. These phylogenetically and taxonomically diverse communities were more strongly and consistently associated with host condition than geographical location or environmental variables, and a 'core' microbial community characteristic of healthy kelps appears to be lost when hosts become stressed. Microbial communities on stressed individuals were more similar to each other among locations than those on healthy hosts. In contrast to biogeographical patterns of planktonic marine microbial communities, host traits emerge as critical determinants of associated microbial community structure of these holobionts, even at a continental scale. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Modulation of Host Immunity by Human Respiratory Syncytial Virus Virulence Factors: A Synergic Inhibition of Both Innate and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Gisela Canedo-Marroquín

    2017-08-01

    Full Text Available The Human Respiratory Syncytial Virus (hRSV is a major cause of acute lower respiratory tract infections (ARTIs and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs. HRSV is an enveloped virus, a member of the Pneumoviridae family, with a non-segmented genome and negative polarity-single RNA that contains 10 genes encoding for 11 proteins. These include the Fusion protein (F, the Glycoprotein (G, and the Small Hydrophobic (SH protein, which are located on the virus surface. In addition, the Nucleoprotein (N, Phosphoprotein (P large polymerase protein (L part of the RNA-dependent RNA polymerase complex, the M2-1 protein as a transcription elongation factor, the M2-2 protein as a regulator of viral transcription and (M protein all of which locate inside the virion. Apart from the structural proteins, the hRSV genome encodes for the non-structural 1 and 2 proteins (NS1 and NS2. HRSV has developed different strategies to evade the host immunity by means of the function of some of these proteins that work as virulence factors to improve the infection in the lung tissue. Also, hRSV NS-1 and NS-2 proteins have been shown to inhibit the activation of the type I interferon response. Furthermore, the hRSV nucleoprotein has been shown to inhibit the immunological synapsis between the dendritic cells and T cells during infection, resulting in an inefficient T cell activation. Here, we discuss the hRSV virulence factors and the host immunological features raised during infection with this virus.

  13. Host Ecology Rather Than Host Phylogeny Drives Amphibian Skin Microbial Community Structure in the Biodiversity Hotspot of Madagascar

    OpenAIRE

    Bletz, Molly C.; Archer, Holly; Harris, Reid N.; McKenzie, Valerie J.; Rabemananjara, Falitiana C. E.; Rakotoarison, Andolalao; Vences, Miguel

    2017-01-01

    Host-associated microbiotas of vertebrates are diverse and complex communities that contribute to host health. In particular, for amphibians, cutaneous microbial communities likely play a significant role in pathogen defense; however, our ecological understanding of these communities is still in its infancy. Here, we take advantage of the fully endemic and locally species-rich amphibian fauna of Madagascar to investigate the factors structuring amphibian skin microbiota on a large scale. Usin...

  14. Manipulation of the Host Cell Membrane during Plasmodium Liver Stage Egress

    Directory of Open Access Journals (Sweden)

    Paul-Christian Burda

    2017-04-01

    Full Text Available A crucial step in the life cycle of Plasmodium parasites is the transition from the liver stage to the blood stage. Hepatocyte-derived merozoites reach the blood vessels of the liver inside host cell-derived vesicles called merosomes. The molecular basis of merosome formation is only partially understood. Here we show that Plasmodium berghei liver stage merozoites, upon rupture of the parasitophorous vacuole membrane, destabilize the host cell membrane (HCM and induce separation of the host cell actin cytoskeleton from the HCM. At the same time, the phospholipid and protein composition of the HCM appears to be substantially altered. This includes the loss of a phosphatidylinositol 4,5-bisphosphate (PIP2 reporter and the PIP2-dependent actin-plasma membrane linker ezrin from the HCM. Furthermore, transmembrane domain-containing proteins and palmitoylated and myristoylated proteins, as well as glycosylphosphatidylinositol-anchored proteins, lose their HCM localization. Collectively, these findings provide an explanation of HCM destabilization during Plasmodium liver stage egress and thereby contribute to our understanding of the molecular mechanisms that lead to merosome formation.

  15. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  16. Which native milkweeds are acceptable host plants for larval monarch butterflies (Danaus plexippus) within the Midwestern U.S.

    Science.gov (United States)

    Over the past two decades, the population of monarch butterflies east of the Rocky Mountains has experienced a significant decline. Habitat restoration within the summer breeding range is crucial to boost population numbers. Monarch butterfly larvae use milkweeds as their only host plant. However, l...

  17. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  18. Salmonella Typhimurium metabolism affects virulence in the host – A mini-review

    DEFF Research Database (Denmark)

    Herrero-fresno, Ana; Olsen, John Elmerdhahl

    2018-01-01

    Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S....... Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly...

  19. The case of a city where 1 in 6 residents is a refugee: ecological factors and host community adaptation in successful resettlement.

    Science.gov (United States)

    Smith, R Scott

    2008-12-01

    The notable success of an upstate New York community in resettling refugees raises the question of whether multiple waves of resettlement over a 15-year period have resulted in greater accommodation to refugees. Structured interviews based on transactional models of acculturation were used along with archival data to explore ecological factors supporting a host community's behavioral flexibility and perseverance in response to the influx of refugees. Evidence suggests that socioeconomic climate, historical background/social norms, and the organizational structure of agencies involved in resettlement moderate successful inclusion of refugees into a host community in a bidirectional process.

  20. Expansion of donor-reactive host T cells in primary graft failure after allogeneic hematopoietic SCT following reduced-intensity conditioning.

    Science.gov (United States)

    Koyama, M; Hashimoto, D; Nagafuji, K; Eto, T; Ohno, Y; Aoyama, K; Iwasaki, H; Miyamoto, T; Hill, G R; Akashi, K; Teshima, T

    2014-01-01

    Graft rejection remains a major obstacle in allogeneic hematopoietic SCT following reduced-intensity conditioning (RIC-SCT), particularly after cord blood transplantation (CBT). In a murine MHC-mismatched model of RIC-SCT, primary graft rejection was associated with activation and expansion of donor-reactive host T cells in peripheral blood and BM early after SCT. Donor-derived dendritic cells are at least partly involved in host T-cell activation. We then evaluated if such an expansion of host T cells could be associated with graft rejection after RIC-CBT. Expansion of residual host lymphocytes was observed in 4/7 patients with graft rejection at 3 weeks after CBT, but in none of the 17 patients who achieved engraftment. These results suggest the crucial role of residual host T cells after RIC-SCT in graft rejection and expansion of host T cells could be a marker of graft rejection. Development of more efficient T cell-suppressive conditioning regimens may be necessary in the context of RIC-SCT.

  1. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence.

    Directory of Open Access Journals (Sweden)

    Elisabet Josefsson

    Full Text Available We have earlier shown that clumping factor A (ClfA, a fibrinogen binding surface protein of Staphylococcus aureus, is an important virulence factor in septic arthritis. When two amino acids in the ClfA molecule, P(336 and Y(338, were changed to serine and alanine, respectively, the fibrinogen binding property was lost. ClfAP(336Y(338 mutants have been constructed in two virulent S. aureus strains Newman and LS-1. The aim of this study was to analyze if these two amino acids which are vital for the fibrinogen binding of ClfA are of importance for the ability of S. aureus to generate disease. Septic arthritis or sepsis were induced in mice by intravenous inoculation of bacteria. The clfAP(336Y(338 mutant induced significantly less arthritis than the wild type strain, both with respect to severity and frequency. The mutant infected mice developed also a much milder systemic inflammation, measured as lower mortality, weight loss, bacterial growth in kidneys and lower IL-6 levels. The data were verified with a second mutant where clfAP(336 and Y(338 were changed to alanine and serine respectively. When sepsis was induced by a larger bacterial inoculum, the clfAP(336Y(338 mutants induced significantly less septic death. Importantly, immunization with the recombinant A domain of ClfAP(336SY(338A mutant but not with recombinant ClfA, protected against septic death. Our data strongly suggest that the fibrinogen binding activity of ClfA is crucial for the ability of S. aureus to provoke disease manifestations, and that the vaccine potential of recombinant ClfA is improved by removing its ability to bind fibrinogen.

  2. No Major Host Genetic Risk Factor Contributed to A(H1N1)2009 Influenza Severity.

    Science.gov (United States)

    Garcia-Etxebarria, Koldo; Bracho, María Alma; Galán, Juan Carlos; Pumarola, Tomàs; Castilla, Jesús; Ortiz de Lejarazu, Raúl; Rodríguez-Dominguez, Mario; Quintela, Inés; Bonet, Núria; Garcia-Garcerà, Marc; Domínguez, Angela; González-Candelas, Fernando; Calafell, Francesc

    2015-01-01

    While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10-8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course.

  3. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance.

    Science.gov (United States)

    Alyokhin, Andrei; Chen, Yolanda H

    2017-06-01

    Insecticide resistance is a serious economic problem that jeopardizes sustainability of chemical control of herbivorous insects and related arthropods. It can be viewed as a specific case of adaptation to toxic chemicals, which has been driven in large part, but not exclusively, by the necessity for insect pests to tolerate defensive compounds produced by their host plants. Synthetic insecticides may simply change expression of specific sets of detoxification genes that have evolved due to ancestral associations with host plants. Feeding on host plants with more abundant or novel secondary metabolites has even been shown to prime insect herbivores to tolerate pesticides. Clear understanding of basic evolutionary processes is important for achieving lasting success in managing herbivorous arthropods. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Crucial test of the Dirac cosmologies

    International Nuclear Information System (INIS)

    Steigman, G.

    1978-01-01

    In a cosmology consistent with the Cosmological Principle (large scale, statistical isotropy and homogeneity of the universe), a Planck spectrum is not preserved as the universe evolves unless the number of photons in a comoving volume is conserved. It is shown that a large class of cosmological models based on Dirac's Large Numbers Hypothesis (LNH) violate this constraint. The observed isotropy and spectral distribution of the microwave background radiation thus provide a crucial test of such cosmologies. After reviewing the LNH, the general evolution of radiation spectra in cosmologies consistent with the cosmological principle is outlined. It is shown that the predicted deviations from a Planck spectrum for Dirac cosmologies (as well as for ''tired-light'' cosmologies) are enormous. The Planckian (or near-Planckian) spectral form for the microwave radiation provides a crucial test, failed by such cosmologies

  5. Host state screening process: Regional management plan: [Final report

    International Nuclear Information System (INIS)

    Drobny, N.L.

    1986-01-01

    This report discusses the procedure and cirteria that the Commission selected for designating a host state, should a state not volunteer for this role. Section 2 describes the wide range of approaches considered. Advantages and disadvantages of each are reviewed briefly, and the overall timetable established by the Commission for host state selection is presented. Section 3 describes the selected process for host state designation which involves emphasis on waste quantities generated and transportation factors. Section 4 presents relevant data on characteristics of wastes presently generated and presents estimates for future waste generation to Year 2015. Section 5 presents the results of transportation analyses considering the distance over which waste would be transported and safety (accident) statistics for waste transport routes. Section 6 integrates the conclusions from the analysis of waste volumes generated and transportation factors and suggests how these results might be used to designate a host state. 11 refs., 6 figs., 9 tabs

  6. Cerebrospinal Fluid Leak at Percutaneous Exit of Ventricular Catheter as a Crucial Risk Factor for External Ventricular Drainage-Related Infection in Adult Neurosurgical Patients.

    Science.gov (United States)

    Park, Jaechan; Choi, Yeon-Ju; Ohk, Boram; Chang, Hyun-Ha

    2018-01-01

    The placement of a ventricular catheter for temporary cerebrospinal fluid (CSF) diversion is associated with a considerable risk of CSF infection. The authors investigated the effect of a CSF leak on CSF-related infection and the predisposing factors for a CSF leak. Fifty-two patients who underwent external ventricular drainage (EVD) for acute hydrocephalus associated with a subarachnoid hemorrhage or intraventricular hemorrhage (IVH) were enrolled in this prospective study. A CSF leak-detection paper (small sterilized filter paper) was applied at the percutaneous catheter exit site to check for any bloody CSF leak. In addition, radiologic and clinical data were collected. Four of the 52 patients (7.7%) developed an EVD-related CSF infection from organisms including Staphylococcus epidermidis (n = 3) and Staphylococcus hominis (n = 1). A prolonged CSF leak >1 day was detected in 9 patients (17.3%) and revealed as a significant risk factor for CSF infection with a 44.4% positive predictive value. Moreover, an IVH >10 mL was found in 11 patients (21.2%) and revealed as a significant predisposing factor for a CSF leak at the percutaneous catheter exit. A prolonged CSF leak for >1 day at the percutaneous catheter exit site is a crucial risk factor for EVD-related CSF infection and an IVH >10 mL is a predisposing factor for a CSF leak. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Host Factors Influencing the Retrohoming Pathway of Group II Intron RmInt1, Which Has an Intron-Encoded Protein Naturally Devoid of Endonuclease Activity.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Bacterial group II introns are self-splicing catalytic RNAs and mobile retroelements that have an open reading frame encoding an intron-encoded protein (IEP with reverse transcriptase (RT and RNA splicing or maturase activity. Some IEPs carry a DNA endonuclease (En domain, which is required to cleave the bottom strand downstream from the intron-insertion site for target DNA-primed reverse transcription (TPRT of the inserted intron RNA. Host factors complete the insertion of the intron. By contrast, the major retrohoming pathway of introns with IEPs naturally lacking endonuclease activity, like the Sinorhizobium meliloti intron RmInt1, is thought to involve insertion of the intron RNA into the template for lagging strand DNA synthesis ahead of the replication fork, with possible use of the nascent strand to prime reverse transcription of the intron RNA. The host factors influencing the retrohoming pathway of such introns have not yet been described. Here, we identify key candidates likely to be involved in early and late steps of RmInt1 retrohoming. Some of these host factors are common to En+ group II intron retrohoming, but some have different functions. Our results also suggest that the retrohoming process of RmInt1 may be less dependent on the intracellular free Mg2+ concentration than those of other group II introns.

  8. Gastrointestinal function in the parasitized host

    International Nuclear Information System (INIS)

    Castro, G.A.

    1981-01-01

    Emphasis in this review is on (1) digestive-absorptive, secretory and smooth muscle functions altered by gastrointestinal (GI) parasites, (2) mechanisms by which parasites induce changes, and (3) the influence of parasite-induced alterations on the health of the host. Examples involving laboratory and domestic animals indicate that inflammation is an important factor in pathological alterations in epithelial and smooth muscle tissues throughout the alimentary canal. Observations on GI secretory activity reveal an influence of parasites on the host GI endocrine system. It is argued that assessments of the significance of parasite-induced changes on the host must be balanced with the adaptive potential and 'reserve capacity' of the GI system. In this regard host immunity should be considered a specific adaptation. Some tracer studies are mentioned marginally, such as the use of 14 C polyethylene glycol to estimate the direction of not fluid movement in the small intestine, and the use of 51 Cr to demonstrate the significantly faster intestinal transit in Trichinella spiralis infected animals

  9. Crucial Role of Legionella pneumophila TolC in the Inhibition of Cellular Trafficking in the Protistan Host Paramecium tetraurelia.

    Science.gov (United States)

    Nishida, Takashi; Hara, Naho; Watanabe, Kenta; Shimizu, Takashi; Fujishima, Masahiro; Watarai, Masahisa

    2018-01-01

    Legionella pneumophila is a facultative intracellular Gram-negative bacterium, which is a major causative agent of Legionnaires' disease. In the environment, this bacterium survives in free-living protists such as amoebae and Tetrahymena . The association of L. pneumophila and protists leads to the replication and spread of this bacterium. Thus, from a public health perspective, their association can enhance the risk of L. pneumophila infection for humans. Paramecium spp. are candidates of natural hosts of L. pneumophila , but their detailed relationships remain unclear. In the present study, we used an environmental strain, L. pneumophila Ofk308 (Ofk308) and Paramecium tetraurelia st110-1a to reveal the relationship between L. pneumophila and Paramecium spp. Ofk308 was cytotoxic to P. tetraurelia in an infection-dependent manner. We focused on TolC, a component of the type I secretion system, which is a virulence factor of L. pneumophila toward protists and found that cytotoxicity was dependent on TolC but not on other T1SS components. Further, the number of bacteria in P. tetraurelia was not associated with cytotoxicity and TolC was not involved in the mechanism of resistance against the digestion of P. tetraurelia in Ofk308. We used a LysoTracker to evaluate the maturation process of P. tetraurelia phagosomes containing Ofk308. We found that there was no difference between Ofk308 and the tolC -deletion mutant. To assess the phagocytic activity of P. tetraurelia , Texas Red-conjugated dextran-uptake assays were performed. Ofk308 inhibited phagosome formation by P. tetraurelia through a TolC-dependent mechanism. Further, we evaluated the excretion of Legionella -containing vacuoles from P. tetraurelia . We found that P. tetraurelia failed to excrete undigested Ofk308 and that Ofk308 remained within cells through a TolC-dependent mechanism. Our results suggest that TolC is essential for L. pneumophila to remain within Paramecium cells and to show cytotoxicity

  10. Crucial Role of Legionella pneumophila TolC in the Inhibition of Cellular Trafficking in the Protistan Host Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Takashi Nishida

    2018-04-01

    Full Text Available Legionella pneumophila is a facultative intracellular Gram-negative bacterium, which is a major causative agent of Legionnaires’ disease. In the environment, this bacterium survives in free-living protists such as amoebae and Tetrahymena. The association of L. pneumophila and protists leads to the replication and spread of this bacterium. Thus, from a public health perspective, their association can enhance the risk of L. pneumophila infection for humans. Paramecium spp. are candidates of natural hosts of L. pneumophila, but their detailed relationships remain unclear. In the present study, we used an environmental strain, L. pneumophila Ofk308 (Ofk308 and Paramecium tetraurelia st110-1a to reveal the relationship between L. pneumophila and Paramecium spp. Ofk308 was cytotoxic to P. tetraurelia in an infection-dependent manner. We focused on TolC, a component of the type I secretion system, which is a virulence factor of L. pneumophila toward protists and found that cytotoxicity was dependent on TolC but not on other T1SS components. Further, the number of bacteria in P. tetraurelia was not associated with cytotoxicity and TolC was not involved in the mechanism of resistance against the digestion of P. tetraurelia in Ofk308. We used a LysoTracker to evaluate the maturation process of P. tetraurelia phagosomes containing Ofk308. We found that there was no difference between Ofk308 and the tolC-deletion mutant. To assess the phagocytic activity of P. tetraurelia, Texas Red-conjugated dextran-uptake assays were performed. Ofk308 inhibited phagosome formation by P. tetraurelia through a TolC-dependent mechanism. Further, we evaluated the excretion of Legionella-containing vacuoles from P. tetraurelia. We found that P. tetraurelia failed to excrete undigested Ofk308 and that Ofk308 remained within cells through a TolC-dependent mechanism. Our results suggest that TolC is essential for L. pneumophila to remain within Paramecium cells and to show

  11. Trichinella inflammatory myopathy: host or parasite strategy?

    Directory of Open Access Journals (Sweden)

    Chiumiento Lorena

    2011-03-01

    Full Text Available Abstract The parasitic nematode Trichinella has a special relation with muscle, because of its unique intracellular localization in the skeletal muscle cell, completely devoted in morphology and biochemistry to become the parasite protective niche, otherwise called the nurse cell. The long-lasting muscle infection of Trichinella exhibits a strong interplay with the host immune response, mainly characterized by a Th2 phenotype. The aim of this review is to illustrate the role of the Th2 host immune response at the muscle level during trichinellosis in different experimental models, such as knock-out or immuno-modulated mice. In particular, in knock-out mice a crucial role of IL-10 is evident for the regulation of inflammation intensity. The muscular host immune response to Trichinella is partially regulated by the intestinal phase of the parasite which emphasizes the intensity of the following muscle inflammation compared with animals infected by synchronized injections of newborn larvae. In eosinophil-ablated mice such as PHIL and GATA-- animals it was observed that there was an increased NOS2 expression in macrophages, driven by higher IFN-γ release, thus responsible for muscle larva damage. Besides modulation of the intestinal stage of the infection, using recombinant IL-12, increases the muscular parasite burden delaying adult worm expulsion from the intestine. Furthermore, a Th1 adjuvant of bacterial origin called Helicobacter pylori neutrophil activating protein (HP-NAP, administered during the intestinal phase of trichinellosis, alters the Th2 dependent response at muscle level. All these data from the literature delineate then a mutual adaptation between parasite and host immune response in order to achieve a strategic compromise between two evolutionary forces pointed towards the survival of both species.

  12. Bacterial Serine/Threonine Protein Kinases in Host-Pathogen Interactions*

    Science.gov (United States)

    Canova, Marc J.; Molle, Virginie

    2014-01-01

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection. PMID:24554701

  13. Bacterial serine/threonine protein kinases in host-pathogen interactions.

    Science.gov (United States)

    Canova, Marc J; Molle, Virginie

    2014-04-04

    In bacterial pathogenesis, monitoring and adapting to the dynamically changing environment in the host and an ability to disrupt host immune responses are critical. The virulence determinants of pathogenic bacteria include the sensor/signaling proteins of the serine/threonine protein kinase (STPK) family that have a dual role of sensing the environment and subverting specific host defense processes. STPKs can sense a wide range of signals and coordinate multiple cellular processes to mount an appropriate response. Here, we review some of the well studied bacterial STPKs that are essential virulence factors and that modify global host responses during infection.

  14. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    Science.gov (United States)

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  15. Host-to-host variation of ecological interactions in polymicrobial infections

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  16. Host-to-host variation of ecological interactions in polymicrobial infections.

    Science.gov (United States)

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-12-04

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  17. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    Science.gov (United States)

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from.

  18. Crowding, Entropic Forces, and Confinement: Crucial Factors for Structures and Functions in the Cell Nucleus.

    Science.gov (United States)

    Hancock, R

    2018-04-01

    The view of the cell nucleus as a crowded system of colloid particles and that chromosomes are giant self-avoiding polymers is stimulating rapid advances in our understanding of its structure and activities, thanks to concepts and experimental methods from colloid, polymer, soft matter, and nano sciences and to increased computational power for simulating macromolecules and polymers. This review summarizes current understanding of some characteristics of the molecular environment in the nucleus, of how intranuclear compartments are formed, and of how the genome is highly but precisely compacted, and underlines the crucial, subtle, and sometimes unintuitive effects on structures and reactions of entropic forces caused by the high concentration of macromolecules in the nucleus.

  19. Ecological and genetic factors influencing the transition between host-use strategies in sympatric Heliconius butterflies.

    Science.gov (United States)

    Merrill, R M; Naisbit, R E; Mallet, J; Jiggins, C D

    2013-09-01

    Shifts in host-plant use by phytophagous insects have played a central role in their diversification. Evolving host-use strategies will reflect a trade-off between selection pressures. The ecological niche of herbivorous insects is partitioned along several dimensions, and if populations remain in contact, recombination will break down associations between relevant loci. As such, genetic architecture can profoundly affect the coordinated divergence of traits and subsequently the ability to exploit novel habitats. The closely related species Heliconius cydno and H. melpomene differ in mimetic colour pattern, habitat and host-plant use. We investigate the selection pressures and genetic basis underlying host-use differences in these two species. Host-plant surveys reveal that H. melpomene specializes on a single species of Passiflora. This is also true for the majority of other Heliconius species in secondary growth forest at our study site, as expected under a model of interspecific competition. In contrast, H. cydno, which uses closed-forest habitats where both Heliconius and Passiflora are less common, appears not to be restricted by competition and uses a broad selection of the available Passiflora. However, other selection pressures are likely involved, and field experiments reveal that early larval survival of both butterfly species is highest on Passiflora menispermifolia, but most markedly so for H. melpomene, the specialist on that host. Finally, we demonstrate an association between host-plant acceptance and colour pattern amongst interspecific hybrids, suggesting that major loci underlying these important ecological traits are physically linked in the genome. Together, our results reveal ecological and genetic associations between shifts in habitat, host use and mimetic colour pattern that have likely facilitated both speciation and coexistence. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  20. Constraints on host choice: why do parasitic birds rarely exploit some common potential hosts?

    Czech Academy of Sciences Publication Activity Database

    Grim, T.; Samaš, P.; Moskát, C.; Kleven, O.; Honza, Marcel; Moksnes, A.; Roskaft, E.; Stokke, B. G.

    2011-01-01

    Roč. 80, č. 3 (2011), s. 508-518 ISSN 0021-8790 R&D Projects: GA AV ČR IAA600930605 Institutional research plan: CEZ:AV0Z60930519 Keywords : antiparasite defence * co-evolution * host selection * interactive effects * parasite avoidance Subject RIV: EG - Zoology Impact factor: 4.937, year: 2011

  1. Host-to-host variation of ecological interactions in polymicrobial infections

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Das, Jayajit; Weimer, Kristin E; Swords, W Edward

    2015-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host–microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. (paper)

  2. Toxoplasma gondii infection specifically increases the levels of key host microRNAs.

    Directory of Open Access Journals (Sweden)

    Gusti M Zeiner

    2010-01-01

    Full Text Available The apicomplexan parasite Toxoplasma gondii can infect and replicate in virtually any nucleated cell in many species of warm-blooded animals; thus, it has evolved the ability to exploit well-conserved biological processes common to its diverse hosts. Here we have investigated whether Toxoplasma modulates the levels of host microRNAs (miRNAs during infection.Using microarray profiling and a combination of conventional molecular approaches we report that Toxoplasma specifically modulates the expression of important host microRNAs during infection. We show that both the primary transcripts for miR-17 approximately 92 and miR-106b approximately 25 and the pivotal miRNAs that are derived from miR-17 approximately 92 display increased abundance in Toxoplasma-infected primary human cells; a Toxoplasma-dependent up-regulation of the miR-17 approximately 92 promoter is at least partly responsible for this increase. The abundance of mature miR-17 family members, which are derived from these two miRNA clusters, remains unchanged in host cells infected with the closely related apicomplexan Neospora caninum; thus, the Toxoplasma-induced increase in their abundance is a highly directed process rather than a general host response to infection.Altered levels of miR-17 approximately 92 and miR-106b approximately 25 are known to play crucial roles in mammalian cell regulation and have been implicated in numerous hyperproliferative diseases although the mechanisms driving their altered expression are unknown. Hence, in addition to the implications of these findings on the host-pathogen interaction, Toxoplasma may represent a powerful probe for understanding the normal mechanisms that regulate the levels of key host miRNAs.

  3. Staphylococcal Immune Evasion Proteins: Structure, Function, and Host Adaptation.

    Science.gov (United States)

    Koymans, Kirsten J; Vrieling, Manouk; Gorham, Ronald D; van Strijp, Jos A G

    2017-01-01

    Staphylococcus aureus is a successful human and animal pathogen. Its pathogenicity is linked to its ability to secrete a large amount of virulence factors. These secreted proteins interfere with many critical components of the immune system, both innate and adaptive, and hamper proper immune functioning. In recent years, numerous studies have been conducted in order to understand the molecular mechanism underlying the interaction of evasion molecules with the host immune system. Structural studies have fundamentally contributed to our understanding of the mechanisms of action of the individual factors. Furthermore, such studies revealed one of the most striking characteristics of the secreted immune evasion molecules: their conserved structure. Despite high-sequence variability, most immune evasion molecules belong to a small number of structural categories. Another remarkable characteristic is that S. aureus carries most of these virulence factors on mobile genetic elements (MGE) or ex-MGE in its accessory genome. Coevolution of pathogen and host has resulted in immune evasion molecules with a highly host-specific function and prevalence. In this review, we explore how these shared structures and genomic locations relate to function and host specificity. This is discussed in the context of therapeutic options for these immune evasion molecules in infectious as well as in inflammatory diseases.

  4. Seasonal forcing in a host-macroparasite system.

    Science.gov (United States)

    Taylor, Rachel A; White, Andrew; Sherratt, Jonathan A

    2015-01-21

    Seasonal forcing represents a pervasive source of environmental variability in natural systems. Whilst it is reasonably well understood in interacting populations and host-microparasite systems, it has not been studied in detail for host-macroparasite systems. In this paper we analyse the effect of seasonal forcing in a general host-macroparasite system with explicit inclusion of the parasite larval stage and seasonal forcing applied to the birth rate of the host. We emphasise the importance of the period of the limit cycles in the unforced system on the resulting dynamics in the forced system. In particular, when subject to seasonal forcing host-macroparasite systems are capable of multi-year cycles, multiple solution behaviour, quasi-periodicity and chaos. The host-macroparasite systems show a larger potential for multiple solution behaviour and a wider range of periodic solutions compared to similar interacting population and microparasite systems. By examining the system for parameters that represent red grouse and the macroparasite nematode Trichostrongylus tenuis we highlight how seasonality could be an important factor in explaining the wide range of seemingly uncorrelated cycle periods observed in grouse abundance in England and Scotland. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Trust building electronic services as a crucial self-regulation feature of Digital Business Ecosystems

    Directory of Open Access Journals (Sweden)

    Radoslav Delina

    2012-04-01

    Full Text Available In the field of digital business ecosystem, the self-regulation feature plays crucial role. ICT supports biological and sociological phenomena through efficient electronic services. One of the main roles is building and enhancing efficient relationships between actors within the ecosystem. Problem of interaction between commercial subjects depends on expected benefits. These expectations are predictors of successful result from realized transaction with potential partner. And this predictor is based on trust and trustworthiness. The paper presents trust as crucial factor for cooperation and discusses specifics of several trust building mechanisms to increase the level of trust in e-cooperation within digital business ecosystems. Based on results provided by questionnaire survey in Slovak business environment, the paper discusses the relationship between the level of respondents´ electronic business experience and their preferences for the portfolio of trust building mechanisms.

