WorldWideScience

Sample records for host cells express

  1. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  2. Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development.

    Directory of Open Access Journals (Sweden)

    Seung-Joo Lee

    2012-01-01

    Full Text Available Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.

  3. [HIV-1 infection affects the expression of host cell factor TSG101 and Alix].

    Science.gov (United States)

    Hu, Hui-liang; Meng, Zhe-feng; Zhang, Xiao-yan; Lu, Jian-xin

    2011-03-01

    To investigate the effects of HIV-1 infection on the expression of host factors TSG101 (Tumor Susceptibility Gene 101) and Alix (ALG-2-interacting protein X). HIV-1 infectious clone pNL4-3 was used to infect TZM-bl, PM1, Jurkat cell lines and human peripheral blood mononuclear cells (PBMC). Twenty-four hours post-infection, the infected or uninfected cells were harvested respectively for extraction of total RNAs and total cellular proteins, which were subsequently used in RT-PCR and Western-blotting respectively to quantify TSG101 and Alix, respectively. Our data showed that HIV-1 infection resulted in various influences on the expression of TSG101 and Alix in the cell lines and the primary PBMC. A down-regulation was mainly observed in the cell lines, whereas an up-regulation of TSG101 was identified in primary PBMC. Three patterns were observed for down-regulation, including dual down-regulation of TSG101 and Alix for Jurkat cells, single down-regulation of Alix for TZM-bl cells and marginal or no influence on PM1 cells. The dual down-regulation of Alix and TSG101 in Jurkat cells coincided with less expression of HIV-1 p24 protein. This is the first-line evidence that HIV-1 infection affects the expression of host factors TSG101 and Alix, the down-regulation of these molecules may influence the HIV-1 replication. The underlying mechanism remains to be addressed.

  4. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells.

    Directory of Open Access Journals (Sweden)

    Emma C Skoog

    Full Text Available Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.

  5. Regulation of Oncogene Expression in T-DNA-Transformed Host Plant Cells

    Science.gov (United States)

    Zhang, Yi; Lee, Chil-Woo; Wehner, Nora; Imdahl, Fabian; Svetlana, Veselova; Weiste, Christoph; Dröge-Laser, Wolfgang; Deeken, Rosalia

    2015-01-01

    Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance

  6. Regulation of oncogene expression in T-DNA-transformed host plant cells.

    Science.gov (United States)

    Zhang, Yi; Lee, Chil-Woo; Wehner, Nora; Imdahl, Fabian; Svetlana, Veselova; Weiste, Christoph; Dröge-Laser, Wolfgang; Deeken, Rosalia

    2015-01-01

    Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance

  7. Regulation of oncogene expression in T-DNA-transformed host plant cells.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2015-01-01

    Full Text Available Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase, IaaM (tryptophan monooxygenase and Ipt (isopentenyl transferase, which encode enzymes for the biosynthesis of auxin (IaaH, IaaM and cytokinin (Ipt. Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs between the coding sequences (CDS of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and

  8. Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions

    Directory of Open Access Journals (Sweden)

    Ichou Mohamed

    2010-07-01

    Full Text Available Abstract Monkeypox virus (MPV is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2 using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our

  9. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells

    NARCIS (Netherlands)

    Sinha, B; Francois, P; Que, Y A; Hussain, M; Heilmann, C; Moreillon, P; Lew, D; Krause, K H; Peters, Georg; Herrmann, M

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell.

  10. Importance of CD200 expression by tumor or host cells to regulation of immunotherapy in a mouse breast cancer model.

    Science.gov (United States)

    Curry, Anna; Khatri, Ismat; Kos, Olha; Zhu, Fang; Gorczynski, Reginald

    2017-01-01

    Cell-surface CD200 expression by mouse EMT6 breast tumor cells increased primary tumor growth and metastasis to the draining lymph nodes (DLN) in normal (WT) BALB/c female recipients, while lack of CD200R1 expression in a CD200R1-/- host negated this effect. Silencing CD200 expression in EMT6siCD200 tumor cells also reduced their ability to grow and metastasize in WT animals. The cellular mechanisms responsible for these effects have not been studied in detail. We report characterization of tumor infiltrating (TILs) and draining lymph node (DLN) cells in WT and CD200-/- BALB/c mice, receiving WT tumor cells, or EMT6 lacking CD200 expression (EMT6siCD200 cells). Our data show an important correlation with augmented CD8+ cytotoxic T cells and resistance to tumor growth in mice lacking exposure (on either host cells or tumor) to the immunoregulatory molecule CD200. Confirmation of the importance of such CD8+ cells came from monitoring tumor growth and characterization of the TILs and DLN cells in WT mice challenged with EMT6 and EMT6siCD200 tumors and treated with CD8 and CD4 depleting antibodies. Finally, we have assessed the mechanisms(s) whereby addition of metformin as an augmenting chemotherapeutic agent in CD200-/- animals given EMT6 tumors and treated with a previously established immunotherapy regime can increase host resistance. Our data support the hypothesis that increased autophagy in the presence of metformin increases CD8+ responses and tumor resistance, an effect attenuated by the autophagy inhibitor verteporfin.

  11. Importance of CD200 expression by tumor or host cells to regulation of immunotherapy in a mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Anna Curry

    Full Text Available Cell-surface CD200 expression by mouse EMT6 breast tumor cells increased primary tumor growth and metastasis to the draining lymph nodes (DLN in normal (WT BALB/c female recipients, while lack of CD200R1 expression in a CD200R1-/- host negated this effect. Silencing CD200 expression in EMT6siCD200 tumor cells also reduced their ability to grow and metastasize in WT animals. The cellular mechanisms responsible for these effects have not been studied in detail. We report characterization of tumor infiltrating (TILs and draining lymph node (DLN cells in WT and CD200-/- BALB/c mice, receiving WT tumor cells, or EMT6 lacking CD200 expression (EMT6siCD200 cells. Our data show an important correlation with augmented CD8+ cytotoxic T cells and resistance to tumor growth in mice lacking exposure (on either host cells or tumor to the immunoregulatory molecule CD200. Confirmation of the importance of such CD8+ cells came from monitoring tumor growth and characterization of the TILs and DLN cells in WT mice challenged with EMT6 and EMT6siCD200 tumors and treated with CD8 and CD4 depleting antibodies. Finally, we have assessed the mechanisms(s whereby addition of metformin as an augmenting chemotherapeutic agent in CD200-/- animals given EMT6 tumors and treated with a previously established immunotherapy regime can increase host resistance. Our data support the hypothesis that increased autophagy in the presence of metformin increases CD8+ responses and tumor resistance, an effect attenuated by the autophagy inhibitor verteporfin.

  12. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.

    Science.gov (United States)

    Lin, Nan; Mascarenhas, Joaquina; Sealover, Natalie R; George, Henry J; Brooks, Jeanne; Kayser, Kevin J; Gau, Brian; Yasa, Isil; Azadi, Parastoo; Archer-Hartmann, Stephanie

    2015-01-01

    N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN(®) GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones ("ST6GAL1 OE Clone 31 and 32") were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of "bio-better" protein therapeutics and cell culture vaccine production. © 2015 American Institute of Chemical Engineers.

  13. Gene Expression Changes Induced by Trypanosoma cruzi Shed Microvesicles in Mammalian Host Cells: Relevance of tRNA-Derived Halves

    Directory of Open Access Journals (Sweden)

    Maria R. Garcia-Silva

    2014-01-01

    Full Text Available At present, noncoding small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, canonical small RNA pathways seem to be lost or excessively simplified in some unicellular organisms including Trypanosoma cruzi which lack functional RNAi pathways. Recently, we reported the presence of alternate small RNA pathways in T. cruzi mainly represented by homogeneous populations of tRNA- and rRNA-derived small RNAs, which are secreted to the extracellular medium included in extracellular vesicles. Extracellular vesicle cargo could be delivered to other parasites and to mammalian susceptible cells promoting metacyclogenesis and conferring susceptibility to infection, respectively. Here we analyzed the changes in gene expression of host HeLa cells induced by extracellular vesicles from T. cruzi. As assessed by microarray assays a large set of genes in HeLa cells were differentially expressed upon incorporation of T. cruzi-derived extracellular vesicles. The elicited response modified mainly host cell cytoskeleton, extracellular matrix, and immune responses pathways. Some genes were also modified by the most abundant tRNA-derived small RNAs included in extracellular vesicles. These data suggest that microvesicles secreted by T. cruzi could be relevant players in early events of the T. cruzi host cell interplay.

  14. Cytokine-dependent and–independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling

    Directory of Open Access Journals (Sweden)

    Burleigh Barbara A

    2009-05-01

    Full Text Available Abstract Background The requirements for growth and survival of the intracellular pathogen Trypanosoma cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell response to infection serves as a rapid read-out for perturbation of host physiology that, in part, reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically diverse human cell types. Results We report significant changes in transcript abundance in T. cruzi-infected fibroblasts, endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change ≥ 2, p-value T. cruzi-infected fibroblasts and endothelial cells transwell plates were used to distinguish cytokine-dependent and -independent gene expression profiles. This approach revealed the induction of metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection may impede host cell cycle progression. The observation of impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this prediction. Conclusion Metabolic pathways and cellular processes were identified as significantly altered at the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle, at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction.

  15. Dynamic Changes in Host Gene Expression following In Vitro Viral Mimic Stimulation in Crocodile Cells

    Directory of Open Access Journals (Sweden)

    Subir Sarker

    2017-11-01

    Full Text Available The initial control of viral infection in a host is dominated by a very well orchestrated early innate immune system; however, very little is known about the ability of a host to control viral infection outside of mammals. The reptiles offer an evolutionary bridge between the fish and mammals, with the crocodile having evolved from the archosauria clade that included the dinosaurs, and being the largest living reptile species. Using an RNA-seq approach, we have defined the dynamic changes of a passaged primary crocodile cell line to stimulation with both RNA and DNA viral mimics. Cells displayed a marked upregulation of many genes known to be involved in the mammalian response to viral infection, including viperin, Mx1, IRF7, IRF1, and RIG-I with approximately 10% of the genes being uncharacterized transcripts. Both pathway and genome analysis suggested that the crocodile may utilize the main known mammalian TLR and cytosolic antiviral RNA signaling pathways, with the pathways being responsible for sensing DNA viruses less clear. Viral mimic stimulation upregulated the type I interferon, IFN-Omega, with many known antiviral interferon-stimulated genes also being upregulated. This work demonstrates for the first time that reptiles show functional regulation of many known and unknown antiviral pathways and effector genes. An enhanced knowledge of these ancient antiviral pathways will not only add to our understanding of the host antiviral innate response in non-mammalian species, but is critical to fully comprehend the complexity of the mammalian innate immune response to viral infection.

  16. Gene expression changes during Giardia-host cell interactions in serum-free medium.

    Science.gov (United States)

    Ferella, Marcela; Davids, Barbara J; Cipriano, Michael J; Birkeland, Shanda R; Palm, Daniel; Gillin, Frances D; McArthur, Andrew G; Svärd, Staffan

    2014-10-01

    Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Comparison of host cell gene expression in cowpox, monkeypox or vaccinia virus-infected cells reveals virus-specific regulation of immune response genes.

    Science.gov (United States)

    Bourquain, Daniel; Dabrowski, Piotr Wojtek; Nitsche, Andreas

    2013-02-20

    Animal-borne orthopoxviruses, like monkeypox, vaccinia and the closely related cowpox virus, are all capable of causing zoonotic infections in humans, representing a potential threat to human health. The disease caused by each virus differs in terms of symptoms and severity, but little is yet know about the reasons for these varying phenotypes. They may be explained by the unique repertoire of immune and host cell modulating factors encoded by each virus. In this study, we analysed the specific modulation of the host cell's gene expression profile by cowpox, monkeypox and vaccinia virus infection. We aimed to identify mechanisms that are either common to orthopoxvirus infection or specific to certain orthopoxvirus species, allowing a more detailed description of differences in virus-host cell interactions between individual orthopoxviruses. To this end, we analysed changes in host cell gene expression of HeLa cells in response to infection with cowpox, monkeypox and vaccinia virus, using whole-genome gene expression microarrays, and compared these to each other and to non-infected cells. Despite a dominating non-responsiveness of cellular transcription towards orthopoxvirus infection, we could identify several clusters of infection-modulated genes. These clusters are either commonly regulated by orthopoxvirus infection or are uniquely regulated by infection with a specific orthopoxvirus, with major differences being observed in immune response genes. Most noticeable was an induction of genes involved in leukocyte migration and activation in cowpox and monkeypox virus-infected cells, which was not observed following vaccinia virus infection. Despite their close genetic relationship, the expression profiles induced by infection with different orthopoxviruses vary significantly. It may be speculated that these differences at the cellular level contribute to the individual characteristics of cowpox, monkeypox and vaccinia virus infections in certain host species.

  18. Modular protein expression by RNA trans-splicing enables flexible expression of antibody formats in mammalian cells from a dual-host phage display vector.

    Science.gov (United States)

    Shang, Yonglei; Tesar, Devin; Hötzel, Isidro

    2015-10-01

    A recently described dual-host phage display vector that allows expression of immunoglobulin G (IgG) in mammalian cells bypasses the need for subcloning of phage display clone inserts to mammalian vectors for IgG expression in large antibody discovery and optimization campaigns. However, antibody discovery and optimization campaigns usually need different antibody formats for screening, requiring reformatting of the clones in the dual-host phage display vector to an alternative vector. We developed a modular protein expression system mediated by RNA trans-splicing to enable the expression of different antibody formats from the same phage display vector. The heavy-chain region encoded by the phage display vector is directly and precisely fused to different downstream heavy-chain sequences encoded by complementing plasmids simply by joining exons in different pre-mRNAs by trans-splicing. The modular expression system can be used to efficiently express structurally correct IgG and Fab fragments or other antibody formats from the same phage display clone in mammalian cells without clone reformatting. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Eosinophil and mast cell expression in host skin during larval development of the human bot fly Dermatobia hominis

    Directory of Open Access Journals (Sweden)

    Pereira M.C.T.

    2002-12-01

    Full Text Available Eosinophils and mast cells in the skin of Wistar rats (Rattus norvegicus infested with Dermatobia hominis larvae were quantified and analysed. Eosinophils in parasitised skin increased markedly until 10 days post-infestation (dpi and then decreased up to 28 dpi, close to the point at which third stage larvae (L3 emerged from the host. In ascending order, the highest numbers of eosinophils were seen in rats at 1, 4, 28, 20, 15 and 10 dpi, corresponding to the first, (1 and 4 third (20 and 28 and second (10 and 15 instars. Except for 1 dpi, eosinophil numbers were significantly higher than those seen in control animals. Mast cell numbers were highest in early infestations (4 dpi, followed by those at 20 dpi. In increasing order, numbers of mast cells were greatest at 10, 28, 15, 1, 20 and 4 dpi, although significant differences with control animals were only seen at 10 and 28 dpi. Eosinophils and mast cells showed negative correlation only in animals with second instar larvae (10 and 15 dpi. Comparative analyses were also carried out after considering the skin into four distinct regions. The results suggest that the expression of both cell types, particularly eosinophils, is an important host response to infestation by D. hominis.

  20. Eosinophil and mast cell expression in host skin during larval development of the human bot fly Dermatobia hominis.

    Science.gov (United States)

    Pereira, M C T; Leite, A C R

    2002-12-01

    Eosinophils and mast cells in the skin of Wistar rats (Rattus norvegicus) infested with Dermatobia hominis larvae were quantified and analysed. Eosinophils in parasitised skin increased markedly until 10 days post-infestation (dpi) and then decreased up to 28 dpi, close to the point at which third stage larvae (L3) emerged from the host. In ascending order, the highest numbers of eosinophils were seen in rats at 1, 4, 28, 20, 15 and 10 dpi, corresponding to the first, (1 and 4) third (20 and 28) and second (10 and 15) instars. Except for 1 dpi, eosinophil numbers were significantly higher than those seen in control animals. Mast cell numbers were highest in early infestation (4 dpi), followed by those at 20 dpi. In increasing order, numbers of mast cells were greatest at 10, 28, 15, 1, 20 and 4 dpi, although significant differences with control animals were only seen at 10 and 28 dpi. Eosinophils and mast cells showed negative correlation only in animals with second instar larvae (10 and 15 dpi). Comparative analyses were also carried out after considering the skin into four distinct regions. The results suggest that the expression of both cell types, particularly eosinophils, is an important host response to infestation by D. hominis.

  1. Matrix protein of VSV New Jersey serotype containing methionine to arginine substitutions at positions 48 and 51 allows near-normal host cell gene expression.

    Science.gov (United States)

    Kim, Gyoung Nyoun; Kang, C Yong

    2007-01-05

    The matrix (M) protein of vesicular stomatitis virus (VSV) plays significant roles in the replication of VSV through its involvement in the assembly of virus particles as well as by facilitating the evasion of innate host cell defense mechanisms. The presence of methionine at position 51 (M51) of the matrix (M) protein of the VSV Indiana serotype (VSV(Ind)) has been proven to be crucial for cell rounding and inhibition of host cell gene expression. The M protein of VSV(Ind) with the substitution of M51 with arginine (R:M51R) results in the loss of inhibitory effects on host cell gene expression. The VSV(Ind) expressing the M(M51R) protein became the attractive oncolytic virus which is safer and more tumor-specific because the normal cells can clear the mutant VSV(Ind) easily but tumor cells are susceptible to the virus because a variety of tumor cells lack innate antiviral activities. We have studied the role of the methionines at positions 48 and 51 of the M protein of the New Jersey serotype of VSV (VSV(NJ)) in the induction of cytopathic effects (CPE) and host cell gene expression. We have generated human embryonic kidney 293 cell lines inducibly expressing M proteins with M to R mutations at positions 48 and 51, either separately or together as a double mutant, and examined expression of heat shock protein 70 (HSP70) as an indicator of host cell gene expression. We have also generated recombinant VSV(NJ) encoding the mutant M proteins M(M48R) or M(M48R+M51R) for the first time and tested for the expression of HSP70 in infected cells. Our results demonstrated that the M51 of VSV(NJ) M proteins has a major role in cell rounding and in suppressing the host cell gene expression either when the M protein was expressed alone in inducible cell lines or when expressed together with other VSV proteins by the recombinant VSV(NJ). Amino acid residue M48 may also have some role in cell rounding and in the inhibitory effects of VSV(NJ) M, which was demonstrated by the fact

  2. Failure to detect Trichinella spiralis p43 in isolated host nuclei and in irradiated larvae of infected muscle cells which express the infected cell phenotype.

    Science.gov (United States)

    Jasmer, D P; Yao, S; Vassilatis, D; Despommier, D; Neary, S M

    1994-10-01

    Infection by Trichinella spiralis induces host muscle cells to become repositioned within the cell cycle and to lose differentiated skeletal muscle characteristics. Antibodies to a 43-kDa excretory-secretory (ES) protein (p43) also bind to infected host cell nuclei. Neither the identity of these nuclear antigens nor their role in inducing the infected cell phenotype is known. To address these issues, infected cell nuclei were isolated and nuclear antigens analyzed with several antibody preparations to p43. Four antibody preparations to p43 recognized 43-, 45-, 50-, 67- and 71-kDa proteins in ES extracts. The prominent proteins recognized by these antibodies in host nuclear antigen extracts were 71, 79, 86 and 97 kDa. Less prominent proteins of approximately 43 and 45 kDa were detected in nuclear extracts. However, antibodies which specifically recognized p43 failed to bind detectably with in situ and isolated host nuclei and nuclear extracts. Expression of p43 was analyzed in host cells infected by newborn larvae irradiated with 60Co. This treatment prevented expression of detectable levels of p43 in resulting muscle larvae, while infected muscle cells displayed typical infected cell characteristics. However, anti-p43 antibodies which recognized multiple ES and nuclear proteins did stain nuclei of irradiated larva-infected cells, albeit at reduced levels. The results raise doubts that p43 is required for induction of the infected cell phenotype. Nevertheless, nuclear antigens recognized by anti-p53 antibodies remain as candidates for influencing this phenotype.

  3. Transcriptome Analysis of HepG2 Cells Expressing ORF3 from Swine Hepatitis E Virus to Determine the Effects of ORF3 on Host Cells

    Directory of Open Access Journals (Sweden)

    Kailian Xu

    2016-01-01

    Full Text Available Hepatitis E virus- (HEV- mediated hepatitis has become a global public health problem. An important regulatory protein of HEV, ORF3, influences multiple signal pathways in host cells. In this study, to investigate the function of ORF3 from the swine form of HEV (SHEV, high-throughput RNA-Seq-based screening was performed to identify the differentially expressed genes in ORF3-expressing HepG2 cells. The results were validated with quantitative real-time PCR and gene ontology was employed to assign differentially expressed genes to functional categories. The results indicated that, in the established ORF3-expressing HepG2 cells, the mRNA levels of CLDN6, YLPM1, APOC3, NLRP1, SCARA3, FGA, FGG, FGB, and FREM1 were upregulated, whereas the mRNA levels of SLC2A3, DKK1, BPIFB2, and PTGR1 were downregulated. The deregulated expression of CLDN6 and FREM1 might contribute to changes in integral membrane protein and basement membrane protein expression, expression changes for NLRP1 might affect the apoptosis of HepG2 cells, and the altered expression of APOC3, SCARA3, and DKK1 may affect lipid metabolism in HepG2 cells. In conclusion, ORF3 plays a functional role in virus-cell interactions by affecting the expression of integral membrane protein and basement membrane proteins and by altering the process of apoptosis and lipid metabolism in host cells. These findings provide important insight into the pathogenic mechanism of HEV.

  4. Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells.

    Science.gov (United States)

    Ruan, Wendong; Wang, Pei; Feng, Shiqing; Xue, Yuan; Li, Yulin

    2016-03-01

    The long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has a role in cell proliferation and migration. Angiomotin, encoded by the AMOT gene, is a protein that regulates the migration and organization of endothelial cells. SNHG12 and AMOT have been shown to play a role in a variety of human cancers but have yet to be studied in detail in human osteosarcoma. Tissue samples from primary osteosarcoma (n = 20) and adjacent normal tissues (n = 20), the osteosarcoma cell lines, SAOS-2, MG-63, U-2 OS, and the human osteoblast cell line hFOB (OB3) were studied using Western blot for angiomotin, and quantitative real-time polymerase chain reaction for the expression of SNHG12 and AMOT. The expression of SNHG12 was knocked down using RNA interference. Cell migration assays were performed. Cell apoptosis was studied using flow cytometry. SNHG12 and AMOT messenger RNA (mRNA) expression was upregulated in osteosarcoma tissues and cell lines when compared with normal tissues and cells. Upregulation of AMOT mRNA was associated with upregulation of SNHG12. Knockdown of SNHG12 reduced the expression of angiomotin in osteosarcoma cells and suppressed cell proliferation and migration but did not affect cell apoptosis. This preliminary study has shown that the lncRNA SNHG12 promotes cell proliferation and migration by upregulating AMOT gene expression in osteosarcoma cells in vivo and in vitro. Further studies are recommended to investigate the role of SNHG12 and AMOT expression in tumor cell proliferation and migration and angiogenesis in osteosarcoma and a range of malignant mesenchymal tumors.

  5. Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistance in Ixodes ricinus cells.

    Science.gov (United States)

    Mansfield, Karen L; Cook, Charlotte; Ellis, Richard J; Bell-Sakyi, Lesley; Johnson, Nicholas; Alberdi, Pilar; de la Fuente, José; Fooks, Anthony R

    2017-02-15

    There has been an emergence and expansion of tick-borne diseases in Europe, Asia and North America in recent years, including Lyme disease, tick-borne encephalitis and human anaplasmosis. The primary vectors implicated are hard ticks of the genus Ixodes. Although much is known about the host response to these bacterial and viral pathogens, there is limited knowledge of the cellular responses to infection within the tick vector. The bacterium Anaplasma phagocytophilum is able to bypass apoptotic processes in ticks, enabling infection to proceed. However, the tick cellular responses to infection with the flaviviruses tick-borne encephalitis virus (TBEV) and louping ill virus (LIV), which cause tick-borne encephalitis and louping ill respectively, are less clear. Infection and transcriptional analysis of the Ixodes ricinus tick cell line IRE/CTVM20 with the viruses LIV and TBEV, and the bacterium A. phagocytophilum, identified activation of common and distinct cellular pathways. In particular, commonly-upregulated genes included those that modulate apoptotic pathways, putative anti-pathogen genes, and genes that influence the tick innate immune response, including selective activation of toll genes. These data provide an insight into potential key genes involved in the tick cellular response to viral or bacterial infection, which may promote cell survival and host resistance.

  6. Systems for the expression of orthogonal translation components in eubacterial host cells

    Science.gov (United States)

    Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2011-06-14

    The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.

  7. Systems for the expression of orthogonal translation components eubacterial host cells

    Science.gov (United States)

    Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-12

    The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.

  8. Expression of human CD81 differently affects host cell susceptibility to malaria sporozoites depending on the Plasmodium species.

    NARCIS (Netherlands)

    Silvie, O.; Greco, C.; Franetich, J.F.; Dubart-Kupperschmitt, A.; Hannoun, L.; Gemert, G.J.A. van; Sauerwein, R.W.; Levy, S.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium sporozoites can enter host cells by two distinct pathways, either through disruption of the plasma membrane followed by parasite transmigration through cells, or by formation of a parasitophorous vacuole (PV) where the parasite further differentiates into a replicative exo-erythrocytic

  9. Gut microbiota, host gene expression, and aging.

    Science.gov (United States)

    Patrignani, Paola; Tacconelli, Stefania; Bruno, Annalisa

    2014-01-01

    Novel concepts of disease susceptibility and development suggest an important role of gastrointestinal microbiota and microbial pathogens. They can contribute to physiological systems and disease processes, even outside of the gastrointestinal tract. There is increasing evidence that genetics of the host influence and interact with gut microbiota. Moreover, aging-associated oxidative stress may cause morphologic alterations of bacterial cells, thus influencing the aggressive potential and virulence markers of an anaerobic bacterium and finally the type of interaction with the host. At the same time, microbiota may influence host gene expression and it is becoming apparent that it may occur through the regulation of microRNAs. They are short single-stranded noncoding RNAs that regulate posttranscriptional gene expression by affecting mRNA stability and/or translational repression of their target mRNAs. The introduction of -omics approaches (such as metagenomics, metaproteomics, and metatranscriptomics) in microbiota research will certainly advance our knowledge of this area. This will lead to greatly deepen our understanding of the molecular targets in the homeostatic interaction between the gut microbiota and the host and, thereby, promises to reveal new ways to treat diseases and maintain health.

  10. Hepatitis C virus NS2 and NS3/4A proteins are potent inhibitors of host cell cytokine/chemokine gene expression

    Directory of Open Access Journals (Sweden)

    Hiscott John

    2006-09-01

    Full Text Available Abstract Background Hepatitis C virus (HCV encodes several proteins that interfere with the host cell antiviral response. Previously, the serine protease NS3/4A was shown to inhibit IFN-β gene expression by blocking dsRNA-activated retinoic acid-inducible gene I (RIG-I and Toll-like receptor 3 (TLR3-mediated signaling pathways. Results In the present work, we systematically studied the effect of all HCV proteins on IFN gene expression. NS2 and NS3/4A inhibited IFN gene activation. NS3/4A inhibited the Sendai virus-induced expression of multiple IFN (IFN-α, IFN-β and IFN-λ1/IL-29 and chemokine (CCL5, CXCL8 and CXCL10 gene promoters. NS2 and NS3/4A, but not its proteolytically inactive form NS3/4A-S139A, were found to inhibit promoter activity induced by RIG-I or its adaptor protein Cardif (or IPS-1/MAVS/VISA. Both endogenous and transfected Cardif were proteolytically cleaved by NS3/4A but not by NS2 indicating different mechanisms of inhibition of host cell cytokine production by these HCV encoded proteases. Cardif also strongly colocalized with NS3/4A at the mitochondrial membrane, implicating the mitochondrial membrane as the site for proteolytic cleavage. In many experimental systems, IFN priming dramatically enhances RNA virus-induced IFN gene expression; pretreatment of HEK293 cells with IFN-α strongly enhanced RIG-I expression, but failed to protect Cardif from NS3/4A-mediated cleavage and failed to restore Sendai virus-induced IFN-β gene expression. Conclusion HCV NS2 and NS3/4A proteins were identified as potent inhibitors of cytokine gene expression suggesting an important role for HCV proteases in counteracting host cell antiviral response.

  11. Detection of virus mRNA within infected host cells using an isothermal nucleic acid amplification assay: marine cyanophage gene expression within Synechococcus sp

    Directory of Open Access Journals (Sweden)

    Hall Matthew J

    2007-06-01

    Full Text Available Abstract Background Signal-Mediated Amplification of RNA Technology (SMART is an isothermal nucleic acid amplification technology, developed for the detection of specific target sequences, either RNA (for expression or DNA. Cyanophages are viruses that infect cyanobacteria. Marine cyanophages are ubiquitous in the surface layers of the ocean where they infect members of the globally important genus Synechococcus. Results Here we report that the SMART assay allowed us to differentiate between infected and non-infected host cultures. Expression of the cyanophage strain S-PM2 portal vertex gene (g20 was detected from infected host Synechococcus sp. WH7803 cells. Using the SMART assay, we demonstrated that g20 mRNA peaked 240 – 360 minutes post-infection, allowing us to characterise this as a mid to late transcript. g20 DNA was also detected, peaking 10 hours post-infection, coinciding with the onset of host lysis. Conclusion The SMART assay is based on isothermal nucleic acid amplification, allowing the detection of specific sequences of DNA or RNA. It was shown to be suitable for differentiating between virus-infected and non-infected host cultures and for the detection of virus gene expression: the first reported use of this technology for such applications.

  12. Global quantitative proteomic analysis of human glioma cells profiled host protein expression in response to enterovirus type 71 infection.

    Science.gov (United States)

    Zhang, Lei-Ke; Lin, Tao; Zhu, Sheng-Lin; Xianyu, Ling-Zhi; Lu, Song-Ya

    2015-11-01

    Enterovirus 71 (EV71) is one of the leading causes of hand, foot and mouth disease with neurological complications in some cases. To study the pathogenesis of EV71 infection, large-scale analyses of EV71 infected cells have been performed. However, most of these studies employed rhabdomyosarcoma (RD) cells or used transcriptomic strategy. Here, we performed SILAC-based quantitative proteomic analysis of EV71-infected U251 cells, a human glioma cell line. A total of 3125 host proteins were quantified, in which 451 were differentially regulated as a result of EV71 infection at 8 or 20 hpi or both. Gene Ontology analysis indicates the regulated proteins were enriched in "metabolic process", "biological regulation" and "cellular process", implying that these biological processes were affected by EV71 infection. Furthermore, functional study indicated that TRAF2 and TRAF6 among the up-regulated proteins could inhibit the replication of EV71 at the early phase post infection, and the anti-EV71 function of both proteins was independent of interferon β. Our study not only provided an overview of cellular response to EV71 infection in a human glioma cell line, but also found that TRAF2 and TRAF6 might be potential targets to inhibit the replication of EV71. All MS data have been deposited in the ProteomeXchange with identifier PXD002454 (http://proteomecentral.proteomexchange.org/dataset/PXD002454). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dynamic changes in cell-surface expression of mannose in the oral epithelium during the development of graft-versus-host disease of the oral mucosa in rats.

    Science.gov (United States)

    Hanada, Hironori; Ohno, Jun; Seno, Kei; Ota, Nobutaka; Taniguchi, Kunihisa

    2014-01-16

    The role of cell-surface glycoconjugates in oral mucosal graft-versus-host disease (GVHD) is still unclear, even though molecular changes in the oral epithelium are essential for the pathogenesis of these lesions. In this study, we investigated changes in the binding of mannose (Man)-specific Lens culinaris lectin (LCA) in the oral mucosa of rats with GVHD. Lewis rat spleen cells were injected into (Lewis x Brown Norway) F1 rats to induce systemic GVHD, including oral mucosal lesions. Tongue and spleen samples were evaluated using lectin histochemistry, immunohistochemistry, Western blotting, transwell migration assays and Stamper-Woodruff binding assays. Binding of Man-specific LCA expanded to the epithelial layers of the tongue in GVHD-rats. An expansion of LCA binding was related to the increased expression of mannosyltransferase in the oral mucosa. CD8+ cells, effector cells of oral mucosal GVHD, expressed mannose-binding protein (MBP) and migrated to the medium containing Man in the transwell migration assay. Adherence of CD8+ cells to the oral epithelium could be inhibited by pretreating CD8+ cells with MBP antibody and/or by pretreating sections with Man-specific LCA. Increased expression of Man on keratinocytes leads to the migration and/or adhesion of CD8+ cells in the surface epithelium, which is mediated in part by the MBP/Man-binding pathway during the development of oral mucosal GVHD.

  14. Effects of lysosomal biotherapeutic recombinant protein expression on cell stress and protease and general host cell protein release in Chinese hamster ovary cells

    Science.gov (United States)

    Migani, Damiano; Smales, C. Mark

    2017-01-01

    Recombinant human Acid Alpha Glucosidase (GAA) is the therapeutic enzyme used for the treatment of Pompe disease, a rare genetic disorder characterized by GAA deficiency in the cell lysosomes (Raben et al., Curr Mol Med. 2002; 2:145–166). The manufacturing process for GAA can be challenging, in part due to protease degradation. The overall goal of this study was to understand the effects of GAA overexpression on cell lysosomal phenotype and host cell protein (HCP) release, and any resultant consequences for protease levels and ease of manufacture. To do this we first generated a human recombinant GAA producing stable CHO cell line and designed the capture chromatographic step anion exchange (IEX). We then collected images of cell lysosomes via transmission electron microscopy (TEM) and compared the resulting data with that from a null CHO cell line. TEM imaging revealed 72% of all lysosomes in the GAA cell line were engorged indicating extensive cell stress; by comparison only 8% of lysosomes in the null CHO had a similar phenotype. Furthermore, comparison of the HCP profile among cell lines (GAA, mAb, and Null) capture eluates, showed that while most HCPs released were common across them, some were unique to the GAA producer, implying that cell stress caused by overexpression of GAA has a molecule specific effect on HCP release. Protease analysis via zymograms showed an overall reduction in proteolytic activity after the capture step but also revealed the presence of co‐eluting proteases at approximately 80 KDa, which MS analysis putatively identified as dipeptidyl peptidase 3 and prolyl endopeptidase. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:666–676, 2017 PMID:28249362

  15. Gene Expression Profiling of Monkeypox Virus-Infected Cells Reveals Novel Interfaces for Host-Virus Interactions

    Science.gov (United States)

    2010-07-28

    2 days before infection with MPV. Culture medium was removed and cells were inoculated with crude monkey- pox virus-Katako Kombe strain (MPV-KK) at...morphology, cellular develop- ment, small molecule biochemistry, and posttransla- tional modification (Fig. 4B). The expression of histones exhibited...modulation have been described pre- viously, as in the indirect consequences of Ras, Rho, and Rab small GTPases regulation [87], its effect on viral

  16. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hongxing, E-mail: Hongxing.Zhao@igp.uu.se [The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala (Sweden); Chen, Maoshan [Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 (Australia); Lind, Sara Bergström [Department of Chemistry-BMC, Analytical Chemistry, Science for Life Laboratory, Uppsala University, Box 599, SE-751 24 Uppsala (Sweden); Pettersson, Ulf [The Beijer Laboratory, Dept. of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala (Sweden)

    2016-05-15

    The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phase and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. - Highlights: • The expression of 398 lncRNAs showed a distinct temporal pattern during Ad2 infection. • 80% of the deregulated lncRNAs were up-regulated during the late phase of infection. • The deregulated lncRNAs potentiallyinteract with 33 cellular RNA binding proteins. • These RBPs are involved in RNA splicing, nuclear export and translation. • Adenovirus exploits the cellular lncRNA network to optimize its replication.

  17. Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease

    Science.gov (United States)

    Brudno, Jennifer N.; Somerville, Robert P.T.; Shi, Victoria; Rose, Jeremy J.; Halverson, David C.; Fowler, Daniel H.; Gea-Banacloche, Juan C.; Pavletic, Steven Z.; Hickstein, Dennis D.; Lu, Tangying L.; Feldman, Steven A.; Iwamoto, Alexander T.; Kurlander, Roger; Maric, Irina; Goy, Andre; Hansen, Brenna G.; Wilder, Jennifer S.; Blacklock-Schuver, Bazetta; Hakim, Frances T.; Rosenberg, Steven A.; Gress, Ronald E.

    2016-01-01

    Purpose Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem-cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies often are treated with unmanipulated donor lymphocyte infusions (DLIs) from the transplant donor. DLIs frequently are not effective at eradicating malignancy and often cause graft-versus-host disease, a potentially lethal immune response against normal recipient tissues. Methods We conducted a clinical trial of allogeneic T cells genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. Patients with B-cell malignancies that had progressed after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipient’s alloHSCT donor. Results Eight of 20 treated patients obtained remission, which included six complete remissions (CRs) and two partial remissions. The response rate was highest for acute lymphoblastic leukemia, with four of five patients obtaining minimal residual disease–negative CR. Responses also occurred in chronic lymphocytic leukemia and lymphoma. The longest ongoing CR was more than 30 months in a patient with chronic lymphocytic leukemia. New-onset acute graft-versus-host disease after CAR T-cell infusion developed in none of the patients. Toxicities included fever, tachycardia, and hypotension. Peak blood CAR T-cell levels were higher in patients who obtained remissions than in those who did not. Programmed cell death protein-1 expression was significantly elevated on CAR T cells after infusion. Presence of blood B cells before CAR T-cell infusion was associated with higher postinfusion CAR T-cell levels. Conclusion Allogeneic anti-CD19 CAR T cells can effectively treat B-cell malignancies that progress after alloHSCT. The findings point toward a future when antigen-specific T-cell therapies will play a central role in alloHSCT. PMID:26811520

  18. Adaptive expression of host cell wall degrading enzymes in fungal disease: an example from Fusarium root rot of medicinal Coleus.

    Science.gov (United States)

    Bhattacharya, A

    2013-12-15

    Quantity of extracellular proteins and activities two cell wall degrading enzymes pectinase and cellulase were determined in the culture filtrate of Fusarium solani, the causal organism of root rot of Coleus forskohlii. Substitution of carbon source in the medium with either pectin or carboxymethyl cellulose led to the increased production of extracellular proteins by the fungus. Pectinase and cellulase activity in the culture filtrate was detected only when the growth medium contained substituted carbon source in the form of pectin and CMC, respectively. Pectinase activity was highest after 5 days incubation and then decreased gradually with time but cellulase activity showed a steady time dependent increase. In vitro virulence study showed the requirement of both the enzymes for complete expression of rot symptoms on Coleus plants. Thus the present study established the adaptive, substrate dependent expression of the two enzymes by the fungus and also their involvement in the root rot disease of Coleus forskohlii.

  19. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection.

    Directory of Open Access Journals (Sweden)

    Laura E Crotty Alexander

    Full Text Available The role of sirtuin-1 (SIRT1 in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections.

  20. Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation.

    Science.gov (United States)

    Rossetto, Cyprian C; Pari, Gregory S

    2011-12-01

    During lytic infection, Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a polyadenylated nuclear RNA (PAN RNA). This noncoding RNA (ncRNA) is localized to the nucleus and is the most abundant viral RNA during lytic infection; however, to date, the role of PAN RNA in the virus life cycle is unknown. Many examples exist where ncRNAs have a defined key regulatory function controlling gene expression by various mechanisms. Our goal for this study was to identify putative binding partners for PAN RNA in an effort to elucidate a possible function for the transcript in KSHV infection. We employed an in vitro affinity protocol where PAN RNA was used as bait for factors present in BCBL-1 cell nuclear extract to show that PAN RNA interacts with several virus- and host cell-encoded factors, including histones H1 and H2A, mitochondrial and cellular single-stranded binding proteins (SSBPs), and interferon regulatory factor 4 (IRF4). RNA chromatin immunoprecipitation (ChIP) assays confirmed that PAN RNA interacted with these factors in the infected cell environment. A luciferase reporter assay showed that PAN RNA expression interfered with the ability of IRF4/PU.1 to activate the interleukin-4 (IL-4) promoter, strongly suggesting a role for PAN RNA in immune modulation. Since the proteomic screen and functional data suggested a role in immune responses, we investigated if constitutive PAN RNA expression could affect other genes involved in immune responses. PAN RNA expression decreased expression of gamma interferon, interleukin-18, alpha interferon 16, and RNase L. These data strongly suggest that PAN RNA interacts with viral and cellular proteins and can function as an immune modulator.

  1. Ciprofloxacin Affects Host Cells by Suppressing Expression of the Endogenous Antimicrobial Peptides Cathelicidins and Beta-Defensin-3 in Colon Epithelia

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    2014-07-01

    Full Text Available Antibiotics exert several effects on host cells including regulation of immune components. Antimicrobial peptides (AMPs, e.g., cathelicidins and defensins display multiple functions in innate immunity. In colonic mucosa, cathelicidins are induced by butyrate, a bacterial fermentation product. Here, we investigated the effect of antibiotics on butyrate-induced expression of cathelicidins and beta-defensins in colon epithelial cells. Real-time PCR analysis revealed that ciprofloxacin and clindamycin reduce butyrate-induced transcription of the human cathelicidin LL-37 in the colonic epithelial cell line HT-29. Suppression of LL-37 peptide/protein by ciprofloxacin was confirmed by Western blot analysis. Immunohistochemical analysis demonstrated that ciprofloxacin suppresses the rabbit cathelicidin CAP-18 in rectal epithelia of healthy and butyrate-treated Shigella-infected rabbits. Ciprofloxacin also down-regulated butyrate-induced transcription of the human beta-defensin-3 in HT-29 cells. Microarray analysis of HT-29 cells revealed upregulation by butyrate with subsequent down-regulation by ciprofloxacin of additional genes encoding immune factors. Dephosphorylation of histone H3, an epigenetic event provided a possible mechanism of the suppressive effect of ciprofloxacin. Furthermore, LL-37 peptide inhibited Clostridium difficile growth in vitro. In conclusion, ciprofloxacin and clindamycin exert immunomodulatory function by down-regulating AMPs and other immune components in colonic epithelial cells. Suppression of AMPs may contribute to the overgrowth of C. difficile, causing antibiotic-associated diarrhea.

  2. QPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host.

    Science.gov (United States)

    Bakhetia, M; Urwin, P E; Atkinson, H J

    2007-03-01

    Changes in transcript abundance of genes expressed in the three pharyngeal gland cells of Heterodera glycines after host invasion were monitored by quantitative polymerase chain reaction (qPCR) and the consequences of disrupting their expression studied by RNAi treatment prior to invasion. Two transcripts were known to be expressed in the two subventral gland cells (hg-pel and hg-eng-1), a further two in the single dorsal gland cell only (hg-gp and hg-syv46), and a fifth transcript (hg-cm) was expressed by both gland cell types. The qPCR study established that transcripts of hg-syv46 and hg-gp increased in abundance by 2 days postinfection (dpi), with the former remaining the most abundant. The hg-cm transcript level showed minor changes from 0 to 14 dpi but did fall by 21 dpi. In contrast, hg-eng-1 and hg-eng-2 messenger (m)RNA declined by 7 dpi and hg-pel by 14 dpi before it increased at 21 dpi. RNAi-targeting of hg-eng-1 reduced the number of females present on the plants at 10 days. Targeting of hg-gp, hg-cm, and hg-pel caused a change in sexual fate favoring male development on roots. Both effects were evident after targeting hg-syv46. Suppression of hg-eng-1 mRNA levels in second-stage juveniles (J2i) by RNAi was transient, with a recovery by 15 days of incubation in water after treatment. Presoaking H. glycines J2 with double-stranded RNA has value for studying gene function during the nematode's early interaction with a plant.

  3. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  4. Lactobacillus reuteri I5007 Modulates Intestinal Host Defense Peptide Expression in the Model of IPEC-J2 Cells and Neonatal Piglets

    Directory of Open Access Journals (Sweden)

    Hongbin Liu

    2017-05-01

    Full Text Available Modulation of the synthesis of endogenous host defense peptides (HDPs by probiotics represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections in human and animals. However, the extent of HDP modulation by probiotics is species dependent and strain specific. In the present study, The porcine small intestinal epithelial cell line (IPEC-J2 cells and neonatal piglets were used as in-vitro and in-vivo models to test whether Lactobacillus reuteri I5007 could modulate intestinal HDP expression. Gene expressions of HDPs, toll-like receptors, and fatty acid receptors were determined, as well as colonic short chain fatty acid concentrations and microbiota. Exposure to 108 colony forming units (CFU/mL of L. reuteri I5007 for 6 h significantly increased the expression of porcine β-Defensin2 (PBD2, pBD3, pBD114, pBD129, and protegrins (PG 1-5 in IPEC-J2 cells. Similarly, L. reuteri I5007 administration significantly increased the expression of jejunal pBD2 as well as colonic pBD2, pBD3, pBD114, and pBD129 in neonatal piglets (p < 0.05. This was probably associated with the increase in colonic butyric acid concentration and up-regulating expression of Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ and G Protein-Coupled Receptor 41 (GPR41 (p < 0.05, but not with stimulation of Pattern-Recognition Receptors. Additionally, supplementation with L. reuteri I5007 in the piglets did not affect the colonic microbiota structure. Our findings suggested that L. reuteri I5007 could modulate intestinal HDP expression and improve the gut health of neonatal piglets, probably through the increase in colonic butyric acid concentration and the up-regulation of the downstream molecules of butyric acid, PPAR-γ and GPR41, but not through modifying gut microbiota structure.

  5. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: Enhancement of formate dehydrogenase activity for regeneration of NADH

    Directory of Open Access Journals (Sweden)

    Mädje Katharina

    2012-01-01

    Full Text Available Abstract Background Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(PH. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH, presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S-1-(2-chlorophenylethanol from o-chloroacetophenone. Results As compared to individual expression of C. boidinii FDH in E. coli BL21 (DE3 that gave an intracellular enzyme activity of 400 units/gCDW, co-expression of the FDH with the ketoreductase (Candida tenuis xylose reductase; XR resulted in a substantial decline in FDH activity. The remaining FDH activity of only 85 U/gCDW was strongly limiting the overall catalytic activity of the whole cell system. Combined effects from increase in FDH gene copy number, supply of rare tRNAs in a Rosetta strain of E. coli, dampened expression of the ketoreductase, and induction at low temperature (18°C brought up the FDH activity threefold to a level of 250 U/gCDW while reducing the XR activity by

  6. Salmonella - at home in the host cell.

    Directory of Open Access Journals (Sweden)

    Preeti eMalik Kale

    2011-06-01

    Full Text Available The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic trigger-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS, although T3SS-independent mechanisms of entry may be important for invasion of certain host cell-types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.

  7. Host cells and methods for producing isoprenyl alkanoates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  8. Heterologous expression of membrane proteins: choosing the appropriate host.

    Directory of Open Access Journals (Sweden)

    Florent Bernaudat

    Full Text Available BACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals, functions (transporters, receptors, enzymes and topologies (between 0 and 13 transmembrane segments. The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein.

  9. Animal Cell Expression Systems.

    Science.gov (United States)

    Butler, M; Reichl, Ing U

    2017-10-03

    The glycan profile of therapeutic recombinant proteins such as monoclonal antibodies is a critical quality attribute, which affects the efficacy of the final product. The cellular glycosylation process during protein expression is dependent upon a number of factors such as the availability of substrates in the media, the intracellular content of nucleotide sugars, and the enzyme repertoire of the host cells. In order to control the variability of glycosylation it is important to understand the critical process parameters and their acceptable range of values to enable reproducible production of proteins with a predetermined glycan profile providing the desired biological function or therapeutic effect. The depletion of critical nutrients such as glucose or galactose, which may occur toward the end of a culture process, can lead to truncated glycans. Terminal galactosylation and sialyation are particularly variable but may be controlled by the presence of some key media components. Ammonia accumulation, pH, and dissolved oxygen levels are also known to be key bioprocess parameters that affect the glycosylation of recombinant proteins. Specific enzyme inhibitors can be added to the media to drive the formation of selected and predetermined glycan profiles. Various attempts have been made to predict the glycan profiles of cellular expressed proteins and have led to metabolic models based upon knowledge of metabolic flux and the kinetics of individual glycosylation reactions.In contrast to single recombinant proteins, the glycan profiles of viral vaccines are far more complex and difficult to predict. The example of influenza A virus shows that hemagglutinin, the major antigenic determinant, has three to nine N-glycans, which may influence the antigenicity and efficacy of the vaccine. Glycosylation of the influenza A virus has been largely unmonitored in the past as production has been from eggs, where glycan profiles of antigens are difficult if not impossible to

  10. Venom of parasitoid, Pteromalus puparum, suppresses host, Pieris rapae, immune promotion by decreasing host C-type lectin gene expression.

