WorldWideScience

Sample records for host b-globin gene

  1. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure.

    Science.gov (United States)

    Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V

    2017-07-11

    In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing

  2. Inactivation of human α-globin gene expression by a de novo deletion located upstream of the α-globin gene cluster

    International Nuclear Information System (INIS)

    Liebhaber, S.A.; Weiss, I.; Cash, F.E.; Griese, E.U.; Horst, J.; Ayyub, H.; Higgs, D.R.

    1990-01-01

    Synthesis of normal human hemoglobin A, α 2 β 2 , is based upon balanced expression of genes in the α-globin gene cluster on chromosome 15 and the β-globin gene cluster on chromosome 11. Full levels of erythroid-specific activation of the β-globin cluster depend on sequences located at a considerable distance 5' to the β-globin gene, referred to as the locus-activating or dominant control region. The existence of an analogous element(s) upstream of the α-globin cluster has been suggested from observations on naturally occurring deletions and experimental studies. The authors have identified an individual with α-thalassemia in whom structurally normal α-globin genes have been inactivated in cis by a discrete de novo 35-kilobase deletion located ∼30 kilobases 5' from the α-globin gene cluster. They conclude that this deletion inactivates expression of the α-globin genes by removing one or more of the previously identified upstream regulatory sequences that are critical to expression of the α-globin genes

  3. Possible interaction between B1 retrotransposon-containing sequences and β(major) globin gene transcriptional activation during MEL cell erythroid differentiation.

    Science.gov (United States)

    Vizirianakis, Ioannis S; Tezias, Sotirios S; Amanatiadou, Elsa P; Tsiftsoglou, Asterios S

    2012-01-01

    Repetitive sequences consist of >50% of mammalian genomic DNAs and among these SINEs (short interspersed nuclear elements), e.g. B1 elements, account for 8% of the mouse genome. In an effort to delineate the molecular mechanism(s) involved in the blockade of the in vitro differentiation program of MEL (murine erythroleukaemia) cells by treatment with methylation inhibitors, we detected a DNA region of 559 bp in chromosome 7 located downstream of the 3'-end of the β(major) globin gene (designated B1-559) with unique characteristics. We have fully characterized this B1-559 region that includes a B1 element, several repeats of ATG initiation codons and consensus DNA-binding sites for erythroid-specific transcription factors NF-E2 (nuclear factor-erythroid-derived 2), GATA-1 and EKLF (erythroid Krüppel-like factor). Fragments derived from B1-559 incubated with nuclear extracts form protein complexes in both undifferentiated and differentiated MEL cells. Transient reporter-gene experiments in MEL and human erythroleukaemia K-562 cells with recombinant constructs containing B1-559 fragments linked to HS-2 (hypersensitive site-2) sequences of human β-globin gene LCR (locus control region) indicated potential cooperation upon erythropoiesis and globin gene expression. The possible interaction between the B1-559 region and β(major) globin gene transcriptional activation upon execution of erythroid MEL cell differentiation programme is discussed. © The Author(s) Journal compilation © 2012 Portland Press Limited

  4. Molecular Characterization and Expression of α-Globin and β-Globin Genes in the Euryhaline Flounder (Platichthys flesus

    Directory of Open Access Journals (Sweden)

    Weiqun Lu

    2011-01-01

    Full Text Available In order to understand the possible role of globin genes in fish salinity adaptation, we report the molecular characterization and expression of all four subunits of haemoglobin, and their response to salinity challenge in flounder. The entire open reading frames of α1-globin and α2-globin genes were 432 and 435 bp long, respectively, whereas the β1-globin and β2-globin genes were both 447 bp. Although the head kidney (pronephros is the predicted major site of haematopoiesis, real-time PCR revealed that expression of α-globin and β-globin in kidney (mesonephros was 1.5 times higher than in head kidney. Notably, the α1-globin and β1-globin mRNA expression was higher than α2-globin and β2-globin in kidney. Expression levels of all four globin subunits were higher in freshwater- (FW- than in seawater- (SW-adapted fish kidney. If globins do play a role in salinity adaptation, this is likely to be more important in combating the hemodilution faced by fish in FW than the dehydration and salt loading which occur in SW.

  5. Molecular nature of alpha-globin genes in the Saudi population

    Directory of Open Access Journals (Sweden)

    J. Francis Borgio

    2015-11-01

    Full Text Available Alpha-thalassemia (α-thal is a disorder caused by the deletion of single or double α-globin genes, and/or point mutations in the α-globin genes. There are 2 common types of α-globin genes; HBA2 and HBA1. Recently, it has been discovered that the HBA2 gene is replaced by a unique HBA12 gene convert in 5.7% of the Saudi population. The α-globin genes have been emerging as a molecular target for the treatment of β-thalassemia (β-thal. Hence, it is essential to understand the molecular nature of α-globin genes to treat the most prevalent hemoglobin disorders, such as sickle cell disease, α-thal, and β-thal prevalent in the Kingdom of Saudi Arabia. Thirty-two different α-globin genotypes have been observed in the Saudi population. This review outlines the classification of the α-globin genes on the basis of their molecular nature and complex combinations of α-globin genes, and their variants predominant in Saudis.

  6. Fate of a redundant gamma-globin gene in the atelid clade of New World monkeys: implications concerning fetal globin gene expression.

    Science.gov (United States)

    Meireles, C M; Schneider, M P; Sampaio, M I; Schneider, H; Slightom, J L; Chiu, C H; Neiswanger, K; Gumucio, D L; Czelusniak, J; Goodman, M

    1995-01-01

    Conclusive evidence was provided that gamma 1, the upstream of the two linked simian gamma-globin loci (5'-gamma 1-gamma 2-3'), is a pseudogene in a major group of New World monkeys. Sequence analysis of PCR-amplified genomic fragments of predicted sizes revealed that all extant genera of the platyrrhine family Atelidae [Lagothrix (woolly monkeys), Brachyteles (woolly spider monkeys), Ateles (spider monkeys), and Alouatta (howler monkeys)] share a large deletion that removed most of exon 2, all of intron 2 and exon 3, and much of the 3' flanking sequence of gamma 1. The fact that two functional gamma-globin genes were not present in early ancestors of the Atelidae (and that gamma 1 was the dispensible gene) suggests that for much or even all of their evolution, platyrrhines have had gamma 2 as the primary fetally expressed gamma-globin gene, in contrast to catarrhines (e.g., humans and chimpanzees) that have gamma 1 as the primary fetally expressed gamma-globin gene. Results from promoter sequences further suggest that all three platyrrhine families (Atelidae, Cebidae, and Pitheciidae) have gamma 2 rather than gamma 1 as their primary fetally expressed gamma-globin gene. The implications of this suggestion were explored in terms of how gene redundancy, regulatory mutations, and distance of each gamma-globin gene from the locus control region were possibly involved in the acquisition and maintenance of fetal, rather than embryonic, expression. Images Fig. 2 PMID:7535927

  7. Asynchronous DNA replication within the human β-globin gene locus

    International Nuclear Information System (INIS)

    Epner, E.; Forrester, W.C.; Groudine, M.

    1988-01-01

    The timing of DNA replication of the human β-globin gene locus has been studied by blot hybridization of newly synthesized BrdUrd-substituted DNA from cells in different stages of the S phase. Using probes that span >120 kilobases across the human β-globin gene locus, the authors show that the majority of this domain replicates in early S phase in the human erythroleukemia cell line K562 and in middle-to-late S phase in the lymphoid cell line Manca. However, in K562 cells three small regions display a strikingly different replication pattern than adjacent sequences. These islands, located in the inter-γ-globin gene region and approximately 20 kilobases 5' to the ε-globin gene and 20 kilobases 3' to the β-globin gene, replicate later and throughout S phase. A similar area is also present in the α-globin gene region in K562 cells. They suggest that these regions may represent sites of termination of replication forks

  8. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system.

    Science.gov (United States)

    Shariati, Laleh; Khanahmad, Hossein; Salehi, Mansoor; Hejazi, Zahra; Rahimmanesh, Ilnaz; Tabatabaiefar, Mohammad Amin; Modarressi, Mohammad Hossein

    2016-10-01

    β-thalassemia comprises a major group of human genetic disorders involving a decrease in or an end to the normal synthesis of the β-globin chains of hemoglobin. KLF1 is a key regulatory molecule involved in the γ- to β-globin gene switching process directly inducing the expression of the β-globin gene and indirectly repressing γ-globin. The present study aimed to investigate the ability of an engineered CRISPR/Cas9 system with respect to disrupting the KLF1 gene to inhibit the γ- to β-hemoglobin switching process in K562 cells. We targeted three sites on the KLF1 gene, two of which are upstream of codon 288 in exon 2 and the other site being in exon 3. The average indel percentage in the cells transfected with CRISPR a, b and c was approximately 24%. Relative quantification was performed for the assessment of γ-globin expression. The levels of γ-globin mRNA on day 5 of differentiation were 8.1-, 7.7- and 1.8-fold in the cells treated with CRISPR/Cas9 a, b and c, respectively,compared to untreated cells. The measurement of HbF expression levels confirmed the same results. The findings obtained in the present study support the induction of an indel mutation in the KLF1 gene leading to a null allele. As a result, the effect of KLF1 on the expression of BCL11A is decreased and its inhibitory effect on γ-globin gene expression is removed. Application of CRISPR technology to induce an indel in the KLF1 gene in adult erythroid progenitors may provide a method for activating fetal hemoglobin expression in individuals with β-thalassemia or sickle cell disease. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Genetic relationships among native americans based on b-globin gene cluster haplotype frequencies

    OpenAIRE

    Mousinho-Ribeiro Rita de Cassia; Pante-de-Sousa Gabriella; Santos Eduardo José Melo dos; Guerreiro João Farias

    2003-01-01

    The distribution of b-globin gene haplotypes was studied in 209 Amerindians from eight tribes of the Brazilian Amazon: Asurini from Xingú, Awá-Guajá, Parakanã, Urubú-Kaapór, Zoé, Kayapó (Xikrin from the Bacajá village), Katuena, and Tiriyó. Nine different haplotypes were found, two of which (n. 11 and 13) had not been previously identified in Brazilian indigenous populations. Haplotype 2 (+ - - - -) was the most common in all groups studied, with frequencies varying from 70% to 100%, followed...

  10. Human γ-globin genes silenced independently of other genes in the β-globin locus.

    NARCIS (Netherlands)

    N.O. Dillon (Niall); F.G. Grosveld (Frank)

    1991-01-01

    textabstractErythropoiesis during human development is characterized by switches in expression of beta-like globin genes during the transition from the embryonic through fetal to adult stages. Activation and high-level expression of the genes is directed by the locus control region (LCR), located 5'

  11. In vivo protein-DNA interactions at the β-globin gene locus

    International Nuclear Information System (INIS)

    Tohru Ikuta; Yuet Wai Kan

    1991-01-01

    The authors have investigated in vivo protein-DNA interactions in the β-globin gene locus by dimethyl sulfate (DMS) footprinting in K562 cells, which express var-epsilon- and γ-globin but not β-globin. In the locus control region, hypersensitive site 2 (HS-2) exhibited footprints in several putative protein binding motifs. HS-3 was not footprinted. The β promoter was also not footprinted, while extensive footprints were observed in the promoter of the active γ-globin gene. No footprints were seen in the A γ and β3' enhancers. With several motifs, additional protein interactions and alterations in binding patterns occurred with hemin induction. In HeLa cells, some footprints were observed in some of the motifs in HS-2, compatible with the finding that HS-2 has some enhancer function in HeLa cells, albeit much weaker than its activity in K562 cells. No footprint was seen in B lymphocytes. In vivo footprinting is a useful method for studying relevant protein-DNA interactions in erythroid cells

  12. Studies of globin gene expression in differentiating erythroid cells

    International Nuclear Information System (INIS)

    Sullivan, T.D.

    1985-01-01

    The author has addressed questions concerning globin gene expression and the loss of protein synthesis in the terminal stages of erythroid development. (1) The hypothesis that the rate of cell division affects the relative synthesis of γ and β globin in erythroid cells was investigated. The effect of hydroxyurea, aminopterin, or low culture temperature on the in vitro growth of erythroid progenitor cells and on the relative synthesis of γ and β globin was measured. No consistent change in γ globin synthesis was detected. (2) The hypothesis that the ratio of γ and β globin synthesis decreases during erythroid maturation because of differential mRNA stability was investigated. The half-lives of γ and β globin mRNAs and γ and β globin protein synthesis were measured in cultured reticulocytes. γ and β globin mRNAs were assayed by solution hybridization and by in vitro translation. Globin synthesis was determined by 3 H-leucine incorporation into the γ and β globin chains. γ and β globin mRNAs decay with similar half-lives in cultured reticulocytes. Therefore, the change in the ratio of γ and β globin synthesis during erythroid maturation cannot be explained by differences in mRNA stability and is likely to result from asynchronous transcription of the genes. These data suggest that protein synthesis in maturing reticulocytes is not limited by the quantity of mRNA but by the availability of translation factors. (3) The hypothesis was tested that the initiation factor GEF becomes limiting for protein synthesis during reticulocyte maturation

  13. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    Science.gov (United States)

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  14. Importance of globin gene order for correct developmental expression.

    NARCIS (Netherlands)

    O. Hanscombe (Olivia); D. Whyatt (David); P.J. Fraser (Peter); N. Yannoutsos (Nikos); D.R. Greaves (David); N.O. Dillon (Niall); F.G. Grosveld (Frank)

    1991-01-01

    textabstractWe have used transgenic mice to study the influence of position of the human globin genes relative to the locus control region (LCR) on their expression pattern during development. The LCR, which is located 5' of the globin gene cluster, is normally required for the activation of all the

  15. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    Science.gov (United States)

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  16. Regulated expression of genes inserted at the human chromosomal β-globin locus by homologous recombination

    International Nuclear Information System (INIS)

    Nandi, A.K.; Roginski, R.S.; Gregg, R.G.; Smithies, O.; Skoultchi, A.I.

    1988-01-01

    The authors have examined the effect of the site of integration on the expression of cloned genes introduced into cultured erythroid cells. Smithies et al. reported the targeted integration of DNA into the human β-globin locus on chromosome 11 in a mouse erythroleukemia-human cell hybrid. These hybrid cells can undergo erythroid differentiation leading to greatly increased mouse and human β-globin synthesis. By transfection of these hybrid cells with a plasmid carrying a modified human β-globin gene and a foreign gene composed of the coding sequence of the bacterial neomycin-resistance gene linked to simian virus 40 transcription signals (SVneo), cells were obtained in which the two genes are integrated at the β-globin locus on human chromosome 11 or at random sites. When they examined the response of the integrated genes to cell differentation, they found that the genes inserted at the β-globin locus were induced during differentiation, whereas randomly positioned copies were not induced. Even the foreign SVneo gene was inducible when it had been integrated at the β-globin locus. The results show that genes introduced at the β-globin locus acquire some of the regulatory properties of globin genes during erythroid differentiation

  17. Distinctive patterns of evolution of the δ-globin gene (HBD in primates.

    Directory of Open Access Journals (Sweden)

    Ana Moleirinho

    Full Text Available In most vertebrates, hemoglobin (Hb is a heterotetramer composed of two dissimilar globin chains, which change during development according to the patterns of expression of α- and β-globin family members. In placental mammals, the β-globin cluster includes three early-expressed genes, ε(HBE-γ(HBG-ψβ(HBBP1, and the late expressed genes, δ (HBD and β (HBB. While HBB encodes the major adult β-globin chain, HBD is weakly expressed or totally silent. Paradoxically, in human populations HBD shows high levels of conservation typical of genes under strong evolutionary constraints, possibly due to a regulatory role in the fetal-to-adult switch unique of Anthropoid primates. In this study, we have performed a comprehensive phylogenetic and comparative analysis of the two adult β-like globin genes in a set of diverse mammalian taxa, focusing on the evolution and functional divergence of HBD in primates. Our analysis revealed that anthropoids are an exception to a general pattern of concerted evolution in placental mammals, showing a high level of sequence conservation at HBD, less frequent and shorter gene conversion events. Moreover, this lineage is unique in the retention of a functional GATA-1 motif, known to be involved in the control of the developmental expression of the β-like globin genes. We further show that not only the mode but also the rate of evolution of the δ-globin gene in higher primates are strictly associated with the fetal/adult β-cluster developmental switch. To gain further insight into the possible functional constraints that have been shaping the evolutionary history of HBD in primates, we calculated dN/dS (ω ratios under alternative models of gene evolution. Although our results indicate that HBD might have experienced different selective pressures throughout primate evolution, as shown by different ω values between apes and Old World Monkeys + New World Monkeys (0.06 versus 0.43, respectively, these estimates

  18. High-level transfer and long-term expression of the human beta-globin gene in a mouse transplant model.

    Science.gov (United States)

    Raftopoulos, H; Ward, M; Bank, A

    1998-06-30

    Insertion of a normally functioning human beta-globin gene into the hematopoietic stem cells (HSC) of patients with beta-thalassemia may be an effective approach to the therapy of this disorder. Safe, efficient gene transfer and long-term, high-level expression of the transferred human beta-globin gene in animal models are prerequisites for HSC somatic gene therapy. We have recently shown for the first time that, using a modified beta-globin retroviral vector in a mouse transplant model, long-term, high-level expression of a transferred human beta-globin gene is possible. The human beta-globin gene continues to be detected up to eight months post-transplantation of beta-globin-transduced hematopoietic cells into lethally irradiated mice. The transferred human beta-globin gene is detected in three of five mice surviving long-term (> 4 months) transplanted with bone marrow cells transduced with high-titer virus. The unrearranged 5.1 kb human beta-globin gene-containing provirus is seen by Southern blotting in two of these mice. More importantly, long-term expression of the transferred gene is seen in two mice at levels of 5% and 20% that of endogenous murine beta-globin. We document stem cell transduction by showing continued high-level expression of the human beta-globin gene in secondarily transplanted recipient mice. These results provide evidence of HSC transduction with a human beta-globin gene in animals and demonstrate that retroviral-mediated unrearranged human beta-globin gene transfer leads to a high level of human beta-globin gene expression in the long term for the first time. A gene therapy strategy may be a feasible therapeutic approach to the beta-thalassemias if consistent human beta-globin gene transfer and expression into HSC can be achieved.