  6. A spatial model of mosquito host-seeking behavior.

    Directory of Open Access Journals (Sweden)

    Bree Cummins

    Full Text Available Mosquito host-seeking behavior and heterogeneity in host distribution are important factors in predicting the transmission dynamics of mosquito-borne infections such as dengue fever, malaria, chikungunya, and West Nile virus. We develop and analyze a new mathematical model to describe the effect of spatial heterogeneity on the contact rate between mosquito vectors and hosts. The model includes odor plumes generated by spatially distributed hosts, wind velocity, and mosquito behavior based on both the prevailing wind and the odor plume. On a spatial scale of meters and a time scale of minutes, we compare the effectiveness of different plume-finding and plume-tracking strategies that mosquitoes could use to locate a host. The results show that two different models of chemotaxis are capable of producing comparable results given appropriate parameter choices and that host finding is optimized by a strategy of flying across the wind until the odor plume is intercepted. We also assess the impact of changing the level of host aggregation on mosquito host-finding success near the end of the host-seeking flight. When clusters of hosts are more tightly associated on smaller patches, the odor plume is narrower and the biting rate per host is decreased. For two host groups of unequal number but equal spatial density, the biting rate per host is lower in the group with more individuals, indicative of an attack abatement effect of host aggregation. We discuss how this approach could assist parameter choices in compartmental models that do not explicitly model the spatial arrangement of individuals and how the model could address larger spatial scales and other probability models for mosquito behavior, such as Lévy distributions.

  7. Serpin functions in host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Jialing Bao

    2018-04-01

    Full Text Available Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.

  8. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation

    NARCIS (Netherlands)

    Creemers, L. B.; Meng, X.; den Ouden, K.; van Pelt, A. M. M.; Izadyar, F.; Santoro, M.; Sariola, H.; de rooij, D. G.

    2002-01-01

    With a novel method of eliminating spermatogenesis in host animals, male germ cells isolated from mice with targeted overexpression of glial cell line-derived neurotrophic factor (GDNF) were transplanted to evaluate their ability to reproduce the phenotype previously found in the transgenic animals.

  9. Variations on the larval incubation of Anodontites trapesialis (Unionoida, Mycetopodidae: Synergetic effect of the environmental factors and host availability

    Directory of Open Access Journals (Sweden)

    CT. Callil

    Full Text Available The unionid Anodontites trapesilais (Lamarck, 1819 like most freshwater mussels is a parasite of fish. So it is trivial to assume that the availability of hosts is an important factor for the maintenance of unionoid populations. What seems obvious is not always so easy to demonstrate. This study proposes to investigate the effects of abiotic and biotic variables related to the incubation of larvae in A. trapesialis. For this, we estimate different biological indexes and try to capture the dimensionality of the fish, along with the temporal variation of environmental variables. From the application of a CCA, it was demonstrated that there was a synchronicity among the factors and variables proposed here, and we infer that the flood pulse acts as a synergistic factor in this process.

  10. Modelling the effect of an alternative host population on the spread of citrus Huanglongbing

    Science.gov (United States)

    d'A. Vilamiu, Raphael G.; Ternes, Sonia; Laranjeira, Francisco F.; de C. Santos, Tâmara T.

    2013-10-01

    The objective of this work was to model the spread of citrus Huanglongbing (HLB) considering the presence of a population of alternative hosts (Murraya paniculata). We developed a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delays in the latency and incubation phases of the disease in the plants and a delay period on the nymphal stage of Diaphorina citri, the insect vector of HLB in Brazil. The results of numerical simulations indicate that alternative hosts should not play a crucial role on HLB dynamics considering a typical scenario for the Recôncavo Baiano region in Brazil . Also, the current policy of removing symptomatic plants every three months should not be expected to significantly hinder HLB spread.

  11. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa

    DEFF Research Database (Denmark)

    Stensgaard, Anna-Sofie; Utzinger, Jürg; Vounatsou, Penelope

    2013-01-01

    The geographical ranges of most species, including many infectious disease agents and their vectors and intermediate hosts, are assumed to be constrained by climatic tolerances, mainly temperature. It has been suggested that global warming will cause an expansion of the areas potentially suitable...... impacts of climatic changes. Snail species distribution models included several combinations of climatic and habitat-related predictors; the latter divided into "natural" and "human-impacted" habitat variables to measure anthropogenic influence. The predictive performance of the combined snail...... are more likely to contract and/or move into cooler areas in the south and east. Importantly, we also note that even though climate per se matters, the impact of humans on habitat play a crucial role in determining the distribution of the intermediate host snails in Africa. Thus, a future contraction...

  12. Dynamical System and Nonlinear Regression for Estimate Host-Parasitoid Relationship

    Directory of Open Access Journals (Sweden)

    Ileana Miranda Cabrera

    2010-01-01

    Full Text Available The complex relationships of a crop with the pest, its natural enemies, and the climate factors exist in all the ecosystems, but the mathematic models has studied only some components to know the relation cause-effect. The most studied system has been concerned with the relationship pest-natural enemies such as prey-predator or host-parasitoid. The present paper shows a dynamical system for studying the relationship host-parasitoid (Diaphorina citri, Tamarixia radiata and shows that a nonlinear model permits the estimation of the parasite nymphs using nymphs healthy as the known variable. The model showed the functional answer of the parasitoid, in which a point arrives that its density is not augmented although the number host increases, and it becomes necessary to intervene in the ecosystem. A simple algorithm is used to estimate the parasitoids level using the priori relationship between the host and the climate factors and then the nonlinear model.

  13. Coxsackievirus mutants that can bypass host factor PI4KIIIbeta and the need for high levels of PI4P lipids for replication

    NARCIS (Netherlands)

    van der Schaar, H.M.; van der Linden, L.; Lanke, K.H.W.; Strating, J.R.P.M.; Purstinger, G.; Vries, E. De; de Haan, C.A.; Neyts, J.; Kuppeveld, F.J.M. van

    2012-01-01

    RNA viruses can rapidly mutate and acquire resistance to drugs that directly target viral enzymes, which poses serious problems in a clinical context. Therefore, there is a growing interest in the development of antiviral drugs that target host factors critical for viral replication, since they are

  14. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    Science.gov (United States)

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  15. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  16. Ontology-based representation and analysis of host-Brucella interactions.

    Science.gov (United States)

    Lin, Yu; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host

  17. Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains?

    NARCIS (Netherlands)

    Juárez, M.L.; Schöfl, G.; Vera, M.T.; Vilardi, J.C.; Murúa, M.G.; Willink, E.; Hänniger, S.; Heckel, D.G.; Groot, A.T.

    2014-01-01

    Determining which factors contribute to the formation and maintenance of genetic divergence to evaluate their relative importance as a cause of biological differentiation is among the major challenges in evolutionary biology. In Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) two host strains

  18. Host nutrition alters the variance in parasite transmission potential.

    Science.gov (United States)

    Vale, Pedro F; Choisy, Marc; Little, Tom J

    2013-04-23

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.

  19. Uncovering the drivers of host-associated microbiota with joint species distribution modelling.

    Science.gov (United States)

    Björk, Johannes R; Hui, Francis K C; O'Hara, Robert B; Montoya, Jose M

    2018-06-01

    In addition to the processes structuring free-living communities, host-associated microbiota are directly or indirectly shaped by the host. Therefore, microbiota data have a hierarchical structure where samples are nested under one or several variables representing host-specific factors, often spanning multiple levels of biological organization. Current statistical methods do not accommodate this hierarchical data structure and therefore cannot explicitly account for the effect of the host in structuring the microbiota. We introduce a novel extension of joint species distribution models (JSDMs) which can straightforwardly accommodate and discern between effects such as host phylogeny and traits, recorded covariates such as diet and collection site, among other ecological processes. Our proposed methodology includes powerful yet familiar outputs seen in community ecology overall, including (a) model-based ordination to visualize and quantify the main patterns in the data; (b) variance partitioning to assess how influential the included host-specific factors are in structuring the microbiota; and (c) co-occurrence networks to visualize microbe-to-microbe associations. © 2018 John Wiley & Sons Ltd.

  20. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  1. Associate host in single-layer co-host polymer electrophosphorescent devices

    International Nuclear Information System (INIS)

    Wang Yuanmin; Teng Feng; Feng Bin; Wang Yongsheng; Xu Xurong

    2006-01-01

    The definition and role of 'host' in polymer LED materials are studied in the present work. 'Primary host' and 'associate host' have been proposed and the rules of how to select an associate host are reported. Based on our experiments and the analysis of the energy scheme of the devices, we suggest that the values of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) are critical determinant in selecting a suitable associate host. On one hand, the associate host should be a hole-blocking material. This can confine the excitons in the active layer. On the other hand, the associate host should have a suitable LUMO that is convenient for electrons to transport

  2. Host cell proteins in biotechnology-derived products: A risk assessment framework.

    Science.gov (United States)

    de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith

    2015-11-01

    To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins. © 2015 Wiley Periodicals, Inc.

  3. Purification, crystallization and preliminary X-ray analysis of SGR6054, a Streptomyces homologue of the mycobacterial integration host factor mIHF

    International Nuclear Information System (INIS)

    Nomoto, Ryohei; Tezuka, Takeaki; Miyazono, Ken-ichi; Tanokura, Masaru; Horinouchi, Sueharu; Ohnishi, Yasuo

    2012-01-01

    A Streptomyces homologue of the mycobacterial integration host factor mIHF was heterologously produced, purified and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The best crystal diffracted X-rays to 2.22 Å resolution and belonged to space group C2. The mycobacterial integration host factor (mIHF) is a small nonspecific DNA-binding protein that is essential for the growth of Mycobacterium smegmatis. mIHF homologues are widely distributed among Actinobacteria, and a Streptomyces homologue of mIHF is involved in control of sporulation and antibiotic production in S. coelicolor A3(2). Despite their important biological functions, a structure of mIHF or its homologues has not been elucidated to date. Here, the S. griseus mIHF homologue (SGR6054) was expressed and purified from Escherichia coli and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The plate-shaped crystal belonged to space group C2, with unit-cell parameters a = 88.53, b = 69.35, c = 77.71 Å, β = 96.63°, and diffracted X-rays to 2.22 Å resolution

  4. Purification, crystallization and preliminary X-ray analysis of SGR6054, a Streptomyces homologue of the mycobacterial integration host factor mIHF

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Ryohei; Tezuka, Takeaki; Miyazono, Ken-ichi; Tanokura, Masaru; Horinouchi, Sueharu; Ohnishi, Yasuo [Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2012-08-31

    A Streptomyces homologue of the mycobacterial integration host factor mIHF was heterologously produced, purified and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The best crystal diffracted X-rays to 2.22 Å resolution and belonged to space group C2. The mycobacterial integration host factor (mIHF) is a small nonspecific DNA-binding protein that is essential for the growth of Mycobacterium smegmatis. mIHF homologues are widely distributed among Actinobacteria, and a Streptomyces homologue of mIHF is involved in control of sporulation and antibiotic production in S. coelicolor A3(2). Despite their important biological functions, a structure of mIHF or its homologues has not been elucidated to date. Here, the S. griseus mIHF homologue (SGR6054) was expressed and purified from Escherichia coli and crystallized in the presence of a 16-mer duplex DNA by the sitting-drop vapour-diffusion method. The plate-shaped crystal belonged to space group C2, with unit-cell parameters a = 88.53, b = 69.35, c = 77.71 Å, β = 96.63°, and diffracted X-rays to 2.22 Å resolution.

  5. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts.

    Science.gov (United States)

    De Maayer, Pieter; Chan, Wai Yin; Rubagotti, Enrico; Venter, Stephanus N; Toth, Ian K; Birch, Paul R J; Coutinho, Teresa A

    2014-05-27

    Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of

  6. The host immune response to Clostridium difficile infection

    Science.gov (United States)

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  7. Antibiotics and Host Responses in the Pathogenesis of Staphylococcus Aureus Infection

    NARCIS (Netherlands)

    J.W. Swierstra (Jasper)

    2017-01-01

    textabstractThe primary aim of the research described in this thesis was to gain more insight into host pathogen interaction between Staphylococcus aureus and the human host by specifically studying the IgG (subclass specific) humoral response against staphylococcal virulence factors in humans

  8. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  9. Serratia marcescens Suppresses Host Cellular Immunity via the Production of an Adhesion-inhibitory Factor against Immunosurveillance Cells*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-01-01

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis. PMID:24398686

  10. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-02-28

    Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.

  11. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  12. Orchestrating the Selection and Packaging of Genomic RNA by Retroviruses: An Ensemble of Viral and Host Factors

    Science.gov (United States)

    Kaddis Maldonado, Rebecca J.; Parent, Leslie J.

    2016-01-01

    Infectious retrovirus particles contain two copies of unspliced viral RNA that serve as the viral genome. Unspliced retroviral RNA is transcribed in the nucleus by the host RNA polymerase II and has three potential fates: (1) it can be spliced into subgenomic messenger RNAs (mRNAs) for the translation of viral proteins; or it can remain unspliced to serve as either (2) the mRNA for the translation of Gag and Gag–Pol; or (3) the genomic RNA (gRNA) that is packaged into virions. The Gag structural protein recognizes and binds the unspliced viral RNA to select it as a genome, which is selected in preference to spliced viral RNAs and cellular RNAs. In this review, we summarize the current state of understanding about how retroviral packaging is orchestrated within the cell and explore potential new mechanisms based on recent discoveries in the field. We discuss the cis-acting elements in the unspliced viral RNA and the properties of the Gag protein that are required for their interaction. In addition, we discuss the role of host factors in influencing the fate of the newly transcribed viral RNA, current models for how retroviruses distinguish unspliced viral mRNA from viral genomic RNA, and the possible subcellular sites of genomic RNA dimerization and selection by Gag. Although this review centers primarily on the wealth of data available for the alpharetrovirus Rous sarcoma virus, in which a discrete RNA packaging sequence has been identified, we have also summarized the cis- and trans-acting factors as well as the mechanisms governing gRNA packaging of other retroviruses for comparison. PMID:27657110

  13. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    Science.gov (United States)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  14. Influence of the host contact sequence on the outcome of competition among aspergillus flavus isolates during host tissue invasion.

    Science.gov (United States)

    Mehl, H L; Cotty, P J

    2011-03-01

    Biological control of aflatoxin contamination by Aspergillus flavus is achieved through competitive exclusion of aflatoxin producers by atoxigenic strains. Factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of initial host contact in competition between pairs of A. flavus isolates coinfecting maize kernels was examined. Isolate success during tissue invasion and reproduction was assessed by quantification of isolate-specific single nucleotide polymorphisms using pyrosequencing. Isolates were inoculated either simultaneously or 1 h apart. Increased success during competition was conferred to the first isolate to contact the host independent of that isolate's innate competitive ability. The first-isolate advantage decreased with the conidial concentration, suggesting capture of limited resources on kernel surfaces contributes to competitive exclusion. Attempts to modify access to putative attachment sites by either coating kernels with dead conidia or washing kernels with solvents did not influence the success of the first isolate, suggesting competition for limited attachment sites on kernel surfaces does not mediate first-isolate advantage. The current study is the first to demonstrate an immediate competitive advantage conferred to A. flavus isolates upon host contact and prior to either germ tube emergence or host colonization. This suggests the timing of host contact is as important to competition during disease cycles as innate competitive ability. Early dispersal to susceptible crop components may allow maintenance within A. flavus populations of genetic types with low competitive ability during host tissue invasion.

  15. The Evolution of Clutch Size in Hosts of Avian Brood Parasites.

    Science.gov (United States)

    Medina, Iliana; Langmore, Naomi E; Lanfear, Robert; Kokko, Hanna

    2017-11-01

    Coevolution with avian brood parasites shapes a range of traits in their hosts, including morphology, behavior, and breeding systems. Here we explore whether brood parasitism is also associated with the evolution of host clutch size. Several studies have proposed that hosts of highly virulent parasites could decrease the costs of parasitism by evolving a smaller clutch size, because hosts with smaller clutches will lose fewer progeny when their clutch is parasitized. We describe a model of the evolution of clutch size, which challenges this logic and shows instead that an increase in clutch size (or no change) should evolve in hosts. We test this prediction using a broad-scale comparative analysis to ask whether there are differences in clutch size within hosts and between hosts and nonhosts. Consistent with our model, this analysis revealed that host species do not have smaller clutches and that hosts that incur larger costs from raising a parasite lay larger clutches. We suggest that brood parasitism might be an influential factor in clutch-size evolution and could potentially select for the evolution of larger clutches in host species.

  16. Proteinaceous molecules mediating Bifidobacterium-host interactions

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz

    2016-08-01

    Full Text Available Bifidobacteria are commensal microoganisms found in the gastrointestinal tract.Several strains have been attributed beneficial traits at local and systemic levels, through pathogen exclusion or immune modulation, among other benefits. This has promoted a growing industrial and scientific interest in bifidobacteria as probiotic supplements. However, the molecular mechanisms mediating this cross-talk with the human host remain unknown. High-throughput technologies, from functional genomics to transcriptomics, proteomics and interactomics coupled to the development of both in vitro and in vivo models to study the dynamics of the intestinal microbiota and their effects on host cells, have eased the identification of key molecules in these interactions. Numerous secreted or surface-associated proteins or peptides have been identified as potential mediators of bifidobacteria-host interactions and molecular cross-talk, directly participating in sensing environmental factors, promoting intestinal colonization or mediating a dialogue with mucosa-associated immune cells. On the other hand, bifidobacteria induce the production of proteins in the intestine, by epithelial or immune cells, and other gut bacteria, which are key elements in orchestrating interactions among bifidobacteria, gut microbiota and host cells. This review aims to give a comprehensive overview on proteinaceous molecules described and characterized to date, as mediators of the dynamic interplay between bifidobacteria and the human host, providing a framework to identify knowledge gaps and future research needs.

  17. Superparasitism Drives Heritable Symbiont Epidemiology and Host Sex Ratio in a Wasp.

    Directory of Open Access Journals (Sweden)

    Steven R Parratt

    2016-06-01

    Full Text Available Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont's spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that 'reproductive parasite' phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections.

  18. Host and Non-Host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi.

    Directory of Open Access Journals (Sweden)

    Valentina eFiorilli

    2015-08-01

    Full Text Available Oryza sativa, a model plant for Arbuscular Mycorrhizal (AM symbiosis, has both host and non-host roots. Large lateral (LLR and fine lateral (FLR roots display opposite responses: LLR support AM colonization, but FLR do not. Our research aimed to study the molecular, morphological and physiological aspects related to the non-host behavior of FLR. RNA-seq analysis revealed that LLR and FLR displayed divergent expression profiles, including changes in many metabolic pathways. Compared with LLR, FLR showed down-regulation of genes instrumental for AM establishment and gibberellin signaling, and a higher expression of nutrient transporters. Consistent with the transcriptomic data, FLR had higher phosphorus content. Light and electron microscopy demonstrated that, surprisingly, in the Selenio cultivar, FLR have a two-layered cortex, which is theoretically compatible with AM colonization. According to RNA-seq, a gibberellin inhibitor treatment increased anticlinal divisions leading to a higher number of cortex cells in FLR.We propose that some of the differentially regulated genes that lead to the anatomical and physiological properties of the two root types also function as genetic factors regulating fungal colonization. The rice root apparatus offers a unique tool to study AM symbiosis, allowing direct comparisons of host and non-host roots in the same individual plant.

  19. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.

    Science.gov (United States)

    Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo

    2017-11-08

    The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  20. The paediatric Bohler's angle and crucial angle of Gissane: a case series

    Directory of Open Access Journals (Sweden)

    Crawford Haemish A

    2011-01-01

    Full Text Available Abstract Background Bohler's angle and the crucial angle of Gissane can be used to assess calcaneal fractures. While the normal adult values of these angles are widely known, the normal paediatric values have not yet been established. Our aim is to investigate Bohler's angle and the crucial angle of Gissane in a paediatric population and establish normal paediatric reference values. Method We measured Bohler's angle and the crucial angle of Gissane using normal plain ankle radiographs of 763 patients from birth to 14 years of age completed over a five year period from July 2003 to June 2008. Results In our paediatric study group, the mean Bohler's angle was 35.2 degrees and the mean crucial angle of Gissane was 111.3 degrees. In an adult comparison group, the mean Bohler's angle was 39.2 degrees and the mean crucial angle of Gissane was 113.8 degrees. The differences in Bohler's angle and the crucial angle of Gissane between these two groups were statistically significant. Conclusion We have presented the normal values of Bohler's angle and the crucial angle of Gissane in a paediatric population. These values may provide a useful comparison to assist with the management of the paediatric calcaneal fracture.

  1. A mathematical modelling framework for linked within-host and between-host dynamics for infections with free-living pathogens in the environment.

    Science.gov (United States)

    Garira, Winston; Mathebula, Dephney; Netshikweta, Rendani

    2014-10-01

    In this study we develop a mathematical modelling framework for linking the within-host and between-host dynamics of infections with free-living pathogens in the environment. The resulting linked models are sometimes called immuno-epidemiological models. However, there is still no generalised framework for linking the within-host and between-host dynamics of infectious diseases. Furthermore, for infections with free-living pathogens in the environment, there is an additional stumbling block in that there is a gap in knowledge on how environmental factors (through water, air, soil, food, fomites, etc.) alter many aspects of such infections including susceptibility to infective dose, persistence of infection, pathogen shedding and severity of the disease. In this work, we link the two subsystems (within-host and between-host models) by identifying the within-host and between-host variables and parameters associated with the environmental dynamics of the pathogen and then design a feedback of the variables and parameters across the within-host and between-host models using human schistosomiasis as a case study. We study the mathematical properties of the linked model and show that the model is epidemiologically well-posed. Using results from the analysis of the endemic equilibrium expression, the disease reproductive number R0, and numerical simulations of the full model, we adequately account for the reciprocal influence of the linked within-host and between-host models. In particular, we illustrate that for human schistosomiasis, the outcome of infection at the individual level determines if, when and how much the individual host will further transmit the infectious agent into the environment, eventually affecting the spread of the infection in the host population. We expect the conceptual modelling framework developed here to be applicable to many infectious disease with free-living pathogens in the environment beyond the specific disease system of human

  2. Host partitioning by parasites in an intertidal crustacean community.

    Science.gov (United States)

    Koehler, Anson V; Poulin, Robert

    2010-10-01

    Patterns of host use by parasites throughout a guild community of intermediate hosts can depend on several biological and ecological factors, including physiology, morphology, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower Portobello Bay, Dunedin, New Zealand, with the intent of: (1) mapping the flow of parasites throughout the major crustacean species, (2) identifying hosts that play the most important transmission role for each parasite, and (3) assessing the impact of parasitism on host populations. The most prevalent parasites found in 14 species of crustaceans (635 specimens) examined were the trematodes Maritrema novaezealandensis and Microphallus sp., the acanthocephalans Profilicollis spp., the nematode Ascarophis sp., and an acuariid nematode. Decapods were compatible hosts for M. novaezealandensis, while other crustaceans demonstrated lower host suitability as shown by high levels of melanized and immature parasite stages. Carapace thickness, gill morphology, and breathing style may contribute to the differential infection success of M. novaezealandensis and Microphallus sp. in the decapod species. Parasite-induced host mortality appears likely with M. novaezealandensis in the crabs Austrohelice crassa, Halicarcinus varius, Hemigrapsus sexdentatus, and Macrophthalmus hirtipes, and also with Microphallus sp. in A. crassa. Overall, the different parasite species make different use of available crustacean intermediate hosts and possibly contribute to intertidal community structure.

  3. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    Science.gov (United States)

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  4. Host-pathogen interplay of Haemophilus ducreyi.

    Science.gov (United States)

    Janowicz, Diane M; Li, Wei; Bauer, Margaret E

    2010-02-01

    Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.

  5. New host, geographical records, and factors affecting the prevalence of helminths infection from synanthropic rodents in Yucatán, Mexico

    OpenAIRE

    Panti-May J. A.; Palomo-Arjona E.; Gurubel-González Y.; Torres-Castro M. A.; Vidal-Martínez V. M.; Machain-Williams C.; Hernández-Betancourt S. F.; Del Rosario Robles M.

    2017-01-01

    The aim of this paper was to study the occurrence of helminths in Mus musculus and Rattus rattus from urban, suburban and rural settlements in Yucatán, Mexico; and to analyse the host factors (e.g. sex) related to helminths’ distribution. Helminths in a total of 279 rodents were surveyed by visual examination of the liver for metacestodes and faecal examination for helminth eggs using the formalin-ethyl acetate sedimentation technique. The cestodes Hydatigera taeniaeformis (metacestodes detec...

  6. Distribution of intermediate host snails of schistosomiasis and fascioliasis in relation to environmental factors during the dry season in the Tchologo region, Côte d'Ivoire

    Science.gov (United States)

    Krauth, Stefanie J.; Wandel, Nathalie; Traoré, Seïdinan I.; Vounatsou, Penelope; Hattendorf, Jan; Achi, Louise Y.; McNeill, Kristopher; N'Goran, Eliézer K.; Utzinger, Jürg

    2017-10-01

    Snail-borne trematodiases, such as fascioliasis and schistosomiasis, belong to the neglected tropical diseases; yet, millions of people and livestock are affected. The spatial and temporal distribution of intermediate host snails plays an important role in the epidemiology and control of trematodiases. Snail distribution is influenced by numerous environmental and anthropomorphic factors. The aim of this study was to assess the distribution and constitution of the snail fauna during the dry season in constructed and natural water bodies in the Tchologo region, northern Côte d'Ivoire, and to relate these findings to environmental factors and human infections. Snails were collected using standard procedures and environmental parameters were assessed from a total of 50 water bodies in and around 30 randomly selected villages. A canonical correspondence analysis was performed to establish the relationship between snail occurrence and environmental factors. Furthermore, a total of 743 people from the same 30 villages and nearby settlements were invited for stool and urine examination for the diagnosis of Fasciola spp., Schistosoma haematobium and Schistosoma mansoni. Snails of medical importance of the genera Biomphalaria, Bulinus, Lymnaea and Physa were found. Differences in snail occurrence from sites sampled in December 2014 and snails sampled in February 2015, as well as between the northern and southern part of the study area, were revealed. Various environmental factors, such as temperature and human activities, were related to the occurrence of intermediate host snail species in the region. Only 2.3% of human participants tested positive for schistosomiasis, while no Fasciola eggs were found in stool samples. We conclude that intermediate host snails of Fasciola and Schistosoma co-occur in water bodies in the Tchologo region and that the distribution of these snails correlates not only with environmental factors, but also with the presence of humans and animals

  7. Resistance to Plum pox virus strain C in Arabidopsis thaliana and Chenopodium foetidum involves genome-linked viral protein and other viral determinants and might depend on compatibility with host translation initiation factors.

    Science.gov (United States)

    Calvo, María; Martínez-Turiño, Sandra; García, Juan Antonio

    2014-11-01

    Research performed on model herbaceous hosts has been useful to unravel the molecular mechanisms that control viral infections. The most common Plum pox virus (PPV) strains are able to infect Nicotiana species as well as Chenopodium and Arabidopsis species. However, isolates belonging to strain C (PPV-C) that have been adapted to Nicotiana spp. are not infectious either in Chenopodium foetidum or in Arabidopsis thaliana. In order to determine the mechanism underlying this interesting host-specific behavior, we have constructed chimerical clones derived from Nicotiana-adapted PPV isolates from the D and C strains, which differ in their capacity to infect A. thaliana and C. foetidum. With this approach, we have identified the nuclear inclusion a protein (VPg+Pro) as the major pathogenicity determinant that conditions resistance in the presence of additional secondary determinants, different for each host. Genome-linked viral protein (VPg) mutations similar to those involved in the breakdown of eIF4E-mediated resistance to other potyviruses allow some PPV chimeras to infect A. thaliana. These results point to defective interactions between a translation initiation factor and the viral VPg as the most probable cause of host-specific incompatibility, in which other viral factors also participate, and suggest that complex interactions between multiple viral proteins and translation initiation factors not only define resistance to potyviruses in particular varieties of susceptible hosts but also contribute to establish nonhost resistance.

  8. Geographic variation in host fish use and larval metamorphosis for the endangered dwarf wedgemussel

    Science.gov (United States)

    White, Barbara (St. John); Ferreri, C. Paola; Lellis, William A.; Wicklow, Barry J.; Cole, Jeffrey C.