    Directory of Open Access Journals (Sweden)

    Qi Fang

    Full Text Available Insect hosts have evolved immunity against invasion by parasitoids, and in co-evolutionary response parasitoids have also developed strategies to overcome host immune systems. The mechanisms through which parasitoid venoms disrupt the promotion of host immunity are still unclear. We report here a new mechanism evolved by parasitoid Pteromalus puparum, whose venom inhibited the promotion of immunity in its host Pieris rapae (cabbage white butterfly.A full-length cDNA encoding a C-type lectin (Pr-CTL was isolated from P. rapae. Quantitative PCR and immunoblotting showed that injection of bacterial and inert beads induced expression of Pr-CTL, with peaks of mRNA and Pr-CTL protein levels at 4 and 8 h post beads challenge, respectively. In contrast, parasitoid venom suppressed Pr-CTL expression when co-injected with beads, in a time and dose-dependent manner. Immunolocalization and immunoblotting results showed that Pr-CTL was first detectable in vesicles present in cytoplasm of granulocytes in host hemolymph, and was then secreted from cells into circulatory fluid. Finally, the secreted Pr-CTL bound to cellular membranes of both granulocytes and plasmatocytes. Injection of double-stranded RNA specific for target gene decreased expression of Pr-CTL, and a few other host immune-related genes. Suppression of Pr-CTL expression also down-regulated antimicrobial and phenoloxidase activities, and reducing phagocytotic and encapsulation rates in host. The inhibitory effect of parasitoid venom on host encapsulation is consistent with its effect in suppressing Pr-CTL expression. Binding assay results showed that recombinant Pr-CTL directly attached to the surface of P. puparum egges. We infer that Pr-CTL may serve as an immune signalling co-effector, first binding to parasitoid eggs, regulating expression of a set of immune-related genes and promoting host immunity.P. puparum venom inhibits promotion of host immune responses by silencing expression of host C

  11. Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations.

    Science.gov (United States)

    Pierce, Jessica V; Kumamoto, Carol A

    2012-01-01

    To understand differences in host-Candida albicans interactions that occur during colonization of healthy or compromised hosts, production of phenotypic variants and colonization of healthy or immunodeficient mice by C. albicans were studied. We showed that activity of the transcription factor Efg1p exhibited cell-to-cell variability and identified Efg1p as a major regulator of colonization. In C. albicans populations colonizing the murine gastrointestinal tract, average expression of EFG1 differed depending on the immune status of the host. We propose that cellular heterogeneity in Efg1p activity allows the C. albicans colonizing population to differ depending on the immune status of the host, because selective pressure from a healthy host alters the composition of the population. These data are the first demonstration that differences in host immune status are associated with differences in gene expression in colonizing C. albicans cells. Altered gene expression in organisms colonizing immunocompromised hosts may begin the transition of C. albicans from a commensal to a pathogen. In healthy people, the fungus Candida albicans colonizes the gastrointestinal tract and other sites without producing obvious pathology. In an immunocompromised patient, the organism can cause serious disease. The demonstration that the expression and activity of the C. albicans transcription factor Efg1p differs during colonization of healthy or immunocompromised mice shows that the organism adjusts its physiology when colonizing different hosts. Further, the effects of a healthy host on a heterogeneous C. albicans population containing cells with different levels of Efg1p activity show that selective pressure in the host can change the makeup of the population, allowing the population to respond to host immune status. The ability to sense host status may be key to the ability of C. albicans to colonize as a harmless commensal in some hosts but become a deadly pathogen in others.

  12. Construction of high level prokaryotic expression and purification system of PD-L1 extracellular domain by using Escherichia coli host cell machinery.

    Science.gov (United States)

    Kalim, Muhammad; Chen, Jie; Wang, Shenghao; Lin, Caiyao; Ullah, Saif; Liang, Keying; Ding, Qian; Chen, Shuqing; Zhan, Jinbiao

    2017-10-01

    Programmed cell death 1 ligand 1 (PD-L1) is a trans-membrane protein highly expressed on the membrane of cancer cell, which binds inhibitory receptor of PD-1 on the T cells and attenuates anti-tumor immune response.The strategy of blocking PD1 and PD-L1 interaction has been widely used for anti-cancer drug development. The DNA encoding extracellular domain of PD-L1 was cloned and expressed with the pET30(+) and Escherichia coli BL21(DE3) system. Cloning of PD-L1 extracellular domain was confirmed by PCR and enzymatic digestion. Sequence analysis of cloned targeted genes showed 100% homology of original sequence. The recombinant protein was expressed using 1mM/mL IPTG and purified by affinity chromatography on a column of Ni-NTA and confirmed by SDS-PAGE and western blot analysis. Results showed that our constructed pET30(+)/PDL1-ECD system efficiently produces desired recombinant protein with molecular weight of 38.1kDa. The prokaryotic expression system provides an easy method to express PD-L1 extracellular domain that further facilitate the role of PD-1/PD-L1 binding inhibition and helps in valuable drug and antibodies production. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Bartonella entry mechanisms into mammalian host cells.

    Science.gov (United States)

    Eicher, Simone C; Dehio, Christoph

    2012-08-01

    The Gram-negative genus Bartonella comprises arthropod-borne pathogens that typically infect mammals in a host-specific manner. Bartonella bacilliformis and Bartonella quintana are human-specific pathogens, while several zoonotic bartonellae specific for diverse animal hosts infect humans as an incidental host. Clinical manifestations of Bartonella infections range from mild symptoms to life-threatening disease. Following transmission by blood-sucking arthropods or traumatic contact with infected animals, bartonellae display sequential tropisms towards endothelial and possibly other nucleated cells and erythrocytes, the latter in a host-specific manner. Attachment to the extracellular matrix (ECM) and to nucleated cells is mediated by surface-exposed bacterial adhesins, in particular trimeric autotransporter adhesins (TAAs). The subsequent engulfment of the pathogen into a vacuolar structure follows a unique series of events whereby the pathogen avoids the endolysosomal compartments. For Bartonella henselae and assumingly most other species, the infection process is aided at different steps by Bartonella effector proteins (Beps). They are injected into host cells through the type IV secretion system (T4SS) VirB/D4 and subvert host cellular functions to favour pathogen uptake. Bacterial binding to erythrocytes is mediated by Trw, another T4SS, in a strictly host-specific manner, followed by pathogen-forced uptake involving the IalB invasin and subsequent replication and persistence within a membrane-bound intra-erythrocytic compartment. © 2012 Blackwell Publishing Ltd.

  14. The game theory of Candida albicans colonization dynamics reveals host status-responsive gene expression.

    Science.gov (United States)

    Tyc, Katarzyna M; Herwald, Sanna E; Hogan, Jennifer A; Pierce, Jessica V; Klipp, Edda; Kumamoto, Carol A

    2016-03-01

    The fungal pathogen Candida albicans colonizes the gastrointestinal (GI) tract of mammalian hosts as a benign commensal. However, in an immunocompromised host, the fungus is capable of causing life-threatening infection. We previously showed that the major transcription factor Efg1p is differentially expressed in GI-colonizing C. albicans cells dependent on the host immune status. To understand the mechanisms that underlie this host-dependent differential gene expression, we utilized mathematical modeling to dissect host-pathogen interactions. Specifically, we used principles of evolutionary game theory to study the mechanism that governs dynamics of EFG1 expression during C. albicans colonization. Mathematical modeling predicted that down-regulation of EFG1 expression within individual fungal cells occurred at different average rates in different hosts. Rather than using relatively transient signaling pathways to adapt to a new environment, we demonstrate that C. albicans overcomes the host defense strategy by modulating the activity of diverse fungal histone modifying enzymes that control EFG1 expression. Based on our modeling and experimental results we conclude that C. albicans cells sense the local environment of the GI tract and respond to differences by altering EFG1 expression to establish optimal survival strategies. We show that the overall process is governed via modulation of epigenetic regulators of chromatin structure.

  15. Host gene expression analysis in Sri Lankan melioidosis patients.

    Directory of Open Access Journals (Sweden)

    Shivankari Krishnananthasivam

    2017-06-01

    Full Text Available Melioidosis is a life threatening infectious disease caused by the gram-negative bacillus Burkholderia pseudomallei predominantly found in southeast Asia and northern Australia. Studying the host transcription profiles in response to infection is crucial for understanding disease pathogenesis and correlates of disease severity, which may help improve therapeutic intervention and survival. The aim of this study was to analyze gene expression levels of human host factors in melioidosis patients and establish useful correlation with disease biomarkers, compared to healthy individuals and patients with sepsis caused by other pathogens.The study population consisted of 30 melioidosis cases, 10 healthy controls and 10 sepsis cases caused by other pathogens. Total RNA was extracted from peripheral blood mononuclear cells (PBMC's of study subjects. Gene expression profiles of 25 gene targets including 19 immune response genes and 6 epigenetic factors were analyzed by real time quantitative polymerase chain reaction (RT-qPCR.Inflammatory response genes; TLR4, late onset inflammatory mediator HMGB1, genes associated with antigen presentation; MICB, PSMB2, PSMB8, PSME2, epigenetic regulators; DNMT3B, HDAC1, HDAC2 were significantly down regulated, whereas the anti-inflammatory gene; IL4 was up regulated in melioidosis patients compared to sepsis cases caused by other pathogens. Septicaemic melioidosis cases showed significant down regulation of IL8 compared to sepsis cases caused by other pathogens. HMGB1, MICB, PSMB8, PSMB2, PSME2, HDAC1, HDAC2 and DNMT3B showed consistent down regulation of gene expression in melioidosis patients compared to other sepsis infection, irrespective of comorbidities such as diabetes, duration of clinical symptoms and antibiotic treatment.Specific immune response genes and epigenetic regulators are differentially expressed among melioidosis patients and patients with sepsis caused by other pathogens. Therefore, these genes may

  16. Transcriptome and microRNome of Theileria annulata Host Cells

    KAUST Repository

    Rchiad, Zineb

    2016-06-01

    Tropical Theileriosis is a parasitic disease of calves with a profound economic impact caused by Theileria annulata, an apicomplexan parasite of the genus Theileria. Transmitted by Hyalomma ticks, T. annulata infects and transforms bovine lymphocytes and macrophages into a cancer-like phenotype characterized by all six hallmarks of cancer. In the current study we investigate the transcriptional landscape of T. annulata-infected lymphocytes to define genes and miRNAs regulated by host cell transformation using next generation sequencing. We also define genes and miRNAs differentially expressed as a result of the attenuation of a T.annulata-infected macrophage cell line used as a vaccine. By comparing the transcriptional landscape of one attenuated and two transformed cell lines we identify four genes that we propose as key factors in transformation and virulence of the T. annulata host cells. We also identify miR- 126-5p as a key regulator of infected cells proliferation, adhesion, survival and invasiveness. In addition to the host cell trascriptome we studied T. annulata transcriptome and identified the role of ROS and TGF-β2 in controlling parasite gene expression. Moreover, we have used the deep parasite ssRNA-seq data to refine the available T. annulata annotation. Taken together, this study provides the full list of host cell’s genes and miRNAs transcriptionally perturbed after infection with T. annulata and after attenuation and describes genes and miRNAs never identified before as players in this type of host cell transformation. Moreover, this study provides the first database for the transcriptome of T. annulata and its host cells using next generation sequencing.

  17. Parvoviral host range and cell entry mechanisms.

    Science.gov (United States)

    Cotmore, Susan F; Tattersall, Peter

    2007-01-01

    Parvoviruses elaborate rugged nonenveloped icosahedral capsids of approximately 260 A in diameter that comprise just 60 copies of a common core structural polypeptide. While serving as exceptionally durable shells, capable of protecting the single-stranded DNA genome from environmental extremes, the capsid also undergoes sequential conformational changes that allow it to translocate the genome from its initial host cell nucleus all the way into the nucleus of its subsequent host. Lacking a duplex transcription template, the virus must then wait for its host to enter S-phase before it can initiate transcription and usurp the cell's synthetic pathways. Here we review cell entry mechanisms used by parvoviruses. We explore two apparently distinct modes of host cell specificity, first that used by Minute virus of mice, where subtle glycan-specific interactions between host receptors and residues surrounding twofold symmetry axes on the virion surface mediate differentiated cell type target specificity, while the second involves novel protein interactions with the canine transferrin receptor that allow a mutant of the feline leukopenia serotype, Canine parvovirus, to bind to and infect dog cells. We then discuss conformational shifts in the virion that accompany cell entry, causing exposure of a capsid-tethered phospholipase A2 enzymatic core that acts as an endosomolytic agent to mediate virion translocation across the lipid bilayer into the cell cytoplasm. Finally, we discuss virion delivery into the nucleus, and consider the nature of transcriptionally silent DNA species that, escaping detection by the cell, might allow unhampered progress into S-phase and hence unleash the parvoviral Trojan horse.

  18. First in Vivo Batrachochytrium dendrobatidis Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts.

    Science.gov (United States)

    Ellison, Amy R; DiRenzo, Graziella V; McDonald, Caitlin A; Lips, Karen R; Zamudio, Kelly R

    2017-01-05

    For generalist pathogens, host species represent distinct selective environments, providing unique challenges for resource acquisition and defense from host immunity, potentially resulting in host-dependent differences in pathogen fitness. Gene expression modulation should be advantageous, responding optimally to a given host and mitigating the costs of generalism. Batrachochytrium dendrobatidis (Bd), a fungal pathogen of amphibians, shows variability in pathogenicity among isolates, and within-strain virulence changes rapidly during serial passages through artificial culture. For the first time, we characterize the transcriptomic profile of Bd in vivo, using laser-capture microdissection. Comparison of Bd transcriptomes (strain JEL423) in culture and in two hosts (Atelopus zeteki and Hylomantis lemur), reveals >2000 differentially expressed genes that likely include key Bd defense and host exploitation mechanisms. Variation in Bd transcriptomes from different amphibian hosts demonstrates shifts in pathogen resource allocation. Furthermore, expressed genotype variant frequencies of Bd populations differ between culture and amphibian skin, and among host species, revealing potential mechanisms underlying rapid changes in virulence and the possibility that amphibian community composition shapes Bd evolutionary trajectories. Our results provide new insights into how changes in gene expression and infecting population genotypes can be key to the success of a generalist fungal pathogen. Copyright © 2017 Ellison et al.

  19. First in Vivo Batrachochytrium dendrobatidis Transcriptomes Reveal Mechanisms of Host Exploitation, Host-Specific Gene Expression, and Expressed Genotype Shifts

    Directory of Open Access Journals (Sweden)

    Amy R. Ellison

    2017-01-01

    Full Text Available For generalist pathogens, host species represent distinct selective environments, providing unique challenges for resource acquisition and defense from host immunity, potentially resulting in host-dependent differences in pathogen fitness. Gene expression modulation should be advantageous, responding optimally to a given host and mitigating the costs of generalism. Batrachochytrium dendrobatidis (Bd, a fungal pathogen of amphibians, shows variability in pathogenicity among isolates, and within-strain virulence changes rapidly during serial passages through artificial culture. For the first time, we characterize the transcriptomic profile of Bd in vivo, using laser-capture microdissection. Comparison of Bd transcriptomes (strain JEL423 in culture and in two hosts (Atelopus zeteki and Hylomantis lemur, reveals >2000 differentially expressed genes that likely include key Bd defense and host exploitation mechanisms. Variation in Bd transcriptomes from different amphibian hosts demonstrates shifts in pathogen resource allocation. Furthermore, expressed genotype variant frequencies of Bd populations differ between culture and amphibian skin, and among host species, revealing potential mechanisms underlying rapid changes in virulence and the possibility that amphibian community composition shapes Bd evolutionary trajectories. Our results provide new insights into how changes in gene expression and infecting population genotypes can be key to the success of a generalist fungal pathogen.

  20. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Archana Shrestha

    2016-12-01

    Full Text Available Clostridium perfringens enterotoxin (CPE binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease.

  1. Divergent co-transcriptomes of different host cells infected with Toxoplasma gondii reveal cell type-specific host-parasite interactions.

    Science.gov (United States)

    Swierzy, Izabela J; Händel, Ulrike; Kaever, Alexander; Jarek, Michael; Scharfe, Maren; Schlüter, Dirk; Lüder, Carsten G K

    2017-08-03

    The apicomplexan parasite Toxoplasma gondii infects various cell types in avian and mammalian hosts including humans. Infection of immunocompetent hosts is mostly asymptomatic or benign, but leads to development of largely dormant bradyzoites that persist predominantly within neurons and muscle cells. Here we have analyzed the impact of the host cell type on the co-transcriptomes of host and parasite using high-throughput RNA sequencing. Murine cortical neurons and astrocytes, skeletal muscle cells (SkMCs) and fibroblasts differed by more than 16,200 differentially expressed genes (DEGs) before and after infection with T. gondii. However, only a few hundred of them were regulated by infection and these largely diverged in neurons, SkMCs, astrocytes and fibroblasts indicating host cell type-specific transcriptional responses after infection. The heterogeneous transcriptomes of host cells before and during infection coincided with ~5,400 DEGs in T. gondii residing in different cell types. Finally, we identified gene clusters in both T. gondii and its host, which correlated with the predominant parasite persistence in neurons or SkMCs as compared to astrocytes or fibroblasts. Thus, heterogeneous expression profiles of different host cell types and the parasites' ability to adapting to them may govern the parasite-host cell interaction during toxoplasmosis.

  2. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  3. The transcriptome of the avian malaria parasite Plasmodium ashfordi displays host-specific gene expression.

    Science.gov (United States)

    Videvall, Elin; Cornwallis, Charlie K; Ahrén, Dag; Palinauskas, Vaidas; Valkiūnas, Gediminas; Hellgren, Olof

    2017-06-01

    Malaria parasites (Plasmodium spp.) include some of the world's most widespread and virulent pathogens. Our knowledge of the molecular mechanisms these parasites use to invade and exploit their hosts other than in mice and primates is, however, extremely limited. It is therefore imperative to characterize transcriptome-wide gene expression from nonmodel malaria parasites and how this varies across individual hosts. Here, we used high-throughput Illumina RNA sequencing on blood from wild-caught Eurasian siskins experimentally infected with a clonal strain of the avian malaria parasite Plasmodium ashfordi (lineage GRW2). Using a bioinformatic multistep approach to filter out host transcripts, we successfully assembled the blood-stage transcriptome of P. ashfordi. A total of 11 954 expressed transcripts were identified, and 7860 were annotated with protein information. We quantified gene expression levels of all parasite transcripts across three hosts during two infection stages - peak and decreasing parasitemia. Interestingly, parasites from the same host displayed remarkably similar expression profiles during different infection stages, but showed large differences across hosts, indicating that P. ashfordi may adjust its gene expression to specific host individuals. We further show that the majority of transcripts are most similar to the human parasite Plasmodium falciparum, and a large number of red blood cell invasion genes were discovered, suggesting evolutionary conserved invasion strategies between mammalian and avian Plasmodium. The transcriptome of P. ashfordi and its host-specific gene expression advances our understanding of Plasmodium plasticity and is a valuable resource as it allows for further studies analysing gene evolution and comparisons of parasite gene expression. © 2017 John Wiley & Sons Ltd.

  4. Exploring two plant hosts for expression of diterpenoid pathway genes

    DEFF Research Database (Denmark)

    Bach, Søren Spanner

    ), but have been shared with a number of labs around the globe already. The content of this thesis will enable esearchers to explore the benefits of these plant expression hosts for characterization of terpenoid genes and contribute to a better understanding of terpenoid biosynthesis in planta....

  5. Leishmania major attenuates host immunity by stimulating local indoleamine 2,3-dioxygenase expression.

    Science.gov (United States)

    Makala, Levi H C; Baban, Babak; Lemos, Henrique; El-Awady, Ahmed R; Chandler, Phillip R; Hou, De-Yan; Munn, David H; Mellor, Andrew L

    2011-03-01

    Inflammation stimulates immunity but can create immune privilege in some settings. Here, we show that cutaneous Leishmania major infection stimulated expression of the immune regulatory enzyme indoleamine 2,3 dioxygenase (IDO) in local lymph nodes. Induced IDO attenuated the T cell stimulatory functions of dendritic cells and suppressed local T cell responses to exogenous and nominal parasite antigens. IDO ablation reduced local inflammation and parasite burdens, as did pharmacologic inhibition of IDO in mice with established infections. IDO ablation also enhanced local expression of proinflammatory cytokines and induced some CD4(+) T cells to express interleukin (IL) 17. These findings showed that IDO induced by L. major infection attenuated innate and adaptive immune responses. Thus, IDO acts as a molecular switch regulating host responses, and IDO inhibitor drugs are a potential new approach to enhance host immunity to established leishmania infections.

  6. Concepts of papillomavirus entry into host cells.

    Science.gov (United States)

    Day, Patricia M; Schelhaas, Mario

    2014-02-01

    Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Cryptosporidium parvum Infection Requires Host Cell Actin Polymerization

    OpenAIRE

    Elliott, David A.; Coleman, Daniel J.; Lane, Michael A.; May, Robin C.; Machesky, Laura M.; Clark, Douglas P.

    2001-01-01

    The intracellular protozoan parasite Cryptosporidium parvum accumulates host cell actin at the interface between the parasite and the host cell cytoplasm. Here we show that the actin polymerizing proteins Arp2/3, vasodilator-stimulated phosphoprotein (VASP), and neural Wiskott Aldrich syndrome protein (N-WASP) are present at this interface and that host cell actin polymerization is necessary for parasite infection.

  8. Cryptosporidium parvum infection requires host cell actin polymerization.

    Science.gov (United States)

    Elliott, D A; Coleman, D J; Lane, M A; May, R C; Machesky, L M; Clark, D P

    2001-09-01

    The intracellular protozoan parasite Cryptosporidium parvum accumulates host cell actin at the interface between the parasite and the host cell cytoplasm. Here we show that the actin polymerizing proteins Arp2/3, vasodilator-stimulated phosphoprotein (VASP), and neural Wiskott Aldrich syndrome protein (N-WASP) are present at this interface and that host cell actin polymerization is necessary for parasite infection.

  9. Differential proteome analysis of chikungunya virus infection on host cells.

    Directory of Open Access Journals (Sweden)

    Christina Li-Ping Thio

    Full Text Available BACKGROUND: Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach. METHODOLOGY AND PRINCIPAL FINDINGS: The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE. Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP and cell cycle regulation. CONCLUSION/SIGNIFICANCE: This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1 regulation (in favour of virus survival, replication and transmission. While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.

  10. Counting Legionella cells within single amoeba host cells

    Science.gov (United States)

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  11. Transcriptome analysis of a cnidarian – dinoflagellate mutualism reveals complex modulation of host gene expression

    Directory of Open Access Journals (Sweden)

    Phillips Wendy S

    2006-02-01

    Full Text Available Abstract Background Cnidarian – dinoflagellate intracellular symbioses are one of the most important mutualisms in the marine environment. They form the trophic and structural foundation of coral reef ecosystems, and have played a key role in the evolutionary radiation and biodiversity of cnidarian species. Despite the prevalence of these symbioses, we still know very little about the molecular modulators that initiate, regulate, and maintain the interaction between these two different biological entities. In this study, we conducted a comparative host anemone transcriptome analysis using a cDNA microarray platform to identify genes involved in cnidarian – algal symbiosis. Results We detected statistically significant differences in host gene expression profiles between sea anemones (Anthopleura elegantissima in a symbiotic and non-symbiotic state. The group of genes, whose expression is altered, is diverse, suggesting that the molecular regulation of the symbiosis is governed by changes in multiple cellular processes. In the context of cnidarian – dinoflagellate symbioses, we discuss pivotal host gene expression changes involved in lipid metabolism, cell adhesion, cell proliferation, apoptosis, and oxidative stress. Conclusion Our data do not support the existence of symbiosis-specific genes involved in controlling and regulating the symbiosis. Instead, it appears that the symbiosis is maintained by altering expression of existing genes involved in vital cellular processes. Specifically, the finding of key genes involved in cell cycle progression and apoptosis have led us to hypothesize that a suppression of apoptosis, together with a deregulation of the host cell cycle, create a platform that might be necessary for symbiont and/or symbiont-containing host cell survival. This first comprehensive molecular examination of the cnidarian – dinoflagellate associations provides critical insights into the maintenance and regulation of the

  12. Centrality of host cell death in plant-microbe interactions.

    Science.gov (United States)

    Dickman, Martin B; Fluhr, Robert

    2013-01-01

    Programmed cell death (PCD) is essential for proper growth, development, and cellular homeostasis in all eukaryotes. The regulation of PCD is of central importance in plant-microbe interactions; notably, PCD and features associated with PCD are observed in many host resistance responses. Conversely, pathogen induction of inappropriate cell death in the host results in a susceptible phenotype and disease. Thus, the party in control of PCD has a distinct advantage in these battles. PCD processes appear to be of ancient origin, as indicated by the fact that many features of cell death strategy are conserved between animals and plants; however, some of the details of death execution differ. Mammalian core PCD genes, such as caspases, are not present in plant genomes. Similarly, pro- and antiapoptotic mammalian regulatory elements are absent in plants, but, remarkably, when expressed in plants, successfully impact plant PCD. Thus, subtle structural similarities independent of sequence homology appear to sustain operational equivalence. The vacuole is emerging as a key organelle in the modulation of plant PCD. Under different signals for cell death, the vacuole either fuses with the plasmalemma membrane or disintegrates. Moreover, the vacuole appears to play a key role in autophagy; evidence suggests a prosurvival function for autophagy, but other studies propose a prodeath phenotype. Here, we describe and discuss what we know and what we do not know about various PCD pathways and how the host integrates signals to activate salicylic acid and reactive oxygen pathways that orchestrate cell death. We suggest that it is not cell death as such but rather the processes leading to cell death that contribute to the outcome of a given plant-pathogen interaction.

  13. Signalome-wide assessment of host cell response to hepatitis C virus

    OpenAIRE

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J.; Daly, Roger J.; Netter, Hans J.; Baumert, Thomas F.; Doerig, Christian

    2017-01-01

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-?B pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machine...

  14. Hepatitis C virus host cell interactions uncovered

    DEFF Research Database (Denmark)

    Gottwein, Judith; Bukh, Jens

    2007-01-01

      Insights into virus-host cell interactions as uncovered by Randall et al. (1) in a recent issue of PNAS further our understanding of the hepatitis C virus (HCV) life cycle, persistence, and pathogenesis and might lead to the identification of new therapeutic targets. HCV persistently infects 180...... million individuals worldwide, causing chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. The only approved treatment, combination therapy with IFN- and ribavirin, targets cellular pathways (2); however, a sustained virologic response is achieved only in approximately half of the patients...... treated. Therefore, there is a pressing need for the identification of novel drugs against hepatitis C. Although most research focuses on the development of HCV-specific antivirals, such as protease and polymerase inhibitors (3), cellular targets could be pursued and might allow the development of broad...

  15. Expression profile of host restriction factors in HIV-1 elite controllers

    Science.gov (United States)

    2013-01-01

    Background Several host-encoded antiviral factors suppress HIV-1 replication in a cell-autonomous fashion in vitro. The relevance of these defenses to the control of HIV-1 in vivo remains to be elucidated. We hypothesized that cellular restriction of HIV-1 replication plays a significant role in the observed suppression of HIV-1 in "elite controllers", individuals who maintain undetectable levels of viremia in the absence of antiretroviral therapy (ART). We comprehensively compared the expression levels of 34 host restriction factors and cellular activation levels in CD4+ T cells and sorted T cell subsets between elite controllers, HIV-1-infected (untreated) non-controllers, ART-suppressed, and uninfected individuals. Results Expression of schlafen 11, a codon usage-based inhibitor of HIV-1 protein synthesis, was significantly elevated in CD4+ T cells from elite controllers as compared to both non-controllers (p = 0.048) and ART-suppressed individuals (p = 0.024), with this effect most apparent in central memory CD4+ T cells. Schlafen 11 expression levels were comparable between controllers and uninfected individuals. Cumulative restriction factor expression was positively correlated with CD4+ T cell activation (r2 = 0.597, p elite controllers with respect to ART-suppressed individuals, while levels were comparable to uninfected individuals and non-controllers. Conclusions Host restriction factor expression typically scales with cellular activation levels. However, the elevated mRNA and protein expression of schlafen 11, despite low activation and viral load, violates the global pattern and may be a signature characteristic of HIV-1 elite control. PMID:24131498

  16. Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Mareike Florek

    Full Text Available The adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs in murine models of allogeneic hematopoietic cell transplantation (HCT has been shown to protect recipient mice from lethal acute graft-versus-host disease (GVHD and this approach is being actively investigated in human clinical trials. Here, we examined the effects of cryopreservation on Tregs. We found that freeze and thaw of murine and human Tregs is associated with reduced expression of L-selectin (CD62L, which was previously established to be an important factor that contributes to the in vivo protective effects of Tregs. Frozen and thawed murine Tregs showed a reduced capacity to bind to the CD62L binding partner MADCAM1 in vitro as well as an impaired homing to secondary lymphoid organs in vivo. Upon adoptive transfer frozen and thawed Tregs failed to protect against lethal GVHD compared with fresh Tregs in a murine model of allogeneic HCT across major histocompatibility barriers. In summary, the direct administration of adoptively transferred frozen and thawed Tregs adversely affects their immunosuppressive potential which is an important factor to consider in the clinical implementation of Treg immunotherapies.

  17. Influence of Wolbachia on host gene expression in an obligatory symbiosis

    Directory of Open Access Journals (Sweden)

    Kremer Natacha

    2012-01-01

    Full Text Available Abstract Background Wolbachia are intracellular bacteria known to be facultative reproductive parasites of numerous arthropod hosts. Apart from these reproductive manipulations, recent findings indicate that Wolbachia may also modify the host’s physiology, notably its immune function. In the parasitoid wasp, Asobara tabida, Wolbachia is necessary for oogenesis completion, and aposymbiotic females are unable to produce viable offspring. The absence of egg production is also associated with an increase in programmed cell death in the ovaries of aposymbiotic females, suggesting that a mechanism that ensures the maintenance of Wolbachia in the wasp could also be responsible for this dependence. In order to decipher the general mechanisms underlying host-Wolbachia interactions and the origin of the dependence, we developed transcriptomic approaches to compare gene expression in symbiotic and aposymbiotic individuals. Results As no genetic data were available on A. tabida, we constructed several Expressed Sequence Tags (EST libraries, and obtained 12,551 unigenes from this species. Gene expression was compared between symbiotic and aposymbiotic ovaries through in silico analysis and in vitro subtraction (SSH. As pleiotropic functions involved in immunity and development could play a major role in the establishment of dependence, the expression of genes involved in oogenesis, programmed cell death (PCD and immunity (broad sense was analyzed by quantitative RT-PCR. We showed that Wolbachia might interfere with these numerous biological processes, in particular some related to oxidative stress regulation. We also showed that Wolbachia may interact with immune gene expression to ensure its persistence within the host. Conclusions This study allowed us to constitute the first major dataset of the transcriptome of A. tabida, a species that is a model system for both host/Wolbachia and host/parasitoid interactions. More specifically, our results

  18. Interaction of KSHV with Host Cell Surface Receptors and Cell Entry

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2014-10-01

    Full Text Available Virus entry is a complex process characterized by a sequence of events. Since the discovery of KSHV in 1994, tremendous progress has been made in our understanding of KSHV entry into its in vitro target cells. KSHV entry is a complex multistep process involving viral envelope glycoproteins and several cell surface molecules that is utilized by KSHV for its attachment and entry. KSHV has a broad cell tropism and the attachment and receptor engagement on target cells have an important role in determining the cell type-specific mode of entry. KSHV utilizes heparan sulfate, integrins and EphrinA2 molecules as receptors which results in the activation of host cell pre-existing signal pathways that facilitate the subsequent cascade of events resulting in the rapid entry of virus particles, trafficking towards the nucleus followed by viral and host gene expression. KSHV enters human fibroblast cells by dynamin dependant clathrin mediated endocytosis and by dynamin independent macropinocytosis in dermal endothelial cells. Once internalized into endosomes, fusion of the viral envelope with the endosomal membranes in an acidification dependent manner results in the release of capsids which subsequently reaches the nuclear pore vicinity leading to the delivery of viral DNA into the nucleus. In this review, we discuss the principal mechanisms that enable KSHV to interact with the host cell surface receptors as well as the mechanisms that are required to modulate cell signaling machinery for a successful entry.

  19. Somatic Host Cell Alterations in HPV Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tamara R. Litwin

    2017-08-01

    Full Text Available High-risk human papilloma virus (HPV infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA and phosphatase and tensin homolog (PTEN, human leukocyte antigen A and B (HLA-A and HLA-B-A/B, and the transforming growth factor beta (TGFβ pathway, and rarely have mutations in the tumor protein p53 (TP53 and RB transcriptional corepressor 1 (RB1 tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  20. Somatic Host Cell Alterations in HPV Carcinogenesis.

    Science.gov (United States)

    Litwin, Tamara R; Clarke, Megan A; Dean, Michael; Wentzensen, Nicolas

    2017-08-03

    High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC)-driven mutations and genomic instability leading to copy number variations and large chromosomal rearrangements. HPV-associated cancers have recurrent somatic mutations in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha ( PIK3CA ) and phosphatase and tensin homolog ( PTEN ), human leukocyte antigen A and B ( HLA-A and HLA-B ) -A/B , and the transforming growth factor beta (TGFβ) pathway, and rarely have mutations in the tumor protein p53 ( TP53 ) and RB transcriptional corepressor 1 ( RB1 ) tumor suppressor genes. There are some variations by tumor site, such as NOTCH1 mutations which are primarily found in head and neck cancers. Understanding the somatic events following HPV infection and persistence can aid the development of early detection biomarkers, particularly when mutations in precancers are characterized. Somatic mutations may also influence prognosis and treatment decisions.

  1. Host Determinants of Expression of the Helicobacter pylori BabA Adhesin.

    Science.gov (United States)

    Kable, Mary E; Hansen, Lori M; Styer, Cathy M; Deck, Samuel L; Rakhimova, Olena; Shevtsova, Anna; Eaton, Kathryn A; Martin, Miriam E; Gideonsson, Pär; Borén, Thomas; Solnick, Jay V

    2017-04-18

    Expression of the Helicobacter pylori blood group antigen binding adhesin A (BabA) is more common in strains isolated from patients with peptic ulcer disease or gastric cancer, rather than asymptomatic colonization. Here we used mouse models to examine host determinants that affect H. pylori BabA expression. BabA expression was lost by phase variation as frequently in WT mice as in RAG2-/- mice that do not have functional B or T cells, and in MyD88-/-, TLR2-/- and TLR4-/- mice that are defective in toll like receptor signaling. The presence of other bacteria had no effect on BabA expression as shown by infection of germ free mice. Moreover, loss of BabA expression was not dependent on Leb expression or the capacity of BabA to bind Leb. Surprisingly, gender was the host determinant most associated with loss of BabA expression, which was maintained to a greater extent in male mice and was associated with greater bacterial load. These results suggest the possibility that loss of BabA expression is not driven by adaptive immunity or toll-like receptor signaling, and that BabA may have other, unrecognized functions in addition to serving as an adhesin that binds Leb.

  2. Characterization of Host Cell Proteins (HCPs) in CHO Cell Bioprocesses.

    Science.gov (United States)

    Hogwood, Catherine E M; Chiverton, Lesley M; Mark Smales, C

    2017-01-01

    Host cell protein content during bioprocessing of biotherapeutic proteins generated from cultured Chinese hamster ovary (CHO) cells is typically measured using immunological and gel-based methods. Estimation of HCP concentration is usually undertaken using Enzyme-Linked ImmunoSorbent Assays (ELISA), while estimation of HCP clearance/presence can be achieved by comparing 2D-PAGE images of samples and by undertaking western blotting of 2D-PAGE analyzed samples. Here, we describe the analyses of HCP content using these methodologies.

  3. The endosymbiotic bacterium Holospora obtusa enhances heat-shock gene expression of the host Paramecium caudatum.

    Science.gov (United States)

    Hori, Manabu; Fujishima, Masahiro

    2003-01-01

    The bacterium Holospora obtusa is a macronuclear-specific symbiont of the ciliate Paramecium caudatum. H. obtusa-bearing paramecia could survive even after the cells were quickly heated from 25 degrees C to 35 degrees C. To determine whether infection with H. obtusa confers heat shock resistance on its host, we isolated genes homologous to the heat shock protein genes hsp60 and hsp70 from P. caudatum. The deduced amino acid sequences of both cDNAs were highly homologous to hsp family sequences from other eukaryotes. Competitive PCR showed that H. obtusa-free paramecia expressed only trace amounts of hsp60 and hsp70 mRNA at 25 degrees C, but that expression of hsp70 was enhanced immediately after the cells were transferred to 35 degrees C. H. obtusa-bearing paramecia expressed high levels of hsp7O mRNA even at 25 degrees C and the level was further enhanced when the cells were incubated at 35 degrees C. In contrast, the expression pattern of hsp60 mRNA was the same in H. obtusa-bearing as in H. obtusa-free paramecia. These results indicate that infection with its endosymbiont can confer a heat-shock resistant nature on its host cells.

  4. Host cells and methods for production of isobutanol

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  5. Host cells and methods for production of isobutanol

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2017-10-17

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  6. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  7. Host Cell Nuclear Localization of Shigella flexneri Effector OspF Is Facilitated by SUMOylation.

    Science.gov (United States)

    Jo, Kyungmin; Kim, Eun Jin; Yu, Hyun Jin; Yun, Cheol-Heui; Kim, Dong Wook

    2017-03-28

    When Shigella infect host cells, various effecter molecules are delivered into the cytoplasm of the host cell through the type III secretion system (TTSS) to facilitate their invasion process and control the host immune responses. Among these effectors, the S. flexneri effector OspF dephosphorylates mitogen-activated protein kinases and translocates itself to the nucleus, thus preventing histone H3 modification to regulate expression of proinflammatory cytokines. Despite the critical role of OspF, the mechanism by which it localizes in the nucleus has remained to be elucidated. In the present study, we identified a potential small ubiquitin-related modifier (SUMO) modification site within OspF and we demonstrated that Shigella TTSS effector OspF is conjugated with SUMO in the host cell and this modification mediates the nuclear translocation of OspF. Our results show a bacterial virulence factor can exploit host post-translational machinery to execute its intracellular trafficking.

  8. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    Science.gov (United States)

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  9. Interactions between Trypanosoma cruzi secreted proteins and host cell signaling pathways

    Directory of Open Access Journals (Sweden)

    Renata Watanabe Costa

    2016-03-01

    Full Text Available Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6-7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi (T. cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion.

  10. Salmonella – At Home in the Host Cell

    OpenAIRE

    Preeti eMalik Kale; Jolly, Carrie E.; Stephanie eLathrop; Seth eWinfree; Courtney eLuterbach; Olivia eSteele-Mortimer

    2011-01-01

    The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on c...

  11. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    Science.gov (United States)

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.

  12. Combined single-cell quantitation of host and SIV genes and proteins ex vivo reveals host-pathogen interactions in individual cells.

    Science.gov (United States)

    Bolton, Diane L; McGinnis, Kathleen; Finak, Greg; Chattopadhyay, Pratip; Gottardo, Raphael; Roederer, Mario

    2017-06-01

    CD4 T cells harboring HIV-1/SIV represent a formidable hurdle to eradicating infection, and yet their detailed phenotype remains unknown. Here we integrate two single-cell technologies, flow cytometry and highly multiplexed quantitative RT-PCR, to characterize SIV-infected CD4 T cells directly ex vivo. Within individual cells, we correlate the cellular phenotype, in terms of host protein and RNA expression, with stages of the viral life cycle defined by combinatorial expression of viral RNAs. Spliced RNA+ infected cells display multiple memory and activation phenotypes, indicating virus production by diverse CD4 T cell subsets. In most (but not all) cells, progressive infection accompanies post-transcriptional downregulation of CD4 protein, while surface MHC class I is largely retained. Interferon-stimulated genes were also commonly upregulated. Thus, we demonstrate that combined quantitation of transcriptional and post-transcriptional regulation at the single-cell level informs in vivo mechanisms of viral replication and immune evasion.

  13. Metabolic adaptation of Chlamydia trachomatis to mammalian host cells.

    Science.gov (United States)

    Mehlitz, Adrian; Eylert, Eva; Huber, Claudia; Lindner, Buko; Vollmuth, Nadine; Karunakaran, Karthika; Goebel, Werner; Eisenreich, Wolfgang; Rudel, Thomas

    2017-03-01

    Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco-2 cells with 13 C-marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC-MS-based isotopologue analysis of protein-derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT-ICR-MS analyses also demonstrated that label from exogenous 13 C-glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6-phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous 13 C-malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co-substrate usage of intracellular C. trachomatis in a stream-lined bipartite metabolism with host cell-supplied amino acids for protein biosynthesis, host cell-provided glucose 6-phosphate for cell wall biosynthesis, and, to some extent, one or more host cell-derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso-2,6-diaminopimelate required for the formation of chlamydial peptidoglycan. © 2016 John Wiley & Sons Ltd.

  14. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  15. Malaria Sporozoites Traverse Host Cells within Transient Vacuoles.

    Science.gov (United States)

    Risco-Castillo, Veronica; Topçu, Selma; Marinach, Carine; Manzoni, Giulia; Bigorgne, Amélie E; Briquet, Sylvie; Baudin, Xavier; Lebrun, Maryse; Dubremetz, Jean-François; Silvie, Olivier

    2015-11-11

    Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient vacuoles that precede PV formation. Sporozoites initially invade cells inside transient vacuoles by an active MJ-independent process that does not require vacuole membrane remodeling or release of parasite secretory organelles typically involved in invasion. Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane composition, precluding lysosome fusion. The malaria parasite has thus evolved different strategies to evade host cell defense and establish an intracellular niche for replication.

  16. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Danelle S Eto

    2007-07-01

    Full Text Available Uropathogenic Escherichia coli (UPEC, the primary causative agent of urinary tract infections, typically express filamentous adhesive organelles called type 1 pili that mediate both bacterial attachment to and invasion of bladder urothelial cells. Several host proteins have previously been identified as receptors for type 1 pili, but none have been conclusively shown to promote UPEC entry into host bladder cells. Using overlay assays with FimH, the purified type 1 pilus adhesin, and mass spectroscopy, we have identified beta1 and alpha3 integrins as key host receptors for UPEC. FimH recognizes N-linked oligosaccharides on these receptors, which are expressed throughout the urothelium. In a bladder cell culture system, beta1 and alpha3 integrin receptors co-localize with invading type 1-piliated bacteria and F-actin. FimH-mediated bacterial invasion of host bladder cells is inhibited by beta1 and alpha3 integrin-specific antibodies and by disruption of the beta1 integrin gene in the GD25 fibroblast cell line. Phosphorylation site mutations within the cytoplasmic tail of beta1 integrin that alter integrin signaling also variably affect UPEC entry into host cells, by either attenuating or boosting invasion frequencies. Furthermore, focal adhesion and Src family kinases, which propagate integrin-linked signaling and downstream cytoskeletal rearrangements, are shown to be required for FimH-dependent bacterial invasion of target host cells. Cumulatively, these results indicate that beta1 and alpha3 integrins are functionally important receptors for type 1 pili-expressing bacteria within the urinary tract and possibly at other sites within the host.

  17. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  18. Diversity in host clone performance within a Chinese hamster ovary cell line.

    Science.gov (United States)

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers.

  19. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  20. Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Punsiri M Colonne

    2016-09-01

    Full Text Available Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, subversion of cell intrinsic immunity, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.

  1. Manipulation of the host cell membrane by human γ-herpesviruses EBV and KSHV for pathogenesis.

    Science.gov (United States)

    Wei, Fang; Zhu, Qing; Ding, Ling; Liang, Qing; Cai, Qiliang

    2016-10-01

    The cell membrane regulates many physiological processes including cellular communication, homing and metabolism. It is therefore not surprising that the composition of the host cell membrane is manipulated by intracellular pathogens. Among these, the human oncogenic herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exploit the host cell membrane to avoid immune surveillance and promote viral replication. Accumulating evidence has shown that both EBV and KSHV directly encode several similar membrane-associated proteins, including receptors and receptor-specific ligands (cytokines and chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins are expressed individually at different phases of the EBV/KSHV life cycle and employ various mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to avoid host antiviral immune responses and favors their latent and lytic infection.

  2. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals

    Directory of Open Access Journals (Sweden)

    Jarlath E. Nally

    2017-08-01

    Full Text Available Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE. Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed (p < 0.05, fold change >1.25 or < −1.25 across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30

  3. Cancer cell: using inflammation to invade the host

    Directory of Open Access Journals (Sweden)

    Aller María-Angeles

    2007-04-01

    Full Text Available Abstract Background Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms involved are not fully characterized. The invasive capacity of cancers is reflected in the classic metastatic cascade: tumor (T, node (N and metastasis (M. However, this staging system for cancer would also have a tumoral biological significance. Presentation of the hypothesis To integrate the mechanisms that control the inflammatory response in the actual staging system of cancer. It is considered that in both processes of inflammation and cancer, three successive phenotypes are presented that represent the expression of trophic functional systems of increasing metabolic complexity for using oxygen. Testing the hypothesis While a malignant tumor develops it express phenotypes that also share the inflammatory response such as: an ischemic phenotype (anoxic-hypoxic, a leukocytic phenotype with anaerobic glycolysis and migration, and an angiogenic phenotype with hyperactivity of glycolytic enzymes, tumor proliferation and metastasis, and cachexia of the host. The increasing metabolic complexity of the tumor cell to use oxygen allows for it to be released, migrate and proliferate, thus creating structures of growing complexity. Implication of the hypothesis One aim of cancer gene therapy could be the induction of oxidative phosphorylation, the last metabolic step required by inflammation in order to differentiate the tissue that it produces.

  4. Effects of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma cell line SMMC-7721.

    Science.gov (United States)

    Liu, Run-Tian; Cao, Jing-Lin; Yan, Chang-Qing; Wang, Yang; An, Cong-Jing; Lv, Hai-Tao

    2017-04-30

    The present study explored the effect of long non-coding RNA-human ovarian cancer-specific transcript 2 (LncRNA-HOST2) on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma (HCC) cell line SMMC-7721. HCC tissues and adjacent normal tissues from 162 HCC patients were collected. The HCC cell lines were assigned into the control group (regular culture), negative control (NC) group (transfected with siRNA) and experimental group (transfected with Lnc-HOST2 siRNA). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of LncRNA-HOST2. Cell proliferation was detected by CCK-8 and colony-forming assays, cell apoptosis by flow cytometry and cell migration by Scratch test. Transwell assay was used to evaluate cell migration and invasion abilities. LncRNA-HOST2 expression in the HCC tissues increased 2-10 times than that in the adjacent normal tissues. Compared with the HL-7702 cell line, LncRNA-HOST2 expression in HepG2, SMMC-7721 and Huh7 cell lines was all up-regulated, but the SMMC-7721 cell had the highest Lnc-HOST2 expression. The LncRNA-HOST2 expression in the experimental group was down-regulated as compared with the control and NC groups. In comparison with the control and NC groups, cloned cells reduced, cell apoptosis increased, clone-forming ability weakened and inhibitory rate of colony formation increased in the experimental group. The cells migrating and penetrating into the transwell chamber were fewer in the experimental group than those in the control and NC groups. The experimental group exhibited slow wound healing and decreased cell migration area after 48 h. These findings indicate that LncRNA-HOST2 can promote cell proliferation, migration and invasion and inhibit cell apoptosis in human HCC cell line SMMC-7721. © 2017 The Author(s).

  5. Construction and characterization of regulated L-arabinose-inducible broad host range expression vectors in Xanthomonas.