  19. Association of Xmn I Polymorphism and Hemoglobin E Haplotypes on Postnatal Gamma Globin Gene Expression in Homozygous Hemoglobin E

    Directory of Open Access Journals (Sweden)

    Supachai Ekwattanakit

    2012-01-01

    Full Text Available Background and Objectives. To explore the role of cis-regulatory sequences within the β globin gene cluster at chromosome 11 on human γ globin gene expression related to Hb E allele, we analyze baseline hematological data and Hb F values together with β globin haplotypes in homozygous Hb E. Patients and Methods. 80 individuals with molecularly confirmed homozygous Hb E were analyzed for the β globin haplotypes and Xmn I polymorphism using PCR-RFLPs. 74 individuals with complete laboratory data were further studied for association analyses. Results. Eight different β globin haplotypes were found linked to Hb E alleles; three major haplotypes were (a (III, (b (V, and (c (IV accounting for 94% of Hb E chromosomes. A new haplotype (Th-1 was identified and most likely converted from the major ones. The majority of individuals had Hb F < 5%; only 10.8% of homozygous Hb E had high Hb F (average 10.5%, range 5.8–14.3%. No association was found on a specific haplotype or Xmn I in these individuals with high Hb F, measured by alkaline denaturation. Conclusion. The cis-regulation of γ globin gene expression might not be apparent under a milder condition with lesser globin imbalance such as homozygous Hb E.

  20. Long-term transfer and expression of the human beta-globin gene in a mouse transplant model.

    Science.gov (United States)

    Raftopoulos, H; Ward, M; Leboulch, P; Bank, A

    1997-11-01

    Somatic gene therapy of hemoglobinopathies depends initially on the demonstration of safe, efficient gene transfer and long-term, high-level expression of the transferred human beta-globin gene in animal models. We have used a beta-globin gene/beta-locus control region retroviral vector containing several modifications to optimize gene transfer and expression in a mouse transplant model. In this report we show that transplantation of beta-globin-transduced hematopoietic cells into lethally irradiated mice leads to the continued presence of the gene up to 8 months posttransplantation. The transferred human beta-globin gene is detected in 3 of 5 mice surviving long term (>4 months) transplanted with bone marrow cells transduced with high-titer virus. Southern blotting confirms the presence of the unrearranged 5.1-kb human beta-globin gene-containing provirus in 2 of these mice. In addition, long-term expression of the transferred gene is seen in 2 mice at levels of 5% and 20% that of endogenous murine beta-globin at 6 and 8 months posttransplantation. We further document stem cell transduction by the successful transfer and high-level expression of the human beta-globin gene from mice transduced 9 months earlier into irradiated secondary recipient mice. These results demonstrate high-level, long-term somatic human beta-globin gene transfer into the hematopoietic stem cells of an animal for the first time, and suggest the potential feasibility of a retroviral gene therapy approach to sickle cell disease and the beta thalassemias.

  1. Characterization of a large deletion in the {beta}-globin gene cluster in a newborn with hemoglobin FE

    Energy Technology Data Exchange (ETDEWEB)

    Louie, E.; Dietz, L.; Shafer, F. [Children`s Hosptial, Oakland, CA (United States)] [and others

    1994-09-01

    A sample on a newborn with hemoglobin FE screen results was obtained to investigate whether E/E or B/{beta}{degrees} thalassemia was present using polymerase chain reaction (PCR) methodology. The newborn appeared homozygous for the hemoglobin E mutation in our initial study, but the parents` genotypes did not support this diagnosis. The father is homozygous for the absence of the hemoglobin E mutation (non E/non E) and the mother is heterozygous (E/non E) for this mutation. The limitation of PCR analysis is an assumption that the amplification of the two {beta}-globin alleles is equivalent. A large deletion on one {beta}-globin gene, which would produce E/{beta}{degrees} thalassemia, would be missed if it included part or the entire region subjected to amplification. The family results were consistent with either non-paternity, sample mix-up or such a deletion of the {beta}-globin gene in the father and child. To rule out the possibility of non-paternity, two polymorphic loci (HLA on chromosome 6 and a VNTR system of chromosome 17) that are outside of the {beta}-globin gene were analyzed and show that inheritance is consistent and the likelihood of a sample mix-up is then reduced. We therefore believe there is a gene deletion in this family. At the present time, analyses of the RFLPs that are 5{prime} of the {beta}-globin gene cluster show that the polymorphisms most distal from the 5{prime} {beta}-globin gene are not being inherited as expected. These results support our interpretation that a deletion exists in the father and was inherited by the child. The father`s clinical picture of possible HPFH (the father has 12% hemoglobin F) also supports the interpretation of a deletion in this family. Deletions of the {beta}-globin gene within this ethnic group are rare. Currently, Southern blots on the family are being probed to determine the extent of the putative deletion.

  2. Retroviral-mediated transfer and expression of human β-globin genes in cultured murine and human erythroid cells

    International Nuclear Information System (INIS)

    Weber-Benarous, A.; Cone, R.D.; London, I.M.; Mulligan, R.C.

    1988-01-01

    The authors cloned human β-globin DNA sequences from a genomic library prepared from DNA isolated from the human leukemia cell line K562 and have used the retroviral vector pZip-NeoSV(X)1 to introduce a 3.0-kilobase segment encompassing the globin gene into mouse erythroleukemia cells. Whereas the endogenous K562 β-globin gene is repressed in K562 cells, when introduced into mouse erythroleukemia cells by retroviral-mediated gene transfer, the β-globin gene from K562 cells was transcribed and induced 5-20-fold after treatment of the cells with dimethyl sulfoxide. The transcripts were correctly initiated, and expression and regulation of the K562 gene were identical to the expression of a normal human β-globin gene transferred into mouse erythroleukemia cells in the same way. They have also introduced the normal human β-globin gene into K562 cells using the same retrovirus vector. SP6 analysis of the RNA isolated from the transduced cells showed that the normal β-globin gene was transcribed at a moderately high level, before or after treatment with hemin. Based on these data, they suggest that the lack of expression of the endogenous β-globin gene in K562 cells does not result from an alteration in the gene itself and may not result from a lack of factor(s) necessary for β-lobin gene transcription. Retroviral-mediated transfer of the human β-globin gene may, however, uniquely influence expression of the gene K562 cells

  3. Long-term high-level expression of human beta-globin occurs following transplantation of transgenic marrow into irradiated mice.

    Science.gov (United States)

    Himelstein, A; Ward, M; Podda, S; de la Flor Weiss, E; Costantini, F; Bank, A

    1993-03-01

    When the human beta-globin gene is transferred into the bone marrow cells of live mice, its expression is very low. To investigate the reason for this, we transferred the bone marrow of transgenic mice containing and expressing the human beta-globin into irradiated recipients. We demonstrate that long-term high level expression of the human beta-globin gene can be maintained in the marrow and blood of irradiated recipients following transplantation. Although expression decreased over time in most animals because of host marrow reconstitution, the ratio of human beta-globin transgene expression to endogenous mouse beta-globin gene expression in donor-derived erythroid cells remained constant over time. We conclude that there is no inherent limitation to efficient expression of an exogenous human beta-globin gene in mouse bone marrow cells following marrow transplantation.

  4. Compensatory increase in alpha 1-globin gene expression in individuals heterozygous for the alpha-thalassemia-2 deletion.

    OpenAIRE

    Liebhaber, S A; Cash, F E; Main, D M

    1985-01-01

    alpha-Globin is encoded by the two adjacent genes, alpha 1 and alpha 2. Although it is clearly established that both alpha-globin genes are expressed, their relative contributions to alpha-globin messenger RNA (mRNA) and protein synthesis are not fully defined. Furthermore, changes that may occur in alpha-globin gene activity secondarily to the loss of function of one or more of these genes (alpha-thalassemia [Thal]) have not been directly investigated. This study further defines the expressi...

  5. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  6. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    Science.gov (United States)

    Loucari, Constantinos C.; Patsali, Petros; van Dijk, Thamar B.; Stephanou, Coralea; Papasavva, Panayiota; Zanti, Maria; Kurita, Ryo; Nakamura, Yukio; Christou, Soteroulla; Sitarou, Maria; Philipsen, Sjaak; Lederer, Carsten W.; Kleanthous, Marina

    2018-01-01

    The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood–derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies. PMID:29325430

  7. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  8. Chicken globin gene transcription is cell lineage specific during the time of the switch

    International Nuclear Information System (INIS)

    Lois, R.; Martinson, H.G.

    1989-01-01

    Posttranscriptional silencing of embryonic globin gene expression occurs during hemoglobin switching in chickens. Here the authors use Percoll density gradients to fractionate the red blood cells of 5-9 day embryos in order to determine the cellular source and the timing of this posttranscriptional process. By means of nuclear run-on transcription in vitro they show that it is within mature primitive cells that production of embryonic globin mRNA is terminated posttranscriptionally. In contrast, young definitive cells produce little (or no) embryonic globin mRNA because of regulation at the transcriptional level. Thus the lineage specificity of embryonic and adult globin gene expression is determined transcriptionally, and the posttranscriptional process described by Landes et al. is a property of the senescing primitive cells, not a mechanism operative in the hemoglobin switch. This conclusion is supported by [ 3 H]leucine incorporation experiments on Percoll-fractionated cells which reveal no posttranscriptional silencing of the embryonic genes during the early stages of the switch. In the course of these studies they have noticed a strong transcriptional pause near the second exon of the globin genes which is induced by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and which resembles a natural pause near that position

  9. Expression of human gamma-globin genes in human erythroleukemia (K562) cells.

    Science.gov (United States)

    Donovan-Peluso, M; Acuto, S; Swanson, M; Dobkin, C; Bank, A

    1987-12-15

    K562 cells express embryonic (epsilon) and fetal (gamma) globins and hemoglobins but not adult (beta) globin. To define the cis acting regulatory elements involved in the discrimination between gamma and beta genes, we have constructed chimeric genes composed of portions of gamma and beta and evaluated their expression in stable K562 transfectants. A gamma beta fusion gene containing gamma 5' sequences to the EcoRI site in exon 3 and beta sequences 3' is expressed at 10-40% that of the endogenous gamma level. In 50% of the lines, this fusion gene appropriately increases its expression in response to hemin, an inducer of endogenous globin gene expression in K562 cells. In contrast, a beta gamma fusion gene, containing beta sequences 5' to the EcoRI site in exon 3 and gamma sequences 3', is neither expressed nor correctly initiated. A beta gene containing gamma-intervening sequence (IVS) 2 accumulates an mRNA transcript when analyzed with a 3' beta probe. However, no correctly initiated beta mRNA is observed. A gamma gene with beta-IVS 2 is only inducible in one of six expressing clones. All the results are consistent with the presence of stage-specific trans acting factors in K562 cells that stimulate expression of gamma genes and suggest a significant role for gamma-IVS 2 in gamma gene expression.

  10. The entire β-globin gene cluster is deleted in a form of τδβ-thalassemia.

    NARCIS (Netherlands)

    E.R. Fearon; H.H.Jr. Kazazian; P.G. Waber (Pamela); J.I. Lee (Joseph); S.E. Antonarakis; S.H. Orkin (Stuart); E.F. Vanin; P.S. Henthorn; F.G. Grosveld (Frank); A.F. Scott; G.R. Buchanan

    1983-01-01

    textabstractWe have used restriction endonuclease mapping to study a deletion involving the beta-globin gene cluster in a Mexican-American family with gamma delta beta-thalassemia. Analysis of DNA polymorphisms demonstrated deletion of the beta-globin gene from the affected chromosome. Using a DNA

  11. S1 nuclease analysis of α-globin gene expression in preleukemic patients with acquired hemoglobin H disease after transfer to mouse erythroleukemia cells

    International Nuclear Information System (INIS)

    Helder, J.; Deisseroth, A.

    1987-01-01

    The loss of α-globin gene transcriptional activity rarely occurs as an acquired abnormality during the evolution of myeloproliferative disease or preleukemia. To test whether the mutation responsible for the loss of α-globin gene expression (hemoglobin H disease) in these patients is linked with the α-globin genes on chromosome 16, the authors transferred chromosome 16 from preleukemic patients with acquired hemoglobin H disease to mouse erythroleukemia cells and measured the transcriptional activity of the human α-globin genes. After transfer to mouse erythroleukemia cells, the expression of human α-globin genes from the peripheral blood or marrow cells of preleukemic patients with acquired hemoglobin H disease was similar to that of human α-globin genes transferred to mouse erythroleukemia cells from normal donors. These data showed that factor(s) in the mouse erythroleukemia cell can genetically complement the α-globin gene defect in these preleukemia patients with acquired hemoglobin H disease and suggest that altered expression of a gene in trans to the α-globin gene may be responsible for the acquisition of hemoglobin H disease in these patients

  12. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    Science.gov (United States)

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  13. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    NARCIS (Netherlands)

    Loucari, C.C. (Constantinos C.); Patsali, P. (Petros); T.B. van Dijk (Thamar); Stephanou, C. (Coralea); Papasavva, P. (Panayiota); Zanti, M. (Maria); Kurita, R. (Ryo); Nakamura, Y. (Yukio); S. Christou (Soteroula); Sitarou, M. (Maria); J.N.J. Philipsen (Sjaak); C.W. Lederer (Carsten); M. Kleanthous (Marina)

    2018-01-01

    textabstractThe β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of

  14. Position-independent high level expression of the human β-globin gene in transgenic mice.

    NARCIS (Netherlands)

    F.G. Grosveld (Frank); G. Blom van Assendelft (Greet); D.R. Greaves (David); G. Kollias (George)

    1987-01-01

    textabstractWe have constructed a "minilocus" that contains the 5' and 3' flanking regions of the human beta-globin locus and the beta-globin gene. These regions are characterized by erythroid-specific DNAase I-superhypersensitive sites and are normally located approximately 50 kb 5' and 20 kb 3' of

  15. The First Report of a 290-bp Deletion in β-Globin Gene in the South of Iran

    Science.gov (United States)

    Hamid, Mohammad; Nejad, Ladan Dawoody; Shariati, Gholamreza; Galehdari, Hamid; Saberi, Alihossein; Mohammadi-Anaei, Marziye

    2017-01-01

    Background: β-thalassemia is one of the most widespread diseases in the world, including Iran. In this study, we reported, for the first time, a 290-bp β-globin gene deletion in the south of Iran. Methods: Four individuals from three unrelated families with Arabic ethnic background were studied in Khuzestan Province. Red blood cell indices and hemoglobin analysis were carried out according to the standard methods. Genomic DNA was obtained from peripheral blood cells by salting out procedures. β-globin gene amplification, multiplex ligation-dependent probe amplification (MLPA), and DNA sequencing were performed. Results: The PCR followed by sequencing and MLPA test of the β-globin gene confirmed the presence of a 290-bp deletion in the heterozygous form, along with -88C>A mutation. All the individuals had elevated hemoglobin A2 and normal fetal hemoglobin levels. Conclusions: This mutation causes β0-thalassemia and can be highly useful for prenatal diagnosis in compound heterozygous condition with different β-globin gene mutations. PMID:26948378

  16. Dominant control region of the human β- like globin gene cluster

    NARCIS (Netherlands)

    Blom van Assendelft, Margaretha van

    1989-01-01

    The structure and regulation of the human β -like globin gene cluster has been studied extensively. Genetic disorders connected with this gene cluster are responsible for human diseases associated with high levels of morbidity and mortality, such as β-thalassaemia and sickle cell anaemia. The work

  17. Correction of a splice-site mutation in the beta-globin gene stimulated by triplex-forming peptide nucleic acids

    DEFF Research Database (Denmark)

    Chin, Joanna Y; Kuan, Jean Y; Lonkar, Pallavi S

    2008-01-01

    Splice-site mutations in the beta-globin gene can lead to aberrant transcripts and decreased functional beta-globin, causing beta-thalassemia. Triplex-forming DNA oligonucleotides (TFOs) and peptide nucleic acids (PNAs) have been shown to stimulate recombination in reporter gene loci in mammalian...... DNA fragments, can promote single base-pair modification at the start of the second intron of the beta-globin gene, the site of a common thalassemia-associated mutation. This single base pair change was detected by the restoration of proper splicing of transcripts produced from a green fluorescent...

  18. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Directory of Open Access Journals (Sweden)

    Giulia Breveglieri

    2015-01-01

    Full Text Available Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6 carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a the transgenic integration region is located in mouse chromosome 7; (b the expression of the transgene is tissue specific; (c as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin αmu-globin2/βhu-globin2 and, more importantly, (d the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia.

  19. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Science.gov (United States)

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  20. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  1. A phylogenomic profile of globins

    Directory of Open Access Journals (Sweden)

    Dewilde Sylvia

    2006-04-01

    Full Text Available Abstract Background Globins occur in all three kingdoms of life: they can be classified into single-domain globins and chimeric globins. The latter comprise the flavohemoglobins with a C-terminal FAD-binding domain and the gene-regulating globin coupled sensors, with variable C-terminal domains. The single-domain globins encompass sequences related to chimeric globins and «truncated» hemoglobins with a 2-over-2 instead of the canonical 3-over-3 α-helical fold. Results A census of globins in 26 archaeal, 245 bacterial and 49 eukaryote genomes was carried out. Only ~25% of archaea have globins, including globin coupled sensors, related single domain globins and 2-over-2 globins. From one to seven globins per genome were found in ~65% of the bacterial genomes: the presence and number of globins are positively correlated with genome size. Globins appear to be mostly absent in Bacteroidetes/Chlorobi, Chlamydia, Lactobacillales, Mollicutes, Rickettsiales, Pastorellales and Spirochaetes. Single domain globins occur in metazoans and flavohemoglobins are found in fungi, diplomonads and mycetozoans. Although red algae have single domain globins, including 2-over-2 globins, the green algae and ciliates have only 2-over-2 globins. Plants have symbiotic and nonsymbiotic single domain hemoglobins and 2-over-2 hemoglobins. Over 90% of eukaryotes have globins: the nematode Caenorhabditis has the most putative globins, ~33. No globins occur in the parasitic, unicellular eukaryotes such as Encephalitozoon, Entamoeba, Plasmodium and Trypanosoma. Conclusion Although Bacteria have all three types of globins, Archaeado not have flavohemoglobins and Eukaryotes lack globin coupled sensors. Since the hemoglobins in organisms other than animals are enzymes or sensors, it is likely that the evolution of an oxygen transport function accompanied the emergence of multicellular animals.

  2. Chromosome 11-linked determinant controls fetal globin expression and the fetal-to-adult globin switch

    International Nuclear Information System (INIS)

    Melis, M.; Demopulos, G.; Najfeld, V.; Zhang, J.W.; Brice, M.; Papayannopoulou, T.; Stamatoyannopoulos, G.