    2017-01-01

    Host fishes play a crucial role in survival and dispersal of freshwater mussels (Unionoida), particularly rare unionids at conservation risk. Intraspecific variation in host use is not well understood for many mussels, including the endangered dwarf wedgemussel (Alasmidonta heterodon) in the USA.Host suitability of 33 fish species for dwarf wedgemussel glochidia (larvae) from the Delaware and Connecticut river basins was tested in laboratory experiments over 9 years. Relative suitability of three different populations of a single host fish, the tessellated darter (Etheostoma olmstedi), from locations in the Connecticut, Delaware, and Susquehanna river basins, was also tested.Connecticut River basin A. heterodon metamorphosed into juvenile mussels on tessellated darter, slimy sculpin (Cottus cognatus), and Atlantic salmon (Salmo salar) parr. Delaware River basin mussels metamorphosed using these three species, as well as brown trout (Salmo trutta), banded killifish (Fundulus diaphanus), mottled sculpin (Cottus bairdii), striped bass (Morone saxatilis), and shield darter (Percina peltata). Atlantic salmon, striped bass, and sculpins were highly effective hosts, frequently generating 5+ juveniles per fish (JPF) and metamorphosis success (MS; proportion of attaching larvae that successfully metamorphose) ≥ 0.4, and producing juveniles in repeated trials.In experiments on tessellated darters, mean JPF and MS values decreased as isolation between the mussel source (Connecticut River) and each fish source increased; mean JPF = 10.45, 6.85, 4.14, and mean MS = 0.50, 0.41, and 0.34 in Connecticut, Delaware, and Susquehanna river darters, respectively. Host suitability of individual darters was highly variable (JPF = 2–11; MS = 0.20–1.0).The results show that mussel–host fish compatibility in A. heterodon differs among Atlantic coastal rivers, and suggest that hosts including anadromous Atlantic salmon and striped bass may help sustain A. heterodon in parts of

  9. The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts

    Science.gov (United States)

    Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.

    2002-01-01

    Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205

  10. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth.

    Science.gov (United States)

    Kentner, David; Martano, Giuseppe; Callon, Morgane; Chiquet, Petra; Brodmann, Maj; Burton, Olga; Wahlander, Asa; Nanni, Paolo; Delmotte, Nathanaël; Grossmann, Jonas; Limenitakis, Julien; Schlapbach, Ralph; Kiefer, Patrick; Vorholt, Julia A; Hiller, Sebastian; Bumann, Dirk

    2014-07-08

    Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.

  11. Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut.

    Directory of Open Access Journals (Sweden)

    Vincent Raquin

    2017-12-01

    Full Text Available Dengue virus (DENV causes more human infections than any other mosquito-borne virus. The current lack of antiviral strategies has prompted genome-wide screens for host genes that are required for DENV infectivity. Earlier transcriptomic studies that identified DENV host factors in the primary vector Aedes aegypti used inbred laboratory colonies and/or pools of mosquitoes that erase individual variation. Here, we performed transcriptome sequencing on individual midguts in a field-derived Ae. aegypti population to identify new candidate host factors modulating DENV replication. We analyzed the transcriptomic data using an approach that accounts for individual co-variation between viral RNA load and gene expression. This approach generates a prediction about the agonist or antagonist effect of candidate genes on DENV replication based on the sign of the correlation between gene expression and viral RNA load. Using this method, we identified 39 candidate genes that went undetected by conventional pairwise comparison of gene expression levels between DENV-infected midguts and uninfected controls. Only four candidate genes were detected by both methods, emphasizing their complementarity. We demonstrated the value of our approach by functional validation of a candidate agonist gene encoding a sterol regulatory element-binding protein (SREBP, which was identified by correlation analysis but not by pairwise comparison. We confirmed that SREBP promotes DENV infection in the midgut by RNAi-mediated gene knockdown in vivo. We suggest that our approach for transcriptomic analysis can empower genome-wide screens for potential agonist or antagonist factors by leveraging inter-individual variation in gene expression. More generally, this method is applicable to a wide range of phenotypic traits displaying inter-individual variation.

  12. Optimal control issues in plant disease with host demographic factor and botanical fungicides

    Science.gov (United States)

    Anggriani, N.; Mardiyah, M.; Istifadah, N.; Supriatna, A. K.

    2018-03-01

    In this paper, we discuss a mathematical model of plant disease with the effect of fungicide. We assume that the fungicide is given as a preventive treatment to infectious plants. The model is constructed based on the development of the disease in which the monomolecular is monocyclic. We show the value of the Basic Reproduction Number (BRN) ℛ0 of the plant disease transmission. The BRN is computed from the largest eigenvalue of the next generation matrix of the model. The result shows that in the region where ℛ0 greater than one there is a single stable endemic equilibrium. However, in the region where ℛ0 less than one this endemic equilibrium becomes unstable. The dynamics of the model is highly sensitive to changes in contact rate and infectious period. We also discuss the optimal control of the infected plant host by considering a preventive treatment aimed at reducing the infected host plant. The obtaining optimal control shows that it can reduce the number of infected hosts compared to that without control. Some numerical simulations are also given to illustrate our analytical results.

  13. Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.

    Science.gov (United States)

    Ju, Tingting; Shoblak, Yasmeen; Gao, Yanhua; Yang, Kaiyuan; Fouhse, Janelle; Finlay, B Brett; So, Yee Wing; Stothard, Paul; Willing, Benjamin P

    2017-09-01

    Antibiotics are important for treating bacterial infection; however, efficacies and side effects of antibiotics vary in medicine and experimental models. A few studies have correlated microbiota composition variations with health outcomes in response to antibiotics; however, no study has demonstrated causality. We had noted variation in colonic expression of C-type lectins, regenerating islet-derived protein 3β (Reg3β) and Reg3γ, after metronidazole treatment in a mouse model. To investigate the effects of specific variations in the preexisting microbiome on host response to antibiotics, mice harboring a normal microbiota were allocated to 4 treatments in a 2-by-2 factorial arrangement with or without commensal Escherichia coli and with or without metronidazole in drinking water. E. coli colonized readily without causing a notable shift in the microbiota or host response. Metronidazole administration reduced microbiota biodiversity, indicated by decreased Chao1 and Shannon index values, and altered microbiota composition. However, the presence of E. coli strongly affected metronidazole-induced microbiota shifts. Remarkably, this single commensal bacterium in the context of a complex population led to variations in host responses to metronidazole treatment, including increased expression of antimicrobial peptides Reg3β and Reg3γ and intestinal inflammation indicated by tumor necrosis factor alpha levels. Similar results were obtained from 2-week antibiotic exposure and with additional E. coli isolates. The results of this proof-of-concept study indicate that even minor variations in initial commensal microbiota can drive shifts in microbial composition and host response after antibiotic administration. As well as providing an explanation for variability in animal models using antibiotics, the findings encourage the development of personalized medication in antibiotic therapies. IMPORTANCE This work provides an understanding of variability in studies where

  14. The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi.

    Science.gov (United States)

    Pelosse, Perrine; Kribs-Zaleta, Christopher M

    2012-11-07

    Pathogens may use different routes of transmission to maximize their spread among host populations. Theoretical and empirical work conducted on directly transmitted diseases suggest that horizontal (i.e., through host contacts) and vertical (i.e., from mother to offspring) transmission modes trade off, on the ground that highly virulent pathogens, which produce larger parasite loads, are more efficiently transmitted horizontally, and that less virulent pathogens, which impair host fitness less significantly, are better transmitted vertically. Other factors than virulence such as host density could also select for different transmission modes, but they have barely been studied. In vector-borne diseases, pathogen transmission rate is strongly affected by host-vector relative densities and by processes of saturation in contacts between hosts and vectors. The parasite Trypanosoma cruzi which is transmitted by triatomine bugs to several vertebrate hosts is responsible for Chagas' disease in Latin America. It is also widespread in sylvatic cycles in the southeastern U.S. in which it typically induces no mortality costs to its customary hosts. Besides classical transmission via vector bites, alternative ways to generate infections in hosts such as vertical and oral transmission (via the consumption of vectors by hosts) have been reported in these cycles. The two major T. cruzi strains occurring in the U.S. seem to exhibit differential efficiencies at vertical and classical horizontal transmissions. We investigated whether the vector-host ratio affects the outcome of the competition between the two parasite strains using an epidemiological two-strain model considering all possible transmission routes for sylvatic T. cruzi. We were able to show that the vector-host ratio influences the evolution of transmission modes providing that oral transmission is included in the model as a possible transmission mode, that oral and classical transmissions saturate at different vector-host

  15. Stellar oscillations in planet-hosting giant stars

    Energy Technology Data Exchange (ETDEWEB)

    Hatzes, Artie P; Zechmeister, Mathias [Thueringer Landessternwarte, Sternwarte 5, D-07778 (Germany)], E-mail: artie@tls-tautenburg.de

    2008-10-15

    Recently a number of giant extrasolar planets have been discovered around giant stars. These discoveries are important because many of these giant stars have intermediate masses in the range 1.2-3 Msun. Early-type main sequence stars of this mass range have been avoided by radial velocity planet search surveys due the difficulty of getting the requisite radial velocity precision needed for planet discoveries. Thus, giant stars can tell us about planet formation for stars more massive than the sun. However, the determination of stellar masses for giant stars is difficult due to the fact that evolutionary tracks for stars covering a wide range of masses converge to the same region of the H-R diagram. We report here on stellar oscillations in three planet-hosting giant stars: HD 13189, {beta} Gem, and {iota} Dra. Precise stellar radial velocity measurements for these stars show variations whose periods and amplitudes are consistent with solar-like p-mode oscillations. The implied stellar masses for these objects based on the characteristics of the stellar oscillations are consistent with the predictions of stellar isochrones. An investigation of stellar oscillations in planet hosting giant stars offers us the possibility of getting an independent determination of the stellar mass for these objects which is of crucial importance for extrasolar planet studies.

  16. Female genital tract graft-versus-host disease: incidence, risk factors and recommendations for management.

    Science.gov (United States)

    Zantomio, D; Grigg, A P; MacGregor, L; Panek-Hudson, Y; Szer, J; Ayton, R

    2006-10-01

    Female genital tract graft-versus-host disease (GVHD) is an under-recognized complication of allogeneic stem cell transplantation impacting on quality of life. We describe a prospective surveillance programme for female genital GVHD to better characterize incidence, risk factors and clinical features and the impact of a structured intervention policy. A retrospective audit was conducted on the medical records of all female transplant recipients surviving at least 6 months at a single centre over a 5-year period. Patients commenced topical vaginal oestrogen early post transplant with hormone replacement as appropriate for age, prior menopausal status and co-morbidities. A genital tract management programme included regular gynaecological review and self-maintenance of vaginal capacity by dilator or intercourse. The incidence of genital GVHD was 35% (95% confidence interval (CI) (25, 50%)) at 1 year and 49% (95% CI (36, 63%)) at 2 years. Topical therapy was effective in most cases; no patient required surgical intervention to divide vaginal adhesions. The main risk factor was stem cell source with peripheral blood progenitor cells posing a higher risk than marrow (hazard ratio=3.07 (1.22, 7.73), P=0.017). Extensive GVHD in other organs was a common association. We conclude that female genital GVHD is common, and early detection and commencement of topical immunosuppression with dilator use appears to be highly effective at preventing progression.

  17. Fungal Zinc Homeostasis - A Tug of War Between the Pathogen and Host.

    Science.gov (United States)

    Walencik, Paulina K; Watly, Joanna; Rowinska-Zyrek, Magdalena

    2016-01-01

    In the last decade, drug resistant invasive mycoses have become significantly more common and new antifungal drugs and ways to specifically deliver them to the fungal cell are being looked for. One of the biggest obstacles in finding such comes from the fact that fungi share essential metabolic pathways with humans. One significant difference in the metabolism of those two cells that can be challenged when looking for possible selective therapeutics is the uptake of zinc, a nutrient crucial for the fungal survival and virulence. This work summarizes the recent advances in the biological inorganic chemistry of zinc metabolism in fungi. The regulation of zinc uptake, various types of its transmembrane transport, storage and the maintenance of intracellular zinc homeostasis is discussed in detail, with a special focus on the concept of a constant 'tug of war' over zinc between the fungus and its host, with the host trying to withhold essential Zn(II), and the fungus counteracting by producing high-affinity zinc binding molecules.

  18. Host reproductive phenology drives seasonal patterns of host use in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Nathan D Burkett-Cadena

    2011-03-01

    Full Text Available Seasonal shifts in host use by mosquitoes from birds to mammals drive the timing and intensity of annual epidemics of mosquito-borne viruses, such as West Nile virus, in North America. The biological mechanism underlying these shifts has been a matter of debate, with hypotheses falling into two camps: (1 the shift is driven by changes in host abundance, or (2 the shift is driven by seasonal changes in the foraging behavior of mosquitoes. Here we explored the idea that seasonal changes in host use by mosquitoes are driven by temporal patterns of host reproduction. We investigated the relationship between seasonal patterns of host use by mosquitoes and host reproductive phenology by examining a seven-year dataset of blood meal identifications from a site in Tuskegee National Forest, Alabama USA and data on reproduction from the most commonly utilized endothermic (white-tailed deer, great blue heron, yellow-crowned night heron and ectothermic (frogs hosts. Our analysis revealed that feeding on each host peaked during periods of reproductive activity. Specifically, mosquitoes utilized herons in the spring and early summer, during periods of peak nest occupancy, whereas deer were fed upon most during the late summer and fall, the period corresponding to the peak in births for deer. For frogs, however, feeding on early- and late-season breeders paralleled peaks in male vocalization. We demonstrate for the first time that seasonal patterns of host use by mosquitoes track the reproductive phenology of the hosts. Peaks in relative mosquito feeding on each host during reproductive phases are likely the result of increased tolerance and decreased vigilance to attacking mosquitoes by nestlings and brooding adults (avian hosts, quiescent young (avian and mammalian hosts, and mate-seeking males (frogs.

  19. Host genotype is an important determinant of the cereal phyllosphere mycobiome

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Knorr, Kamilla; Jørgensen, Lise Nistrup

    2015-01-01

    The phyllosphere mycobiome in cereals is an important determinant of crop health. However, an understanding of the factors shaping this community is lacking. Fungal diversity in leaves from a range of cultivars of winter wheat (Triticum aestivum), winter and spring barley (Hordeum vulgare...... and location have minor effects. We found many host-specific fungal pathogens, but also a large diversity of fungi that were relatively insensitive to host genetic background, indicating that host-specific pathogens live in a 'sea' of nonspecific fungi....

  20. Stress responses in Streptococcus species and their effects on the host.

    Science.gov (United States)

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  1. How Do the Virulence Factors of Shigella Work Together to Cause Disease?

    Science.gov (United States)

    Mattock, Emily; Blocker, Ariel J

    2017-01-01

    Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae , and S. boydii , which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella 's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan- Shigella vaccine.

  2. Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system

    Directory of Open Access Journals (Sweden)

    Koella Jacob C

    2009-03-01

    Full Text Available Abstract Background Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing or 14 (late killing days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle. Results After 13 cycles (≈ 300 generations, parasites from the early-killing treatment were less infectious, but had shorter latency time and higher virulence than those from the late-killing treatment. Overall, shorter latency time was associated with higher parasite loads and thus presumably with more rapid within-host replication. Conclusion The analysis of the means of the two treatments is thus consistent with theory, and suggests that evolution is constrained by trade-offs between virulence, transmission and within-host growth. In contrast, we found little evidence for such trade-offs across parasite selection lines within treatments; thus, to some extent, these traits may evolve independently. This study illustrates how environmental variation (experienced by the host can lead to the evolution of distinct parasite strategies.

  3. Justification of a "Crucial" Experiment: Parity Nonconservation.

    Science.gov (United States)

    Franklin, Allan; Smokler, Howard

    1981-01-01

    Presents history, nature of evidence evaluated, and philosophical questions to justify the view that experiments on parity nonconservation were "crucial" experiments in the sense that they decided unambiguously and within a short period of time for the appropriate scientific community, between two or more competing theories or classes of theories.…

  4. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  5. Late acute graft-versus-host disease: a prospective analysis of clinical outcomes and circulating angiogenic factors.

    Science.gov (United States)

    Holtan, Shernan G; Khera, Nandita; Levine, John E; Chai, Xiaoyu; Storer, Barry; Liu, Hien D; Inamoto, Yoshihiro; Chen, George L; Mayer, Sebastian; Arora, Mukta; Palmer, Jeanne; Flowers, Mary E D; Cutler, Corey S; Lukez, Alexander; Arai, Sally; Lazaryan, Aleksandr; Newell, Laura F; Krupski, Christa; Jagasia, Madan H; Pusic, Iskra; Wood, William; Renteria, Anne S; Yanik, Gregory; Hogan, William J; Hexner, Elizabeth; Ayuk, Francis; Holler, Ernst; Watanaboonyongcharoen, Phandee; Efebera, Yvonne A; Ferrara, James L M; Panoskaltsis-Mortari, Angela; Weisdorf, Daniel; Lee, Stephanie J; Pidala, Joseph

    2016-11-10

    Late acute (LA) graft-versus-host disease (GVHD) is persistent, recurrent, or new-onset acute GVHD symptoms occurring >100 days after allogeneic hematopoietic cell transplantation (HCT). The aim of this analysis is to describe the onset, course, morbidity, and mortality of and examine angiogenic factors associated with LA GVHD. A prospective cohort of patients (n = 909) was enrolled as part of an observational study within the Chronic GVHD Consortium. Eighty-three patients (11%) developed LA GVHD at a median of 160 (interquartile range, 128-204) days after HCT. Although 51 out of 83 (61%) achieved complete or partial response to initial therapy by 28 days, median failure-free survival was only 7.1 months (95% confidence interval, 3.4-19.1 months), and estimated overall survival (OS) at 2 years was 56%. Given recently described alterations of circulating angiogenic factors in classic acute GVHD, we examined whether alterations in such factors could be identified in LA GVHD. We first tested cases (n = 55) and controls (n = 50) from the Chronic GVHD Consortium and then validated the findings in 37 cases from Mount Sinai Acute GVHD International Consortium. Plasma amphiregulin (AREG; an epidermal growth factor [EGF] receptor ligand) was elevated, and an AREG/EGF ratio at or above the median was associated with inferior OS and increased nonrelapse mortality in both cohorts. Elevation of AREG was detected in classic acute GVHD, but not chronic GVHD. These prospective data characterize the clinical course of LA GVHD and demonstrate alterations in angiogenic factors that make LA GVHD biologically distinct from chronic GVHD. © 2016 by The American Society of Hematology.

  6. Factors affecting virus dynamics and microbial host-virus interactions in marine environments

    NARCIS (Netherlands)

    Mojica, K.D.A.; Brussaard, C.P.D.

    2014-01-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host

  7. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover.

    Science.gov (United States)

    Barman, A K; Gadhave, K R; Dutta, B; Srinivasan, R

    2018-06-01

    Biological and morphological plasticity in polyphagous insect herbivores allow them to exploit diverse host plant species. Geographical differences in resource availability can lead to preferential host exploitation and result in inconsistent host specialization. Biological and molecular data provide insights into specialization and plasticity of such herbivore populations. In agricultural landscapes, Aphis gossypii encounters several crop and non-crop hosts, which exist in temporal and spatial proximity. We investigated the host-specialization of two A. gossypii host-associated populations (HAPs), which were field collected from cotton and squash (cotton-associated population and melon-associated population), and later maintained separately in the greenhouse. The two aphid populations were exposed to seven plant species (cotton, okra, watermelon, squash, cucumber, pigweed, and morning glory), and evaluated for their host utilization plasticity by estimating aphid's fitness parameters (nymphal period, adult period, fecundity, and intrinsic rate of increase). Four phenotypical characters (body length, head capsule width, hind tibia length and cornicle length) were also measured from the resulting 14 different HAP × host plant combinations. Phylogenetic analysis of mitochondrial COI sequences showed no genetic variation between the two HAPs. Fitness parameters indicated a significant variation between the two aphid populations, and the variation was influenced by host plants. The performance of melon-aphids was poor (up to 89% reduction in fecundity) on malvaceous hosts, cotton and okra. However, cotton-aphids performed better on cucurbitaceous hosts, squash and watermelon (up to 66% increased fecundity) compared with the natal host, cotton. Both HAPs were able to reproduce on two weed hosts. Cotton-aphids were smaller than melon-aphids irrespective of their host plants. Results from this study suggest that the two HAPs in the study area do not have strict host

  8. Prescribing: A Crucial Factor in the Professionalization of Nursing in Iran

    Directory of Open Access Journals (Sweden)

    Hamidreza Haririan

    2016-01-01

    Based on the results of various studies, it has been illustrated that one of the main factors in the professionalization of nurses is having independency in their job [1, 3, 10]. Since nurse prescribing has several advantages for patients, nurses, and even physicians, and because it creates a sense of being useful, independency, and professional identity for nurses [2-4, 11], it can be introduced as a Discipline for the society. Therefore, it seems necessary to develop and design native structures for nurse prescribing in Iran.

  9. Life in a rock pool: Radiation and population genetics of myxozoan parasites in hosts inhabiting restricted spaces.

    Science.gov (United States)

    Bartošová-Sojková, Pavla; Lövy, Alena; Reed, Cecile C; Lisnerová, Martina; Tomková, Tereza; Holzer, Astrid S; Fiala, Ivan

    2018-01-01

    Intertidal rock pools where fish and invertebrates are in constant close contact due to limited space and water level fluctuations represent ideal conditions to promote life cycles in parasites using these two alternate hosts and to study speciation processes that could contribute to understanding the roles of parasitic species in such ecosystems. Gall bladder and liver samples from five clinid fish species (Blenniiformes: Clinidae) were morphologically and molecularly examined to determine the diversity, prevalence, distribution and host specificity of Ceratomyxa parasites (Cnidaria: Myxozoa) in intertidal habitats along the coast of South Africa. Phylogenetic relationships of clinid ceratomyxids based on the SSU rDNA, LSU rDNA and ITS regions were assessed additionally to the investigation of population genetic structure of Ceratomyxa cottoidii and subsequent comparison with the data known from type fish host Clinus cottoides. Seven Ceratomyxa species including previously described Ceratomyxa dehoopi and C. cottoidii were recognized in clinids. They represent a diverse group of rapidly evolving, closely related species with a remarkably high prevalence in their hosts, little host specificity and frequent concurrent infections, most probably as a result of parasite radiation after multiple speciation events triggered by limited host dispersal within restricted spaces. C. cottoidii represents the most common clinid parasite with a population structure characterized by young expanding populations in the south west and south east coast and by older populations in equilibrium on the west coast of its distribution. Parasite and fish host population structures show overlapping patterns and are very likely affected by similar oceanographic barriers possibly due to reduced host dispersal enhancing parasite community differentiation. While fish host specificity had little impact on parasite population structure, the habitat preference of the alternate invertebrate host as

  10. Strong host-feeding preferences of the vector Triatoma infestans modified by vector density: implications for the epidemiology of Chagas disease.

    Directory of Open Access Journals (Sweden)

    Ricardo E Gürtler

    2009-05-01

    Full Text Available Understanding the factors that affect the host-feeding preferences of triatomine bugs is crucial for estimating transmission risks and predicting the effects of control tactics targeting domestic animals. We tested whether Triatoma infestans bugs prefer to feed on dogs vs. chickens and on dogs vs. cats and whether vector density modified host choices and other vital rates under natural conditions.Two host choice experiments were conducted in small caged huts with two rooms between which bugs could move freely. Matched pairs of dog-chicken (six and dog-cat (three were assigned randomly to two levels of vector abundance and exposed to starved bugs during three nights. Bloodmeals from 1,160 bugs were tested by a direct enzyme-linked immunosorbent assay.Conditional logistic regression showed that dogs were highly preferred over chickens or cats and that vector density modified host-feeding choices. The relative risk of a bug being blood-engorged increased significantly when it fed only on dog rather than chicken or cat. Bugs achieved higher post-exposure weight at higher vector densities and successive occasions, more so if they fed on a dog rather than on a cat.Our findings strongly refute the hypothesis that T. infestans prefers to blood-feed on chickens rather than dogs. An increase in dog or cat availability or accessibility will increase the rate of bug feeding on them and exert strong non-linear effects on R(0. When combined with between-dog heterogeneities in exposure, infection, and infectiousness, the strong bug preference for dogs can be exploited to target dogs in general, and even the specific individuals that account for most of the risk, with topical lotions or insecticide-impregnated collars to turn them into baited lethal traps or use them as transmission or infestation sentinels based on their immune response to Trypanosoma cruzi or bug salivary antigens.

  11. Crucial factors and emerging concepts in ultrasound-triggered drug delivery.

    Science.gov (United States)

    Geers, Bart; Dewitte, Heleen; De Smedt, Stefaan C; Lentacker, Ine

    2012-12-28

    Time and space controlled drug delivery still remains a huge challenge in medicine. A novel approach that could offer a solution is ultrasound guided drug delivery. “Ultrasonic drug delivery” is often based on the use of small gas bubbles (so-called microbubbles) that oscillate and cavitate upon exposure to ultrasound waves. Some microbubbles are FDA approved contrast agents for ultrasound imaging and are nowadays widely investigated as promising drug carriers. Indeed, it has been observed that upon exposure to ultrasound waves, microbubbles may (a) release the encapsulated drugs and (b) simultaneously change the structure of the cell membranes in contact with the microbubbles which may facilitate drug entrance into cells. This review aims to highlight (a) major factors known so far which affect ultrasonic drug delivery (like the structure of the microbubbles, acoustic settings, etc.) and (b) summarizes the recent preclinical progress in this field together with a number of promising new concepts and applications.

  12. Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota

    DEFF Research Database (Denmark)

    Newbold, Lindsay K.; Burthe, Sarah J.; Oliver, Anna E.

    2017-01-01

    Infection by gastrointestinal helminths of humans, livestock and wild animals is common, but the impact of such endoparasites on wild hosts and their gut microbiota represents an important overlooked component of population dynamics. Wild host gut microbiota and endoparasites occupy the same...... to quantify helminth infection in situ. Microbiota from the significantly distinct proventriculus (site of infection), cloacal and faecal gastrointestinal tract microbiomes were characterised using 16S rRNA gene-targeted high-throughput sequencing. We found increasingly strong associations between helminth...... infection and microbiota composition progressing away from the site of infection, observing a pronounced dysbiosis in microbiota when samples were partitioned into high- and low-burden groups. We posit this dysbiosis is predominately explained by helminths inducing an anti-inflammatory environment...

  13. Secretion of human epidermal growth factor (EGF) in autotrophic culture by a recombinant hydrogen-utilizing bacterium, Pseudomonas pseudoflava, carrying broad-host-range EGF secretion vector pKSEGF2.

    OpenAIRE

    Hayase, N; Ishiyama, A; Niwano, M

    1994-01-01

    We constructed the broad-host-range human epidermal growth factor (EGF) secretion plasmid pKSEGF2 by inserting the Escherichia coli tac promoter, the signal sequence of Pseudomonas stutzeri amylase, and the synthesized EGF gene into the broad-host-range vector pKT230. E. coli JM109 carrying pKSEGF2 secreted EGF into the periplasm and the culture medium under the control of the tac promoter. Pseudomonas aeruginosa PAO1161 carrying pKSEGF2 and Pseudomonas putida AC10 carrying pKSEGF2 secreted E...

  14. HostPhinder: A Phage Host Prediction Tool

    DEFF Research Database (Denmark)

    Villarroel, Julia; Kleinheinz, Kortine Annina; Jurtz, Vanessa Isabell

    2016-01-01

    The current dramatic increase of antibiotic resistant bacteria has revitalised the interest in bacteriophages as alternative antibacterial treatment. Meanwhile, the development of bioinformatics methods for analysing genomic data places high-throughput approaches for phage characterization within...... bacterial hosts. HostPhinder is available as an interactive web service [1] and as a stand alone download from the Docker registry [2]....

  15. Ability of a Generalist Seed Beetle to Colonize an Exotic Host: Effects of Host Plant Origin and Oviposition Host.

    Science.gov (United States)

    Amarillo-Suárez, A; Repizo, A; Robles, J; Diaz, J; Bustamante, S

    2017-08-01

    The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.

  16. Efficiency of vibrational sounding in parasitoid host location depends on substrate density.

    Science.gov (United States)

    Fischer, S; Samietz, J; Dorn, S

    2003-10-01

    Parasitoids of concealed hosts have to drill through a substrate with their ovipositor for successful parasitization. Hymenopteran species in this drill-and-sting guild locate immobile pupal hosts by vibrational sounding, i.e., echolocation on solid substrate. Although this host location strategy is assumed to be common among the Orussidae and Ichneumonidae there is no information yet whether it is adapted to characteristics of the host microhabitat. This study examined the effect of substrate density on responsiveness and host location efficiency in two pupal parasitoids, Pimpla turionellae and Xanthopimpla stemmator (Hymenoptera: Ichneumonidae), with different host-niche specialization and corresponding ovipositor morphology. Location and frequency of ovipositor insertions were scored on cylindrical plant stem models of various densities. Substrate density had a significant negative effect on responsiveness, number of ovipositor insertions, and host location precision in both species. The more niche-specific species X. stemmator showed a higher host location precision and insertion activity. We could show that vibrational sounding is obviously adapted to the host microhabitat of the parasitoid species using this host location strategy. We suggest the attenuation of pulses during vibrational sounding as the energetically costly limiting factor for this adaptation.

  17. Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury?

    Science.gov (United States)

    Yuan, Lijuan; Shen, Jianliang

    2016-01-01

    Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ transplantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels. In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease, mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for hydrogen use as a drug in the clinic. PMID:27652837

  18. Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface.

    Directory of Open Access Journals (Sweden)

    Vanda Juranic Lisnic

    Full Text Available Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq. We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus

  19. Radiation and host factors in human thyroid tumors following thymus irradiation

    International Nuclear Information System (INIS)

    Shore, R.E.; Pasternack, B.S.; Woodard, E.D.; Hempelmann, L.H.