    Science.gov (United States)

    Sukchawalit, R; Vattanaviboon, P; Sallabhan, R; Mongkolsuk, S

    1999-12-15

    Several versions of broad host range (BHR), L-arabinose-inducible expression vectors were constructed. These expression vectors were based on a high copy number BHR pBBR1MCS-4 replicon that could replicate in both enteric and non-enteric Gram-negative bacteria. Two versions of expression cassettes containing multiple cloning sites either with or without a ribosome binding site were placed under transcriptional control of the Escherichia coli BAD promoter and araC gene. Three versions of vectors containing ampicillin or kanamycin or tetracycline resistance genes as selectable markers were constructed. In all six new L-arabinose-inducible BHR expression vectors containing many unique cloning sites, selectable markers were made to facilitate cloning and expression of genes in various Gram-negative bacteria. A Tn9 chloramphenicol acetyl transferase (cat) gene was cloned into an expression vector, resulting in pBBad18Acat that was used to establish optimal expression conditions (addition of 0.02% L-arabinose to mid-exponential phase cells for at least 1 h) in a Xanthomonas campestris pv. phaseoli. Comparison of the Cat enzyme activities between uninduced and a 180-min L-arabinose-induced culture showed a greater than 150-fold increased Cat specific activity. In addition, L-arabinose induction of exponential phase cells harboring pBBad18Acat gave a higher amount of Cat than similarly treated stationary phase cells. The usefulness of the expression vector was also demonstrated in both enteric and non-enteric Gram-negative bacteria.

  6. Genome wide expression profiling reveals suppression of host defence responses during colonisation by Neisseria meningitides but not N. lactamica.

    Directory of Open Access Journals (Sweden)

    Hazel En En Wong

    Full Text Available Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease potential. Confluent monolayers of 16HBE14 human bronchial epithelial cells were exposed to live and/or dead N. meningitidis (including capsule and pili mutants and N. lactamica, and their transcriptomes were compared using whole genome microarrays. Changes in expression of selected genes were subsequently validated using Q-RT-PCR and ELISAs. Live N. meningitidis and N. lactamica induced genes involved in host energy production processes suggesting that both bacterial species utilise host resources. N. meningitidis infection was associated with down-regulation of host defence genes. N. lactamica, relative to N. meningitidis, initiates up-regulation of proinflammatory genes. Bacterial secreted proteins alone induced some of the changes observed. The results suggest N. meningitidis and N. lactamica differentially regulate host respiratory epithelial cell gene expression through colonisation and/or protein secretion, and that this may contribute to subsequent clinical outcomes associated with these bacteria.

  7. Gene expression plasticity across hosts of an invasive scale insect species

    DEFF Research Database (Denmark)

    Christodoulides, Nicholas; Van Dam, Alex; Peterson, Daniel A.

    2017-01-01

    For plant-eating insects, we still have only a nascent understanding of the genetic basis of host-use promiscuity. Here, to improve that situation, we investigated host-induced gene expression plasticity in the invasive lobate lac scale insect, Paratachardina pseudolobata (Hemiptera: Keriidae). We...... of several recently published studies of other plant-eating insect species. Thus, across plant-eating insect species, there may be a common set of gene expression changes that enable host-use promiscuity....

  8. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Science.gov (United States)

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  9. [How does the apicomplexan parasite Theileria control host cell identity?].

    Science.gov (United States)

    Marsolier, Justine; Weitzman, Jonathan B

    2014-01-01

    Infectious agents, like bacteria or virus, are responsible for a large number of pathologies in mammals. Microbes have developed mechanisms for interacting with host cell pathways and hijacking cellular machinery to change the phenotypic state. In this review, we focus on an interesting apicomplexan parasite called Theileria. Infection by the tick-transmitted T. annulata parasite causes Tropical Theileriosis in North Africa and Asia, and the related T. parva parasite causes East Coast Fever in Sub-Saharan Africa. This parasite is the only eukaryote known to induce the transformation of its mammalian host cells. Indeed, T. annulata and T. parva infect bovine leukocytes leading to transforming phenotypes, which partially mirror human lymphoma pathologies. Theileria infection causes hyperproliferation, invasiveness and escape from apoptosis, presumably through the manipulation of host cellular pathways. Several host-signaling mechanisms have been implicated. Here we describe the mechanisms involved in parasite-induced transformation phenotypes. © Société de Biologie, 2015.

  10. Besnoitia besnoiti and Toxoplasma gondii: two apicomplexan strategies to manipulate the host cell centrosome and Golgi apparatus.

    Science.gov (United States)

    Cardoso, Rita; Nolasco, Sofia; Gonçalves, João; Cortes, Helder C; Leitão, Alexandre; Soares, Helena

    2014-09-01

    Besnoitia besnoiti and Toxoplasma gondii are two closely related parasites that interact with the host cell microtubule cytoskeleton during host cell invasion. Here we studied the relationship between the ability of these parasites to invade and to recruit the host cell centrosome and the Golgi apparatus. We observed that T. gondii recruits the host cell centrosome towards the parasitophorous vacuole (PV), whereas B. besnoiti does not. Notably, both parasites recruit the host Golgi apparatus to the PV but its organization is affected in different ways. We also investigated the impact of depleting and over-expressing the host centrosomal protein TBCCD1, involved in centrosome positioning and Golgi apparatus integrity, on the ability of these parasites to invade and replicate. Toxoplasma gondii replication rate decreases in cells over-expressing TBCCD1 but not in TBCCD1-depleted cells; while for B. besnoiti no differences were found. However, B. besnoiti promotes a reorganization of the Golgi ribbon previously fragmented by TBCCD1 depletion. These results suggest that successful establishment of PVs in the host cell requires modulation of the Golgi apparatus which probably involves modifications in microtubule cytoskeleton organization and dynamics. These differences in how T. gondii and B. besnoiti interact with their host cells may indicate different evolutionary paths.

  11. Co-expression of protein complexes in prokaryotic and eukaryotic hosts: experimental procedures, database tracking and case studies.

    Science.gov (United States)

    Romier, Christophe; Ben Jelloul, Marouane; Albeck, Shira; Buchwald, Gretel; Busso, Didier; Celie, Patrick H N; Christodoulou, Evangelos; De Marco, Valeria; van Gerwen, Suzan; Knipscheer, Puck; Lebbink, Joyce H; Notenboom, Valerie; Poterszman, Arnaud; Rochel, Natacha; Cohen, Serge X; Unger, Tamar; Sussman, Joel L; Moras, Dino; Sixma, Titia K; Perrakis, Anastassis

    2006-10-01

    Structure determination and functional characterization of macromolecular complexes requires the purification of the different subunits in large quantities and their assembly into a functional entity. Although isolation and structure determination of endogenous complexes has been reported, much progress has to be made to make this technology easily accessible. Co-expression of subunits within hosts such as Escherichia coli and insect cells has become more and more amenable, even at the level of high-throughput projects. As part of SPINE (Structural Proteomics In Europe), several laboratories have investigated the use co-expression techniques for their projects, trying to extend from the common binary expression to the more complicated multi-expression systems. A new system for multi-expression in E. coli and a database system dedicated to handle co-expression data are described. Results are also reported from various case studies investigating different methods for performing co-expression in E. coli and insect cells.

  12. Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals.

    Science.gov (United States)

    Nally, Jarlath E; Grassmann, Andre A; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Seshu, Janakiram; McBride, Alan J; Caimano, Melissa J

    2017-01-01

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed (p 1.25 or proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with trimethyllysine and

  13. Expression, characterisation and antigenicity of a truncated Hendra virus attachment protein expressed in the protozoan host Leishmania tarentolae.

    Science.gov (United States)

    Fischer, Kerstin; dos Reis, Vinicius Pinho; Finke, Stefan; Sauerhering, Lucie; Stroh, Eileen; Karger, Axel; Maisner, Andrea; Groschup, Martin H; Diederich, Sandra; Balkema-Buschmann, Anne

    2016-02-01

    Hendra virus (HeV) is an emerging zoonotic paramyxovirus within the genus Henipavirus that has caused severe morbidity and mortality in humans and horses in Australia since 1994. HeV infection of host cells is mediated by the membrane bound attachment (G) and fusion (F) glycoproteins, that are essential for receptor binding and fusion of viral and cellular membranes. The eukaryotic unicellular parasite Leishmania tarentolae has recently been established as a powerful tool to express recombinant proteins with mammalian-like glycosylation patterns, but only few viral proteins have been expressed in this system so far. Here, we describe the purification of a truncated, Strep-tag labelled and soluble version of the HeV attachment protein (sHeV G) expressed in stably transfected L. tarentolae cells. After Strep-tag purification the identity of sHeV G was confirmed by immunoblotting and mass spectrometry. The functional binding of sHeV G to the HeV cell entry receptor ephrin-B2 was confirmed in several binding assays. Generated polyclonal rabbit antiserum against sHeV G reacted with both HeV and Nipah virus (NiV) G proteins in immunofluorescence assay and efficiently neutralised NiV infection, thus further supporting the preserved antigenicity of the purified protein. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Directory of Open Access Journals (Sweden)

    Amey Redkar

    2017-05-01

    Full Text Available Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  15. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis

    Science.gov (United States)

    Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther

    2017-01-01

    Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal–host interaction to suit the pathogen’s needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis – maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize. PMID:28611813

  16. Differential gene expression according to race and host plant in the pea aphid.

    Science.gov (United States)

    Eyres, Isobel; Jaquiéry, Julie; Sugio, Akiko; Duvaux, Ludovic; Gharbi, Karim; Zhou, Jing-Jiang; Legeai, Fabrice; Nelson, Michaela; Simon, Jean-Christophe; Smadja, Carole M; Butlin, Roger; Ferrari, Julia

    2016-09-01

    Host-race formation in phytophagous insects is thought to provide the opportunity for local adaptation and subsequent ecological speciation. Studying gene expression differences amongst host races may help to identify phenotypes under (or resulting from) divergent selection and their genetic, molecular and physiological bases. The pea aphid (Acyrthosiphon pisum) comprises host races specializing on numerous plants in the Fabaceae and provides a unique system for examining the early stages of diversification along a gradient of genetic and associated adaptive divergence. In this study, we examine transcriptome-wide gene expression both in response to environment and across pea aphid races selected to cover the range of genetic divergence reported in this species complex. We identify changes in expression in response to host plant, indicating the importance of gene expression in aphid-plant interactions. Races can be distinguished on the basis of gene expression, and higher numbers of differentially expressed genes are apparent between more divergent races; these expression differences between host races may result from genetic drift and reproductive isolation and possibly divergent selection. Expression differences related to plant adaptation include a subset of chemosensory and salivary genes. Genes showing expression changes in response to host plant do not make up a large portion of between-race expression differences, providing confirmation of previous studies' findings that genes involved in expression differences between diverging populations or species are not necessarily those showing initial plasticity in the face of environmental change. © 2016 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.

  17. Invasion of Host Cells and Tissues by Uropathogenic Bacteria

    Science.gov (United States)

    Lewis, Adam J.; Richards, Amanda C.; Mulvey, Matthew A.

    2016-01-01

    Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli (UPEC) and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections (UTIs). Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of UTIs in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of UPEC and other uropathogenic bacteria. PMID:28087946

  18. Differential expressed genes in ECV304 Endothelial-like Cells ...

    African Journals Online (AJOL)

    Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms. Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale.

  19. Location, location, location. Salmonella senses ethanolamine to gauge distinct host environments and coordinate gene expression

    Directory of Open Access Journals (Sweden)

    Christopher J. Anderson

    2016-01-01

    Full Text Available Chemical and nutrient signaling mediate all cellular processes, ensuring survival in response to changing environmental conditions. Ethanolamine is a component of phosphatidylethanolamine, a major phospholipid of mammalian and bacterial cell membranes. Ethanolamine is abundant in the gastrointestinal (GI tract from dietary sources as well as from the normal turnover of intestinal epithelial and bacterial cells in the gut. Additionally, mammalian cells maintain intracellular ethanolamine concentrations through low and high-affinity uptake systems and the internal recycling of phosphatidylethanolamine; therefore, ethanolamine is ubiquitous throughout the mammalian host. Although ethanolamine has profound signaling activity within mammalian cells by modulating inflammatory responses and intestinal physiology, ethanolamine is best appreciated as a nutrient for bacteria that supports growth. In our recent work (Anderson, et al. PLoS Pathog (2015, 11: e1005278, we demonstrated that Salmonella enterica serovar Typhimurium (Salmonella exploits ethanolamine signaling to adapt to distinct host environments to precisely coordinate expression of genes encoding metabolism and virulence, which ultimately enhances disease progression.

  20. Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells.

    Science.gov (United States)

    Sateriale, Adam; Miller, Peter; Huston, Christopher D

    2016-04-01

    Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  2. An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell.

    Science.gov (United States)

    Coffey, Michael J; Sleebs, Brad E; Uboldi, Alessandro D; Garnham, Alexandra; Franco, Magdalena; Marino, Nicole D; Panas, Michael W; Ferguson, David Jp; Enciso, Marta; O'Neill, Matthew T; Lopaticki, Sash; Stewart, Rebecca J; Dewson, Grant; Smyth, Gordon K; Smith, Brian J; Masters, Seth L; Boothroyd, John C; Boddey, Justin A; Tonkin, Christopher J

    2015-11-18

    Infection by Toxoplasma gondii leads to massive changes to the host cell. Here, we identify a novel host cell effector export pathway that requires the Golgi-resident aspartyl protease 5 (ASP5). We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has similarity to the PEXEL-motif of Plasmodium parasites. We show that ASP5 matures substrates at both the N- and C-terminal ends of proteins and also controls trafficking of effectors without this motif. Furthermore, ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the vacuole. Assessment of host gene expression reveals that the ASP5-dependent pathway influences thousands of the transcriptional changes that Toxoplasma imparts on its host cell. All these changes result in attenuation of virulence of Δasp5 tachyzoites in vivo. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell.

  3. RNA-Seq unveils new attributes of the heterogeneous Salmonella-host cell communication.

    Science.gov (United States)

    García-Del Portillo, Francisco; Pucciarelli, M Graciela

    2017-04-03

    High-throughput RNA sequencing (RNA-Seq) has uncovered hundreds of small RNAs and complex modes of RNA regulation in every bacterium analyzed to date. This complexity agrees with the adaptability of most bacteria to varied environments including, in the case of pathogens, the new niches encountered in the host. Recent RNA-Seq studies have analyzed simultaneously gene expression in the intracellular pathogen Salmonella enterica and infected host cells at population and single-cell level. Distinct polarization states or interferon responses in the infected macrophage were linked to variable growth rates or activities of defined virulence regulators in intra-phagosomal bacteria. Intracellular Salmonella, however, exhibit disparate intracellular lifestyles depending the host cell, ranging from a hyper-replicative cytosolic state in epithelial cells to a non-replicative intra-phagosomal condition in varied host cell types. The basis of such diverse pathogen-host communications could be examined by RNA-Seq studies in single intracellular Salmonella cells, certainly a challenge for future investigations.

  4. Identification of Host Micro RNAs That Differentiate HIV-1 and HIV-2 Infection Using Genome Expression Profiling Techniques

    Directory of Open Access Journals (Sweden)

    Krishnakumar Devadas

    2016-05-01

    Full Text Available While human immunodeficiency virus type 1 and 2 (HIV-1 and HIV-2 share many similar traits, major differences in pathogenesis and clinical outcomes exist between the two viruses. The differential expression of host factors like microRNAs (miRNAs in response to HIV-1 and HIV-2 infections are thought to influence the clinical outcomes presented by the two viruses. MicroRNAs are small non-coding RNA molecules which function in transcriptional and post-transcriptional regulation of gene expression. MiRNAs play a critical role in many key biological processes and could serve as putative biomarker(s for infection. Identification of miRNAs that modulate viral life cycle, disease progression, and cellular responses to infection with HIV-1 and HIV-2 could reveal important insights into viral pathogenesis and provide new tools that could serve as prognostic markers and targets for therapeutic intervention. The aim of this study was to elucidate the differential expression profiles of host miRNAs in cells infected with HIV-1 and HIV-2 in order to identify potential differences in virus-host interactions between HIV-1 and HIV-2. Differential expression of host miRNA expression profiles was analyzed using the miRNA profiling polymerase chain reaction (PCR arrays. Differentially expressed miRNAs were identified and their putative functional targets identified. The results indicate that hsa-miR 541-3p, hsa-miR 518f-3p, and hsa-miR 195-3p were consistently up-regulated only in HIV-1 infected cells. The expression of hsa-miR 1225-5p, hsa-miR 18a* and hsa-miR 335 were down modulated in HIV-1 and HIV-2 infected cells. Putative functional targets of these miRNAs include genes involved in signal transduction, metabolism, development and cell death.

  5. Systems approach to characterizing cell signaling in host-pathogen response to staphylococcus toxin.

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosiano, J. J. (John J.); Gupta, G. (Goutam); Gray, P. C. (Perry C.); Hush, D. R. (Donald R.); Fugate, M. L. (Michael L.); Cleland, T. J. (Timothy J.); Roberts, R. M. (Randy M.); Hlavacek, W. S. (William S.); Smith, J. L. (Jessica L.)

    2002-01-01

    The mammalian immune system is capable of highly sensitive and specific responses when challenged by pathogens. It is believed that the human immune repertoire - the total number of distinct antigens that can be recognized - is between 10{sup 9} and 10{sup 11}. The most specific responses are cell mediated and involve complex and subtle communications among the immune cells via small proteins known as cytokines. The details of host-pathogen response are exceedingly complex, involving both intracellular and extracellular mechanisms. These include the presentation of antigen by B cells to helper T cells and subsequent stimulation of signal transduction pathways and gene expression within both B and T-cell populations. These in turn lead to the secretion of cytokines and receptor expression. Intercellular cytokine signaling can trigger a host of immune responses including the proliferation and specialization of naive immune cells and the marshaling of effector cells to combat infection. In the ever-evolving game of threat and countermeasure played out by pathogens and their intended hosts, there are direct assaults aimed at subverting the immune system's ability to recognize antigens and respond effectively to challenge by pathogens. Staphylococcus is one of these. Staph bacteria secrete a variety of toxins known generically as superantigens. Superantigen molecules bind simultaneously to the MHC receptors of antigen presenting cells and the TCR receptors of helper T cells, locking them in place and leading to overstimulation. This strategy can effectively burn out the immune system in a matter of days.

  6. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    Science.gov (United States)

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  7. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite-host interaction.

    Science.gov (United States)

    Anand, Namrata; Kanwar, Rupinder K; Dubey, Mohan Lal; Vahishta, R K; Sehgal, Rakesh; Verma, Anita K; Kanwar, Jagat R

    2015-01-01

    Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (Plactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. The present study details the interaction between lactoferrin and parasite host cells, ie, RBCs and macrophages, using various cellular processes and expression studies. The study reveals the possible mechanism of

  8. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Science.gov (United States)

    Anand, Namrata; Kanwar, Rupinder K; Dubey, Mohan Lal; Vahishta, R K; Sehgal, Rakesh; Verma, Anita K; Kanwar, Jagat R

    2015-01-01

    Background Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). Methods Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. Results The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (Plactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. Conclusion The present study details the interaction between lactoferrin and parasite host cells, ie, RBCs and macrophages, using various cellular processes and expression studies. The study

  9. Early Bunyavirus-Host Cell Interactions

    Directory of Open Access Journals (Sweden)

    Amelina Albornoz

    2016-05-01

    Full Text Available The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.

  10. The Cell Biology of the Trichosporon-Host Interaction.

    Science.gov (United States)

    Duarte-Oliveira, Cláudio; Rodrigues, Fernando; Gonçalves, Samuel M; Goldman, Gustavo H; Carvalho, Agostinho; Cunha, Cristina

    2017-01-01

    Fungi of the genus Trichosporon are increasingly recognized as causative agents of superficial and invasive fungal disease in humans. Although most species are considered commensals of the human skin and gastrointestinal tract, these basidiomycetes are an increasing cause of fungal disease among immunocompromised hosts, such as hematological patients and solid organ transplant recipients. The initiation of commensal or pathogenic programs by Trichosporon spp. involves the adaptation to the host microenvironment and its immune system. However, the exact virulence factors activated upon the transition to a pathogenic lifestyle, including the intricate biology of the cell wall, and how these interact with and subvert the host immune responses remain largely unknown. Here, we revisit our current understanding of the virulence attributes of Trichosporon spp., particularly T. asahii, and their interaction with the host immune system, and accommodate this knowledge within novel perspectives on fungal diagnostics and therapeutics.

  11. Lipid exchange between Borrelia burgdorferi and host cells.

    Directory of Open Access Journals (Sweden)

    Jameson T Crowley

    2013-01-01

    Full Text Available Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B. burgdorferi labeled with the fluorescent cholesterol analog BODIPY-cholesterol or (3H-labeled cholesterol transfer both cholesterol and cholesterol-glycolipids to HeLa cells. The transfer occurs through two different mechanisms, by direct contact between the bacteria and eukaryotic cell and/or through release of outer membrane vesicles. Thus, two-way lipid exchange between spirochetes and host cells can occur. This lipid exchange could be an important process that contributes to the pathogenesis of Lyme disease.

  12. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective.

    Science.gov (United States)

    Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng

    2016-10-01

    The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Signalome-wide assessment of host cell response to hepatitis C virus.

    Science.gov (United States)

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J; Daly, Roger J; Netter, Hans J; Baumert, Thomas F; Doerig, Christian

    2017-05-08

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen.

  14. Signalome-wide assessment of host cell response to hepatitis C virus

    Science.gov (United States)

    Haqshenas, Gholamreza; Wu, Jianmin; Simpson, Kaylene J.; Daly, Roger J.; Netter, Hans J.; Baumert, Thomas F.; Doerig, Christian

    2017-01-01

    Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen. PMID:28480889

  15. Expression differences in Aphidius ervi (Hymenoptera: Braconidae) females reared on different aphid host species.

    Science.gov (United States)

    Ballesteros, Gabriel I; Gadau, Jürgen; Legeai, Fabrice; Gonzalez-Gonzalez, Angelica; Lavandero, Blas; Simon, Jean-Christophe; Figueroa, Christian C

    2017-01-01

    The molecular mechanisms that allow generalist parasitoids to exploit many, often very distinct hosts are practically unknown. The wasp Aphidius ervi, a generalist koinobiont parasitoid of aphids, was introduced from Europe into Chile in the late 1970s to control agriculturally important aphid species. A recent study showed significant differences in host preference and host acceptance (infectivity) depending on the host A. ervi were reared on. In contrast, no genetic differentiation between A. ervi populations parasitizing different aphid species and aphids of the same species reared on different host plants was found in Chile. Additionally, the same study did not find any fitness effects in A. ervi if offspring were reared on a different host as their mothers. Here, we determined the effect of aphid host species (Sitobion avenae versus Acyrthosiphon pisum reared on two different host plants alfalfa and pea) on the transcriptome of adult A. ervi females. We found a large number of differentially expressed genes (between host species: head: 2,765; body: 1,216; within the same aphid host species reared on different host plants: alfalfa versus pea: head 593; body 222). As expected, the transcriptomes from parasitoids reared on the same host species (pea aphid) but originating from different host plants (pea versus alfalfa) were more similar to each other than the transcriptomes of parasitoids reared on a different aphid host and host plant (head: 648 and 1,524 transcripts; body: 566 and 428 transcripts). We found several differentially expressed odorant binding proteins and olfactory receptor proteins in particular, when we compared parasitoids from different host species. Additionally, we found differentially expressed genes involved in neuronal growth and development as well as signaling pathways. These results point towards a significant rewiring of the transcriptome of A. ervi depending on aphid-plant complex where parasitoids develop, even if different biotypes

  16. Bacterial cell-cell communication in the host via RRNPP peptide-binding regulators

    Directory of Open Access Journals (Sweden)

    David ePerez-Pascual

    2016-05-01

    Full Text Available Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence.

  17. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles.

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E

    2015-03-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol.

  18. Identification of a Peptide-Pheromone that Enhances Listeria monocytogenes Escape from Host Cell Vacuoles

    Science.gov (United States)

    Xayarath, Bobbi; Alonzo, Francis; Freitag, Nancy E.

    2015-01-01

    Listeria monocytogenes is a Gram-positive facultative intracellular bacterial pathogen that invades mammalian cells and escapes from membrane-bound vacuoles to replicate within the host cell cytosol. Gene products required for intracellular bacterial growth and bacterial spread to adjacent cells are regulated by a transcriptional activator known as PrfA. PrfA becomes activated following L. monocytogenes entry into host cells, however the signal that stimulates PrfA activation has not yet been defined. Here we provide evidence for L. monocytogenes secretion of a small peptide pheromone, pPplA, which enhances the escape of L. monocytogenes from host cell vacuoles and may facilitate PrfA activation. The pPplA pheromone is generated via the proteolytic processing of the PplA lipoprotein secretion signal peptide. While the PplA lipoprotein is dispensable for pathogenesis, bacteria lacking the pPplA pheromone are significantly attenuated for virulence in mice and have a reduced efficiency of bacterial escape from the vacuoles of nonprofessional phagocytic cells. Mutational activation of PrfA restores virulence and eliminates the need for pPplA-dependent signaling. Experimental evidence suggests that the pPplA peptide may help signal to L. monocytogenes its presence within the confines of the host cell vacuole, stimulating the expression of gene products that contribute to vacuole escape and facilitating PrfA activation to promote bacterial growth within the cytosol. PMID:25822753

  19. Galactose/N-acetylgalactosamine lectin: the coordinator of host cell ...

    Indian Academy of Sciences (India)

    This killing involves the amoebic surface protein referred to as the Gal/GalNAc lectin. The Gal/GalNAc lectin binds galactose and N-acetylgalactosamine allowing the adherence of amoebas to host cells. Involvement of the lectin in the pathogenesis of E. histolytica infection will be reviewed in this paper. The lectin has been ...

  20. The Contribution of the Airway Epithelial Cell to Host Defense

    OpenAIRE

    Frauke Stanke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how t...

  1. Cytoskeletal requirements in Chlamydia trachomatis infection of host cells.

    OpenAIRE

    Schramm, N.; Wyrick, P B

    1995-01-01

    Infection of genital epithelial cells by the closely related sexually transmitted pathogens Chlamydia trachomatis serovars E and L2 results in different clinical disease manifestations. Following entry into target host cells, individual vesicles containing chlamydiae fuse with one another to form one large inclusion. At the cellular level, the only obvious difference between these serovars is the time until inclusion maturation, which is 48 h for the invasive serovar L2 and 72 h for serovar E...

  2. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.

    Science.gov (United States)

    Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno

    2014-05-27

    To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the

  3. The cyclomodulin Cif of Photorhabdus luminescens inhibits insect cell proliferation and triggers host cell death by apoptosis.

    Science.gov (United States)

    Chavez, Carolina Varela; Jubelin, Grégory; Courties, Gabriel; Gomard, Aurélie; Ginibre, Nadège; Pages, Sylvie; Taïeb, Frédéric; Girard, Pierre-Alain; Oswald, Eric; Givaudan, Alain; Zumbihl, Robert; Escoubas, Jean-Michel

    2010-12-01

    Cycle inhibiting factors (Cif) constitute a broad family of cyclomodulins present in bacterial pathogens of invertebrates and mammals. Cif proteins are thought to be type III effectors capable of arresting the cell cycle at G(2)/M phase transition in human cell lines. We report here the first direct functional analysis of Cif(Pl), from the entomopathogenic bacterium Photorhabdus luminescens, in its insect host. The cif(Pl) gene was expressed in P. luminescens cultures in vitro. The resulting protein was released into the culture medium, unlike the well characterized type III effector LopT. During locust infection, cif(Pl) was expressed in both the hemolymph and the hematopoietic organ, but was not essential for P. luminescens virulence. Cif(Pl) inhibited proliferation of the insect cell line Sf9, by blocking the cell cycle at the G(2)/M phase transition. It also triggered host cell death by apoptosis. The integrity of the Cif(Pl) catalytic triad is essential for the cell cycle arrest and pro-apoptotic activities of this protein. These results highlight, for the first time, the dual role of Cif in the control of host cell proliferation and apoptotic death in a non-mammalian cell line. Copyright © 2010 Institut Pasteur. Published by Elsevier SAS. All rights reserved.

  4. Micronucleus-specific bacterium Holospora elegans irreversibly enhances stress gene expression of the host Paramecium caudatum.

    Science.gov (United States)

    Hori, Manabu; Fujii, Kimiko; Fujishima, Masahiro

    2008-01-01

    The bacterium Holospora is an endonuclear symbiont of the ciliate Paramecium. Previously, we reported that paramecia bearing the macronuclear-specific symbiont Holospora obtusa survived better than symbiont-free paramecia, even under high temperatures unsuitable for growth. The paramecia with symbionts expressed high levels of hsp70 mRNAs even at 25 degrees C, a usual growth temperature. We report herein that paramecia bearing the micronuclear-specific symbiont Holospora elegans also acquire the heat-shock resistance. Even after the removal of the bacteria from the hosts by treatment with penicillin, the resulting aposymbiotic paramecia nevertheless maintained their heat shock-resistant nature for over 1 yr. Like symbiotic paramecia, these aposymbiotic paramecia also expressed high levels of both hsp60 and hsp70 mRNAs even at 25 degrees C. Moreover, analysis by fluorescent in situ hybridization with a probe specific for Holospora 16S rRNA revealed that the 16S rRNA of H. elegans was expressed around the nucleoli of the macronucleus in the aposymbiotic cells. This result suggests the possible transfer of Holospora genomic DNA from the micronucleus into the macronucleus in symbiotic paramecia. Perhaps this exogenous DNA could trigger the aposymbiotic paramecia to induce a stress response, inducing higher expression of Hsp60 and Hsp70, and thus conferring heat-shock resistance.

  5. Invasion of Eukaryotic Cells by Legionella Pneumophila: A Common Strategy for all Hosts?

    Directory of Open Access Journals (Sweden)

    Paul S Hoffman

    1997-01-01

    Full Text Available Legionella pneumophila is an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires’ disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability of L pneumophila to infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the ‘mature form’. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence of L pneumophila is considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus, L pneumophila may be a good model system for dissecting events associated with the host-parasite interactions.

  6. Necroptosis: The Trojan horse in cell autonomous antiviral host defense.

    Science.gov (United States)

    Mocarski, Edward S; Guo, Hongyan; Kaiser, William J

    2015-05-01

    Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Zika virus infection reprograms global transcription of host cells to allow sustained infection.

    Science.gov (United States)

    Tiwari, Shashi Kant; Dang, Jason; Qin, Yue; Lichinchi, Gianluigi; Bansal, Vikas; Rana, Tariq M

    2017-04-26

    Zika virus (ZIKV) is an emerging virus causally linked to neurological disorders, including congenital microcephaly and Guillain-Barré syndrome. There are currently no targeted therapies for ZIKV infection. To identify novel antiviral targets and to elucidate the mechanisms by which ZIKV exploits the host cell machinery to support sustained replication, we analyzed the transcriptomic landscape of human microglia, fibroblast, embryonic kidney and monocyte-derived macrophage cell lines before and after ZIKV infection. The four cell types differed in their susceptibility to ZIKV infection, consistent with differences in their expression of viral response genes before infection. Clustering and network analyses of genes differentially expressed after ZIKV infection revealed changes related to the adaptive immune system, angiogenesis and host metabolic processes that are conducive to sustained viral production. Genes related to the adaptive immune response were downregulated in microglia cells, suggesting that ZIKV effectively evades the immune response after reaching the central nervous system. Like other viruses, ZIKV diverts host cell resources and reprograms the metabolic machinery to support RNA metabolism, ATP production and glycolysis. Consistent with these transcriptomic analyses, nucleoside metabolic inhibitors abrogated ZIKV replication in microglia cells.

  8. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases

    Directory of Open Access Journals (Sweden)

    Masaaki Nakayama

    2017-11-01

    Full Text Available Porphyromonas gingivalis (P. gingivalis is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR, also called HGP15, has the function of induction of interleukin-8 (IL-8 expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.

  9. Host T cells affect donor T cell engraftment and graft-versus-host disease after reduced-intensity hematopoietic stem cell transplantation.

    Science.gov (United States)

    Hardy, Nancy M; Hakim, Frances; Steinberg, Seth M; Krumlauf, Michael; Cvitkovic, Romana; Babb, Rebecca; Odom, Jeanne; Fowler, Daniel H; Gress, Ronald E; Bishop, Michael R

    2007-09-01

    Mixed chimerism in the T cell compartment (MCT) after reduced-intensity stem cell transplantation (RIST) may influence immune repopulation with alloreactive donor T cells. We examined effects of host T cell numbers on donor T cell engraftment and recovery and on acute graft-versus-host disease (aGVHD) in a relatively homogeneous patient population with respect to residual host T cells through quantified immune depletion prior to RIST and to donor T cells by setting the allograft T cell dose of 1x10(5) CD3+ cells/kg. In this setting, 2 patterns of early donor T cell engraftment could be distinguished by day +42: (1) early and complete donor chimerism in the T cell compartment (FDCT) and (2) persistent MCT. FDCT was associated with lower residual host CD8+ T cell counts prior to transplant and aGVHD. With persistent MCT, subsequent development of aGVHD could be predicted by the direction of change in T cell donor chimerism after donor lymphocyte infusion, and no aGVHD occurred until FDCT was established. MCT did not affect recovery of donor T cell counts. These observations suggest that the relative number and alloreactivity of donor and host T cells are more important than the absolute allograft T cell dose in determining donor engraftment and aGVHD after RIST.

  10. HumanViCe: Host ceRNA network in virus infected cells in human

    Directory of Open Access Journals (Sweden)

    Suman eGhosal

    2014-07-01

    Full Text Available Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA, is a widespread anti-viral defence strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need. The complex cross-talk between host and viral miRNAs and their cellular and viral targets forms the environment for viral pathogenesis. Apart from protein-coding mRNAs, non-coding RNAs may also be targeted by host or viral miRNAs in virus infected cells, and viruses can exploit the host miRNA mediated gene regulatory network via the competing endogenous RNA effect. A recent report showed that viral U-rich non-coding RNAs called HSUR, expressed in primate virus herpesvirus saimiri (HVS infected T cells, were able to bind to three host miRNAs, causing significant alteration in cellular level for one of the miRNAs. We have predicted protein coding and non protein-coding targets for viral and human miRNAs in virus infected cells. We identified viral miRNA targets within host non-coding RNA loci from AGO interacting regions in three different virus infected cells. Gene ontology (GO and pathway enrichment analysis of the genes comprising the ceRNA networks in the virus infected cells revealed enrichment of key cellular signalling pathways related to cell fate decisions and gene transcription, like Notch and Wnt signalling pathways, as well as pathways related to viral entry, replication and virulence. We identified a vast number of non-coding transcripts playing as potential ceRNAs to the immune response associated genes; e.g. APOBEC family genes, in some virus infected cells. All these information are compiled in HumanViCe, a comprehensive database that provides the potential ceRNA networks in virus

  11. Host Cell Factors as Antiviral Targets in Arenavirus Infection

    Directory of Open Access Journals (Sweden)

    Elsa B. Damonte

    2012-09-01

    Full Text Available Among the members of the Arenaviridae family, Lassa virus and Junin virus generate periodic annual outbreaks of severe human hemorrhagic fever (HF in endemic areas of West Africa and Argentina, respectively. Given the human health threat that arenaviruses represent and the lack of a specific and safe chemotherapy, the search for effective antiviral compounds is a continuous demanding effort. Since diverse host cell pathways and enzymes are used by RNA viruses to fulfill their replicative cycle, the targeting of a host process has turned an attractive antiviral approach in the last years for many unrelated virus types. This strategy has the additional benefit to reduce the serious challenge for therapy of RNA viruses to escape from drug effects through selection of resistant variants triggered by their high mutation rate. This article focuses on novel strategies to identify inhibitors for arenavirus therapy, analyzing the potential for antiviral developments of diverse host factors essential for virus infection.

  12. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells.

    Science.gov (United States)

    Domingues, Lia; Ismail, Ahmad; Charro, Nuno; Rodríguez-Escudero, Isabel; Holden, David W; Molina, María; Cid, Víctor J; Mota, Luís Jaime

    2016-07-01

    Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4-phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella-containing vacuole (SCV) and to Salmonella-induced tubules; using the PI(4)P-binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N-terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells. © 2015 John Wiley & Sons Ltd.

  13. Insights into the Staphylococcus aureus-host interface: global changes in host and pathogen gene expression in a rabbit skin infection model.

    Directory of Open Access Journals (Sweden)

    Natalia Malachowa

    Full Text Available Staphylococcus aureus is an important cause of human skin and soft tissue infections (SSTIs globally. Notably, 80% of all SSTIs are caused by S. aureus, of which ∼63% are abscesses and/or cellulitis. Although progress has been made, our knowledge of the host and pathogen factors that contribute to the pathogenesis of SSTIs is incomplete. To provide a more comprehensive view of this process, we monitored changes in the S. aureus transcriptome and selected host proinflammatory molecules during abscess formation and resolution in a rabbit skin infection model. Within the first 24 h, S. aureus transcripts involved in DNA repair, metabolite transport, and metabolism were up-regulated, suggesting an increase in the machinery encoding molecules involved in replication and cell division. There was also increased expression of genes encoding virulence factors, namely secreted toxins and fibronectin and/or fibrinogen-binding proteins. Of the host genes tested, we found that transcripts encoding IL-8, IL1β, oncostatin M-like, CCR1, CXCR1 (IL8RA, CCL4 (MIP-1β and CCL3 (MIP1α-like proteins were among the most highly up-regulated transcripts during S. aureus abscess formation. Our findings provide additional insight into the pathogenesis of S. aureus SSTIs, including a temporal component of the host response. These results serve as a springboard for future studies directed to better understand how/why mild or moderate SSTIs progress to invasive disease.

  14. SPOC1-mediated antiviral host cell response is antagonized early in human adenovirus type 5 infection.

    Directory of Open Access Journals (Sweden)

    Sabrina Schreiner

    Full Text Available Little is known about immediate phases after viral infection and how an incoming viral genome complex counteracts host cell defenses, before the start of viral gene expression. Adenovirus (Ad serves as an ideal model, since entry and onset of gene expression are rapid and highly efficient, and mechanisms used 24-48 hours post infection to counteract host antiviral and DNA repair factors (e.g. p53, Mre11, Daxx are well studied. Here, we identify an even earlier host cell target for Ad, the chromatin-associated factor and epigenetic reader, SPOC1, recently found recruited to double strand breaks, and playing a role in DNA damage response. SPOC1 co-localized with viral replication centers in the host cell nucleus, interacted with Ad DNA, and repressed viral gene expression at the transcriptional level. We discovered that this SPOC1-mediated restriction imposed upon Ad growth is relieved by its functional association with the Ad major core protein pVII that enters with the viral genome, followed by E1B-55K/E4orf6-dependent proteasomal degradation of SPOC1. Mimicking removal of SPOC1 in the cell, knock down of this cellular restriction factor using RNAi techniques resulted in significantly increased Ad replication, including enhanced viral gene expression. However, depletion of SPOC1 also reduced the efficiency of E1B-55K transcriptional repression of cellular promoters, with possible implications for viral transformation. Intriguingly, not exclusive to Ad infection, other human pathogenic viruses (HSV-1, HSV-2, HIV-1, and HCV also depleted SPOC1 in infected cells. Our findings provide a general model for how pathogenic human viruses antagonize intrinsic SPOC1-mediated antiviral responses in their host cells. A better understanding of viral entry and early restrictive functions in host cells should provide new perspectives for developing antiviral agents and therapies. Conversely, for Ad vectors used in gene therapy, counteracting mechanisms

  15. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    Science.gov (United States)

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu, Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Pöhlmann, Stefan

    2011-01-01

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S-activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation. PMID:21435673

  16. A Coevolutionary Arms Race between Hosts and Viruses Drives Polymorphism and Polygenicity of NK Cell Receptors.

    Science.gov (United States)

    Carrillo-Bustamante, Paola; Keşmir, Can; de Boer, Rob J

    2015-08-01

    Natural killer cell receptors (NKRs) monitor the expression of major histocompatibility class I (MHC-I) and stress molecules to detect unhealthy tissue, such as infected or tumor cells. The NKR gene family shows a remarkable genetic diversity, containing several genes encoding receptors with activating and inhibiting signaling, and varying in gene content and allelic polymorphism. The expansion of the NKR genes is species-specific, with different species evolving alternative expanded NKR genes, which encode structurally different proteins, yet perform comparable functions. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. To study the evolution of NKRs, we have developed an agent-based model implementing a coevolutionary scenario between hosts and herpes-like viruses that are able to evade the immune response by downregulating the expression of MHC-I on the cell surface. We show that hosts evolve specific inhibitory NKRs, specialized to particular MHC-I alleles in the population. Viruses in our simulations readily evolve proteins mimicking the MHC molecules of their host, even in the absence of MHC-I downregulation. As a result, the NKR locus becomes polygenic and polymorphic, encoding both specific inhibiting and activating receptors to optimally protect the hosts from coevolving viruses. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. MicroRNA profile analysis of host cells before and after wild human rotavirus infection.

    Science.gov (United States)

    Zhou, Yan; Wu, Jinyuan; Geng, Panpan; Kui, Xiang; Xie, Yuping; Zhang, Lei; Liu, Yaling; Yin, Na; Zhang, Guangming; Yi, Shan; Li, Hongjun; Sun, Maosheng

    2016-09-01

    Rotavirus infection is an important cause of acute gastroenteritis in children, but the interaction between rotavirus and host cells is not completely understood. We isolated a wildtype (wt) rotavirus strain, ZTR-68(P [8] G1), which is derived from an infant with diarrhea in southwest China in 2010. In this study, we investigated host cellular miRNA expression profiles changes in response to ZTR-68 in early stage of infection to investigate the role of miRNAs upon rotavirus infection. Differentially expressed miRNAs were identified by deep sequencing and qRT-PCR and the function of their targets predicted by Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. A total of 36 candidate miRNAs were identified. Comparative analysis indicated that 29 miRNAs were significantly down-regulated and 7 were up-regulated after infection. The data were provided contrasting the types of microRNAs in two different permissive cell lines (HT29 and MA104). The target assays results showed that mml-miR-7 and mml-miR-125a are involved in anti-rotavirus and virus-host interaction in host cells. These results offer clues for identifying potential candidates in vector-based antiviral strategies. J. Med. Virol. 88:1497-1510, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Exploring two plant hosts for expression of diterpenoid pathway genes

    DEFF Research Database (Denmark)

    Bach, Søren Spanner

    by humanity in biopharmaceuticals or as industrial bioproducts. Yields and purity of diterpenoids purified from natural sources or made by chemical synthesis are generally insufficient for large-volume or high-end applications, thus alternative sources are needed. Synthetic biology, where heterologous pathways....... Since only small changes in the amino acid sequence can influence the roduct outcome of a diterpene synthase (diTPS), prediction of the catalytic activity diTPS of a is not possible purely based on phylogenetic relationship. Thus, functional characterization is required in to determine the catalytic...... have been reconstructed in host production organisms is an attractive lternative, which holds the promise to enable a scalable, costeffective and table supply of natural products. Knowledge about the genes and mechanisms nvolved in the original pathway is a prerequisite for such heterologous production...

  19. Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra Sémont

    Full Text Available Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9 progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation.

  20. Recombinant host cells and media for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  1. Global impact of Salmonella type III secretion effector SteA on host cells

    Energy Technology Data Exchange (ETDEWEB)

    Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es

    2014-07-11

    Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. These systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.

  2. Expression and localization of aging markers in lacrimal gland of chronic graft-versus-host disease

    Science.gov (United States)

    Kawai, Masataka; Ogawa, Yoko; Shimmura, Shigeto; Ohta, Shigeki; Suzuki, Takanori; Kawamura, Naoshi; Kuwana, Masataka; Kawakami, Yutaka; Tsubota, Kazuo

    2013-08-01

    Aging is commonly defined as the accumulation of diverse deleterious changes in cells and tissues with advancing age. To investigate whether aging changes are involved in the lacrimal glands of chronic graft-versus-host disease (cGVHD) model mice, we obtained the specimens from cGVHD model mice, untreated aged and young mice, and examined by histopathology, and immunoblotting. Oxidative stress markers, 8-OHdG, 4-HNE, and hexonoyl lesion (HEL), and other aging markers, p16 and p38, were used to assess the samples. The infiltrating mononuclear cells and endothelia of capillaries in the cGVHD and aged mice expressed the oxidative stress markers and other aging markers, but not in the young mice. Histological changes and the expression of aging markers in the samples from cGVHD mice exhibited similar features to those in aging mice. These results suggest that changes that typically appear with advanced age occur earlier in the lives of mice with lacrimal gland cGVHD.

  3. The molecular basis for control of ETEC enterotoxin expression in response to environment and host.

    Directory of Open Access Journals (Sweden)

    James R J Haycocks

    2015-01-01

    Full Text Available Enterotoxigenic Escherichia coli (ETEC cause severe diarrhoea in humans and neonatal farm animals. Annually, 380,000 human deaths, and multi-million dollar losses in the farming industry, can be attributed to ETEC infections. Illness results from the action of enterotoxins, which disrupt signalling pathways that manage water and electrolyte homeostasis in the mammalian gut. The resulting fluid loss is treated by oral rehydration. Hence, aqueous solutions of glucose and salt are ingested by the patient. Given the central role of enterotoxins in disease, we have characterised the regulatory trigger that controls toxin production. We show that, at the molecular level, the trigger is comprised of two gene regulatory proteins, CRP and H-NS. Strikingly, this renders toxin expression sensitive to both conditions encountered on host cell attachment and the components of oral rehydration therapy. For example, enterotoxin expression is induced by salt in an H-NS dependent manner. Furthermore, depending on the toxin gene, expression is activated or repressed by glucose. The precise sensitivity of the regulatory trigger to glucose differs because of variations in the regulatory setup for each toxin encoding gene.

  4. Necroptosis: The Trojan Horse in Cell Autonomous Antiviral Host Defense

    OpenAIRE

    Mocarski, Edward S.; Guo, Hongyan; Kaiser, William J.

    2015-01-01

    Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to blocks apoptosis, an activity that unleashes necroptosis. Herpes s...

  5. The role of arginine and arginine-metabolizing enzymes during Giardia - host cell interactions in vitro.

    Science.gov (United States)

    Stadelmann, Britta; Hanevik, Kurt; Andersson, Mattias K; Bruserud, Oystein; Svärd, Staffan G

    2013-11-14

    Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. Giardia affects the host's arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy.

  6. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  7. Fibronectin-degrading activity of Trypanosoma cruzi cysteine proteinase plays a role in host cell invasion.

    Science.gov (United States)

    Maeda, Fernando Yukio; Cortez, Cristian; Izidoro, Mario Augusto; Juliano, Luiz; Yoshida, Nobuko

    2014-12-01

    Trypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. Using T. cruzi CL strain metacyclic forms, we investigated whether fibronectin bound to the parasites and affected target cell invasion. Fibronectin present in cell culture medium bound to metacyclic forms and was digested by cruzipain, the major T. cruzi cysteine proteinase. G strain, with negligible cruzipain activity, displayed a minimal fibronectin-degrading effect. Binding to fibronectin was mediated by gp82, the metacyclic stage-specific surface molecule implicated in parasite internalization. When exogenous fibronectin was present at concentrations higher than cruzipain can properly digest, or fibronectin expression was stimulated by treatment of epithelial HeLa cells with transforming growth factor beta, the parasite invasion was reduced. Treatment of HeLa cells with purified recombinant cruzipain increased parasite internalization, whereas the treatment of parasites with cysteine proteinase inhibitor had the opposite effect. Metacyclic trypomastigote entry into HeLa cells was not affected by anti-β1 integrin antibody but was inhibited by anti-fibronectin antibody. Overall, our results have indicated that the cysteine proteinase of T. cruzi metacyclic forms, through its fibronectin-degrading activity, is implicated in host cell invasion. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection.