    1987-01-01

    Hybrids formed by fusing mouse erythroleukemia (MEL) cells with human fetal erythroid cells produce human fetal globin, but they switch to adult globin production as culture time advances. To obtain information on the chromosomal assignment of the elements that control γ-to-β switching, the authors analyzed the chromosomal composition of hybrids producing exclusively or predominantly human fetal globin and hybrids producing only adult human globin. No human chromosome was consistently present in hybrids expressing fetal globin and consistently absent in hybrids expressing adult globin. Subcloning experiments demonstrated identical chromosomal compositions in subclones displaying the fetal globin program and those that had switched to expression of the adult globin program. These data indicate that retention of only one human chromosome -- i.e., chromosome 11 -- is sufficient for expression of human fetal globin and the subsequent γ-to-β switch. The results suggest that the γ-to-β switch is controlled either cis to the β-globin locus of by a trans-acting mechanism, the genes of which reside on human chromosome 11

  3. An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes

    International Nuclear Information System (INIS)

    Evans, T.; Reitman, M.; Felsenfeld, G.

    1988-01-01

    The authors have identified a protein present only in erythroid cells that binds to two adjacent sites within an enhancer region of the chicken β-globin locus. Mutation of the sites, so that binding by the factor can no longer be detected in vitro, leads to a loss of enhancing ability, assayed by transient expression in primary erythrocytes. Binding sites for the erythroid-specific factor (Eryf1) are found within regulatory regions for all chicken globin genes. A strong Eryf1 binding site is also present within the enhancer of at least one human globin gene, and proteins from human erythroid cells (but not HeLa cells) bind to both the chicken and the human sites

  4. Geographical distribution of β-globin gene mutations in Syria.

    Science.gov (United States)

    Murad, Hossam; Moasses, Faten; Dabboul, Amir; Mukhalalaty, Yasser; Bakoor, Ahmad Omar; Al-Achkar, Walid; Jarjour, Rami A

    2018-04-11

    Objectives β-Thalassemia disease is caused by mutations in the β-globin gene. This is considered as one of the common genetic disorders in Syria. The aim of this study was to identify the geographical distribution of the β-thalassemia mutations in Syria. Methods β-Globin gene mutations were characterized in 636 affected patients and 94 unrelated carriers using the amplification refractory mutations system-polymerase chain reaction technique and DNA sequencing. Results The study has revealed the presence of 38 β-globin gene mutations responsible for β-thalassemia in Syria. Important differences in regional distribution were observed. IVS-I.110 [G > A] (22.2%), IVS-I.1 [G > A] (17.8%), Cd 39 [C > T] (8.2%), IVS-II.1 [G > A] (7.6%), IVS-I.6 [T > C] (7.1%), Cd 8 [-AA] (6%), Cd 5 [-CT] (5.6%) and IVS-I.5 [G > C] (4.1%) were the eight predominant mutations found in our study. The coastal region had higher relative frequencies (37.9 and 22%) than other regions. A clear drift in the distribution of the third common Cd 39 [C > T] mutation in the northeast region (34.8%) to the northwest region (2.5%) was noted, while the IVS-I.5 [G > C] mutation has the highest prevalence in north regions. The IVS-I.6 [T > C] mutation had a distinct frequency in the middle region. Ten mutations -86 [C > G], -31 [A > G], -29 [A > G], 5'UTR; +22 [G > A], CAP + 1 [A > C], Codon 5/6 [-TG], IVS-I (-3) or codon 29 [C > T], IVS-I.2 [T > A], IVS-I.128 [T > G] and IVS-II.705 [T > G] were found in Syria for the first time. Conclusions These data will significantly facilitate the population screening, genetic counseling and prenatal diagnosis in Syrian population.

  5. A new gene deletion in the alpha-like globin gene cluster as the molecular basis for the rare alpha-thalassemia-1(--/alpha alpha) in blacks: HbH disease in sickle cell trait.

    Science.gov (United States)

    Steinberg, M H; Coleman, M B; Adams, J G; Hartmann, R C; Saba, H; Anagnou, N P

    1986-02-01

    A novel deletion of at least 26 kilobase of DNA, including both alpha-globin genes, the psi alpha- and psi zeta-globin genes, but sparing the functional zeta-gene was found in a 10-year-old black boy with HbH disease and sickle cell trait. This particular deletion has not previously been described in blacks. Its existence makes it likely that the absence of Hb Barts hydrops fetalis in blacks is due to the rarity of the chromosome lacking two alpha-globin genes rather than a result of early embryonic death due to the failure to synthesize embryonic hemoglobins because of deletion of functional zeta-globin genes.

  6. Search for antisense copies of beta-globin mRNA in anemic mouse spleen

    Directory of Open Access Journals (Sweden)

    Taylor John M

    2001-03-01

    Full Text Available Abstract Background Previous studies by Volloch and coworkers have reported that during the expression of high levels of β-globin mRNA in the spleen of anemic mice, they could also detect small but significant levels of an antisense (AS globin RNA species, which they postulated might have somehow arisen by RNA-directed RNA synthesis. For two reasons we undertook to confirm and possibly extend these studies. First, previous studies in our lab have focussed on what is an unequivocal example of host RNA-directed RNA polymerase activity on the RNA genome of human hepatitis delta virus. Second, if AS globin species do exist they could in turn form double-stranded RNA species which might induce post-transcriptional gene silencing, a phenomenon somehow provoked in eukaryotic cells by AS RNA sequences. Results We reexamined critical aspects of the previous globin studies. We used intraperitoneal injections of phenylhydrazine to induce anemia in mice, as demonstrated by the appearance and ultimate disappearance of splenomegaly. While a 30-fold increase in globin mRNA was detected in the spleen, the relative amount of putative AS RNA could be no more than 0.004%. Conclusions Contrary to earlier reports, induction of a major increase in globin transcripts in the mouse spleen was not associated with a detectable level of antisense RNA to globin mRNA.

  7. Heme-dependent up-regulation of the α-globin gene expression by transcriptional repressor Bach1 in erythroid cells

    International Nuclear Information System (INIS)

    Tahara, Tsuyoshi; Sun Jiying; Igarashi, Kazuhiko; Taketani, Shigeru

    2004-01-01

    The transcriptional factor Bach1 forms a heterodimer with small Maf family, and functions as a repressor of the Maf recognition element (MARE) in vivo. To investigate the involvement of Bach1 in the heme-dependent regulation of the expression of the α-globin gene, human erythroleukemia K562 cells were cultured with succinylacetone (SA), a heme biosynthetic inhibitor, and the level of α-globin mRNA was examined. A decrease of α-globin mRNA was observed in SA-treated cells, which was restored by the addition of hemin. The heme-dependent expression of α-globin occurred at the transcriptional level since the expression of human α-globin gene promoter-reporter gene containing hypersensitive site-40 (HS-40) was decreased when K562 cells were cultured with SA. Hemin treatment restored the decrease of the promoter activity by SA. The regulation of the HS-40 activity by heme was dependent on the NF-E2/AP-1 (NA) site, which is similar to MARE. The NA site-binding activity of Bach1 in K562 increased upon SA-treatment, and the increase was diminished by the addition of hemin. The transient expression of Bach1 and mutated Bach1 lacking CP motifs suppressed the HS-40 activity, and cancellation of the repressor activity by hemin was observed when wild-type Bach1 was expressed. The expression of NF-E2 strengthened the restoration of the Bach1-effect by hemin. Interestingly, nuclear localization of Bach1 increased when cells were treated with SA, while hemin induced the nuclear export of Bach1. These results indicated that heme plays an important role in the induction of α-globin gene expression through disrupting the interaction of Bach1 and the NA site in HS-40 enhancer in erythroid cells

  8. Genetic relationships among native americans based on beta-globin gene cluster haplotype frequencies

    Directory of Open Access Journals (Sweden)

    Rita de Cassia Mousinho-Ribeiro

    2003-01-01

    Full Text Available The distribution of b-globin gene haplotypes was studied in 209 Amerindians from eight tribes of the Brazilian Amazon: Asurini from Xingú, Awá-Guajá, Parakanã, Urubú-Kaapór, Zoé, Kayapó (Xikrin from the Bacajá village, Katuena, and Tiriyó. Nine different haplotypes were found, two of which (n. 11 and 13 had not been previously identified in Brazilian indigenous populations. Haplotype 2 (+ - - - - was the most common in all groups studied, with frequencies varying from 70% to 100%, followed by haplotype 6 (- + + - +, with frequencies between 7% and 18%. The frequency distribution of the b-globin gene haplotypes in the eighteen Brazilian Amerindian populations studied to date is characterized by a reduced number of haplotypes (average of 3.5 and low levels of heterozygosity and intrapopulational differentiation, with a single clearly predominant haplotype in most tribes (haplotype 2. The Parakanã, Urubú-Kaapór, Tiriyó and Xavante tribes constitute exceptions, presenting at least four haplotypes with relatively high frequencies. The closest genetic relationships were observed between the Brazilian and the Colombian Amerindians (Wayuu, Kamsa and Inga, and, to a lesser extent, with the Huichol of Mexico. North-American Amerindians are more differentiated and clearly separated from all other tribes, except the Xavante, from Brazil, and the Mapuche, from Argentina. A restricted pool of ancestral haplotypes may explain the low diversity observed among most present-day Brazilian and Colombian Amerindian groups, while interethnic admixture could be the most important factor to explain the high number of haplotypes and high levels of diversity observed in some South-American and most North-American tribes.

  9. Effect of ATRX and G-Quadruplex Formation by the VNTR Sequence on α-Globin Gene Expression.

    Science.gov (United States)

    Li, Yue; Syed, Junetha; Suzuki, Yuki; Asamitsu, Sefan; Shioda, Norifumi; Wada, Takahito; Sugiyama, Hiroshi

    2016-05-17

    ATR-X (α-thalassemia/mental retardation X-linked) syndrome is caused by mutations in chromatin remodeler ATRX. ATRX can bind the variable number of tandem repeats (VNTR) sequence in the promoter region of the α-globin gene cluster. The VNTR sequence, which contains the potential G-quadruplex-forming sequence CGC(GGGGCGGGG)n , is involved in the downregulation of α-globin expression. We investigated G-quadruplex and i-motif formation in single-stranded DNA and long double-stranded DNA. The promoter region without the VNTR sequence showed approximately twofold higher luciferase activity than the promoter region harboring the VNTR sequence. G-quadruplex stabilizers hemin and TMPyP4 reduced the luciferase activity, whereas expression of ATRX led to a recovery in reporter activity. Our results demonstrate that stable G-quadruplex formation by the VNTR sequence downregulates the expression of α-globin genes and that ATRX might bind to and resolve the G-quadruplex. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  11. Same β-globin gene mutation is present on nine different β-thalassemia chromosomes in a Sardinian population

    International Nuclear Information System (INIS)

    Pirastu, M.; Galanello, R.; Doherty, M.A.; Tuveri, T.; Cao, A.; Kan, Y.W.

    1987-01-01

    The predominant β-thalassemia in Sardinia is the β 0 type in which no β-globin chains are synthesized in the homozygous state. The authors determined the β-thalassemia mutations in this population by the oligonucleotide-probe method and defined the chromosome haplotypes on which the mutation resides. The same β/sup 39(CAG→TAG)/ nonsense mutation was found on nine different chromosome haplotypes. Although this mutation may have arisen more than once, the multiple haplotypes could also be generated by crossing over and gene conversion events. These findings underscore the frequency of mutational events in the β-globin gene region

  12. Mutation spectrum of β-globin gene in thalassemia patients at Hasan Sadikin Hospital - West Java Indonesia.

    Science.gov (United States)

    Maskoen, Ani Melani; Rahayu, Nurul S; Reniarti, Lelani; Susanah, Susi; Laksono, Bremmy; Fauziah, Prima Nanda; Zada, Almira; Hidayat, Dadang S

    2017-12-30

    Thalassemia is the most common hereditary haemolytic anemia in Southeast Asia, in which Indonesia is among countries that are at a high risk for thalassemia. It has been reported that mutation in the beta-globin gene is responsible in severe Thalassemia. However, the spectrum of beta-globin gene mutations in Indonesian population varies in different regions . Thus, this study aimed to identify the most prevalent mutation of Thalassemia patients from the Hasan Sadikin Hospital, Bandung, using this as a reference hospital for Thalassemia in West Java. The three most prevalent mutations of beta globin (IVS1nt5, Cd26 (HbE), and IVS1nt1), were conducted in the beginning of this study. Mutations of 291 samples were detected by PCR-RFLP in the Molecular Genetic Laboratory, Faculty of Medicine Universitas Padjadjaran, Bandung. The prevalence of the beta globin gene mutation types were 47.4% IVS1nt5 homozygote, 9.9% compound heterozygote IVS1nt5/HbE, 5.4% compound heterozygote IVS1nt5/IVS1nt1, 1.4% compound heterozygote HbE/IVS1nt1, 1% HbE homozygote, 14.4% Compound heterzygote IVS1nt5/… (no paired mutation), 2.06% compound heterozygote HbE/… (no paired mutation), 1.3% compound heterozygote IVS1nt1/… (no paired mutation), and 7 samples were unidentified. The thalassemia mutation IVS1nt5 homozygote is the most common mutation found in Thalassemia patients at Hasan Sadikin Hospital, Bandung. The samples with unidentified results might carry mutations other than the three that are observed in the present study.

  13. Detecting deletions, insertions, and single nucleotide substitutions in cloned β-globin genes and new polymorphic nucleotide substitutions in β-globin genes in a Japanese population using ribonuclease cleavage at mismatches in RNA: DNA duplexes

    International Nuclear Information System (INIS)

    Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko.

    1990-08-01

    The applicability of ribonuclease (RNase) cleavage at mismatches in RNA:DNA duplexes (the RNase cleavage method) for determining nucleotide variant rates was examined in a Japanese population. DNA segments of various lengths obtained from four different regions of one normal and three thalassemic cloned human β-globin genes were inserted into transcription vectors. Sense and antisense RNA probes uniformly labeled with 32 P were prepared. When RNA probes of 771 nucleotides (nt) or less were hybridized with cloned DNAs and the resulting duplexes were treated with a mixture of RNases A and T1, the length of products agreed with theoretical values. Twelve possible mismatches were examined. Since both sense and antisense probes were used, uncleavable mismatches such as G:T and G:G which were made from one combination of RNA and DNA strands could be converted to the cleavable C:A and C:C mismatches, respectively, by using the opposite combination. Deletions and insertions of one (G), four(TTCT), five (ATTTT), and 10 (ATTTTATTTT) nt were easily detected. A polymorphic substitution of T to C at position 666 of the second intervening sequence (IVS2-666) of the β-globin gene was detected using genomic DNAs from cell lines established from the peripheral B lymphocytes of 59 unrelated Japanese from Hiroshima or those amplified by polymerase chain reaction (PCR). The frequency of the gene with C at the IVS2-666 (allele C) was 0.48 and that of the gene with T (allene T) was 0.52. Two new polymorphic substitutions of C to A and A to T were detected at nucleotide positions 1789 and 1945 from the capping site, respectively, using genomic DNAs amplified by PCR. We conclude that it would be feasible to use the RNase cleavage method combined with PCR for large-scale screening of variation in chromosomal DNA. (J.P.N.)

  14. A Dual Reporter Mouse Model of the Human β-Globin Locus: Applications and Limitations

    NARCIS (Netherlands)

    P. Papadopoulos (Petros); L. Gutiérrez (Laura); R. van der Linden (Reinier); J. Kong-a-San (John); A. Maas (Alex); D.D. Drabek (Dubravka); G.P. Patrinos (George); J.N.J. Philipsen (Sjaak); F.G. Grosveld (Frank)

    2012-01-01

    textabstractThe human β-globin locus contains the β-like globin genes (i.e. fetal γ-globin and adult β-globin), which heterotetramerize with α-globin subunits to form fetal or adult hemoglobin. Thalassemia is one of the commonest inherited disorders in the world, which results in quantitative

  15. EFFECT OF CIS ACTING POTENTIAL REGULATORS IN THE ß GLOBIN GENE CLUSTER ON THE PRODUCTION OF HBF IN THALASSEMIA PATIENTS

    Directory of Open Access Journals (Sweden)

    Anita Nadkarni

    2013-02-01

    Full Text Available The clinical presentation of   b-thalassemia intermedia phenotypes are influenced by many factors .The persistence of fetal hemoglobin and  several polymorphisms located in the promoters of  g- and b-globin genes are some of them .The aim of this study was to evaluate the combined effect of  the -158Gg (CàT polymorphism and of the (ATx(Ty configuration, as well as their eventual association with elevated levels of HbF  in  b-thalassemia carriers, b-thalassemia Intermedia , b-thalassemia major and normal controls of Indian origin. The -158 Gg T allele was found to be associated with increased levels of HbF in b-thalassemia carriers, and not in wild-type subjects. In the homozygous group the -158 Gg T allele was significantly higher in the thalassemia intermedia group (66% as against the thalassemia major group (21%. The (AT9(T5 allele did not show any association with raised HbF levels. However 24% of milder cases showed presence of this allele. This study suggests that two regions of the b globin cluster, whether in cis or in trans to each other, can interact to enhance HbF expression when a b thalassemic determinant is present in heterozigosity and help in amelioration of the severity of the disease in homozygotes.

  16. Generation of a high-titer retroviral vector capable of expressing high levels of the human β-globin gene

    NARCIS (Netherlands)

    M. Sadelain (Michel); C.H.J. Wang (Jason); M. Antoniou (Michael); F.G. Grosveld (Frank); R.C. Mulligan

    1995-01-01

    textabstractRetrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and

  17. Characterization of histone H3K27 modifications in the β-globin locus

    International Nuclear Information System (INIS)

    Kim, Yea Woon; Kim, AeRi

    2011-01-01

    Research highlights: → The β-globin locus control region is hyperacetylated and monomethylated at histone H3K27. → Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. → Association of PRC2 subunits is comparable with H3K27me3 pattern. → Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human β-globin locus using the ChIP assay. The LCR of the human β-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the β-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  18. CD34+ cells from dental pulp stem cells with a ZFN-mediated and homology-driven repair-mediated locus-specific knock-in of an artificial β-globin gene.

    Science.gov (United States)

    Chattong, S; Ruangwattanasuk, O; Yindeedej, W; Setpakdee, A; Manotham, K

    2017-07-01

    In humans, mutations in the β-globin gene (HBB) have two important clinical manifestations: β-thalassemia and sickle cell disease. The progress in genome editing and stem cell research may be relevant to the treatment of β-globin-related diseases. In this work, we employed zinc-finger nuclease (ZFN)-mediated gene integration of synthetic β-globin cDNA into HBB loci, thus correcting almost all β-globin mutations. The integration was achieved in both HEK 293 cells and isolated dental pulp stem cell (DPSCs). We also showed that DPSCs with an artificial gene knock-in were capable of generating stable six-cell clones and were expandable at least 10 8 -fold; therefore, they may serve as a personalized stem cell factory. In addition, transfection with non-integrated pCAG-hOct4 and culturing in a conditioned medium converted the genome-edited DPSCs to CD34 + HSC-like cells. We believe that this approach may be useful for the treatment of β-globin-related diseases, especially the severe form of β-thalassemia.