    1980-01-01

    Thyroid tumor data from the 1971 survey of the Rochester, New York thymus irradiated population are further analyzed to study radiobiological and host factors. The analyses were based on the approx. 2650 irradiated subjects and 4800 sibling controls who had 5 or more years of follow-up. Twenty-four thyroid cancers and 52 thyroid adenomas were found in the irradiated group, and O thyroid cancers and 6 adenomas among the controls. The overall risk estimates were 3.8 thyroid cancers/10 6 persons/yr/rad and 4.5 thyroid adenomas/10 6 persons/yr/rad. The dose-response data (thyroid dose range of 5 to > 1000 rad) for thyroid cancer indicate both a linear and a dose-squared component, but no dose-squared component is evident for thyroid adenomas. At lower total doses (< 400 rad) there was a suggestion that dose fractionation diminished the thyroid cancer response, but a similar fractionation effect was not found for thyroid adenomas. The temporal pattern of tumors suggested an extended plateau of excess tumor production, rather than a wavelike temporal pattern. There was no evidence for an inverse relationship between thyroid radiation dose and thyroid cancer latency. Female and Jewish subjects had a higher risk of radiation-induced thyroid cancer than did their respective counterparts. The additive and multiplicative models of radiation effects were compared with respect to sex differences; neither model provided a superior fit to the data. The tentative nature of the conclusions is stressed because of the relatively small number of thyroid cancers. (author)

  20. Regulation of the Host Antiviral State by Intercellular Communications

    Directory of Open Access Journals (Sweden)

    Sonia Assil

    2015-08-01

    Full Text Available Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic.

  1. Effects of host injury on susceptibility of marine reef fishes to ectoparasitic gnathiid isopods

    Science.gov (United States)

    Jenkins, William G.; Demopoulos, Amanda W.J.; Sikkel, Paul C.

    2018-01-01

    The importance of the role that parasites play in ecological communities is becoming increasingly apparent. However much about their impact on hosts and thus populations and communities remains poorly understood. A common observation in wild populations is high variation in levels of parasite infestation among hosts. While high variation could be due to chance encounter, there is increasing evidence to suggest that such patterns are due to a combination of environmental, host, and parasite factors. In order to examine the role of host condition on parasite infection, rates of Gnathia marleyi infestation were compared between experimentally injured and uninjured fish hosts. Experimental injuries were similar to the minor wounds commonly observed in nature. The presence of the injury significantly increased the probability of infestation by gnathiids. However, the level of infestation (i.e., total number of gnathiid parasites) for individual hosts, appeared to be unaffected by the treatment. The results from this study indicate that injuries obtained by fish in nature may carry the additional cost of increased parasite burden along with the costs typically associated with physical injury. These results suggest that host condition may be an important factor in determining the likelihood of infestation by a common coral reef fish ectoparasite, G. marleyi.

  2. Myxoma virus M064 is a novel member of the poxvirus C7L superfamily of host range factors that controls the kinetics of myxomatosis in European rabbits.

    Science.gov (United States)

    Liu, Jia; Wennier, Sonia; Moussatche, Nissin; Reinhard, Mary; Condit, Richard; McFadden, Grant

    2012-05-01

    The myxoma virus (MYXV) carries three tandem C7L-like host range genes (M062R, M063R, and M064R). However, despite the fact that the sequences of these three genes are similar, they possess very distinctive functions in vivo. The role of M064 in MYXV pathogenesis was investigated and compared to the roles of M062 and M063. We report that M064 is a virulence factor that contributes to MYXV pathogenesis but lacks the host range properties associated with M062 and M063.

  3. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions

    Directory of Open Access Journals (Sweden)

    Anna Papa

    2017-05-01

    Full Text Available Crimean-Congo hemorrhagic fever virus (CCHFV is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission.

  4. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  5. Non-Steroidal Anti-inflammatory Drugs As Host-Directed Therapy for Tuberculosis : A Systematic Review

    NARCIS (Netherlands)

    Kroesen, Vera M.; Gröschel, Matthias I.; Martinson, Neil; Zumla, Alimuddin; Maeurer, Markus; van der Werf, Tjip S.; Vilaplana, Cristina

    2017-01-01

    Lengthy, antimicrobial therapy targeting the pathogen is the mainstay of conventional tuberculosis treatment, complicated by emerging drug resistances. Host-directed therapies, including non-steroidal anti-inflammatory drugs (NSAIDs), in contrast, target host factors to mitigate disease severity. In

  6. Fatty acid-producing hosts

    Science.gov (United States)

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  7. Host behaviour and physiology underpin individual variation in avian influenza virus infection in migratory Bewick's swans.

    Science.gov (United States)

    Hoye, Bethany J; Fouchier, Ron A M; Klaassen, Marcel

    2012-02-07

    Individual variation in infection modulates both the dynamics of pathogens and their impact on host populations. It is therefore crucial to identify differential patterns of infection and understand the mechanisms responsible. Yet our understanding of infection heterogeneity in wildlife is limited, even for important zoonotic host-pathogen systems, owing to the intractability of host status prior to infection. Using novel applications of stable isotope ecology and eco-immunology, we distinguish antecedent behavioural and physiological traits associated with avian influenza virus (AIV) infection in free-living Bewick's swans (Cygnus columbianus bewickii). Swans infected with AIV exhibited higher serum δ13C (-25.3±0.4) than their non-infected counterparts (-26.3±0.2). Thus, individuals preferentially foraging in aquatic rather than terrestrial habitats experienced a higher risk of infection, suggesting that the abiotic requirements of AIV give rise to heterogeneity in pathogen exposure. Juveniles were more likely to be infected (30.8% compared with 11.3% for adults), shed approximately 15-fold higher quantity of virus and exhibited a lower specific immune response than adults. Together, these results demonstrate the potential for heterogeneity in infection to have a profound influence on the dynamics of pathogens, with concomitant impacts on host habitat selection and fitness.

  8. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  9. Effects of host species and population density on Anoplophora glabripennis flight propensity

    Science.gov (United States)

    Joseph A. Francese; David R. Lance; Baode Wang; Zhichun Xu; Alan J. Sawyer; Victor C. Mastro

    2007-01-01

    Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae), the Asian longhorned beetle (ALB) is a pest of hardwoods in its native range of China. While the host range of this pest has been studied extensively, its mechanisms for host selection are still unknown. Our goal was to study the factors influencing movement and orientation of adult ALB...

  10. Perspectives on the Trypanosoma cruzi–host cell receptor interactions

    Science.gov (United States)

    Villalta, Fernando; Scharfstein, Julio; Ashton, Anthony W.; Tyler, Kevin M.; Guan, Fangxia; Mukherjee, Shankar; Lima, Maria F.; Alvarez, Sandra; Weiss, Louis M.; Huang, Huan; Machado, Fabiana S.

    2009-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets. PMID:19283409

  11. Importance of host feeding for parasitoids that attack honeydew-producing hosts

    NARCIS (Netherlands)

    Burger, J.M.S.; Komany, A.; Lenteren, van J.C.; Vet, L.E.M.

    2005-01-01

    Insect parasitoids lay their eggs in arthropods. Some parasitoid species not only use their arthropod host for oviposition but also for feeding. Host feeding provides nutrients to the adult female parasitoid. However, in many species, host feeding destroys an opportunity to oviposit. For parasitoids

  12. Crucial Dimension in Organization Management of Indonesian Islamic Almsgiving (Zakah Institutions: Insights for Community Economic Empowerment

    Directory of Open Access Journals (Sweden)

    Sari Viciawati Machdum

    2015-11-01

    Full Text Available This research analyzed the crucial management dimensions or key elements oforganizations that have been managed as Islamic almsgiving institutions (zakahfunds in Indonesia. Zakah funds are traditionally managed for a limited number ofbeneficiaries. Zakah funds are now collected and managed by professional Islamicor faith-based organizations and institutions at the national or regional level toachieve a wider range of beneficiaries. This article examines how two Islamicor faith-based organizations, herein named CV (commanditaire vennootschap“X” and “Y” Foundation, manage small enterprise programs based on zakah toreach a wider range of beneficiaries. Using qualitative methods, the researchidentifies crucial dimensions in the management of organizational dynamics ofthese Islamic or faith-based organizations, i.e., organizational systems, humanresources, and organizational climate. Those elements are used to manageeconomic empowerment activities with faith as a supra structure or contextualunderlying factor. Field findings also demonstrated the usefulness of religiousvalues in managing sustainable community-empowerment practices in smallenterprise programs. 

  13. The Effect of Host-Plant Phylogenetic Isolation on Species Richness, Composition and Specialization of Insect Herbivores: A Comparison between Native and Exotic Hosts.

    Directory of Open Access Journals (Sweden)

    Julio Miguel Grandez-Rios

    Full Text Available Understanding the drivers of plant-insect interactions is still a key issue in terrestrial ecology. Here, we used 30 well-defined plant-herbivore assemblages to assess the effects of host plant phylogenetic isolation and origin (native vs. exotic on the species richness, composition and specialization of the insect herbivore fauna on co-occurring plant species. We also tested for differences in such effects between assemblages composed exclusively of exophagous and endophagous herbivores. We found a consistent negative effect of the phylogenetic isolation of host plants on the richness, similarity and specialization of their insect herbivore faunas. Notably, except for Jaccard dissimilarity, the effect of phylogenetic isolation on the insect herbivore faunas did not vary between native and exotic plants. Our findings show that the phylogenetic isolation of host plants is a key factor that influences the richness, composition and specialization of their local herbivore faunas, regardless of the host plant origin.

  14. THE ENVIRONMENT AS A CRUCIAL LEARNING FACTOR AT PRE-SCHOOL

    Directory of Open Access Journals (Sweden)

    Snježana Močinić

    2016-01-01

    Full Text Available In this essay, the author hypothesizes that physical environment is an essential factor for developing an educational project. The environment is considered a sort of "third educator", playing a decisive role in determining the quality of learning. Classrooms, laboratory, the corridor, the structure of the building itself and the context in which the building is placed; the colours of the walls, the quality of natural and artificial light in the building, the furniture and materials for learning are variables which determine the environment where a child lives, learns, experiences, begins relationships with other people. The educator is very important in the process of a child's development. By means of direct and indirect action, he/she can create an attractive space in the building, more accessible for the processes of functional learning. The empirical research, described in the present survey, underlines the importance of pre-schools as an important place for meeting, interaction, listening and reciprocity leading toward an improvement in the relationship between the child and the school environment. In particular, this empirical research will show the diversity of the places and materials teachers made available to children.

  15. Host response to biomaterials the impact of host response on biomaterial selection

    CERN Document Server

    Badylak, Stephen F

    2015-01-01

    Host Response to Biomaterials: The Impact of Host Response on Biomaterial Selection explains the various categories of biomaterials and their significance for clinical applications, focusing on the host response to each biomaterial. It is one of the first books to connect immunology and biomaterials with regard to host response. The text also explores the role of the immune system in host response, and covers the regulatory environment for biomaterials, along with the benefits of synthetic versus natural biomaterials, and the transition from simple to complex biomaterial solutions. Fiel

  16. Host Gene Expression Analysis in Sri Lankan Melioidosis Patients

    Science.gov (United States)

    2017-06-19

    CCL5 Chemokine (C-C motif) ligand 5 /RANTES. IFNγ Interferon gamma TNFα Tumor necrosis factor alpha HMGB1 High mobility group box 1 protein /high...aim of this study was to analyze gene expression levels of human host factors in melioidosis patients and establish useful correlation with disease...PBMC’s) of study subjects. Gene expression profiles of 25 gene targets including 19 immune response genes and 6 epigenetic factors were analyzed by

  17. Natal Host Plants Can Alter Herbivore Competition.

    Science.gov (United States)

    Pan, Huipeng; Preisser, Evan L; Su, Qi; Jiao, Xiaoguo; Xie, Wen; Wang, Shaoli; Wu, Qingjun; Zhang, Youjun

    2016-01-01

    Interspecific competition between herbivores is widely recognized as an important determinant of community structure. Although researchers have identified a number of factors capable of altering competitive interactions, few studies have addressed the influence of neighboring plant species. If adaptation to/ epigenetic effects of an herbivore's natal host plant alter its performance on other host plants, then interspecific herbivore interactions may play out differently in heterogeneous and homogenous plant communities. We tested wether the natal host plant of a whitefly population affected interactions between the Middle-east Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species of the whitefly Bemisia tabaci by rearing the offspring of a cabbage-derived MEAM1 population and a poinsettia-derived MED population together on three different host plants: cotton, poinsettia, and cabbage. We found that MED dominated on poinsettia and that MEAM1 dominated on cabbage, results consistent with previous research. MED also dominated when reared with MEAM1 on cotton, however, a result at odds with multiple otherwise-similar studies that reared both species on the same natal plant. Our work provides evidence that natal plants affect competitive interactions on another plant species, and highlights the potential importance of neighboring plant species on herbivore community composition in agricultral systems.

  18. Penetration Testing Model for Web sites Hosted in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohamad Safuan Sulaiman; Siti Nurbahyah Hamdan; Saaidi Ismail; Mohd Fauzi Haris; Norzalina Nasiruddin; Raja Murzaferi Mokhtar

    2012-01-01

    Nuclear Malaysia web sites has been very crucial in providing important and useful information and services to the clients as well as the users worldwide. Furthermore, a web site is important as it reflects the organisation image. To ensure the integrity of the content of web site, a study has been made and a penetration testing model has been implemented to test the security of several web sites hosted at Nuclear Malaysia for malicious attempts. This study will explain how the security was tested in the detailed condition and measured. The result determined the security level and the vulnerability of several web sites. This result is important for improving and hardening the security of web sites in Nuclear Malaysia. (author)

  19. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity.

    Science.gov (United States)

    Lee, Seung Ah; Jang, Seong Han; Kim, Byung Hyun; Shibata, Toshio; Yoo, Jinwook; Jung, Yunjin; Kawabata, Shun-Ichiro; Lee, Bok Luel

    2018-04-01

    The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Two different strategies of host manipulation allow parasites to persist in intermediate-definitive host systems

    NARCIS (Netherlands)

    Vries, de L.J.; Langevelde, van F.

    2018-01-01

    Trophically transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate-definitive host systems, two strategies of host manipulation have been evolved:

  1. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem.

    Science.gov (United States)

    Erbilgin, Nadir; Ma, Cary; Whitehouse, Caroline; Shan, Bin; Najar, Ahmed; Evenden, Maya

    2014-02-01

    Host plant secondary chemistry can have cascading impacts on host and range expansion of herbivorous insect populations. We investigated the role of host secondary compounds on pheromone production by the mountain pine beetle (Dendroctonus ponderosae) (MPB) and beetle attraction in response to a historical (lodgepole pine, Pinus contorta var. latifolia) and a novel (jack pine, Pinus banksiana) hosts, as pheromones regulate the host colonization process. Beetles emit the same pheromones from both hosts, but more trans-verbenol, the primary aggregation pheromone, was emitted by female beetles on the novel host. The phloem of the novel host contains more α-pinene, a secondary compound that is the precursor for trans-verbenol production in beetle, than the historical host. Beetle-induced emission of 3-carene, another secondary compound found in both hosts, was also higher from the novel host. Field tests showed that the addition of 3-carene to the pheromone mixture mimicking the aggregation pheromones produced from the two host species increased beetle capture. We conclude that chemical similarity between historical and novel hosts has facilitated host expansion of MPB in jack pine forests through the exploitation of common host secondary compounds for pheromone production and aggregation on the hosts. Furthermore, broods emerging from the novel host were larger in terms of body size. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  2. Suppressor T-cell factor(s) display an altered pattern of Igh (immunoglobulin heavy chain locus) genetic restriction when developed in an Igh-congeneic host

    International Nuclear Information System (INIS)

    HayGlass, K.T.; Naides, S.J.; Benacerraf, B.; Sy, M.S.

    1985-01-01

    Suppressor T cell factor(s) (TsF 1 ) inhibit the in vivo priming of azobenzenearsonate-specific cytotoxic T-cell responses. The activity of TsF 1 is restricted by genes linked to Igh-1 allotypic markers. TsF 1 obtained from B6.Igh-1/sup n/ mice was unable to suppress the immune response in B6.Igh-1/sup b/ mice and vice versa. However, TsF 1 prepared from B6.Igh-1/sup n/ T cells parked in an Igh-congeneic B6.Igh-1/sup b/ environment displays an additional restriction specificity of the host. Thus, TsF 1 prepared from these Igh-chimeric mice suppressed immune responses in both B6.Igh-1/sup n/ (donor) and B6.Igh-1/sup b/ (recipient) mice but not in mice of the unrelated strain BALB/c.Igh-1/sup a/. The results indicate that the establishment of the suppressor T-cell repertoire is dependent not only upon the genetic background of the individual T cell but also upon the influence of Igh-linked determinants present when T-cell clones are selected during the response

  3. Effect of host-related factors on the intensity of liver fibrosis in patients with chronic hepatitis C virus infection

    Directory of Open Access Journals (Sweden)

    Costa Luciano Bello

    2002-01-01

    Full Text Available There is increasing interest in the identification of factors associated with liver disease progression in patients infected with hepatitis C virus (HCV. We assessed host-related factors associated with a histologically advanced stage of this disease and determined the rate of liver fibrosis progression in HCV-infected patients. We included patients submitted to liver biopsy, who were anti-HCV and HCV RNA positive, who showed a parenteral risk factor (blood transfusion or intravenous drug use, and who gave information about alcohol consumption.Patients were divided into two groups for analysis: group 1 - grades 0 to 2; group 2 - grades 3 to 4. The groups were compared in terms of sex, age at the time of infection, estimated duration of infection and alcoholism. The rate of fibrosis progression (index of fibrosis was determined based on the relationship between disease stage and duration of infection (years. Logistic regression analysis revealed that age at the time of infection (P or = 40 years (median = 0.47. The main factors associated with a more rapid fibrosis progression were age at the time of infection and the estimated duration of infection. Patients who acquired HCV after 40 years of age showed a higher rate of fibrosis progression.

  4. Acute radiation syndrome (ARS – treatment of the reduced host defense

    Directory of Open Access Journals (Sweden)

    Heslet L

    2012-01-01

    Full Text Available Lars Heslet1, Christiane Bay2, Steen Nepper-Christensen31Serendex ApS, Gentofte; 2University of Copenhagen, Medical Faculty, Copenhagen; 3Department of Head and Neck Surgery, Otorhinolaryngology, Køge University Hospital, Køge, DenmarkBackground: The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS. The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF] in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes.Methods: Review of the current literature.Results: The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage’s important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS.Recommendation: Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least ~2 Gy by prompt dosing of 250–400 µg GM-CSF/m2 or 5 µg/kg G-CSF administered systemically and concomitant inhalation of

  5. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Science.gov (United States)

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  6. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Energy Technology Data Exchange (ETDEWEB)

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  7. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  8. Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity.

    Science.gov (United States)

    Murphy, J E; Robert, C; Kupper, T S

    2000-03-01

    As our primary interface with the environment, the skin is constantly subjected to injury and invasion by pathogens. The fundamental force driving the evolution of the immune system has been the need to protect the host against overwhelming infection. The ability of T and B cells to recombine antigen receptor genes during development provides an efficient, flexible, and powerful immune system with nearly unlimited specificity for antigen. The capacity to expand subsets of antigen-specific lymphocytes that become activated by environmental antigens (memory response) is termed "acquired" immunity. Immunologic memory, although a fundamental aspect of mammalian biology, is a relatively recent evolutionary event that permits organisms to live for years to decades. "Innate" immunity, mediated by genes that remain in germ line conformation and encode for proteins that recognize conserved structural patterns on microorganisms, is a much more ancient system of host defense. Defensins and other antimicrobial peptides, complement and opsonins, and endocytic receptors are all considered components of the innate immune system. None of these, however, are signal-transducing receptors. Most recently, a large family of cell surface receptors that mediate signaling through the NF-kappaB transcription factor has been identified. This family of proteins shares striking homology with plant and Drosophila genes that mediate innate immunity. In mammals, this family includes the type I interleukin-1 receptor, the interleukin-18 receptor, and a growing family of Toll-like receptors, two of which were recently identified as signal-transducing receptors for bacterial endotoxin. In this review, we discuss how interleukin-1 links the innate and acquired immune systems to provide synergistic host defense activities in skin.

  9. Hosts and vectors of Trypanosoma cruzi discrete typing units in the Chagas disease endemic region of the Paraguayan Chaco

    OpenAIRE

    ACOSTA, NIDIA; L?PEZ, ELSA; LEWIS, MICHAEL D.; LLEWELLYN, MARTIN S.; G?MEZ, ANA; ROM?N, FABIOLA; MILES, MICHAEL A.; YEO, MATTHEW

    2017-01-01

    SUMMARY Active Trypanosoma cruzi transmission persists in the Gran Chaco region, which is considered hyperendemic for Chagas disease. Understanding domestic and sylvatic transmission cycles and therefore the relationship between vectors and mammalian hosts is crucial to designing and implementing improved effective control strategies. Here we describe the species of triatomine vectors and the sylvatic mammal reservoirs of T. cruzi, in different localities of the Paraguayan and Bolivian Chaco....

  10. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection

    NARCIS (Netherlands)

    Rodrigues, Cristina D.; Hannus, Michael; Prudencio, Miguel; Martin, Cecilie; Goncalves, Ligia A.; Portugal, Silvia; Epiphanio, Sabrina; Akinc, Akin; Hadwiger, Philipp; Jahn-Hofmann, Kerstin; Roehl, Ingo; van Gemert, Geert-Jan; Franetich, Jean-Francois; Luty, Adrian J. F.; Sauerwein, Robert; Mazier, Dominique; Koteliansky, Victor; Vornlocher, Hans-Peter; Echeverri, Christophe J.; Mota, Maria M.

    2008-01-01

    An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I

  11. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis

    Science.gov (United States)

    David, Susana; Mateus, A. R. A.; Duarte, Elsa L.; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants. PMID:26529092

  12. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  13. A proactive and holistic information management approach is crucial ...

    African Journals Online (AJOL)

    ESARBICA Journal: Journal of the Eastern and Southern Africa Regional Branch of ... holistic information management approach is crucial to e-government development ... and to develop new electronic services hence boosting innovation.

  14. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.).

    Science.gov (United States)

    Ho, Chai-Ling; Tan, Yung-Chie; Yeoh, Keat-Ai; Ghazali, Ahmad-Kamal; Yee, Wai-Yan; Hoh, Chee-Choong

    2016-01-19

    Basal stem rot (BSR) is a fungal disease in oil palm (Elaeis guineensis Jacq.) which is caused by hemibiotrophic white rot fungi belonging to the Ganoderma genus. Molecular responses of oil palm to these pathogens are not well known although this information is crucial to strategize effective measures to eradicate BSR. In order to elucidate the molecular interactions between oil palm and G. boninense and its biocontrol fungus Trichoderma harzianum, we compared the root transcriptomes of untreated oil palm seedlings with those inoculated with G. boninense and T. harzianum, respectively. Differential gene expression analyses revealed that jasmonate (JA) and salicylate (SA) may act in an antagonistic manner in affecting the hormone biosynthesis, signaling, and downstream defense responses in G. boninense-treated oil palm roots. In addition, G. boninense may compete with the host to control disease symptom through the transcriptional regulation of ethylene (ET) biosynthesis, reactive oxygen species (ROS) production and scavenging. The strengthening of host cell walls and production of pathogenesis-related proteins as well as antifungal secondary metabolites in host plants, are among the important defense mechanisms deployed by oil palm against G. boninense. Meanwhile, endophytic T. harzianum was shown to improve the of nutrition status and nutrient transportation in host plants. The findings of this analysis have enhanced our understanding on the molecular interactions of G. boninense and oil palm, and also the biocontrol mechanisms involving T. harzianum, thus contributing to future formulations of better strategies for prevention and treatment of BSR.

  15. Effects of land use on zoonotic host communities: a global correlative analysis

    Directory of Open Access Journals (Sweden)

    Rory Gibb, MRes

    2018-05-01

    Full Text Available Background: Environmental trade-offs associated with land use—for example, between food security and biodiversity conservation—are crucial dimensions of planetary health. Land use-driven biodiversity change might predictably affect disease risk if reservoir host species are consistently more likely to persist under human disturbance (ie, if ecological communities in modified habitats generally have a higher zoonotic potential than those in unmodified habitats. Such a phenomenon has been observed in specific disease systems, but with substantial change in global land use projected for this century, assessing its global and taxonomic generality would shed light on an important hypothesised driver of environmental synergies or trade-offs between conservation and public health. Methods: We collated data on hosts of human parasites and pathogens from the published literature, and combined these with the Projecting Responses of Ecological Diversity in Changing Terrestrial Systems (PREDICTS global database of local ecological communities and associated land use data. We analysed the effects of land use on host richness and abundance across 7330 sites globally, controlling for disease-related research effort and differences in survey methods. Findings: Ecological communities in anthropogenic land uses (managed and urban ecosystems contained a consistently higher richness and abundance of host species than did communities in nearby primary (undisturbed sites. However, among mammal hosts of zoonotic pathogens, we found considerable taxonomic variation in host responses to land use, with abundances of rodents and bats generally increasing and those of primates and carnivores generally declining in modified landscapes. Interpretation: Our results suggest that future change in global land use has the potential to drive overall increasing contact between people and ecological communities with increased shared pathogen potential (ie, more potential hosts

  16. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    Science.gov (United States)

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Host density and competency determine the effects of host diversity on trematode parasite infection.

    Directory of Open Access Journals (Sweden)

    Jeremy M Wojdak

    Full Text Available Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other's densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans, in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1 replace the focal host species so that the total number of individuals remains constant (substitution or (2 add to total host density (addition. For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.

  18. Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap.

    Science.gov (United States)

    Gomes, Sofia I F; Merckx, Vincent S F T; Saavedra, Serguei

    2017-05-01

    The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal-host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal-host diversity may be additionally modulated by plant-plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.

  19. Viral Mimicry to Usurp Ubiquitin and SUMO Host Pathways

    Directory of Open Access Journals (Sweden)

    Peter Wimmer

    2015-08-01

    Full Text Available Posttranslational modifications (PTMs of proteins include enzymatic changes by covalent addition of cellular regulatory determinants such as ubiquitin (Ub and small ubiquitin-like modifier (SUMO moieties. These modifications are widely used by eukaryotic cells to control the functional repertoire of proteins. Over the last decade, it became apparent that the repertoire of ubiquitiylation and SUMOylation regulating various biological functions is not restricted to eukaryotic cells, but is also a feature of human virus families, used to extensively exploit complex host-cell networks and homeostasis. Intriguingly, besides binding to host SUMO/Ub control proteins and interfering with the respective enzymatic cascade, many viral proteins mimic key regulatory factors to usurp this host machinery and promote efficient viral outcomes. Advanced detection methods and functional studies of ubiquitiylation and SUMOylation during virus-host interplay have revealed that human viruses have evolved a large arsenal of strategies to exploit these specific PTM processes. In this review, we highlight the known viral analogs orchestrating ubiquitin and SUMO conjugation events to subvert and utilize basic enzymatic pathways.

  20. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites.

    Science.gov (United States)

    Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2015-09-08

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily.

  1. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors.

    Science.gov (United States)

    Hauser, Kurt F; Knapp, Pamela E

    2014-01-01

    Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions. © 2014 Elsevier Inc. All rights reserved.

  2. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    Directory of Open Access Journals (Sweden)

    Ala E. Tabor

    2017-12-01

    Full Text Available Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites, blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding, infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also

  3. Adaptation dans les zones cruciales au regard des changements ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ) vise à accroître la résilience des populations pauvres dans trois « zones cruciales » au regard des changements climatiques : les bassins hydrographiques, les deltas et les régions semi-arides.

  4. On the importance of macroeconomic factors for the foreign student’s decision to stay in the host country

    DEFF Research Database (Denmark)

    Vasiljeva, Kristine

    The paper tests empirically whether the macroeconomic variables suggested by migration theories have a significant impact on the foreign student’s decision to stay in their host country. The analysis is based on the combination of country level variables and individual register data. The mean...... labour income difference between the home and the host countries significantly negatively affects the student’s probability of staying in the host country. The differences in the unemployment rates, welfare benefits, business cycles do not affect the probability of staying. The more hierarchical society...

  5. Hepatocyte growth factor is crucial for development of the carapace in turtles.

    Science.gov (United States)

    Kawashima-Ohya, Yoshie; Narita, Yuichi; Nagashima, Hiroshi; Usuda, Ryo; Kuratani, Shigeru

    2011-01-01

    Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan. © 2011 Wiley Periodicals, Inc.

  6. The Gut Microbiota in Host Metabolism and Pathogen Challenges

    DEFF Research Database (Denmark)

    Holm, Jacob Bak

    The human microbiota consists of a complex community of microbial cells that live on and inside each person in a close relationship with their host. The majority of the microbial cells are harboured by the gastro intestinal tract where 10-100 trillion bacteria reside. The microbiota is a dynamic...... community where both composition and function can be affected by changes in the local environment. With the microbiota containing ~150 times more genes than the human host, the microbiota provides a large modifiable “secondary genome” (metagenome). Within the last decade, changes in the gut microbiota...... composition has indeed been established as a factor contributing to the health of the host. Therefore, being able to understand, control and modify the gut microbiota is a promising way of improving health. The following thesis is based on four different projects investigating the murine gut microbiota...

  7. C7L family of poxvirus host range genes inhibits antiviral activities induced by type I interferons and interferon regulatory factor 1.