    Science.gov (United States)

    Verplaetse, Emilie; Slamti, Leyla; Gohar, Michel; Lereclus, Didier

    2015-04-28

    Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host's death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. Bt is an entomopathogen found ubiquitously in the environment and is a widely used biopesticide. Studies performed at the population level suggest that the infection process of Bt includes three successive steps (virulence, necrotrophism, and sporulation) controlled by different regulators. This study aimed to determine how these phenotypes are activated at the

  9. Host Gene Expression Analysis in Sri Lankan Melioidosis Patients

    Science.gov (United States)

    2017-06-19

    leukocytes only provide insight in immune pathways regulated at mRNA level in circulating cells, hence we look to expand our future study on a proteomic...RM, Kunkel SL,White NJ, Griffin GE. Prolonged elevation of Interleukin8 and Interleukin6 concentration in plasma and of leukocyte Interleukin 8 mRNA

  10. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Directory of Open Access Journals (Sweden)

    An

    2015-07-01

    Full Text Available Namrata Anand,1 Rupinder K Kanwar,2 Mohan Lal Dubey,1 R K Vahishta,3 Rakesh Sehgal,1,* Anita K Verma,4 Jagat R Kanwar2,*1Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Molecular and Medical Research Strategic Research Centre, Faculty of Health, Deakin University, Geelong, VIC, Australia; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 4Nanobiotech Laboratory, Department of Zoology, Kirorimal College, University of Delhi, Delhi, India*These authors contributed equally to this workBackground: Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs and macrophages (human monocytic cell line-derived macrophages THP1 cells.Methods: Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections.Results: The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene

  11. Variation in RNA virus mutation rates across host cells.

    Directory of Open Access Journals (Sweden)

    Marine Combe

    2014-01-01

    Full Text Available It is well established that RNA viruses exhibit higher rates of spontaneous mutation than DNA viruses and microorganisms. However, their mutation rates vary amply, from 10(-6 to 10(-4 substitutions per nucleotide per round of copying (s/n/r and the causes of this variability remain poorly understood. In addition to differences in intrinsic fidelity or error correction capability, viral mutation rates may be dependent on host factors. Here, we assessed the effect of the cellular environment on the rate of spontaneous mutation of the vesicular stomatitis virus (VSV, which has a broad host range and cell tropism. Luria-Delbrück fluctuation tests and sequencing showed that VSV mutated similarly in baby hamster kidney, murine embryonic fibroblasts, colon cancer, and neuroblastoma cells (approx. 10(-5 s/n/r. Cell immortalization through p53 inactivation and oxygen levels (1-21% did not have a significant impact on viral replication fidelity. This shows that previously published mutation rates can be considered reliable despite being based on a narrow and artificial set of laboratory conditions. Interestingly, we also found that VSV mutated approximately four times more slowly in various insect cells compared with mammalian cells. This may contribute to explaining the relatively slow evolution of VSV and other arthropod-borne viruses in nature.

  12. The Contribution of the Airway Epithelial Cell to Host Defense.

    Science.gov (United States)

    Stanke, Frauke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  13. The Contribution of the Airway Epithelial Cell to Host Defense

    Directory of Open Access Journals (Sweden)

    Frauke Stanke

    2015-01-01

    Full Text Available In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  14. Advantages and Applications of CAR-Expressing Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Wolfgang eGlienke

    2015-02-01

    Full Text Available In contrast to donor T cells, natural killer (NK cells are known to mediate anti-cancer effects without the risk of inducing graft-versus-host disease (GvHD. In order to improve cytotoxicity against resistant cancer cells, auspicious efforts have been made with chimeric antigen receptor (CAR expressing T- and NK cells. These CAR-modified cells express antigen receptors against tumor-associated surface antigens, thus redirecting the effector cells and enhancing tumor-specific immunosurveillance. However, many cancer antigens are also expressed on healthy tissues, potentially leading to off tumor/ on target toxicity by CAR-engineered cells. In order to control such potentially severe side effects, the insertion of suicide genes into CAR-modified effectors can provide a means for efficient depletion of these cells. While CAR-expressing T cells have entered successfully clinical trials, experience with CAR-engineered NK cells is mainly restricted to pre-clinical investigations and predominantly to NK cell lines. In this review we summarize the data on CAR expressing NK cells focusing on the possible advantage using these short-lived effector cells and discuss the necessity of suicide switches. Furthermore, we address the compliance of such modified NK cells with regulatory requirements as a new field in cellular immunotherapy.

  15. Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology

    Science.gov (United States)

    Buchon, Nicolas

    2014-01-01

    ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556

  16. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-Vibrio symbiosis.

    Science.gov (United States)

    Heath-Heckman, Elizabeth A C; Peyer, Suzanne M; Whistler, Cheryl A; Apicella, Michael A; Goldman, William E; McFall-Ngai, Margaret J

    2013-04-02

    The symbiosis between the squid Euprymna scolopes and its luminous symbiont, Vibrio fischeri, is characterized by daily transcriptional rhythms in both partners and daily fluctuations in symbiont luminescence. In this study, we sought to determine whether symbionts affect host transcriptional rhythms. We identified two transcripts in host tissues (E. scolopes cry1 [escry1] and escry2) that encode cryptochromes, proteins that influence circadian rhythms in other systems. Both genes cycled daily in the head of the squid, with a pattern similar to that of other animals, in which expression of certain cry genes is entrained by environmental light. In contrast, escry1 expression cycled in the symbiont-colonized light organ with 8-fold upregulation coincident with the rhythms of bacterial luminescence, which are offset from the day/night light regime. Colonization of the juvenile light organ by symbionts was required for induction of escry1 cycling. Further, analysis with a mutant strain defective in light production showed that symbiont luminescence is essential for cycling of escry1; this defect could be complemented by presentation of exogenous blue light. However, blue-light exposure alone did not induce cycling in nonsymbiotic animals, but addition of molecules of the symbiont cell envelope to light-exposed animals did recover significant cycling activity, showing that light acts in synergy with other symbiont features to induce cycling. While symbiont luminescence may be a character specific to rhythms of the squid-vibrio association, resident microbial partners could similarly influence well-documented daily rhythms in other systems, such as the mammalian gut.

  17. Laser injury promotes migration and integration of retinal progenitor cells into host retina.

    Science.gov (United States)

    Jiang, Caihui; Klassen, Henry; Zhang, Xinmei; Young, Michael

    2010-06-04

    The migration and integration of grafted cells into diseased host tissue remains a critical challenge, particularly in the field of retinal progenitor cell (RPC) transplantation. It seems that natural physical barriers at the outer retina can impede the migration of grafted RPCs into the host retina. The purpose of this study was to investigate the integration and differentiation of murine RPCs transplanted into the subretinal space of mice with laser-induced damage to the outer retina. RPCs were harvested from the neural retinas of postnatal day 1 enhanced green fluorescent protein (GFP) mice. Retinal photocoagulation was performed using a diode laser. Two microl containing approximately 6x10(5) expanded RPCs in suspension were injected into the subretinal space of the recipient animals following laser treatment. Cell morphometry was performed to assess the integration of donor cells. Immunohistochemistry and western blot were performed on recipient retinas. Three weeks after transplantation, 1,158+/-320 cells per eye had migrated into the recipient outer nuclear layer (ONL). Most of these cells resided in the ONL around the retinal laser lesion. A subpopulation of these cells developed morphological features reminiscent of mature photoreceptors, expressed photoreceptor specific proteins including synaptic protein, and appeared to form synaptic connections with bipolar neurons. Retinal photocoagulation resulted in a significantly increased expression of matrix metalloproteinase-2 (MMP-2), MMP-9, and cluster differentiation 44 (CD44s), and a decreased expression of neurocan. Transplanted RPCs migrate and integrate into the laser-injured ONL where they differentiate into photoreceptors with morphological features reminiscent of mature photoreceptors, express synaptic protein, and appear to form synaptic connections with retinal bipolar neurons. Following retinal photocoagulation, the enhanced level of integration of grafted RPCs is partially associated with

  18. Ureaplasma parvum infection alters filamin a dynamics in host cells

    Directory of Open Access Journals (Sweden)

    Brown Mary B

    2011-04-01

    Full Text Available Abstract Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI, and complicated UTI. One protein that was perturbed by infection (filamin A was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1. BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01, which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection. Phosphorylation of filamin A occurs in response to various cell signaling cascades that regulate cell motility, differentiation, apoptosis and inflammation. Thus, this phenomenon may be a useful

  19. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  20. Broad-Host-Range Expression Reveals Native and Host Regulatory Elements That Influence Heterologous Antibiotic Production in Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Jia Jia Zhang

    2017-09-01

    Full Text Available Heterologous expression has become a powerful tool for studying microbial biosynthetic gene clusters (BGCs. Here, we extend the transformation-associated recombination cloning and heterologous expression platform for microbial BGCs to include Gram-negative proteobacterial expression hosts. Using a broad-host-range expression platform, we test the implicit assumption that biosynthetic pathways are more successfully expressed in more closely related heterologous hosts. Cloning and expression of the violacein BGC from Pseudoalteromonas luteoviolacea 2ta16 revealed robust production in two proteobacterial hosts, Pseudomonas putida KT2440 and Agrobacterium tumefaciens LBA4404, but very little production of the antibiotic in various laboratory strains of Escherichia coli, despite their closer phylogenetic relationship. We identified a nonclustered LuxR-type quorum-sensing receptor from P. luteoviolacea 2ta16, PviR, that increases pathway transcription and violacein production in E. coli by ∼60-fold independently of acyl-homoserine lactone autoinducers. Although E. coli harbors the most similar homolog of PviR identified from all of the hosts tested, overexpression of various E. coli transcription factors did not result in a statistically significant increase in violacein production, while overexpression of two A. tumefaciens PviR homologs significantly increased production. Thus, this work not only introduces a new genetic platform for the heterologous expression of microbial BGCs, it also challenges the assumption that host phylogeny is an accurate predictor of host compatibility.

  1. Influence of temperature on symptom expression, detection of host factors in virus infected Piper nigrum L.

    Science.gov (United States)

    Umadevi, P; Bhat, A I; Krishnamurthy, K S; Anandaraj, M

    2016-05-01

    Expression of symptoms in black pepper plants (Piper nigrum) infected with Piper yellow mottle virus (PYMoV) vary depending on the season, being high during summer months. Here, we explored the influence of temperature on symptom expression in PYMoV infected P. nigrum. Our controlled environment study revealed increase in virus titer, total proteins, IAA and reducing sugars when exposed to temperature stress. There was change in the 2-D separated protein before and after exposure. The 2-D proteomics LC-MS identified host and viral proteins suggesting virus-host interaction during symptom expression. The analysis as well as detection of host biochemical compounds may help in understanding the detailed mechanisms underlying the viral replication and damage to the crop, and thereby plan management strategies.

  2. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes.

    Science.gov (United States)

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.

  3. Differential expression of immune defences is associated with specific host-parasite interactions in insects.

    Directory of Open Access Journals (Sweden)

    Carolyn Riddell

    2009-10-01

    Full Text Available Recent ecological studies in invertebrates show that the outcome of an infection is dependent on the specific pairing of host and parasite. Such specificity contrasts the long-held view that invertebrate innate immunity depends on a broad-spectrum recognition system. An important question is whether this specificity is due to the immune response rather than some other interplay between host and parasite genotypes. By measuring the expression of putative bumblebee homologues of antimicrobial peptides in response to infection by their gut trypanosome Crithidia bombi, we demonstrate that expression differences are associated with the specific interactions.

  4. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Ludovic Tailleux

    2008-01-01

    Full Text Available Transcriptional profiling using microarrays provides a unique opportunity to decipher host pathogen cross-talk on the global level. Here, for the first time, we have been able to investigate gene expression changes in both Mycobacterium tuberculosis, a major human pathogen, and its human host cells, macrophages and dendritic cells.In addition to common responses, we could identify eukaryotic and microbial transcriptional signatures that are specific to the cell type involved in the infection process. In particular M. tuberculosis shows a marked stress response when inside dendritic cells, which is in accordance with the low permissivity of these specialized phagocytes to the tubercle bacillus and to other pathogens. In contrast, the mycobacterial transcriptome inside macrophages reflects that of replicating bacteria. On the host cell side, differential responses to infection in macrophages and dendritic cells were identified in genes involved in oxidative stress, intracellular vesicle trafficking and phagosome acidification.This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments.

  5. Shiga Toxins: Intracellular Trafficking to the ER Leading to Activation of Host Cell Stress Responses

    Directory of Open Access Journals (Sweden)

    Moo-Seung Lee

    2010-06-01

    Full Text Available Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.

  6. The Survival Strategies of Malaria Parasite in the Red Blood Cell and Host Cell Polymorphisms

    Directory of Open Access Journals (Sweden)

    Gunanidhi Dhangadamajhi

    2010-01-01

    Full Text Available Parasite growth within the erythrocyte causes dramatic alterations of host cell which on one hand facilitates nutrients acquisition from extracellular environment and on other hand contributes to the symptoms of severe malaria. The current paper focuses on interactions between the Plasmodium parasite and its metabolically highly reduced host cell, the natural selection of numerous polymorphisms in the genes encoding hemoglobin and other erythrocyte proteins.

  7. Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection

    Energy Technology Data Exchange (ETDEWEB)

    Nakayasu, Ernesto S.; Tempel, Rebecca; Cambronne, Xiaolu A.; Petyuk, Vladislav A.; Jones, Marcus B.; Gritsenko, Marina A.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2013-09-22

    Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared to the wild type parent strain. To elucidate the cellular signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin (TTP), a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of TTP, leading to the production of cytokines such as IL-1beta and TNF-alpha which may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that controls infection by this pathogen.

  8. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    Science.gov (United States)

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Peptide Nucleic Acid Knockdown and Intra-host Cell Complementation of Ehrlichia Type IV Secretion System Effector.

    Science.gov (United States)

    Sharma, Pratibha; Teymournejad, Omid; Rikihisa, Yasuko

    2017-01-01

    Survival of Ehrlichia chaffeensis depends on obligatory intracellular infection. One of the barriers to E. chaffeensis research progress has been the inability, using conventional techniques, to generate knock-out mutants for genes essential for intracellular infection. This study examined the use of Peptide Nucleic Acids (PNAs) technology to interrupt type IV secretion system (T4SS) effector protein expression in E. chaffeensis followed by intracellular complementation of the effector to determine its requirement for infection. Successful E. chaffeensis infection depends on the E. chaffeensis-specific T4SS protein effector, ehrlichial translocated factor-1 (Etf-1), which induces Rab5-regulated autophagy to provide host cytosolic nutrients required for E. chaffeensis proliferation. Etf-1 is also imported by host cell mitochondria where it inhibits host cell apoptosis to prolong its infection. We designed a PNA specific to Etf-1 and showed that the PNA bound to the target region of single-stranded Etf-1 RNA using a competitive binding assay. Electroporation of E. chaffeensis with this PNA significantly reduced Etf-1 mRNA and protein, and the bacteria's ability to induce host cell autophagy and infect host cells. Etf-1 PNA-mediated inhibition of ehrlichial Etf-1 expression and E. chaffeensis infection could be intracellularly trans-complemented by ectopic expression of Etf-1-GFP in host cells. These data affirmed the critical role of bacterial T4SS effector in host cell autophagy and E. chaffeensis infection, and demonstrated the use of PNA to analyze the gene functions of obligate intracellular bacteria.

  10. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells

    Science.gov (United States)

    Fujiwara, Nagatoshi; Maeda, Shinji; Naka, Takashi; Taniguchi, Hatsumi; Yamamoto, Saburo; Ayata, Minoru

    2015-01-01

    Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells. PMID:25970481

  11. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells.

    Directory of Open Access Journals (Sweden)

    Nagatoshi Fujiwara

    Full Text Available Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc(2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402 correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc(2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc(2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells.

  12. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds.

    Directory of Open Access Journals (Sweden)

    Daniel P Depledge

    2009-07-01

    Full Text Available Genome sequencing of Leishmania species that give rise to a range of disease phenotypes in the host has revealed highly conserved gene content and synteny across the genus. Only a small number of genes are differentially distributed between the three species sequenced to date, L. major, L. infantum and L. braziliensis. It is not yet known how many of these genes are expressed in the disease-promoting intracellular amastigotes of these species or whether genes conserved between the species are differentially expressed in the host.We have used customised oligonucleotide microarrays to confirm that all of the differentially distributed genes identified by genome comparisons are expressed in intracellular amastigotes, with only a few of these subject to regulation at the RNA level. In the first large-scale study of gene expression in L. braziliensis, we show that only approximately 9% of the genes analysed are regulated in their RNA expression during the L. braziliensis life cycle, a figure consistent with that observed in other Leishmania species. Comparing amastigote gene expression profiles between species confirms the proposal that Leishmania transcriptomes undergo little regulation but also identifies conserved genes that are regulated differently between species in the host. We have also investigated whether host immune competence influences parasite gene expression, by comparing RNA expression profiles in L. major amastigotes derived from either wild-type (BALB/c or immunologically compromised (Rag2(-/- gamma(c (-/- mice. While parasite dissemination from the site of infection is enhanced in the Rag2(-/- gamma(c (-/- genetic background, parasite RNA expression profiles are unperturbed.These findings support the hypothesis that Leishmania amastigotes are pre-adapted for intracellular survival and undergo little dynamic modulation of gene expression at the RNA level. Species-specific parasite factors contributing to virulence and pathogenicity

  13. β2-agonists promote host defense against bacterial infection in primary human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Weinberger Andrew R

    2010-05-01

    Full Text Available Abstract Background Airway epithelial cells are critical in host defense against bacteria including Mycoplasma pneumoniae (Mp in chronic obstructive pulmonary disease (COPD and asthma. β2-agonists are mainstay of COPD and asthma therapy, but whether β2-agonists directly affect airway epithelial host defense functions is unclear. Methods Epithelial cells from bronchial brushings of normal (n = 8, asthma (n = 8 and COPD (n = 8 subjects were grown in air-liquid interface cultures, and treated with cigarette smoke extract (CSE and/or Th2 cytokine IL-13, followed by Mp infection and treatment with β2-agonists albuterol and formoterol for up to seven days. Mp and host defense proteins short palate, lung, and nasal epithelial clone 1 (SPLUNC1 and β-defensin-2 were quantified. Expression of β2-adrenergic receptors was also measured by real-time quantitative RT-PCR. Results (R- or racemic albuterol and (R,R- or racemic formoterol significantly decreased Mp levels in normal and asthma epithelial cells. Normal cells treated with Mp and (R- or racemic albuterol showed an increase in SPLUNC1, but not in β-defensin-2. COPD cells did not respond to drug treatment with a significant decrease in Mp or an increase in SPLUNC1. IL-13 attenuated drug effects on Mp, and markedly decreased SPLUNC1 and β2-adrenergic receptors. Conclusions These results for the first time show that β2-agonists enhance host defense functions of primary bronchial epithelial cells from normal and asthma subjects, which is attenuated by IL-13.

  14. Drosophila Microbiota Modulates Host Metabolic Gene Expression via IMD/NF-κB Signaling

    Science.gov (United States)

    Bozonnet, Noémie; Puthier, Denis; Royet, Julien; Leulier, François

    2014-01-01

    Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome. Our results demonstrate that Drosophila microbiota has a marked impact on the midgut transcriptome and promotes the expression of genes involved in host digestive functions and primary metabolism. We identify the IMD/Relish signaling pathway as a central regulator of this microbiota-mediated transcriptional response and we reveal a marked transcriptional trade-off between the midgut response to its beneficial microbiota and to bacterial pathogens. Taken together our results indicate that microbiota association potentiates host nutrition and host metabolic state, two key physiological parameters influencing host fitness. Our work paves the way to subsequent mechanistic studies to reveal how these microbiota-dependent transcriptional signatures translate into host physiological benefits. PMID:24733183

  15. Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Brogaard, Louise; Schou, Kirstine Klitgaard; Heegaard, Peter M. H.

    2015-01-01

    4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism......, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings...... mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. Results: Host and pathogen responses...

  16. [Cell-host-parasite interactions: biodiversity, pathogenesis, environment].

    Science.gov (United States)

    Villena, I; Aubert, D; Pinon, J-M

    2006-03-01

    The apicomplexan Toxoplasma gondii, an obligate intracellular parasite, can infect humans and a wide range of vertebrates leading to toxoplasmosis. This generally benign affection can causes severe life-threatening disease, particularly in immunocompromised patients and in children with congenital toxoplasmosis. Our research team works on cell-host-parasite interactions by studying biodiversity, pathogenic mechanisms and environment. We search to identify prognostic factors of disease and markers of resistance. This project is an integral part of our Research Institute (IFR53) which receives support from the Toxoplasma Biological Resource Center for constituting a bank of well characterized toxoplasma isolates for genotyping, clinical and epidemiological data. The involvement of metalloproteinases implicated during monocytic cell invasion and identification of ABC transporter proteins in T. gondii, factors implicated in resistance, need to be explored.

  17. Dynamic flux of microvesicles modulate parasite-host cell interaction of Trypanosoma cruzi in eukaryotic cells.

    Science.gov (United States)

    Ramirez, M I; Deolindo, P; de Messias-Reason, I J; Arigi, Emma A; Choi, H; Almeida, I C; Evans-Osses, I

    2017-04-01

    Extracellular vesicles released from pathogens may alter host cell functions. We previously demonstrated the involvement of host cell-derived microvesicles (MVs) during early interaction between Trypanosoma cruzi metacyclic trypomastigote (META) stage and THP-1 cells. Here, we aim to understand the contribution of different parasite stages and their extracellular vesicles in the interaction with host cells. First, we observed that infective host cell-derived trypomastigote (tissue culture-derived trypomastigote [TCT]), META, and noninfective epimastigote (EPI) stages were able to induce different levels of MV release from THP-1 cells; however, only META and TCT could increase host cell invasion. Fluorescence resonance energy transfer microscopy revealed that THP-1-derived MVs can fuse with parasite-derived MVs. Furthermore, MVs derived from the TCT-THP-1 interaction showed a higher fusogenic capacity than those from META- or EPI-THP-1 interaction. However, a higher presence of proteins from META (25%) than TCT (12%) or EPI (5%) was observed in MVs from parasite-THP-1 interaction, as determined by proteomics. Finally, sera from patients with chronic Chagas disease at the indeterminate or cardiac phase differentially recognized antigens in THP-1-derived MVs resulting only from interaction with infective stages. The understanding of intracellular trafficking and the effect of MVs modulating the immune system may provide important clues about Chagas disease pathophysiology. © 2016 John Wiley & Sons Ltd.

  18. Expression of Serum microRNAs is Altered During Acute Graft-versus-Host Disease.

    Science.gov (United States)

    Crossland, Rachel E; Norden, Jean; Juric, Mateja Kralj; Green, Kile; Pearce, Kim F; Lendrem, Clare; Greinix, Hildegard T; Dickinson, Anne M

    2017-01-01

    Acute graft-versus-host disease (aGvHD) is the most frequent and serious complication following hematopoietic stem cell transplantation (HSCT), with a high mortality rate. A clearer understanding of the molecular pathogenesis may allow for improved therapeutic options or guide personalized prophylactic protocols. Circulating microRNAs are expressed in body fluids and have recently been associated with the etiology of aGvHD, but global expression profiling in a HSCT setting is lacking. This study profiled expression of n  = 799 mature microRNAs in patient serum, using the NanoString platform, to identify microRNAs that showed altered expression at aGvHD diagnosis. Selected microRNAs ( n  = 10) were replicated in independent cohorts of serum samples taken at aGvHD diagnosis ( n  = 42) and prior to disease onset (day 14 post-HSCT, n  = 47) to assess their prognostic potential. Sera from patients without aGvHD were used as controls. Differential microRNAs were investigated in silico for predicted networks and mRNA targets. Expression analysis identified 61 microRNAs that were differentially expressed at aGvHD diagnosis. miR-146a ( p  = 0.03), miR-30b-5p ( p  = 0.007), miR-374-5p ( p  = 0.02), miR-181a ( p  = 0.03), miR-20a ( p  = 0.03), and miR-15a ( p  = 0.03) were significantly verified in an independent cohort ( n  = 42). miR-146a ( p  = 0.01), miR-20a ( p  = 0.03), miR-18 ( p  = 0.03), miR-19a ( p  = 0.03), miR-19b ( p  = 0.01), and miR-451 ( p  = 0.01) were differentially expressed 14 days post-HSCT in patients who later developed aGvHD ( n  = 47). High miR-19b expression was associated with improved overall survival (OS) ( p  = 0.008), whereas high miR-20a and miR-30b-5p were associated with lower rates of non-relapse mortality ( p  = 0.05 and p  = 0.008) and improved OS ( p  = 0.016 and p  = 0.021). Pathway analysis associated the candidate microRNAs with hematological

  19. Streptococcus pneumoniae Infection of Host Epithelial Cells via Polymeric Immunoglobulin Receptor Transiently Induces Calcium Release from Intracellular Stores*

    Science.gov (United States)

    Asmat, Tauseef M.; Agarwal, Vaibhav; Räth, Susann; Hildebrandt, Jan-Peter; Hammerschmidt, Sven

    2011-01-01

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca2+]i) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca2+]i from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca2+]i was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca2+]i. In addition, we demonstrated the effect of [Ca2+]i on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca2+-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ATPase, which increases [Ca2+]i in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca2+]i from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial internalization by host epithelial

  20. Streptococcus pneumoniae infection of host epithelial cells via polymeric immunoglobulin receptor transiently induces calcium release from intracellular stores.

    Science.gov (United States)

    Asmat, Tauseef M; Agarwal, Vaibhav; Räth, Susann; Hildebrandt, Jan-Peter; Hammerschmidt, Sven

    2011-05-20

    The pneumococcal surface protein C (PspC) is a major adhesin of Streptococcus pneumoniae (pneumococci) that interacts in a human-specific manner with the ectodomain of the human polymeric immunoglobulin receptor (pIgR) produced by respiratory epithelial cells. This interaction promotes bacterial colonization and bacterial internalization by initiating host signal transduction cascades. Here, we examined alterations of intracellular calcium ([Ca(2+)](i)) levels in epithelial cells during host cell infections with pneumococci via the PspC-hpIgR mechanism. The release of [Ca(2+)](i) from intracellular stores in host cells was significantly increased by wild-type pneumococci but not by PspC-deficient pneumococci. The increase in [Ca(2+)](i) was dependent on phospholipase C as pretreatment of cells with a phospholipase C-specific inhibitor U73122 abolished the increase in [Ca(2+)](i). In addition, we demonstrated the effect of [Ca(2+)](i) on pneumococcal internalization by epithelial cells. Uptake of pneumococci was significantly increased after pretreatment of epithelial cells with the cell-permeable calcium chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid-tetraacetoxymethyl ester or use of EGTA as an extracellular Ca(2+)-chelating agent. In contrast, thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+)ATPase, which increases [Ca(2+)](i) in a sustained fashion, significantly reduced pIgR-mediated pneumococcal invasion. Importantly, pneumococcal adherence to pIgR-expressing cells was not altered in the presence of inhibitors as demonstrated by immunofluorescence microscopy. In conclusion, these results demonstrate that pneumococcal infections induce mobilization of [Ca(2+)](i) from intracellular stores. This may constitute a defense response of host cells as the experimental reduction of intracellular calcium levels facilitates pneumococcal internalization by pIgR-expressing cells, whereas elevated calcium levels diminished bacterial

  1. Fierce Competition between Toxoplasma and Chlamydia for Host Cell Structures in Dually Infected Cells

    Science.gov (United States)

    Romano, Julia D.; de Beaumont, Catherine; Carrasco, Jose A.; Ehrenman, Karen; Bavoil, Patrik M.

    2013-01-01

    The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen's benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients. PMID:23243063

  2. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection

    Science.gov (United States)

    Elahi, Shokrollah; Ertelt, James M.; Kinder, Jeremy M.; Jiang, Tony T.; Zhang, Xuzhe; Xin, Lijun; Chaturvedi, Vandana; Strong, Beverly S.; Qualls, Joseph E.; Steinbrecher, Kris A.; Kalfa, Theodosia A.; Shaaban, Aimen F.; Way, Sing Sing

    2013-12-01

    Newborn infants are highly susceptible to infection. This defect in host defence has generally been ascribed to the immaturity of neonatal immune cells; however, the degree of hyporesponsiveness is highly variable and depends on the stimulation conditions. These discordant responses illustrate the need for a more unified explanation for why immunity is compromised in neonates. Here we show that physiologically enriched CD71+ erythroid cells in neonatal mice and human cord blood have distinctive immunosuppressive properties. The production of innate immune protective cytokines by adult cells is diminished after transfer to neonatal mice or after co-culture with neonatal splenocytes. Neonatal CD71+ cells express the enzyme arginase-2, and arginase activity is essential for the immunosuppressive properties of these cells because molecular inhibition of this enzyme or supplementation with L-arginine overrides immunosuppression. In addition, the ablation of CD71+ cells in neonatal mice, or the decline in number of these cells as postnatal development progresses parallels the loss of suppression, and restored resistance to the perinatal pathogens Listeria monocytogenes and Escherichia coli. However, CD71+ cell-mediated susceptibility to infection is counterbalanced by CD71+ cell-mediated protection against aberrant immune cell activation in the intestine, where colonization with commensal microorganisms occurs swiftly after parturition. Conversely, circumventing such colonization by using antimicrobials or gnotobiotic germ-free mice overrides these protective benefits. Thus, CD71+ cells quench the excessive inflammation induced by abrupt colonization with commensal microorganisms after parturition. This finding challenges the idea that the susceptibility of neonates to infection reflects immune-cell-intrinsic defects and instead highlights processes that are developmentally more essential and inadvertently mitigate innate immune protection. We anticipate that these

  3. Lactobacilli inhibit Shigella dysenteriae 1 induced pro-inflammatory response and cytotoxicity in host cells via impediment of Shigella-host interactions.

    Science.gov (United States)

    Moorthy, G; Murali, M R; Niranjali Devaraj, S

    2010-01-01

    Shigella dysenteriae Type 1 dysentery is a major cause of morbidity and mortality in children from less developed and developing countries. The present study explores the hypothesis that lactobacilli protect the host cell during S. dysenteriae Type 1 infection and its mechanism of action. Caco-2 cells incubated for 1h with Lactobacillus rhamnosus or Lactobacillus acidophilus at the multiplicity of infection of 100, either alone or in combination followed by addition of Shigella at the same multiplicity of infection for 5h served as treatment groups. Cells incubated with Shigella without lactobacilli addition served as infected cells. At the end of experimental period, cells were processed suitably to enumerate adherent and internalized Shigella. Reverse transcription-polymerase chain reaction was performed to assess mRNA expression of interleukin-8 and tumour necrosis factor-alpha. Immunoblot for heat shock protein-70 and cytotoxicity assay were performed. Pretreatment with the combination of lactobacilli significantly (pShigella coupled with reduced expression of tumour necrosis factor-alpha and interleukin-8 in host cells. L. rhamnosus and L. acidophilus, synergistically offered better protection during S. dysenteriae Type 1 infection by efficiently inhibiting adherence and internalization of Shigella coupled with inhibition of pro-inflammatory response. Copyright (c) 2009 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  4. Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes.

    Science.gov (United States)

    Bitra, Kavita; Burke, Gaelen R; Strand, Michael R

    2016-05-01

    Polydnaviruses in the genus Bracovirus (BV) are associated with parasitoid wasps in the family Braconidae. BV-carrying wasps rely on their associated viruses to parasitize permissive hosts but also occasionally oviposit into host species that are non-permissive. Here, we studied Microplitis demolitor and M. demolitor bracovirus (MdBV) in Chrysodeixis includens, a permissive host, and Trichoplusia ni, which is usually non-permissive. M. demolitor laid eggs and injected MdBV into both hosts but almost no wasp offspring developed in T. ni. MdBV DNA similarly persisted in both host species, but deep sequencing data showed that transcript abundance for most viral genes was higher in C. includens than T. ni. Overall, our results identify lower expression of MdBV genes as an important factor in the non-permissiveness of T. ni. However, certain genes with functions in immunosuppression were sufficiently expressed to have similar effect in T. ni and C. includens. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Claudia U Duerr

    2009-09-01

    Full Text Available Although Toll-like receptor (TLR 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs. Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S. Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella.

  6. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  7. Serial analysis of gene expression (SAGE) of host-plant resistance to the cassava mosaic disease (CMD).

    Science.gov (United States)

    Fregene, M; Matsumura, H; Akano, A; Dixon, A; Terauchi, R

    2004-11-01

    Cassava mosaic disease (CMD) is a viral disease of the important tropical staple crop cassava (Manihot esculenta) and preferred management involves use of host-plant resistance. The best available resistance is controlled by a single dominant gene. Serial analysis of gene expression (SAGE) was used to analyze the gene expression pattern in a bulk of 40 each of CMD resistant and susceptible genotypes drawn from a gene mapping progeny. Messenger RNA used for the SAGE analysis came from plants that were exposed to heavy disease pressure over a period of 2 years in the field. A total of 12,786 tags were studied, divided into 5733 and 7053 tags from the resistant and susceptible genotypes, respectively. Tag annotation was by PCR amplification using the tag sequence as sense primer and 4000 cassava ESTs generated from the bulk of CMD resistant genotypes. Annotation of more than 30 differentially expressed tags revealed several genes expressed during systemic acquired resistance (SAR) in plants and other genes involved in cell-to-cell and cytoplasm-to-nucleus virus trafficking. Differential expression of the most abundantly expressed tag, corresponding to a beta-tubulin gene, was confirmed by Northern Analysis. RFLP analysis of the tags in the parents and bulks of the CMD mapping progeny revealed only one tag, a WRKY transcription factor, associated with the region bearing the dominant CMD gene.

  8. HCMV Induces Macropinocytosis for Host Cell Entry in Fibroblasts.

    Science.gov (United States)

    Hetzenecker, Stefanie; Helenius, Ari; Krzyzaniak, Magdalena Anna

    2016-04-01

    Human cytomegalovirus (HCMV) is an important and widespread pathogen in the human population. While infection by this β-herpesvirus in endothelial, epithelial and dendritic cells depends on endocytosis, its entry into fibroblasts is thought to occur by direct fusion of the viral envelope with the plasma membrane. To characterize individual steps during entry in primary human fibroblasts, we employed quantitative assays as well as electron, fluorescence and live cell microscopy in combination with a variety of inhibitory compounds. Our results showed that while infectious entry was pH- and clathrin-independent, it required multiple, endocytosis-related factors and processes. The virions were found to undergo rapid internalization into large vacuoles containing internalized fluid and endosome markers. The characteristics of the internalization process fulfilled major criteria for macropinocytosis. Moreover, we found that soon after addition to fibroblasts the virus rapidly triggered the formation of circular dorsal ruffles in the host cell followed by the generation of large macropinocytic vacuoles. This distinctive form of macropinocytosis has been observed especially in primary cells but has not previously been reported in response to virus stimulation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Host nuclear abnormalities and depletion of nuclear antigens induced in Trichinella spiralis-infected muscle cells by the anthelmintic mebendazole.

    Science.gov (United States)

    Yao, C; Bohnet, S; Jasmer, D P

    1998-10-30

    Infection by the parasitic nematode Trichinella spiralis induces cell cycle repositioning (chronic suspension in apparent G2/M) and genetic reprogramming in differentiated mammalian skeletal muscle cells. These changes occur in association with dramatic enlargement of infected host cell nuclei (as large as 17 microm in diameter) and nucleoli. Nuclear antigens (NA) that colocalize with host chromatin have been detected by antibodies to T. spiralis antigens, but the functions of these NA are unresolved. Mebendazole (MBZ) preferentially binds parasite versus host beta-tubulins, is implicated in inhibiting secretion in nematodes and induces cytoplasmic changes in muscle cells infected with T. spiralis. These infected cell changes might be indirect via MBZ inhibition of parasite secretions. This effect would have implications for host/parasite interactions and was evaluated here. MBZ treatment of chronically infected mice caused: (1) a significant deformation of host nuclei and diminution of nucleoli by 4 and 6 days of treatment (dot), respectively; (2) a reduction of nuclear lamins A/C in infected cell nuclei that was concomitant with nuclear deformation; and (3) significant reductions in total RNA, general protein and acid phosphatase activity levels. These changes were associated with the depletion of NA from host nuclei detected by 4 dot. However, DNA content of infected cell nuclei was not detectably reduced and muscle gene expression was not reactivated. The cellular changes documented are likely to account for previously described cytoplasmic alterations induced by MBZ. Concomitant depletion of NA from infected cell nuclei suggests a role of these products in regulating nuclear functions of host cells.

  10. Staphylococcal Adhesion and Host Cell Invasion: Fibronectin-Binding and Other Mechanisms

    Directory of Open Access Journals (Sweden)

    Jérôme Josse

    2017-12-01

    Full Text Available Opportunistic bacteria from the genus Staphylococcus can cause life-threatening infections such as pneumonia, endocarditis, bone and joint infections, and sepsis. This pathogenicity is closely related to their capacity to bind directly to the extracellular matrix or to host cells. Adhesion is indeed the first step in the formation of biofilm or the invasion of host cells, which protect the bacteria from the host immune system and facilitate chronic infection. Adhesion relies on the expression of a repertoire of surface proteins called adhesins, notably microbial surface components recognizing adhesive matrix molecules. In this short review, we discuss the main pathway (FnBP-Fn-α5β1 integrin, as well as alternatives, through which Staphylococcus aureus adheres to and then invades non-professional phagocytic cells. We then examine the corresponding mechanisms for coagulase negative staphylococci. There is currently a little understanding of the molecular mechanisms that lead to internalization. Filling this gap in the literature would therefore be an important step toward limiting the duration of staphylococci infections in clinical practice.

  11. Steroid Receptor Coactivator 3 Contributes to Host Defense against Enteric Bacteria by Recruiting Neutrophils via Upregulation of CXCL2 Expression.

    Science.gov (United States)

    Chen, Wenbo; Lu, Xuqiang; Chen, Yuan; Li, Ming; Mo, Pingli; Tong, Zhangwei; Wang, Wei; Wan, Wei; Su, Guoqiang; Xu, Jianming; Yu, Chundong

    2017-02-15

    Steroid receptor coactivator 3 (SRC-3) is a transcriptional coactivator that interacts with nuclear receptors and some other transcription factors to enhance their effects on target gene transcription. We reported previously that SRC-3-deficient (SRC-3(-/-)) mice are extremely susceptible to Escherichia coli-induced septic peritonitis as a result of uncontrolled inflammation and a defect in bacterial clearance. In this study, we observed significant upregulation of SRC-3 in colonic epithelial cells in response to Citrobacter rodentium infection. Based on these findings, we hypothesized that SRC-3 is involved in host defense against attaching and effacing bacterial infection. We compared the responses of SRC-3(-/-) and wild-type mice to intestinal C. rodentium infection. We found that SRC-3(-/-) mice exhibited delayed clearance of C. rodentium and more severe tissue pathology after oral infection with C. rodentium compared with wild-type mice. SRC-3(-/-) mice expressed normal antimicrobial peptides in the colons but exhibited delayed recruitment of neutrophils into the colonic mucosa. Accordingly, SRC-3(-/-) mice showed a delayed induction of CXCL2 and CXCL5 in colonic epithelial cells, which are responsible for neutrophil recruitment. At the molecular level, we found that SRC-3 can activate the NF-κB signaling pathway to promote CXCL2 expression at the transcriptional level. Collectively, we show that SRC-3 contributes to host defense against enteric bacteria, at least in part via upregulating CXCL2 expression to recruit neutrophils. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Modulation of cell sialoglycophenotype: a stylish mechanism adopted by Trypanosoma cruzi to ensure its persistence in the infected host

    Directory of Open Access Journals (Sweden)

    Leonardo eFreire-de-Lima

    2016-05-01

    Full Text Available Trypanosoma cruzi, the etiological agent of Chagas disease exhibits multiple mechanisms to guarantee its establishment and persistence in the infected host. It has been well demonstrated that T. cruzi is not able to synthesize sialic acids (Sia. To acquire the monosaccharide, the parasite makes use of a multifunctional enzyme called trans-sialidase (Tc-TS. Since this enzyme has no analogous in the vertebrate host, it has been used as a target in drug therapy development. Tc-TS preferentially catalyzes the transfer of Sia from the host glycoconjugates to the terminal β-galactopyranosyl residues of mucin-like molecules present on the parasite's cell surface. Alternatively, the enzyme can sialylate/re-sialylate glycoconjugates expressed on the surface of host cells. Since its discovery, several studies have shown that T. cruzi employs the Tc-TS activity to modulate the host cell sialoglycophenotype, thus favoring its perpetuation in the infected vertebrate. In this review, we summarize the dynamic of host/parasite sialylglycophenotype modulation, highlighting its role in the subversion of host immune response in order to promote the establishment of persistent chronic infection.

  13. Whitefly genome expression reveals host-symbiont interaction in amino acid biosynthesis.

    Science.gov (United States)

    Upadhyay, Santosh Kumar; Sharma, Shailesh; Singh, Harpal; Dixit, Sameer; Kumar, Jitesh; Verma, Praveen C; Chandrashekar, K

    2015-01-01

    Whitefly (Bemisia tabaci) complex is a serious insect pest of several crop plants worldwide. It comprises several morphologically indistinguishable species, however very little is known about their genetic divergence and biosynthetic pathways. In the present study, we performed transcriptome sequencing of Asia 1 species of B. tabaci complex and analyzed the interaction of host-symbiont genes in amino acid biosynthetic pathways. We obtained about 83 million reads using Illumina sequencing that assembled into 72716 unitigs. A total of 21129 unitigs were annotated at stringent parameters. Annotated unitigs were mapped to 52847 gene ontology (GO) terms and 131 Kyoto encyclopedia of genes and genomes (KEGG) pathways. Expression analysis of the genes involved in amino acid biosynthesis pathways revealed the complementation between whitefly and its symbiont partner Candidatus Portiera aleyrodidarum. Most of the non-essential amino acids and intermediates of essential amino acid pathways were supplied by the host insect to its symbiont. The symbiont expressed the pathways for the essential amino acids arginine, threonine and tryptophan and the immediate precursors of valine, leucine, isoleucine and phenyl-alanine. High level expression of the amino acid transporters in the whitefly suggested the molecular mechanisms for the exchange of amino acids between the host and the symbiont. Our study provides a comprehensive transcriptome data for Asia 1 species of B. tabaci complex that focusses light on integration of host and symbiont genes in amino acid biosynthesis pathways.

  14. Whitefly genome expression reveals host-symbiont interaction in amino acid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Upadhyay

    Full Text Available Whitefly (Bemisia tabaci complex is a serious insect pest of several crop plants worldwide. It comprises several morphologically indistinguishable species, however very little is known about their genetic divergence and biosynthetic pathways. In the present study, we performed transcriptome sequencing of Asia 1 species of B. tabaci complex and analyzed the interaction of host-symbiont genes in amino acid biosynthetic pathways.We obtained about 83 million reads using Illumina sequencing that assembled into 72716 unitigs. A total of 21129 unitigs were annotated at stringent parameters. Annotated unitigs were mapped to 52847 gene ontology (GO terms and 131 Kyoto encyclopedia of genes and genomes (KEGG pathways. Expression analysis of the genes involved in amino acid biosynthesis pathways revealed the complementation between whitefly and its symbiont partner Candidatus Portiera aleyrodidarum. Most of the non-essential amino acids and intermediates of essential amino acid pathways were supplied by the host insect to its symbiont. The symbiont expressed the pathways for the essential amino acids arginine, threonine and tryptophan and the immediate precursors of valine, leucine, isoleucine and phenyl-alanine. High level expression of the amino acid transporters in the whitefly suggested the molecular mechanisms for the exchange of amino acids between the host and the symbiont.Our study provides a comprehensive transcriptome data for Asia 1 species of B. tabaci complex that focusses light on integration of host and symbiont genes in amino acid biosynthesis pathways.

  15. Diffusion of information throughout the host interactome reveals gene expression variations in network proximity to target proteins of hepatitis C virus.

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    Full Text Available Hepatitis C virus infection is one of the most common and chronic in the world, and hepatitis associated with HCV infection is a major risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC. The rapidly growing number of viral-host and host protein-protein interactions is enabling more and more reliable network-based analyses of viral infection supported by omics data. The study of molecular interaction networks helps to elucidate the mechanistic pathways linking HCV molecular activities and the host response that modulates the stepwise hepatocarcinogenic process from preneoplastic lesions (cirrhosis and dysplasia to HCC. Simulating the impact of HCV-host molecular interactions throughout the host protein-protein interaction (PPI network, we ranked the host proteins in relation to their network proximity to viral targets. We observed that the set of proteins in the neighborhood of HCV targets in the host interactome is enriched in key players of the host response to HCV infection. In opposition to HCV targets, subnetworks of proteins in network proximity to HCV targets are significantly enriched in proteins reported as differentially expressed in preneoplastic and neoplastic liver samples by two independent studies. Using multi-objective optimization, we extracted subnetworks that are simultaneously "guilt-by-association" with HCV proteins and enriched in proteins differentially expressed. These subnetworks contain established, recently proposed and novel candidate proteins for the regulation of the mechanisms of liver cells response to chronic HCV infection.

  16. Diffusion of Information throughout the Host Interactome Reveals Gene Expression Variations in Network Proximity to Target Proteins of Hepatitis C Virus

    Science.gov (United States)

    Milanesi, Luciano

    2014-01-01

    Hepatitis C virus infection is one of the most common and chronic in the world, and hepatitis associated with HCV infection is a major risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). The rapidly growing number of viral-host and host protein-protein interactions is enabling more and more reliable network-based analyses of viral infection supported by omics data. The study of molecular interaction networks helps to elucidate the mechanistic pathways linking HCV molecular activities and the host response that modulates the stepwise hepatocarcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to HCC. Simulating the impact of HCV-host molecular interactions throughout the host protein-protein interaction (PPI) network, we ranked the host proteins in relation to their network proximity to viral targets. We observed that the set of proteins in the neighborhood of HCV targets in the host interactome is enriched in key players of the host response to HCV infection. In opposition to HCV targets, subnetworks of proteins in network proximity to HCV targets are significantly enriched in proteins reported as differentially expressed in preneoplastic and neoplastic liver samples by two independent studies. Using multi-objective optimization, we extracted subnetworks that are simultaneously “guilt-by-association” with HCV proteins and enriched in proteins differentially expressed. These subnetworks contain established, recently proposed and novel candidate proteins for the regulation of the mechanisms of liver cells response to chronic HCV infection. PMID:25461596

  17. Carcinoma cells misuse the host tissue damage response to invade the brain

    Science.gov (United States)

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C-X-C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4-regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia-induced apoptosis. PMID:23832647

  18. Transcriptional profiling of Epstein–Barr virus (EBV) genes and host cellular genes in nasal NK/T-cell lymphoma and chronic active EBV infection

    Science.gov (United States)

    Zhang, Y; Ohyashiki, J H; Takaku, T; Shimizu, N; Ohyashiki, K

    2006-01-01

    Nasal NK/T-cell lymphoma is an aggressive subtype of non-Hodgkin lymphoma (NHL) that is closely associated with Epstein–Barr virus (EBV). The clonal expansion of EBV-infected NK or T cells is also seen in patients with chronic active EBV (CAEBV) infection, suggesting that two diseases might share a partially similar mechanism by which EBV affects host cellular gene expression. To understand the pathogenesis of EBV-associated NK/T-cell lymphoproliferative disorders (LPD) and design new therapies, we employed a novel EBV DNA microarray to compare patterns of EBV expression in six cell lines established from EBV-associated NK/T-cell LPD. We found that expression of BZLF1, which encodes the immediate-early gene product Zta, was expressed in SNK/T cells and the expression levels were preferentially high in cell lines from CAEBV infection. We also analyzsd the gene expression patterns of host cellular genes using a human oligonucleotide DNA microarray. We identified a subset of pathogenically and clinically relevant host cellular genes, including TNFRSF10D, CDK2, HSPCA, IL12A as a common molecular biological properties of EBV-associated NK/T-cell LPD and a subset of genes, such as PDCD4 as a putative contributor for disease progression. This study describes a novel approach from the aspects of viral and host gene expression, which could identify novel therapeutic targets in EBV-associated NK/T-cell LPD. PMID:16449999

  19. Small RNA cloning and sequencing strategy affects host and viral microRNA expression signatures.

    Science.gov (United States)

    Stik, Grégoire; Muylkens, Benoît; Coupeau, Damien; Laurent, Sylvie; Dambrine, Ginette; Messmer, Mélanie; Chane-Woon-Ming, Béatrice; Pfeffer, Sébastien; Rasschaert, Denis

    2014-07-10

    The establishment of the microRNA (miRNA) expression signatures is the basic element to investigate the role played by these regulatory molecules in the biology of an organism. Marek's disease virus 1 (MDV-1) is an avian herpesvirus that naturally infects chicken and induces T cells lymphomas. During latency, MDV-1, like other herpesviruses, expresses a limited subset of transcripts. These include three miRNA clusters. Several studies identified the expression of virus and host encoded miRNAs from MDV-1 infected cell cultures and chickens. But a high discrepancy was observed when miRNA cloning frequencies obtained from different cloning and sequencing protocols were compared. Thus, we analyzed the effect of small RNA library preparation and sequencing on the miRNA frequencies obtained from the same RNA samples collected during MDV-1 infection of chicken at different steps of the oncoviral pathogenesis. Qualitative and quantitative variations were found in the data, depending on the strategy used. One of the mature miRNA derived from the latency-associated-transcript (LAT), mdv1-miR-M7-5p, showed the highest variation. Its cloning frequency was 50% of the viral miRNA counts when a small scale sequencing approach was used. Its frequency was 100 times less abundant when determined through the deep sequencing approach. Northern blot analysis showed a better correlation with the miRNA frequencies found by the small scale sequencing approach. By analyzing the cellular miRNA repertoire, we also found a gap between the two sequencing approaches. Collectively, our study indicates that next-generation sequencing data considered alone are limited for assessing the absolute copy number of transcripts. Thus, the quantification of small RNA should be addressed by compiling data obtained by using different techniques such as microarrays, qRT-PCR and NB analysis in support of high throughput sequencing data. These observations should be considered when miRNA variations are studied

  20. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    Science.gov (United States)

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-08-05

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  1. Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode.