  19. Molecular analysis of the human β-globin locus activation region

    International Nuclear Information System (INIS)

    Forrester, W.C.; Novak, U.; Gelinas, R.; Groudine, M.

    1989-01-01

    Recently, DNA sequences containing four erythroid-specific DNase I hypersensitive sites within 20 kilobases 5' of the human ε-globin gene have been identified as an important cis-acting regulatory element, the locus activation region (LAR). Subfragments of the LAR, containing either all or only the two 5' or two 3' hypersensitive sites were linked to the human β-globin gene and analyzed for their effect on globin gene expression in stably transformed mouse erythroleukemia (MEL) cells. Constructs containing all four of the hypersensitive sites increase β-gobin mRNA levels 8- to 13-fold, while constructs with only the 5' or 3' sites increase globin expression to a lesser extent. No effect was seen when the constructs were assayed in 3T3 fibroblasts. All of the LAR derivatives form hypersensitive sites at the corresponding sequence position in MEL cells prior to and after induction of MEL cell differentiation. However, in 3T3 fibroblasts only the hypersensitive site corresponding to the previously described erythroid-specific -10.9 site was formed

  20. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    International Nuclear Information System (INIS)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-01-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes

  1. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  2. Differential structural status of the RNA counterpart of an undecamer quasi-palindromic DNA sequence present in LCR of human β-globin gene cluster.

    Science.gov (United States)

    Kaushik, Mahima; Kukreti, Shrikant

    2015-01-01

    Our previous work on structural polymorphism shown at a single nucleotide polymorphism (SNP) (A → G) site located on HS4 region of locus control region (LCR) of β-globin gene has established a hairpin → duplex equilibrium corresponding to A → B like DNA transition (Kaushik M, Kukreti, R., Grover, D., Brahmachari, S.K. and Kukreti S. Nucleic Acids Res. 2003; Kaushik M, Kukreti S. Nucleic Acids Res. 2006). The G-allele of A → G SNP has been shown to be significantly associated with the occurrence of β-thalassemia. Considering the significance of this 11-nt long quasi-palindromic sequence [5'-TGGGG(G/A)CCCCA; HP(G/A)11] of β-globin gene LCR, we further explored the differential behavior of the same DNA sequence with its RNA counterpart, using various biophysical and biochemical techniques. In contrast to its DNA counterpart exhibiting a A → B structural transition and an equilibrium between duplex and hairpin forms, the studied RNA oligonucleotide sequence [5'-UGGGG(G/A)CCCCA; RHP(G/A)11] existed only in duplex form (A-conformation) and did not form hairpin. The single residue difference from A to G led to the unusual thermal stability of the RNA structure formed by the studied sequence. Since, naturally occurring mutations and various SNP sites may stabilize or destabilize the local DNA/RNA secondary structures, these structural transitions may affect the gene expression by a change in the protein-DNA recognition patterns.

  3. The human ankyrin 1 promoter insulator sustains gene expression in a β-globin lentiviral vector in hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Zulema Romero

    Full Text Available Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the β-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human β-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term β-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies.

  4. Therapeutic γ-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms

    Science.gov (United States)

    Dai, Yan; Sangerman, Jose; Hong, Yuan Luo; Fuchareon, Suthat; Chui, David H.K.; Faller, Douglas V.; Perrine, Susan P.

    2015-01-01

    Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy. PMID:26603726

  5. A New Intergenic α-Globin Deletion (α-αΔ125) Found in a Kabyle Population.

    Science.gov (United States)

    Singh, Amrathlal Rabbind; Lacan, Philippe; Cadet, Estelle; Bignet, Patricia; Dumesnil, Cécile; Vannier, Jean-Pierre; Joly, Philippe; Rochette, Jacques

    2016-01-01

    We have identified a deletion of 125 bp (α-α(Δ125)) (NG_000006.1: g.37040_37164del) in the α-globin gene cluster in a Kabyle population. A combination of singlex and multiplex polymerase chain reaction (PCR)-based assays have been used to identify the molecular defect. Sequencing of the abnormal PCR amplification product revealed a novel α1-globin promoter deletion. The endpoints of the deletion were characterized by sequencing the deletion junctions of the mutated allele. The observed deletion was located 378 bp upstream of the α1-globin gene transcription initiation site and leaves the α2 gene intact. In some patients, the α-α(Δ125) deletion was shown to segregate with Hb S (HBB: c.20A>T) and/or Hb C (HBB: c.19G>A) or a β-thalassemic allele. The α-α(Δ125) deletion has no discernible effect on red cell indices when inherited with no other abnormal globin genes. The family study demonstrated that the deletion is heritable. This is the only example of an intergenic α2-α1 non coding DNA deletion, leaving the α2-globin gene and the α1 coding part intact.

  6. Relationship of the Interaction Between Two Quantitative Trait Loci with γ-Globin Expression in β-Thalassemia Intermedia Patients.

    Science.gov (United States)

    NickAria, Shiva; Haghpanah, Sezaneh; Ramzi, Mani; Karimi, Mehran

    2018-05-10

    Globin switching is a significant factor on blood hemoglobin (Hb) level but its molecular mechanisms have not yet been identified, however, several quantitative trait loci (QTL) and polymorphisms involved regions on chromosomes 2p, 6q, 8q and X account for variation in the γ-globin expression level. We studied the effect of interaction between a region on intron six of the TOX gene, chromosome 8q (chr8q) and XmnI locus on the γ-globin promoter, chr11p on γ-globin expression in 150 β-thalassemia intermedia (β-TI) patients, evaluated by statistical interaction analysis. Our results showed a significant interaction between one QTL on intron six of the TOX gene (rs9693712) and XmnI locus that effect γ-globin expression. Interchromosomal interaction mediates through transcriptional machanisms to preserve true genome architectural features, chromosomes localization and DNA bending. This interaction can be a part of the unknown molecular mechanism of globin switching and regulation of gene expression.

  7. Role of the duplicated CCAAT box region in γ-globin gene regulation and hereditary persistence of fetal haemoglobin.

    NARCIS (Netherlands)

    A. Ronchi (Antonella); M. Berry (Meera); S. Raguz (Selina); A.M.A. Imam (Ali); N. Yannoutsos (Nikos); S. Ottolenghi (Sergio); F.G. Grosveld (Frank); N.O. Dillon (Niall)

    1996-01-01

    textabstractHereditary persistence of fetal haemoglobin (HPFH) is a clinically important condition in which a change in the developmental specificity of the gamma-globin genes results in varying levels of expression of fetal haemoglobin in the adult. The condition is benign and can significantly

  8. Differentiation of the mRNA transcripts originating from the alpha 1- and alpha 2-globin loci in normals and alpha-thalassemics.

    OpenAIRE

    Liebhaber, S A; Kan, Y W

    1981-01-01

    The alpha-globin polypeptide is encoded by two adjacent genes, alpha 1 and alpha 2. In the normal diploid state (alpha alpha/alpha alpha) all four alpha-globin genes are expressed. Loss or dysfunction of one or more of these genes leads to deficient alpha-globin production and results in alpha-thalassemia. We present a technique to differentially assess the steady-state levels of the alpha 1- and alpha-2-globin messenger RNA (mRNA) transcripts and thus delineate the relative level of expressi...

  9. A membrane-bound vertebrate globin.

    Directory of Open Access Journals (Sweden)

    Miriam Blank

    Full Text Available The family of vertebrate globins includes hemoglobin, myoglobin, and other O(2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O(2 binding with a variable affinity (P(50∼1.3-12.5 torr, depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein.

  10. In silico analysis of single nucleotide polymorphism (SNPs in human β-globin gene.

    Directory of Open Access Journals (Sweden)

    Mohammed Alanazi

    Full Text Available Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies--the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB gene mutations, such as that producing sickle cell hemoglobin (HbS, HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT server we have searched for the SNPs, which showed that 200 (80% non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40% non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K, HbD (E→Q, HbE (E→K and HbS (E→V. Atomic Non-Local Environment Assessment (ANOLEA, Yet Another Scientific Artificial Reality Application (YASARA, CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid

  11. the characterization of exon-1 mutation(s) of beta globin gene in beta thalassemia

    International Nuclear Information System (INIS)

    Abass, M.M.E.

    2004-01-01

    β-thalassemia constitutes one of the most serious health problems worldwide, it is the most common chronic hemolytic anemia in egypt. the aim of this work is to study the mutations of exon-1 of β-globin gene in β-thalassaemic children in sharkia governorate. the present study was included 25 healthy children and 50 patients diagnosed as β-thalassemia. this work showed that the thalassaemic patients had significantly decrease in Hb conc . than the control group (p 2 showed a significant increase as compared with the control group

  12. Bradykinin stimulation of nitric oxide production is not sufficient for gamma-globin induction

    Directory of Open Access Journals (Sweden)

    Čokić Vladan P.

    2014-01-01

    Full Text Available Introduction. Hydroxycarbamide, used in therapy of hemoglobinopathies, enhances nitric oxide (NO production both in primary human umbilical vein endothelial cells (HUVECs and human bone marrow endothelial cell line (TrHBMEC. Moreover, NO increases γ-globin and fetal hemoglobin levels in human erythroid progenitors. Objective. In order to find out whether simple physiologic stimulation of NO production by components of hematopoietic microenvironment can increase γ-globin gene expression, the effects of NO-inducer bradykinin were examined in endothelial cells. Methods. The study was performed in co-cultures of human erythroid progenitors, TrHBMEC and HUVECs by ozone-based chemiluminescent determination of NO and real-time quantitative RT-PCR. Results. In accordance with previous reports, the endogenous factor bradykinin increased endothelial cell production of NO in a dose- and time-dependent manner (0.1-0.6 μM up to 30 minutes. This induction of NO in HUVECs and TrHBMEC by bradykinin was blocked by competitive inhibitors of NO synthase (NOS, demonstrating NOS-dependence. It has been shown that bradykinin significantly reduced endothelial NOS (eNOS mRNA level and eNOS/Я-actin ratio in HUVEC (by twofold. In addition, bradykinin failed to increase γ-globin mRNA expression in erythroid progenitors only, as well as in co-culture studies of erythroid progenitors with TrHBMEC and HUVEC after 24 hours of treatment. Furthermore, bradykinin did not induce γ/β globin ratio in erythroid progenitors in co-cultures with HUVEC. Conclusion. Bradykinin mediated eNOS activation leads to short time and low NO production in endothelial cells, insufficient to induce γ-globin gene expression. These results emphasized the significance of elevated and extended NO production in augmentation of γ-globin gene expression. [Projekat Ministarstva nauke Republike Srbije, br. 175053

  13. Size Polymorphism in Alleles of the Myoglobin Gene from Biomphalaria Mollusks

    Directory of Open Access Journals (Sweden)

    Marcelo M. Santoro

    2010-10-01

    Full Text Available Introns are common among all eukaryotes, while only a limited number of introns are found in prokaryotes. Globin and globin-like proteins are widely distributed in nature, being found even in prokaryotes and a wide range of patterns of intron-exon have been reported in several eukaryotic globin genes. Globin genes in invertebrates show considerable variation in the positions of introns; globins can be found without introns, with only one intron or with three introns in different positions. In this work we analyzed the introns in the myoglobin gene from Biomphalaria glabrata, B. straminea and B. tenagophila. In the Biomphalaria genus, the myoglobin gene has three introns; these were amplified by PCR and analyzed by PCR-RFLP. Results showed that the size (number or nucleotides and the nucleotide sequence of the coding gene of the myoglobin are variable in the three species. We observed the presence of size polymorphisms in intron 2 and 3; this characterizes a homozygous/heterozygous profile and it indicates the existence of two alleles which are different in size in each species of Biomphalaria. This polymorphism could be explored for specific identification of Biomphalaria individuals.

  14. Axolotl hemoglobin: cDNA-derived amino acid sequences of two alpha globins and a beta globin from an adult Ambystoma mexicanum.

    Science.gov (United States)

    Shishikura, Fumio; Takeuchi, Hiro-aki; Nagai, Takatoshi

    2005-11-01

    Erythrocytes of the adult axolotl, Ambystoma mexicanum, have multiple hemoglobins. We separated and purified two kinds of hemoglobin, termed major hemoglobin (Hb M) and minor hemoglobin (Hb m), from a five-year-old male by hydrophobic interaction column chromatography on Alkyl Superose. The hemoglobins have two distinct alpha type globin polypeptides (alphaM and alpham) and a common beta globin polypeptide, all of which were purified in FPLC on a reversed-phase column after S-pyridylethylation. The complete amino acid sequences of the three globin chains were determined separately using nucleotide sequencing with the assistance of protein sequencing. The mature globin molecules were composed of 141 amino acid residues for alphaM globin, 143 for alpham globin and 146 for beta globin. Comparing primary structures of the five kinds of axolotl globins, including two previously established alpha type globins from the same species, with other known globins of amphibians and representatives of other vertebrates, we constructed phylogenetic trees for amphibian hemoglobins and tetrapod hemoglobins. The molecular trees indicated that alphaM, alpham, beta and the previously known alpha major globin were adult types of globins and the other known alpha globin was a larval type. The existence of two to four more globins in the axolotl erythrocyte is predicted.

  15. Conservation of the primary structure, organization, and function of the human and mouse β-globin locus-activating regions

    International Nuclear Information System (INIS)

    Moon, A.M.; Ley, T.J.

    1990-01-01

    DNA sequences located in a region 6-18 kilobases (kb) upstream from the human ε-globin gene are known as the locus-activating region (LAR) or dominant control region. This region is thought to play a key role in chromatin organization of the β-like globin gene cluster during erythroid development. Since the human β-globin LAR is functional in mice, the authors reasoned that critical LAR sequence elements might be conserved between mice and humans. They therefore cloned murine genomic sequences homologous to one portion of the human LAR. They found that this murine DNA fragment (mouse LAR site II) and sequences homologous to human LAR sites I and III are located upstream from the mouse β-like globin gene cluster and determined that their locations relative to the cluster are similar to that of their human counterparts. The homologous site II sequences are 70% identical between mice and humans over a stretch of ∼800 base pairs. These results suggest that primary structural elements endash and the spatial organization of these elements endash are important for function of the β-globin LAR

  16. The effect of globin scaffold on osteoblast adhesion and phenotype expression in vitro.

    Science.gov (United States)

    Hamdan, Ahmad A; Loty, Sabine; Isaac, Juliane; Tayot, Jean-Louis; Bouchard, Philippe; Khraisat, Ameen; Bedral, Ariane; Sautier, Jean-Michel

    2012-01-01

    Different synthetic and natural biomaterials have been used in bone tissue regeneration. However, several limitations are associated with the use of synthetic as well as allogenous or xenogenous natural materials. This study evaluated, in an in vitro model, the behavior of rat osteoblastic cells cultured on a human globin scaffold. Rat osteoblastic cells were isolated from the calvaria of 21-day-old fetal Sprague-Dawley rats. They were then grown in the presence of globin. Real-time polymerase chain reaction (RT-PCR) was performed to study the expression of cyclin D1, integrin Β1, Msx2, Dlx5, Runx2, and osteocalcin on days 1, 5, and 9. Moreover, alkaline phosphatase activity was measured on days 1, 3, 5, and 7. Alizarin red staining was performed on day 9 to observe calcium deposition. Cells were able to adhere, proliferate, and differentiate on globin scaffolds. Moreover, RT-PCR showed that globin may stimulate some key genes of osteoblastic differentiation (Runx2, osteocalcin, Dlx5). Globin had an inhibitory effect on alkaline phosphatase activity. Calcium deposits were seen after 9 days of culture. These results indicate that purified human globin might be a suitable scaffold for bone tissue regeneration.

  17. Nuclear topography of beta-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells

    Czech Academy of Sciences Publication Activity Database

    Galiová-Šustáčková, Gabriela; Bártová, Eva; Kozubek, Stanislav

    2004-01-01

    Roč. 33, č. 1 (2004), s. 4-14 ISSN 1079-9796 R&D Projects: GA ČR GA301/01/0186; GA AV ČR KSK5052113; GA AV ČR IAA5004306; GA ČR GA202/04/0907; GA MŠk ME 565 Institutional research plan: CEZ:AV0Z5004920 Keywords : beta-like globin gene cluster * K-562 cells * nuclear topography Subject RIV: BO - Biophysics Impact factor: 2.549, year: 2004

  18. Co-inheritance of the rare β hemoglobin variants Hb Yaounde, Hb Görwihl and Hb City of Hope with other alterations in globin genes: impact in genetic counseling.

    Science.gov (United States)

    Vinciguerra, Margherita; Passarello, Cristina; Leto, Filippo; Cassarà, Filippo; Cannata, Monica; Maggio, Aurelio; Giambona, Antonino

    2015-04-01

    Nearly 1183 different molecular defects of the globin genes leading to hemoglobin variants have been identified (http://globin.bx.psu.edu) over the past decades. The purpose of this study was to report three cases, never described in the literature, of co-inheritance of three β hemoglobin variants with other alterations in globin genes and to evaluate the clinical significance to conduct an appropriate genetic counseling. We report the molecular study performed in three probands and their families, sampling during the screening program conducted at the Laboratory for Molecular Prenatal Diagnosis of Hemoglobinopathies at Villa Sofia-Cervello Hospital in Palermo, Italy. This work allowed us to describe the co-inheritance of three rare β hemoglobin variants with other alterations in globin genes: the β hemoglobin variant Hb Yaounde [β134(H12)Val>Ala], found for the first time in combination with ααα(anti3.7) arrangement, and the β hemoglobin variants Hb Görwihl [β5(A2)Pro>Ala] and Hb City of Hope [β69(E13)Gly>Ser], found both in association with β(0) -thalassemia. The present work emphasizes the importance of a careful evaluation of the hematological data, especially in cases of atypical hematological parameters, to carry out an adequate and complete molecular study and to formulate an appropriate genetic counseling for couples at risk. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. β-Globin gene sequencing of hemoglobin Austin revises the historically reported electrophoretic migration pattern.