    Science.gov (United States)

    Meng, Xiangzhi; Schoggins, John; Rose, Lloyd; Cao, Jingxin; Ploss, Alexander; Rice, Charles M; Xiang, Yan

    2012-04-01

    Vaccinia virus (VACV) K1L and C7L function equivalently in many mammalian cells to support VACV replication and antagonize antiviral activities induced by type I interferons (IFNs). While K1L is limited to orthopoxviruses, genes that are homologous to C7L are found in diverse mammalian poxviruses. In this study, we showed that the C7L homologues from sheeppox virus and swinepox virus could rescue the replication defect of a VACV mutant deleted of both K1L and C7L (vK1L(-)C7L(-)). Interestingly, the sheeppox virus C7L homologue could rescue the replication of vK1L(-)C7L(-) in human HeLa cells but not in murine 3T3 and LA-4 cells, in contrast to all other C7L homologues. Replacing amino acids 134 and 135 of the sheeppox virus C7L homologue, however, made it functional in the two murine cell lines, suggesting that these two residues are critical for antagonizing a putative host restriction factor which has some subtle sequence variation in human and murine cells. Furthermore, the C7L family of host range genes from diverse mammalian poxviruses were all capable of antagonizing type I IFN-induced antiviral activities against VACV. Screening of a library of more than 350 IFN-stimulated genes (ISGs) identified interferon-regulated factor 1 (IRF1) as an inhibitor of vK1L(-)C7L(-) but not wild-type VACV. Expression of either K1L or C7L, however, rendered vK1L(-)C7L(-) resistant to IRF1-induced antiviral activities. Altogether, our data show that K1L and C7L antagonize IRF1-induced antiviral activities and that the host modulation function of C7L is evolutionally conserved in all poxviruses that can readily replicate in tissue-cultured mammalian cells.

  8. The specificity of host-bat fly interaction networks across vegetation and seasonal variation.

    Science.gov (United States)

    Zarazúa-Carbajal, Mariana; Saldaña-Vázquez, Romeo A; Sandoval-Ruiz, César A; Stoner, Kathryn E; Benitez-Malvido, Julieta

    2016-10-01

    Vegetation type and seasonality promote changes in the species composition and abundance of parasite hosts. However, it is poorly known how these variables affect host-parasite interaction networks. This information is important to understand the dynamics of parasite-host relationships according to biotic and abiotic changes. We compared the specialization of host-bat fly interaction networks, as well as bat fly and host species composition between upland dry forest and riparian forest and between dry and rainy seasons in a tropical dry forest in Jalisco, Mexico. Bat flies were surveyed by direct collection from bats. Our results showed that host-bat fly interaction networks were more specialized in upland dry forest compared to riparian forest. Bat fly species composition was different between the dry and rainy seasons, while host species composition was different between upland dry forest and riparian forest. The higher specialization in upland dry forest could be related to the differences in bat host species composition and their respective roosting habits. Variation in the composition of bat fly species between dry and rainy seasons coincides with the seasonal shifts in their species richness. Our study confirms the high specialization of host-bat fly interactions and shows the importance of biotic and abiotic factors to understand the dynamics of parasite-host interactions.

  9. A randomized study of the prevention of acute graft-versus-host disease

    International Nuclear Information System (INIS)

    Ramsay, N.K.C.; Kersey, J.H.; Robison, L.L.; McGlave, P.B.; Woods, W.G.; Krivit, W.; Kim, T.H.; Goldman, A.I.; Nesbit, M.E. Jr.

    1982-01-01

    Acute graft-versus-host disease is a major problem in allogeneic bone-marrow transplantation. We performed a randomized study to compare the effectiveness of two regimens in the prevention of acute graft-versus-host disease. Thirty-five patients received methotrexate alone, and 32 received methotrexate, antithymocyte globulin, and prednisone. Of the patients who received methotrexate alone, 48 percent had acute graft-versus-host disease, as compared with 21 per cent of those who received methotrexate, antithymocyte globulin, and prednisone (P = 0.01). The age of the recipient was a significant factor in the development of acute graft-versus-host disease: Older patients had a higher incidence of the disease (P = 0.001). We conclude that the combination of methotrexate, antithymocyte globulin, and prednisone significantly decreased the incidence of acute graft-versus-host disease and should be used to prevent this disorder in patients receiving allogeneic marrow transplants

  10. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity

    Directory of Open Access Journals (Sweden)

    Francesca eCalabrese

    2014-12-01

    Full Text Available Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli.In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor, which represents one of the major mediators of neuroplasticity.

  11. Multiple blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Farjana, Thahsin; Tuno, Nobuko

    2013-07-01

    The body size of mosquitoes can influence a number of bionomic factors, such as their blood-feeding ability, host attack rate, and fecundity. All of these traits are important determinants of their potential to transmit diseases. Among abiotic and biotic factors, high temperature and low nutrition in the developing stages of mosquitoes generally result in small adults. We studied the relationship between body size and multiple feeding in a gonotrophic cycle and some fecundity attributes by using three strains of two competent vector species, Aedes aegypti (L.) and Aedes albopictus (Skuse). We raised small and large mosquitoes under low and high food conditions in the laboratory to measure parameters of fecundity and blood-feeding behavior. Fecundity was positively correlated with body size in both species, whereas the number of bloodmeals, the frequency of host-seeking behavior, and egg retention were negatively correlated with body size in the Ae. albopictus Nagasaki strain. We found that multiple feeding and host-seeking behavior were negatively correlated with body size, i.e., small mosquitoes tended to have more contact with hosts. We found that two mechanisms that inhibit engorged mosquitoes from seeking out hosts, distension-induced and oocyte-induced inhibition, were not strong enough to limit host-seeking behavior, and multiple feeding increased fecundity. Size-dependent multiple feeding and host-seeking behavior affect contact frequency with hosts and should be considered when predicting how changes in mosquito body size affect disease transmission.

  12. Clinical Trials: A Crucial Key to Human Health Research

    Science.gov (United States)

    ... Past Issues Clinical Trials: A Crucial Key to Human Health Research Past Issues / Summer 2006 Table of Contents ... Javascript on. Photo: PhotoDisc At the forefront of human health research today are clinical trials—studies that use ...

  13. Host- and microbe-related risk factors for and pathophysiology of fatal Rickettsia conorii infection in Portuguese patients.

    Science.gov (United States)

    Sousa, Rita de; França, Ana; Dória Nòbrega, Sónia; Belo, Adelaide; Amaro, Mario; Abreu, Tiago; Poças, José; Proença, Paula; Vaz, José; Torgal, Jorge; Bacellar, Fátima; Ismail, Nahed; Walker, David H

    2008-08-15

    The pathophysiologic mechanisms that determine the severity of Mediterranean spotted fever (MSF) and the host-related and microbe-related risk factors for a fatal outcome are incompletely understood. This prospective study used univariate and multivariate analyses to determine the risk factors for a fatal outcome for 140 patients with Rickettsia conorii infection admitted to 13 Portuguese hospitals during 1994-2006 with documented identification of the rickettsial strain causing their infection. A total of 71 patients (51%) were infected with the Malish strain of Rickettsia conorii, and 69 (49%) were infected with the Israeli spotted fever (ISF) strain. Patients were admitted to the intensive care unit (40 [29%]), hospitalized as routine inpatients (95[67%]), or managed as outpatients (5[4%]). Death occurred in 29 adults (21%). A fatal outcome was significantly more likely for patients infected with the ISF strain, and alcoholism was a risk factor. The pathophysiology of a fatal outcome involved significantly greater incidence of petechial rash, gastrointestinal symptoms, obtundation and/or confusion, dehydration, tachypnea, hepatomegaly, leukocytosis, coagulopathy, azotemia, hyperbilirubinemia, and elevated levels of hepatic enzymes and creatine kinase. Some, but not all, of these findings were observed more often in ISF strain-infected patients. Although fatalities and similar clinical manifestations occurred among both groups of patients, the ISF strain was more virulent than the Malish strain. Multivariate analysis revealed that acute renal failure and hyperbilirubinemia were most strongly associated with a fatal outcome.

  14. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  15. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    Science.gov (United States)

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  16. Hydrogen bonding assemblies in host guest complexes with 18-crown-6

    Science.gov (United States)

    Fonari, M. S.; Simonov, Yu. A.; Kravtsov, V. Ch.; Lipkowski, J.; Ganin, E. V.; Yavolovskii, A. A.

    2003-02-01

    Recent X-ray crystal structural data for two novel 1:2 host-guest complexes of 18-crown-6 with neutral organic molecules, thiaamide hydrazide of 2-aminobenzoic acid and thiaamide hydrazide of 4-amino-1,2,5-thiadiazole-3-carbonic acid are reported. The supramolecular structures of these two and five relative complexes are discussed from the point of view of participation of donor groups in coordination with the crown ether, and donor and acceptor groups in the self-assembly of the guest molecules. Guest molecules have incorporated amine and hydrazine moieties as proton donors and carbonyl oxygen and sulfur (in thiadiazole and in thiaamine moieties) as proton acceptors. The guest-guest interactions appeared to be crucial in the final architecture.

  17. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing Drosophila, Drosophila suzukii.

    Directory of Open Access Journals (Sweden)

    David E Bellamy

    Full Text Available Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1 model derivation; 2 influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice; and, 3 variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD, Drosophila suzukii Matsumura (Diptera: Drosophilidae, with seven "reported" hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries ( (meanHPIvaried  = 301.9±8.39; rank 1 of 7 have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes ( (meanHPIvaried  = 232.4±3.21; rank 7 of 7 having the least potential.

  18. Impacto psicosocial del síndrome demencial en cuidadores cruciales Psychosocial impact of demential syndrome in crucial care givers

    Directory of Open Access Journals (Sweden)

    Juan Carlos LLibre Guerra

    2008-03-01

    Full Text Available Las demencias, entidades de elevada frecuencia en el adulto mayor, constituyen un creciente problema de salud en países con una alta expectativa de vida como el nuestro, no solo por su magnitud, sino por su repercusión a nivel individual, familiar y social. Se presenta un estudio descriptivo de corte transversal, realizado en el período comprendido entre enero de 2003 y enero de 2005, en las áreas de salud del municipio Marianao, con el objetivo de determinar el impacto psicosocial del síndrome demencial en cuidadores cruciales. Se visitaron 110 cuidadores de pacientes con demencia y enfermedad de Alzheimer diagnosticados de acuerdo con los criterios del DSM-IV. Los cuidadores cruciales de los pacientes con demencia correspondieron en su mayoría a mujeres casadas, esposa o hijas del paciente, en la quinta década de la vida, amas de casa, y con un nivel medio de escolaridad. El cuidador dedica alrededor de 12 h diarias al cuidado del paciente, la mayor parte en la supervisión. Se evidenció afectación psicológica en el 89 % de los cuidadores. El nivel de sobrecarga o estrés en la muestra es significativamente elevado. Los cuidadores consideran como primera prioridad información acerca de la enfermedad y atención al paciente. Se recomienda realizar un plan de intervención educativa dirigido a los cuidadores, que permita reducir la sobrecarga física, psicológica y económica del cuidado y mejorar su calidad de vida.The dementias, entities of an elevated frequency in the older adult, are an increasing health problem in countries with a high life expectancy at birth as ours, not only because of their magnitude, but also because of their repercussion at the individual, familiar and social levels. A descriptive cross-sectional study was undertaken from January 2003 to January 2005 in the health areas of Marianao municipality with the objective of determining the psychosocial impact of the demential syndrome in crucial care givers. 110

  19. New Insights into Butyrylcholinesterase Activity Assay: Serum Dilution Factor as a Crucial Parameter.

    Directory of Open Access Journals (Sweden)

    Joanna Jońca

    Full Text Available Butyrylcholinesterase (BChE activity assay and inhibitor phenotyping can help to identify patients at risk of prolonged paralysis following the administration of neuromuscular blocking agents. The assay plays an important role in clinical chemistry as a good diagnostic marker for intoxication with pesticides and nerve agents. Furthermore, the assay is also commonly used for in vitro characterization of cholinesterases, their toxins and drugs. There is still lack of standardized procedure for measurement of BChE activity and many laboratories use different substrates at various concentrations. The purpose of this study was to validate the BChE activity assay to determine the best dilution of human serum and the most optimal concentration of substrates and inhibitors. Serum BChE activity was measured using modified Ellman's method applicable for a microplate reader. We present our experience and new insights into the protocol for high-throughput routine assays of human plasma cholinesterase activities adapted to a microplate reader. During our routine assays used for the determination of BChE activity, we have observed that serum dilution factor influences the results obtained. We show that a 400-fold dilution of serum and 5mM S-butyrylthiocholine iodide can be successfully used for the accurate measurement of BChE activity in human serum. We also discuss usage of various concentrations of dibucaine and fluoride in BChE phenotyping. This study indicates that some factors of such a multicomponent clinical material like serum can influence kinetic parameters of the BChE. The observed inhibitory effect is dependent on serum dilution factor used in the assay.

  20. Host immunity, nutrition and coinfection alter longitudinal infection patterns of schistosomes in a free ranging African buffalo population.

    Directory of Open Access Journals (Sweden)

    Brianna R Beechler

    2017-12-01

    Full Text Available Schistosomes are trematode parasites of global importance, causing infections in millions of people, livestock, and wildlife. Most studies on schistosomiasis, involve human subjects; as such, there is a paucity of longitudinal studies investigating parasite dynamics in the absence of intervention. As a consequence, despite decades of research on schistosomiasis, our understanding of its ecology in natural host populations is centered around how environmental exposure and acquired immunity influence acquisition of parasites, while very little is known about the influence of host physiology, coinfection and clearance in the absence of drug treatment. We used a 4-year study in free-ranging African buffalo to investigate natural schistosome dynamics. We asked (i what are the spatial and temporal patterns of schistosome infections; (ii how do parasite burdens vary over time within individual hosts; and (iii what host factors (immunological, physiological, co-infection and environmental factors (season, location explain patterns of schistosome acquisition and loss in buffalo? Schistosome infections were common among buffalo. Microgeographic structure explained some variation in parasite burdens among hosts, indicating transmission hotspots. Overall, parasite burdens ratcheted up over time; however, gains in schistosome abundance in the dry season were partially offset by losses in the wet season, with some hosts demonstrating complete clearance of infection. Variation among buffalo in schistosome loss was associated with immunologic and nutritional factors, as well as co-infection by the gastrointestinal helminth Cooperia fuelleborni. Our results demonstrate that schistosome infections are surprisingly dynamic in a free-living mammalian host population, and point to a role for host factors in driving variation in parasite clearance, but not parasite acquisition which is driven by seasonal changes and spatial habitat utilization. Our study illustrates

  1. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes.

    Directory of Open Access Journals (Sweden)

    Muriel Vayssier-Taussat

    2010-06-01

    Full Text Available Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage

  2. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase-IRF3 transcription factor interaction and signaling required for interferon induction.

    Science.gov (United States)

    Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin

    2017-10-06

    Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence.

    Science.gov (United States)

    Sengupta, Isha; Das, Dipanwita; Singh, Shivaram Prasad; Chakravarty, Runu; Das, Chandrima

    2017-12-15

    Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Helicobacter pylori as a crucial factor in intestinal metaplasia development of gastric mucosa

    Directory of Open Access Journals (Sweden)

    Sergii Vernygorodskyi

    2016-06-01

    Full Text Available Helicobacter pylori (H. pylori is detected on the surface of gastric epithelium and in goblet cells, predominantly in patients with chronic atrophic gastritis and incomplete intestinal metaplasia (IM. H. pylori infection persistence leads to the formation of gastrointestinal phenotype of IM. H. pylori can be considered as an etiological factor of IM. It inhibits the expression of SOX2 in gastric epithelial cells, hence activating transcription factor CDX2 as a counterpart to MUC5AC gene inhibition and MUC2 gene induction. Thus, in metaplastic cells, programming differentiation after intestinal phenotype will develop. The role of H. pylori in the origin of intestinal metaplasia of gastric mucosa was defined in this study to elucidate the probable mechanism of cell reprogramming. The activation of CDX2, with simultaneous inactivation and decreased number of genes (e.g., SHH, SOX2, and RUNX3 responsible for gastric differentiation, was identified to cause the appearance of IM.

  5. Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages.

    Directory of Open Access Journals (Sweden)

    Arshnee Moodley

    Full Text Available Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8, ST22 (CC22 and ST36(CC30] and two pig-associated [ST398 (CC398 and ST433(CC30] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1 human and porcine ST398; mix 2 human ST36 and porcine ST433; and mix 3 human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001. In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs.

  6. The role of host traits, season and group size on parasite burdens in a cooperative mammal.

    Directory of Open Access Journals (Sweden)

    Hermien Viljoen

    Full Text Available The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae. This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp. and cestodes (Mathevotaenia sp. being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted.

  7. Establishing the relative importance of sympatric definitive hosts in the transmission of the sealworm, Pseudoterranova decipiens: a host-community approach

    Directory of Open Access Journals (Sweden)

    F Javier Aznar

    2001-11-01

    Full Text Available The importance of a given host to a particular parasite can be determined according to three different criteria: host preference, host physiological suitability and host contribution to transmission. Most studies on the sealworm Pseudoterranova decipiens have focussed on the latter factor, but few attempts have been made to develop a quantitative transmission model evaluating the relative importance of each host. The purpose of this study was to propose a flow-chart model to study sealworm transmission within a seal community. The model was applied to hypothetical data of four seal species acting as definitive hosts of P. decipiens sensu stricto in eastern Canada: harp seal Phoca groenlandica, harbour seal P. vitulina, grey seal Halichoerus grypus and hooded seal Cystophora cristata. The dynamics of the model was studied using population estimates from 1990 to 1996. To illustrate the interrelationship of the seal populations in the flow dynamics, the model’s behaviour was explored by manipulation of the harp seal population size. The results showed that grey seals accounted by far for most transmission from and to the seals. The harbour seal population also sustained a biologically significant proportion of the flow, whereas the role of hooded and harp seals seemed negligible despite their large population sizes. The hypothetical removal of the harp seal population resulted in small increases in the relative flows to the other seals. These results conform to previous qualitative assessments on the relative importance of these seal species in sealworm transmission. The model provided some heuristic rules useful to understand transmission patterns. The data suggested that the harbour seal population should be about twice that of the grey seals to account for a larger share of transmission than grey seals. Although this is unlikely to occur at a large geographic scale, harbour seals outnumber grey seals in some areas and, therefore, the role of

  8. Gnotobiotic mouse model's contribution to understanding host-pathogen interactions

    Czech Academy of Sciences Publication Activity Database

    Kubelková, K.; Benuchová, M.; Kozáková, Hana; Šinkora, Marek; Kročová, Z.; Pejchal, J.; Macela, A.

    2016-01-01

    Roč. 73, č. 20 (2016), s. 3961-3969 ISSN 1420-682X R&D Projects: GA ČR GA15-02274S Institutional support: RVO:61388971 Keywords : Germ- free model * Gnotobiology * Host-pathogen interaction Subject RIV: EC - Immunology Impact factor: 5.788, year: 2016

  9. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions...... consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts....

  10. Host-microbiota interplay in mediating immune disorders.

    Science.gov (United States)

    Felix, Krysta M; Tahsin, Shekha; Wu, Hsin-Jung Joyce

    2018-04-01

    To maintain health, the immune system must maintain a delicate balance between eliminating invading pathogens and avoiding immune disorders such as autoimmunity and allergies. The gut microbiota provide essential health benefits to the host, particularly by regulating immune homeostasis. Dysbiosis, an alteration and imbalance of the gut microbiota, is associated with the development of several autoimmune diseases in both mice and humans. In this review, we discuss recent advances in understanding how certain factors, such as age and gender, affect the gut microbiota, which in turn can influence the development of autoimmune diseases. The age factor in microbiota-dependent immune disorders indicates a window of opportunity for future diagnostic and therapeutic approaches. We also discuss unique commensal bacteria with strong immunomodulatory activity. Finally, we provide an overview of the potential molecular mechanisms whereby gut microbiota induce autoimmunity, as well as the evidence that gut microbiota trigger extraintestinal diseases by inducing the migration of gut-derived immune cells. Elucidating the interaction of gut microbiota and the host immune system will help us understand the pathogenesis of immune disorders, and provide us with new foundations to develop novel immuno- or microbe-targeted therapies. © 2017 New York Academy of Sciences.

  11. Limited by the host: Host age hampers establishment of holoparasite Cuscuta epithymum

    Science.gov (United States)

    Meulebrouck, Klaar; Verheyen, Kris; Brys, Rein; Hermy, Martin

    2009-07-01

    A good understanding of the relationship between plant establishment and the ecosystem of which they are part of is needed to conserve rare plant species. Introduction experiments offer a direct test of recruitment limitation, but generally only the seed germination and seedling phases are monitored. Thus the relative importance of different establishment stages in the process of recruitment is not considered. This is particularly true for parasitic plants where empirical data are generally missing. During two consecutive growing seasons we examined the effect of heathland management applications, degree of heathland succession (pioneer, building and mature phase) and seed-density on the recruitment and establishment of the endangered holoparasite Cuscuta epithymum. In general, recruitment after two growing seasons was low with 4.79% of the sown seeds that successfully emerged to the seedling stage and a final establishment of 89 flowering adults (i.e. <1.5% of the sown seeds). Although a higher seed-density resulted in a higher number of seedlings, seed-density did not significantly affected relative germination percentages. The management type and subsequent heath succession had no significant effect on seedling emergence; whereas, seedling attachment to the host, establishment and growth to full-grown size were hampered in older heath vegetation (i.e. high, dense, and mature canopy). Establishment was most successful in turf-cut pioneer heathland, characterised by a relatively open and low vegetation of young Calluna vulgaris. The age of C. vulgaris, C. epithymum's main host, proved to be the most limiting factor. These results emphasise the importance of site quality (i.e. successional phase of its host) on recruitment success of C. epithymum, which is directly affected by the management applied to the vegetation. Lack of any heathland management will thus seriously restrict establishment of the endangered parasite.

  12. Host body size and the diversity of tick assemblages on Neotropical vertebrates

    Directory of Open Access Journals (Sweden)

    Helen J. Esser

    2016-12-01

    Full Text Available Identifying the factors that influence the species diversity and distribution of ticks (Acari: Ixodida across vertebrate host taxa is of fundamental ecological and medical importance. Host body size is considered one of the most important determinants of tick abundance, with larger hosts having higher tick burdens. The species diversity of tick assemblages should also be greater on larger-bodied host species, but empirical studies testing this hypothesis are lacking. Here, we evaluate this relationship using a comparative dataset of feeding associations from Panama between 45 tick species and 171 host species that range in body size by three orders of magnitude. We found that tick species diversity increased with host body size for adult ticks but not for immature ticks. We also found that closely related host species tended to have similar tick species diversity, but correcting for host phylogeny did not alter the relationships between host body size and tick species diversity. The distribution of tick species was highly aggregated, with approximately 20% of the host species harboring 80% of all tick species, following the Pareto principle or 20/80 Rule. Thus, the aggregated pattern commonly observed for tick burdens and disease transmission also holds for patterns of tick species richness. Our finding that the adult ticks in this system preferentially parasitize large-bodied host species suggests that the ongoing anthropogenic loss of large-bodied vertebrates is likely to result in host-tick coextinction events, even when immature stages feed opportunistically. As parasites play critical roles in ecological and evolutionary processes, such losses may profoundly affect ecosystem functioning and services.

  13. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  14. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Population structure and virulence gene profiles of Streptococcus agalactiae collected from different hosts worldwide.

    Science.gov (United States)

    Morach, Marina; Stephan, Roger; Schmitt, Sarah; Ewers, Christa; Zschöck, Michael; Reyes-Velez, Julian; Gilli, Urs; Del Pilar Crespo-Ortiz, María; Crumlish, Margaret; Gunturu, Revathi; Daubenberger, Claudia A; Ip, Margaret; Regli, Walter; Johler, Sophia

    2018-03-01

    Streptococcus agalactiae is a leading cause of morbidity and mortality among neonates and causes severe infections in pregnant women and nonpregnant predisposed adults, in addition to various animal species worldwide. Still, information on the population structure of S. agalactiae and the geographical distribution of different clones is limited. Further data are urgently needed to identify particularly successful clones and obtain insights into possible routes of transmission within one host species and across species borders. We aimed to determine the population structure and virulence gene profiles of S. agalactiae strains from a diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates obtained from humans and animals from five different continents were typed by DNA microarray profiling. A total of 242 different S. agalactiae strains were identified and further analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were identified that were spread across different continents and/or were present in more than one host species. In particular, several strains were detected in both humans and cattle, and several canine strains were also detected in samples from human, bovine, and porcine hosts. The findings of our study suggest that although S. agalactiae is well adapted to various hosts including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and occurs between humans and cows, dogs, and rabbits. The virulence and resistance gene profiles presented enable new insights into interspecies transmission and make a crucial contribution to the identification of suitable targets for therapeutic agents and vaccines.

  16. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Directory of Open Access Journals (Sweden)

    Alexandra Wittmann

    Full Text Available In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  17. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Science.gov (United States)

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  18. The role of beetle and host volatiles in host colonization in the European oak bark beetle, Scolytus intricatus (Ratzeburg) (Col., Scolytidae)

    Czech Academy of Sciences Publication Activity Database

    Hovorka, Oldřich; Kindl, Jiří; Kalinová, Blanka; Knížek, M.; Vrkočová, Pavlína; Koutek, Bohumír

    2005-01-01

    Roč. 129, č. 4 (2005), 221-226 ISSN 0931-2048 R&D Projects: GA ČR(CZ) GA203/97/0037; GA MZe(CZ) QD0332 Institutional research plan: CEZ:AV0Z4055905 Keywords : bark beetles * host colonization * pheromones Subject RIV: CC - Organic Chemistry Impact factor: 0.703, year: 2005

  19. The host immunological response to cancer therapy: An emerging concept in tumor biology

    International Nuclear Information System (INIS)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval

    2013-01-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome

  20. The host immunological response to cancer therapy: An emerging concept in tumor biology

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, Tali [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel); Voest, Emile E. [Department of Medical Oncology, University Medical Center Utrecht, Utrecht (Netherlands); Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il [Department of Molecular Pharmacology, Rappaport Faculty of Medicine and the Rappaport Institute, Technion—Israel Institute of Technology, 1 Efron Street, Bat Galim, Haifa 31096 (Israel)

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.

  1. Transmission or Within-Host Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.

    Directory of Open Access Journals (Sweden)

    Raina K Plowright

    2016-08-01

    Full Text Available Progress in combatting zoonoses that emerge from wildlife is often constrained by limited knowledge of the biology of pathogens within reservoir hosts. We focus on the host-pathogen dynamics of four emerging viruses associated with bats: Hendra, Nipah, Ebola, and Marburg viruses. Spillover of bat infections to humans and domestic animals often coincides with pulses of viral excretion within bat populations, but the mechanisms driving such pulses are unclear. Three hypotheses dominate current research on these emerging bat infections. First, pulses of viral excretion could reflect seasonal epidemic cycles driven by natural variations in population densities and contact rates among hosts. If lifelong immunity follows recovery, viruses may disappear locally but persist globally through migration; in either case, new outbreaks occur once births replenish the susceptible pool. Second, epidemic cycles could be the result of waning immunity within bats, allowing local circulation of viruses through oscillating herd immunity. Third, pulses could be generated by episodic shedding from persistently infected bats through a combination of physiological and ecological factors. The three scenarios can yield similar patterns in epidemiological surveys, but strategies to predict or manage spillover risk resulting from each scenario will be different. We outline an agenda for research on viruses emerging from bats that would allow for differentiation among the scenarios and inform development of evidence-based interventions to limit threats to human and animal health. These concepts and methods are applicable to a wide range of pathogens that affect humans, domestic animals, and wildlife.

  2. Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection.

    Directory of Open Access Journals (Sweden)

    Celine Deffrasnes

    2016-03-01

    Full Text Available Hendra and Nipah viruses (genus Henipavirus, family Paramyxoviridae are highly pathogenic bat-borne viruses. The need for high biocontainment when studying henipaviruses has hindered the development of therapeutics and knowledge of the viral infection cycle. We have performed a genome-wide siRNA screen at biosafety level 4 that identified 585 human proteins required for henipavirus infection. The host protein with the largest impact was fibrillarin, a nucleolar methyltransferase that was also required by measles, mumps and respiratory syncytial viruses for infection. While not required for cell entry, henipavirus RNA and protein syntheses were greatly impaired in cells lacking fibrillarin, indicating a crucial role in the RNA replication phase of infection. During infection, the Hendra virus matrix protein co-localized with fibrillarin in cell nucleoli, and co-associated as a complex in pulldown studies, while its nuclear import was unaffected in fibrillarin-depleted cells. Mutagenesis studies showed that the methyltransferase activity of fibrillarin was required for henipavirus infection, suggesting that this enzyme could be targeted therapeutically to combat henipavirus infections.

  3. Data from: Two different strategies of host manipulation allow parasites to persist in intermediate-definitive host systems

    NARCIS (Netherlands)

    Vries, de Lana; Langevelde, van F.