    Science.gov (United States)

    An, Ruisheng; Grewal, Parwinder S

    2016-01-01

    Species of Xenorhabdus and Photorhabdus bacteria form mutualistic associations with Steinernema and Heterorhabditis nematodes, respectively and serve as model systems for studying microbe-animal symbioses. Here, we profiled gene expression of Xenorhabdus koppenhoeferi during their symbiotic persistence in the newly formed infective juveniles of the host nematode Steinernema scarabaei through the selective capture of transcribed sequences (SCOTS). The obtained gene expression profile was then compared with other nematode-bacteria partnerships represented by Steinernema carpocapsae-Xenorhabdus nematophila and Heterorhabditis bacteriophora-Photorhabdus temperata. A total of 29 distinct genes were identified to be up-regulated and 53 were down-regulated in X. koppenhoeferi while in S. scarabaei infective juveniles. Of the identified genes, 8 of the up-regulated and 14 of the down-regulated genes were similarly expressed in X. nematophila during persistence in its host nematode S. carpocapsae. However, only one from each of these up- and down-regulated genes was common to the mutualistic partnership between the bacterium P. temperata and the nematode H. bacteriophora. Interactive network analysis of the shared genes between X. koppenhoeferi and X. nematophila demonstrated that the up-regulated genes were mainly involved in bacterial survival and the down-regulated genes were more related to bacterial virulence and active growth. Disruption of two selected genes pta (coding phosphotransacetylase) and acnB (coding aconitate hydratase) in X. nematophila with shared expression signature with X. koppenhoeferi confirmed that these genes are important for bacterial persistence in the nematode host. The results of our comparative analyses show that the two Xenorhabdus species share a little more than a quarter of the transcriptional mechanisms during persistence in their nematode hosts but these features are quite different from those used by P. temperata bacteria in their

  2. Comparative Analysis of Xenorhabdus koppenhoeferi Gene Expression during Symbiotic Persistence in the Host Nematode.

    Directory of Open Access Journals (Sweden)

    Ruisheng An

    Full Text Available Species of Xenorhabdus and Photorhabdus bacteria form mutualistic associations with Steinernema and Heterorhabditis nematodes, respectively and serve as model systems for studying microbe-animal symbioses. Here, we profiled gene expression of Xenorhabdus koppenhoeferi during their symbiotic persistence in the newly formed infective juveniles of the host nematode Steinernema scarabaei through the selective capture of transcribed sequences (SCOTS. The obtained gene expression profile was then compared with other nematode-bacteria partnerships represented by Steinernema carpocapsae-Xenorhabdus nematophila and Heterorhabditis bacteriophora-Photorhabdus temperata. A total of 29 distinct genes were identified to be up-regulated and 53 were down-regulated in X. koppenhoeferi while in S. scarabaei infective juveniles. Of the identified genes, 8 of the up-regulated and 14 of the down-regulated genes were similarly expressed in X. nematophila during persistence in its host nematode S. carpocapsae. However, only one from each of these up- and down-regulated genes was common to the mutualistic partnership between the bacterium P. temperata and the nematode H. bacteriophora. Interactive network analysis of the shared genes between X. koppenhoeferi and X. nematophila demonstrated that the up-regulated genes were mainly involved in bacterial survival and the down-regulated genes were more related to bacterial virulence and active growth. Disruption of two selected genes pta (coding phosphotransacetylase and acnB (coding aconitate hydratase in X. nematophila with shared expression signature with X. koppenhoeferi confirmed that these genes are important for bacterial persistence in the nematode host. The results of our comparative analyses show that the two Xenorhabdus species share a little more than a quarter of the transcriptional mechanisms during persistence in their nematode hosts but these features are quite different from those used by P. temperata

  3. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage.

    Directory of Open Access Journals (Sweden)

    Parul Mehrotra

    2014-07-01

    Full Text Available The success of Mycobacterium tuberculosis as a pathogen derives from its facile adaptation to the intracellular milieu of human macrophages. To explore this process, we asked whether adaptation also required interference with the metabolic machinery of the host cell. Temporal profiling of the metabolic flux, in cells infected with differently virulent mycobacterial strains, confirmed that this was indeed the case. Subsequent analysis identified the core subset of host reactions that were targeted. It also elucidated that the goal of regulation was to integrate pathways facilitating macrophage survival, with those promoting mycobacterial sustenance. Intriguingly, this synthesis then provided an axis where both host- and pathogen-derived factors converged to define determinants of pathogenicity. Consequently, whereas the requirement for macrophage survival sensitized TB susceptibility to the glycemic status of the individual, mediation by pathogen ensured that the virulence properties of the infecting strain also contributed towards the resulting pathology.

  4. Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling

    Science.gov (United States)

    Warncke, Jan D.; Vakonakis, Ioannis

    2016-01-01

    SUMMARY During the asexual cycle, Plasmodium falciparum extensively remodels the human erythrocyte to make it a suitable host cell. A large number of exported proteins facilitate this remodeling process, which causes erythrocytes to become more rigid, cytoadherent, and permeable for nutrients and metabolic products. Among the exported proteins, a family of 89 proteins, called the Plasmodium helical interspersed subtelomeric (PHIST) protein family, has been identified. While also found in other Plasmodium species, the PHIST family is greatly expanded in P. falciparum. Although a decade has passed since their first description, to date, most PHIST proteins remain uncharacterized and are of unknown function and localization within the host cell, and there are few data on their interactions with other host or parasite proteins. However, over the past few years, PHIST proteins have been mentioned in the literature at an increasing rate owing to their presence at various localizations within the infected erythrocyte. Expression of PHIST proteins has been implicated in molecular and cellular processes such as the surface display of PfEMP1, gametocytogenesis, changes in cell rigidity, and also cerebral and pregnancy-associated malaria. Thus, we conclude that PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied. Here we review current knowledge, shed light on the definition of PHIST proteins, and discuss these proteins with respect to their localization and probable function. We take into consideration interaction studies, microarray analyses, or data from blood samples from naturally infected patients to combine all available information on this protein family. PMID:27582258

  5. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells.

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    2010-09-01

    Full Text Available The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.

  6. Bacterial colonization of host cells in the absence of cholesterol.

    Directory of Open Access Journals (Sweden)

    Stacey D Gilk

    2013-01-01

    Full Text Available Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24(-/- mouse embryonic fibroblasts (MEFs. DHCR24(-/- MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24(-/- MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24(-/- MEFs. In contrast, C. burnetii entry was significantly decreased in -cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated α(Vβ(3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24(-/- MEFs lacked the CD63-positive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.

  7. Bacterial Colonization of Host Cells in the Absence of Cholesterol

    Science.gov (United States)

    Gilk, Stacey D.; Cockrell, Diane C.; Luterbach, Courtney; Hansen, Bryan; Knodler, Leigh A.; Ibarra, J. Antonio; Steele-Mortimer, Olivia; Heinzen, Robert A.

    2013-01-01

    Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions. PMID:23358892

  8. MAVS-mediated host cell defense is inhibited by Borna disease virus.

    Science.gov (United States)

    Li, Yujun; Song, Wuqi; Wu, Jing; Zhang, Qingmeng; He, Junming; Li, Aimei; Qian, Jun; Zhai, Aixia; Hu, Yunlong; Kao, Wenping; Wei, Lanlan; Zhang, Fengmin; Xu, Dakang

    2013-08-01

    Viruses often have strategies for preventing host cell apoptosis, which antagonizes viral replication. Borna disease virus (BDV) is a neurotropic RNA virus that establishes a non-cytolytic persistent infection. Although BDV suppresses type I Interferon (IFN) through (TANK)-binding kinase 1 (TBK-1) associated BDV P protein, it is still unclear how BDV can survive in the host cell and establish a persistent infection. Recently, it has been recognized that mitochondria-mediated apoptosis through the mitochondrial antiviral signaling protein (MAVS) and the RIG-I-like receptor (RLR) signaling pathway is a crucial component of the innate immune response. In this work we show that BDV X protein colocalizes and interacts with MAVS in the mitochondria to block programmed cell death. BDV X protein-mediated inhibition of apoptosis was independent of type I IFN production and NF-κB activity. The reduction of BDV X expression with RNA interference (RNAi) or the mutation of BDV X enhanced MAVS-induced cell death. Collectively, our data provide novel insights into how BDV X protein inhibits antiviral-associated programmed cell death, through its action of MAVS function. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells.

    Science.gov (United States)

    Riestra, Angelica M; Gandhi, Shiv; Sweredoski, Michael J; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J

    2015-12-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis.

  10. Host cell poly(ADP-ribose glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    Directory of Open Access Journals (Sweden)

    Salomé C Vilchez Larrea

    Full Text Available Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose glycohydrolase in a trypanosomatid (TcPARG. In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl pyrrolidinediol or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease.

  11. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site.

    Science.gov (United States)

    Tajiri, Naoki; Kaneko, Yuji; Shinozuka, Kazutaka; Ishikawa, Hiroto; Yankee, Ernest; McGrogan, Michael; Case, Casey; Borlongan, Cesar V

    2013-01-01

    Here, we report that a unique mechanism of action exerted by stem cells in the repair of the traumatically injured brain involves their ability to harness a biobridge between neurogenic niche and injured brain site. This biobridge, visualized immunohistochemically and laser captured, corresponded to an area between the neurogenic subventricular zone and the injured cortex. That the biobridge expressed high levels of extracellular matrix metalloproteinases characterized initially by a stream of transplanted stem cells, but subsequently contained only few to non-detectable grafts and overgrown by newly formed host cells, implicates a novel property of stem cells. The transplanted stem cells manifest themselves as pathways for trafficking the migration of host neurogenic cells, but once this biobridge is formed between the neurogenic site and the injured brain site, the grafted cells disappear and relinquish their task to the host neurogenic cells. Our findings reveal that long-distance migration of host cells from the neurogenic niche to the injured brain site can be achieved through transplanted stem cells serving as biobridges for initiation of endogenous repair mechanisms. This is the first report of a stem cell-paved "biobridge". Indeed, to date the two major schools of discipline in stem cell repair mechanism primarily support the concept of "cell replacement" and bystander effects of "trophic factor secretion". The present novel observations of a stem cell seducing a host cell to engage in brain repair advances basic science concepts on stem cell biology and extracellular matrix, as well as provokes translational research on propagating this stem cell-paved biobridge beyond cell replacement and trophic factor secretion for the treatment of traumatic brain injury and other neurological disorders.

  12. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Robert A Taft

    Full Text Available There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs. We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium. ESC germline transmission was observed in 9/11 (82% lines using PH blastocysts, compared to 6/11 (55% when conventional host blastocysts were used. Furthermore, less than 35% (83/240 of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137 of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the

  13. The perfect host: a mouse host embryo facilitating more efficient germ line transmission of genetically modified embryonic stem cells.

    Science.gov (United States)

    Taft, Robert A; Low, Benjamin E; Byers, Shannon L; Murray, Stephen A; Kutny, Peter; Wiles, Michael V

    2013-01-01

    There is a continual need to improve efficiency in creating precise genetic modifications in mice using embryonic stem cells (ESCs). We describe a novel approach resulting in 100% germline transmission from competent injected ESCs. We developed an F1 mouse host embryo (Perfect Host, PH) that selectively ablates its own germ cells via tissue-specific induction of diphtheria toxin. This approach allows competent microinjected ESCs to fully dominate the germline, eliminating competition for this critical niche in the developing and adult animal. This is in contrast to conventional methods, where competition from host germ cells results in offspring derived from host cells and ESCs, necessitating extensive breeding of chimeras and genotyping to identify germline. The germline transmission process is also complicated by variability in the actual number of ESCs that colonize the germline niche and the proportion that are germline competent. To validate the PH approach we used ESC lines derived from 129 F1, BALB/cByJ, and BTBR backgrounds as well as an iPS line. Resulting chimeric males produced 194 offspring, all paternally derived from the introduced stem cells, with no offspring being derived from the host genome. We further tested this approach using eleven genetically modified C57BL/6N ESC lines (International Knockout Mouse Consortium). ESC germline transmission was observed in 9/11 (82%) lines using PH blastocysts, compared to 6/11 (55%) when conventional host blastocysts were used. Furthermore, less than 35% (83/240) of mice born in the first litters from conventional chimeras were confirmed to be of ESC-origin. By comparison, 100% (137/137) of the first litter offspring of PH chimeras were confirmed as ESC-derived. Together, these data demonstrate that the PH approach increases the probability of germline transmission and speeds the generation of ESC derived animals from chimeras. Collectively, this approach reduces the time and costs inherent in the production

  14. Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors

    Science.gov (United States)

    Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.

    2017-01-01

    Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105

  15. Increased ATP generation in the host cell is required for efficient vaccinia virus production

    Directory of Open Access Journals (Sweden)

    Hsu Che-Fang

    2009-09-01

    Full Text Available Abstract To search for cellular genes up-regulated by vaccinia virus (VV infection, differential display-reverse transcription-polymerase chain reaction (ddRT-PCR assays were used to examine the expression of mRNAs from mock-infected and VV-infected HeLa cells. Two mitochondrial genes for proteins that are part of the electron transport chain that generates ATP, ND4 and CO II, were up-regulated after VV infection. Up-regulation of ND4 level by VV infection was confirmed by Western blotting analysis. Up-regulation of ND4 was reduced by the MAPK inhibitor, apigenin, which has been demonstrated elsewhere to inhibit VV replication. The induction of ND4 expression occurred after viral DNA replication since ara C, an inhibitor of poxviral DNA replication, could block this induction. ATP production was increased in the host cells after VV infection. Moreover, 4.5 μM oligomycin, an inhibitor of ATP production, reduced the ATP level 13 hr after virus infection to that of mock-infected cells and inhibited viral protein expression and virus production, suggesting that increased ATP production is required for efficient VV production. Our results further suggest that induction of ND4 expression is through a Bcl-2 independent pathway.

  16. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction.

    Science.gov (United States)

    Torriani, Giulia; Galan-Navarro, Clara; Kunz, Stefan

    2017-02-15

    Viral entry represents the first step of every viral infection and is a determinant for the host range and disease potential of a virus. Here, we review the latest developments on cell entry of the highly pathogenic Old World arenavirus Lassa virus, providing novel insights into the complex virus-host cell interaction of this important human pathogen. We will cover new discoveries on the molecular mechanisms of receptor recognition, endocytosis, and the use of late endosomal entry factors. Copyright © 2017 American Society for Microbiology.

  17. Host generated siRNAs attenuate expression of serine protease gene in Myzus persicae.

    Science.gov (United States)

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L; Singh, Rajendra; Niranjan, Rampal S

    2012-01-01

    Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids.

  18. Global Analysis of Mouse Polyomavirus Infection Reveals Dynamic Regulation of Viral and Host Gene Expression and Promiscuous Viral RNA Editing.

    Directory of Open Access Journals (Sweden)

    Seth B Garren

    2015-09-01

    Full Text Available Mouse polyomavirus (MPyV lytically infects mouse cells, transforms rat cells in culture, and is highly oncogenic in rodents. We have used deep sequencing to follow MPyV infection of mouse NIH3T6 cells at various times after infection and analyzed both the viral and cellular transcriptomes. Alignment of sequencing reads to the viral genome illustrated the transcriptional profile of the early-to-late switch with both early-strand and late-strand RNAs being transcribed at all time points. A number of novel insights into viral gene expression emerged from these studies, including the demonstration of widespread RNA editing of viral transcripts at late times in infection. By late times in infection, 359 host genes were seen to be significantly upregulated and 857 were downregulated. Gene ontology analysis indicated transcripts involved in translation, metabolism, RNA processing, DNA methylation, and protein turnover were upregulated while transcripts involved in extracellular adhesion, cytoskeleton, zinc finger binding, SH3 domain, and GTPase activation were downregulated. The levels of a number of long noncoding RNAs were also altered. The long noncoding RNA MALAT1, which is involved in splicing speckles and used as a marker in many late-stage cancers, was noticeably downregulated, while several other abundant noncoding RNAs were strongly upregulated. We discuss these results in light of what is currently known about the MPyV life cycle and its effects on host cell growth and metabolism.

  19. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication

    OpenAIRE

    Hamid, Penny H.; Hirzmann, Joerg; Kerner, Katharina; Gimpl, Gerald; Lochnit, Guenter; Hermosilla, Carlos R.; Taubert, Anja

    2015-01-01

    During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholestero...

  20. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography.

    Science.gov (United States)

    Sisodiya, Vikram N; Lequieu, Joshua; Rodriguez, Maricel; McDonald, Paul; Lazzareschi, Kathlyn P

    2012-10-01

    Protein A chromatography is typically used as the initial capture step in the purification of monoclonal antibodies produced in Chinese hamster ovary (CHO) cells. Although exploiting an affinity interaction for purification, the level of host cell proteins in the protein A eluent varies significantly with different feedstocks. Using a batch binding chromatography method, we performed a controlled study to assess host cell protein clearance across both MabSelect Sure and Prosep vA resins. We individually spiked 21 purified antibodies into null cell culture fluid generated with a non-producing cell line, creating mock cell culture fluids for each antibody with an identical composition of host cell proteins and antibody concentration. We demonstrated that antibody-host cell protein interactions are primarily responsible for the variable levels of host cell proteins in the protein A eluent for both resins when antibody is present. Using the additives guanidine HCl and sodium chloride, we demonstrated that antibody-host cell protein interactions may be disrupted, reducing the level of host cell proteins present after purification on both resins. The reduction in the level of host cell proteins differed between antibodies suggesting that the interaction likely varies between individual antibodies but encompasses both an electrostatic and hydrophobic component. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    Science.gov (United States)

    Blanco-Ulate, Barbara; Morales-Cruz, Abraham; Amrine, Katherine C. H.; Labavitch, John M.; Powell, Ann L. T.; Cantu, Dario

    2014-01-01

    Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue. PMID:25232357

  2. Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago.

    Science.gov (United States)

    Gavrin, Aleksandr; Kaiser, Brent N; Geiger, Dietmar; Tyerman, Stephen D; Wen, Zhengyu; Bisseling, Ton; Fedorova, Elena E

    2014-09-01

    In legume-rhizobia symbioses, the bacteria in infected cells are enclosed in a plant membrane, forming organelle-like compartments called symbiosomes. Symbiosomes remain as individual units and avoid fusion with lytic vacuoles of host cells. We observed changes in the vacuole volume of infected cells and thus hypothesized that microsymbionts may cause modifications in vacuole formation or function. To examine this, we quantified the volumes and surface areas of plant cells, vacuoles, and symbiosomes in root nodules of Medicago truncatula and analyzed the expression and localization of VPS11 and VPS39, members of the HOPS vacuole-tethering complex. During the maturation of symbiosomes to become N2-fixing organelles, a developmental switch occurs and changes in vacuole features are induced. For example, we found that expression of VPS11 and VPS39 in infected cells is suppressed and host cell vacuoles contract, permitting the expansion of symbiosomes. Trafficking of tonoplast-targeted proteins in infected symbiotic cells is also altered, as shown by retargeting of the aquaporin TIP1g from the tonoplast membrane to the symbiosome membrane. This retargeting appears to be essential for the maturation of symbiosomes. We propose that these alterations in the function of the vacuole are key events in the adaptation of the plant cell to host intracellular symbiotic bacteria. © 2014 American Society of Plant Biologists. All rights reserved.

  3. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  4. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Science.gov (United States)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  5. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schoonneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2017-08-22

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  6. Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell.

    Science.gov (United States)

    Rolando, Monica; Buchrieser, Carmen

    2014-12-01

    Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Differential proteome analysis of host cells infected with porcine circovirus type 2.

    Science.gov (United States)

    Zhang, Xin; Zhou, Jiyong; Wu, Yongping; Zheng, Xiaojuan; Ma, Guangpeng; Wang, Zhongtian; Jin, Yulan; He, Jialing; Yan, Yan

    2009-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which is an emerging swine immunosuppressive disease. To uncover cellular protein responses in PCV2-infected PK-15 cells, the comprehensive proteome profiles were analyzed utilizing two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF identification. Multiple comparisons of 2-DE revealed that the majority of changes in protein expression occurred at 48-96 h after PCV2 infection. A total of 34 host-encoded proteins, including 15 up-regulated and 19 down-regulated proteins, were identified by MALDI-TOF/TOF analysis. According to cellular function, the differential expression proteins could be sorted into several groups: cytoskeleton proteins, stress response, macromolecular biosynthesis, energy metabolism, ubiquitin-proteasome pathway, signal transduction, gene regulation. Western blot analysis demonstrated the changes of alpha tubulin, beta actin, and cytokeratin 8 during infection. Colocalization and coimmunoprecipitation analyses confirmed that the cellular alpha tubulin interacts with the Cap protein of PCV2 in the infected PK-15 cells. These identified cellular constituents have important implications for understanding the host interactions with PCV2 and brings us a step closer to defining the cellular requirements for the underlying mechanism of PCV2 replication and pathogenesis.

  8. Eukaryotic-like Kinase Expression in Enterohemorrhagic Escherichia coli: Potential for Enhancing Host Aggressive Inflammatory Response.

    Science.gov (United States)

    Li, Tao; Li, Zhan; Chen, Fanghong; Liu, Xiong; Ning, Nianzhi; Huang, Jie; Wang, Hui

    2017-11-27

    Enterohemorrhagic Escherichia coli (EHEC) or other attaching/effacing pathogen infections often cause host intestinal inflammation and pathology, which is thought to result in part from a host aggressive innate immune response. However, few effectors that play an important role in this pathology change have been reported. In this study, we discovered a previously unknown EHEC effector, Stk (putative serine/threonine kinase), which induces host aggressive inflammatory response during EHEC infection. Interestingly, homologous proteins of Stk are widely distributed in many pathogens. After translocating into the infected host cells, Stk efficiently phosphorylates IκBα and activates the NF-κB pathway. In EHEC-infected mice, Stk increases serum keratinocyte-derived cytokine (KC) levels and hyperactivates the inflammatory response of the colon, intensifying pathological injury of the colon. The virulence of Stk is based on its eukaryotic-like kinase activity. In conclusion, our data suggest that Stk is a new effector that induces the host aggressive inflammatory response during EHEC infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  9. Host cell protein adsorption characteristics during protein A chromatography.

    Science.gov (United States)

    Tarrant, Richard D R; Velez-Suberbie, M Lourdes; Tait, Andrew S; Smales, C Mark; Bracewell, Daniel G

    2012-07-01

    Protein A chromatography is a critical and 'gold-standard' step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI-TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back-bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D-PAGE was then used to determine individual components associated with resin back-bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  10. Bacterial Suppression of RNA Polymerase II-Dependent Host Gene Expression

    Directory of Open Access Journals (Sweden)

    Ines Ambite

    2016-07-01

    Full Text Available Asymptomatic bacteriuria (ABU is a bacterial carrier state in the urinary tract that resembles commensalism at other mucosal sites. ABU strains often lack the virulence factors that characterize uropathogenic Escherichia coli (E. coli strains and therefore elicit weak innate immune responses in the urinary tract. In addition, ABU strains are active modifiers of the host environment, which they influence by suppressing RNA polymerase II (Pol II-dependent host gene expression. In patients inoculated with the ABU strain E. coli 83972, gene expression was markedly reduced after 24 h (>60% of all regulated genes. Specific repressors and activators of Pol II-dependent transcription were modified, and Pol II Serine 2 phosphorylation was significantly inhibited, indicating reduced activity of the polymerase. This active inhibition included disease–associated innate immune response pathways, defined by TLR4, IRF-3 and IRF-7, suggesting that ABU strains persist in human hosts by active suppression of the antibacterial defense. In a search for the mechanism of inhibition, we compared the whole genome sequences of E. coli 83972 and the uropathogenic strain E. coli CFT073. In addition to the known loss of virulence genes, we observed that the ABU strain has acquired several phages and identified the lytic Prophage 3 as a candidate Pol II inhibitor. Intact phage particles were released by ABU during in vitro growth in human urine. To address if Prophage 3 affects Pol II activity, we constructed a Prophage 3 negative deletion mutant in E. coli 83972 and compared the effect on Pol II phosphorylation between the mutant and the E. coli 83972 wild type (WT strains. No difference was detected, suggesting that the Pol II inhibitor is not encoded by the phage. The review summarizes the evidence that the ABU strain E. coli 83972 modifies host gene expression by inhibition of Pol II phosphorylation, and discusses the ability of ABU strains to actively create an

  11. Leptin Protects Host Cells from Entamoeba histolytica Cytotoxicity by a STAT3-Dependent Mechanism

    Science.gov (United States)

    Verkerke, Hans P.; Paul, Shom N.; Mackey, Aaron J.; Petri, William A.

    2012-01-01

    The adipocytokine leptin links nutritional status to immune function. Leptin signaling protects from amebiasis, but the molecular mechanism is not understood. We developed an in vitro model of ameba-host cell interaction to test the hypothesis that leptin prevents ameba-induced apoptosis in host epithelial cells. We demonstrated that activation of mammalian leptin signaling increased cellular resistance to amebic cytotoxicity, including caspase-3 activation. Exogenous expression of the leptin receptor conferred resistance in susceptible cells, and leptin stimulation enhanced protection. A series of leptin receptor signaling mutants showed that resistance to amebic cytotoxicity was dependent on activation of STAT3 but not the Src homology-2 domain-containing tyrosine phosphatase (SHP-2) or STAT5. A common polymorphism in the leptin receptor (Q223R) that increases susceptibility to amebiasis in humans and mice was found to increase susceptibility to amebic cytotoxicity in single cells. The Q223R polymorphism also decreased leptin-dependent STAT3 activation by 21% relative to that of the wild-type (WT) receptor (P = 0.035), consistent with a central role of STAT3 signaling in protection. A subset of genes uniquely regulated by STAT3 in response to leptin was identified. Most notable were the TRIB1 and suppressor of cytokine signaling 3 (SOCS3) genes, which have opposing roles in the regulation of apoptosis. Overall apoptotic genes were highly enriched in this gene set (P leptin regulation of host apoptotic genes via STAT3 is responsible for protection. This is the first demonstration of a mammalian signaling pathway that restricts amebic pathogenesis and represents an important advance in our mechanistic understanding of how leptin links nutrition and susceptibility to infection. PMID:22331430

  12. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing.

    Directory of Open Access Journals (Sweden)

    Katrin Bomans

    Full Text Available Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS. However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day manner.

  13. A negative effect of Campylobacter capsule on bacterial interaction with an analogue of a host cell receptor.

    Science.gov (United States)

    Rubinchik, Sona; Seddon, Alan M; Karlyshev, Andrey V

    2014-05-31

    Campylobacter jejuni (C. jejuni) is the leading causative agent of bacterial gastrointestinal infections. The rise of antibiotic resistant forms of this pathogen necessitates the development of novel intervention strategies. One approach is the design of drugs preventing bacterial attachment to host cells. Although some putative C. jejuni adhesins have been identified, the molecular mechanisms of their interaction with host cells and their role in pathogenesis remain to be elucidated. C. jejuni adhesion may also be modulated by a bacterial capsule. However, the role of this structure in adhesion was not clear due to conflicting results published by different research groups. The aim of this study was to clarify the role of capsule in bacterial interaction with host cells by using an in vitro model of adhesion and an analogue of a host cell receptor. In this study, we developed an in vitro bacterial adhesion assay, which was validated using various tests, including competitive inhibition studies, exoglycosydase treatment and site-directed mutagenesis. We demonstrate that PEB3 is one of the cell surface glycoproteins required for bacterial interaction with an analogue of a host cell receptor. In contrast, JlpA glycoprotein adhesin is not required for such interaction. We demonstrate that the production of capsule reduces bacterial attachment, and that the genes involved in capsule and PEB3 adhesin biosynthesis are differentially regulated. In this study we report an in vitro model for the investigation of bacterial interaction with analogs of host cell receptors. The results suggest an interfering effect of capsule on bacterial attachment. In addition, using a liquid culture, we demonstrate differential expression of a gene involved in capsule production (kpsM) and a gene encoding a glycoprotein adhesin (peb3). Further studies are required in order to establish if these genes are also differentially regulated during the infection process. The results will assist in

  14. In vitro host range of the Hz-1 nonoccluded virus in insect cell lines.

    Science.gov (United States)

    McIntosh, Arthur H; Grasela, James J; Ignoffo, Carlo M

    2007-01-01

    A total of 13 insect cell lines spanning 4 orders (Lepidoptera, Coleoptera, Diptera, and Homoptera) were tested for their ability to replicate the nonoccluded virus Hz-1. Only the Lepidopteran cell lines supported replication of the virus with TN-CL1 and BCIRL-HZ-AM1 producing the highest titers of 2.4 x 10(8) tissue culture infective dose (TCID)50/ml and 2.0 x 10(8) TCID50/ml, respectively. A codling moth cell line (CP-169) was the only Lepidopteran cell line that did not replicate the virus and transfection of this cell line with Hz-1 DNA failed to replicate the virus. Also, transfection with DNA from a recombinant baculovirus carrying the red fluorescent protein gene (AcMNPVhsp70 Red) was not expressed in CP-169 cells. The replication cycle of Hz-1 in BCIRL-HZ-AM1 cells showed that this virus replicated rapidly starting at 16 h postinoculation (p.i.) and reaching a peak titer of 1.0 x 10(8) TCID50/ml 56 h postinoculation. Hz-1 when compared with several other baculoviruses has the widest in vitro host spectrum.

  15. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses.

    Directory of Open Access Journals (Sweden)

    Pradip B Ranaware

    Full Text Available The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV or the low pathogenic avian influenza virus (LPAIV infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011 and LPAI H9N2 (A/duck/India/249800/2010 viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG, cytokines (IL1B, IL18, IL22, IL13, and IL12B, chemokines (CCL4, CCL19, CCL10, and CX3CL1 and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.

  16. Differential Expression of Host Biomarkers in Saliva and Serum Samples from Individuals with Suspected Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Khutso G. Phalane

    2013-01-01

    Full Text Available The diagnosis of tuberculosis remains challenging in individuals with difficulty in providing good quality sputum samples such as children. Host biosignatures of inflammatory markers may be valuable in such cases, especially if they are based on more easily obtainable samples such as saliva. To explore the potential of saliva as an alternative sample in tuberculosis diagnostic/biomarker investigations, we evaluated the levels of 33 host markers in saliva samples from individuals presenting with pulmonary tuberculosis symptoms and compared them to those obtained in serum. Of the 38 individuals included in the study, tuberculosis disease was confirmed in 11 (28.9% by sputum culture. In both the tuberculosis cases and noncases, the levels of most markers were above the minimum detectable limit in both sample types, but there was no consistent pattern regarding the ratio of markers in serum/saliva. Fractalkine, IL-17, IL-6, IL-9, MIP-1β, CRP, VEGF, and IL-5 levels in saliva and IL-6, IL-2, SAP, and SAA levels in serum were significantly higher in tuberculosis patients (P<0.05. These preliminary data indicate that there are significant differences in the levels of host markers expressed in saliva in comparison to those expressed in serum and that inflammatory markers in both sample types are potential diagnostic candidates for tuberculosis disease.

  17. Proteome data from a host-pathogen interaction study with Staphylococcus aureus and human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kristin Surmann

    2016-06-01

    Full Text Available To simultaneously obtain proteome data of host and pathogen from an internalization experiment, human alveolar epithelial A549 cells were infected with Staphylococcus aureus HG001 which carried a plasmid (pMV158GFP encoding a continuously expressed green fluorescent protein (GFP. Samples were taken hourly between 1.5 h and 6.5 h post infection. By fluorescence activated cell sorting GFP-expressing bacteria could be enriched from host cell debris, but also infected host cells could be separated from those which did not carry bacteria after contact (exposed. Additionally, proteome data of A549 cells which were not exposed to S. aureus but underwent the same sample processing steps are provided as a control. Time-resolved changes in bacterial protein abundance were quantified in a label-free approach. Proteome adaptations of host cells were monitored by comparative analysis to a stable isotope labeled cell culture (SILAC standard. Proteins were extracted from the cells, digested proteolytically, measured by nanoLC–MS/MS, and subsequently identified by database search and then quantified. The data presented here are related to a previously published research article describing the interplay of S. aureus HG001 and human epithelial cells (Surmann et al., 2015 [1]. They have been deposited to the ProteomeXchange platform with the identifiers PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002384 for the S. aureus HG001 proteome dataset and PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD002388 for the A549 proteome dataset.

  18. Induction of porcine host defense peptide gene expression by short-chain fatty acids and their analogs.

    Directory of Open Access Journals (Sweden)

    Xiangfang Zeng

    Full Text Available Dietary modulation of the synthesis of endogenous host defense peptides (HDPs represents a novel antimicrobial approach for disease control and prevention, particularly against antibiotic-resistant infections. However, HDP regulation by dietary compounds such as butyrate is species-dependent. To examine whether butyrate could induce HDP expression in pigs, we evaluated the expressions of a panel of porcine HDPs in IPEC-J2 intestinal epithelial cells, 3D4/31 macrophages, and primary monocytes in response to sodium butyrate treatment by real-time PCR. We revealed that butyrate is a potent inducer of multiple, but not all, HDP genes. Porcine β-defensin 2 (pBD2, pBD3, epididymis protein 2 splicing variant C (pEP2C, and protegrins were induced markedly in response to butyrate, whereas pBD1 expression remained largely unaltered in any cell type. Additionally, a comparison of the HDP-inducing efficacy among saturated free fatty acids of different aliphatic chain lengths revealed that fatty acids containing 3-8 carbons showed an obvious induction of HDP expression in IPEC-J2 cells, with butyrate being the most potent and long-chain fatty acids having only a marginal effect. We further investigated a panel of butyrate analogs for their efficacy in HDP induction, and found glyceryl tributyrate, benzyl butyrate, and 4-phenylbutyrate to be comparable with butyrate. Identification of butyrate and several analogs with a strong capacity to induce HDP gene expression in pigs provides attractive candidates for further evaluation of their potential as novel alternatives to antibiotics in augmenting innate immunity and disease resistance of pigs.

  19. B-cell involvement in chronic graft-versus-host disease

    NARCIS (Netherlands)

    Kapur, Rick; Ebeling, Saskia; Hagenbeek, Anton

    2008-01-01

    Chronic graft-versus-host disease is a serious complication in long-term survivors of allogeneic hematopoietic stem cell transplantation, with several organ systems affected. Chronic graft-versus-host disease is an important cause of morbidity and mortality in allogeneic hematopoietic stem cell

  20. Host Factors Invovled in the Entry of Coronaviruses into Mammalian Cells

    NARCIS (Netherlands)

    Burkard, C.

    2015-01-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral

  1. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  2. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    Energy Technology Data Exchange (ETDEWEB)

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  3. Toxoplasma gondii induces FAK-Src-STAT3 signaling during infection of host cells that prevents parasite targeting by autophagy.

    Directory of Open Access Journals (Sweden)

    Jose-Andres C Portillo

    2017-10-01

    Full Text Available Targeting of Toxoplasma gondii by autophagy is an effective mechanism by which host cells kill the protozoan. Thus, the parasite must avoid autophagic targeting to survive. Here we show that the mammalian cytoplasmic molecule Focal Adhesion Kinase (FAK becomes activated during invasion of host cells. Activated FAK appears to accompany the formation of the moving junction (as assessed by expression the parasite protein RON4. FAK activation was inhibited by approaches that impaired β1 and β3 integrin signaling. FAK caused activation of Src that in turn mediated Epidermal Growth Factor Receptor (EGFR phosphorylation at the unique Y845 residue. Expression of Src-resistant Y845F EGFR mutant markedly inhibited ROP16-independent activation of STAT3 in host cells. Activation of FAK, Y845 EGFR or STAT3 prevented activation of PKR and eIF2α, key stimulators of autophagy. Genetic or pharmacologic inhibition of FAK, Src, EGFR phosphorylation at Y845, or STAT3 caused accumulation of the autophagy protein LC3 and LAMP-1 around the parasite and parasite killing dependent on autophagy proteins (ULK1 and Beclin 1 and lysosomal enzymes. Parasite killing was inhibited by expression of dominant negative PKR. Thus, T. gondii activates a FAK→Src→Y845-EGFR→STAT3 signaling axis within mammalian cells, thereby enabling the parasite to survive by avoiding autophagic targeting through a mechanism likely dependent on preventing activation of PKR and eIF2α.

  4. Coculture of mesenchymal stem cells and endothelial cells enhances host tissue integration and epidermis maturation through AKT activation in gelatin methacryloyl hydrogel-based skin model.

    Science.gov (United States)

    Zhang, Xiaofei; Li, Jun; Ye, Pengxiang; Gao, Guifang; Hubbell, Karen; Cui, Xiaofeng

    2017-09-01

    A major challenge for clinical use of skin substitutes is insufficient host tissue integration leading to loosening and partial necrosis of the implant. In this present study, a three-dimensional (3D) coculture system constructed using human umbilical cord mesenchymal stem cells (uc-MSCs) and umbilical vein endothelial cells (HUVECs) encapsulated in gelatin methacryloyl (GelMA) hydrogels was evaluated to determine the outcomes of cell-cell interactions in vitro and in vivo. The results revealed that GelMA hydrogels displayed minor cytotoxicity on both cell types. An uc-MSC:HUVEC ratio of 50:50 demonstrated the highest cell proliferation and expression of angiogenic markers. The supplement of basic fibroblast growth factors (bFGF) in coculture system further induced cell proliferation and gene expression in vitro. In vivo transplantation of this cocultured constructs efficiently enhanced the implant and host tissue integration. Additionally, the proliferation of keratinocytes was well maintained on GelMA hydrogels and the gene expression related to cell proliferation and differentiation was significantly increased in coculture system comparing to monoculture. Mechanistically, AKT signaling pathways were activated in cocultures. Our findings suggest that coculturing MSC and EC in GelMA hydrogels could be a promising approach to substantially improve the integration of exogenous skin substitutes and host tissues. In this study, the co-culture of uc-MSCs and HUVECs in photocrosslinkable GelMA hydrogels significantly enhanced host tissue integration. Cell proliferation, ECM deposition and angiogenic genes expression were all substantially improved in vitro and the excellent host tissue integration into the implanted tissue was observed in vivo. When served as a dermal layer, the scaffold with co-cultured cells enhanced the proliferation and differentiation of keratinocytes. AKT signaling was proved to be involved in the regulation of cell survival and fate determination

  5. Host Inflammatory Response Inhibits Escherichia coli O157:H7 Adhesion to Gut Epithelium through Augmentation of Mucin Expression

    Science.gov (United States)

    Xue, Yansong; Zhang, Hanying; Wang, Hui; Hu, Jia; Du, Min

    2014-01-01

    Escherichia coli O157:H7, a major Shiga toxin-producing pathogen, has a low infectious dose and causes serious illness in humans. The gastrointestinal tract of cattle is the primary reservoir of E. coli O157:H7, and thus, it is critical to eliminate or reduce E. coli O157:H7 gut colonization. Given that E. coli O157:H7 produces effectors that attenuate inflammatory signaling, we hypothesized that the host inflammatory response acts to perturb E. coli O157:H7 intestinal colonization. Tumor necrosis factor alpha (TNF-α) treatment of HT-29 cells resulted in increased expression of inflammatory cytokine interleukin 1β (IL-1β), IL-8, and TNF-α genes and increased IL-8 protein and resulted in decreased adhesion of E. coli O157:H7. Similarly, E. coli O157:H7 adhesion to cattle colonic explants was reduced by TNF-α treatment. Irrespective of the presence of E. coli O157:H7, TNF-α enhanced activation of p65, the key mediator of NF-κB inflammatory signaling, whereas E. coli O157:H7 infection suppressed this pathway by inhibiting p65 activation in HT-29 cells. To further explore the mechanisms linking the inflammatory response to attenuated E. coli O157:H7 adhesion, mucin 2 (MUC2) expression was analyzed, considering that the intestinal mucus layer is the first defense against enteric pathogens and MUC2 is the major secretory mucin in the intestine. MUC2 expression in HT-29 cells was increased by TNF-α treatment and by E. coli O157:H7 infection. However, reducing mucin expression by blocking mitogen-activated protein kinase (MAPK) extracellular signal-regulated protein kinases 1/2 (ERK1/2) and/or phosphatidylinositol 3-kinase (PI3K)/Akt signaling increased E. coli O157:H7 adherence to HT-29 cells. These data suggest that the inflammatory cytokine response acts to protect host epithelial cells against E. coli O157:H7 colonization, at least in part, by promoting mucin production. PMID:24566630

  6. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    Science.gov (United States)

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Expression of the dspA/E gene of Erwinia amylovora in non-host plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hasan Murat Aksoy

    2017-01-01

    Full Text Available In the Erwinia amylovora genome, the hrp gene cluster containing the dspA/E/EB/F operon plays a crucial role in mediating the pathogenicity and the hypersensitive response (HR in the host plant. The role of the dspA/E gene derived from E. amylovora was investigated by monitoring the expression of the β-glucuronidase (GUS reporter system in transgenic Arabidopsis thaliana cv. Pri-Gus seedlings. A mutant ΔdspA/E strain of E. amylovora was generated to contain a deletion of the dspA/E gene for the purpose of this study. Two-week-old seedlings of GUS transgenic Arabidopsis were vacuum-infiltrated with the wild-type and the mutant (ΔdspA/E E. amylovora strains. The Arabidopsis seedlings were fixed and stained for GUS activity after 3–5 days following infiltration. The appearance of dense spots with blue staining on the Arabidopsis leaves indicated the typical characteristic of GUS activity. This observation indicated that the wild-type E. amylovora strain had induced a successful and efficient infection on the A. thaliana Pri-Gus leaves. In contrast, there was no visible GUS expression on leaf tissues which were inoculated with the ΔdspA/E mutant E. amylovora strain. These results indicate that the dspA/E gene is required by the bacterial cells to induce HR in non-host plants.

  8. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Science.gov (United States)

    Phan, Quynh T; Myers, Carter L; Fu, Yue; Sheppard, Donald C; Yeaman, Michael R; Welch, William H; Ibrahim, Ashraf S; Edwards, John E; Filler, Scott G

    2007-03-01

    Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.

  9. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells.

    Directory of Open Access Journals (Sweden)

    Quynh T Phan

    2007-03-01

    Full Text Available Candida albicans is the most common cause of hematogenously disseminated and oropharyngeal candidiasis. Both of these diseases are characterized by fungal invasion of host cells. Previously, we have found that C. albicans hyphae invade endothelial cells and oral epithelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the fungal surface protein and host cell receptors that mediate this process. We found that the C. albicans Als3 is required for the organism to be endocytosed by human umbilical vein endothelial cells and two different human oral epithelial lines. Affinity purification experiments with wild-type and an als3delta/als3delta mutant strain of C. albicans demonstrated that Als3 was required for C. albicans to bind to multiple host cell surface proteins, including N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. Furthermore, latex beads coated with the recombinant N-terminal portion of Als3 were endocytosed by Chinese hamster ovary cells expressing human N-cadherin or E-cadherin, whereas control beads coated with bovine serum albumin were not. Molecular modeling of the interactions of the N-terminal region of Als3 with the ectodomains of N-cadherin and E-cadherin indicated that the binding parameters of Als3 to either cadherin are similar to those of cadherin-cadherin binding. Therefore, Als3 is a fungal invasin that mimics host cell cadherins and induces endocytosis by binding to N-cadherin on endothelial cells and E-cadherin on oral epithelial cells. These results uncover the first known fungal invasin and provide evidence that C. albicans Als3 is a molecular mimic of human cadherins.

  10. Phospholipase D promotes Arcanobacterium haemolyticum adhesion via lipid raft remodeling and host cell death following bacterial invasion

    Directory of Open Access Journals (Sweden)

    Carlson Petteri

    2010-10-01

    Full Text Available Abstract Background Arcanobacterium haemolyticum is an emerging bacterial pathogen, causing pharyngitis and more invasive infections. This organism expresses an unusual phospholipase D (PLD, which we propose promotes bacterial pathogenesis through its action on host cell membranes. The pld gene is found on a genomic region of reduced %G + C, suggesting recent horizontal acquisition. Results Recombinant PLD rearranged HeLa cell lipid rafts in a dose-dependent manner and this was inhibited by cholesterol sequestration. PLD also promoted host cell adhesion, as a pld mutant had a 60.3% reduction in its ability to adhere to HeLa cells as compared to the wild type. Conversely, the pld mutant appeared to invade HeLa cells approximately two-fold more efficiently as the wild type. This finding was attributable to a significant loss of host cell viability following secretion of PLD from intracellular bacteria. As determined by viability assay, only 15.6% and 82.3% of HeLa cells remained viable following invasion by the wild type or pld mutant, respectively, as compared to untreated HeLa cells. Transmission electron microscopy of HeLa cells inoculated with A. haemolyticum strains revealed that the pld mutant was contained within intracellular vacuoles, as compared to the wild type, which escaped the vacuole. Wild type-infected HeLa cells also displayed the hallmarks of necrosis. Similarly inoculated HeLa cells displayed no signs of apoptosis, as measured by induction of caspase 3/7, 8 or 9 activities. Conclusions These data indicate that PLD enhances bacterial adhesion and promotes host cell necrosis following invasion, and therefore, may be important in the disease pathogenesis of A. haemolyticum infections.

  11. Transitional cell carcinoma express vitamin D receptors

    DEFF Research Database (Denmark)

    Hermann, G G; Andersen, C B

    1997-01-01

    Recently, vitamin D analogues have shown antineoplastic effect in several diseases. Vitamin D analogues exert its effect by interacting with the vitamin D receptor (VDR). Studies of VDR in transitional cell carcinoma (TCC) have not been reported. The purpose of the present study was therefore...... to examine whether human bladder tumor cells express VDR. Tumor biopsies were obtained from 26 patients with TCC. Expression of VDR was examined by immunohistochemical experiments. All tumors expressed VDR. Biopsies from advanced disease contained more VDR positive cells than low stage disease (p ....05). Similarly, also tumor grade appeared to be related to the number of cells expressing the receptor. Normal urothlium also expressed VDR but only with low intensity. Our study shows that TCC cells possess the VDR receptor which may make them capable to respond to stimulation with vitamin D, but functional...

  12. Identification of host range mutants of myxoma virus with altered oncolytic potential in human glioma cells.

    Science.gov (United States)

    Barrett, John W; Alston, Lindsay R; Wang, Fuan; Stanford, Marianne M; Gilbert, Philippe-Alexandre; Gao, Xiujuan; Jimenez, June; Villeneuve, Danielle; Forsyth, Peter; McFadden, Grant

    2007-12-01

    The authors have recently demonstrated that wild-type myxoma virus (MV) tagged with gfp (vMyxgfp) can generate a tumor-specific infection that productively infects and clears human tumor-derived xenografts when injected intratumorally into human gliomas transplanted into immunodeficient mice (Lun et al, 2005). To expand the understanding of MV tropism in cancer cells from a specific tissue lineage, the authors have screened a series of human glioma cells (U87, U118, U251, U343, U373) for myxoma virus replication and oncolysis. To assess the viral tropism determinants for these infections, the authors have screened myxoma virus knockout constructs that have been deleted for specific host range genes (M-T2, M-T4, M-T5, M11L, and M063), as well as a control MV gene knockout construct with no known host range function (vMyx135KO) but is highly attenuated in rabbits. The authors report wide variation in the ability of various vMyx-hrKOs to replicate and spread in the human glioma cells as measured by early and late viral gene expression. This differential ability to support vMyx-hrKO productive viral replication is consistent with levels of endogenous activated Akt in the various gliomas. The authors have identified one vMyx-hrKO virus (vMyx63KO) and one nonhost range knockout construct (vMyx135KO) that appear to replicate in the gliomas even more efficiently than the wild-type virus and that reduce the viability of the infected gliomas. These knockout viruses also inhibit the proliferation of gliomas in a manner similar to the wild-type virus. Together these data, as well as the fact that these knockout viruses are attenuated in their natural hosts, may represent environmentally safer candidate oncolytic viruses for usage in human trials.