    Science.gov (United States)

    Racsa, Lori D; Luu, Hung S; Park, Jason Y; Mitui, Midori; Timmons, Charles F

    2014-06-01

    Hemoglobin (Hb) Austin was defined in 1977, using amino acid sequencing of samples from 3 unrelated Mexican-Americans, as a substitution of serine for arginine at position 40 of the β-globin chain (Arg40Ser). Its electrophoretic migration on both cellulose acetate (pH 8.4) and citrate agar (pH 6.2) was reported between Hb F and Hb A, and this description persists in reference literature. OBJECTIVES.-To review the clinical features and redefine the diagnostic characteristics of Hb Austin. Eight samples from 6 unrelated individuals and 2 siblings, all with Hispanic surnames, were submitted for abnormal Hb identification between June 2010 and September 2011. High-performance liquid chromatography, isoelectric focusing (IEF), citrate agar electrophoresis, and bidirectional DNA sequencing of the entire β-globin gene were performed. DNA sequencing confirmed all 8 individuals to be heterozygous for Hb Austin (Arg40Ser). Retention time on high-performance liquid chromatography and migration on citrate agar electrophoresis were consistent with that identification. Migration on IEF, however, was not between Hb F and Hb A, as predicted from the report of cellulose acetate electrophoresis. By IEF, Hb Austin migrated anodal to ("faster than") Hb A. Hemoglobin Austin (Arg40Ser) appears on IEF as a "fast," anodally migrating, Hb variant, just as would be expected from its amino acid substitution. The cited historic report is, at best, not applicable to IEF and is probably erroneous. Our observation of 8 cases in 16 months suggests that this variant may be relatively common in some Hispanic populations, making its recognition important. Furthermore, gene sequencing is proving itself a powerful and reliable tool for definitive identification of Hb variants.

  20. Hb Dartmouth (HBA2: c.200T>C): An α2-Globin Gene Associated with Hb H Disease in One Homozygous Patient.

    Science.gov (United States)

    Farashi, Samaneh; Faramarzi Garous, Negin; Ashki, Mehri; Vakili, Shadi; Zeinali, Fatemah; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-01-01

    Hb H (β4) disease is caused by deletion or inactivation of three out of four α-globin genes. A high incidence of Hb H disease has been reported all over the world. There is a wide spectrum of phenotypic presentations, from clinically asymptomatic to having significant hepatosplenomegaly and requiring occasional or even regular blood transfusions, even more severe anemia, Hb Bart's (γ4) hydrops fetalis syndrome that can cause death in the affected fetuses late in gestation. We here present a case who was diagnosed with Hb H disease that represents a new genotype for this hereditary disorder. Hb Dartmouth is a variant caused by a missense mutation at codon 66 of the α2-globin gene (HBA2: c.200T>C), resulting in the substitution of leucine by proline. We here emphasize the importance of this point mutation involving Hb H disease and also the necessity for prenatal diagnosis (PND) for those who carry this point mutation in the heterozygous state.

  1. Variation in RNA-Seq transcriptome profiles of peripheral whole blood from healthy individuals with and without globin depletion.

    Directory of Open Access Journals (Sweden)

    Heesun Shin

    Full Text Available BACKGROUND: The molecular profile of circulating blood can reflect physiological and pathological events occurring in other tissues and organs of the body and delivers a comprehensive view of the status of the immune system. Blood has been useful in studying the pathobiology of many diseases. It is accessible and easily collected making it ideally suited to the development of diagnostic biomarker tests. The blood transcriptome has a high complement of globin RNA that could potentially saturate next-generation sequencing platforms, masking lower abundance transcripts. Methods to deplete globin mRNA are available, but their effect has not been comprehensively studied in peripheral whole blood RNA-Seq data. In this study we aimed to assess technical variability associated with globin depletion in addition to assessing general technical variability in RNA-Seq from whole blood derived samples. RESULTS: We compared technical and biological replicates having undergone globin depletion or not and found that the experimental globin depletion protocol employed removed approximately 80% of globin transcripts, improved the correlation of technical replicates, allowed for reliable detection of thousands of additional transcripts and generally increased transcript abundance measures. Differential expression analysis revealed thousands of genes significantly up-regulated as a result of globin depletion. In addition, globin depletion resulted in the down-regulation of genes involved in both iron and zinc metal ion bonding. CONCLUSIONS: Globin depletion appears to meaningfully improve the quality of peripheral whole blood RNA-Seq data, and may improve our ability to detect true biological variation. Some concerns remain, however. Key amongst them the significant reduction in RNA yields following globin depletion. More generally, our investigation of technical and biological variation with and without globin depletion finds that high-throughput sequencing by RNA

  2. Brain alpha- and beta-globin expression after intracerebral hemorrhage

    OpenAIRE

    He, Yangdong; Hua, Ya; Lee, Jin-Yul; Liu, Wenquan; Keep, Richard F; Wang, Michael M.; Xi, Guohua

    2010-01-01

    Our recent study has demonstrated that hemoglobin (Hb) is present in cerebral neurons and neuronal Hb is inducible after cerebral ischemia. In the present study, we examined the effects of intracerebral hemorrhage (ICH) on the mRNA levels of the α-globin (HbA) and the β-globin (HbB) components of Hb and Hb protein in the brain in vivo and in vitro. In vivo, male Sprague-Dawley rats received either a needle insertion (sham) or an infusion of autologous whole blood into the basal ganglia and we...

  3. Allele specific hybridization using oligonucleotide probes of very high specific activity: Discrimination of the human β/sup A/ and β/sup S/-globin genes

    International Nuclear Information System (INIS)

    Studencki, A.B.; Wallace, R.B.

    1984-01-01

    The repair activity of E. coli DNA polymerase I (Klenow fragment) was used to prepare nonadecanucleotide hybridization probes which were complementary either to the normal human β-globin (β/sup A/) or to the sickle cell human β-globin (β/sup S/) gene. Template directed polymerization of highly radiolabeled α-/sup 32/P-deoxyribonucleoside triphosphates (3200, 5000 and/or 7800 Ci/mmol) onto nonamer and decamer primers produced probes with specific activities ranging from 1.0 - 2.0 x 10/sup 10/ dpm/μg. The extremely high specific activities of these probes made it possible to detect the β/sup A/ and β/sup S/ single copy gene sequences in as little as 1 μg of total human genomic DNA as well as to discriminate between the homozygous and heterozygous states. This means that it was possible to detect 0.5 - 1.0 x 10/sup -18/ moles of a given single copy sequence

  4. Assessment of virally vectored autoimmunity as a biocontrol strategy for cane toads.

    Directory of Open Access Journals (Sweden)

    Jackie A Pallister

    Full Text Available BACKGROUND: The cane toad, Bufo (Chaunus marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. METHODOLOGY/PRINCIPAL FINDINGS: The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs, developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin and genetic (adult globin mRNA levels measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. CONCLUSIONS/SIGNIFICANCE: While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach.

  5. Assessment of virally vectored autoimmunity as a biocontrol strategy for cane toads.

    Science.gov (United States)

    Pallister, Jackie A; Halliday, Damien C T; Robinson, Anthony J; Venables, Daryl; Voysey, Rhonda D; Boyle, Donna G; Shanmuganathan, Thayalini; Hardy, Christopher M; Siddon, Nicole A; Hyatt, Alex D

    2011-01-25

    The cane toad, Bufo (Chaunus) marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin) and genetic (adult globin mRNA levels) measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach.

  6. Poxvirus Host Range Genes and Virus-Host Spectrum: A Critical Review.

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-11-07

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses' host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings.

  7. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    Science.gov (United States)

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  8. Two α1-Globin Gene Point Mutations Causing Severe Hb H Disease.

    Science.gov (United States)

    Jiang, Hua; Huang, Lv-Yin; Zhen, Li; Jiang, Fan; Li, Dong-Zhi

    Hb H disease is generally a moderate form of α-thalassemia (α-thal) that rarely requires regular blood transfusions. In this study, two Chinese families with members carrying transfusion-dependent Hb H disease were investigated for rare mutations on the α-globin genes (HBA1, HBA2). In one family, Hb Zürich-Albisrieden [α59(E8)Gly→Arg; HBA1: c.178G>C] in combination with the Southeast Asian (- - SEA ) deletion was the defect responsible for the severe phenotype. In another family, a novel hemoglobin (Hb) variant named Hb Sichuan (HBA1: c.393_394insT), causes α-thal and a severe phenotype when associated with the - - SEA deletion. As these two HBA1 mutations can present as continuous blood transfusion-dependent α-thal, it is important to take this point into account for detecting the carriers, especially in couples in which one partner is already a known α 0 -thal carrier.

  9. Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients

    Science.gov (United States)

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011

  10. Interaction between Hb E and Hb Yala (HBB:c.129delT); a novel frameshift beta globin gene mutation, resulting in Hemoglobin E/β0 thalassemia.

    Science.gov (United States)

    Ekwattanakit, Supachai; Riolueang, Suchada; Viprakasit, Vip

    2018-03-01

    There are more than 200 known mutations found in patients with β-thalassemia, a possibility to identify an unknown or novel mutation becomes less possible. Here, we report a novel mutation in a patient from Thailand who presented with chronic hemolytic anemia. A comprehensive hematology and DNA analysis was applied in the index patient and her mother. Hematological and hemoglobin analyses were consistent with the clinical diagnosis of Hb E/β 0 -thalassemia. However, we could find only Hb E heterozygous mutation using our common polymerase chain reaction-based mutation detection of the β-globin genes. Furthermore, the molecular analysis demonstrated a novel T-deletion at codon 42 of the second exon of the β-globin gene which we named 'Hb Yala' according to the origin of this index family. This mutation was assumed to generate a truncated β-globin chain terminating at codon 60 with possible unstable variant leading to a 'null' or β 0 -thalassemia. However, the clinical phenotype was surprisingly mild and no other ameliorating genetic factors, including co-inheritance of α-thalassemia and high propensity of Hb F by Xmn I polymorphism, were found. This report has provided evidence that genotype-phenotype correlation in thalassemia syndromes is highly complex and a correct clinical severity classification of thalassemia should be mainly based on clinical evaluation.

  11. Investigation of benzo(a)pyrene-globin adducts

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, H; Jeffre, A M; Santella, R M

    1987-05-01

    The nature of the adducts formed between benzo(a)pyrene (BP) and globin were investigated in animals treated with (/sup 3/H)BP. Modification levels on globin were determined by radioactivity measurements. Since BP tetraols can be released from benzo(a)pyrene diol epoxide modified protein and DNA by acid treatment, globin samples were treated with acid, released tetraols separated by HPLC and quantitated by scintillation counting. In addition, acid released material was measured in competitive enzyme linked immunosorbent assay (ELISA) using antibodies which recognize BP tetraols. Both measurements indicate that only 2% of bound radioactivity could be released as free BP tetraols. These studies indicate that benzo(a)pyrene diol epoxide may not be the major metabolite of BP involved in globin binding. (author). 14 refs.

  12. Human β-globin locus control region: Analysis of the 5' DNase I hypersensitive site HS 2 in transgenic mice

    International Nuclear Information System (INIS)

    Caterina, J.J.; Ryan, T.M.; Pawlik, K.M.; Townes, T.M.; Brinster, R.L.; Behringer, R.R.; Palmiter, R.D.

    1991-01-01

    The human β-globin locus control region (LCR) is essential for high-level expression of human var-epsilon-, γ-, and β-globin genes. Developmentally stable DNase I hypersensitive sites (designated HS) mark sequences within this region that are important for LCR activity. A 1.9-kilobase (kb) fragment containing the 5' HS 2 site enhances human β-globin gene expression 100-fold in transgenic mice and also confers position-independent expression. To further define important sequences within this region, deletion mutations of the 1.9-kb fragment were introduced upstream of the human β-globin gene, and the constructs were tested for activity in transgenic mice. Although enhancer activity was gradually lost with deletion of both 5' and 3' sequences, a 373-base-pair (BP) fragment retained the ability to confer relative position-independent expression. Three prominent DNase I footprints were observed in this region with extracts from the human erythroleukemia cell line K-562, one of which contained duplicated binding sites for transcription factor AP-1 (activator protein 1). When the 1.9-kb fragment containing an 19-bp deletion of the AP-1 binding sites was tested in transgenic mice, enhancer activity decreased 20-fold but position-independent expression was retained

  13. Investigating alpha-globin structural variants: a retrospective review of 135,000 Brazilian individuals

    Directory of Open Access Journals (Sweden)

    Elza Miyuki Kimura

    2015-04-01

    Full Text Available Background: Brazil has a multiethnic population with a high diversity of hemoglobinopathies. While screenings for beta-globin mutations are far more common, alterations affecting alpha-globin genes are usually more silent and less well known. The aim of this study was to describe the results of a screening program for alpha-globin gene mutations in a representative sample of the Southeastern Brazilian population. Methods: A total of 135,000 individuals, including patients with clinical suspicion of hemoglobinopathies and their family members, randomly chosen individuals submitted to blood tests and blood donors who were abnormal hemoglobin carriers were analyzed. The variants were screened by alkaline and acid electrophoreses, isoelectric focusing and cation-exchange high performance liquid chromatography (HPLC and the abnormal chains were investigated by reverse-phase high performance liquid chromatography (RP-HPLC. Mutations were identified by molecular analyses, and the oxygen affinity, heme-heme cooperativity and Bohr effect of the variants were evaluated by functional tests. Results: Four new and 22 rare variants were detected in 98 families. Some of these variants were found in co-inheritance with other hemoglobinopathies. Of the rare hemoglobins, Hasharon, Stanleyville II and J-Rovigo were the most common, the first two being S-like and associated with alpha-thalassemia. Conclusion: The variability of alpha-globin alterations reflects the high degree of racial miscegenation and an intense internal migratory flow between different Brazilian regions. This diversity highlights the importance of programs for diagnosing hemoglobinopathies and preventing combinations that may lead to important clinical manifestations in multiethnic populations.

  14. Evolutionary and functional properties of a two-locus β-globin polymorphism in Indian house mice

    DEFF Research Database (Denmark)

    Runck, Amy M; Weber, Roy E.; Fago, Angela

    2010-01-01

    exceeded neutral expectations, and reconstructed haplotype networks for both β-globin paralogs revealed extensive allele sharing with several other closely related species of Mus. However, despite this suggestive evidence for balancing selection, O2-equilibrium curves revealed no discernible functional......Electrophoretic surveys of hemoglobin (Hb) polymorphism in house mice from South Asia and the Middle East have revealed that two alternative β-globin haplotypes, Hbbd and Hbbp, are often present at intermediate frequencies in geographically disparate populations. Both haplotypes harbor two......) are distinguished by two amino acid substitutions. To investigate the possible adaptive significance of the Hbbd/Hbbp polymorphism we conducted a population genetic analysis of the duplicated β-globin genes of Indian house mice (Mus castaneus) in conjunction with experimental studies of Hb function in inbred...

  15. Gene expression profiling of the host response to HIV-1 B, C, or A/E infection in monocyte-derived dendritic cells

    International Nuclear Information System (INIS)

    Solis, Mayra; Wilkinson, Peter; Romieu, Raphaelle; Hernandez, Eduardo; Wainberg, Mark A.; Hiscott, John

    2006-01-01

    Dendritic cells (DC) are among the first targets of human immunodeficiency virus type-1 (HIV-1) infection and in turn play a crucial role in viral transmission to T cells and in the regulation of the immune response. The major group of HIV-1 has diversified genetically based on variation in env sequences and comprise at least 11 subtypes. Because little is known about the host response elicited against different HIV-1 clade isolates in vivo, we sought to use gene expression profiling to identify genes regulated by HIV-1 subtypes B, C, and A/E upon de novo infection of primary immature monocyte-derived DC (iMDDCs). A total of 3700 immune-related genes were subjected to a significance analysis of microarrays (SAM); 656 genes were selected as significant and were further divided into 8 functional categories. Regardless of the time of infection, 20% of the genes affected by HIV-1 were involved in signal transduction, followed by 14% of the genes identified as transcription-related genes, and 7% were classified as playing a role in cell proliferation and cell cycle. Furthermore, 7% of the genes were immune response genes. By 72 h postinfection, genes upregulated by subtype B included the inhibitor of the matrix metalloproteinase TIMP2 and the heat shock protein 40 homolog (Hsp40) DNAJB1, whereas the IFN inducible gene STAT1, the MAPK1/ERK2 kinase regulator ST5, and the chemokine CXCL3 and SHC1 genes were induced by subtypes C and A/E. These analyses distinguish a temporally regulated host response to de novo HIV-1 infection in primary dendritic cells

  16. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    Energy Technology Data Exchange (ETDEWEB)

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. (Hebrew Univ. Hadassah-Medical School, Jerusalem (Israel)) (and others)

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  17. Application of Single Strand Conformational Polymorphism (PCR-SSCP) in Identification of Some Beta-Globin Gene Mutations in A Group of Egyptian Beta-Thalassemia Patients and Carriers

    International Nuclear Information System (INIS)

    Somaya, E.T.; Soliman, M.D

    2010-01-01

    The present study investigated whether the single-strand conformational polymorphism (SSCP) method could be employed to identify (rather than simply detect) four of the most common beta-globin gene mutations in the Egyptian population: IVS-I-110, IVS-I-6, the IVS-I-1, and Codon 39. Using DNA from 90 beta-thalassemia patients and carriers, by PCR the appropriate 238-bp region of the human beta-globin gene was amplified, the reaction products (Single-stranded DNA) were analyzed by none denaturing polyacrylamide gel electrophoresis, and the bands visualized by silver staining. Single-stranded DNA (ssDNA) fragments showed reproducible pattern of bands that were characteristic of the mutations present. With the use of control samples containing six of the 10 possible combinations of the four beta-globin gene mutations under study, we were able to predict the mutations present in 23 out of 90 (26.4%) of the patients studied. These predictions were confirmed independently by the amplification refractory mutation system (ARMS) method. It is concluded that this non-radioactive PCR-SSCP method can be used to reliably identify mutations in beta-thalassemia patients, provided that suitable controls are available. However, usefulness of this method for determining the genotype of beta-thalassaemic individuals is obviously limited by the great number of controls required. Moreover, the ability to detect mutations by SSCP is in general lower compared to other methods, ARMS, DGGE or DHPLC, which are reported to detect 49.5% to 73% of the mutations present. The SSCP method is nevertheless much easier to employ than other methods and is especially successful for beta-thalassemia carriers. This method would thus be particularly useful for an initial screening of target groups (prenatal diagnosis)

  18. Production and characterization of monoclonal antibodies against α-globin chain-containing human hemoglobins for detecting α-thalassemia disease.

    Science.gov (United States)

    Pakdeepak, Kanet; Pata, Supansa; Chiampanichayakul, Sawitree; Kasinrerk, Watchara; Tatu, Thanusak

    2016-01-01

    Monoclonal antibodies against α-globin containing human Hbs, named AMS-Alpha1 and AMS-Alpha 2, were produced by the hybridoma technique using spleen cells enriched by the newly developed B lymphocyte enrichment protocol. These two monoclonal antibodies were of IgM class, reacting to only intact form of human Hbs A, A2, E, and F, which contain α-globin chain. By the indirect ELISA, the AMS-Alpha1 and AMS-Alpha 2 quantified less amount of α-globin chain containing hemoglobins in HbH disease than the SEA-α thalassemia 1 carriers and normal individuals. It was thus anticipated that these monoclonal antibodies can be used for detecting Hb Bart's hydrops fetalis in which no α-globin chain is produced.