    2017-01-01

    Trophically-transmitted parasites start their development in an intermediate host, before they finish the development in their definitive host when the definitive host preys on the intermediate host. In intermediate-definitive host systems, two strategies of host manipulation have been evolved:

  4. Herpesvirus papio 2 encodes a virion host shutoff function.

    Science.gov (United States)

    Bigger, John E; Martin, David W

    2002-12-05

    Infection of baboons with herpesvirus papio 2 (HVP-2) produces a disease that is similar to human infection with herpes simplex viruses (HSV). Molecular characterization of HVP-2 has demonstrated that the virion contains a factor which rapidly shuts off host cell protein synthesis after infection. Reduction of host cell protein synthesis occurs in parallel with the degradation of mRNA species. A homolog of the HSV virion host shutoff (vhs) gene was identified by Southern and DNA sequence analysis. The sequence of the HVP-2 vhs gene homolog had greater than 70% identity with the vhs genes of HSV 1 and 2. Disruption of the HVP-2 vhs open reading frame diminished the ability of the virus to shut off protein synthesis and degrade cellular mRNA, indicating that this gene was responsible for the vhs activity. The HVP-2 model system provides the opportunity to study the biological role of vhs in the context of a natural primate host. Further development of this system will provide a platform for proof-of-concept studies that will test the efficacy of vaccines that utilize vhs-deficient viruses.

  5. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles.

    Directory of Open Access Journals (Sweden)

    Jennifer M Bomberger

    2009-04-01

    Full Text Available Bacteria use a variety of secreted virulence factors to manipulate host cells, thereby causing significant morbidity and mortality. We report a mechanism for the long-distance delivery of multiple bacterial virulence factors, simultaneously and directly into the host cell cytoplasm, thus obviating the need for direct interaction of the pathogen with the host cell to cause cytotoxicity. We show that outer membrane-derived vesicles (OMV secreted by the opportunistic human pathogen Pseudomonas aeruginosa deliver multiple virulence factors, including beta-lactamase, alkaline phosphatase, hemolytic phospholipase C, and Cif, directly into the host cytoplasm via fusion of OMV with lipid rafts in the host plasma membrane. These virulence factors enter the cytoplasm of the host cell via N-WASP-mediated actin trafficking, where they rapidly distribute to specific subcellular locations to affect host cell biology. We propose that secreted virulence factors are not released individually as naked proteins into the surrounding milieu where they may randomly contact the surface of the host cell, but instead bacterial derived OMV deliver multiple virulence factors simultaneously and directly into the host cell cytoplasm in a coordinated manner.

  6. Crucial problems in the design of a terahertz tripler

    International Nuclear Information System (INIS)

    Meng Jin; Zhang Dehai; Jiang Changhong; Zhao Xin; Yan Dashuai; Huang Jian

    2015-01-01

    A frequency-multiplied source at the terahertz band using discrete planar Schottky diodes, which is a critical element in heterodyne instruments, has been studied by some domestic research institutions in recent years. Besides the design method, there are still many crucial problems that must be taken into consideration in the design. This article mainly discuss three aspects based on the measured data of a 225 GHz tripler that we designed. Firstly, the accuracy of the diode model concerns the reliability of the simulation results. According to the Spice parameters and the measured results, the physical size and the DC parameter of the Schottky diode can be corrected until there is a good consistency between the simulated and measured results. Secondly, the heat accumulation happens to the Schottky junction when the high input power is added. A steady-state thermal simulation is done and the results show that the hottest temperature is about 140 °C with 250 mW input power, which is safe to the diode. Lastly, some non-ideal factors are brought during the assembly process such as the uncertainty in the conductive adhesive shape and location deviation of the circuit. Furthermore, the effect on the performance of the frequency multiplier is calculated in this work. (paper)

  7. Crucial problems in the design of a terahertz tripler

    Science.gov (United States)

    Jin, Meng; Dehai, Zhang; Changhong, Jiang; Xin, Zhao; Jian, Huang; Dashuai, Yan

    2015-08-01

    A frequency-multiplied source at the terahertz band using discrete planar Schottky diodes, which is a critical element in heterodyne instruments, has been studied by some domestic research institutions in recent years. Besides the design method, there are still many crucial problems that must be taken into consideration in the design. This article mainly discuss three aspects based on the measured data of a 225 GHz tripler that we designed. Firstly, the accuracy of the diode model concerns the reliability of the simulation results. According to the Spice parameters and the measured results, the physical size and the DC parameter of the Schottky diode can be corrected until there is a good consistency between the simulated and measured results. Secondly, the heat accumulation happens to the Schottky junction when the high input power is added. A steady-state thermal simulation is done and the results show that the hottest temperature is about 140 °C with 250 mW input power, which is safe to the diode. Lastly, some non-ideal factors are brought during the assembly process such as the uncertainty in the conductive adhesive shape and location deviation of the circuit. Furthermore, the effect on the performance of the frequency multiplier is calculated in this work.

  8. Host feeding in insect parasitoids: why destructively feed upon a host that excretes an alternative?

    NARCIS (Netherlands)

    Burger, J.S.M.; Reijnen, T.M.; Van Lenteren, J.C.; Vet, L.E.M.

    2004-01-01

    Host feeding is the consumption of host tissue by the adult female parasitoid. We studied the function of destructive host feeding and its advantage over non-destructive feeding on host-derived honeydew in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We allowed

  9. Diversity, distribution and host-species associations of epiphytic orchids in Nepal

    Czech Academy of Sciences Publication Activity Database

    Timsina, B.; Rokaya, Maan Bahadur; Münzbergová, Zuzana; Kindlmann, P.; Shrestha, B.; Bhattarai, B.; Raskoti, B. B.

    2016-01-01

    Roč. 25, č. 13 (2016), s. 2803-2819 ISSN 0960-3115 Institutional support: RVO:67985939 Keywords : species richness * host * Nepal Himalaya Subject RIV: EF - Botanics Impact factor: 2.265, year: 2016

  10. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361

  11. Local host adaptation and use of a novel host in the seed beetle Megacerus eulophus.

    Directory of Open Access Journals (Sweden)

    Gisela C Stotz

    Full Text Available Spatial variation in host plant availability may lead to specialization in host use and local host adaptation in herbivorous insects, which may involve a cost in performance on other hosts. We studied two geographically separated populations of the seed beetle Megacerus eulophus (Coleoptera: Bruchidae in central Chile: a population from the host Convolvulus chilensis (in Aucó and a population from C. bonariensis (in Algarrobo. In Aucó C. chilensis is the only host plant, while in Algarrobo both C. bonariensis and C. chilensis are available. We tested local adaptation to these native host plants and its influence on the use of another, exotic host plant. We hypothesized that local adaptation would be verified, particularly for the one-host population (Aucó, and that the Aucó population would be less able to use an alternative, high-quality host. We found evidence of local adaptation in the population from C. chilensis. Thus, when reared on C. chilensis, adults from the C. chilensis population were larger and lived longer than individuals from the C. bonariensis population, while bruchids from the two populations had the same body size and longevity when reared on C. bonariensis. Overall, bruchids from the C. chilensis population showed greater performance traits than those from the C. bonariensis population. There were no differences between the bruchid populations in their ability to use the alternative, exotic host Calystegia sepium, as shown by body size and longevity patterns. Results suggest that differences in local adaptation might be explained by differential host availability in the study populations.

  12. Genomic diversification of enterococci in hosts: the role of the mobilome.

    Science.gov (United States)

    Santagati, Maria; Campanile, Floriana; Stefani, Stefania

    2012-01-01

    Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them to colonize various environments and hosts but also to be opportunistic pathogens. Many papers have contributed to a better understanding of: (i) the taxonomy of this complex group of microorganisms; (ii) intra-species variability; (iii) the role of different pathogenicity traits; and (iv) some markers related to the character of host-specificity, but the reasons of such incredible success of adaptability is still far from being fully explained. Recently, genomic-based studies have improved our understanding of the genome diversity of the most studied species, i.e., E. faecalis and E. faecium. From these studies, what is becoming evident is the role of the mobilome in adding new abilities to colonize new hosts and environments, and eventually in driving their evolution: specific clones associated with human infections or specific hosts can exist, but probably the consideration of these populations as strictly clonal groups is only partially correct. The variable presence of mobile genetic elements may, indeed, be one of the factors involved in the evolution of one specific group in a specific host and/or environment. Certainly more extensive studies using new high throughput technologies are mandatory to fully understand the evolution of predominant clones and species in different hosts and environments.

  13. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  14. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  15. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    Science.gov (United States)

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  16. The potential for host switching via ecological fitting in the emerald ash borer-host plant system.

    Science.gov (United States)

    Cipollini, Don; Peterson, Donnie L

    2018-02-27

    The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.

  17. Diet dominates host genotype in shaping the murine gut microbiota

    Science.gov (United States)

    Carmody, Rachel N.; Gerber, Georg K.; Luevano, Jesus M.; Gatti, Daniel M.; Somes, Lisa; Svenson, Karen L.; Turnbaugh, Peter J.

    2014-01-01

    SUMMARY Mammals exhibit marked inter-individual variations in their gut microbiota, but it remains unclear if this is primarily driven by host genetics or by extrinsic factors like dietary intake. To address this, we examined the effect of dietary perturbations on the gut microbiota of five inbred mouse strains, mice deficient for genes relevant to host-microbial interactions (MyD88−/−, NOD2−/−, ob/ob, and Rag1−/−), and >200 outbred mice. In each experiment, consumption of a high-fat, high-sugar diet reproducibly altered the gut microbiota despite differences in host genotype. The gut microbiota exhibited a linear dose response to dietary perturbations, taking an average of 3.5 days for each diet-responsive bacterial groups to reach a new steady state. Repeated dietary shifts demonstrated that most changes to the gut microbiota are reversible, while also uncovering bacteria whose abundance depends on prior consumption. These results emphasize the dominant role that diet plays in shaping inter-individual variations in host-associated microbial communities. PMID:25532804

  18. The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species.

    Science.gov (United States)

    Schroeder, Hélène; Daix, Virginie; Gillet, Laurent; Renauld, Jean-Christophe; Vanderplasschen, Alain

    2007-02-01

    Several observations suggest that inhibition of the host complement alternative pathway by Ixodes tick saliva is crucial to achieve blood feeding. We recently described two paralogous anti-complement proteins called Ixodes ricinus anti-complement (IRAC) proteins I and II co-expressed in I. ricinus salivary glands. Phylogenetic analyses suggested that these sequences were diversifying by a process of positive Darwinian selection, possibly leading to molecules with different biological properties. In the present study, we tested the hypothesis that each paralogue may have different inhibitory activities against the complement of different natural host species, thereby contributing to broaden the host range of I. ricinus ticks. IRAC I and IRAC II were tested against the complement of eight I. ricinus natural host species (six mammals and two birds). The results demonstrate that IRAC I and IRAC II have broad and complementary inhibition activities against the complement of different host species. This report is the first description of paralogous anti-complement molecules encoded by a pathogen with broad and complementary inhibitory activities against the complement of different host species.

  19. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus

    Science.gov (United States)

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  20. Attachment site selection of life stages of Ixodes ricinus ticks on a main large host in Europe, the red deer (Cervus elaphus).

    Science.gov (United States)

    Mysterud, Atle; Hatlegjerde, Idar Lauge; Sørensen, Ole Jakob

    2014-11-13

    Ticks and tick-borne diseases are increasing in many areas of Europe and North America due to climate change, while land use and the increased abundances of large hosts play a more controversial role. The pattern of host selection involves a crucial component for tick abundance. While the larvae and nymphs feed on a wide range of different sized hosts, the adult female ticks require blood meal from a large host (>1 kg), typically a deer, to fulfil the life cycle. Understanding the role of different hosts for abundances of ticks is therefore important, and also the extent to which different life stages attach to large hosts. We studied attachment site selection of life stages of I. ricinus ticks on a main large host in Europe, the red deer (Cervus elaphus). We collected from 33 felled red deer pieces of skin from five body parts: leg, groin, neck, back and ear. We counted the number of larval, nymphal, adult male and adult female ticks. Nymphs (42.2%) and adult (48.7%) ticks dominated over larvae (9.1%). There were more larvae on the legs (40.9%), more nymphs on the ears (83.7%), while adults dominated in the groins (89.2%) and neck (94.9%). Large mammalian hosts are thus a diverse habitat suitable for different life stages of ticks. The attachment site selection reflected the life stages differing ability to move. The spatial separation of life stages may partly limit the role of deer in co-feeding transmission cycles.

  1. Inhibiting host-pathogen interactions using membrane-based nanostructures.

    Science.gov (United States)

    Bricarello, Daniel A; Patel, Mira A; Parikh, Atul N

    2012-06-01

    Virulent strains of bacteria and viruses recognize host cells by their plasma membrane receptors and often exploit the native translocation machinery to invade the cell. A promising therapeutic concept for early interruption of pathogen infection is to subvert this pathogenic trickery using exogenously introduced decoys that present high-affinity mimics of cellular receptors. This review highlights emerging applications of molecularly engineered lipid-bilayer-based nanostructures, namely (i) functionalized liposomes, (ii) supported colloidal bilayers or protocells and (iii) reconstituted lipoproteins, which display functional cellular receptors in optimized conformational and aggregative states. These decoys outcompete host cell receptors by preferentially binding to and neutralizing virulence factors of both bacteria and viruses, thereby promising a new approach to antipathogenic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Consequences of symbiont co-infections for insect host phenyotypes

    Czech Academy of Sciences Publication Activity Database

    McLean, A. H. C.; Parker, B. J.; Hrček, Jan; Kavanagh, J. C.; Wellham, P. A. D.; Godfray, H. C. J.

    2018-01-01

    Roč. 87, č. 2 (2018), s. 478-488 ISSN 0021-8790 Institutional support: RVO:60077344 Keywords : aphids * co-infection * host-parasite interactions Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.474, year: 2016 http://onlinelibrary.wiley.com/doi/10.1111/1365-2656.12705/epdf

  3. Responses of wild small mammals to a pollution gradient: Host factors influence metal and metallothionein levels

    International Nuclear Information System (INIS)

    Fritsch, Clementine; Cosson, Richard P.; Coeurdassier, Michael; Raoul, Francis; Giraudoux, Patrick; Crini, Nadia; Vaufleury, Annette de; Scheifler, Renaud

    2010-01-01

    We investigated how host factors (species, age, gender) modulated Cd, Pb, Zn, and Cu concentrations, metallothionein levels (MTs) and their relationships in 7 sympatric small mammal species along a pollution gradient. Cd concentrations in liver and kidneys increased with age in all species. Age effect on other metals and MTs differs among species. Gender did not influence metal and MT levels except in the bank vole. Three patterns linking internal metal concentrations and MTs were observed along the gradient: a low metal accumulation with a (i) high (wood mouse) or (ii) low (bank vole) level of MTs accompanied by a slight or no increase of MTs with Cd accumulation; (iii) an elevated metal accumulation with a sharp increase of MTs (common and pygmy shrews). In risk assessment and biomonitoring perspectives, we conclude that measurements of MTs and metals might be associated because they cannot be interpreted properly when considered separately. - Age more than gender and species more than trophic group influence metallic trace element and metallothionein levels and their relationships in wild small mammals exposed to metals.

  4. Structure homology and interaction redundancy for discovering virus–host protein interactions

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-01-01

    Virus–host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication. PMID:24008843

  5. Structure homology and interaction redundancy for discovering virus-host protein interactions.

    Science.gov (United States)

    de Chassey, Benoît; Meyniel-Schicklin, Laurène; Aublin-Gex, Anne; Navratil, Vincent; Chantier, Thibaut; André, Patrice; Lotteau, Vincent

    2013-10-01

    Virus-host interactomes are instrumental to understand global perturbations of cellular functions induced by infection and discover new therapies. The construction of such interactomes is, however, technically challenging and time consuming. Here we describe an original method for the prediction of high-confidence interactions between viral and human proteins through a combination of structure and high-quality interactome data. Validation was performed for the NS1 protein of the influenza virus, which led to the identification of new host factors that control viral replication.

  6. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif.

    Science.gov (United States)

    Thomas, L R; Foshage, A M; Weissmiller, A M; Popay, T M; Grieb, B C; Qualls, S J; Ng, V; Carboneau, B; Lorey, S; Eischen, C M; Tansey, W P

    2016-07-07

    The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC.

  7. Do the Uncertainty Relations Really have Crucial Significances for Physics?

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2010-10-01

    Full Text Available It is proved the falsity of idea that the Uncertainty Relations (UR have crucial significances for physics. Additionally one argues for the necesity of an UR-disconnected quantum philosophy.

  8. Probing Molecular Insights into Zika Virus–Host Interactions

    Directory of Open Access Journals (Sweden)

    Ina Lee

    2018-05-01

    Full Text Available The recent Zika virus (ZIKV outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1 what virologic factors are involved in the ZIKV-associated human diseases; (2 which ZIKV protein(s contributes to the enhanced viral pathogenicity; and (3 how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions.

  9. Probing Molecular Insights into Zika Virus–Host Interactions

    Science.gov (United States)

    Lee, Ina; Li, Ge; Wang, Shusheng; Desprès, Philippe; Zhao, Richard Y.

    2018-01-01

    The recent Zika virus (ZIKV) outbreak in the Americas surprised all of us because of its rapid spread and association with neurologic disorders including fetal microcephaly, brain and ocular anomalies, and Guillain–Barré syndrome. In response to this global health crisis, unprecedented and world-wide efforts are taking place to study the ZIKV-related human diseases. Much has been learned about this virus in the areas of epidemiology, genetic diversity, protein structures, and clinical manifestations, such as consequences of ZIKV infection on fetal brain development. However, progress on understanding the molecular mechanism underlying ZIKV-associated neurologic disorders remains elusive. To date, we still lack a good understanding of; (1) what virologic factors are involved in the ZIKV-associated human diseases; (2) which ZIKV protein(s) contributes to the enhanced viral pathogenicity; and (3) how do the newly adapted and pandemic ZIKV strains alter their interactions with the host cells leading to neurologic defects? The goal of this review is to explore the molecular insights into the ZIKV–host interactions with an emphasis on host cell receptor usage for viral entry, cell innate immunity to ZIKV, and the ability of ZIKV to subvert antiviral responses and to cause cytopathic effects. We hope this literature review will inspire additional molecular studies focusing on ZIKV–host Interactions. PMID:29724036

  10. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  11. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  12. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  13. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

    Science.gov (United States)

    Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S

    2015-12-08

    Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

  14. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    Science.gov (United States)

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Reflects the coat protein variability of apple mosaic virus host preference?

    Czech Academy of Sciences Publication Activity Database

    Grimová, L.; Winkowska, L.; Ryšánek, P.; Svoboda, P.; Petrzik, Karel

    2013-01-01

    Roč. 47, č. 1 (2013), s. 119-125 ISSN 0920-8569 Institutional support: RVO:60077344 Keywords : Positive selection tests * capsid protein * algae host Subject RIV: EE - Microbiology, Virology Impact factor: 1.837, year: 2013

  16. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    OpenAIRE

    Xu, Jia; Verbrugghe, Adronie; Louren?o, Marta; Janssens, Geert P. J.; Liu, Daisy J. X.; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host me...

  17. Interaction of CSFV E2 protein with swine host factors as detected by yeast two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Douglas P Gladue

    Full Text Available E2 is one of the envelope glycoproteins of pestiviruses, including classical swine fever virus (CSFV and bovine viral diarrhea virus (BVDV. E2 is involved in several critical functions, including virus entry into target cells, induction of a protective immune response and virulence in swine. However, there is no information regarding any host binding partners for the E2 proteins. Here, we utilized the yeast two-hybrid system and identified fifty-seven host proteins as positive binding partners which bound E2 from both CSFV and BVDV with the exception of two proteins that were found to be positive for binding only to CSFV E2. Alanine scanning of CSFV E2 demonstrated that the binding sites for these cellular proteins on E2 are likely non-linear binding sites. The possible roles of the identified host proteins are discussed as the results presented here will be important for future studies to elucidate mechanisms of host protein-virus interactions during pestivirus infection. However, due to the limitations of the yeast two hybrid system, the proteins identified is not exhaustive and each interaction identified needs to be confirmed by independent experimental approaches in the context of virus-infected cells before any definitive conclusion can be drawn on relevance for the virus life cycle.

  18. Bacterial communities differ among Drosophila melanogaster populations and affect host resistance against parasitoids

    NARCIS (Netherlands)

    Chaplinska, Mariia; Gerritsma, Sylvia; Dini-Andreote, Francisco; Falcao Salles, Joana; Wertheim, Bregje

    2016-01-01

    In Drosophila, diet is considered a prominent factor shaping the associated bacterial community. However, the host population background (e.g. genotype, geographical origin and founder effects) is a factor that may also exert a significant influence and is often overlooked. To test for population

  19. Host sharing and host manipulation by larval helminths in shore crabs: cooperation or conflict?

    Science.gov (United States)

    Poulin, Robert; Nichol, Katherine; Latham, A David M

    2003-04-01

    Larval helminths of different species that share the same intermediate host and are transmitted by predation to the same definitive host may cooperate in their attempts to manipulate the behaviour of the intermediate host, while at the same time having conflicts of interests over the use of host resources. A few studies have indicated that intermediate hosts harbouring larval helminths have altered concentrations of neurotransmitters in their nervous system, and thus measuring levels of neurotransmitters in host brains could serve to assess the respective and combined effect of different helminth species on host behaviour. Here, we investigate potential cooperation and conflict among three helminths in two species of crab intermediate hosts. The acanthocephalan Profilicollis spp., the trematode Maritrema sp. and an acuariid nematode, all use Macrophthalmus hirtipes (Ocypodidae) as intermediate host, whereas Profilicollis and Maritrema also use Hemigrapsus crenulatus (Grapsidae). All three helminths mature inside gulls or other shore birds. There was a significant decrease in the mean volume of Profilicollis cystacanths as the intensity of infection by this parasite increased in H. crenulatus, the only host in which this was investigated; however, there was no measurable effect of other helminth species on the size of acanthocephalans, suggesting no interspecific conflict over resource use within crabs. There was, in contrast, evidence of a positive interspecific association between the two most common helminth species: numbers of Profilicollis and Maritrema were positively correlated among crabs, independently of crab size, in M. hirtipes but not H. crenulatus. More importantly, we found that the total number of larval helminths per crab correlated significantly, and negatively, with concentrations of serotonin in crab brains, again only in M. hirtipes; numbers of each parasite species separately did not covary in either crab species with serotonin or dopamine, the

  20. Animal salmonelloses: a brief review of “host adaptation and host specificity” of Salmonella spp.

    Directory of Open Access Journals (Sweden)

    Grammato Evangelopoulou

    2013-07-01

    Full Text Available Salmonella enterica, the most pathogenic species of the genusSalmonella, includes more than 2,500 serovars, many of which are of great veterinary and medical significance. The emergence of food-borne pathogens, such as Salmonella spp., has increased knowledge about the mechanisms helping microorganisms to persist and spread within new host populations. It has also increased information about the properties they acquire for adapting in the biological environment of a new host. Thedifferences observed between serovars in their host preference and clinical manifestations are referred to as “serovar-host specificity” or “serovar-host adaptation”. The genus Salmonella, highly adaptive to vertebrate hosts, has many pathogenic serovars showing host specificity. Serovar Salmonella Typhi, causing disease to man and higher primates, is a good example of host specificity. Thus, understanding the mechanisms that Salmonella serovars use to overcome animal species' barriers or adapt to new hosts is also important for understanding the origins of any other infectious diseases or the emergence of new pathogens. In addition, molecular methods used to study the virulence determinants of Salmonella serovars, could also be used to model ways of studying the virulence determinants used by bacteria in general, when causing disease to a specific animal species

  1. Biogeographical region and host trophic level determine carnivore endoparasite richness in the Iberian Peninsula.

    Science.gov (United States)

    Rosalino, L M; Santos, M J; Fernandes, C; Santos-Reis, M

    2011-05-01

    We address the question of whether host and/or environmental factors might affect endoparasite richness and distribution, using carnivores as a model. We reviewed studies published in international peer-reviewed journals (34 areas in the Iberian Peninsula), describing parasite prevalence and richness in carnivores, and collected information on site location, host bio-ecology, climate and detected taxa (Helminths, Protozoa and Mycobacterium spp.). Three hypotheses were tested (i) host based, (ii) environmentally based, and (iii) hybrid (combination of environmental and host). Multicollinearity reduced candidate variable number for modelling to 5: host weight, phylogenetic independent contrasts (host weight), mean annual temperature, host trophic level and biogeographical region. General Linear Mixed Modelling was used and the best model was a hybrid model that included biogeographical region and host trophic level. Results revealed that endoparasite richness is higher in Mediterranean areas, especially for the top predators. We suggest that the detected parasites may benefit from mild environmental conditions that occur in southern regions. Top predators have larger home ranges and are likely to be subjected to cascading effects throughout the food web, resulting in more infestation opportunities and potentially higher endoparasite richness. This study suggests that richness may be more affected by historical and regional processes (including climate) than by host ecological processes.

  2. Host pathogen interactions in Helicobacter pylori related gastric cancer

    Science.gov (United States)

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  3. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  4. Tumor Necrosis Factor-α Is Required for Mast Cell-Mediated Host Immunity Against Cutaneous Staphylococcus aureus Infection.

    Science.gov (United States)

    Liu, Chao; Ouyang, Wei; Xia, Jingyan; Sun, Xiaoru; Zhao, Liying; Xu, Feng

    2018-05-08

    Mast cells (MCs) play a key role in immune process response to invading pathogens. This study assessed the involvement of MCs in controlling Staphylococcus aureus infection in a cutaneous infection model of MC-deficient (KitW-sh/W-sh) mice. KitW-sh/W-sh mice developed significantly larger skin lesions after the cutaneous S. aureus challenge, when compared to wild-type (WT) mice, while MC dysfunction reduced the inflammation response to S. aureus. The levels of tumor necrosis factor (TNF)-α in skin tissues were significantly decreased in KitW-sh/W-sh mice upon infection. Moreover, the exogenous administration of MCs or recombinant TNF-α effectively restored the immune response against S. aureus in KitW-sh/W-sh mice via the recruitment of neutrophils to the infected site. These results indicate that the effects of MC deficiency are largely attributed to the decrease in production of TNF-α in cutaneous S. aureus infection. In addition, S. aureus-induced MC activation was dependent on the c-kit receptor-activated phosphoinositide 3-kinase (PI3K)/AKT/P65-nuclear factor (NF-κB) pathway, which was confirmed by treatment with Masitinib (a c-kit receptor inhibitor), Wortmannin (a PI3K inhibitor), and pyrrolidine dithiocarbamate (a NF-κB inhibitor), respectively. The present study identifies the critical role of MCs in the host defense against S. aureus infection.

  5. Socioemotional competences of adolescents living in host institutions

    OpenAIRE

    Anastácio, Zélia; Bezerra, Milena Oliveira; Zamith-Cruz, Judite; Antão, Celeste; Veiga-Branco, Augusta

    2017-01-01

    Several reasons like unfavorable socio-economic conditions, negligence and maltreatment has led to institutionalization of adolescents. Our research question is: What are the level of satisfaction and socioemotional competencies of adolescents living in host institutions? Research aimed to characterize satisfaction, self-esteem, assertiveness and resilience of institutionalized adolescents and to establish associations with personal factors. It was a transversal study following a predominantl...

  6. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

    Science.gov (United States)

    Piovesan, Mônica; Specht, Alexandre; Carneiro, Eduardo; Paula-Moraes, Silvana Vieira; Casagrande, Mirna Martins

    2018-03-01

    The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

  7. Guidelines for Hosted Payload Integration

    Science.gov (United States)

    2014-06-06

    reduces risk. Need to consider mass simulator to protect host launch window. Average Payload Power Both BOL and EOL . Host must consider orbit...acceptance testing. Peak Payload Power Both BOL and EOL . Host must consider orbit constraints. Typically driven by Payload operations but must...post-retirement failure might cause damage to the Spacecraft Host or its payloads. Safe conditions at EOL should consider thermal and radiation

  8. Virulence Factors IN Fungi OF Systemic Mycoses

    Directory of Open Access Journals (Sweden)

    KUROKAWA Cilmery Suemi

    1998-01-01

    Full Text Available Pathogenic fungi that cause systemic mycoses retain several factors which allow their growth in adverse conditions provided by the host, leading to the establishment of the parasitic relationship and contributing to disease development. These factors are known as virulence factors which favor the infection process and the pathogenesis of the mycoses. The present study evaluates the virulence factors of pathogenic fungi such as Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, Histoplasma capsulatum and Paracoccidioides brasiliensis in terms of thermotolerance, dimorphism, capsule or cell wall components as well as enzyme production. Virulence factors favor fungal adhesion, colonization, dissemination and the ability to survive in hostile environments and elude the immune response mechanisms of the host. Both the virulence factors presented by different fungi and the defense mechanisms provided by the host require action and interaction of complex processes whose knowledge allows a better understanding of the pathogenesis of systemic mycoses.

  9. Global analysis of host response to induction of a latent bacteriophage

    Directory of Open Access Journals (Sweden)

    Keasling Jay D

    2007-08-01

    Full Text Available Abstract Background The transition from viral latency to lytic growth involves complex interactions among host and viral factors, and the extent to which host physiology is buffered from the virus during induction of lysis is not known. A reasonable hypothesis is that the virus should be evolutionarily selected to ensure host health throughout induction to minimize its chance of reproductive failure. To address this question, we collected transcriptional profiles of Escherichia coli and bacteriophage lambda throughout lysogenic induction by UV light. Results We observed a temporally coordinated program of phage gene expression, with distinct early, middle and late transcriptional classes. Our study confirmed known host-phage interactions of induction of the heat shock regulon, escape replication, and suppression of genes involved in cell division and initiation of replication. We identified 728 E. coli genes responsive to prophage induction, which included pleiotropic stress response pathways, the Arc and Cpx regulons, and global regulators crp and lrp. Several hundred genes involved in central metabolism, energy metabolism, translation and transport were down-regulated late in induction. Though statistically significant, most of the changes in these genes were mild, with only 140 genes showing greater than two-fold change. Conclusion Overall, we observe that prophage induction has a surprisingly low impact on host physiology. This study provides the first global dynamic picture of how host processes respond to lambda phage induction.