  13. Engineering cells to improve protein expression.

    Science.gov (United States)

    Xiao, Su; Shiloach, Joseph; Betenbaugh, Michael J

    2014-06-01

    Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Leishmania major Attenuates Host Immunity by Stimulating Local Indoleamine 2,3-Dioxygenase Expression

    OpenAIRE

    Makala, Levi H. C.; Baban, Babak; Lemos, Henrique; El-Awady, Ahmed R.; Chandler, Phillip R.; Hou, De-Yan; Munn, David H.; Mellor, Andrew L.

    2011-01-01

    Inflammation stimulates immunity but can create immune privilege in some settings. Here, we show that cutaneous Leishmania major infection stimulated expression of the immune regulatory enzyme indoleamine 2,3 dioxygenase (IDO) in local lymph nodes. Induced IDO attenuated the T cell stimulatory functions of dendritic cells and suppressed local T cell responses to exogenous and nominal parasite antigens. IDO ablation reduced local inflammation and parasite burdens, as did pharmacologic inhibiti...

  15. [Distribution diversity of integrins and calcium channels on major human and mouse host cells of Leptospira species].

    Science.gov (United States)

    Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie

    2012-07-01

    To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.

  16. Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts.

    Science.gov (United States)

    Fagoaga, Carmen; Pensabene-Bellavia, Giovanni; Moreno, Pedro; Navarro, Luís; Flores, Ricardo; Peña, Leandro

    2011-12-01

    Citrus tristeza virus (CTV), a phloem-restricted closterovirus infecting citrus, encodes three different silencing suppressors (p25, p20 and p23), one of which (p23) is a pathogenicity determinant that induces aberrations resembling CTV symptoms when expressed ectopically in transgenic citrus hosts. In this article, the effect of p23 ectopic expression on virus infection was examined in sweet orange (SwO), a highly susceptible host, and sour orange (SO), which severely restricts CTV cell-to-cell movement. Transgenic plants of both species ectopically expressing p23, or transformed with an empty vector, were graft inoculated with the mild CTV isolate T385 or with CTV-BC1/GFP, a clonal strain derived from the severe isolate T36 carrying the gene for the green fluorescent protein (GFP). CTV distribution in infected tissues was assessed by direct tissue blot immunoassay and fluorescence emission, and virus accumulation was estimated by quantitative real-time reverse transcriptase-polymerase chain reaction. CTV accumulation in p23-expressing and control SwO plants was similar, whereas the viral load in transgenic SO expressing p23 was 10-10(5) times higher than in the cognate control plants. Although few infection foci composed of a single cell were observed in the phloem of CTV-infected control SO, the number of foci in p23-expressing plants was higher and usually comprised two to six cells, indicating viral cell-to-cell movement. CTV was detected in mesophyll protoplasts and cells from infected SO and SwO expressing p23, but not in similar protoplasts and cells from infected control plants. Our results show that the ectopic expression of p23 enables CTV to escape from the phloem and, in addition, facilitates systemic infection of the resistant SO host. This is the first report of a viral-encoded protein that enhances virus accumulation and distribution in woody hosts. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  17. Production of recombinant HIV-1 nef protein using different expression host systems: a techno-economical comparison.

    Science.gov (United States)

    Vermasvuori, Raisa; Koskinen, Jani; Salonen, Katri; Sirén, Noora; Weegar, Jan; Dahlbacka, John; Kalkkinen, Nisse; von Weymarn, Niklas

    2009-01-01

    Three popular expression host systems Escherichia coli, Pichia pastoris and Drosophila S2 were analyzed techno-economically using HIV-1 Nef protein as the model product. On scale of 100 mg protein, the labor costs corresponded to 52-83% of the manufacturing costs. When analyzing the cost impact of the different phases (strain/cell line construction, bioreactor production, and primary purification), we found that with the microbial host systems the strain construction phase was most significant generating 56% (E. coli) and 72% (P. pastoris) of the manufacturing costs, whereas with the Drosophila S2 system the cell line construction and bioreactor production phases were equally significant (46 and 47% of the total costs, respectively). With different titers and production goal of 100 mg of Nef protein, the costs of P. pastoris and Drosophila S2 systems were about two and four times higher than the respective costs of the E. coli system. When equal titers and bioreactor working volumes (10 L) were assumed for all three systems, the manufacturing costs of the bioreactor production of the P. pastoris and Drosophila S2 systems were about two and 2.5 times higher than the respective costs of the E. coli system.

  18. Synthesis of dopamine in E. coli using plasmid-based expression system and its marked effect on host growth profiles.

    Science.gov (United States)

    Das, Arunangshu; Verma, Anita; Mukherjee, Krishna J

    2017-09-14

    L-Dopa and dopamine are important pathway intermediates toward the synthesis of catecholamine such as epinephrine and norepinephrine from amino acid L-tyrosine. Dopamine, secreted from dopaminergic nerve cells, serves as an important neurotransmitter. We report the synthesis of dopamine by extending the aromatic amino acid pathway of Escherichia coli DH5α by the expression of 4-hydroxyphenylacetate-3-hydrolase (HpaBC) from E. coli and an engineered dopa decarboxylase (DDC) from pig kidney cell. The activity of HpaBC and DDC require 200 µM iron supplementation and 50 µM vitamin B6, respectively as additives to the growth media. The maximum concentration of L-dopa and dopamine obtained from the broth was around 26 and 27 mg/L after 24 hr of separate shake flask studies. We observed that in the presence of dopamine synthesized in vivo host growth was remarkably enhanced. These observations lead us to an interesting finding about the role of these catecholamines on bacterial growth. It is clear that synthesis of dopamine in vivo actually promotes growth much efficiently as compared to when dopamine is added to the system from outside. From HPLC and GC-MS data it was further observed that L-dopa was stable within the observable time of experiments whereas dopamine actually was subjected to degradation via oxidation and host consumption.

  19. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts.

    Directory of Open Access Journals (Sweden)

    Stacey A Lapp

    Full Text Available Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1 antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+, and a related progeny clone, Pk1(B+1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera.We have investigated SICAvar RNA and protein expression in Pk1(A+, Pk1(B+1+, and SICA[-] parasites. The Pk1(A+ and Pk1(B+1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry.SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+ to Pk1(B+1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying

  20. Identification of TRAPPC8 as a host factor required for human papillomavirus cell entry.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Ishii

    Full Text Available Human papillomavirus (HPV is a non-enveloped virus composed of a circular DNA genome and two capsid proteins, L1 and L2. Multiple interactions between its capsid proteins and host cellular proteins are required for infectious HPV entry, including cell attachment and internalization, intracellular trafficking and viral genome transfer into the nucleus. Using two variants of HPV type 51, the Ma and Nu strains, we have previously reported that MaL2 is required for efficient pseudovirus (PsV transduction. However, the cellular factors that confer this L2 dependency have not yet been identified. Here we report that the transport protein particle complex subunit 8 (TRAPPC8 specifically interacts with MaL2. TRAPPC8 knockdown in HeLa cells yielded reduced levels of reporter gene expression when inoculated with HPV51Ma, HPV16, and HPV31 PsVs. TRAPPC8 knockdown in HaCaT cells also showed reduced susceptibility to infection with authentic HPV31 virions, indicating that TRAPPC8 plays a crucial role in native HPV infection. Immunofluorescence microscopy revealed that the central region of TRAPPC8 was exposed on the cell surface and colocalized with inoculated PsVs. The entry of Ma, Nu, and L2-lacking PsVs into cells was equally impaired in TRAPPC8 knockdown HeLa cells, suggesting that TRAPPC8-dependent endocytosis plays an important role in HPV entry that is independent of L2 interaction. Finally, expression of GFP-fused L2 that can also interact with TRAPPC8 induced dispersal of the Golgi stack structure in HeLa cells, a phenotype also observed by TRAPPC8 knockdown. These results suggest that during viral intracellular trafficking, binding of L2 to TRAPPC8 inhibits its function resulting in Golgi destabilization, a process that may assist HPV genome escape from the trans-Golgi network.

  1. Production of stable GFP-expressing neural cells from P19 embryonal carcinoma stem cells.

    Science.gov (United States)

    Shirzad, Hedayatollah; Esmaeili, Fariba; Bakhshalizadeh, Shabnam; Ebrahimie, Marzieh; Ebrahimie, Esmaeil

    2017-04-01

    Murine P19 embryonal carcinoma (EC) cells are convenient to differentiate into all germ layer derivatives. One of the advantages of P19 cells is that the exogenous DNA can be easily inserted into them. Here, at the first part of this study, we generated stable GFP-expressing P19 cells (P19-GFP+). FACS and western-blot analysis confirmed stable expression of GFP in the cells. We previously demonstrated the efficient induction of neuronal differentiation from mouse ES and EC cells by application of a neuroprotective drug, selegiline In the second part of this study selegiline was used to induce differentiation of P19-GFP+ into stable GFP-expressing neuron-like cells. Cresyl violet staining confirmed neuronal morphology of the differentiated cells. Furthermore, real-time PCR and immunoflourescence approved the expression of neuron specific markers. P19-GFP+ cells were able to survive, migrate and integrated into host tissues when transplanted to developing chick embryo CNS. The obtained live GFP-expressing cells can be used as an abundant source of developmentally pluripotent material for transplantation studies, investigating the cellular and molecular aspects of early differentiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Lactobacilli interfere with Streptococcus pyogenes hemolytic activity and adherence to host epithelial cells

    Directory of Open Access Journals (Sweden)

    Sunil D Saroj

    2016-07-01

    Full Text Available Streptococcus pyogenes (Group A streptococcus (GAS, a frequent colonizer of the respiratory tract mucosal surface, causes a variety of human diseases, ranging from pharyngitis to the life-threatening streptococcal toxic shock-like syndrome. Lactobacilli have been demonstrated to colonize the respiratory tract. In this study, we investigated the interference of lactobacilli with the virulence phenotypes of GAS. The Lactobacillus strains L. rhamnosus Kx151A1 and L. reuteri PTA-5289, but not L. salivarius LMG9477, inhibited the hemolytic activity of GAS. The inhibition of hemolytic activity was attributed to a decrease in the production of streptolysin S (SLS. Conditioned medium (CM from the growth of L. rhamnosus Kx151A1 and L. reuteri PTA-5289 was sufficient to down-regulate the expression of the sag operon, encoding SLS. The Lactobacillus strains L. rhamnosus Kx151A1, L. reuteri PTA-5289 and L. salivarius LMG9477 inhibited the initial adherence of GAS to host epithelial cells. Intriguingly, competition with a combination of Lactobacillus species reduced GAS adherence to host cells most efficiently. The data suggest that an effector molecule released from certain Lactobacillus strains attenuates the production of SLS at the transcriptional level and that combinations of Lactobacillus strains may protect the pharyngeal mucosa more efficiently from the initial colonization of GAS. The effector molecules released from Lactobacillus strains affecting the virulence phenotypes of pathogens hold potential in the development of a new generation of therapeutics.

  3. Host-Based Th2 Cell Therapy for Prolongation of Cardiac Allograft Viability

    Science.gov (United States)

    Foley, Jason E.; Costanzo, Carliann M.; Sennesh, Joel D.; Solomon, Michael A.; Fowler, Daniel H.

    2011-01-01

    Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA) therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1) reduced the frequency of activated T cells in secondary lymphoid organs; (2) shifted post-transplant cytokines towards a Th2 phenotype; and (3) prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use “direct” host T cell therapy for prolongation of allograft viability as an alternative to “indirect” therapy mediated by donor T cell infusion. PMID:21559526

  4. Host-based Th2 cell therapy for prolongation of cardiac allograft viability.

    Directory of Open Access Journals (Sweden)

    Shoba Amarnath

    Full Text Available Donor T cell transfusion, which is a long-standing approach to prevent allograft rejection, operates indirectly by alteration of host T cell immunity. We therefore hypothesized that adoptive transfer of immune regulatory host Th2 cells would represent a novel intervention to enhance cardiac allograft survival. Using a well-described rat cardiac transplant model, we first developed a method for ex vivo manufacture of rat host-type Th2 cells in rapamycin, with subsequent injection of such Th2.R cells prior to class I and class II disparate cardiac allografting. Second, we determined whether Th2.R cell transfer polarized host immunity towards a Th2 phenotype. And third, we evaluated whether Th2.R cell therapy prolonged allograft viability when used alone or in combination with a short-course of cyclosporine (CSA therapy. We found that host-type Th2.R cell therapy prior to cardiac allografting: (1 reduced the frequency of activated T cells in secondary lymphoid organs; (2 shifted post-transplant cytokines towards a Th2 phenotype; and (3 prolonged allograft viability when used in combination with short-course CSA therapy. These results provide further support for the rationale to use "direct" host T cell therapy for prolongation of allograft viability as an alternative to "indirect" therapy mediated by donor T cell infusion.

  5. Donor Satellite Cell Engraftment is Significantly Augmented When the Host Niche is Preserved and Endogenous Satellite Cells are Incapacitated

    Science.gov (United States)

    Boldrin, Luisa; Neal, Alice; Zammit, Peter S; Muntoni, Francesco; Morgan, Jennifer E

    2012-01-01

    Stem cell transplantation is already in clinical practice for certain genetic diseases and is a promising therapy for dystrophic muscle. We used the mdx mouse model of Duchenne muscular dystrophy to investigate the effect of the host satellite cell niche on the contribution of donor muscle stem cells (satellite cells) to muscle regeneration. We found that incapacitation of the host satellite cells and preservation of the muscle niche promote donor satellite cell contribution to muscle regeneration and functional reconstitution of the satellite cell compartment. But, if the host niche is not promptly refilled, or is filled by competent host satellite cells, it becomes nonfunctional and donor engraftment is negligible. Application of this regimen to aged host muscles also promotes efficient regeneration from aged donor satellite cells. In contrast, if the niche is destroyed, yet host satellite cells remain proliferation-competent, donor-derived engraftment is trivial. Thus preservation of the satellite cell niche, concomitant with functional impairment of the majority of satellite cells within dystrophic human muscles, may improve the efficiency of stem cell therapy. Stem Cells2012;30:1971–1984 PMID:22730231

  6. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle

    Science.gov (United States)

    Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M.

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757

  7. Expression of periostin in breast cancer cells.

    Science.gov (United States)

    Ratajczak-Wielgomas, Katarzyna; Grzegrzolka, Jedrzej; Piotrowska, Aleksandra; Matkowski, Rafal; Wojnar, Andrzej; Rys, Janusz; Ugorski, Maciej; Dziegiel, Piotr

    2017-10-01

    Periostin (POSTN) is a protein involved in multiple processes important for cancer development, both at the stage of cancer initiation and progression, as well as metastasis. The aim of this study was to determine the expression of POSTN in the cells of non-invasive ductal breast carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to correlate it with clinicopathological data. Immunohistochemical studies (IHC) were conducted on 21 cases of fibrocystic breast change (FC), 44 cases of DCIS and 92 cases of IDC. POSTN expression at mRNA (real-time PCR) and protein level (western blot analysis) was also confirmed in selected breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231 and BO2). Statistically significant higher level of POSTN expression in IDC and DCIS cancer cells compared to FC was noted. Also, the level of POSTN expression in the cytoplasm of IDC cells was shown to increase with the increasing degree of tumour malignancy (G) and significantly higher expression of POSTN was observed in each degree of tumour malignancy (G) relative to FC. Statistically significant higher POSTN expression was observed in tumours with estrogen receptor-negative (ER-) and progesterone receptor-negative (PR-) phenotypes in comparison to estrogen receptor-positive (ER+) and progesterone receptor-positive (PR+) cases, as well as significant negative correlation between POSTN expression in cancer cells and expression of ER and PR (p<0.05). Additionally, statistically significant differences in POSTN expression were shown between particular breast cancer cell lines, both at mRNA and protein level. Observed POSTN expression was the lowest in the case of MCF-7, and the highest in MDA-MB-231 and BO2 of the most aggressive potential clinically corresponding to G3 tumours. POSTN expression in the cytoplasm of IDC cancer cells may play an important role in cancer transformation mechanism.

  8. Tissue-specific expression patterns of microRNA during acute graft-versus-host disease in the rat.

    Directory of Open Access Journals (Sweden)

    Dasaradha Jalapothu

    2016-09-01

    Full Text Available MicroRNAs (miRNA have emerged as central regulators of diverse biological processes, and contribute to driving pathology in several diseases. Acute graft-versus-host disease (aGvHD represents a major complication after allogeneic hematopoietic stem cell transplantation, caused by alloreactive donor T cells attacking host tissues leading to inflammation and tissue destruction. Changes in miRNA expression patterns occur during aGvHD, and we hypothesized that we could identify miRNA signatures in target tissues of aGvHD that may potentially help understand the underlying molecular pathology of the disease. We utilized a rat model of aGvHD with transplantation of fully MHC-mismatched T cell depleted bone marrow, followed by infusion of donor T cells. The expression pattern of 423 rat miRNAs was investigated in skin, gut, and lung tissues and intestinal T cells with the NanoString hybridization platform, in combination with validation by quantitative PCR. MHC-matched transplanted rats were included as controls. In the skin, up-regulation of miR-34b and down-regulation of miR-326 was observed, while in the intestines we detected down-regulation of miR-743b and a trend towards down-regulation of miR-345-5p. Thus tissue-specific expression patterns of miRNAs were observed. Neither miR-326 nor miR-743b has previously been associated with aGvHD. Moreover, we identified up-regulation of miR-146a and miR-155 in skin tissue of rats suffering from aGvHD. Analysis of intestinal T cells indicated 23 miRNAs differentially regulated between aGvHD and controls. Two of these miRNAs were differentially expressed either in skin (miR-326 or in intestinal (miR-345-5p tissue. Comparison of intestinal and peripheral blood T cells indicated common dysregulated expression of miR-99a, miR-223, miR-326, and miR-345-5p. Analysis of predicted gene targets for these miRNAs indicated potential targeting of an inflammatory network both in skin and in the intestines that may

  9. Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence.

    Science.gov (United States)

    Xiao, Longwen; Zhou, Liang; Sun, Changjiang; Feng, Xin; Du, ChongTao; Gao, Yu; Ji, Qun; Yang, Shuxin; Wang, Yu; Han, Wenyu; Langford, P R; Lei, Liancheng

    2012-10-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, and adherence to host cells is a key step in the pathogenic process. Although trimeric autotransporter adhesins (TAAs) were identified in many pathogenic bacteria in recent years, none in A. pleuropneumoniae have been characterized. In this study, we identified a TAA from A. pleuropneumoniae, Apa, and characterized the contribution of its amino acid residues to the adhesion process. Sequence analysis of the C-terminal amino acid residues of Apa revealed the presence of a putative translocator domain and six conserved HsfBD1-like or HsfBD2-like binding domains. Western blot analysis revealed that the 126 C-terminal amino acids of Apa could form trimeric molecules. By confocal laser scanning microscopy, one of these six domains (ApaBD3) was determined to mediate adherence to epithelial cells. Adherence assays and adherence inhibition assays using a recombinant E. coli- ApaBD3 strain which expressed ApaBD3 on the surface of E. coli confirmed that this domain was responsible for the adhesion activity. Moreover, cellular enzyme-linked immunosorbent assays demonstrated that ApaBD3 mediated high-level adherence to epithelial cell lines. Intriguingly, autoagglutination was observed with the E. coli- ApaBD3 strain, and this phenomenon was dependent upon the association of the expressed ApaBD3 with the C-terminal translocator domain. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton

    Directory of Open Access Journals (Sweden)

    Hilary K. Truchan

    2016-09-01

    Full Text Available Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.

  11. IMMUNE INHIBITION OF VIRUS RELEASE FROM HUMAN AND NONHUMAN CELLS BY ANTIBODY TO VIRAL AND HOST-CELL DETERMINANTS

    NARCIS (Netherlands)

    SHARIFF, DM; DESPERBASQUES, M; BILLSTROM, M; GEERLIGS, HJ; WELLING, GW; WELLINGWESTER, S; BUCHAN, A; SKINNER, GRB

    1991-01-01

    Immune inhibition of release of the DNA virues, herpes simplex virus types 1 and 2 and pseudorabies virus by anti-viral and anti-host cell sera occurred while two RNA viruses, influenza and encephalomyocarditis, were inhibited only by anti-viral sera (not anti-host cell sera). Simian virus 40 and

  12. Novel terpenes generated by heterologous expression of bacterial terpene synthase genes in an engineered Streptomyces host.

    Science.gov (United States)

    Yamada, Yuuki; Arima, Shiho; Nagamitsu, Tohru; Johmoto, Kohei; Uekusa, Hidehiro; Eguchi, Tadashi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2015-06-01

    Mining of bacterial genome data has revealed numerous presumptive terpene synthases. Heterologous expression of several putative terpene synthase genes in an engineered Streptomyces host has revealed 13 newly discovered terpenes whose GC-MS and NMR data did not match with any known compounds in spectroscopic databases. Each of the genes encoding the corresponding terpene synthases were silent in their parent microorganisms. Heterologous expression and detailed NMR spectroscopic analysis allowed assignment of the structures of 13 new cyclic terpenes. Among these newly identified compounds, two were found to be linear triquinane sesquiterpenes that have never previously been isolated from bacteria or any other source. The remaining 11 new compounds were shown to be diterpene hydrocarbons and alcohol, including hydropyrene (1), hydropyrenol (2), tsukubadiene (11) and odyverdienes A (12) and B (13) each displaying a novel diterpene skeleton that had not previously been reported.

  13. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes.

    Science.gov (United States)

    Killackey, Samuel A; Sorbara, Matthew T; Girardin, Stephen E

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.

  14. Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease

    Directory of Open Access Journals (Sweden)

    Corey Falcon

    2017-06-01

    Full Text Available Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD. Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis, as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.

  15. Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease.

    Science.gov (United States)

    Falcon, Corey; Al-Obaidi, Mustafa; Di Stasi, Antonio

    2017-06-14

    Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD). Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis), as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.

  16. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Adam Sateriale

    2011-01-01

    Full Text Available The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model.

  17. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    Science.gov (United States)

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  18. Optimization of the functional expression of Coprinus cinereus peroxidase in Pichia pastoris by varying the host and promoter.

    Science.gov (United States)

    Kim, Su-Jin; Lee, Jeong-Ah; Kim, Yong-Hwan; Song, Bong-Keun

    2009-09-01

    Peroxidase from Coprinus cinereus (CiP) has attracted attention for its high specific activity and broad substrate spectrum compared with other peroxidases. In this study, the functional expression of this peroxidase was successfully achieved in the methylotrophic yeast Pichia pastoris. The expression level of CiP was increased by varying the microbial hosts and the expression promoters. Since a signal sequence, such as the alpha mating factor of Saccharomyces cerevisiae, was placed preceding the cDNA of the CiP coding gene, expressed recombinant CiP (rCiP) was secreted into the culture broth. The Mut+ Pichia pastoris host showed a 3-fold higher peroxidase activity, as well as 2-fold higher growth rate, compared with the Muts Pichia pastoris host. Furthermore, the AOX1 promoter facilitated a 5-fold higher expression of rCiP than did the GAP promoter.

  19. Defect in negative selection in lpr donor-derived T cells differentiating in non-lpr host thymus

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K.; Yoshikai, Y.; Asano, T.; Himeno, K.; Iwasaki, A.; Nomoto, K. (Kyushu Univ., Fukuoka (Japan))

    1991-01-01

    Transplantation of bone marrow cells of lpr/lpr mice into irradiated normal mice fails to develop massive lymphadenopathy or autoimmunity but causes severe graft-vs.-host-like syndrome. To elucidate an abnormality of lpr/lpr bone marrow-derived T cells, we transplanted bone marrow cells of Mlsb lpr/lpr mice into H-2-compatible Mlsa non-lpr mice. Although lpr/lpr T cell precursors repopulated the host thymus as well as +/+ cells, a proportion of CD4+CD8+ cells decreased, and that of both CD4- and CD8- single-positive cells increased compared with those of +/+ recipients. Notably, in MRL/lpr----AKR and C3H/lpr----AKR chimeras, CD4 single-positive thymocytes contained an increased number of V beta 6+ cells in spite of potentially deleting alleles of Mlsa, whereas V beta 6+ mature T cells were deleted in the MRL/+ ----AKR and C3H/+ ----AKR chimeras. There was no difference between MRL/+ ----AKR and MRL/lpr----AKR chimeras in their proportion of V beta 3+ cells because both host and donor strain lack the deleting alleles. Interleukin 2 receptor expression of mature T cells, in the thymus and lymph node, was obviously higher in the MRL/lpr----AKR chimeras, in particular in the forbidden V beta 6+ subset. Moreover, lpr donor-derived peripheral T cells showed vigorous anti-CD3 response. These results indicate that lpr-derived T cells escape not only tolerance-related clonal deletion but also some induction of unresponsiveness in the non-lpr thymus.

  20. Molecular expression in transfected corneal endothelial cells

    Science.gov (United States)

    Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong

    2017-10-01

    To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.

  1. Hybrid hepatitis B virus-host transcripts in a human hepatoma cell.

    Science.gov (United States)

    Ou, J; Rutter, W J

    1985-01-01

    The human PLC/PRF/5 hepatoma cell line (the Alexander cell) contains at least seven copies of hepatitis B virus (HBV) DNA integrated in its genome; but it selectively expresses the HBV surface antigen (HBsAg) gene and perhaps low levels of the core gene. We have prepared a cDNA library from PLC/PRF/5 cell poly(A)+ RNA and isolated clones containing HBV sequences. Hybridization experiments show that the great majority of HBV-specific RNAs in this cell line contain HBsAg coding sequences and are presumably derived from the HBsAg gene. Primer extension experiments show that these HBsAg mRNAs are, however, derived from multiple initiation sites in the HBsAg gene and involve two promoters: one at the 5' end of the gene that can produce a protein of 45 kDa, and one located in the pre-S region that can produce two proteins of 31 kDa and the mature HBsAg, 25 kDa, respectively. The HBV RNAs are hybrid RNA species that contain HBV sequences at their 5' ends and host DNA sequences at the 3' ends. The great majority of these hybrid RNAs are transcribed from two closely related yet distinct HBV integrants. The viral-host sequences of these two related hybrid RNAs suggest that the related HBV sequences were generated from a parental fragment via duplication, translocation, and mutagenesis. These processes may play a role in HBV-related oncogenesis. Images PMID:2982146

  2. Analysis of host- and strain-dependent cell death responses during infectious salmon anemia virus infection in vitro

    Directory of Open Access Journals (Sweden)

    Mjaaland Siri

    2009-07-01

    Full Text Available Abstract Background Infectious salmon anemia virus (ISAV is an aquatic orthomyxovirus and the causative agent of infectious salmon anemia (ISA, a disease of great importance in the Atlantic salmon farming industry. In vitro, ISAV infection causes cytophatic effect (CPE in cell lines from Atlantic salmon, leading to rounding and finally detachment of the cells from the substratum. In this study, we investigated the mode of cell death during in vitro ISAV infection in different Atlantic salmon cell lines, using four ISAV strains causing different mortality in vivo. Results The results show that caspase 3/7 activity increased during the course of infection in ASK and SHK-1 cells, infected cells showed increased surface expression of phosphatidylserine and increased PI uptake, compared to mock infected cells; and morphological alterations of the mitochondria were observed. Expression analysis of immune relevant genes revealed no correlation between in vivo mortality and expression, but good correlation in expression of interferon genes. Conclusion Results from this study indicate that there is both strain and cell type dependent differences in the virus-host interaction during ISAV infection. This is important to bear in mind when extrapolating in vitro findings to the in vivo situation.

  3. Repression of Salmonella host cell invasion by aromatic small molecules from the human fecal metabolome.

    Science.gov (United States)

    Peixoto, Rafael J M; Alves, Eduardo S; Wang, Melody; Ferreira, Rosana B R; Granato, Alessandra; Han, Jun; Gill, Hira; Jacobson, Kevan; Lobo, Leandro A; Domingues, Regina M C P; Borchers, Christoph H; Davies, Julian E; Finlay, B Brett; Antunes, L Caetano M

    2017-07-28

    The human microbiome is a collection of microorganisms that inhabit every surface of the body that is exposed to the environment, generally coexisting peacefully with their host. These microbes have important functions such as the production of vitamins, maturation of the immune system and protection against pathogens. We have previously shown that a small-molecule extract from the human fecal microbiome has a strong repressive effect on Salmonella enterica serovar Typhimurium host cell invasion by modulating the expression of genes involved in this process. Here, we describe the characterization of this biological activity. Using a series of purification methods, we obtained fractions with biological activity and characterized them by mass spectrometry. These experiments revealed an abundance of aromatic compounds in the bioactive fraction. Selected compounds were obtained from commercial sources and tested with respect to their ability to repress the expression of hilA, the gene encoding the master regulator of invasion genes in Salmonella We found that the aromatic compound 3,4-dimethylbenzoic acid acts as a strong inhibitor of hilA expression as well as invasion of cultured host cells by Salmonella Future studies should reveal the molecular details of this phenomenon, such as the signaling cascades involved in sensing this bioactive molecule.Importance Microbes constantly sense and adapt to their environment. Often, this is achieved through the production and sensing of small extracellular molecules. The human body is colonized by complex communities of microbes, and, given their biological and chemical diversity, these ecosystems represent a platform where the production and sensing of molecules occurs. In previous work, we showed that small molecules produced by microbes from the human gut can significantly impair the virulence of the enteric pathogen Salmonella enterica Here, we describe a specific compound from the human gut that produces this same effect

  4. Use of a novel cell-based fusion reporter assay to explore the host range of human respiratory syncytial virus F protein

    Directory of Open Access Journals (Sweden)

    Sarisky Robert T

    2005-07-01

    Full Text Available Abstract Human respiratory syncytial virus (HRSV is an important respiratory pathogen primarily affecting infants, young children, transplant recipients and the elderly. The F protein is the only virion envelope protein necessary and sufficient for virus replication and fusion of the viral envelope membrane with the target host cell. During natural infection, HRSV replication is limited to respiratory epithelial cells with disseminated infection rarely, if ever, occurring even in immunocompromised patients. However, in vitro infection of multiple human and non-human cell types other than those of pulmonary tract origin has been reported. To better define host cell surface molecules that mediate viral entry and dissect the factors controlling permissivity for HRSV, we explored the host range of HRSV F protein mediated fusion. Using a novel recombinant reporter gene based fusion assay, HRSV F protein was shown to mediate fusion with cells derived from a wide range of vertebrate species including human, feline, equine, canine, bat, rodent, avian, porcine and even amphibian (Xenopus. That finding was extended using a recombinant HRSV engineered to express green fluorescent protein (GFP, to confirm that viral mRNA expression is limited in several cell types. These findings suggest that HRSV F protein interacts with either highly conserved host cell surface molecules or can use multiple mechanisms to enter cells, and that the primary determinants of HRSV host range are at steps post-entry.

  5. Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment

    Directory of Open Access Journals (Sweden)

    Fu-Xing Zuo

    2015-11-01

    Full Text Available Parkinson’s disease (PD is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not well understood. Here, we investigate whether human NSCs (hNSCs transplantation could provide neuroprotection against DA depletion by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP were transplanted with hNSCs or vehicle into the striatum. Behavioral and histological analyses demonstrated significant neurorescue response observed in hNSCs-treated animals compared with the control mice. In transplanted animals, grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor cells (NPCs in mice given hNSCs. Additionally, we also detected significantly higher expression of host-derived growth factors in hNSCs-transplanted mice compared with the control animals, together with inhibition of local microglia and proinflammatory cytokines. Overall, our results indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating the host niche. Harnessing synergistic interaction between the grafts and host cells may help optimize cell-based therapies for PD.

  6. Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment.

    Science.gov (United States)

    Zuo, Fu-Xing; Bao, Xin-Jie; Sun, Xi-Cai; Wu, Jun; Bai, Qing-Ran; Chen, Guo; Li, Xue-Yuan; Zhou, Qiang-Yi; Yang, Yuan-Fan; Shen, Qin; Wang, Ren-Zhi

    2015-11-05

    Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not well understood. Here, we investigate whether human NSCs (hNSCs) transplantation could provide neuroprotection against DA depletion by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were transplanted with hNSCs or vehicle into the striatum. Behavioral and histological analyses demonstrated significant neurorescue response observed in hNSCs-treated animals compared with the control mice. In transplanted animals, grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor cells (NPCs) in mice given hNSCs. Additionally, we also detected significantly higher expression of host-derived growth factors in hNSCs-transplanted mice compared with the control animals, together with inhibition of local microglia and proinflammatory cytokines. Overall, our results indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating the host niche. Harnessing synergistic interaction between the grafts and host cells may help optimize cell-based therapies for PD.

  7. Chew on this: Amoebic trogocytosis and host cell killing by Entamoeba histolytica

    Science.gov (United States)

    Ralston, Katherine S.

    2015-01-01

    Entamoeba histolytica was named “histolytica” (histo-: tissue; lytic-: dissolving) for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. Here we review this process, termed “amoebic trogocytosis” (trogo-: nibble), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. “Nibbling” processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange. PMID:26070402

  8. Bordetella effector BopN is translocated into host cells via its N-terminal residues.

    Science.gov (United States)

    Abe, Akio; Nishimura, Ryutaro; Kuwae, Asaomi

    2017-06-01

    Bordetella bronchiseptica infects a wide variety of mammals, the type III secretion system (T3SS) being involved in long-term colonization by Bordetella of the trachea and lung. T3SS translocates virulence factors (commonly referred to as effectors) into host cells, leading to alterations in the host's physiological function. The Bordetella effectors BopN and BteA are known to have roles in up-regulation of IL-10 and cytotoxicity, respectively. Nevertheless, the mechanism by which BopN is translocated into host cells has not been examined in sufficient detail. Therefore, to determine the precise mechanisms of translocation of BopN into host cells, truncated derivatives of BopN were built and the derivatives' ability to translocate into host cells evaluated by adenylate cyclase-mediated translocation assay. It was found that N-terminal amino acid (aa) residues 1-200 of BopN are sufficient for its translocation into host cells. Interestingly, BopN translocation was completely blocked by deletion of the N-terminal aa residues 6-50, indicating that the N-terminal region is critical for BopN translocation. Furthermore, BopN appears to play an auxiliary role in BteA-mediated cytotoxicity. Thus, BopN can apparently translocate into host cells and may facilitate activity of BteA. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  9. Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization.

    Science.gov (United States)

    Wei, Xuetuan; Zhou, Yinhua; Chen, Jingbang; Cai, Dongbo; Wang, Dan; Qi, Gaofu; Chen, Shouwen

    2015-02-01

    Nattokinase (NK) possesses the potential for prevention and treatment of thrombus-related diseases. In this study, high-level expression of nattokinase was achieved in Bacillus licheniformis WX-02 via host strain construction and signal peptides optimization. First, ten genes (mpr, vpr, aprX, epr, bpr, wprA, aprE, bprA, hag, amyl) encoding for eight extracellular proteases, a flagellin and an amylase were deleted to obtain B. licheniformis BL10, which showed no extracellular proteases activity in gelatin zymography. Second, the gene fragments of P43 promoter, Svpr, nattokinase and TamyL were combined into pHY300PLK to form the expression vector pP43SNT. In BL10 (pP43SNT), the fermentation activity and product activity per unit of biomass of nattokinase reached 14.33 FU/mL and 2,187.71 FU/g respectively, which increased by 39 and 156 % compared to WX-02 (pP43SNT). Last, Svpr was replaced with SsacC and SbprA, and the maximum fermentation activity (33.83 FU/mL) was achieved using SsacC, which was 229 % higher than that of WX-02 (pP43SNT). The maximum NK fermentation activity in this study reaches the commercial production level of solid state fermentation, and this study provides a promising engineered strain for industrial production of nattokinase, as well as a potential platform host for expression of other target proteins.

  10. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell.

    Science.gov (United States)

    Hatch, G M; McClarty, G

    1998-08-01

    Chlamydia trachomatis is an obligate intracellular eubacterial parasite capable of infecting a wide range of eucaryotic host cells. Purified chlamydiae contain several lipids typically found in eucaryotes, and it has been established that eucaryotic lipids are transported from the host cell to the parasite. In this report, we examine the phospholipid composition of C. trachomatis purified from host cells grown under a variety of conditions in which the cellular phospholipid composition was altered. A mutant CHO cell line, with a thermolabile CDP-choline synthetase, was used to show that decreased host cell phosphatidylcholine levels had no significant effect on C. trachomatis growth. However, less phosphatidylcholine was transported to the parasite and purified elementary bodies contained decreased levels of phosphatidylcholine. Brefeldin A, fumonisin B1, and exogenous sphingomyelinase were used to alter levels of host cell sphingomyelin. None of the agents had a significant effect on C. trachomatis replication. Treatment with fumonisin B1 and exogenous sphingomyelinase resulted in decreased levels of host cell sphingomyelin. This had no effect on glycerophospholipid trafficking to chlamydiae; however, sphingomyelin trafficking was reduced and elementary bodies purified from treated cells had reduced sphingomyelin content. Exposure to brefeldin A, which had no adverse effect on chlamydia growth, resulted in an increase in cellular levels of sphingomyelin and a concomitant increase in the amount of sphingomyelin in purified chlamydiae. Under the experimental conditions used, brefeldin A treatment had only a small effect on sphingomyelin trafficking to the host cell surface or to C. trachomatis. Thus, the final phospholipid composition of purified C. trachomatis mimics that of the host cell in which it is grown.

  11. Baculovirus LEF-11 Hijack Host ATPase ATAD3A to Promote Virus Multiplication in Bombyx mori cells.

    Science.gov (United States)

    Dong, Zhan-Qi; Hu, Nan; Dong, Fei-Fan; Chen, Ting-Ting; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2017-04-10

    Research on molecular mechanisms that viruses use to regulate the host apparatus is important in virus infection control and antiviral therapy exploration. Our previous research showed that the Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 localized to dense regions of the cell nucleus and is required for viral DNA replication. Herein, we examined the mechanism of LEF-11 on BmNPV multiplication and demonstrated that baculovirus LEF-11 interacts with Bombyx mori ATAD3A and HSPD1 (HSP60) protein. Furthermore, we showed that LEF-11 has the ability to induce and up-regulate the expression of ATAD3A and HSPD1, phenomena that were both reversed upon knockdown of lef-11. Our findings showed that ATAD3A and HSPD1 were necessary and contributed to BmNPV multiplication in Bombyx mori cells. Moreover, ATAD3A was found to directly interact with HSPD1. Interestingly, ATAD3A was required for the expression of HSPD1, while the knockdown of HSPD1 had no obvious effect on the expression level of ATAD3A. Taken together, the data presented in the current study demonstrated that baculovirus LEF-11 hijacks the host ATPase family members, ATAD3A and HSPD1, efficiently promote the multiplication of the virus. This study furthers our understanding of how baculovirus modulates energy metabolism of the host and provides a new insight into the molecular mechanisms of antiviral research.

  12. The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.

    Directory of Open Access Journals (Sweden)

    James W Bruce

    2008-11-01

    Full Text Available The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV vector. This approach identified a role for 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1, one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.

  13. Graft-versus-host-like disease complicating thymoma: lack of AIRE expression as a cause of non-hereditary autoimmunity?

    NARCIS (Netherlands)

    Offerhaus, G. Johan; Schipper, Marguerite E. I.; Lazenby, Audrey J.; Montgomery, Elizabeth; Morsink, Folkert H. M.; Bende, Richard J.; Musler, Alex R.; van Lier, Rene A. W.; van Noesel, Carel J. M.

    2007-01-01

    Three patients with graft-versus-host-like enterocolonopathy are reported. Their history was remarkable for thymoma and other autoimmune manifestations such as thrombocytopenia, red cell aplasia, interface dermatitis, Sjogren sialadenits, vanishing bile ducts and rheumatoid arthritis. In all

  14. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    Directory of Open Access Journals (Sweden)

    Huan Peng

    Full Text Available The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO; 1550 clusters were assigned enzyme commission (EC numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to

  15. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  16. IAA8 expression during vascular cell differentiation

    Science.gov (United States)

    Andrew T. Groover; Amy Pattishall; Alan M. Jones

    2003-01-01

    We report the characterization of a member of the auxin-induced IAA gene family from zinnia, designated zIAA8, which is expressed by mesophyll cells differentiating as tracheary elements in vitro. Transcription of zIAA8 is upregulated within 3 h after cell isolation in inductive medium,...

  17. Alcohol Consumption Modulates Host Defense in Rhesus Macaques by Altering Gene Expression in Circulating Leukocytes.

    Science.gov (United States)

    Barr, Tasha; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Grant, Kathleen; Messaoudi, Ilhem

    2016-01-01

    Several lines of evidence indicate that chronic alcohol use disorder leads to increased susceptibility to several viral and bacterial infections, whereas moderate alcohol consumption decreases the incidence of colds and improves immune responses to some pathogens. In line with these observations, we recently showed that heavy ethanol intake (average blood ethanol concentrations > 80 mg/dl) suppressed, whereas moderate alcohol consumption (blood ethanol concentrations consumption. To uncover the molecular basis for impaired immunity with heavy alcohol consumption and enhanced immune response with moderate alcohol consumption, we performed a transcriptome analysis using PBMCs isolated on day 7 post-modified vaccinia Ankara vaccination, the earliest time point at which we detected differences in T cell and Ab responses. Overall, chronic heavy alcohol consumption reduced the expression of immune genes involved in response to infection and wound healing and increased the expression of genes associated with the development of lung inflammatory disease and cancer. In contrast, chronic moderate alcohol consumption upregulated the expression of genes involved in immune response and reduced the expression of genes involved in cancer. To uncover mechanisms underlying the alterations in PBMC transcriptomes, we profiled the expression of microRNAs within the same samples. Chronic heavy ethanol consumption altered the levels of several microRNAs involved in cancer and immunity and known to regulate the expression of mRNAs differentially expressed in our data set. Copyright © 2015 by The American Association of Immunologists, Inc.

  18. Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy

    Science.gov (United States)

    Inkeles, Megan S.; Teles, Rosane M.B.; Pouldar, Delila; Andrade, Priscila R.; Madigan, Cressida A.; Ambrose, Mike; Sarno, Euzenir N.; Rea, Thomas H.; Ochoa, Maria T.; Iruela-Arispe, M. Luisa; Swindell, William R.; Ottenhoff, Tom H.M.; Geluk, Annemieke; Bloom, Barry R.

    2016-01-01

    Transcriptome profiles derived from the site of human disease have led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum, which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene coexpression modules by cell-type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach toward identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease. PMID:27699251

  19. Modular broad-host-range expression vectors for single-protein and protein complex purification.

    Science.gov (United States)

    Fodor, Barna D; Kovács, Akos T; Csáki, Róbert; Hunyadi-Gulyás, Eva; Klement, Eva; Maróti, Gergely; Mészáros, Lívia S; Medzihradszky, Katalin F; Rákhely, Gábor; Kovács, Kornél L

    2004-02-01

    A set of modular broad-host-range expression vectors with various affinity tags (six-His-tag, FLAG-tag, Strep-tag II, T7-tag) was created. The complete nucleotide sequences of the vectors are known, and these small vectors can be mobilized by conjugation. They are useful in the purification of proteins and protein complexes from gram-negative bacterial species. The plasmids were easily customized for Thiocapsa roseopersicina, Rhodobacter capsulatus, and Methylococcus capsulatus by inserting an appropriate promoter. These examples demonstrate the versatility and flexibility of the vectors. The constructs harbor the T7 promoter for easy overproduction of the desired protein in an appropriate Escherichia coli host. The vectors were useful in purifying different proteins from T. roseopersicina. The FLAG-tag-Strep-tag II combination was utilized for isolation of the HynL-HypC2 protein complex involved in hydrogenase maturation. These tools should be useful for protein purification and for studying protein-protein interactions in a range of bacterial species.

  20. Establishment of Myotis myotis cell lines--model for investigation of host-pathogen interaction in a natural host for emerging viruses.

    Directory of Open Access Journals (Sweden)

    Xiaocui He

    Full Text Available Bats are found to be the natural reservoirs for many emerging viruses. In most cases, severe clinical signs caused by such virus infections are normally not seen in bats. This indicates differences in the virus-host interactions and underlines the necessity to develop natural host related models to study these phenomena. Due to the strict protection of European bat species, immortalized cell lines are the only alternative to investigate the innate anti-virus immune mechanisms. Here, we report about the establishment and functional characterization of Myotis myotis derived cell lines from different tissues: brain (MmBr, tonsil (MmTo, peritoneal cavity (MmPca, nasal epithelium (MmNep and nervus olfactorius (MmNol after immortalization by SV 40 large T antigen. The usefulness of these cell lines to study antiviral responses has been confirmed by analysis of their susceptibility to lyssavirus infection and the mRNA patterns of immune-relevant genes after poly I:C stimulation. Performed experiments indicated varying susceptibility to lyssavirus infection with MmBr being considerably less susceptible than the other cell lines. Further investigation demonstrated a strong activation of interferon mediated antiviral response in MmBr contributing to its resistance. The pattern recognition receptors: RIG-I and MDA5 were highly up-regulated during rabies virus infection in MmBr, suggesting their involvement in promotion of antiviral responses. The presence of CD14 and CD68 in MmBr suggested MmBr cells are microglia-like cells which play a key role in host defense against infections in the central nervous system (CNS. Thus the expression pattern of MmBr combined with the observed limitation of lyssavirus replication underpin a protective mechanism of the CNS controlling the lyssavirus infection. Overall, the established cell lines are important tools to analyze antiviral innate immunity in M. myotis against neurotropic virus infections and present a valuable

  1. Perturbation of host cell cytoskeleton by cranberry proanthocyanidins and their effect on enteric infections.

    Directory of Open Access Journals (Sweden)

    Kevin Harmidy

    Full Text Available Cranberry-derived compounds, including a fraction known as proanthocyanidins (PACs exhibit anti-microbial, anti-infective, and anti-adhesive properties against a number of disease-causing organisms. In this study, the effect of cranberry proanthocyanidins (CPACs on the infection of epithelial cells by two enteric bacterial pathogens, enteropathogenic Escherichia coli (EPEC and Salmonella Typhimurium was investigated. Immunofluorescence data showed that actin pedestal formation, required for infection by enteropathogenic Escherichia coli (EPEC, was disrupted in the presence of CPACs. In addition, invasion of HeLa cells by Salmonella Typhimurium was significantly reduced, as verified by gentamicin protection assay and immunofluorescence. CPACs had no effect on bacterial growth, nor any detectable effect on the production of bacterial effector proteins of the type III secretion system. Furthermore, CPACs did not affect the viability of host cells. Interestingly, we found that CPACs had a potent and dose-dependent effect on the host cell cytoskeleton that was evident even in uninfected cells. CPACs inhibited the phagocytosis of inert particles by a macrophage cell line, providing further evidence that actin-mediated host cell functions are disrupted in the presence of cranberry CPACs. Thus, although CPAC treatment inhibited Salmonella invasion and EPEC pedestal formation, our results suggest that this is likely primarily because of the perturbation of the host cell cytoskeleton by CPACs rather than an effect on bacterial virulence itself. These findings have significant implications for the interpretation of experiments on the effects of CPACs on bacteria-host cell interactions.

  2. Attachment and Invasion of Neisseria meningitidis to Host Cells Is Related to Surface Hydrophobicity, Bacterial Cell Size and Capsule

    OpenAIRE

    Bartley, Stephanie N.; Yih-Ling Tzeng; Kathryn Heel; Lee, Chiang W.; Shakeel Mowlaboccus; Torsten Seemann; Wei Lu; Ya-Hsun Lin; Ryan, Catherine S.; Christopher Peacock; Stephens, David S.; Davies, John K.; Kahler, Charlene M.

    2013-01-01

    We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determ...