  19. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat.

    Directory of Open Access Journals (Sweden)

    Jianmei Yang

    Full Text Available BACKGROUND: Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. RESULTS: The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. CONCLUSION: The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.

  20. Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom.

    Science.gov (United States)

    Kiger, Laurent; Tilleman, Lesley; Geuens, Eva; Hoogewijs, David; Lechauve, Christophe; Moens, Luc; Dewilde, Sylvia; Marden, Michael C

    2011-01-01

    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.

  1. Sox6 directly silences epsilon globin expression in definitive erythropoiesis.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available Sox6 is a member of the Sox transcription factor family that is defined by the conserved high mobility group (HMG DNA binding domain, first described in the testis determining gene, Sry. Previous studies have suggested that Sox6 plays a role in the development of the central nervous system, cartilage, and muscle. In the Sox6-deficient mouse, p100H, epsilony globin is persistently expressed, and increased numbers of nucleated red cells are present in the fetal circulation. Transfection assays in GM979 (erythroleukemic cells define a 36-base pair region of the epsilony proximal promoter that is critical for Sox6 mediated repression. Electrophoretic mobility shift assay (EMSA and chromatin immunoprecipitation (ChIP assays demonstrate that Sox6 acts as a repressor by directly binding to the epsilony promoter. The normal expression of Sox6 in wild-type fetal liver and the ectopic expression of epsilony in p100H homozygous fetal liver demonstrate that Sox6 functions in definitive erythropoiesis. The present study shows that Sox6 is required for silencing of epsilony globin in definitive erythropoiesis and suggests a role for Sox6 in erythroid cell maturation. Thus, Sox6 regulation of epsilony globin might provide a novel therapeutical target in the treatment of hemoglobinopathies such as sickle cell anemia and thalassemia.

  2. A parasitic selfish gene that affects host promiscuity.

    Science.gov (United States)

    Giraldo-Perez, Paulina; Goddard, Matthew R

    2013-11-07

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not necessarily benign but maybe parasitic. We estimate a selective load of approximately 1-2% in 'natural' niches. The second aspect we examine is the ability of HEGs to affect hosts' sexual behaviour. As all selfish genes critically rely on sex for spread, then any selfish gene correlated with increased host sexuality will enjoy a transmission advantage. While classic parasites are known to manipulate host behaviour, we are not aware of any evidence showing a selfish gene is capable of affecting host promiscuity. The data presented here show a selfish element may increase the propensity of its eukaryote host to undergo sex and along with increased rates of non-Mendelian inheritance, this may counterbalance mitotic selective load and promote spread. Demonstration that selfish genes are correlated with increased promiscuity in eukaryotes connects with ideas suggesting that selfish genes promoted the evolution of sex initially.

  3. Oxygen Association-Dissociation and Stability Analysis on Mouse Hemoglobins with Mutant α- and β-Globins

    Science.gov (United States)

    D'Surney, S. J.; Popp, R. A.

    1992-01-01

    Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an α-globin (α89, His to Leu) and a β-globin (β59, Lys to Ile). The variant α-globin, designated chain 5(m) in the Hba(g2) haplotype, had a high oxygen affinity and was stable. The variant β-globin, (β(s2)) of the Hbb(s2) haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) X Hba(a)/Hba(a);Hbb(s2)/Hbb(s2)) F(2) genotypes can be grouped into five classes of P(50) values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hba(a)/Hba(a);Hbb(s)/Hbb(s)) had a P(50) = 40 mm Hg and the hemoglobin of Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) F(2) mice had a P(50) = 25 mm Hg (human P(50) = 26 mm Hg). Peripheral blood from Hba(g2)/Hba(g2);Hbb(s)/Hbb(s), Hba(a)/Hba(a);Hbb(s2)/Hbb(s2) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice exhibited normal hematological values except for a slightly higher hematocrit for Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice. PMID:1427042

  4. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    Full Text Available VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  5. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2011-01-01

    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  6. Genes on B chromosomes: old questions revisited with new tools.

    Science.gov (United States)

    Banaei-Moghaddam, Ali M; Martis, Mihaela M; Macas, Jiří; Gundlach, Heidrun; Himmelbach, Axel; Altschmied, Lothar; Mayer, Klaus F X; Houben, Andreas

    2015-01-01

    B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Often, they have been considered as 'junk DNA' or genomic parasites without functional genes. Due to recent advances in sequencing technologies, it became possible to investigate their DNA composition, transcriptional activity and effects on the host transcriptome profile in detail. Here, we review the most recent findings regarding the gene content of B chromosomes and their transcriptional activities and discuss these findings in the context of comparable biological phenomena, like sex chromosomes, aneuploidy and pseudogenes. Recent data suggest that B chromosomes carry transcriptionally active genic sequences which could affect the transcriptome profile of their host genome. These findings are gradually changing our view that B chromosomes are solely genetically inert selfish elements without any functional genes. This at one side could partly explain the deleterious effects which are associated with their presence. On the other hand it makes B chromosome a nice model for studying regulatory mechanisms of duplicated genes and their evolutionary consequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Sustained enhancement of OCTN1 transporter expression in association with hydroxyurea induced gamma-globin expression in erythroid progenitors

    OpenAIRE

    Walker, Aisha L.; Ofori-Acquah, Solomon

    2016-01-01

    The clinical benefits of hydroxyurea treatment in patients with sickle cell disease (SCD) are due largely to increased gamma-globin expression. However, mechanisms that control gamma-globin expression by hydroxyurea in erythroid progenitors are incompletely understood. Here, we investigated the role of two hydroxyurea transporters, urea transporter B (UTB) and organic cation/carnitine transporter 1 (OCTN1), in this process. Endogenous expression of both transporters peaked towards the end of ...

  8. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.

    Science.gov (United States)

    Cavazzana-Calvo, Marina; Payen, Emmanuel; Negre, Olivier; Wang, Gary; Hehir, Kathleen; Fusil, Floriane; Down, Julian; Denaro, Maria; Brady, Troy; Westerman, Karen; Cavallesco, Resy; Gillet-Legrand, Beatrix; Caccavelli, Laure; Sgarra, Riccardo; Maouche-Chrétien, Leila; Bernaudin, Françoise; Girot, Robert; Dorazio, Ronald; Mulder, Geert-Jan; Polack, Axel; Bank, Arthur; Soulier, Jean; Larghero, Jérôme; Kabbara, Nabil; Dalle, Bruno; Gourmel, Bernard; Socie, Gérard; Chrétien, Stany; Cartier, Nathalie; Aubourg, Patrick; Fischer, Alain; Cornetta, Kenneth; Galacteros, Frédéric; Beuzard, Yves; Gluckman, Eliane; Bushman, Frederick; Hacein-Bey-Abina, Salima; Leboulch, Philippe

    2010-09-16

    The β-haemoglobinopathies are the most prevalent inherited disorders worldwide. Gene therapy of β-thalassaemia is particularly challenging given the requirement for massive haemoglobin production in a lineage-specific manner and the lack of selective advantage for corrected haematopoietic stem cells. Compound β(E)/β(0)-thalassaemia is the most common form of severe thalassaemia in southeast Asian countries and their diasporas. The β(E)-globin allele bears a point mutation that causes alternative splicing. The abnormally spliced form is non-coding, whereas the correctly spliced messenger RNA expresses a mutated β(E)-globin with partial instability. When this is compounded with a non-functional β(0) allele, a profound decrease in β-globin synthesis results, and approximately half of β(E)/β(0)-thalassaemia patients are transfusion-dependent. The only available curative therapy is allogeneic haematopoietic stem cell transplantation, although most patients do not have a human-leukocyte-antigen-matched, geno-identical donor, and those who do still risk rejection or graft-versus-host disease. Here we show that, 33 months after lentiviral β-globin gene transfer, an adult patient with severe β(E)/β(0)-thalassaemia dependent on monthly transfusions since early childhood has become transfusion independent for the past 21 months. Blood haemoglobin is maintained between 9 and 10 g dl(-1), of which one-third contains vector-encoded β-globin. Most of the therapeutic benefit results from a dominant, myeloid-biased cell clone, in which the integrated vector causes transcriptional activation of HMGA2 in erythroid cells with further increased expression of a truncated HMGA2 mRNA insensitive to degradation by let-7 microRNAs. The clonal dominance that accompanies therapeutic efficacy may be coincidental and stochastic or result from a hitherto benign cell expansion caused by dysregulation of the HMGA2 gene in stem/progenitor cells.

  9. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  10. Targeted correction of a thalassemia-associated beta-globin mutation induced by pseudo-complementary peptide nucleic acids

    DEFF Research Database (Denmark)

    Lonkar, Pallavi; Kim, Ki-Hyun; Kuan, Jean Y

    2009-01-01

    Beta-thalassemia is a genetic disorder caused by mutations in the beta-globin gene. Triplex-forming oligonucleotides and triplex-forming peptide nucleic acids (PNAs) have been shown to stimulate recombination in mammalian cells via site-specific binding and creation of altered helical structures...

  11. Spectrin interactions with globin chains in the presence of ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    chains, respectively. The fluorescence-binding data, on the other hand, revealed a larger number of about 80 globin chains binding to spectrin. Cross-linked aggregates of haemoglobin/globin and spectrin have been found under different pathophysiological conditions, e.g. in senescent red blood cells, under oxidative.

  12. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the

  13. An intronic microRNA silences genes that are functionally antagonistic to its host gene.

    Science.gov (United States)

    Barik, Sailen

    2008-09-01

    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of 'host' genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself.

  14. CTCF-mediated transcriptional regulation through cell type-specific chromosome organization in the β-globin locus

    OpenAIRE

    Junier, Ivan; Dale, Ryan K.; Hou, Chunhui; Képès, François; Dean, Ann

    2012-01-01

    International audience; The principles underlying the architectural landscape of chromatin beyond the nucleosome level in living cells remains largely unknown despite its potential to play a role in mammalian gene regulation. We investigated the three-dimensional folding of a 1 Mbp region of human chromosome 11 containing the β-globin genes by integrating looping interactions of the CCCTC-binding insulator protein CTCF determined comprehensively by chromosome conformation capture (3C) into a ...

  15. VNTR internal structure mapping at the {alpha}-globin 3{prime}HVR locus reveals a hierachy of related lineages in oceania

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J. [Univ. of Oxford (United Kingdom)

    1994-09-01

    Analysis of the {alpha}-globin gene complex in Oceania has revealed many different rearrangements which remove one of the adult globin genes. Frequencies of these deletion chromosomes are elevated by malarial resistance conferred by the resulting {alpha}-thalassaemia. One particular deletion chromosome, designated -{alpha}{sup 3.7}III, is found at high levels in Melanesia and Polynesia: RFLP haplotype analysis shows that this deletion is always found on chromosomes bearing the IIIa haplotype and is likely to be the product of one single rearrangement event. A subset of the -{alpha}{sup 3.7}III chromosomes carries a more recent mutation which generates the haemoglobin variant HbJ{sup Tongariki}. We have characterized the allelic variation at the 3{prime}HVR VNTR locus located 6 kb from the globin genes in each of these groups of chromosomes. We have determined the internal structure of these alleles by RFLP mapping of PCR-amplified DNA: within each group, the allelic diversity results from the insertion and/or deletion of small {open_quotes}motifs{close_quotes} of up to 6 adjacent repeats. Mapping of 3{prime}HVR alleles associated with other haplotypes reveals that these are composed of repeat arrays that are substantially different to those derived from IIIa chromosomes, indicating that interchromosomal recombination between heterologous haplotypes does not account for any of the diversity seen to date. We have recently shown that allelic size variation at the two VNTR loci flanking the {alpha}-globin complex is very closely linked to the haplotypes known to be present at this locus. Here we show that, within a haplotype, VNTR alleles are very closely related to each other on the basis of internal structure and demonstrate that intrachromosomal mutation processes involving small numbers of tandem repeats are the main cause of variation at this locus.

  16. Electron paramagnetic resonance of globin proteins - a successful match between spectroscopic development and protein research

    Science.gov (United States)

    Van Doorslaer, Sabine; Cuypers, Bert

    2018-02-01

    At the start of the twenty-first century, the research into the haem-containing globins got a considerable impetus with the discovery of three new mammalian globins: neuroglobin, cytoglobin and androglobin. Globins are by now found in all kingdoms of life and, in many cases, their functions are still under debate. This revival in globin research increased the demand for adequate physico-chemical research tools to determine the structure-function relationships of these proteins. From early days onwards, electron paramagnetic resonance (EPR) has been used in globin research. In recent decades, the field of EPR has been revolutionised with the introduction of many new pulsed and high-field EPR techniques. In this review, we highlight how EPR has become an essential tool in globin research, and how globins equally provide ideal model systems to push technical developments in EPR.

  17. The tyrosine B10 hydroxyl is crucial for oxygen avidity of Ascaris hemoglobin.

    Science.gov (United States)

    Kloek, A P; Yang, J; Mathews, F S; Frieden, C; Goldberg, D E

    1994-01-28

    The parasitic nematode Ascaris suum has a gene encoding a two-domain hemoglobin with remarkable oxygen avidity. The strong interaction with oxygen is a consequence of a particularly slow oxygen off-rate. The single polypeptide chain consists of two domains, each of which can be expressed separately in Escherichia coli as a globin-like protein exhibiting oxygen binding characteristics comparable with the native molecule. Site-directed mutagenesis was performed on the gene segment encoding domain one. The E7 position, involved in forming a hydrogen bond with the liganded oxygen in vertebrate globins, is a glutamine in both Ascaris domains. Conversion of this residue to leucine or alanine produced a hemoglobin variant with an oxygen off-rate 5- or 60-fold faster than that of unaltered domain one. Replacement of the tyrosine B10 with either phenylalanine or leucine (as found in vertebrate globins) yielded hemoglobin mutants with oxygen off-rates 280- or 570-fold faster, approaching rates found with vertebrate myoglobins. The data suggest that the distal glutamine hydrogen bonds with the liganded oxygen and that the tyrosine B10 hydroxyl contributes an additional hydrogen bond that appears substantially responsible for the extreme oxygen avidity of Ascaris hemoglobin.

  18. A parasitic selfish gene that affects host promiscuity

    OpenAIRE

    Giraldo-Perez, Paulina; Goddard, Matthew R.

    2013-01-01

    Selfish genes demonstrate transmission bias and invade sexual populations despite conferring no benefit to their hosts. While the molecular genetics and evolutionary dynamics of selfish genes are reasonably well characterized, their effects on hosts are not. Homing endonuclease genes (HEGs) are one well-studied family of selfish genes that are assumed to be benign. However, we show that carrying HEGs is costly for Saccharomyces cerevisiae, demonstrating that these genetic elements are not nec...

  19. Effect ALPHA Globalin Gene Deletion and GAMMA Globin Gene -158 (C/T) Polymorphism in BETA- Thalassaemic Patients

    International Nuclear Information System (INIS)

    EL Serafi, T.I.; Ismail, E.F.; Mahmoud, M.A.; Mohamed, M.A.; Ghattas, M.H.; Badran, D.I.; El Serafi, I.T.; Mohamed, H.S.

    2008-01-01

    The beta-thalassemias (β- thalassemias) are among the most common autosomal recessive disorders. They have a remarkably high frequency in the Mediterranean region and represent one of the most common genetic diseases in Egypt. In this study, the spectrum of P- thalassemia mutations and genotype-to-phenotype correlations were defined in 32 β- thalassaemic patients (β- thalassemias major and intermedia) with varying disease severity in two cities of the Suez Canal region. Ten different mutations were identified and the most frequent ones were: Isi-6 (T-C) (37.5%), IVSI-110 (G-A) (34.4%) and both IVSI-1 (G-A), IVSII-745 (C-G) and -102 (C-G) (12.5% each). There was a wide spectrum of phenotypic severity in all patients. We studied the Xmnl polymorphism (C/T) in γ- globin gene position -158 of P- thalassemia as a modulating factor of the disease severity. Presence of the polymorphism was found in two patients and this was not sufficient to explain the diversity of the phenotype encountered. Co-inheritance of alpha thalassaemia as a modulating factor was not evident in our patients. In conclusion, we have been unable to find a molecular basis for the benign clinical course in all our patients. Other genetic or acquired factors must be hypothesized which ameliorate the clinical condition.

  20. Usage of U7 snRNA in gene therapy of hemoglobin C disorder ...

    African Journals Online (AJOL)

    Here, a bioinformatic analysis was performed to study the effect of co-expression between human Hb C b-globin chain gene and U7.623. The gene ontological results show that full recovery of hemoglobin function and biological process can be derived. This confirms that U7 snRNA can be a good tool for gene therapy in Hb ...

  1. Structural analysis of the 5' flanking region of the β-globin gene in African sickle cell anemia patients: Further evidence for three origins of the sickle cell mutation in Africa

    International Nuclear Information System (INIS)

    Chebloune, Y.; Pagnier, J.; Trabuchet, G.; Faure, C.; Verdier, G.; Labie, D.; Nigon, V.

    1988-01-01

    Haplotype analysis of the β-globin gene cluster shows two regions of DNA characterized by nonrandom association of restriction site polymorphisms. These regions are separated by a variable segment containing the repeated sequences (ATTTT) n and (AT) x T y , which might be involved in recombinational events. Studies of haplotypes linked to the sickle cell gene in Africa provide strong argument for three origins of the mutation: Benin, Senegal, and the Central African Republic. The structure of the variable segment in the three African populations was studied by S1 nuclease mapping of genomic DNA, which allows a comparison of several samples. A 1080-base-pair DNA segment was sequenced for one sample from each population. S1 nuclease mapping confirmed the homogeneity of each population with regard to both (ATTTT) n and (AT) x T y repeats. The authors found three additional structures for (AT) x T y correlating with the geographic origin of the patients. Ten other nucleotide positions, 5' and 3' to the (AT) x T y copies, were found to be variable when compared to homologous sequences from human and monkey DNAs. These results allow us to propose an evolutionary scheme for the polymorphisms in the 5' flanking region of the β-globin gene. The results strongly support the hypothesis of three origins for the sickle mutation in Africa

  2. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    Science.gov (United States)

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  3. Hemolytic disease of the newborn caused by a new deletion of the entire beta-globin cluster.