  10. Genomic Diversification of Enterococci in Hosts: the role of the mobilome

    Directory of Open Access Journals (Sweden)

    Maria eSantagati

    2012-03-01

    Full Text Available Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them to colonize various environments and hosts but also to be opportunistic pathogens. Many papers have contributed to a better understanding of: i the taxonomy of this complex group of microorganisms; ii intra-species variability; iii the role of different pathogenicity traits; and iv some markers related to the character of host-specificity, but the reasons of such incredible success of adaptability is still far from being fully explained.Recently, genomic-based studies have improved our understanding of the genome diversity of the most studied species i.e. E. faecalis and E. faecium. From these studies, what is becoming evident is the role of the mobilome in adding new abilities to colonize new hosts and environments, and eventually in driving their evolution: specific clones associated with human infections or specific hosts can exist, but probably the consideration of these populations as strictly clonal groups is only partially correct. The variable presence of mobile-genetic elements may, indeed, be one of the factors involved in the evolution of one specific group in a specific host and/or environment. Certainly more extensive studies using new high throughput technologies are mandatory to fully understand the evolution of predominant clones and species in different hosts and environments.

  11. Homologous Recombination between Genetically Divergent Campylobacter fetus Lineages Supports Host-Associated Speciation

    Science.gov (United States)

    Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L

    2018-01-01

    Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720

  12. Impact of Childhood Malnutrition on Host Defense and Infection.

    Science.gov (United States)

    Ibrahim, Marwa K; Zambruni, Mara; Melby, Christopher L; Melby, Peter C

    2017-10-01

    The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population. Copyright © 2017 American Society for Microbiology.

  13. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Thomsen Lene

    2004-11-01

    Full Text Available Abstract Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect. Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition.

  14. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X.; Werk, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Perley, D.; Cao, Y. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Cardwell, A.; Turner, J. [Gemini South Observatory, AURA, Casilla 603, La Serena (Chile); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cobb, B. E., E-mail: acucchia@ucolick.org [The George Washington University, Washington, DC (United States)

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial

  15. Infection, specificity and host manipulation of Australapatemon sp (Trematoda, Strigeidae) in two sympatric species of leeches (Hirudinea)

    Czech Academy of Sciences Publication Activity Database

    Karvonen, A.; Faltýnková, Anna; Choo, J. M.; Valtonen, E. T.

    2017-01-01

    Roč. 144, č. 10 (2017), s. 1346-1355 ISSN 0031-1820 Institutional support: RVO:60077344 Keywords : complex life cycle * Digenea * host manipulation * host-parasite relationship * spatiotemporal variation * specificity * Trematoda Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.713, year: 2016

  16. Case Characterization, Clinical Features and Risk Factors in Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Aida Ortega-Alonso

    2016-05-01

    Full Text Available Idiosyncratic drug-induced liver injury (DILI caused by xenobiotics (drugs, herbals and dietary supplements presents with a range of both phenotypes and severity, from acute hepatitis indistinguishable of viral hepatitis to autoimmune syndromes, steatosis or rare chronic vascular syndromes, and from asymptomatic liver test abnormalities to acute liver failure. DILI pathogenesis is complex, depending on the interaction of drug physicochemical properties and host factors. The awareness of risk factors for DILI is arising from the analysis of large databases of DILI cases included in Registries and Consortia networks around the world. These networks are also enabling in-depth phenotyping with the identification of predictors for severe outcome, including acute liver failure and mortality/liver transplantation. Genome wide association studies taking advantage of these large cohorts have identified several alleles from the major histocompatibility complex system indicating a fundamental role of the adaptive immune system in DILI pathogenesis. Correct case definition and characterization is crucial for appropriate phenotyping, which in turn will strengthen sample collection for genotypic and future biomarkers studies.

  17. Skin Microbiomes of California Terrestrial Salamanders Are Influenced by Habitat More Than Host Phylogeny

    Directory of Open Access Journals (Sweden)

    Alicia K. Bird

    2018-03-01

    Full Text Available A multitude of microorganisms live on and within plant and animal hosts, yet the ecology and evolution of these microbial communities remains poorly understood in many taxa. This study examined the extent to which environmental factors and host taxonomic identity explain microbiome variation within two salamander genera, Ensatina and Batrachoseps, in the family Plethodontidae. In particular, we assessed whether microbiome differentiation paralleled host genetic distance at three levels of taxonomy: genus and high and low clade levels within Ensatina eschscholtzii. We predicted that more genetically related host populations would have more similar microbiomes than more distantly related host populations. We found that salamander microbiomes possess bacterial species that are most likely acquired from their surrounding soil environment, but the relative representation of those bacterial species is significantly different on the skin of salamanders compared to soil. We found differences in skin microbiome alpha diversity among Ensatina higher and lower clade groups, as well as differences between Ensatina and Batrachoseps. We also found that relative microbiome composition (beta diversity did vary between Ensatina lower clades, but differences were driven by only a few clades and not correlated to clade genetic distances. We conclude this difference was likely a result of Ensatina lower clades being associated with geographic location and habitat type, as salamander identity at higher taxonomic levels (genus and Ensatina higher clades was a weak predictor of microbiome composition. These results lead us to conclude that environmental factors are likely playing a more significant role in salamander cutaneous microbiome assemblages than host-specific traits.

  18. The genotypic structure of a multi-host bumblebee parasite suggests a role for ecological niche overlap.

    Directory of Open Access Journals (Sweden)

    Rahel M Salathé

    Full Text Available The genotypic structure of parasite populations is an important determinant of ecological and evolutionary dynamics of host-parasite interactions with consequences for pest management and disease control. Genotypic structure is especially interesting where multiple hosts co-exist and share parasites. We here analyze the natural genotypic distribution of Crithidia bombi, a trypanosomatid parasite of bumblebees (Bombus spp., in two ecologically different habitats over a time period of three years. Using an algorithm to reconstruct genotypes in cases of multiple infections, and combining these with directly identified genotypes from single infections, we find a striking diversity of infection for both data sets, with almost all multi-locus genotypes being unique, and are inferring that around half of the total infections are resulting from multiple strains. Our analyses further suggest a mixture of clonality and sexuality in natural populations of this parasite species. Finally, we ask whether parasite genotypes are associated with host species (the phylogenetic hypothesis or whether ecological factors (niche overlap in flower choice shape the distribution of parasite genotypes (the ecological hypothesis. Redundancy analysis demonstrates that in the region with relatively high parasite prevalence, both host species identity and niche overlap are equally important factors shaping the distribution of parasite strains, whereas in the region with lower parasite prevalence, niche overlap more strongly contributes to the distribution observed. Overall, our study underlines the importance of ecological factors in shaping the natural dynamics of host-parasite systems.

  19. Does the anaesthetic infl uence behavioural transmission of the monogenean Gyrodactylus gasterostei Gläser, 1974 off the host?

    Directory of Open Access Journals (Sweden)

    Grano-Maldonado M. I.

    2015-06-01

    Full Text Available The aim of this study was to investigate the use of the anaesthetic 2-phenoxyethanol on the transmission factors of gyrodactylid and to ascertain how this may affect in the colonisation of new hosts using the Gyrodactylus gasterostei Gläser, 1974 - Gasterosteus aculeatus L. model which is a simple and successful system to examine aspects of transmission of parasites from live and dead fish. Laboratory experiments include determining the maturity (presence of male copulate organ and reproductive (presence of daughter status of transmitting worms, in order to consider the factors that influence parasite option to migrate to a new individual of the same host species. This study demonstrates that parasites with a Male Copulate Organ (MCO present are more likely to abandon the host and attempt a host transfer. The use of the anaesthetic 2-phenoxyethanol does not affect transmission of gyrodactylids which leave the host to colonise a new host. Finally, the use of other anaesthetic although its relative importance with respect to transmission remains uncertain.

  20. The signaling pathway of Campylobacter jejuni-induced Cdc42 activation: Role of fibronectin, integrin beta1, tyrosine kinases and guanine exchange factor Vav2

    LENUS (Irish Health Repository)

    Krause-Gruszczynska, Malgorzata

    2011-12-28

    Abstract Background Host cell invasion by the foodborne pathogen Campylobacter jejuni is considered as one of the primary reasons of gut tissue damage, however, mechanisms and key factors involved in this process are widely unclear. It was reported that small Rho GTPases, including Cdc42, are activated and play a role during invasion, but the involved signaling cascades remained unknown. Here we utilised knockout cell lines derived from fibronectin-\\/-, integrin-beta1-\\/-, focal adhesion kinase (FAK)-\\/- and Src\\/Yes\\/Fyn-\\/- deficient mice, and wild-type control cells, to investigate C. jejuni-induced mechanisms leading to Cdc42 activation and bacterial uptake. Results Using high-resolution scanning electron microscopy, GTPase pulldowns, G-Lisa and gentamicin protection assays we found that each studied host factor is necessary for induction of Cdc42-GTP and efficient invasion. Interestingly, filopodia formation and associated membrane dynamics linked to invasion were only seen during infection of wild-type but not in knockout cells. Infection of cells stably expressing integrin-beta1 variants with well-known defects in fibronectin fibril formation or FAK signaling also exhibited severe deficiencies in Cdc42 activation and bacterial invasion. We further demonstrated that infection of wild-type cells induces increasing amounts of phosphorylated FAK and growth factor receptors (EGFR and PDGFR) during the course of infection, correlating with accumulating Cdc42-GTP levels and C. jejuni invasion over time. In studies using pharmacological inhibitors, silencing RNA (siRNA) and dominant-negative expression constructs, EGFR, PDGFR and PI3-kinase appeared to represent other crucial components upstream of Cdc42 and invasion. siRNA and the use of Vav1\\/2-\\/- knockout cells further showed that the guanine exchange factor Vav2 is required for Cdc42 activation and maximal bacterial invasion. Overexpression of certain mutant constructs indicated that Vav2 is a linker

  1. Phylogeny of Cirsium spp. in North America: Host Specificity Does Not Follow Phylogeny

    Directory of Open Access Journals (Sweden)

    Tracey A. Bodo Slotta

    2012-10-01

    Full Text Available Weedy invasive Cirsium spp. are widespread in temperate regions of North America and some of their biological control agents have attacked native Cirsium spp. A phylogenetic tree was developed from DNA sequences for the internal transcribed spacer and external transcribed spacer regions from native and non-native Great Plains Cirsium spp. and other thistles to determine if host specificity follows phylogeny. The monophyly of Cirsium spp. and Carduus within the tribe Cardinae was confirmed with native North American and European lineages of the Cirsium spp. examined. We did not detect interspecific hybridization between the introduced invasive and the native North American Cirsium spp. Selected host-biological control agent interactions were mapped onto the phylogenic tree derived by maximum likelihood analysis to examine the co-occurrence of known hosts with biological control agents. Within Cirsium-Cardueae, the insect biological control agents do not associate with host phylogenetic lines. Thus, more comprehensive testing of species in host-specificity trials, rather than relying on a single representative of a given clade may be necessary; because the assumption that host-specificity follows phylogeny does not necessarily hold. Since the assumption does not always hold, it will also be important to evaluate ecological factors to provide better cues for host specificity.

  2. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

    Science.gov (United States)

    Khamina, Kseniya; Lercher, Alexander; Caldera, Michael; Schliehe, Christopher; Vilagos, Bojan; Sahin, Mehmet; Kosack, Lindsay; Bhattacharya, Anannya; Májek, Peter; Stukalov, Alexey; Sacco, Roberto; James, Leo C; Pinschewer, Daniel D; Bennett, Keiryn L; Menche, Jörg; Bergthaler, Andreas

    2017-12-01

    RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.

  3. Host determinant residue lysine 627 lies on the surface of a discrete, folded domain of influenza virus polymerase PB2 subunit.

    Directory of Open Access Journals (Sweden)

    Franck Tarendeau

    Full Text Available Understanding how avian influenza viruses adapt to human hosts is critical for the monitoring and prevention of future pandemics. Host specificity is determined by multiple sites in different viral proteins, and mutation of only a limited number of these sites can lead to inter-species transmission. Several of these sites have been identified in the viral polymerase, the best characterised being position 627 in the PB2 subunit. Efficient viral replication at the relatively low temperature of the human respiratory tract requires lysine 627 rather than the glutamic acid variant found systematically in avian viruses. However, the molecular mechanism by which any of these host specific sites determine host range are unknown, although adaptation to host factors is frequently evoked. We used ESPRIT, a library screening method, to identify a new PB2 domain that contains a high density of putative host specific sites, including residue 627. The X-ray structure of this domain (denoted the 627-domain exhibits a novel fold with the side-chain of Lys627 solvent exposed. The structure of the K627E mutated domain shows no structural differences but the charge reversal disrupts a striking basic patch on the domain surface. Five other recently proposed host determining sites of PB2 are also located on the 627-domain surface. The structure of the complete C-terminal region of PB2 comprising the 627-domain and the previously identified NLS-domain, which binds the host nuclear import factor importin alpha, was also determined. The two domains are found to pack together with a largely hydrophilic interface. These data enable a three-dimensional mapping of approximately half of PB2 sites implicated in cross-species transfer onto a single structural unit. Their surface location is consistent with roles in interactions with other viral proteins or host factors. The identification and structural characterization of these well-defined PB2 domains will help design

  4. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    Science.gov (United States)

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  5. Endogenous and exogenously-induced immunomodulation of tumour-host responsiveness

    Directory of Open Access Journals (Sweden)

    Richard J. Ablin

    1987-01-01

    Full Text Available In spite of the availability of multiple effector mechanisms of the immune system to combat tumour growth and metastases, their impairment frequently accompanies the appearance of cancer. Factors contributing to this impairment may be related to properties of the host and/or the tumour itself and may be with respect to their origin -endogenous or exogenour. Based on the unique biological behavior of prostate cancer (PCa, and its apparent escape from immune surveillance in the presence of tumour immuno genicity, continuing investigation of endogenous and exogenous factors thought to be relevant to its pathogenesis have been made. For this purpose further studies of the suggested role of human seminal plasma (SePl and the synthetic oestrogen, diethylstiboestrol (DES, as representative endogenous and exogenous immunomodulatory factors (IMF of tumour-host responsiveness, together with evaluation of human prostatic tissue extracts and leuprolide (the luteinizing-hormone-releasing-hormone proposed as an alternate to DES therapy have been made by evaluating their effect on the lytic activity of natural killer (NK cells. SePl and prostate extracts significantly suppressed NK cell lysis. Physicochemical studies suggest SePl and prostate IMF to be associated with high and low molecular weight macromolecules; and implicate the participation of transglutaminase and prostaglandins. Comparative study of therapeutic levels of DES vs. leuprolide on NK cell lysis demonstrated significant suppression by DES vs. a negligible effect of leuprolide. Metastases are highly prevalent in PCa, and contribute significantly to its morbidity and mortality. Further knowledge of the range of effects of endogenous and exogenous IMF on effector mechanisms of tumour-host responsiveness, to include suppression of NK cells, and elucidation of their nature, may contribute toward our understanding of the unique biological behavior of tumours of the prostate, in addition to

  6. Host density increases parasite recruitment but decreases host risk in a snail-trematode system.

    Science.gov (United States)

    Buck, J C; Hechinger, R F; Wood, A C; Stewart, T E; Kuris, A M; Lafferty, K D

    2017-08-01

    Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk at local scales. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail-density-trematode-prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (California, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective

  7. Rotaxane and catenane host structures for sensing charged guest species.

    Science.gov (United States)

    Langton, Matthew J; Beer, Paul D

    2014-07-15

    anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.

  8. Habitat requirements and host selectivity of Thesium species (Santalaceae)

    Czech Academy of Sciences Publication Activity Database

    Dostálek, T.; Münzbergová, Zuzana

    2010-01-01

    Roč. 164, č. 4 (2010), s. 394-408 ISSN 0024-4074 R&D Projects: GA MŠk 2B06178; GA ČR GD206/08/H049 Institutional research plan: CEZ:AV0Z60050516 Keywords : hemiparasites * host range and specifity * Santalales Subject RIV: EF - Botanics Impact factor: 1.931, year: 2010

  9. Host plant selection by a monophagous herbivore is not mediated by quantitative changes in unique plant chemistry : Agonopterix alstroemeriana and Conium maculatum

    OpenAIRE

    Castells, Eva

    2008-01-01

    Host plant selection by ovipositing females is a key process determining the success of phytophagous insects. In oligophagous lepidopterans, host-specific plant secondary chemicals are expected to be dominant factors governing oviposition behavior; distinctive compounds can serve as high-contrast signals that clearly differentiate confamilial hosts from non-hosts increasing the accuracy of host quality evaluation. Agonopterix alstroemeriana (Clerk) (Lepidoptera: Oecophoridae) and Conium macul...

  10. Dynamic Quantification of Host Schwann Cell Migration into Peripheral Nerve Allografts

    Science.gov (United States)

    Whitlock, Elizabeth L.; Myckatyn, Terence M.; Tong, Alice Y.; Yee, Andrew; Yan, Ying; Magill, Christina K.; Johnson, Philip J.; Mackinnon, Susan E.

    2010-01-01

    Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs. PMID:20633557

  11. Development of Meteorus pulchricornis and regulation of its noctuid host, Pseudaletia separata.

    Science.gov (United States)

    Suzuki, M; Tanaka, T

    2007-10-01

    The solitary endoparasitoid Meteorus pulchricornis can parasitize many lepidopteran host species successfully. In the case of parasitization of Pseudaletia separata, developmental duration of M. pulchricornis was 8-9 days from egg to larval emergence and 6 days from prepupa to adult emergence. Successful parasitism by M. pulchricornis decreased with host age. Following parasitization of day-0 4th host instar, the parasitoid embryo, whilst still enclosed in serosal cell membrane, hatched out of the egg chorion 2 days after oviposition. Subsequently, the 1st instar parasitoid emerged from the surrounding serosal cell membrane. Serosal cells dissociated and developed as teratocytes 3.5 days after oviposition. One embryo of M. pulchricornis gave rise to approximately 1200 teratocytes, a number that remained constant until 6 days after parasitization, but decreased drastically to 200 at 7 days post-oviposition. The teratocytes of M. pulchricornis were round- or oval-shaped and grew from 65 microm at 4 days to 200 microm in the long axis at 6 days post-parasitization. At 4 days post-parasitization, many cells or cell clusters with lipid particles were observed in the hemocoels of parasitized hosts. In addition, paraffin sections of parasitized hosts revealed that many teratocytes were attached to the host's fat body and contributed to disrupting the fat body tissue. Further, examination of the total hemocyte count (THC) during parasitization revealed that THC was maintained at low levels. Surprisingly, a temporal decrease followed by restoration of THC was observed in hosts injected with virus-like particles of M. pulchricornis (MpVLPs) plus venom, which contrasts with the constant THC suppression seen in parasitized hosts. This indicates that MpVLP function is temporal and is involved in regulation of the host during early parasitism. Therefore, teratocytes, a host regulation factor in late parasitism, could be involved in keeping THC at a low level.

  12. Echinococcus multilocularis and Its Intermediate Host: A Model of Parasite-Host Interplay

    Directory of Open Access Journals (Sweden)

    Dominique Angèle Vuitton

    2010-01-01

    Full Text Available Host-parasite interactions in the E. multilocularis-intermediate host model depend on a subtle balance between cellular immunity, which is responsible for host's resistance towards the metacestode, the larval stage of the parasite, and tolerance induction and maintenance. The pathological features of alveolar echinococcosis. the disease caused by E. multilocularis, are related both to parasitic growth and to host's immune response, leading to fibrosis and necrosis, The disease spectrum is clearly dependent on the genetic background of the host as well as on acquired disturbances of Th1-related immunity. The laminated layer of the metacestode, and especially its carbohydrate components, plays a major role in tolerance induction. Th2-type and anti-inflammatory cytokines, IL-10 and TGF-β, as well as nitric oxide, are involved in the maintenance of tolerance and partial inhibition of cytotoxic mechanisms. Results of studies in the experimental mouse model and in patients suggest that immune modulation with cytokines, such as interferon-α, or with specific antigens could be used in the future to treat patients with alveolar echinococcosis and/or to prevent this very severe parasitic disease.

  13. Crucial factors of the inflammatory microenvironment (IL-1β/TNF-α/TIMP-1) promote the maintenance of the malignant hemopoietic clone of myelofibrosis: an in vitro study.

    Science.gov (United States)

    Sollazzo, Daria; Forte, Dorian; Polverelli, Nicola; Romano, Marco; Perricone, Margherita; Rossi, Lara; Ottaviani, Emanuela; Luatti, Simona; Martinelli, Giovanni; Vianelli, Nicola; Cavo, Michele; Palandri, Francesca; Catani, Lucia

    2016-07-12

    Along with molecular abnormalities (mutations in JAK2, Calreticulin (CALR) and MPL genes), chronic inflammation is the major hallmark of Myelofibrosis (MF). Here, we investigated the in vitro effects of crucial factors of the inflammatory microenvironment (Interleukin (IL)-1β, Tumor Necrosis Factor (TNF)-α, Tissue Inhibitor of Metalloproteinases (TIMP)-1 and ATP) on the functional behaviour of MF-derived circulating CD34+ cells.We found that, regardless mutation status, IL-1β or TNF-α increases the survival of MF-derived CD34+ cells. In addition, along with stimulation of cell cycle progression to the S-phase, IL-1β or TNF-α ± TIMP-1 significantly stimulate(s) the in vitro clonogenic ability of CD34+ cells from JAK2V617 mutated patients. Whereas in the JAK2V617F mutated group, the addition of IL-1β or TNF-α + TIMP-1 decreased the erythroid compartment of the CALR mutated patients. Megakaryocyte progenitors were stimulated by IL-1β (JAK2V617F mutated patients only) and inhibited by TNF-α. IL-1β + TNF-α + C-X-C motif chemokine 12 (CXCL12) ± TIMP-1 highly stimulates the in vitro migration of MF-derived CD34+ cells. Interestingly, after migration toward IL-1β + TNF-α + CXCL12 ± TIMP-1, CD34+ cells from JAK2V617F mutated patients show increased clonogenic ability.Here we demonstrate that the interplay of these inflammatory factors promotes and selects the circulating MF-derived CD34+ cells with higher proliferative activity, clonogenic potential and migration ability. Targeting these micro-environmental interactions may be a clinically relevant approach.

  14. Crucial nesting habitat for gunnison sage-grouse: A spatially explicit hierarchical approach

    Science.gov (United States)

    Aldridge, Cameron L.; Saher, D.J.; Childers, T.M.; Stahlnecker, K.E.; Bowen, Z.H.

    2012-01-01

    Gunnison sage-grouse (Centrocercus minimus) is a species of special concern and is currently considered a candidate species under Endangered Species Act. Careful management is therefore required to ensure that suitable habitat is maintained, particularly because much of the species' current distribution is faced with exurban development pressures. We assessed hierarchical nest site selection patterns of Gunnison sage-grouse inhabiting the western portion of the Gunnison Basin, Colorado, USA, at multiple spatial scales, using logistic regression-based resource selection functions. Models were selected using Akaike Information Criterion corrected for small sample sizes (AIC c) and predictive surfaces were generated using model averaged relative probabilities. Landscape-scale factors that had the most influence on nest site selection included the proportion of sagebrush cover >5%, mean productivity, and density of 2 wheel-drive roads. The landscape-scale predictive surface captured 97% of known Gunnison sage-grouse nests within the top 5 of 10 prediction bins, implicating 57% of the basin as crucial nesting habitat. Crucial habitat identified by the landscape model was used to define the extent for patch-scale modeling efforts. Patch-scale variables that had the greatest influence on nest site selection were the proportion of big sagebrush cover >10%, distance to residential development, distance to high volume paved roads, and mean productivity. This model accurately predicted independent nest locations. The unique hierarchical structure of our models more accurately captures the nested nature of habitat selection, and allowed for increased discrimination within larger landscapes of suitable habitat. We extrapolated the landscape-scale model to the entire Gunnison Basin because of conservation concerns for this species. We believe this predictive surface is a valuable tool which can be incorporated into land use and conservation planning as well the assessment of

  15. The host immunological response to cancer therapy: An emerging concept in tumor biology.

    Science.gov (United States)

    Voloshin, Tali; Voest, Emile E; Shaked, Yuval

    2013-07-01

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction-both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    International Nuclear Information System (INIS)

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-01

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP 2 and PIP 3 to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  17. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    Science.gov (United States)

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  18. Reservoir-host amplification of disease impact in an endangered amphibian.

    Science.gov (United States)

    Scheele, Ben C; Hunter, David A; Brannelly, Laura A; Skerratt, Lee F; Driscoll, Don A

    2017-06-01

    Emerging wildlife pathogens are an increasing threat to biodiversity. One of the most serious wildlife diseases is chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which has been documented in over 500 amphibian species. Amphibians vary greatly in their susceptibility to Bd; some species tolerate infection, whereas others experience rapid mortality. Reservoir hosts-species that carry infection while maintaining high abundance but are rarely killed by disease-can increase extinction risk in highly susceptible, sympatric species. However, whether reservoir hosts amplify Bd in declining amphibian species has not been examined. We investigated the role of reservoir hosts in the decline of the threatened northern corroboree frog (Pseudophryne pengilleyi) in an amphibian community in southeastern Australia. In the laboratory, we characterized the response of a potential reservoir host, the (nondeclining) common eastern froglet (Crinia signifera), to Bd infection. In the field, we conducted frog abundance surveys and Bd sampling for both P. pengilleyi and C. signifera. We built multinomial logistic regression models to test whether Crinia signifera and environmental factors were associated with P. pengilleyi decline. C. signifera was a reservoir host for Bd. In the laboratory, many individuals maintained intense infections (>1000 zoospore equivalents) over 12 weeks without mortality, and 79% of individuals sampled in the wild also carried infections. The presence of C. signifera at a site was strongly associated with increased Bd prevalence in sympatric P. pengilleyi. Consistent with disease amplification by a reservoir host, P. pengilleyi declined at sites with high C. signifera abundance. Our results suggest that when reservoir hosts are present, population declines of susceptible species may continue long after the initial emergence of Bd, highlighting an urgent need to assess extinction risk in remnant populations of other declined

  19. Multilocus Sequence Analysis of Cercospora spp. from Different Host Plant Families

    Directory of Open Access Journals (Sweden)

    Floreta Fiska Yuliarni

    2014-06-01

    Full Text Available Identification of the genus Cercospora is still complicated due to the host preferences often being used as the main criteria to propose a new name. We determined the relationship between host plants and multilocus sequence variations (ITS rDNA including 5.8S rDNA, elongation factor 1-α, and calmodulin in Cercospora spp. to investigate the host specificity. We used 53 strains of Cercospora spp. infecting 12 plant families for phylogenetic analysis. The sequences of 23 strains of Cercospora spp. infecting the plant families of Asteraceae, Cucurbitaceae, and Solanaceae were determined in this study. The sequences of 30 strains of Cercospora spp. infecting the plant families of Fabaceae, Amaranthaceae, Apiaceae, Plumbaginaceae, Malvaceae, Cistaceae, Plantaginaceae, Lamiaceae, and Poaceae were obtained from GenBank. The molecular phylogenetic analysis revealed that the majority of Cercospora species lack host specificity, and only C. zinniicola, C. zeina, C. zeae-maydis, C. cocciniae, and C. mikaniicola were found to be host-specific. Closely related species of Cercospora could not be distinguished using molecular analyses of ITS, EF, and CAL gene regions. The topology of the phylogenetic tree based on the CAL gene showed a better topology and Cercospora species separation than the trees developed based on the ITS rDNA region or the EF gene.

  20. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    Science.gov (United States)

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  1. Host community heterogeneity and the expression of host specificity in avian haemosporidia in the Western Cape, South Africa.

    Science.gov (United States)

    Jones, Sharon M; Cumming, Graeme S; Peters, Jeffrey L

    2018-05-16

    Similar patterns of parasite prevalence in animal communities may be driven by a range of different mechanisms. The influences of host heterogeneity and host-parasite interactions in host community assemblages are poorly understood. We sampled birds at 27 wetlands in South Africa to compare four hypotheses explaining how host community heterogeneity influences host specificity in avian haemosporidia communities: the host-neutral hypothesis, the super-spreader hypothesis, the host specialist hypothesis and the heterogeneity hypothesis. A total of 289 birds (29%) were infected with Plasmodium, Haemoproteus and/or Leucocytozoon lineages. Leucocytozoon was the most diverse and generalist parasite genus, and Plasmodium the most conservative. The host-neutral and host specialist hypotheses received the most support in explaining prevalence by lineage (Leucocytozoon) and genus (Plasmodium and Haemoproteus), respectively. We observed that haemosporidian prevalence was potentially amplified or reduced with variation in host and/or parasitic taxonomic levels of analysis. Our results show that Leucocytozoon host abundance and diversity was influential to parasite prevalence at varying taxonomic levels, particularly within heterogeneous host communities. Furthermore, we note that prevalent mechanisms of infection can potentially act as distinct roots for shaping communities of avian haemosporidia.