  3. The role of arginine and arginine-metabolizing enzymes during Giardia – host cell interactions in vitro

    Science.gov (United States)

    2013-01-01

    Background Arginine is a conditionally essential amino acid important in growing individuals and under non-homeostatic conditions/disease. Many pathogens interfere with arginine-utilization in host cells, especially nitric oxide (NO) production, by changing the expression of host enzymes involved in arginine metabolism. Here we used human intestinal epithelial cells (IEC) and three different isolates of the protozoan parasite Giardia intestinalis to investigate the role of arginine and arginine-metabolizing enzymes during intestinal protozoan infections. Results RNA expression analyses of major arginine-metabolizing enzymes revealed the arginine-utilizing pathways in human IECs (differentiated Caco-2 cells) grown in vitro. Most genes were constant or down-regulated (e.g. arginase 1 and 2) upon interaction with Giardia, whereas inducible NO synthase (iNOS) and ornithine decarboxylase (ODC) were up-regulated within 6 h of infection. Giardia was shown to suppress cytokine-induced iNOS expression, thus the parasite has both iNOS inducing and suppressive activities. Giardial arginine consumption suppresses NO production and the NO-degrading parasite protein flavohemoglobin is up-regulated in response to host NO. In addition, the secreted, arginine-consuming giardial enzyme arginine deiminase (GiADI) actively reduces T-cell proliferation in vitro. Interestingly, the effects on NO production and T cell proliferation could be reversed by addition of external arginine or citrulline. Conclusions Giardia affects the host’s arginine metabolism on many different levels. Many of the effects can be reversed by addition of arginine or citrulline, which could be a beneficial supplement in oral rehydration therapy. PMID:24228819

  4. Host cell-derived lactate functions as an effector molecule in Neisseria meningitidis microcolony dispersal.

    Science.gov (United States)

    Sigurlásdóttir, Sara; Engman, Jakob; Eriksson, Olaspers Sara; Saroj, Sunil D; Zguna, Nadezda; Lloris-Garcerá, Pilar; Ilag, Leopold L; Jonsson, Ann-Beth

    2017-04-01

    The development of meningococcal disease, caused by the human pathogen Neisseria meningitidis, is preceded by the colonization of the epithelial layer in the nasopharynx. After initial adhesion to host cells meningococci form aggregates, through pilus-pilus interactions, termed microcolonies from which the bacteria later detach. Dispersal from microcolonies enables access to new colonization sites and facilitates the crossing of the cell barrier; however, this process is poorly understood. In this study, we used live-cell imaging to investigate the process of N. meningitidis microcolony dispersal. We show that direct contact with host cells is not required for microcolony dispersal, instead accumulation of a host-derived effector molecule induces microcolony dispersal. By using a host-cell free approach, we demonstrated that lactate, secreted from host cells, initiate rapid dispersal of microcolonies. Interestingly, metabolic utilization of lactate by the bacteria was not required for induction of dispersal, suggesting that lactate plays a role as a signaling molecule. Furthermore, Neisseria gonorrhoeae microcolony dispersal could also be induced by lactate. These findings reveal a role of host-secreted lactate in microcolony dispersal and virulence of pathogenic Neisseria.

  5. The autotransporter protein from Bordetella avium, Baa1, is involved in host cell attachment

    Science.gov (United States)

    Stockwell, S. B.; Kuzmiak-Ngiam, H.; Beach, N. M.; Miyamoto, D.; Fernandez, R.; Temple, L.

    2011-01-01

    Bordetella avium is a Gram negative upper respiratory tract pathogen of birds. B. avium infection of commercially-raised turkeys is an agriculturally significant problem. Here we describe the functional analysis of the first characterized B. avium autotransporter protein, Baa1. Autotransporters comprise a large family of proteins found in all groups of Gram negative bacteria. Although not unique to pathogenic bacteria, autotransporters have been shown to perform a variety of functions implicated in virulence. To test the hypothesis that Baa1 is a B. avium virulence factor, unmarked baa1 deletion mutants (Δbaa1) were created and tested phenotypically. It was found that baa1 mutants have wild-type levels of serum sensitivity and infectivity, yet significantly lower levels of turkey tracheal cell attachment in vitro. Likewise, semi-purified recombinant His-tagged Baa1, expressed in E. coli, was shown to bind specifically to turkey tracheal cells via western blot analysis. Taken together, we conclude that Baa1 acts as a host cell attachment factor and thus plays a role B. avium virulence. PMID:21632225

  6. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Javier M. Urquiza

    2017-08-01

    Full Text Available The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV, the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  7. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi.

    Science.gov (United States)

    Urquiza, Javier M; Burgos, Juan M; Ojeda, Diego S; Pascuale, Carla A; Leguizamón, M Susana; Quarleri, Jorge F

    2017-01-01

    The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV), the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis.

  8. Astrocyte Apoptosis and HIV Replication Are Modulated in Host Cells Coinfected with Trypanosoma cruzi

    Science.gov (United States)

    Urquiza, Javier M.; Burgos, Juan M.; Ojeda, Diego S.; Pascuale, Carla A.; Leguizamón, M. Susana; Quarleri, Jorge F.

    2017-01-01

    The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease. In immunosuppressed individuals, as it occurs in the coinfection with human immunodeficiency virus (HIV), the central nervous system may be affected. In this regard, reactivation of Chagas disease is severe and often lethal, and it accounts for meningoencephalitis. Astrocytes play a crucial role in the environment maintenance of healthy neurons; however, they can host HIV and T. cruzi. In this report, human astrocytes were infected in vitro with both genetically modified-pathogens to express alternative fluorophore. As evidenced by fluorescence microscopy and flow cytometry, HIV and T. cruzi coexist in the same astrocyte, likely favoring reciprocal interactions. In this context, lower rates of cell death were observed in both T. cruzi monoinfected-astrocytes and HIV-T. cruzi coinfection in comparison with those infected only with HIV. The level of HIV replication is significantly diminished under T. cruzi coinfection, but without affecting the infectivity of the HIV progeny. This interference with viral replication appears to be related to the T. cruzi multiplication rate or its increased intracellular presence but does not require their intracellular cohabitation or infected cell-to-cell contact. Among several Th1/Th2/Th17 profile-related cytokines, only IL-6 was overexpressed in HIV-T. cruzi coinfection exhibiting its cytoprotective role. This study demonstrates that T. cruzi and HIV are able to coinfect astrocytes thus altering viral replication and apoptosis. PMID:28824880

  9. The G-quadruplex-forming aptamer AS1411 potently inhibits HIV-1 attachment to the host cell.

    Science.gov (United States)

    Perrone, Rosalba; Butovskaya, Elena; Lago, Sara; Garzino-Demo, Alfredo; Pannecouque, Christophe; Palù, Giorgio; Richter, Sara N

    2016-04-01

    AS1411 is a G-rich aptamer that forms a stable G-quadruplex structure and displays antineoplastic properties both in vitro and in vivo. This oligonucleotide has undergone phase 2 clinical trials. The major molecular target of AS1411 is nucleolin (NCL), a multifunctional nucleolar protein also present in the cell membrane where it selectively mediates the binding and uptake of AS1411. Cell-surface NCL has been recognised as a low-affinity co-receptor for human immunodeficiency virus type 1 (HIV-1) anchorage on target cells. Here we assessed the anti-HIV-1 properties and underlying mechanism of action of AS1411. The antiviral activity of AS1411 was determined towards different HIV-1 strains, host cells and at various times post-infection. Acutely, persistently and latently infected cells were tested, including HIV-1-infected peripheral blood mononuclear cells from a healthy donor. Mechanistic studies to exclude modes of action other than virus binding via NCL were performed. AS1411 efficiently inhibited HIV-1 attachment/entry into the host cell. The aptamer displayed antiviral activity in the absence of cytotoxicity at the tested doses, therefore displaying a wide therapeutic window and favourable selectivity indexes. These findings, besides validating cell-surface-expressed NCL as an antiviral target, open the way for the possible use of AS1411 as a new potent and promisingly safe anti-HIV-1 agent. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis.

    Science.gov (United States)

    Backert, Ingo; Koralov, Sergei B; Wirtz, Stefan; Kitowski, Vera; Billmeier, Ulrike; Martini, Eva; Hofmann, Katharina; Hildner, Kai; Wittkopf, Nadine; Brecht, Katrin; Waldner, Maximilian; Rajewsky, Klaus; Neurath, Markus F; Becker, Christoph; Neufert, Clemens

    2014-10-01

    The Citrobacter rodentium model mimics the pathogenesis of infectious colitis and requires sequential contributions from different immune cell populations, including innate lymphoid cells (ILCs) and CD4(+) lymphocytes. In this study, we addressed the role of STAT3 activation in CD4(+) cells during host defense in mice against C. rodentium. In mice with defective STAT3 in CD4(+) cells (Stat3(ΔCD4)), the course of infection was unchanged during the innate lymphoid cell-dependent early phase, but significantly altered during the lymphocyte-dependent later phase. Stat3(ΔCD4) mice exhibited intestinal epithelial barrier defects, including downregulation of antimicrobial peptides, increased systemic distribution of bacteria, and prolonged reduction in the overall burden of C. rodentium infection. Immunomonitoring of lamina propria cells revealed loss of virtually all IL-22-producing CD4(+) lymphocytes, suggesting that STAT3 activation was required for IL-22 production not only in Th17 cells, but also in Th22 cells. Notably, the defective host defense against C. rodentium in Stat3(∆CD4) mice could be fully restored by specific overexpression of IL-22 through a minicircle vector-based technology. Moreover, expression of a constitutive active STAT3 in CD4(+) cells shaped strong intestinal epithelial barrier function in vitro and in vivo through IL-22, and it promoted protection from enteropathogenic bacteria. Thus, our work indicates a critical role of STAT3 activation in Th17 and Th22 cells for control of the IL-22-mediated host defense, and strategies expanding STAT3-activated CD4(+) lymphocytes may be considered as future therapeutic options for improving intestinal barrier function in infectious colitis. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5.

    Science.gov (United States)

    Whiteley, Liam; Haug, Maria; Klein, Kristina; Willmann, Matthias; Bohn, Erwin; Chiantia, Salvatore; Schwarz, Sandra

    2017-01-01

    Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.

  12. Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5.

    Directory of Open Access Journals (Sweden)

    Liam Whiteley

    Full Text Available Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 (T6SS-5 to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl- β-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and

  13. Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants.

    Science.gov (United States)

    Cai, Xin-Zhong; Zhou, Xin; Xu, You-Ping; Joosten, Matthieu H A J; de Wit, Pierre J G M

    2007-05-01

    Nonhost resistance as a durable and broad-spectrum defence strategy is of great potential for agricultural applications. We have previously isolated a cDNA showing homology with genes encoding bZIP transcription factors from tomato leaf mould pathogen Cladosporium fulvum. Upon expression, the cDNA results in necrosis in C. fulvum host tomato and nonhost tobacco plants and is thus named CfHNNI1 (for C . f ulvum host and nonhost plant necrosis inducer 1). In the present study we report the induction of necrosis in a variety of nonhost plant species belonging to three families by the transient in planta expression of CfHNNI1 using virus-based vectors. Additionally, transient expression of CfHNNI1 also induced expression of the HR marker gene LeHSR203 and greatly reduced the accumulation of recombinant Potato virus X. Stable CfHNNI1 transgenic tobacco plants were generated in which the expression of CfHNNI1 is under the control of the pathogen-inducible hsr203J promoter. When infected with the oomycetes pathogen Phytophthora parasitica var. nicotianae, these transgenic plants manifested enhanced expression of CfHNNI1 and subsequent accumulation of CfHNNI1 protein, resulting in high expression of the HSR203J and PR genes, and strong resistance to the pathogen. The CfHNNI1 transgenic plants also exhibited induced resistance to Pseudomonas syringae pv. tabaci and Tobacco mosaic virus. Furthermore, CfHNNI1 was highly expressed and the protein was translocated into plant cells during the incompatible interactions between C. fulvum and host and nonhost plants. Our results demonstrate that CfHNNI1 is a potential general elicitor of hypersensitive response and nonhost resistance.

  14. CNPase Expression in Olfactory Ensheathing Cells

    Directory of Open Access Journals (Sweden)

    Christine Radtke

    2011-01-01

    Full Text Available A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs into nerve or spinal cord injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP under the control of the 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase promoter were studied. CNPase is expressed in myelin-forming cells throughout their lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral nerve.

  15. Expression of surface and intracellular Toll-like receptors by mature mast cells.

    Science.gov (United States)

    Agier, Justyna; Żelechowska, Paulina; Kozłowska, Elżbieta; Brzezińska-Błaszczyk, Ewa

    2016-01-01

    Nowadays, more and more data indicate that mast cells play an important role in host defense against pathogens. That is why it is essential to understand the expression of Toll-like receptors (TLRs) by mast cells, because these molecules play particularly significant role in initiation host defense against microorganisms as they recognize both wide range of microbial pathogen-associated molecular patterns (PAMPs) and various endogenous damage-associated molecular patterns (DAMPs) released in response to infection. Therefore, we examined the constitutive expression of both surface and endosomal TLRs in rat native fully mature tissue mast cells. By the use of qRT-PCR we found that these cells express mRNAs for TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9. The expression of TLR3, TLR4, TLR5, TLR7, and TLR9 transcripts were low and comparable and only the expression of TLR2 transcript was significant. By the use of flow cytometry technique, we clearly documented that mast cells express TLR2, TLR4, and TLR5 on cell surface, while TLR3, TLR7, and TLR9 proteins are located both on the cell membrane and intracellularly. The highest expression was observed for TLR5 and the lowest for surface TLR7. These observations undoubtedly indicate that mature tissue mast cells have a broad set of TLR molecules, thus can recognize and bind bacterial, viral, and fungal PAMPs as well as various endogenous molecules generated in response to infection.

  16. Expression of surface and intracellular Toll-like receptors by mature mast cells

    Directory of Open Access Journals (Sweden)

    Justyna Agier

    2017-01-01

    Full Text Available Nowadays, more and more data indicate that mast cells play an important role in host defense against pathogens. That is why it is essential to understand the expression of Toll-like receptors (TLRs by mast cells, because these molecules play particularly significant role in initiation host defense against microorganisms as they recognize both wide range of microbial pathogen-associated molecular patterns (PAMPs and various endogenous damage-associated molecular patterns (DAMPs released in response to infection. Therefore, we examined the constitutive expression of both surface and endosomal TLRs in rat native fully mature tissue mast cells. By the use of qRT-PCR we found that these cells express mRNAs for TLR2, TLR3, TLR4, TLR5, TLR7, and TLR9. The expression of TLR3, TLR4, TLR5, TLR7, and TLR9 transcripts were low and comparable and only the expression of TLR2 transcript was significant. By the use of flow cytometry technique, we clearly documented that mast cells express TLR2, TLR4, and TLR5 on cell surface, while TLR3, TLR7, and TLR9 proteins are located both on the cell membrane and intracellularly. The highest expression was observed for TLR5 and the lowest for surface TLR7. These observations undoubtedly indicate that mature tissue mast cells have a broad set of TLR molecules, thus can recognize and bind bacterial, viral, and fungal PAMPs as well as various endogenous molecules generated in response to infection.

  17. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  18. Cell-host, LINE and environment: Three players in search of a balance.

    Science.gov (United States)

    Del Re, Brunella; Giorgi, Gianfranco

    2013-01-01

    Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells. In this commentary we discuss the interaction between environment and L1 activity in the light of the new emerging paradigm of host-LINE relationship.

  19. Cif type III effector protein: a smart hijacker of the host cell cycle.

    Science.gov (United States)

    Samba-Louaka, Ascel; Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2009-09-01

    During coevolution with their hosts, bacteria have developed functions that allow them to interfere with the mechanisms controlling the proliferation of eukaryotic cells. Cycle inhibiting factor (Cif) is one of these cyclomodulins, the family of bacterial effectors that interfere with the host cell cycle. Acquired early during evolution by bacteria isolated from vertebrates and invertebrates, Cif is an effector protein of type III secretion machineries. Cif blocks the host cell cycle in G1 and G2 by inducing the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). The x-ray crystal structure of Cif reveals it to be a divergent member of a superfamily of enzymes including cysteine proteases and acetyltransferases. This review summarizes and discusses what we know about Cif, from the bacterial gene to the host target.

  20. MHC class I expression in intestinal cells is reduced by rotavirus infection and increased in bystander cells lacking rotavirus antigen.

    Science.gov (United States)

    Holloway, Gavan; Fleming, Fiona E; Coulson, Barbara S

    2018-01-08

    Detection of viral infection by host cells leads to secretion of type I interferon, which induces antiviral gene expression. The class I major histocompatibility complex (MHCI) is required for viral antigen presentation and subsequent infected cell killing by cytotoxic T lymphocytes. STAT1 activation by interferon can induce NLRC5 expression, promoting MHCI expression. Rotavirus, an important pathogen, blocks interferon signalling through inhibition of STAT1 nuclear translocation. We assessed MHCI expression in HT-29 intestinal epithelial cells following rotavirus infection. MHCI levels were upregulated in a partially type I interferon-dependent manner in bystander cells lacking rotavirus antigen, but not in infected cells. MHCI and NLRC5 mRNA expression also was elevated in bystander, but not infected, cells, suggesting a transcriptional block in infected cells. STAT1 was activated in bystander and infected cells, but showed nuclear localisation in bystander cells only. Overall, the lack of MHCI upregulation in rotavirus-infected cells may be at least partially due to rotavirus blockade of interferon-induced STAT1 nuclear translocation. The reduced MHCI protein levels in infected cells support the existence of an additional, non-transcriptional mechanism that reduces MHCI expression. It is possible that rotavirus also may suppress MHCI expression in vivo, which might limit T cell-mediated killing of rotavirus-infected enterocytes.

  1. Identification of Sphingomyelinase on the Surface of Chlamydia pneumoniae: Possible Role in the Entry into Its Host Cells

    Directory of Open Access Journals (Sweden)

    Tuula A. Peñate Medina

    2014-01-01

    Full Text Available We have recently suggested a novel mechanism, autoendocytosis, for the entry of certain microbes into their hosts, with a key role played by the sphingomyelinase-catalyzed topical conversion of sphingomyelin to ceramide, the differences in the biophysical properties of these two lipids providing the driving force. The only requirement for such microbes to utilize this mechanism is that they should have a catalytically active SMase on their outer surface while the target cells should expose sphingomyelin in the external leaflet of their plasma membrane. In pursuit of possible microbial candidates, which could utilize this putative mechanism, we conducted a sequence similarity search for SMase. Because of the intriguing cellular and biochemical characteristics of the poorly understood entry of Chlamydia into its host cells these microbes were of particular interest. SMase activity was measured in vitro from isolated C. pneumoniae elementary bodies (EB and in the lysate from E. coli cells transfected with a plasmid expressing CPn0300 protein having sequence similarity to SMase. Finally, pretreatment of host cells with exogenous SMase resulting in loss plasma membrane sphingomyelin attenuated attachment of EB.

  2. Genome wide host gene expression analysis in mice experimentally infected with Pasteurella multocida.

    Science.gov (United States)

    Priya, G Bhuvana; Nagaleekar, Viswas Konasagara; Milton, A Arun Prince; Saminathan, M; Kumar, Amod; Sahoo, Amit Ranjan; Wani, Sajad Ahmad; Kumar, Amit; Gupta, S K; Sahoo, Aditya P; Tiwari, A K; Agarwal, R K; Gandham, Ravi Kumar

    2017-01-01

    Pasteurella multocida causes acute septicemic and respiratory diseases, including haemorrhagic septicaemia, in cattle and buffalo with case fatality of 100%. In the present study, mice were infected with P. multocida (1.6 × 103 cfu, intraperitoneal) to evaluate host gene expression profile at early and late stages of infection using high throughput microarray transcriptome analyses. Several differentially expressed genes (DEGs) at both the time points were identified in P.multocida infected spleen, liver and lungs. Functional annotation of these DEGs showed enrichment of key pathways such as TLR, NF-κB, MAPK, TNF, JAK-STAT and NOD like receptor signaling pathways. Several DEGs overlapped across different KEGG pathways indicating a crosstalk between them. The predicted protein-protein interaction among these DEGs suggested, that the recognition of P. multocida LPS or outer membrane components by TLR4 and CD14, results in intracellular signaling via MyD88, IRAKs and/or TRAF6 leading to activation of NFκB and MAPK pathways and associated cytokines.

  3. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants.

    Science.gov (United States)

    Zhuo, Kan; Chen, Jiansong; Lin, Borong; Wang, Jing; Sun, Fengxia; Hu, Lili; Liao, Jinling

    2017-01-01

    Meloidogyne enterolobii is one of the most important plant-parasitic nematodes that can overcome the Mi-1 resistance gene and damage many economically important crops. Translationally controlled tumour protein (TCTP) is a multifunctional protein that exists in various eukaryotes and plays an important role in parasitism. In this study, a novel M. enterolobii TCTP effector, named MeTCTP, was identified and functionally characterized. MeTCTP was specifically expressed within the dorsal gland and was up-regulated during M. enterolobii parasitism. Transient expression of MeTCTP in protoplasts from tomato roots showed that MeTCTP was localized in the cytoplasm of the host cells. Transgenic Arabidopsis thaliana plants overexpressing MeTCTP were more susceptible to M. enterolobii infection than wild-type plants in a dose-dependent manner. By contrast, in planta RNA interference (RNAi) targeting MeTCTP suppressed the expression of MeTCTP in infecting nematodes and attenuated their parasitism. Furthermore, MeTCTP could suppress programmed cell death triggered by the pro-apoptotic protein BAX. These results demonstrate that MeTCTP is a novel plant-parasitic nematode effector that promotes parasitism, probably by suppressing programmed cell death in host plants. © 2016 BSPP and John Wiley & Sons Ltd.

  4. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    Science.gov (United States)

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  5. Trypanosoma cruzi: Entry Into Mammalian Host Cells and Parasitophorous Vacuole Formation

    Directory of Open Access Journals (Sweden)

    Emile Santos Barrias

    2013-08-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T.cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T.cruzi with phagocytic or non-phagocytic cell types, plasma membrane protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes and lysosomes, participate in the formation of the nascent parasithophorous vacuole (VP. Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the parasitophorous vacuole release from the host cell plasma membrane. This review focuses on the multiple pathways that T.cruzi can use to enter the host cells until complete VP formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss other mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair.

  6. Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions

    Science.gov (United States)

    Twu, Olivia; Lustig, Gila; Stevens, Grant C.; Vashisht, Ajay A.; Wohlschlegel, James A.

    2013-01-01

    Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization. PMID:23853596

  7. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host∶parasite interactions.

    Directory of Open Access Journals (Sweden)

    Olivia Twu

    Full Text Available Trichomonas vaginalis is a common sexually transmitted parasite that colonizes the human urogential tract where it remains extracellular and adheres to epithelial cells. Infections range from asymptomatic to highly inflammatory, depending on the host and the parasite strain. Here, we use a combination of methodologies including cell fractionation, immunofluorescence and electron microscopy, RNA, proteomic and cytokine analyses and cell adherence assays to examine pathogenic properties of T. vaginalis. We have found that T.vaginalis produces and secretes microvesicles with physical and biochemical properties similar to mammalian exosomes. The parasite-derived exosomes are characterized by the presence of RNA and core, conserved exosomal proteins as well as parasite-specific proteins. We demonstrate that T. vaginalis exosomes fuse with and deliver their contents to host cells and modulate host cell immune responses. Moreover, exosomes from highly adherent parasite strains increase the adherence of poorly adherent parasites to vaginal and prostate epithelial cells. In contrast, exosomes from poorly adherent strains had no measurable effect on parasite adherence. Exosomes from parasite strains that preferentially bind prostate cells increased binding of parasites to these cells relative to vaginal cells. In addition to establishing that parasite exosomes act to modulate host∶parasite interactions, these studies are the first to reveal a potential role for exosomes in promoting parasite∶parasite communication and host cell colonization.

  8. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    Science.gov (United States)

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.

  9. Autophagy controls an intrinsic host defense to bacteria by promoting epithelial cell survival: a murine model.

    Directory of Open Access Journals (Sweden)

    Sun-Young Chang

    Full Text Available Cell death is a critical host response to regulate the fate of bacterial infections, innate immune responses, and ultimately, disease outcome. Shigella spp. invade and colonize gut epithelium in human and nonhuman primates but adult mice are naturally resistant to intra-gastric Shigella infection. In this study, however, we found Shigella could invade the terminal ileum of the mouse small intestine by 1 hour after infection and be rapidly cleared within 24 h. These early phase events occurred shortly after oral infection resulting in epithelial shedding, degranulation of Paneth cells, and cell death in the intestine. During this process, autophagy proceeded without any signs of inflammation. In contrast, blocking autophagy in epithelial cells enhanced host cell death, leading to tissue destruction and to inflammation, suggesting that autophagic flow relieves cellular stress associated with host cell death and inflammation. Herein we propose a new concept of "epithelial barrier turnover" as a general intrinsic host defense mechanism that increases survival of host cells and inhibits inflammation against enteric bacterial infections, which is regulated by autophagy.

  10. Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell.

    Science.gov (United States)

    Barrias, E S; Reignault, L C; De Souza, W; Carvalho, T M U

    2012-11-01

    Several intracellular pathogens are internalized by host cells via multiple endocytic pathways. It is no different with Trypanosoma cruzi. Evidences indicate that T. cruzi entry may occur by endocytosis/phagocytosis or by an active manner. Although macropinocytosis is largely considered an endocytic process where cells internalize only large amounts of solutes, several pathogens use this pathway to enter into host cells. To investigate whether T. cruzi entry into peritoneal macrophages and LLC-MK2 epithelial cells can be also mediated through a macropinocytosis-like process, we used several experimental strategies presently available to characterize macropinocytosis such as the use of different inhibitors. These macropinocytosis' inhibitors blocked internalization of T. cruzi by host cells. To further support this, immunofluorescence microscopy and scanning electron microscopy techniques were used. Field emission scanning electron microscopy revealed that after treatment, parasites remained attached to the external side of host cell plasma membrane. Proteins such as Rabankyrin 5, tyrosine kinases, Pak1 and actin microfilaments, which participate in macropinosome formation, were localized at T. cruzi entry sites. We also observed co-localization between the parasite and an endocytic fluid phase marker. All together, these results indicate that T. cruzi is able to use multiple mechanisms of penetration into host cell, including macropinocytosis. Copyright © 2012. Published by Elsevier Masson SAS.

  11. Toxoplasma gondii Development of Its Replicative Niche: in Its Host Cell and Beyond

    Science.gov (United States)

    2014-01-01

    Intracellular pathogens can replicate efficiently only after they manipulate and modify their host cells to create an environment conducive to replication. While diverse cellular pathways are targeted by different pathogens, metabolism, membrane and cytoskeletal architecture formation, and cell death are the three primary cellular processes that are modified by infections. Toxoplasma gondii is an obligate intracellular protozoan that infects ∼30% of the world's population and causes severe and life-threatening disease in developing fetuses, in immune-comprised patients, and in certain otherwise healthy individuals who are primarily found in South America. The high prevalence of Toxoplasma in humans is in large part a result of its ability to modulate these three host cell processes. Here, we highlight recent work defining the mechanisms by which Toxoplasma interacts with these processes. In addition, we hypothesize why some processes are modified not only in the infected host cell but also in neighboring uninfected cells. PMID:24951442

  12. Molecular characterization of Trypanosoma cruzi SAP proteins with host-cell lysosome exocytosis-inducing activity required for parasite invasion.

    Science.gov (United States)

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP

  13. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Zhou Xuguo

    2009-10-01

    Full Text Available Abstract Background Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i a host gut cDNA library and (ii a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. Results Over 10,000 expressed sequence tags (ESTs were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450. Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. Conclusion To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort

  14. Persistence of donor-derived protein in host myeloid cells after induced rejection of engrafted allogeneic bone marrow cells

    Science.gov (United States)

    Saito, Toshiki I.; Fujisaki, Joji; Carlson, Alicia L.; Lin, Charles P.; Sykes, Megan

    2014-01-01

    Objective In recipients of allogeneic hematopoietic stem cell transplantation to treat hematologic malignancies, we have unexpectedly observed anti-tumor effects in association with donor cell rejection in both mice and humans. Host-type CD8 T cells were shown to be required for these anti-tumor effects in the murine model. Since sustained host CD8 T cell activation was observed in the murine bone marrow following the disappearance of donor chimerism in the peripheral blood, we hypothesized that donor antigen presentation in the bone marrow might be prolonged. Materials and Methods To assess this hypothesis, we established mixed chimerism with green fluorescence protein (GFP)-positive allogeneic bone marrow cells, induced rejection of the donor cells by giving recipient leukocyte infusions (RLI), and utilized in vivo microscopy to follow GFP-positive cells. Results After peripheral donor leukocytes disappeared, GFP persisted within host myeloid cells surrounding the blood vessels in the bone marrow, suggesting that the host myeloid cells captured donor-derived GFP protein. Conclusions Since the host-versus-graft reaction promotes the induction of anti-tumor responses in this model, this retention of donor-derived protein may play a role in the efficacy of RLI as an anti-tumor therapy. PMID:20167247

  15. Replication and virus-induced transcriptome of HAdV-5 in normal host cells versus cancer cells--differences of relevance for adenoviral oncolysis.

    Directory of Open Access Journals (Sweden)

    Dominik E Dorer

    Full Text Available Adenoviruses (Ads, especially HAdV-5, have been genetically equipped with tumor-restricted replication potential to enable applications in oncolytic cancer therapy. Such oncolytic adenoviruses have been well tolerated in cancer patients, but their anti-tumor efficacy needs to be enhanced. In this regard, it should be considered that cancer cells, dependent on their tissue of origin, can differ substantially from the normal host cells to which Ads are adapted by complex virus-host interactions. Consequently, viral replication efficiency, a key determinant of oncolytic activity, might be suboptimal in cancer cells. Therefore, we have analyzed both the replication kinetics of HAdV-5 and the virus-induced transcriptome in human bronchial epithelial cells (HBEC in comparison to cancer cells. This is the first report on genome-wide expression profiling of Ads in their native host cells. We found that E1A expression and onset of viral genome replication are most rapid in HBEC and considerably delayed in melanoma cells. In squamous cell lung carcinoma cells, we observed intermediate HAdV-5 replication kinetics. Infectious particle production, viral spread and lytic activity of HAdV-5 were attenuated in melanoma cells versus HBEC. Expression profiling at the onset of viral genome replication revealed that HAdV-5 induced the strongest changes in the cellular transcriptome in HBEC, followed by lung cancer and melanoma cells. We identified prominent regulation of genes involved in cell cycle and DNA metabolism, replication and packaging in HBEC, which is in accord with the necessity to induce S phase for viral replication. Strikingly, in melanoma cells HAdV-5 triggered opposing regulation of said genes and, in contrast to lung cancer cells, no weak S phase induction was detected when using the E2F promoter as reporter. Our results provide a rationale for improving oncolytic adenoviruses either by adaptation of viral infection to target tumor cells or by

  16. Ehrlichia chaffeensis infection in the reservoir host (white-tailed deer and in an incidental host (dog is impacted by its prior growth in macrophage and tick cell environments.

    Directory of Open Access Journals (Sweden)

    Arathy D S Nair

    Full Text Available Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.

  17. HLA-G expression on blasts and tolerogenic cells in patients affected by acute myeloid leukemia.

    Science.gov (United States)

    Locafaro, Grazia; Amodio, Giada; Tomasoni, Daniela; Tresoldi, Cristina; Ciceri, Fabio; Gregori, Silvia

    2014-01-01

    Human Leukocyte Antigen-G (HLA-G) contributes to cancer cell immune escape from host antitumor responses. The clinical relevance of HLA-G in several malignancies has been reported. However, the role of HLA-G expression and functions in Acute Myeloid Leukemia (AML) is still controversial. Our group identified a subset of tolerogenic dendritic cells, DC-10 that express HLA-G and secrete IL-10. DC-10 are present in the peripheral blood and are essential in promoting and maintaining tolerance via the induction of adaptive T regulatory (Treg) cells. We investigated HLA-G expression on blasts and the presence of HLA-G-expressing DC-10 and CD4(+) T cells in the peripheral blood of AML patients at diagnosis. Moreover, we explored the possible influence of the 3' untranslated region (3'UTR) of HLA-G, which has been associated with HLA-G expression, on AML susceptibility. Results showed that HLA-G-expressing DC-10 and CD4(+) T cells are highly represented in AML patients with HLA-G positive blasts. None of the HLA-G variation sites evaluated was associated with AML susceptibility. This is the first report describing HLA-G-expressing DC-10 and CD4(+) T cells in AML patients, suggesting that they may represent a strategy by which leukemic cells escape the host's immune system. Further studies on larger populations are required to verify our findings.

  18. The K186E Amino Acid Substitution in the Canine Influenza Virus H3N8 NS1 Protein Restores Its Ability To Inhibit Host Gene Expression.

    Science.gov (United States)

    Nogales, Aitor; Chauché, Caroline; DeDiego, Marta L; Topham, David J; Parrish, Colin R; Murcia, Pablo R; Martínez-Sobrido, Luis

    2017-11-15

    Canine influenza viruses (CIVs) are the causative agents of canine influenza, a contagious respiratory disease in dogs, and include the equine-origin H3N8 and the avian-origin H3N2 viruses. Influenza A virus (IAV) nonstructural protein 1 (NS1) is a virulence factor essential for counteracting the innate immune response. Here, we evaluated the ability of H3N8 CIV NS1 to inhibit host innate immune responses. We found that H3N8 CIV NS1 was able to efficiently counteract interferon (IFN) responses but was unable to block general gene expression in human or canine cells. Such ability was restored by a single amino acid substitution in position 186 (K186E) that resulted in NS1 binding to the 30-kDa subunit of the cleavage and polyadenylation specificity factor (CPSF30), a cellular protein involved in pre-mRNA processing. We also examined the frequency distribution of K186 and E186 among H3N8 CIVs and equine influenza viruses (EIVs), the ancestors of H3N8 CIV, and experimentally determined the impact of amino acid 186 in the ability of different CIV and EIV NS1s to inhibit general gene expression. In all cases, the presence of E186 was responsible for the control of host gene expression. In contrast, the NS1 protein of H3N2 CIV harbors E186 and blocks general gene expression in canine cells. Altogether, our results confirm previous studies on the strain-dependent ability of NS1 to block general gene expression. Moreover, the observed polymorphism on amino acid 186 between H3N8 and H3N2 CIVs might be the result of adaptive changes acquired during long-term circulation of avian-origin IAVs in mammals.IMPORTANCE Canine influenza is a respiratory disease of dogs caused by two CIV subtypes, the H3N8 and H3N2 viruses, of equine and avian origins, respectively. Influenza NS1 is the main viral factor responsible for the control of host innate immune responses, and changes in NS1 can play an important role in host adaptation. Here we assessed the ability of H3N8 CIV NS1 to inhibit

  19. HBx induced AFP receptor expressed to activate PI3K/AKT signal to promote expression of Src in liver cells and hepatoma cells.

    Science.gov (United States)

    Zhu, Mingyue; Guo, Junli; Li, Wei; Xia, Hua; Lu, Yan; Dong, Xu; Chen, Yi; Xie, Xieju; Fu, Shigan; Li, Mengsen

    2015-05-06

    Hepatitis B virus (HBV)-X protein(HBx) is a transactivator of host several cellular genes including alpha-fetoprotein(AFP) and AFP receptor(AFPR) which contributes to HBV-associated tumor development. The expression of AFP/AFPR are correlated with hepatocellular carcinoma(HCC)-initial cells. But the role of AFP and AFPR in promoting occurrence of HBV-related HCC were still unclear. A total of 71 clinical patients' liver specimens, normal human liver cells L-02 and HCC cell lines, PLC/PRF/5 were selected for analyzing the effects of HBx on expression of AFP, AFPR and Src. The expression of goal proteins were detected by Immunohistochemical stained and Western blotting; HBx-expressed vectors were constructed and transfected into L-02 cells, laser confocal microscopy was applied to observe expression and location of AFP, AFPR and Src in the normal liver cells and HCC cells, soft agar colony formation assay was used to observe colonies formed of the cells. We confirmed HBx gives preference to promote the expression of AFP and AFPR; HBx priors to up-regulate the expression of AFPR and AFP in L-02 cells and in normal liver specimens; AFPR signal been able to stimulate Src expression. The results also indicated that phosphatidylinositol 3-kinase(PI3K) inhibitors Ly294002 and GDC0941 effectively suppress AFPR mediated up-regulation expression of Src in AFPR positive HCC lines. HBx priors to drive the expression of AFP and AFPR to promote expression of Src in normal liver cells and hepatoma cells; AFP and AFPR maybe play pivotal role in HBV-related hepatocarcinogenesis; Targeting AFPR is an available therapeutic strategy of HCC.

  20. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  1. Measurement and control of host cell proteins (HCPs) in CHO cell bioprocesses.

    Science.gov (United States)

    Hogwood, Catherine E M; Bracewell, Daniel G; Smales, C Mark

    2014-12-01

    Chinese hamster ovary (CHO) cells are widely used for the production of biotherapeutic recombinant proteins for a range of molecules including monoclonal antibodies and Fc-fusion proteins. Regulatory requirements for the final product include the removal of host cell proteins (HCPs) to acceptable amounts (<100ppm). Recent research has begun to unravel the extent to which upstream process conditions and subsequent product recovery and purification processes impact upon the HCP profile. A number of upstream parameters, including the selection of the cell line, the culturing process (e.g. feeding regime, culture temperature), cell viability at time of harvest/culture duration and cell shear sensitivity can all influence the resulting HCP profile. Further, the molecule itself plays an important role in determining those HCPs that are retained throughout a bioprocess and HCPs can co-elute with the target product during purification. Measurement and monitoring of HCPs is usually undertaken using ELISA technology, however alternative approaches are also now emerging that complement ELISA and allow the detection, identification and monitoring of specific HCPs. Here we discuss our understanding of how the process itself influences those HCPs present throughout the production process and the challenges in their monitoring, measurement and removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Traversing the Cell: Agrobacterium T-DNA’s Journey to the Host Genome

    Science.gov (United States)

    Gelvin, Stanton B.

    2012-01-01

    The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA “borders” can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus. PMID:22645590

  3. Pteromalus puparum venom impairs host cellular immune responses by decreasing expression of its scavenger receptor gene

    Science.gov (United States)

    Insect host/parasitoid interactions are co-evolved systems in which host defenses are balanced by parasitoid mechanisms to disable or hide from host immune effectors. Although there is a rich literature on these systems, parasitoid immune-disabling mechanisms have not been fully elucidated. Here we ...

  4. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells.

    Directory of Open Access Journals (Sweden)

    Rachael L Gerlach

    Full Text Available Replication, cell tropism and the magnitude of the host's antiviral immune response each contribute to the resulting pathogenicity of influenza A viruses (IAV in humans. In contrast to seasonal IAV in human cases, the 2009 H1N1 pandemic IAV (H1N1pdm shows a greater tropism for infection of the lung similar to H5N1. We hypothesized that host responses during infection of well-differentiated, primary human bronchial epithelial cells (wd-NHBE may differ between seasonal (H1N1 A/BN/59/07 and H1N1pdm isolates from a fatal (A/KY/180/10 and nonfatal (A/KY/136/09 case. For each virus, the level of infectious virus and host response to infection (gene expression and apical/basal cytokine/chemokine profiles were measured in wd-NHBE at 8, 24, 36, 48 and 72 hours post-infection (hpi. At 24 and 36 hpi, KY/180 showed a significant, ten-fold higher titer as compared to the other two isolates. Apical cytokine/chemokine levels of IL-6, IL-8 and GRO were similar in wd-NHBE cells infected by each of these viruses. At 24 and 36 hpi, NHBE cells had greater levels of pro-inflammatory cytokines including IFN-α, CCL2, TNF-α, and CCL5, when infected by pandemic viruses as compared with seasonal. Polarization of IL-6 in wd-NHBE cells was greatest at 36 hpi for all isolates. Differential polarized secretion was suggested for CCL5 across isolates. Despite differences in viral titer across isolates, no significant differences were observed in KY/180 and KY/136 gene expression intensity profiles. Microarray profiles of wd-NHBE cells diverged at 36 hpi with 1647 genes commonly shared by wd-NHBE cells infected by pandemic, but not seasonal isolates. Significant differences were observed in cytokine signaling, apoptosis, and cytoskeletal arrangement pathways. Our studies revealed differences in temporal dynamics and basal levels of cytokine/chemokine responses of wd-NHBE cells infected with each isolate; however, wd-NHBE cell gene intensity profiles were not significantly

  5. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication.

    Science.gov (United States)

    Hamid, Penny H; Hirzmann, Joerg; Kerner, Katharina; Gimpl, Gerald; Lochnit, Guenter; Hermosilla, Carlos R; Taubert, Anja

    2015-09-23

    During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholesterol metabolism and found considerable differences to other coccidian parasites. Overall, free cholesterol significantly accumulated in E. bovis infected host cells. Furthermore, a striking increase of lipid droplet formation was observed within immature macromeronts. Artificial host cell lipid droplet enrichment significantly improved E. bovis merozoite I production confirming the key role of lipid droplet contents for optimal parasite proliferation. The transcription of several genes being involved in both, cholesterol de novo biosynthesis and low density lipoprotein-(LDL) mediated uptake, was significantly up-regulated at a time in infected cells suggesting a simultaneous exploitation of these two cholesterol acquisition pathways. E. bovis scavenges LDL-derived cholesterol apparently through significantly increased levels of surface LDL receptor abundance and LDL binding to infected cells. Consequently, LDL supplementation significantly improved parasite replication. The up-regulation of the oxidized LDL receptor 1 furthermore identified this scavenger receptor as a key molecule in parasite-triggered LDL uptake. Moreover, cellular cholesterol processing was altered in infected cells as indicated by up-regulation of cholesterol-25-hydroxylase and sterol O-acyltransferase. Overall, these results show that E. bovis considerably exploits the host cell cholesterol metabolism to guarantee its massive intracellular growth and replication.

  6. Live-cell imaging of rice cytological changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast fungus, Magnaporthe oryzae.

    Science.gov (United States)

    Mochizuki, Susumu; Minami, Eiichi; Nishizawa, Yoko

    2015-12-01

    The rice blast fungus Magnaporthe oryzae grows inside living host cells. Cytological analyses by live-cell imaging have revealed characteristics of the biotrophic invasion, particularly the extrainvasive hyphal membrane (EIHM) originating from the host plasma membrane and a host membrane-rich structure, biotrophic interfacial complex (BIC). Here, we observed rice subcellular changes associated with invasive hyphal growth using various transformants expressing specifically localized fluorescent proteins. The invasive hyphae did not penetrate across but were surrounded by the host vacuolar membrane together with EIHM even after branching. High-resolution imaging of BICs revealed that the host cytosol was accumulated at BIC with aggregated EIHM and a symplastic effector, Pwl2, in a punctate form. The vacuolar membrane did not aggregate in but closely surrounded the BIC. A good correlation was observed between the early collapse of vacuoles and damage of invasive hyphae in the first-invaded cell. Furthermore, a newly developed, long-term imaging method has revealed that the central vacuole gradually shrank until collapse, which was caused by the hyphal invasion occurring earlier in the neighboring cells than in the first-invaded cells. These data suggest that M. oryzae may suppress host vacuole collapse during early infection stages for successful infection. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. The role of cell signaling in poxvirus tropism: the case of the M-T5 host range protein of myxoma virus.

    Science.gov (United States)

    Werden, Steven J; McFadden, Grant

    2008-01-01

    Poxviruses demonstrate strict species specificity in vivo that range from narrow to broad, however the fundamental factors that mediate the basis of poxvirus tropism remain poorly understood. It is generally believed that most, if not all, poxviruses can efficiently bind and enter a wide range of mammalian cells and all of the known host anti-viral pathways that block viral replication in nonpremissive cells operate downstream of virus entry. A productive poxvirus infection is heavily dependent upon the production of a vast array of host modulatory products that specifically target and manipulate both extracellular immune response pathways of the host, as well as intracellular signal transduction pathways of the individually infected cells. The unique pathogenesis and host tropism of specific poxviruses can be attributed to the broad diversity of host modulatory proteins they express. Myxoma virus (MV) is a rabbit-specific poxviruses that encodes multiple host range factors, including an ankyrin-repeat protein M-T5, which functions to regulate tropism of MV for rabbit lymphocytes and some human cancer cells. At the molecular level, M-T5 binds and alters at least two distinct cellular proteins: Akt and cullin-1. The direct interaction between M-T5 and Akt was shown to be a key restriction determinant for MV tropism in a spectrum of human cancer cells making MV an excellent oncolytic candidate. Thus, the intricate relationship between viral encoded proteins and components of the host cell signaling networks can have profound impact on poxvirus tropism. The lessons we continue to learn from poxvirus host range factors like M-T5 will provide further insights into the factors that regulate poxvirus tropism and the mechanisms by which poxviruses micromanipulate the signaling pathways of the infected cell.

  8. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  9. Cycle Inhibiting Factors (Cifs: Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Directory of Open Access Journals (Sweden)

    Eric Oswald

    2011-03-01

    Full Text Available Cycle inhibiting factors (Cifs are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions.

  10. Cycle Inhibiting Factors (Cifs): Cyclomodulins That Usurp the Ubiquitin-Dependent Degradation Pathway of Host Cells

    Science.gov (United States)

    Taieb, Frédéric; Nougayrède, Jean-Philippe; Oswald, Eric

    2011-01-01

    Cycle inhibiting factors (Cifs) are type III secreted effectors produced by diverse pathogenic bacteria. Cifs are “cyclomodulins” that inhibit the eukaryotic host cell cycle and also hijack other key cellular processes such as those controlling the actin network and apoptosis. This review summarizes current knowledge on Cif since its first characterization in enteropathogenic Escherichia coli, the identification of several xenologues in distant pathogenic bacteria, to its structure elucidation and the recent deciphering of its mode of action. Cif impairs the host ubiquitin proteasome system through deamidation of ubiquitin or the ubiquitin-like protein NEDD8 that regulates Cullin-Ring-ubiquitin Ligase (CRL) complexes. The hijacking of the ubiquitin-dependent degradation pathway of host cells results in the modulation of various cellular functions such as epithelium renewal, apoptosis and immune response. Cif is therefore a powerful weapon in the continuous arm race that characterizes host-bacteria interactions. PMID:22069713

  11. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

    Directory of Open Access Journals (Sweden)

    Nadal Anna

    2012-09-01

    Full Text Available Abstract Background The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER, analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP, had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM

  12. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness.

    Science.gov (United States)

    Nadal, Anna; Montero, Maria; Company, Nuri; Badosa, Esther; Messeguer, Joaquima; Montesinos, Laura; Montesinos, Emilio; Pla, Maria

    2012-09-04

    The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for example, BP100 based on inverted

  13. Interaction between Campylobacter and intestinal epithelial cells leads to a different proinflammatory response in human and porcine host.

    Science.gov (United States)

    Aguilar, Carmen; Jiménez-Marín, Ángeles; Martins, Rodrigo Prado; Garrido, Juan J

    2014-11-15

    Campylobacter jejuni and Campylobacter coli are recognized as the leading causes of human diarrheal disease throughout the development world. Unlike human beings, gastrointestinal tract of pigs are frequently colonized by Campylobacter to a high level in a commensal manner. The aim of this study was to identify the differences underlying the divergent outcome following Campylobacter challenge in porcine versus human host. In order to address this, a comparative in vitro infection model was combined with microscopy, gentamicin protection assay, ELISA and quantitative PCR techniques. Invasion assays revealed that Campylobacter invaded human cells up to 10-fold more than porcine cells (pCampylobacter in human epithelial cell at early times of infection, whereas a very reduced cytokine gene expression was detected in porcine epithelial cells. These data indicate that Campylobacter fails to invade porcine cells compared to human cells, and this leads to a lack of proinflammatory response induction, probably due to its pathogenic or commensal behavior in human and porcine host, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Transgene-host cell interactions mediate significant influences on the production, stability, and function of recombinant canine FVIII

    Directory of Open Access Journals (Sweden)

    Bredon Crawford

    2015-01-01

    Full Text Available Recombinant FVIII manufacturing is characterized by poor product stability and low yields. Codon-optimization of transgenes accelerates translation by exploiting the synonymous codon usage bias of a species. However, this can alter the performance of the final product. Additionally, the effects of transgene design across diverse cell types are not well understood and are of interest for next-generation protein and gene therapies. To investigate the effects of transgene design across different host cells, B-domain-deleted (BDD and modified codon-optimized (CO-N6 transgenes were inserted via lentiviral delivery into cBOECs, HEK293T, and MDCK cells. The CO-N6 cFVIII transgene produced threefold more protein per transgene in HEK293T cells, and sixfold more protein in the two canine cell lines. However, pharmacokinetic analysis in hemophilia A dogs demonstrated that cFVIII produced from cBOECs transduced with the CO-N6 transgene had significantly reduced in vivo recovery. Furthermore, this product showed reduced in vitro stability and activity on thrombin activation versus the BDD product. This trend was reversed in HEK293T lines. Overall, our results demonstrate the need for an integrated approach that not only assesses protein expression levels but also considers the influence that host-cells have on preserving the molecular and biochemical properties of the naturally occurring FVIII.