    OpenAIRE

    Pirastu, M; Kan, Y W; Lin, C C; Baine, R M; Holbrook, C T

    1983-01-01

    We describe a new type of gamma delta beta-thalassemia in four generations of a family of Scotch-Irish descent. The proposita presented with hemolytic disease of the newborn, which was characterized by a microcytic anemia. Initial restriction endonuclease analysis of the DNA showed no grossly abnormal patterns, but studies of polymorphic restriction sites and gene dosage revealed an extensive deletion that removed all the beta- and beta-like globin genes from the affected chromosome. In situ ...

  4. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity.

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2013-02-15

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.

  5. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity*

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R.; Das, Gobardhan

    2013-01-01

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies. PMID:23233675

  6. The Endosymbiotic Bacterium Wolbachia Selectively Kills Male Hosts by Targeting the Masculinizing Gene.

    Directory of Open Access Journals (Sweden)

    Takahiro Fukui

    2015-07-01

    Full Text Available Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. Wolbachia is an endosymbiotic bacterium that infects a wide range of insect species. Wolbachia is known as an example of a parasite that manipulates the sex of its host's progeny. Infection of Ostrinia moths by Wolbachia causes the production of all-female progeny, however, the mechanism of how Wolbachia accomplishes this male-specific killing is unknown. Here we show for the first time that Wolbachia targets the host masculinizing gene of Ostrinia to accomplish male-killing. We found that Wolbachia-infected O. furnacalis embryos do not express the male-specific splice variant of doublesex, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that Wolbachia infection markedly reduces the mRNA level of Masc, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm Bombyx mori. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in Wolbachia-infected O. furnacalis embryos, a phenomenon that is extremely similar to that observed in Masc mRNA-depleted male embryos of B. mori. Finally, injection of in vitro transcribed Masc cRNA into Wolbachia-infected embryos rescued male progeny. Our results show that Wolbachia-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.

  7. Role of novel and rare nucleotide substitutions of the β-globin gene

    Directory of Open Access Journals (Sweden)

    Margherita Vinciguerra

    2012-11-01

    Full Text Available The Laboratory for Molecular Prenatal Diagnosis of Hemoglobinopathies at the Villa Sofia-Cervello Hospital in Palermo, Italy, carries out an intensive screening program aimed at identifying the healthy carriers of thalassemia and, consequently, the couples at risk of bearing an affected fetus. The diagnostic process is basically divided into two phases: i hematologic and hemoglobin data; ii molecular analysis of globin genes and, when possible, a genetic study of the family. Since 2003, we have been performing DNA sequence analysis on those cases in which classical molecular methods failed to give a complete diagnostic response, particularly in phenotypes with borderline values of HbA2 with mild or absent microcytosis. During ten years of screening activities (from 2003 to 2012, twenty- seven unknown or rare nucleotide changes of the β-globin gene have been identified; hematologic and hemoglobin data have been carefully evaluated and, wherever possible, we have conducted a family study to evaluate whether a phenotypic expression could be associated to these nucleotide changes. Because of the limited numbers of cases for each mutation, the significance of these nucleotide substitutions has still not been fully clarified, and this raises a number of questions that need to be answered when carrying out appropriate genetic counseling for couples presumed to be at risk. 意大利巴勒莫Villa Sofia-Cervello医院血红蛋白病分子产前诊断实验室进行密集的筛选程序,旨在识别健康的地中海贫血携带者和有怀上地中海贫血胎儿风险的夫妇。 诊断过程基本上分为两个阶段:1)血液及血红蛋白数据;2)珠蛋白基因分子分析以及家族遗传研究(如有可能)。 自2003年以来,我们已对这类病例进行DNA序列分析:传统的分子方法无法给出完整的诊断响应,尤其是有轻微小红细胞症或缺乏小红细胞症的HbA2临界值表型。

  8. Opposite responses of rabbit and human globin mRNAs to translational inhibition by cap analogues

    International Nuclear Information System (INIS)

    Shakin, S.H.; Liebhaber, S.A.

    1987-01-01

    The translational efficiency of an mRNA may be determined at the step of translational initiation by the efficiency of its interaction with the cap binding protein complex. To further investigate the role of these interactions in translational control, the authors compare in vitro the relative sensitivities of rabbit and human α- and β-globin mRNAs to translational inhibition by cap analogues. They find that rabbit β-globin mRNA is more resistant to translational inhibition by cap analogues than rabbit α-globin mRNA, while in contrast, human β-globin mRNA is more sensitive to cap analogue inhibition than human α- and β-globin mRNAs is unexpected as direct in vivo and in vitro comparisons of polysome profiles reveal parallel translational handling of the α- and β-globin mRNAs from these two species. This discordance between the relative translational sensitivities of these mRNAs to cap analogues and their relative ribosome loading activities suggests that cap-dependent events may not be rate limiting in steady-state globin translation

  9. Frequency and origin of haplotypes associated with the beta-globin gene cluster in individuals with trait and sickle cell anemia in the Atlantic and Pacific coastal regions of Colombia.

    Science.gov (United States)

    Fong, Cristian; Lizarralde-Iragorri, María Alejandra; Rojas-Gallardo, Diana; Barreto, Guillermo

    2013-12-01

    Sickle cell anemia is a genetic disease with high prevalence in people of African descent. There are five typical haplotypes associated with this disease and the haplotypes associated with the beta-globin gene cluster have been used to establish the origin of African-descendant people in America. In this work, we determined the frequency and the origin of haplotypes associated with hemoglobin S in a sample of individuals with sickle cell anemia (HbSS) and sickle cell hemoglobin trait (HbAS) in coastal regions of Colombia. Blood samples from 71 HbAS and 79 HbSS individuals were obtained. Haplotypes were determined based on the presence of variable restriction sites within the β-globin gene cluster. On the Pacific coast of Colombia the most frequent haplotype was Benin, while on the Atlantic coast Bantu was marginally higher than Benin. Eight atypical haplotypes were observed on both coasts, being more diverse in the Atlantic than in the Pacific region. These results suggest a differential settlement of the coasts, dependent on where slaves were brought from, either from the Gulf of Guinea or from Angola, where the haplotype distributions are similar. Atypical haplotypes probably originated from point mutations that lost or gained a restriction site and/or by recombination events.

  10. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus.

    Science.gov (United States)

    Zhu, Li-Ping; Yue, Xin-Jing; Han, Kui; Li, Zhi-Feng; Zheng, Lian-Shuai; Yi, Xiu-Nan; Wang, Hai-Long; Zhang, You-Ming; Li, Yue-Zhong

    2015-07-22

    Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.

  11. Coronavirus gene 7 counteracts host defenses and modulates virus virulence.

    Directory of Open Access Journals (Sweden)

    Jazmina L G Cruz

    2011-06-01

    Full Text Available Transmissible gastroenteritis virus (TGEV genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7. Both the mutant and the parental (rTGEV-wt viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c, a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the

  12. Systematic identification of novel, essential host genes affecting bromovirus RNA replication.

    Directory of Open Access Journals (Sweden)

    Brandi L Gancarz

    Full Text Available Positive-strand RNA virus replication involves viral proteins and cellular proteins at nearly every replication step. Brome mosaic virus (BMV is a well-established model for dissecting virus-host interactions and is one of very few viruses whose RNA replication, gene expression and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. Previously, our laboratory identified ∼100 non-essential host genes whose loss inhibited or enhanced BMV replication at least 3-fold. However, our isolation of additional BMV-modulating host genes by classical genetics and other results underscore that genes essential for cell growth also contribute to BMV RNA replication at a frequency that may be greater than that of non-essential genes. To systematically identify novel, essential host genes affecting BMV RNA replication, we tested a collection of ∼900 yeast strains, each with a single essential gene promoter replaced by a doxycycline-repressible promoter, allowing repression of gene expression by adding doxycycline to the growth medium. Using this strain array of ∼81% of essential yeast genes, we identified 24 essential host genes whose depleted expression reproducibly inhibited or enhanced BMV RNA replication. Relevant host genes are involved in ribosome biosynthesis, cell cycle regulation and protein homeostasis, among other cellular processes. BMV 2a(Pol levels were significantly increased in strains depleted for a heat shock protein (HSF1 or proteasome components (PRE1 and RPT6, suggesting these genes may affect BMV RNA replication by directly or indirectly modulating 2a(Pol localization, post-translational modification or interacting partners. Investigating the diverse functions of these newly identified essential host genes should advance our understanding of BMV-host interactions and normal cellular pathways, and suggest new modes of virus control.

  13. Hemoglobin genetics: recent contributions of GWAS and gene editing

    Science.gov (United States)

    Smith, Elenoe C.; Orkin, Stuart H.

    2016-01-01

    The β-hemoglobinopathies are inherited disorders resulting from altered coding potential or expression of the adult β-globin gene. Impaired expression of β-globin reduces adult hemoglobin (α2β2) production, the hallmark of β-thalassemia. A single-base mutation at codon 6 leads to formation of HbS (α2βS2) and sickle cell disease. While the basis of these diseases is known, therapy remains largely supportive. Bone marrow transplantation is the only curative therapy. Patients with elevated levels of fetal hemoglobin (HbF, α2γ2) as adults exhibit reduced symptoms and enhanced survival. The β-globin gene locus is a paradigm of cell- and developmental stage-specific regulation. Although the principal erythroid cell transcription factors are known, mechanisms responsible for silencing of the γ-globin gene were obscure until application of genome-wide association studies (GWAS). Here, we review findings in the field. GWAS identified BCL11A as a candidate negative regulator of γ-globin expression. Subsequent studies have established BCL11A as a quantitative repressor. GWAS-related single-nucleotide polymorphisms lie within an essential erythroid enhancer of the BCL11A gene. Disruption of a discrete region within the enhancer reduces BCL11A expression and induces HbF expression, providing the basis for gene therapy using gene editing tools. A recently identified, second silencing factor, leukemia/lymphoma-related factor/Pokemon, shares features with BCL11A, including interaction with the nucleosome remodeling deacetylase repressive complex. These findings suggest involvement of a common pathway for HbF silencing. In addition, we discuss other factors that may be involved in γ-globin gene silencing and their potential manipulation for therapeutic benefit in treating the β-hemoglobinopathies. PMID:27340226

  14. Functional Analysis of Genes Involved in the Biosynthesis of Enterocin NKR-5-3B, a Novel Circular Bacteriocin.

    Science.gov (United States)

    Perez, Rodney H; Ishibashi, Naoki; Inoue, Tomoko; Himeno, Kohei; Masuda, Yoshimitsu; Sawa, Narukiko; Zendo, Takeshi; Wilaipun, Pongtep; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji

    2016-01-15

    A putative biosynthetic gene cluster of the enterocin NKR-5-3B (Ent53B), a novel circular bacteriocin, was analyzed by sequencing the flanking regions around enkB, the Ent53B structural gene, using a fosmid library. A region approximately 9 kb in length was obtained, and the enkB1, enkB2, enkB3, and enkB4 genes, encoding putative biosynthetic proteins involved in the production, maturation, and secretion of Ent53B, were identified. We also determined the identity of proteins mediating self-immunity against the effects of Ent53B. Heterologous expression systems in various heterologous hosts, such as Enterococcus faecalis and Lactococcus lactis strains, were successfully established. The production and secretion of the mature Ent53B required the cooperative functions of five genes. Ent53B was produced only by those heterologous hosts that expressed protein products of the enkB, enkB1, enkB2, enkB3, and enkB4 genes. Moreover, self-immunity against the antimicrobial action of Ent53B was conferred by at least two independent mechanisms. Heterologous hosts harboring the intact enkB4 gene and/or a combination of intact enkB1 and enkB3 genes were immune to the inhibitory action of Ent53B. In addition to their potential application as food preservatives, circular bacteriocins are now considered possible alternatives to therapeutic antibiotics due to the exceptional stability conferred by their circular structure. The successful practical application of circular bacteriocins will become possible only if the molecular details of their biosynthesis are fully understood. The results of the present study offer a new perspective on the possible mechanism of circular bacteriocin biosynthesis. In addition, since some enterococcal strains are associated with pathogenicity, virulence, and drug resistance, the establishment of the first multigenus host heterologous production of Ent53B has very high practical significance, as it widens the scope of possible Ent53B applications

  15. VNTR alleles associated with the {alpha}-globin locus are haplotype and population related

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J. [Univ. of Oxford (United Kingdom)

    1994-09-01

    The human {alpha}-globin complex contains several polymorphic restriction-enzyme sites (i.e., RFLPs) linked to form haplotypes and is flanked by two hypervariable VNTR loci, the 5{prime} hypervariable region (HVR) and the more highly polymorphic 3{prime}HVR. Using a combination of RFLP analysis and PCR, the authors have characterized the 5{prime}HVR and 3{prime}HVR alleles associated with the {alpha}-globin haplotypes of 133 chromosomes, and they here show that specific {alpha}-globin haplotypes are each associated with discrete subsets of the alleles observed at these two VNTR loci. This statistically highly significant association is observed over a region spanning {approximately} 100 kb. With the exception of closely related haplotypes, different haplotypes do not share identically sized 3{prime}HVR alleles. Earlier studies have shown that {alpha}-globin haplotype distributions differ between populations; the current findings also reveal extensive population substructure in the repertoire of {alpha}-globin VNTRs. If similar features are characteristic of other VNTR loci, this will have important implications for forensic and anthropological studies. 42 refs., 5 figs., 5 tabs.

  16. A randomized Phase I/II Trial of HQK-1001, an oral fetal globin gene inducer, in β–thalassaemia intermedia and HbE/β–thalassaemia

    Science.gov (United States)

    Fucharoen, Suthat; Inati, Adlette; Siritanaratku, Noppadol; Thein, Swee Lay; Wargin, William C.; Koussa, Suzanne; Taher, Ali; Chaneim, Nattawara; Boosalis, Michael; Berenson, Ronald; Perrine, Susan P.

    2014-01-01

    β–thalassemia intermedia syndromes (BTI) cause hemolytic anemia, ineffective erythropoiesis, and widespread complications. Higher fetal globin expression within genotypes reduces globin imbalance and ameliorates anemia. Sodium 2,2 dimethylbutyrate (HQK-1001), an orally bioavailable short-chain fatty acid derivative, induces γ-globin expression experimentally and is well-tolerated in normal subjects. Accordingly, a randomized, blinded, placebo-controlled, Phase I/II trial was performed in 21 adult BTI patients (14 with HbE/β0 thalassemia and 7 with β+/β0 thalassemia intermedia, to determine effective doses for fetal globin induction, safety, and tolerability. HQK-1001 or placebo were administered once daily for 8 weeks at four dose levels (10, 20, 30, or 40 mg/kg/day), and subjects were monitored for laboratory and clinical events. Pharmacokinetic profiles demonstrated a t1/2 of 10–12 hours. Adverse events with HQK-1001 treatment were not significantly different from placebo treatment. Median HbF increased with the 20 mg/kg treatment doses above baseline levels by 6.6% and 0.44 g/dL (p <0.01) in 8/9 subjects; total hemoglobin (Hgb) increased by a mean of 1.1 gm/dL in 4/9 subjects. These findings identify a safe oral therapeutic which induces fetal globin in BTI. Further investigation of HQK-1001 with longer dosing to definitively evaluate its hematologic potential appears warranted. PMID:23530969

  17. MiR-27a Promotes Hemin-Induced Erythroid Differentiation of K562 Cells by Targeting CDC25B

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2018-03-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs play a crucial role in erythropoiesis. MiR-23a∼27a∼24-2 clusters have been proven to take part in erythropoiesis via some proteins. CDC25B (cell division control Cdc2 phosphostase B is also the target of mir-27a; whether it regulates erythropoiesis and its mechanism are unknown. Methods: To evaluate the potential role of miR-27a during erythroid differentiation, we performed miR-27a gain- and loss-of-function experiments on hemin-induced K562 cells. We detected miR-27a expression after hemin stimulation at different time points. At the same time, the γ-globin gene also was measured via real-time PCR. According to the results of the chips, we screened the target protein of miR-27a through a dual-luciferase reporter assay and identified it via Western blot analyses. To evaluate the function of CDC25B, benzidine staining and flow cytometry were employed to detect the cell differentiation and cell cycle. Results: We found that miR-27a promotes hemin-induced erythroid differentiation of human K562 cells by targeting cell division cycle 25 B (CDC25B. Overexpression of miR-27a promotes the differentiation of hemin-induced K562 cells, as demonstrated by γ-globin overexpression. The inhibition of miR-27a expression suppresses erythroid differentiation, thus leading to a reduction in the γ-globin gene. CDC25B was identified as a new target of miR-27a during erythroid differentiation. Overexpression of miR-27a led to decreased CDC25B expression after hemin treatment, and CDC25B was up-regulated when miR-27a expression was inhibited. Moreover, the inhibition of CDC25B affected erythroid differentiation, as assessed by γ-globin expression. Conclusion: This study is the first report of the interaction between miR-27a and CDC25B, and it improves the understanding of miRNA functions during erythroid differentiation.

  18. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  19. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    Science.gov (United States)

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-02

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  20. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    Science.gov (United States)

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  1. Increased expression of alpha- and beta-globin mRNAs at the pituitary following exposure to estrogen during the critical period of neonatal sex differentiation in the rat

    DEFF Research Database (Denmark)

    Leffers, H; Navarro, V M; Nielsen, John E

    2006-01-01

    Deterioration of reproductive health in human and wildlife species during the past decades has drawn considerable attention to the potential adverse effects of exposure to xenosteroids during sensitive periods of sex development. The hypothalamic-pituitary (HP) unit is a key element in the neuroe......Deterioration of reproductive health in human and wildlife species during the past decades has drawn considerable attention to the potential adverse effects of exposure to xenosteroids during sensitive periods of sex development. The hypothalamic-pituitary (HP) unit is a key element......, we screened for differentially expressed genes at the pituitary and hypothalamus of rats after neonatal exposure to estradiol benzoate. Our analyses identified persistent up-regulation of alpha- and beta-globin mRNAs at the pituitary following neonatal estrogenization. This finding was confirmed...... by combination of RT-PCR analyses and in situ hybridization. Induction of alpha- and beta-globin mRNA expression at the pituitary by neonatal exposure to estrogen was demonstrated as dose-dependent and it was persistently detected up to puberty. In contrast, durable up-regulation of alpha- and beta-globin genes...

  2. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System

    Directory of Open Access Journals (Sweden)

    Brian K. Lohman

    2017-09-01

    Full Text Available Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.

  3. A practical platform for blood biomarker study by using global gene expression profiling of peripheral whole blood.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study.We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal.We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study.

  4. Immunopurification of the suppressor tRNA dependent rabbit β-globin readthrough protein

    International Nuclear Information System (INIS)

    Hatfield, D.; Thorgeirsson, S.S.; Copeland, T.D.; Oroszlan, S.; Bustin, M.