  2. Host response to Brucella infection: review and future perspective.

    Science.gov (United States)

    Elfaki, Mohamed G; Alaidan, Alwaleed Abdullah; Al-Hokail, Abdullah Abdulrahman

    2015-07-30

    Brucellosis is a zoonotic and contagious infectious disease caused by infection with Brucella species. The infecting brucellae are capable of causing a devastating multi-organ disease in humans with serious health complications. The pathogenesis of Brucella infection is influenced largely by host factors, Brucella species/strain, and the ability of invading brucellae to survive and replicate within mononuclear phagocytic cells, preferentially macrophages (Mf). Consequently, the course of human infection may appear as an acute fatal or progress into chronic debilitating infection with periodical episodes that leads to bacteremia and death. The existence of brucellae inside Mf represents one of the strategies used by Brucella to evade the host immune response and is responsible for treatment failure in certain human populations treated with anti-Brucella drugs. Moreover, the persistence of brucellae inside Mf complicates the diagnosis and may affect the host cell signaling pathways with consequent alterations in both innate and adaptive immune responses. Therefore, there is an urgent need to pursue the development of novel drugs and/or vaccine targets against human brucellosis using high throughput technologies in genomics, proteomics, and immunology.

  3. Is the development of falciparum malaria in the human host limited by the availability of uninfected erythrocytes?

    Directory of Open Access Journals (Sweden)

    Hoshen M B

    2002-12-01

    Full Text Available Abstract Background The development and propagation of malaria parasites in their vertebrate host is a complex process in which various host and parasite factors are involved. Sometimes the evolution of parasitaemia seems to be quelled by parasite load. In order to understand the typical dynamics of evolution of parasitaemia, various mathematical models have been developed. The basic premise ingrained in most models is that the availability of uninfected red blood cells (RBC in which the parasite develops is a limiting factor in the propagation of the parasite population. Presentation of the hypothesis We would like to propose that except in extreme cases of severe malaria, there is no limitation in the supply of uninfected RBC for the increase of parasite population. Testing the hypothesis In this analysis we examine the biological attributes of the parasite-infected RBC such as cytoadherence and rosette formation, and the rheological properties of infected RBC, and evaluate their effects on blood flow and clogging of capillaries. We argue that there should be no restriction in the availability of uninfected RBC in patients. Implication of the hypothesis There is no justification for the insertion of RBC supply as a factor in mathematical models that describe the evolution of parasitaemia in the infected host. Indeed, more recent models, that have not inserted this factor, successfully describe the evolution of parasitaemia in the infected host.

  4. Host range, host ecology, and distribution of more than 11800 fish parasite species

    Science.gov (United States)

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  5. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage-host interactions in Lactobacillus helveticus.

    Science.gov (United States)

    Zago, Miriam; Scaltriti, Erika; Fornasari, Maria Emanuela; Rivetti, Claudio; Grolli, Stefano; Giraffa, Giorgio; Ramoni, Roberto; Carminati, Domenico

    2012-01-01

    Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Environment and host as large-scale controls of ectomycorrhizal fungi.

    Science.gov (United States)

    van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I

    2018-06-06

    Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.

  7. CRPS: A contingent hypothesis with prostaglandins as crucial conversion factor.

    Science.gov (United States)

    van der Veen, Phe

    2015-11-01

    such as a living organism. Hormonal systems are slow systems, suitable for stabilising activity. Neural reflex systems function quickly. Prostaglandins that come from local tissue may be the link between the slow and rapid control. In electronics, negative feedback can convert into a feedback loop which results in the dysregulation, which is what prostaglandins do in biochemistry. A dysregulated feedback control mechanism only has two positions: a zero position and a final position. The process is not easily influenced by other factors. Only phase shifting and signal weakness can affect the feedback process. Theoretically, prostaglandins can also affect this process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases

    Directory of Open Access Journals (Sweden)

    Masaaki Nakayama

    2017-11-01

    Full Text Available Porphyromonas gingivalis (P. gingivalis is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR, also called HGP15, has the function of induction of interleukin-8 (IL-8 expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.

  9. Genome-wide RNAi screen identifies novel host proteins required for alphavirus entry.

    Directory of Open Access Journals (Sweden)

    Yaw Shin Ooi

    Full Text Available The enveloped alphaviruses include important and emerging human pathogens such as Chikungunya virus and Eastern equine encephalitis virus. Alphaviruses enter cells by clathrin-mediated endocytosis, and exit by budding from the plasma membrane. While there has been considerable progress in defining the structure and function of the viral proteins, relatively little is known about the host factors involved in alphavirus infection. We used a genome-wide siRNA screen to identify host factors that promote or inhibit alphavirus infection in human cells. Fuzzy homologue (FUZ, a protein with reported roles in planar cell polarity and cilia biogenesis, was required for the clathrin-dependent internalization of both alphaviruses and the classical endocytic ligand transferrin. The tetraspanin membrane protein TSPAN9 was critical for the efficient fusion of low pH-triggered virus with the endosome membrane. FUZ and TSPAN9 were broadly required for infection by the alphaviruses Sindbis virus, Semliki Forest virus, and Chikungunya virus, but were not required by the structurally-related flavivirus Dengue virus. Our results highlight the unanticipated functions of FUZ and TSPAN9 in distinct steps of alphavirus entry and suggest novel host proteins that may serve as targets for antiviral therapy.

  10. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    Science.gov (United States)

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae).

    Science.gov (United States)

    Conlon, J Michael; Mechkarska, Milena; Kolodziejek, Jolanta; Leprince, Jérôme; Coquet, Laurent; Jouenne, Thierry; Vaudry, Hubert; Nowotny, Norbert; King, Jay D

    2015-10-01

    Peptidomic analysis of norepinephrine-stimulated skin secretions from the octoploid Mawa clawed frog Xenopus boumbaensis Loumont, 1983 led to the identification and characterization of 15 host-defense peptides belonging to the magainin (two peptides), peptide glycine-leucine-amide (PGLa; three peptides), xenopsin precursor fragment (XPF; three peptides), caerulein precursor fragment (CPF; two peptides), and caerulein precursor fragment-related peptide (CPF-RP; five peptides) families. In addition, caerulein and three peptides with structural similarity to the trefoil factor family (TFF) peptides, xP2 and xP4 from Xenopus laevis were also present in the secretions. Consistent with data from comparisons of the nucleotides sequence of mitochondrial and nuclear genes, the primary structures of the peptides suggest a close phylogenetic relationship between X. boumbaensis and the octoploid frogs Xenopus amieti and Xenopus andrei. As the three species occupy disjunct ranges within Cameroon, it is suggested that they diverged from a common ancestor by allopatric speciation. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Analysis of a proposed crucial test of quantum mechanics

    International Nuclear Information System (INIS)

    Collett, M.J.; Loudon, R.

    1987-01-01

    An experiment based on an extension of the Einstein-Podolsky-Rosen argument has been proposed by Popper as a crucial test of the Copenhagen interpretation of quantum mechanics. Here the authors show, by a slightly more complete version of Popper's analysis, although still at a relatively primitive level of sophistication, that the proposed experiment does not in fact provide such a test. (author)

  13. Host switching in a generalist parasitoid: contrasting transient and transgenerational costs associated with novel and original host species.

    Science.gov (United States)

    Jones, Thomas S; Bilton, Adam R; Mak, Lorraine; Sait, Steven M

    2015-01-01

    Parasitoids face challenges by switching between host species that influence survival and fitness, determine their role in structuring communities, influence species invasions, and affect their importance as biocontrol agents. In the generalist parasitoid, Venturia canescens (Gravenhorst) (Hymenoptera: Ichneumonidae), we investigated the costs in encapsulation, survival, and body size on juveniles when adult parasitoids switched from their original host, Plodia interpunctella (Hübner) (Lepidotera, Pyralidae) to a novel host, Ephestia kuehniella (Zeller) (Lepidoptera, Pyralidae), over multiple generations. Switching had an initial survival cost for juvenile parasitoids in the novel host, but increased survival occurred within two generations. Conversely, mortality in the original host increased. Body size, a proxy for fecundity, also increased with the number of generations in the novel host species, reflecting adaptation or maternal effects due to the larger size of the novel host, and therefore greater resources available to the developing parasitoid. Switching to a novel host appears to have initial costs for a parasitoid, even when the novel host may be better quality, but the costs rapidly diminish. We predict that the net cost of switching to a novel host for parasitoids will be complex and will depend on the initial reduction in fitness from parasitizing a novel host versus local adaptations against parasitoids in the original host.

  14. Within-host selection of drug resistance in a mouse model of repeated interrupted treatment of Plasmodium yoelii infection

    NARCIS (Netherlands)

    Nuralitha, Suci; Siregar, Josephine E; Syafruddin, Din; Hoepelman, Andy I M; Marzuki, Sangkot

    2017-01-01

    BACKGROUND: To study within-host selection of resistant parasites, an important factor in the development of resistance to anti-malarial drugs, a mouse model of repeated interrupted malaria treatment (RIT) has been developed. The characteristics of within host selection of resistance to atovaquone

  15. Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites.

    Science.gov (United States)

    Auld, Stuart K J R; Hall, Spencer R; Housley Ochs, Jessica; Sebastian, Mathew; Duffy, Meghan A

    2014-08-01

    Parasite prevalence shows tremendous spatiotemporal variation. Theory indicates that this variation might stem from life-history characteristics of parasites and key ecological factors. Here, we illustrate how the interaction of an important predator and the schedule of transmission potential of two parasites can explain parasite abundance. A field survey showed that a noncastrating fungus (Metschnikowia bicuspidata) commonly infected a dominant zooplankton host (Daphnia dentifera), while a castrating bacterial parasite (Pasteuria ramosa) was rare. This result seemed surprising given that the bacterium produces many more infectious propagules (spores) than the fungus upon host death. The fungus's dominance can be explained by the schedule of within-host growth of parasites (i.e., how transmission potential changes over the course of infection) and the release of spores from "sloppy" predators (Chaoborus spp., who consume Daphnia prey whole and then later regurgitate the carapace and parasite spores). In essence, sloppy predators create a niche that the faster-schedule fungus currently occupies. However, a selection experiment showed that the slower-schedule bacterium can evolve into this faster-schedule, predator-mediated niche (but pays a cost in maximal spore yield to do so). Hence, our study shows how parasite life history can interact with predation to strongly influence the ecology, epidemiology, and evolution of infectious disease.

  16. Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase and its secretory proteins (mid-log and early-stationary phases using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.

  17. A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis.

    Science.gov (United States)

    Neubauer, Emilie-Fleur; Poole, Angela Z; Neubauer, Philipp; Detournay, Olivier; Tan, Kenneth; Davy, Simon K; Weis, Virginia M

    2017-05-08

    The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum . Blocking TSR domains led to decreased colonization success, while adding exogenous TSRs resulted in a 'super colonization'. Furthermore, gene expression of TSR proteins was highest at early time-points during symbiosis establishment. Our work characterizes the diversity of cnidarian TSR proteins and provides evidence that these proteins play an important role in the establishment of cnidarian-dinoflagellate symbiosis.

  18. Host location by ichneumonid parasitoids is associated with nest dimensions of the host bee species.

    Science.gov (United States)

    Flores-Prado, L; Niemeyer, H M

    2012-08-01

    Parasitoid fitness depends on the ability of females to locate a host. In some species of Ichneumonoidea, female parasitoids detect potential hosts through vibratory cues emanating from them or through vibrational sounding produced by antennal tapping on the substrate. In this study, we (1) describe host location behaviors in Grotea gayi Spinola (Hymenoptera: Ichneumonidae) and Labena sp. on nests of Manuelia postica Spinola (Hymenoptera: Apidae), (2) compare nest dimensions between parasitized and unparasitized nests, (3) correlate the length of M. postica nests with the number of immature individuals developing, and (4) establish the relative proportion of parasitized nests along the breeding period of M. postica. Based on our results, we propose that these parasitoids use vibrational sounding as a host location mechanism and that they are able to assess host nest dimensions and choose those which may provide them with a higher fitness. Finally, we discuss an ancestral host-parasitoid relationship between Manuelia and ichneumonid species.

  19. Broad-Host-Range IncP-1 plasmids and their resistance potential

    Directory of Open Access Journals (Sweden)

    Magdalena ePopowska

    2013-03-01

    Full Text Available The plasmids of the incompatibility group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad host range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids.

  20. Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior.

    Science.gov (United States)

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior.

  1. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  2. mRNA export in the apicomplexan parasite Toxoplasma gondii: emerging divergent components of a crucial pathway.

    Science.gov (United States)

    Ávila, Andréa Rodrigues; Cabezas-Cruz, Alexjandro; Gissot, Mathieu

    2018-01-25

    Control of gene expression is crucial for parasite survival and is the result of a series of processes that are regulated to permit fine-tuning of gene expression in response to biological changes during the life-cycle of apicomplexan parasites. Control of mRNA nuclear export is a key process in eukaryotic cells but is poorly understood in apicomplexan parasites. Here, we review recent knowledge regarding this process with an emphasis on T. gondii. We describe the presence of divergent orthologs and discuss structural and functional differences in export factors between apicomplexans and other eukaryotic lineages. Undoubtedly, the use of the CRISPR/Cas9 system in high throughput screenings associated with the discovery of mRNA nuclear export complexes by proteomic analysis will contribute to identify these divergent factors. Ligand-based or structure-based strategies may be applied to investigate the potential use of these proteins as targets for new antiprotozoal agents.

  3. Biology of teeth and implants: Host factors - pathology, regeneration, and the role of stem cells.

    Science.gov (United States)

    Eggert, F-Michael; Levin, Liran

    2018-01-01

    In chronic periodontitis and peri-implantitis, cells of the innate and adaptive immune systems are involved directly in the lesions within the tissues of the patient. Absence of a periodontal ligament around implants does not prevent a biologic process similar to that of periodontitis from affecting osseointegration. Our first focus is on factors in the biology of individuals that are responsible for the susceptibility of such individuals to chronic periodontitis and to peri-implantitis. Genetic factors are of significant importance in susceptibility to these diseases. Genetic factors of the host affect the composition of the oral microbiome in the same manner that they influence other microbiomes, such as those of the intestines and of the lungs. Our second focus is on the central role of stem cells in tissue regeneration, in the functioning of innate and adaptive immune systems, and in metabolism of bone. Epithelial cell rests of Malassez (ERM) are stem cells of epithelial origin that maintain the periodontal ligament as well as the cementum and alveolar bone associated with the ligament. The tissue niche within which ERM are found extends into the supracrestal areas of collagen fiber-containing tissues of the gingivae above the bony alveolar crest. Maintenance and regeneration of all periodontal tissues involves the activity of a variety of stem cells. The success of dental implants indicates that important groups of stem cells in the periodontium are active to enable that biologic success. Successful replantation of avulsed teeth and auto-transplantation of teeth is comparable to placing dental implants, and so must also involve periodontal stem cells. Biology of teeth and biology of implants represents the biology of the various stem cells that inhabit specialized niches within the periodontal tissues. Diverse biologic processes must function together successfully to maintain periodontal health. Osseointegration of dental implants does not involve formation of

  4. In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity

    NARCIS (Netherlands)

    Steinert, Georg; Taylor, Michael W.; Deines, Peter; Simister, Rachel L.; Voogd, De Nicole J.; Hoggard, Michael; Schupp, Peter J.

    2016-01-01

    Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape

  5. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest.

    Science.gov (United States)

    Sarmiento, Carolina; Zalamea, Paul-Camilo; Dalling, James W; Davis, Adam S; Stump, Simon M; U'Ren, Jana M; Arnold, A Elizabeth

    2017-10-24

    The Janzen-Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet-that recruits experience high mortality near conspecifics and at high densities-assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1-12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests.

  6. Potent host-directed small-molecule inhibitors of myxovirus RNA-dependent RNA-polymerases.

    Directory of Open Access Journals (Sweden)

    Stefanie A Krumm

    Full Text Available Therapeutic targeting of host cell factors required for virus replication rather than of pathogen components opens new perspectives to counteract virus infections. Anticipated advantages of this approach include a heightened barrier against the development of viral resistance and a broadened pathogen target spectrum. Myxoviruses are predominantly associated with acute disease and thus are particularly attractive for this approach since treatment time can be kept limited. To identify inhibitor candidates, we have analyzed hit compounds that emerged from a large-scale high-throughput screen for their ability to block replication of members of both the orthomyxovirus and paramyxovirus families. This has returned a compound class with broad anti-viral activity including potent inhibition of different influenza virus and paramyxovirus strains. After hit-to-lead chemistry, inhibitory concentrations are in the nanomolar range in the context of immortalized cell lines and human PBMCs. The compound shows high metabolic stability when exposed to human S-9 hepatocyte subcellular fractions. Antiviral activity is host-cell species specific and most pronounced in cells of higher mammalian origin, supporting a host-cell target. While the compound induces a temporary cell cycle arrest, host mRNA and protein biosynthesis are largely unaffected and treated cells maintain full metabolic activity. Viral replication is blocked at a post-entry step and resembles the inhibition profile of a known inhibitor of viral RNA-dependent RNA-polymerase (RdRp activity. Direct assessment of RdRp activity in the presence of the reagent reveals strong inhibition both in the context of viral infection and in reporter-based minireplicon assays. In toto, we have identified a compound class with broad viral target range that blocks host factors required for viral RdRp activity. Viral adaptation attempts did not induce resistance after prolonged exposure, in contrast to rapid

  7. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens.

    Science.gov (United States)

    Navaud, Olivier; Barbacci, Adelin; Taylor, Andrew; Clarkson, John P; Raffaele, Sylvain

    2018-03-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae, a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events and host range variation during the evolution of this family. Variations in diversification rate during the evolution of the Sclerotiniaceae define three major macro-evolutionary regimes with contrasted proportions of species infecting a broad range of hosts. Host-parasite cophylogenetic analyses pointed towards parasite radiation on distant hosts long after host speciation (host jump or duplication events) as the dominant mode of association with plants in the Sclerotiniaceae. The intermediate macro-evolutionary regime showed a low diversification rate, high frequency of duplication events and the highest proportion of broad host range species. Our findings suggest that the emergence of broad host range fungal pathogens results largely from host jumps, as previously reported for oomycete parasites, probably combined with low speciation rates. These results have important implications for our understanding of fungal parasites evolution and are of particular relevance for the durable management of disease epidemics. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  8. Transcriptional portrait of Actinobacillus pleuropneumoniae during acute disease--potential strategies for survival and persistence in the host.

    Directory of Open Access Journals (Sweden)

    Kirstine Klitgaard

    Full Text Available BACKGROUND: Gene expression profiles of bacteria in their natural hosts can provide novel insight into the host-pathogen interactions and molecular determinants of bacterial infections. In the present study, the transcriptional profile of the porcine lung pathogen Actinobacillus pleuropneumoniae was monitored during the acute phase of infection in its natural host. METHODOLOGY/PRINCIPAL FINDINGS: Bacterial expression profiles of A. pleuropneumoniae isolated from lung lesions of 25 infected pigs were compared in samples taken 6, 12, 24 and 48 hours post experimental challenge. Within 6 hours, focal, fibrino hemorrhagic lesions could be observed in the pig lungs, indicating that A. pleuropneumoniae had managed to establish itself successfully in the host. We identified 237 differentially regulated genes likely to encode functions required by the bacteria for colonization and survival in the host. This group was dominated by genes involved in various aspects of energy metabolism, especially anaerobic respiration and carbohydrate metabolism. Remodeling of the bacterial envelope and modifications of posttranslational processing of proteins also appeared to be of importance during early infection. The results suggested that A. pleuropneumoniae is using various strategies to increase its fitness, such as applying Na+ pumps as an alternative way of gaining energy. Furthermore, the transcriptional data provided potential clues as to how A. pleuropneumoniae is able to circumvent host immune factors and survive within the hostile environment of host macrophages. This persistence within macrophages may be related to urease activity, mobilization of various stress responses and active evasion of the host defenses by cell surface sialylation. CONCLUSIONS/SIGNIFICANCE: The data presented here highlight the importance of metabolic adjustments to host conditions as virulence factors of infecting microorganisms and help to provide insight into the mechanisms

  9. Phage adsorption and lytic propagation in Lactobacillus plantarum: Could host cell starvation affect them?

    OpenAIRE

    Briggiler Marc?, Mari?ngeles; Reinheimer, Jorge; Quiberoni, Andrea

    2015-01-01

    Background Bacteriophages constitute a great threat to the activity of lactic acid bacteria used in industrial processes. Several factors can influence the infection cycle of bacteriophages. That is the case of the physiological state of host cells, which could produce inhibition or delay of the phage infection process. In the present work, the influence of Lactobacillus plantarum host cell starvation on phage B1 adsorption and propagation was investigated. Result First, cell growth kinetics ...

  10. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores

    OpenAIRE

    Sanders, Jon G.; Beichman, Annabel C.; Roman, Joe; Scott, Jarrod J.; Emerson, David; McCarthy, James J.; Girguis, Peter R.

    2015-01-01

    Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These simi...

  11. VirHostNet 2.0: surfing on the web of virus/host molecular interactions data.

    Science.gov (United States)

    Guirimand, Thibaut; Delmotte, Stéphane; Navratil, Vincent

    2015-01-01

    VirHostNet release 2.0 (http://virhostnet.prabi.fr) is a knowledgebase dedicated to the network-based exploration of virus-host protein-protein interactions. Since the previous VirhostNet release (2009), a second run of manual curation was performed to annotate the new torrent of high-throughput protein-protein interactions data from the literature. This resource is shared publicly, in PSI-MI TAB 2.5 format, using a PSICQUIC web service. The new interface of VirHostNet 2.0 is based on Cytoscape web library and provides a user-friendly access to the most complete and accurate resource of virus-virus and virus-host protein-protein interactions as well as their projection onto their corresponding host cell protein interaction networks. We hope that the VirHostNet 2.0 system will facilitate systems biology and gene-centered analysis of infectious diseases and will help to identify new molecular targets for antiviral drugs design. This resource will also continue to help worldwide scientists to improve our knowledge on molecular mechanisms involved in the antiviral response mediated by the cell and in the viral strategies selected by viruses to hijack the host immune system. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  13. SILICON AND OXYGEN ABUNDANCES IN PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Brugamyer, Erik; Dodson-Robinson, Sarah E.; Cochran, William D.; Sneden, Christopher

    2011-01-01

    The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.

  14. Do the Uncertainty Relations Really have Crucial Significances for Physics?

    Directory of Open Access Journals (Sweden)

    Dumitru S.

    2010-10-01

    Full Text Available It is proved the falsity of idea that the Uncertainty Relations (UR have crucial signif- icances for physics. Additionally one argues for the necesity of an UR-disconnected quantum philosophy.

  15. Different papillomaviruses have different repertoires of transcription factor binding sites: convergence and divergence in the upstream regulatory region

    Directory of Open Access Journals (Sweden)

    Alonso Ángel

    2006-03-01

    Full Text Available Abstract Background Papillomaviruses (PVs infect stratified squamous epithelia in warm-blooded vertebrates and have undergone a complex evolutionary process. The control of the expression of the early ORFs in PVs depends on the binding of cellular and viral transcription factors to the upstream regulatory region (URR of the virus. It is believed that there is a core of transcription factor binding sites (TFBS common to all PVs, with additional individual differences, although most of the available information focuses only on a handful of viruses. Results We have studied the URR of sixty-one PVs, covering twenty different hosts. We have predicted the TFBS present in the URR and analysed these results by principal component analysis and genetic algorithms. The number and nature of TFBS in the URR might be much broader than thus far described, and different PVs have different repertoires of TFBS. Conclusion There are common fingerprints in the URR in PVs that infect primates, although the ancestors of these viruses diverged a long time ago. Additionally, there are obvious differences between the URR of alpha and beta PVs, despite these PVs infect similar histological cell types in the same host, i.e. human. A thorough analysis of the TFBS in the URR might provide crucial information about the differential biology of cancer-associated PVs.

  16. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism.

    Science.gov (United States)

    Partida-Martinez, Laila P; Monajembashi, Shamci; Greulich, Karl-Otto; Hertweck, Christian

    2007-05-01

    Bacterial endosymbionts play essential roles for many organisms, and thus specialized mechanisms have evolved during evolution that guarantee the persistence of the symbiosis during or after host reproduction. The rice seedling blight fungus Rhizopus microsporus represents a unique example of a mutualistic life form in which a fungus harbors endobacteria (Burkholderia sp.) for the production of a phytotoxin. Here we report the unexpected observation that in the absence of endosymbionts, the host is not capable of vegetative reproduction. Formation of sporangia and spores is restored only upon reintroduction of endobacteria. To monitor this process, we succeeded in GFP labeling cultured endosymbionts. We also established a laserbeam transformation technique for the first controlled introduction of bacteria into fungi to observe their migration to the tips of the aseptate hyphae. The persistence of this fungal-bacterial mutualism through symbiont-dependent sporulation is intriguing from an evolutionary point of view and implies that the symbiont produces factors that are essential for the fungal life cycle. Reproduction of the host has become totally dependent on endofungal bacteria, which in return provide a highly potent toxin for defending the habitat and accessing nutrients from decaying plants. This scenario clearly highlights the significance for a controlled maintenance of this fungal-bacterial symbiotic relationship.

  17. Host and food searching in a parasitic wasp Venturia canescens: a trade-off between current and future reproduction?

    NARCIS (Netherlands)

    Desouhant, E.; Driessen, G.J.J.; Amat, I.; Bernstein, C.

    2005-01-01

    Whether to invest in current or future reproduction is an important trade-off in life history evolution. For insect parasitoids, this trade-off is determined, among other factors, by the decision whether to search for hosts (immediate gain of fitness) or food (delayed fitness gains). Although host

  18. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection.

    Science.gov (United States)

    Mukherjee, Krishnendu; Vilcinskas, Andreas

    2018-01-01

    Parasitic fungi are the only pathogens that can infect insect hosts directly through their proteinaceous exoskeleton. Penetration of the cuticle requires the release of fungal enzymes, including proteinases, which act as virulence factors. Insects can sense fungal infections and activate innate immune responses, including the synthesis of antifungal peptides and proteinase inhibitors that neutralize the incoming proteinases. This well-studied host response is epigenetically regulated by histone acetylation/deacetylation. Here we show that entomopathogenic fungi can in turn sense the presence of insect-derived antifungal peptides and proteinase inhibitors, and respond by inducing the synthesis of chymotrypsin-like proteinases and metalloproteinases that degrade the host-derived defense molecules. The rapidity of this response is dependent on the virulence of the fungal strain. We confirmed the specificity of the pathogen response to host-derived defense molecules by LC/MS and RT-PCR analysis, and correlated this process with the epigenetic regulation of histone acetylation/deacetylation. This cascade of responses reveals that the coevolution of pathogens and hosts can involve a complex series of attacks and counterattacks based on communication between the invading fungal pathogen and its insect host. The resolution of this process determines whether or not pathogenesis is successful.

  19. Molecules at the interface of Cryptococcus and the host that determine disease susceptibility.

    Science.gov (United States)

    Wozniak, Karen L; Olszewski, Michal A; Wormley, Floyd L

    2015-05-01

    Cryptococcus neoformans and Cryptococcus gattii, the predominant etiological agents of cryptococcosis, are fungal pathogens that cause disease ranging from a mild pneumonia to life-threatening infections of the central nervous system (CNS). Resolution or exacerbation of Cryptococcus infection is determined following complex interactions of several host and pathogen derived factors. Alternatively, interactions between the host and pathogen may end in an impasse resulting in the establishment of a sub-clinical Cryptococcus infection. The current review addresses the delicate interaction between the host and Cryptococcus-derived molecules that determine resistance or susceptibility to infection. An emphasis will be placed on data highlighted at the recent 9th International Conference on Cryptococcus and Cryptococcosis (ICCC). Copyright © 2015. Published by Elsevier Inc.

  20. Pathogen Trojan Horse Delivers Bioactive Host Protein to Alter Maize Anther Cell Behavior in Situ.

    Science.gov (United States)

    van der Linde, Karina; Timofejeva, Ljudmilla; Egger, Rachel L; Ilau, Birger; Hammond, Reza; Teng, Chong; Meyers, Blake C; Doehlemann, Gunther; Walbot, Virginia

    2018-03-01

    Small proteins are crucial signals during development, host defense, and physiology. The highly spatiotemporal restricted functions of signaling proteins remain challenging to study in planta. The several month span required to assess transgene expression, particularly in flowers, combined with the uncertainties from transgene position effects and ubiquitous or overexpression, makes monitoring of spatiotemporally restricted signaling proteins lengthy and difficult. This situation could be rectified with a transient assay in which protein deployment is tightly controlled spatially and temporally in planta to assess protein functions, timing, and cellular targets as well as to facilitate rapid mutagenesis to define functional protein domains. In maize ( Zea mays ), secreted ZmMAC1 (MULTIPLE ARCHESPORIAL CELLS1) was proposed to trigger somatic niche formation during anther development by participating in a ligand-receptor module. Inspired by Homer's Trojan horse myth, we engineered a protein delivery system that exploits the secretory capabilities of the maize smut fungus Ustilago maydis , to allow protein delivery to individual cells in certain cell layers at precise time points. Pathogen-supplied ZmMAC1 cell-autonomously corrected both somatic cell division and differentiation defects in mutant Zm mac1-1 anthers. These results suggest that exploiting host-pathogen interactions may become a generally useful method for targeting host proteins to cell and tissue types to clarify cellular autonomy and to analyze steps in cell responses. © 2018 American Society of Plant Biologists. All rights reserved.