  15. Assessing Host-Virus Codivergence for Close Relatives of Merkel Cell Polyomavirus Infecting African Great Apes.

    Science.gov (United States)

    Madinda, Nadège F; Ehlers, Bernhard; Wertheim, Joel O; Akoua-Koffi, Chantal; Bergl, Richard A; Boesch, Christophe; Akonkwa, Dieudonné Boji Mungu; Eckardt, Winnie; Fruth, Barbara; Gillespie, Thomas R; Gray, Maryke; Hohmann, Gottfried; Karhemere, Stomy; Kujirakwinja, Deo; Langergraber, Kevin; Muyembe, Jean-Jacques; Nishuli, Radar; Pauly, Maude; Petrzelkova, Klara J; Robbins, Martha M; Todd, Angelique; Schubert, Grit; Stoinski, Tara S; Wittig, Roman M; Zuberbühler, Klaus; Peeters, Martine; Leendertz, Fabian H; Calvignac-Spencer, Sébastien

    2016-10-01

    It has long been hypothesized that polyomaviruses (PyV; family Polyomaviridae) codiverged with their animal hosts. In contrast, recent analyses suggested that codivergence may only marginally influence the evolution of PyV. We reassess this question by focusing on a single lineage of PyV infecting hominine hosts, the Merkel cell polyomavirus (MCPyV) lineage. By characterizing the genetic diversity of these viruses in seven African great ape taxa, we show that they exhibit very strong host specificity. Reconciliation analyses identify more codivergence than noncodivergence events. In addition, we find that a number of host and PyV divergence events are synchronous. Collectively, our results support codivergence as the dominant process at play during the evolution of the MCPyV lineage. More generally, our results add to the growing body of evidence suggesting an ancient and stable association of PyV and their animal hosts. The processes involved in viral evolution and the interaction of viruses with their hosts are of great scientific interest and public health relevance. It has long been thought that the genetic diversity of double-stranded DNA viruses was generated over long periods of time, similar to typical host evolutionary timescales. This was also hypothesized for polyomaviruses (family Polyomaviridae), a group comprising several human pathogens, but this remains a point of controversy. Here, we investigate this question by focusing on a single lineage of polyomaviruses that infect both humans and their closest relatives, the African great apes. We show that these viruses exhibit considerable host specificity and that their evolution largely mirrors that of their hosts, suggesting that codivergence with their hosts played a major role in their diversification. Our results provide statistical evidence in favor of an association of polyomaviruses and their hosts over millions of years. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Expression profiling of the wheat pathogen Zymoseptoria tritici reveals genomic patterns of transcription and host-specific regulatory programs.

    Science.gov (United States)

    Kellner, Ronny; Bhattacharyya, Amitava; Poppe, Stephan; Hsu, Tiffany Y; Brem, Rachel B; Stukenbrock, Eva H

    2014-05-14

    Host specialization by pathogens requires a repertoire of virulence factors as well as fine-tuned regulation of gene expression. The fungal wheat pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola) is a powerful model system for the discovery of genetic elements that underlie virulence and host specialization. We transcriptionally profiled the early stages of Z. tritici infection of a compatible host (wheat) and a noncompatible host (Brachypodium distachyon). The results revealed infection regulatory programs common to both hosts and genes with striking wheat-specific expression, with many of the latter showing sequence signatures of positive selection along the Z. tritici lineage. Genes specifically regulated during infection of wheat populated two large clusters of coregulated genes that may represent candidate pathogenicity islands. On evolutionarily labile, repeat-rich accessory chromosomes (ACs), we identified hundreds of highly expressed genes with signatures of evolutionary constraint and putative biological function. Phylogenetic analyses suggested that gene duplication events on these ACs were rare and largely preceded the diversification of Zymoseptoria species. Together, our data highlight the likely relevance for fungal growth and virulence of hundreds of Z. tritici genes, deepening the annotation and functional inference of the genes of this model pathogen. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Analysis of differentially expressed proteins in Yersinia enterocolitica-infected HeLa cells.

    Science.gov (United States)

    Alugubelly, Navatha; Hercik, Kamil; Kibler, Peter; Nanduri, Bindu; Edelmann, Mariola J

    2016-05-01

    Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells. Copyright © 2016. Published by Elsevier B.V.

  18. Toxoplasma gondii RON4 binds to heparan sulfate on the host cell surface.

    Science.gov (United States)

    Takemae, Hitoshi; Kobayashi, Kyousuke; Sugi, Tatsuki; Han, Yongmei; Gong, Haiyan; Ishiwa, Akiko; Recuenco, Frances C; Murakoshi, Fumi; Takano, Ryo; Murata, Yuho; Nagamune, Kisaburo; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2018-04-01

    Toxoplasma gondii rhoptry neck protein 4 (TgRON4) is a component of the moving junction, a key structure for host cell invasion. We previously showed that host cellular β-tubulin is a binding partner of TgRON4 in the invasion process. Here, to identify other binding partners of TgRON4 in the host cell, we examined the binding of TgRON4 to components of the host cell surface. TgRON4 binds to various mammalian cells, but this binding disappeared in glycosaminoglycan- and heparan sulfate-deficient CHO cells and after heparitinase treatment of mammalian cells. The C-terminal half of TgRON4 showed relatively strong binding to cells and heparin agarose. A glycoarray assay indicated that TgRON4 binds to heparin and modified heparin derivatives. Immunoprecipitation of T. gondii-infected CHO cell lysates showed that TgRON4 interacts with glypican 1 during Toxoplasma invasion. This interaction suggests a role for heparan sulfate in parasite invasion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Enhancement and abrogation : modifications of host immune status influence IL-2 and LAK cell immunotherapy

    NARCIS (Netherlands)

    E.P. Steller (Erick)

    1988-01-01

    textabstractThis thesis will discuss the role immune cells and the host immune system can play in enhancement and abrogation of this novel immunotherapy with interleukin 2 and lymphokine-activated killer cells. Chapter 3 and 4 will discuss the scoring methods in this intraperitoneal cancer and

  20. Host Actin Polymerization Tunes the Cell Division Cycle of an Intracellular Pathogen

    Directory of Open Access Journals (Sweden)

    M. Sloan Siegrist

    2015-04-01

    Full Text Available Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.

  1. RNA-Seq Differentiates Tumour and Host mRNA Expression Changes Induced by Treatment of Human Tumour Xenografts with the VEGFR Tyrosine Kinase Inhibitor Cediranib.

    Science.gov (United States)

    Bradford, James R; Farren, Matthew; Powell, Steve J; Runswick, Sarah; Weston, Susie L; Brown, Helen; Delpuech, Oona; Wappett, Mark; Smith, Neil R; Carr, T Hedley; Dry, Jonathan R; Gibson, Neil J; Barry, Simon T

    2013-01-01

    Pre-clinical models of tumour biology often rely on propagating human tumour cells in a mouse. In order to gain insight into the alignment of these models to human disease segments or investigate the effects of different therapeutics, approaches such as PCR or array based expression profiling are often employed despite suffering from biased transcript coverage, and a requirement for specialist experimental protocols to separate tumour and host signals. Here, we describe a computational strategy to profile transcript expression in both the tumour and host compartments of pre-clinical xenograft models from the same RNA sample using RNA-Seq. Key to this strategy is a species-specific mapping approach that removes the need for manipulation of the RNA population, customised sequencing protocols, or prior knowledge of the species component ratio. The method demonstrates comparable performance to species-specific RT-qPCR and a standard microarray platform, and allowed us to quantify gene expression changes in both the tumour and host tissue following treatment with cediranib, a potent vascular endothelial growth factor receptor tyrosine kinase inhibitor, including the reduction of multiple murine transcripts associated with endothelium or vessels, and an increase in genes associated with the inflammatory response in response to cediranib. In the human compartment, we observed a robust induction of hypoxia genes and a reduction in cell cycle associated transcripts. In conclusion, the study establishes that RNA-Seq can be applied to pre-clinical models to gain deeper understanding of model characteristics and compound mechanism of action, and to identify both tumour and host biomarkers.

  2. RNA-Seq Differentiates Tumour and Host mRNA Expression Changes Induced by Treatment of Human Tumour Xenografts with the VEGFR Tyrosine Kinase Inhibitor Cediranib.

    Directory of Open Access Journals (Sweden)

    James R Bradford

    Full Text Available Pre-clinical models of tumour biology often rely on propagating human tumour cells in a mouse. In order to gain insight into the alignment of these models to human disease segments or investigate the effects of different therapeutics, approaches such as PCR or array based expression profiling are often employed despite suffering from biased transcript coverage, and a requirement for specialist experimental protocols to separate tumour and host signals. Here, we describe a computational strategy to profile transcript expression in both the tumour and host compartments of pre-clinical xenograft models from the same RNA sample using RNA-Seq. Key to this strategy is a species-specific mapping approach that removes the need for manipulation of the RNA population, customised sequencing protocols, or prior knowledge of the species component ratio. The method demonstrates comparable performance to species-specific RT-qPCR and a standard microarray platform, and allowed us to quantify gene expression changes in both the tumour and host tissue following treatment with cediranib, a potent vascular endothelial growth factor receptor tyrosine kinase inhibitor, including the reduction of multiple murine transcripts associated with endothelium or vessels, and an increase in genes associated with the inflammatory response in response to cediranib. In the human compartment, we observed a robust induction of hypoxia genes and a reduction in cell cycle associated transcripts. In conclusion, the study establishes that RNA-Seq can be applied to pre-clinical models to gain deeper understanding of model characteristics and compound mechanism of action, and to identify both tumour and host biomarkers.

  3. The role of programmed cell death ligand-1 (PD-L1/CD274 in the development of graft versus host disease.

    Directory of Open Access Journals (Sweden)

    Heevy Al-Chaqmaqchi

    Full Text Available Programmed cell death ligand-1 (PD-L1/CD274 is an immunomodulatory molecule involved in cancer and complications of bone marrow transplantation, such as graft rejection and graft-versus-host disease. The present study was designed to assess the dynamic expression of this molecule after hematopoietic stem cell transplantation in relation to acute graft-versus-host disease. Female BALB/c mice were conditioned with busulfan and cyclophosphamide and transplanted with either syngeneic or allogeneic (male C57BL/6 mice bone marrow and splenic cells. The expression of PD-L1 was evaluated at different time points employing qPCR, western blot and immunohistochemistry. Allogeneic- but not syngeneic-transplanted animals exhibited a marked up-regulation of PD-L1 expression in the muscle and kidney, but not the liver, at days 5 and 7 post transplantation. In mice transplanted with allogeneic bone marrow cells, the enhanced expression of PD-L1 was associated with high serum levels of IFNγ and TNFα at corresponding intervals. Our findings demonstrate that PD-L1 is differently induced and expressed after allogeneic transplantation than it is after syngeneic transplantation, and that it is in favor of target rather than non-target organs at the early stages of acute graft-versus-host disease. This is the first study to correlate the dynamics of PD-L1 at the gene-, protein- and activity levels with the early development of acute graft-versus-host disease. Our results suggest that the higher expression of PD-L1 in the muscle and kidney (non-target tissues plays a protective role in skeletal muscle during acute graft-versus-host disease.

  4. Systemic minor histocompatibility antigen expression in blood endothelial cells prevents T cell-mediated vascular immunopathology.

    Science.gov (United States)

    Caviezel-Firner, Sonja; Engeler, Daniel; Bolinger, Beatrice; Onder, Lucas; Scandella, Elke; Yu, Meimei; Kroczek, Richard A; Ludewig, Burkhard

    2013-12-01

    Attenuation of T cell-mediated damage of blood endothelial cells (BECs) in transplanted organs is important to prevent transplant vasculopathy (TV) and chronic rejection. Here, we assessed the importance of minor histocompatibility antigen (mHA) distribution and different coinhibitory molecules for T cell-BEC interaction. A transgenic mHA was directed specifically to BECs using the Tie2 promoter and cellular interactions were assessed in graft-versus-host disease-like and heterotopic heart transplantation settings. We found that cognate CD4(+) T-cell help was critical for the activation of BEC-specific CD8(+) T cells. However, systemic mHA expression on BECs efficiently attenuated adoptively transferred, BEC-specific CD4(+) and CD8(+) T cells and hence prevented tissue damage, whereas restriction of mHA expression to heart BECs precipitated the development of TV. Importantly, the lack of the coinhibitory molecules programmed death-1 (PD-1) and B and T lymphocyte attenuator fostered the initial activation of BEC-specific CD4(+) T cells, but did not affect development of TV. In contrast, TV was significantly augmented in the absence of PD-1 on BEC-specific CD8(+) T cells. Taken together, these results indicate that antigen distribution in the vascular bed determines the impact of coinhibition and, as a consequence, critically impinges on T cell-mediated vascular immunopathology. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Third-party regulatory T cells prevent murine acute graft-versus-host disease.

    Science.gov (United States)

    Lim, Jung-Yeon; Im, Keon-Il; Song, Yunejin; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2017-10-19

    Adoptive therapy with regulatory T (Treg) cells to prevent graft-versus-host disease (GVHD) would benefit from a strategy to improve homing to the sites of inflammation following hematopoietic stem cell transplantation (HSCT). Although donor-derived Treg cells have mainly been used in these models, third-party-derived Treg cells are a promising alternative for cell-based immunotherapy, as they can be screened for pathogens and cell activity, and banked for GVHD prevention. In this study, we explored major histocompatibility complex (MHC) disparities between Treg cells and conventional T cells in HSCT to evaluate the impact of these different cell populations on the prevention of acute GVHD, as well as survival after allogeneic transplantation. To induce acute GVHD, lethally irradiated BALB/c (H-2d) mice were transplanted with 5 × 105 T cell-depleted bone marrow cells and 5 × 105 CD4+CD25- splenic T cells from C57BL/6 (H-2b) mice. Recipients were injected with 5 × 105 cultured donor-, host-, or third-party-derived CD4+CD25+CD62L+ Treg cells (bone marrow transplantation + day 1). Systemic infusion of three groups of Treg cell improved clinicopathological manifestations and survival in an acute GVHD model. Although donor-derived Treg cells were immunologically the most effective, the third-party-derived Treg cell therapy group displayed equal regulation of expansion of CD4+CD25+- Foxp3+ Treg cells and suppressive CD4+IL-17+ T-helper (Th17) cells in ex vivo assays compared with the donor- and host-derived groups. Our findings demonstrate that the use of third-party Treg cells is a viable alternative to donor-derived Treg cellular therapy in clinical settings, in which human leukocyte antigen-matched donors are not always readily available.

  6. Oncomirs Expression Profiling in Uterine Leiomyosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Bruna Cristine de Almeida

    2017-12-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that act as regulators of gene expression at the post-transcriptional level. They play a key role in several biological processes. Their abnormal expression may lead to malignant cell transformation. This study aimed to evaluate the expression profile of 84 miRNAs involved in tumorigenesis in immortalized cells of myometrium (MM, uterine leiomyoma (ULM, and uterine leiomyosarcoma (ULMS. Specific cell lines were cultured and qRT-PCR was performed. Thirteen miRNAs presented different expression profiles in ULM and the same thirteen in ULMS compared to MM. Eight miRNAs were overexpressed, and five were underexpressed in ULM. In ULMS cells, five miRNAs exhibited an overexpression and eight were down-regulated. Six miRNAs (miR-1-3p, miR-130b-3p, miR-140-5p, miR-202-3p, miR-205-5p, and miR-7-5p presented a similar expression pattern in cell lines compared to patient samples. Of these, only three miRNAs showed significant expression in ULM (miR-1-3p, miR-140-5p, and miR-7-5p and ULMS (miR-1-3p, miR-202-3p, and miR-7-5p. Our preliminary approach identified 24 oncomirs with an altered expression profile in ULM and ULMS cells. We identified four differentially expressed miRNAs with the same profile when compared with patients’ samples, which strongly interacted with relevant genes, including apoptosis regulator (BCL2, epidermal growth factor receptor (EGFR, vascular endothelial growth factor A (VEGFA, insulin like growth factor 1 receptor (IGF1R,serine/threonine kinase (RAF1, receptor tyrosine kinase (MET, and bHLH transcription factor (MYCN. This led to alterations in their mRNA-target.

  7. Oncomirs Expression Profiling in Uterine Leiomyosarcoma Cells

    Science.gov (United States)

    Garcia, Natalia; Maffazioli, Giovana; Gonzalez dos Anjos, Laura; Chada Baracat, Edmund; Candido Carvalho, Katia

    2017-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression at the post-transcriptional level. They play a key role in several biological processes. Their abnormal expression may lead to malignant cell transformation. This study aimed to evaluate the expression profile of 84 miRNAs involved in tumorigenesis in immortalized cells of myometrium (MM), uterine leiomyoma (ULM), and uterine leiomyosarcoma (ULMS). Specific cell lines were cultured and qRT-PCR was performed. Thirteen miRNAs presented different expression profiles in ULM and the same thirteen in ULMS compared to MM. Eight miRNAs were overexpressed, and five were underexpressed in ULM. In ULMS cells, five miRNAs exhibited an overexpression and eight were down-regulated. Six miRNAs (miR-1-3p, miR-130b-3p, miR-140-5p, miR-202-3p, miR-205-5p, and miR-7-5p) presented a similar expression pattern in cell lines compared to patient samples. Of these, only three miRNAs showed significant expression in ULM (miR-1-3p, miR-140-5p, and miR-7-5p) and ULMS (miR-1-3p, miR-202-3p, and miR-7-5p). Our preliminary approach identified 24 oncomirs with an altered expression profile in ULM and ULMS cells. We identified four differentially expressed miRNAs with the same profile when compared with patients’ samples, which strongly interacted with relevant genes, including apoptosis regulator (BCL2), epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA), insulin like growth factor 1 receptor (IGF1R),serine/threonine kinase (RAF1), receptor tyrosine kinase (MET), and bHLH transcription factor (MYCN). This led to alterations in their mRNA-target. PMID:29295562

  8. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wang

    2017-09-01

    Full Text Available Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1 significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7 was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1—an inhibitor of RIP1 kinase activity—dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a “nonadaptive virus.” In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  9. GOLPH2 expression in renal cell cancer

    Directory of Open Access Journals (Sweden)

    Jung Klaus

    2008-11-01

    Full Text Available Abstract Background Renal cell carcinomas (RCC are among the most common and most lethal genitourinary malignancies. GOLPH2 (golgi phosphoprotein 2, GOLM1 has recently been proposed as a biomarker for hepatocellular and prostate cancer. In this study we analysed the expression patterns and the prognostic and diagnostic value of GOLPH2 in RCC. Methods GOLPH2 protein expression was analysed by immunohistochemistry in 104 clinically well characterized RCC cases in comparison with matched normal kidney tissue and in association with clinico-pathological parameters. Statistical analyses including Kaplan Meier analyses were performed with SPSS version 15.0. Results GOLPH2 was highly expressed in normal renal tubules and in almost half of RCC with a statistically significant predominance in the papillary and chromophobe histological subtypes. No other associations with clinico-pathological parameters were detectable. The Kaplan-Meier curves showed a weak trend for unfavourable prognosis of tumours with high GOLPH2 expression, but failed significance. Conclusion GOLPH2 protein is expressed in normal renal tissue (especially in distal tubular epithelia and is down-regulated in the majority of clear cell RCC. In papillary and chromophobe RCC GOLPH2 expression is consistently present. In contrast to its diagnostic value in hepatocellular and prostatic carcinomas, a prognostic or diagnostic value of GOLPH2 in RCC appears to be unlikely.

  10. Virus versus host cell translation love and hate stories.

    Science.gov (United States)

    Komarova, Anastassia V; Haenni, Anne-Lise; Ramírez, Bertha Cecilia

    2009-01-01

    Regulation of protein synthesis by viruses occurs at all levels of translation. Even prior to protein synthesis itself, the accessibility of the various open reading frames contained in the viral genome is precisely controlled. Eukaryotic viruses resort to a vast array of strategies to divert the translation machinery in their favor, in particular, at initiation of translation. These strategies are not only designed to circumvent strategies common to cell protein synthesis in eukaryotes, but as revealed more recently, they also aim at modifying or damaging cell factors, the virus having the capacity to multiply in the absence of these factors. In addition to unraveling mechanisms that may constitute new targets in view of controlling virus diseases, viruses constitute incomparably useful tools to gain in-depth knowledge on a multitude of cell pathways.

  11. Label-free live cell imaging by Confocal Raman Microscopy identifies CHO host and producer cell lines.

    Science.gov (United States)

    Prats Mateu, Batirtze; Harreither, Eva; Schosserer, Markus; Puxbaum, Verena; Gludovacz, Elisabeth; Borth, Nicole; Gierlinger, Notburga; Grillari, Johannes

    2017-01-01

    As a possible viable and non-invasive method to identify high producing cells, Confocal Raman Microscopy was shown to be able to differentiate CHO host cell lines and derivative production clones. Cluster analysis of spectra and their derivatives was able to differentiate between different producer cell lines and a host, and also distinguished between an intracellular region of high lipid and protein content that in structure resembles the Endoplasmic Reticulum. This ability to identify the ER may be a major contributor to the identification of high producers. PCA enabled the discrimination even of host cell lines and their subclones with inherently higher production capacity. The method is thus a promising option that may contribute to early, non-invasive identification of high potential candidates during cell line development and possibly could also be used for proof of identity of established production clones. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hepatitis B viral core protein disrupts human host gene expression by binding to promoter regions

    Directory of Open Access Journals (Sweden)

    Guo Yanhai

    2012-10-01

    Full Text Available Abstract Background The core protein (HBc of hepatitis B virus (HBV has been implicated in the malignant transformation of chronically-infected hepatocytes and displays pleiotropic functions, including RNA- and DNA-binding activities. However, the mechanism by which HBc interacts with the human genome to exert effects on hepatocyte function remains unknown. This study investigated the distribution of HBc binding to promoters in the human genome and evaluated its effects on the related genes’ expression. Results Whole-genome chromatin immunoprecipitation microarray (ChIP-on-chip analysis was used to identify HBc-bound human gene promoters. Gene Ontology and pathway analyses were performed on related genes. The quantitative polymerase chain reaction assay was used to verify ChIP-on-chip results. Five novel genes were selected for luciferase reporter assay evaluation to assess the influence of HBc promoter binding. The HBc antibody immunoprecipitated approximately 3100 human gene promoters. Among these, 1993 are associated with known biological processes, and 2208 regulate genes with defined molecular functions. In total, 1286 of the related genes mediate primary metabolic processes, and 1398 encode proteins with binding activity. Sixty-four of the promoters regulate genes related to the mitogen-activated protein kinase (MAPK pathways, and 41 regulate Wnt/beta-catenin pathway genes. The reporter gene assay indicated that HBc binding up-regulates proto-oncogene tyrosine-protein kinase (SRC, type 1 insulin-like growth factor receptor (IGF1R, and neurotrophic tyrosine kinase receptor 2 (NTRK2, and down-regulates v-Ha-ras Harvey rat sarcoma viral oncogene (HRAS. Conclusion HBc has the ability to bind a large number of human gene promoters, and can disrupt normal host gene expression. Manipulation of the transcriptional profile in HBV-infected hepatocytes may represent a key pathogenic mechanism of HBV infection.

  13. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies that comp......It is well known that tumors arising from tissues such as kidney, pancreas, liver and stomach are particularly refractory to treatment. Searching for new anticancer drugs using cells in culture has yielded some effective therapies, but these refractory tumors remain intractable. Studies...... that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  14. Nanomaterials Enhanced Gene Expression in Yeast Cells

    Directory of Open Access Journals (Sweden)

    Su-Fang Chien

    2008-01-01

    Full Text Available Metal nanomaterials are shown to enhance gene expression for rice -galactosidase gene (-Gal in yeast cells. Au and Ag nanoparticles and their nanocomposites, silica-Au and silica-Ag, were prepared and characterized by UV-vis spectroscopy and TEM technique. The rice -galactosidase gene was cloned into the yeast chromosome, where the cloned cells were precultured and induced into a medium containing each of the testing nanomaterials. The nanomaterials were observed to incorporate inside the cells, and no cell death has been detected during the course of gene expression. The enzyme activity was determined by a synthetic substrate, p-nitrophenyl--D-galctopyranoside, and the yellow product yield was recorded in a spectrophotometer at 400 nm. When Au and Ag nanoparticles were incorporated with the culture, a 3–5 fold enhancement in -galactosidase was observed for intracellular activity as well as the secreted activity into the medium. The secreted protein was analyzed to have a pure form and displayed as a single protein band in the SDS-gel electrophoresis. The effects of size and chemical nature of nanomaterials on gene expression for the rice -galactosidase gene in yeast cells are discussed.

  15. Infection of a tomato cell culture by Phytophthora infestans; a versatile tool to study Phytophthora-host interactions

    Directory of Open Access Journals (Sweden)

    Charikleia Schoina

    2017-10-01

    Full Text Available Abstract Background The oomycete Phytophthora infestans causes late blight on potato and tomato. Despite extensive research, the P. infestans-host interaction is still poorly understood. To find new ways to further unravel this interaction we established a new infection system using MsK8 tomato cells. These cells grow in suspension and can be maintained as a stable cell line that is representative for tomato. Results MsK8 cells can host several Phytophthora species pathogenic on tomato. Species not pathogenic on tomato could not infect. Microscopy revealed that 16 h after inoculation up to 36% of the cells were infected. The majority were penetrated by a germ tube emerging from a cyst (i.e. primary infection while other cells were already showing secondary infections including haustoria. In incompatible interactions, MsK8 cells showed defense responses, namely reactive oxygen species production and cell death leading to a halt in pathogen spread at the single cell level. In compatible interactions, several P. infestans genes, including RXLR effector genes, were expressed and in both, compatible and incompatible interactions tomato genes involved in defense were differentially expressed. Conclusions Our results show that P. infestans can prosper as a pathogen in MsK8 cells; it not only infects, but also makes haustoria and sporulates, and it receives signals that activate gene expression. Moreover, MsK8 cells have the ability to support pathogen growth but also to defend themselves against infection in a similar way as whole plants. An advantage of MsK8 cells compared to leaves is the more synchronized infection, as all cells have an equal chance of being infected. Moreover, analyses and sampling of infected tissue can be performed in a non-destructive manner from early time points of infection onwards and as such the MsK8 infection system offers a potential platform for large-scale omics studies and activity screenings of inhibitory

  16. Differentiation of Glioma Stem Cells and Progenitor Cells into Local Host Cell-Like Cells: A Study Based on Choroidcarcinoma Differentiation of Choroid Plexus of GFP Transgenic Nude Mouse

    Science.gov (United States)

    Wang, Zhimin; Fei, Xifeng; Dai, Xinliang; Chen, Hanchun; Tian, Haiyan; Wang, Aidong; Huang, Qiang

    2015-01-01

    Abstract The idea of multiple differentiation capacity of glioma stem cells and progentior cells (GSCPs) has been accepted by most of the researchers, but the effect of local environment on the differentiation of GSCPs is unclear. GSCPs SU2 and CM-Dil-stained C6 cells (C6-Dil) were injected into the brain of GFP transgenic nude mice. The xenografts were sectioned. Morphological changes of tumor cells that resided in the choroid plexus, molecular markers expression, and the relationship between the original tumor cells and host cells were studied carefully. The tumorigenicity rate was 40/40 (100%) in all of the inoculated nude mice. Cell morphology and molecular expression of neoplasm settled in the choroid plexus showed that choroidcarcinoma derived from GSCPs was developed. These results showed that GSCPs may have the multiple differentiation capacity, which can be induced by the local environment of host brain as NSCs, and cell fusion may play an important role in the transformation. PMID:26083952

  17. Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus.

    Science.gov (United States)

    Josset, Laurence; Menachery, Vineet D; Gralinski, Lisa E; Agnihothram, Sudhakar; Sova, Pavel; Carter, Victoria S; Yount, Boyd L; Graham, Rachel L; Baric, Ralph S; Katze, Michael G

    2013-04-30

    A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus. Identification of a novel coronavirus causing fatal respiratory infection in humans raises concerns about a possible widespread outbreak of severe respiratory infection similar to the one caused by SARS-CoV. Using a human lung epithelial cell line and global transcriptomic profiling, we identified differences in the host response between HCoV-EMC and SARS-CoV. This enables rapid assessment of viral properties and the

  18. PKH26 can transfer to host cells in vitro and vivo.

    Science.gov (United States)

    Li, Peng; Zhang, Run; Sun, Haitao; Chen, Lei; Liu, Fang; Yao, Chen; Du, Mouxuan; Jiang, Xiaodan

    2013-01-15

    The fluorescent dye, PKH26, which mainly binds to the cell membrane, has been used as the cell tracer to locate the transplanted cells in host for a long time. However, there was no detailed report that whether the PKH26 dye was specific to the transplanted cells. Therefore, the aim of this article is to explore the effect of cells debris as the cracking cells from the PKH26-labeled adipose-derived stem cells (ADSCs) on the cells in vitro and the host in vivo. After we tested the proliferation and toxicity of PKH26 to the ADSCs by the Cell Count-8 kit and alamar blue assay, we constructed 2 models, coculturing lots of PKH26-labeled cell debris with the unlabeled ADSCs in vitro and injecting via the tail vein in rat, to evaluate the specificity of the PKH26 dye. The result indicated that the PKH26 didn't inhibit the proliferation and had no toxicity to the ADSCs compared with the unlabeled ADSCs, but the cell debris cracking from PKH26-labeled transplanted cells can cause the unlabeled cells to emit red fluorescence in vitro and also lead the tissues displaying red fluorescence in vivo. We can conclude that the PKH26 dye, used as a cell tracer for a long time, was not an ideal cell tracer.

  19. Transcriptomic analysis of host immune and cell death responses associated with the influenza A virus PB1-F2 protein.

    Directory of Open Access Journals (Sweden)

    Ronan Le Goffic

    2011-08-01

    Full Text Available Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the

  20. Differential gene expression in Varroa jacobsoni mites following a host shift to European honey bees (Apis mellifera).

    Science.gov (United States)

    Andino, Gladys K; Gribskov, Michael; Anderson, Denis L; Evans, Jay D; Hunt, Greg J

    2016-11-16

    Varroa mites are widely considered the biggest honey bee health problem worldwide. Until recently, Varroa jacobsoni has been found to live and reproduce only in Asian honey bee (Apis cerana) colonies, while V. destructor successfully reproduces in both A. cerana and A. mellifera colonies. However, we have identified an island population of V. jacobsoni that is highly destructive to A. mellifera, the primary species used for pollination and honey production. The ability of these populations of mites to cross the host species boundary potentially represents an enormous threat to apiculture, and is presumably due to genetic variation that exists among populations of V. jacobsoni that influences gene expression and reproductive status. In this work, we investigate differences in gene expression between populations of V. jacobsoni reproducing on A. cerana and those either reproducing or not capable of reproducing on A. mellifera, in order to gain insight into differences that allow V. jacobsoni to overcome its normal species tropism. We sequenced and assembled a de novo transcriptome of V. jacobsoni. We also performed a differential gene expression analysis contrasting biological replicates of V. jacobsoni populations that differ in their ability to reproduce on A. mellifera. Using the edgeR, EBSeq and DESeq R packages for differential gene expression analysis, we found 287 differentially expressed genes (FDR ≤ 0.05), of which 91% were up regulated in mites reproducing on A. mellifera. In addition, mites found reproducing on A. mellifera showed substantially more variation in expression among replicates. We searched for orthologous genes in public databases and were able to associate 100 of these 287 differentially expressed genes with a functional description. There is differential gene expression between the two mite groups, with more variation in gene expression among mites that were able to reproduce on A. mellifera. A small set of genes showed reduced

  1. Looped host defense peptide CLP-19 binds to microtubules and inhibits surface expression of TLR4 on mouse macrophages.

    Science.gov (United States)

    Li, Di; Liu, Yao; Yang, Ya; Chen, Jian-hong; Yang, Jie; Zou, Lin-yun; Tian, Zhi-qiang; Lv, Jun; Xia, Pei-yuan

    2013-06-15

    The looped host defense peptide CLP-19 is derived from a highly functional core region of the Limulus anti-LPS factor and exerts robust anti-LPS activity by directly interacting with LPS in the extracellular space. We previously showed that prophylactic administration of CLP-19 even 20 h prior to LPS challenge might significantly increase the survival rate in a lethal endotoxin shock mouse model. Such an effect may be associated with immune regulation of CLP-19. To investigate the underlying mechanisms, peptide affinity chromatography, immunofluorescence, and Western blotting procedures were used to identify α- and β-tubulin as direct and specific binding partners of CLP-19 in the mouse macrophage cell line RAW 264.7. Bioinformatic analysis using the AutoDock Vina molecular docking and PyMOL molecular graphics system predicted that CLP-19 would bind to the functional residues of both α- and β-tubulin and would be located within the groove of microtubules. Tubulin polymerization assay revealed that CLP-19 might induce polymerization of microtubules and prevent depolymerization. The immunoregulatory effect of CLP-19 involving microtubules was investigated by flow cytometry, immunofluorescence, and Western blotting, which showed that CLP-19 prophylactic treatment of RAW 264.7 cells significantly inhibited LPS-induced surface expression of TLR4. Taken together, these results suggest that CLP-19 binding to microtubules disrupts the dynamic equilibrium of microtubules, reducing the efficacy of microtubule-dependent vesicular transport that would otherwise translocate TLR4 from the endoplasmic reticulum to the cell surface.

  2. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma

    DEFF Research Database (Denmark)

    Ritter, Cathrin; Fan, Kaiji; Paschen, Annette

    2017-01-01

    Merkel cell carcinoma (MCC) is a rare and aggressive, yet highly immunogenic skin cancer. The latter is due to its viral or UV-associated carcinogenesis. For tumor progression MCC has to escape the host's immuno-surveillance, e.g. by loss of HLA class-I expression. Indeed, a reduced HLA class......-I expression was observed in MCC tumor tissues and MCC cell lines. This reduced HLA class-I surface expression is caused by an impaired expression of key components of the antigen processing machinery (APM), including LMP2 and LMP7 as well as TAP1 and TAP2. Notably, experimental provisions of HLA class......-I binding peptides restored HLA class-I surface expression on MCC cells. Silencing of the HLA class-I APM is due to histone deacetylation as inhibition of histone deacetylases (HDACs) not only induced acetylation of histones in the respective promoter regions but also re-expression of APM components. Thus...

  3. Inhibition of Host Cell Lysosome Spreading by Trypanosoma cruzi Metacyclic Stage-Specific Surface Molecule gp90 Downregulates Parasite Invasion.

    Science.gov (United States)

    Rodrigues, João Paulo Ferreira; Sant'ana, Guilherme Hideki Takahashi; Juliano, Maria Aparecida; Yoshida, Nobuko

    2017-09-01

    Successful infection by Trypanosoma cruzi , the agent of Chagas' disease, is critically dependent on host cell invasion by metacyclic trypomastigote (MT) forms. Two main metacyclic stage-specific surface molecules, gp82 and gp90, play determinant roles in target cell invasion in vitro and in oral T. cruzi infection in mice. The structure and properties of gp82, which is highly conserved among T. cruzi strains, are well known. Information on gp90 is still rather sparse. Here, we attempted to fill that gap. gp90, purified from poorly invasive G strain MT and expressing gp90 at high levels, inhibited HeLa cell lysosome spreading and the gp82-mediated internalization of a highly invasive CL strain MT expressing low levels of a diverse gp90 molecule. A recombinant protein containing the conserved C-terminal domain of gp90 exhibited the same properties as the native G strain gp90: it counteracted the host cell lysosome spreading induced by recombinant gp82 and exhibited an inhibitory effect on HeLa cell invasion by CL strain MT. Assays to identify the gp90 sequence associated with the property of downregulating MT invasion, using synthetic peptides spanning the gp90 C-terminal domain, revealed the sequence GVLYTADKEW. These data, plus the findings that lysosome spreading was induced upon HeLa cell interaction with CL strain MT, but not with G strain MT, and that in mixed infection CL strain MT internalization was inhibited by G strain MT, suggest that the inhibition of target cell lysosome spreading is the mechanism by which the gp90 molecule exerts its downregulatory role. Copyright © 2017 Rodrigues et al.

  4. African swine fever virus uses macropinocytosis to enter host cells.

    Science.gov (United States)

    Sánchez, Elena G; Quintas, Ana; Pérez-Núñez, Daniel; Nogal, Marisa; Barroso, Susana; Carrascosa, Ángel L; Revilla, Yolanda

    2012-01-01

    African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+)/H(+) exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  5. African swine fever virus uses macropinocytosis to enter host cells.

    Directory of Open Access Journals (Sweden)

    Elena G Sánchez

    Full Text Available African swine fever (ASF is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV, which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V, and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+/H(+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  6. RNAi screening reveals requirement for host cell secretory pathway in infection by diverse families of negative-strand RNA viruses

    Science.gov (United States)

    Panda, Debasis; Das, Anshuman; Dinh, Phat X.; Subramaniam, Sakthivel; Nayak, Debasis; Barrows, Nicholas J.; Pearson, James L.; Thompson, Jesse; Kelly, David L.; Ladunga, Istvan; Pattnaik, Asit K.

    2011-01-01

    Negative-strand (NS) RNA viruses comprise many pathogens that cause serious diseases in humans and animals. Despite their clinical importance, little is known about the host factors required for their infection. Using vesicular stomatitis virus (VSV), a prototypic NS RNA virus in the family Rhabdoviridae, we conducted a human genome-wide siRNA screen and identified 72 host genes required for viral infection. Many of these identified genes were also required for infection by two other NS RNA viruses, the lymphocytic choriomeningitis virus of the Arenaviridae family and human parainfluenza virus type 3 of the Paramyxoviridae family. Genes affecting different stages of VSV infection, such as entry/uncoating, gene expression, and assembly/release, were identified. Depletion of the proteins of the coatomer complex I or its upstream effectors ARF1 or GBF1 led to detection of reduced levels of VSV RNA. Coatomer complex I was also required for infection of lymphocytic choriomeningitis virus and human parainfluenza virus type 3. These results highlight the evolutionarily conserved requirements for gene expression of diverse families of NS RNA viruses and demonstrate the involvement of host cell secretory pathway in the process. PMID:22065774

  7. Host-parasite interactions that guide red blood cell invasion by malaria parasites.

    Science.gov (United States)

    Paul, Aditya S; Egan, Elizabeth S; Duraisingh, Manoj T

    2015-05-01

    Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism, and indicate opportunities for malaria control.

  8. Serine phosphorylation of cortactin is required for maximal host cell invasion by Campylobacter jejuni.

    Science.gov (United States)

    Samuelson, Derrick R; Konkel, Michael E

    2013-11-04

    Campylobacter jejuni causes acute disease characterized by severe diarrhea containing blood and leukocytes, fever, and abdominal cramping. Disease caused by C. jejuni is dependent on numerous bacterial and host factors. C. jejuni invasion of the intestinal epithelial cells is seen in both clinical samples and animal models indicating that host cell invasion is, in part, necessary for disease. C. jejuni utilizes a flagellar Type III Secretion System (T3SS) to deliver the Campylobacter invasion antigens (Cia) to host cells. The Cia proteins modulate host cell signaling leading to actin cytoskeleton rearrangement necessary for C. jejuni host cell invasion, and are required for the development of disease. This study was based on the hypothesis that the C. jejuni CiaD effector protein mediates Erk 1/2 dependent cytoskeleton rearrangement. We showed that CiaD was required for the maximal phosphorylation of Erk 1/2 by performing an immunoblot with a p-Erk 1/2 specific antibody and that Erk 1/2 participates in C. jejuni invasion of host cells by performing the gentamicin protection assay in the presence and absence of the PD98059 (a potent inhibitor of Erk 1/2 activation). CiaD was also found to be required for the maximal phosphorylation of cortactin S405 and S418, as judged by immunoblot analysis. The response of human INT 407 epithelial cells to infection with C. jejuni was evaluated by confocal microscopy and scanning electron microscopy to determine the extent of membrane ruffling. This analysis revealed that CiaD, Erk 1/2, and cortactin participate in C. jejuni-induced membrane ruffling. Finally, cortactin and N-WASP were found to be involved in C. jejuni invasion of host cells using siRNA to N-WASP, and siRNA to cortactin, coupled with the gentamicin protection assay. We conclude that CiaD is involved in the activation of Erk 1/2 and that activated Erk 1/2 facilitates C. jejuni invasion by phosphorylation of cortactin on serine 405 and 418. This is the first time

  9. Langerhans cells are not required for graft-versus-host disease

    OpenAIRE

    Li, Hongmei; Kaplan, Daniel H.; Matte-Martone, Catherine; Tan, Hung Sheng; Venkatesan, Srividhya; Johnson, Kody; Demetris, Anthony J.; McNiff, Jennifer; Shlomchik, Mark J.; Shlomchik, Warren D.

    2011-01-01

    Graft-versus-host disease (GVHD) is initiated and maintained by antigen-presenting cells (APCs) that prime alloreactive donor T cells. APCs are therefore attractive targets for GVHD prevention and treatment. APCs are diverse in phenotype and function, making understanding how APC subsets contribute to GVHD necessary for the development of APC-targeted therapies. Langerhans cells (LCs) have been shown to be sufficient to initiate skin GVHD in a major histocompatibility complex–mismatched model...

  10. Role of B cells in host defense against primary Coxiella burnetii infection.

    Science.gov (United States)

    Schoenlaub, Laura; Elliott, Alexandra; Freches, Danielle; Mitchell, William J; Zhang, Guoquan

    2015-12-01

    Despite Coxiella burnetii being an obligate intracellular bacterial pathogen, our recent study demonstrated that B cells play a critical role in vaccine-induced immunity to C. burnetii infection by producing protective antibodies. However, the role of B cells in host defense against primary C. burnetii infection remains unclear. In this study, we investigated whether B cells play an important role in host defense against primary C. burnetii infection. The results showed that peritoneal B cells were able to phagocytose virulent C. burnetii bacteria and form Coxiella-containing vacuoles (CCVs) and that C. burnetii can infect and replicate in peritoneal B1a subset B cells in vitro, demonstrating a potential role for peritoneal B cells in host defense against C. burnetii infection in vivo. In addition, the results showing that B1a cells secreted a high level of interleukin-10 (IL-10) in response to C. burnetii infection in vitro suggest that B1a cells may play an important role in inhibiting the C. burnetii infection-induced inflammatory response. The observation that adoptive transfer of peritoneal B cells did not significantly affect the severity of C. burnetii infection-induced diseases in both severe combined immunity-deficient (SCID) and μMT mice indicates that peritoneal B cells alone may not be able to control C. burnetii infection. In contrast, our finding that C. burnetii infection induced more-severe splenomegaly and a higher bacterial burden in the spleens of B1a cell-deficient Bruton's tyrosine kinase x-linked immunity-deficient (BTK(xid)) mice than in their wild-type counterparts further suggests that B1a cells play an important role in host defense against primary C. burnetii infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Relationships between host and symbiont cell cycles in sea anemones and their symbiotic dinoflagellates.

    Science.gov (United States)

    Dimond, James L; Pineda, Rea R; Ramos-Ascherl, Zullaylee; Bingham, Brian L

    2013-10-01

    The processes by which cnidarians and their algal endosymbionts achieve balanced growth and biomass could include coordination of host and symbiont cell cycles. We evaluated this theory with natural populations of sea anemones hosting symbiotic dinoflagellates, focusing on the temperate sea anemone Anthopleura elegantissima symbiotic with Symbiodinium muscatinei in Washington State, USA, and the tropical anemone Stichodactyla helianthus associating with unknown Symbiodinium spp. in Belize. By extruding symbiont-containing gastrodermal cells from the relatively large tentacles of these species and using nuclear staining and flow cytometry, we selectively analyzed cell cycle distributions of the symbionts and the host gastrodermal cells that house them. We found no indications of diel synchrony in host and symbiont G2/M phases, and we observed evidence of diel periodicity only in Symbiodinium spp. associated with S. helianthus but not in the anemone itself. Seasonally, S. muscatinei showed considerable G2/M phase variability among samples collected quarterly over an annual period, while the G2/M phase of its host varied much less. Within samples taken at different times of the year, correlations between host and symbiont G2/M phases ranged from very weakly to very strongly positive, with significant correlations in only half of the samples (two of four A. elegantissima samples and one of two S. helianthus samples). Overall, the G2/M phase relationships across species and sampling periods were positive. Thus, while we found no evidence of close cell cycle coupling, our results suggest a loose, positive relationship between cell cycle processes of the symbiotic partners.

  12. Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR and Incremental Feature Selection (IFS methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection.

  13. Extensive co-operation between the Epstein-Barr virus EBNA3 proteins in the manipulation of host gene expression and epigenetic chromatin modification.

    Directory of Open Access Journals (Sweden)

    Robert E White

    2010-11-01

    Full Text Available Epstein-Barr virus (EBV is able to drive the transformation of B-cells, resulting in the generation of lymphoblastoid cell lines (LCLs in vitro. EBV nuclear proteins EBNA3A and EBNA3C are necessary for efficient transformation, while EBNA3B is dispensable. We describe a transcriptome analysis of BL31 cells infected with a series of EBNA3-knockout EBVs, including one deleted for all three EBNA3 genes. Using Affymetrix Exon 1.0 ST microarrays analysed with the MMBGX algorithm, we have identified over 1000 genes whose regulation by EBV requires one of the EBNA3s. Remarkably, a third of the genes identified require more than one EBNA3 for their regulation, predominantly EBNA3C co-operating with either EBNA3B, EBNA3A or both. The microarray was validated by real-time PCR, while ChIP analysis of a selection of co-operatively repressed promoters indicates a role for polycomb group complexes. Targets include genes involved in apoptosis, cell migration and B-cell differentiation, and show a highly significant but subtle alteration in genes involved in mitosis. In order to assess the relevance of the BL31 system to LCLs, we analysed the transcriptome of a set of EBNA3B knockout (3BKO LCLs. Around a third of the genes whose expression level in LCLs was altered in the absence of EBNA3B were also altered in 3BKO-BL31 cell lines.Among these are TERT and TCL1A, implying that EBV-induced changes in the expression of these genes are not required for B-cell transformation. We also identify 26 genes that require both EBNA3A and EBNA3B for their regulation in LCLs. Together, this shows the complexity of the interaction between EBV and its host, whereby multiple EBNA3 proteins co-operate to modulate the behaviour of the host cell.

  14. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  15. Lung Adenocarcinoma and Squamous Cell Carcinoma Gene Expression Subtypes Demonstrate Significant Differences in Tumor Immune Landscape.

    Science.gov (United States)

    Faruki, Hawazin; Mayhew, Gregory M; Serody, Jonathan S; Hayes, D Neil; Perou, Charles M; Lai-Goldman, Myla

    2017-06-01

    Molecular subtyping of lung adenocarcinoma (AD) and lung squamous cell carcinoma (SCC) reveal biologically diverse tumors that vary in their genomic and clinical attributes. Published immune cell signatures and several lung AD and SCC gene expression data sets, including The Cancer Genome Atlas, were used to examine immune response in relation to AD and SCC expression subtypes. Expression of immune cell populations and other immune related genes, including CD274 molecule gene (CD274) (programmed death ligand 1), was investigated in the tumor microenvironment relative to the expression subtypes of the AD (terminal respiratory unit, proximal proliferative, and proximal inflammatory) and SCC (primitive, classical, secretory, and basal) subtypes. Lung AD and SCC expression subtypes demonstrated significant differences in tumor immune landscape. The proximal proliferative subtype of AD demonstrated low immune cell expression among ADs whereas the secretory subtype showed elevated immune cell expression among SCCs. Tumor expression subtype was a better predictor of immune cell expression than CD274 (programmed death ligand 1) in SCC tumors but was a comparable predictor in AD tumors. Nonsilent mutation burden was not correlated with immune cell expression across subtypes; however, major histocompatibility complex class II gene expression was highly correlated with immune cell expression. Increased immune and major histocompatibility complex II gene expression was associated with improved survival in the terminal respiratory unit and proximal inflammatory subtypes of AD and in the primitive subtype of SCC. Molecular expression subtypes of lung AD and SCC demonstrate key and reproducible differences in immune host response. Evaluation of tumor expression subtypes as potential biomarkers for immunotherapy should be investigated. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    Science.gov (United States)

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  17. RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

    Science.gov (United States)

    Wilk, Esther; Pandey, Ashutosh K; Leist, Sarah Rebecca; Hatesuer, Bastian; Preusse, Matthias; Pommerenke, Claudia; Wang, Junxi; Schughart, Klaus

    2015-09-02

    The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection. We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection. Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

  18. B cells as a critical node in the microbiota-host immune system network.

    Science.gov (United States)

    Slack, Emma; Balmer, Maria L; Macpherson, Andrew J

    2014-07-01

    Mutualism with our intestinal microbiota is a prerequisite for healthy existence. This requires physical separation of the majority of the microbiota from the host (by secreted antimicrobials, mucus, and the intestinal epithelium) and active immune control of the low numbers of microbes that overcome these physical and chemical barriers, even in healthy individuals. In this review, we addre