    1988-01-01

    In mammalian cells, the rabbit β-globin readthrough protein is the only known example of a naturally occurring readthrough protein which does not involve a viral system. To provide an efficient means for its isolation, detection, and study, the authors elicited specific antibodies against this unique protein. The 22 amino acid peptide corresponding to the readthrough portion of this protein was synthesized, coupled to keyhole limpet hemocyanin, and injected into sheep. Specific antibodies to the peptide were produced as demonstrated by the enzyme-linked immunosorbent assay technique and by immunoblotting. The antibodies did not react with globin. The rabbit β-globin readthrough protein was separated from globin and other reticulocyte proteins by polyacrylamide gel electrophoresis and visualized by silver staining or by labeling with [ 35 S] methionine. Incorporation of [ 35 S] methionine into the readthrough protein was significantly enhanced upon addition of an opal suppressor tRNA to reticulocyte lysates. Immunoblotting revealed that the readthrough protein also occurs in lysates without added suppressor tRNA. The antibodies were purified on an affi-gel column which had been coupled with the peptide antigen. The readthrough protein was then purified from reticulocytes by immunoaffinity chromatography and by high-performance liquid chromatography. The results provide conclusive evidence that the β-globin readthrough protein is naturally occurring in rabbit reticulocytes

  5. Recent trends in the gene therapy of β-thalassemia

    Science.gov (United States)

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases. PMID:25737641

  6. Monomethylfumarate induces γ-globin expression and fetal hemoglobin production in cultured human retinal pigment epithelial (RPE) and erythroid cells, and in intact retina.

    Science.gov (United States)

    Promsote, Wanwisa; Makala, Levi; Li, Biaoru; Smith, Sylvia B; Singh, Nagendra; Ganapathy, Vadivel; Pace, Betty S; Martin, Pamela M

    2014-05-13

    Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. Human globin gene expression was evaluated by RT-quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase-qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous β(s) mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  7. Identification of differentially expressed genes in brown planthopper Nilaparvata lugens (Hemiptera: Delphacidae) responding to host plant resistance.

    Science.gov (United States)

    Yang, Zhifan; Zhang, Futie; Zhu, Lili; He, Guangcun

    2006-02-01

    The brown planthopper Nilaparvata lugens Stål is one of the major insect pests of rice Oryza sativa L. The host resistance exhibits profound effects on growth, development and propagation of N. lugens. To investigate the molecular response of N. lugens to host resistance, a cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was employed to identify the differentially expressed genes in the nymphs feeding on three rice varieties. Of the 2,800 cDNA bands analysed, 54 were up-regulated and seven down-regulated qualitatively in N. lugens when the ingestion sources were changed from susceptible rice plants to resistant ones. Sequence analysis of the differential transcript-derived fragments showed that the genes involved in signalling, stress response, gene expression regulation, detoxification and metabolism were regulated by host resistance. Four of the transcript-derived fragments corresponding to genes encoding for a putative B subunit of phosphatase PP2A, a nemo kinase, a cytochrome P450 monooxygenase and a prolyl endopeptidase were further characterized in detail. Northern blot analysis confirmed that the expression of the four genes was enhanced in N. lugens feeding on resistant rice plants. The roles of these genes in the defensive response of N. lugens to host plant resistance were discussed.

  8. An N-myristoylated globin with a redox-sensing function that regulates the defecation cycle in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Lesley Tilleman

    Full Text Available Globins occur in all kingdoms of life where they fulfill a wide variety of functions. In the past they used to be primarily characterized as oxygen transport/storage proteins, but since the discovery of new members of the globin family like neuroglobin and cytoglobin, more diverse and complex functions have been assigned to this heterogeneous family. Here we propose a function for a membrane-bound globin of C. elegans, GLB-26. This globin was predicted to be myristoylated at its N-terminus, a post-translational modification only recently described in the globin family. In vivo, this globin is found in the membrane of the head mesodermal cell and in the tail stomato-intestinal and anal depressor muscle cells. Since GLB-26 is almost directly oxidized when exposed to oxygen, we postulate a possible function as electron transfer protein. Phenotypical studies show that GLB-26 takes part in regulating the length of the defecation cycle in C. elegans under oxidative stress conditions.

  9. Gene Therapy Approaches to Hemoglobinopathies.

    Science.gov (United States)

    Ferrari, Giuliana; Cavazzana, Marina; Mavilio, Fulvio

    2017-10-01

    Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with a lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Preclinical and early clinical studies showed the safety and potential efficacy of this therapeutic approach as well as the hurdles still limiting its general application. In addition, for both beta-thalassemia and sickle cell disease, an altered bone marrow microenvironment reduces the efficiency of stem cell harvesting as well as engraftment. These hurdles need be addressed for gene therapy for hemoglobinopathies to become a clinical reality. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Co-evolution of secondary metabolite gene clusters and their host

    DEFF Research Database (Denmark)

    Kjærbølling, Inge; Vesth, Tammi Camilla; Frisvad, Jens Christian

    Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of speci....... We investigate the dynamic evolutionary relationship between the cluster and the host by examining the genes within the cluster and the number of homologous genes found within the host and in closely related species.......Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of species...

  11. Oxygen binding properties of non-mammalian nerve globins

    DEFF Research Database (Denmark)

    Hundahl, Christian; Fago, Angela; Dewilde, Sylvia

    2006-01-01

    Oxygen-binding globins occur in the nervous systems of both invertebrates and vertebrates. While the function of invertebrate nerve haemoglobins as oxygen stores that extend neural excitability under hypoxia has been convincingly demonstrated, the physiological role of vertebrate neuroglobins...... is less well understood. Here we provide a detailed analysis of the oxygenation characteristics of nerve haemoglobins from an annelid (Aphrodite aculeata), a nemertean (Cerebratulus lacteus) and a bivalve (Spisula solidissima) and of neuroglobin from zebrafish (Danio rerio). The functional differences...... have been related to haem coordination: the haem is pentacoordinate (as in human haemoglobin and myoglobin) in A. aculeata and C. lacteus nerve haemoglobins and hexacoordinate in S. solidissima nerve haemoglobin and D. rerio neuroglobin. Whereas pentacoordinate nerve globins lacked Bohr effects at all...

  12. alpha-Globin genes: thalassemic and structural alterations in a Brazilian population

    Directory of Open Access Journals (Sweden)

    M.R.S.C. Wenning

    2000-09-01

    Full Text Available Seven unrelated patients with hemoglobin (Hb H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aaT]. Among the 27 patients with structural alterations, 15 (of Italian descent had Hb Hasharon (alpha47Asp->His associated with the -alpha3.7 deletion, 4 (of Italian descent were heterozygous for Hb J-Rovigo (alpha53Ala->Asp, 4 (3 Blacks and 1 Caucasian were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys associated with the alpha+-thalassemia, 1 (Black was heterozygous for Hb G-Pest (alpha74Asp->Asn, 1 (Caucasian was heterozygous for Hb Kurosaki (alpha7Lys->Glu, 1 (Caucasian was heterozygous for Hb Westmead (alpha122His->Gln, and 1 (Caucasian was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val. Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.

  13. A Novel High-Content Immunofluorescence Assay as a Tool to Identify at the Single Cell Level γ-Globin Inducing Compounds.

    Directory of Open Access Journals (Sweden)

    Marta Durlak

    Full Text Available The identification of drugs capable of reactivating γ-globin to ameliorate β-thalassemia and Sickle Cell anemia is still a challenge, as available γ-globin inducers still have limited clinical indications. High-throughput screenings (HTS aimed to identify new potentially therapeutic drugs require suitable first-step-screening methods combining the possibility to detect variation in the γ/β globin ratio with the robustness of a cell line. We took advantage of a K562 cell line variant expressing β-globin (β-K562 to set up a new multiplexed high-content immunofluorescence assay for the quantification of γ- and β-globin content at single-cell level. The assay was validated by using the known globin inducers hemin, hydroxyurea and butyric acid and further tested in a pilot screening that confirmed HDACs as targets for γ-globin induction (as proved by siRNA-mediated HDAC3 knockdown and by treatment with HDACs inhibitors entinostat and dacinostat and identified Heme-oxygenases as novel candidate targets for γ-globin induction. Indeed, Heme-oxygenase2 siRNA knockdown as well as its inhibition by Tin protoporphyrin-IX (TinPPIX greatly increased γ-globin expression. This result is particularly interesting as several metalloporphyrins have already been developed for clinical uses and could be tested (alone or in combination with other drugs to improve pharmacological γ-globin reactivation for the treatment of β-hemoglobinopathies.

  14. Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.

    Science.gov (United States)

    Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E

    1993-12-01

    The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.

  15. CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy.

    Science.gov (United States)

    Chen, Shuliang; Yu, Xiao; Guo, Deyin

    2018-01-16

    Currently, a new gene editing tool-the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated (Cas) system-is becoming a promising approach for genetic manipulation at the genomic level. This simple method, originating from the adaptive immune defense system in prokaryotes, has been developed and applied to antiviral research in humans. Based on the characteristics of virus-host interactions and the basic rules of nucleic acid cleavage or gene activation of the CRISPR-Cas system, it can be used to target both the virus genome and host factors to clear viral reservoirs and prohibit virus infection or replication. Here, we summarize recent progress of the CRISPR-Cas technology in editing host genes as an antiviral strategy.

  16. Host range of antibiotic resistance genes in wastewater treatment plant influent and effluent.

    Science.gov (United States)

    Hultman, Jenni; Tamminen, Manu; Pärnänen, Katariina; Cairns, Johannes; Karkman, Antti; Virta, Marko

    2018-04-01

    Wastewater treatment plants (WWTPs) collect wastewater from various sources for a multi-step treatment process. By mixing a large variety of bacteria and promoting their proximity, WWTPs constitute potential hotspots for the emergence of antibiotic resistant bacteria. Concerns have been expressed regarding the potential of WWTPs to spread antibiotic resistance genes (ARGs) from environmental reservoirs to human pathogens. We utilized epicPCR (Emulsion, Paired Isolation and Concatenation PCR) to detect the bacterial hosts of ARGs in two WWTPs. We identified the host distribution of four resistance-associated genes (tetM, int1, qacEΔ1and blaOXA-58) in influent and effluent. The bacterial hosts of these resistance genes varied between the WWTP influent and effluent, with a generally decreasing host range in the effluent. Through 16S rRNA gene sequencing, it was determined that the resistance gene carrying bacteria include both abundant and rare taxa. Our results suggest that the studied WWTPs mostly succeed in decreasing the host range of the resistance genes during the treatment process. Still, there were instances where effluent contained resistance genes in bacterial groups not carrying these genes in the influent. By permitting exhaustive profiling of resistance-associated gene hosts in WWTP bacterial communities, the application of epicPCR provides a new level of precision to our resistance gene risk estimates.

  17. Gamma reactivation using the spongy effect of KLF1-binding site sequence: an approach in gene therapy for beta-thalassemia

    Science.gov (United States)

    Heydari, Nasrin; Shariati, Laleh; Khanahmad, Hossein; Hejazi, Zahra; Shahbazi, Mansoureh; Salehi, Mansoor

    2016-01-01

    Objective(s): β-thalassemia is one of the most common genetic disorders in the world. As one of the promising treatment strategies, fetal hemoglobin (Hb F) can be induced. The present study was an attempt to reactivate the γ-globin gene by introducing a gene construct containing KLF1 binding sites to the K562 cell line. Materials and Methods: A plasmid containing a 192 bp sequence with two repeats of KLF1 binding sites on β-globin and BCL11A promoters was constructed and used to transfect the K562 cell line. Positive selection was performed under treatment with 150 μg/ml hygromycin B. The remaining cells were expanded and harvested on day 28, and genomic DNA was extracted. The PCR was carried out to verify insertion of DNA fragment to the genome of K562 cells. The cells were differentiated with 15 μg/ml cisplatin. Flowcytometry was performed to identify erythroid differentiation by detection of CD235a+ cells. Real-time RT-PCR was performed to evaluate γ-globin expression in the transfected cells. Results: A 1700 bp fragment was observed on agarose gel as expected and insertion of DNA fragment to the genome of K562 cells was verified. Totally, 84% of cells were differentiated. The transfected cells significantly increased γ-globin expression after differentiation compared to untransfected ones. Conclusion: The findings demonstrate that the spongy effect of KLF1-binding site on BCL11A and β-globin promoters can induce γ-globin expression in K562 cells. This novel strategy can be promising for the treatment of β-thalassemia and sickle cell disease. PMID:27872702

  18. Patterns of evolution and host gene mimicry in influenza and other RNA viruses.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    2008-06-01

    Full Text Available It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has

  19. TRUNCATED OR 2/2 HEMOGLOBINS : A NEW CLASS OF GLOBINS WITH NOVEL STRUCTURE AND FUNCTION

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2013-06-01

    ligand binding involving tunnel system and operated by “gate” mechanism of conserved residues. These hemoglobins seem to act as good detoxificant or scavenger of poisonous gases to protect the harbouring organism in adverse environmental condition. This mechanism might help pathogens harbouring these globins to evade host defence mechanism during infection. The current review summarizes these findings with regard to truncated hemoglobins in a comprehensive manner providing insight into structure and function relationship of this novel hemoglobin family.

  20. Role of the B Allele of Influenza A Virus Segment 8 in Setting Mammalian Host Range and Pathogenicity.

    Science.gov (United States)

    Turnbull, Matthew L; Wise, Helen M; Nicol, Marlynne Q; Smith, Nikki; Dunfee, Rebecca L; Beard, Philippa M; Jagger, Brett W; Ligertwood, Yvonne; Hardisty, Gareth R; Xiao, Haixia; Benton, Donald J; Coburn, Alice M; Paulo, Joao A; Gygi, Steven P; McCauley, John W; Taubenberger, Jeffery K; Lycett, Samantha J; Weekes, Michael P; Dutia, Bernadette M; Digard, Paul

    2016-10-15

    Two alleles of segment 8 (NS) circulate in nonchiropteran influenza A viruses. The A allele is found in avian and mammalian viruses, but the B allele is viewed as being almost exclusively found in avian viruses. This might reflect the fact that one or both of its encoded proteins (NS1 and NEP) are maladapted for replication in mammalian hosts. To test this, a number of clade A and B avian virus-derived NS segments were introduced into human H1N1 and H3N2 viruses. In no case was the peak virus titer substantially reduced following infection of various mammalian cell types. Exemplar reassortant viruses also replicated to similar titers in mice, although mice infected with viruses with the avian virus-derived segment 8s had reduced weight loss compared to that achieved in mice infected with the A/Puerto Rico/8/1934 (H1N1) parent. In vitro, the viruses coped similarly with type I interferons. Temporal proteomics analysis of cellular responses to infection showed that the avian virus-derived NS segments provoked lower levels of expression of interferon-stimulated genes in cells than wild type-derived NS segments. Thus, neither the A nor the B allele of avian virus-derived NS segments necessarily attenuates virus replication in a mammalian host, although the alleles can attenuate disease. Phylogenetic analyses identified 32 independent incursions of an avian virus-derived A allele into mammals, whereas 6 introductions of a B allele were identified. However, A-allele isolates from birds outnumbered B-allele isolates, and the relative rates of Aves-to-Mammalia transmission were not significantly different. We conclude that while the introduction of an avian virus segment 8 into mammals is a relatively rare event, the dogma of the B allele being especially restricted is misleading, with implications in the assessment of the pandemic potential of avian influenza viruses. Influenza A virus (IAV) can adapt to poultry and mammalian species, inflicting a great socioeconomic

  1. Rapid determination of human globin chains using reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Wan, Jun-Hui; Tian, Pei-Ling; Luo, Wei-Hao; Wu, Bing-Yi; Xiong, Fu; Zhou, Wan-Jun; Wei, Xiang-Cai; Xu, Xiang-Min

    2012-07-15

    Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. High resolution melting curve analysis targeting the HBB gene mutational hot-spot offers a reliable screening approach for all common as well as most of the rare beta-globin gene mutations in Bangladesh.

    Science.gov (United States)

    Islam, Md Tarikul; Sarkar, Suprovath Kumar; Sultana, Nusrat; Begum, Mst Noorjahan; Bhuyan, Golam Sarower; Talukder, Shezote; Muraduzzaman, A K M; Alauddin, Md; Islam, Mohammad Sazzadul; Biswas, Pritha Promita; Biswas, Aparna; Qadri, Syeda Kashfi; Shirin, Tahmina; Banu, Bilquis; Sadya, Salma; Hussain, Manzoor; Sarwardi, Golam; Khan, Waqar Ahmed; Mannan, Mohammad Abdul; Shekhar, Hossain Uddin; Chowdhury, Emran Kabir; Sajib, Abu Ashfaqur; Akhteruzzaman, Sharif; Qadri, Syed Saleheen; Qadri, Firdausi; Mannoor, Kaiissar

    2018-01-02

    Bangladesh lies in the global thalassemia belt, which has a defined mutational hot-spot in the beta-globin gene. The high carrier frequencies of beta-thalassemia trait and hemoglobin E-trait in Bangladesh necessitate a reliable DNA-based carrier screening approach that could supplement the use of hematological and electrophoretic indices to overcome the barriers of carrier screening. With this view in mind, the study aimed to establish a high resolution melting (HRM) curve-based rapid and reliable mutation screening method targeting the mutational hot-spot of South Asian and Southeast Asian countries that encompasses exon-1 (c.1 - c.92), intron-1 (c.92 + 1 - c.92 + 130) and a portion of exon-2 (c.93 - c.217) of the HBB gene which harbors more than 95% of mutant alleles responsible for beta-thalassemia in Bangladesh. Our HRM approach could successfully differentiate ten beta-globin gene mutations, namely c.79G > A, c.92 + 5G > C, c.126_129delCTTT, c.27_28insG, c.46delT, c.47G > A, c.92G > C, c.92 + 130G > C, c.126delC and c.135delC in heterozygous states from the wild type alleles, implying the significance of the approach for carrier screening as the first three of these mutations account for ~85% of total mutant alleles in Bangladesh. Moreover, different combinations of compound heterozygous mutations were found to generate melt curves that were distinct from the wild type alleles and from one another. Based on the findings, sixteen reference samples were run in parallel to 41 unknown specimens to perform direct genotyping of the beta-thalassemia specimens using HRM. The HRM-based genotyping of the unknown specimens showed 100% consistency with the sequencing result. Targeting the mutational hot-spot, the HRM approach could be successfully applied for screening of beta-thalassemia carriers in Bangladesh as well as in other countries of South Asia and Southeast Asia. The approach could be a useful supplement of hematological and

  3. Deletion of a region that is a candidate for the difference between the deletion forms of hereditary persistence of fetal hemoglobin and deltabeta-thalassemia affects beta- but not gamma-globin gene expression.

    NARCIS (Netherlands)

    R. Calzolari (Roberta); T. McMorrow (Tara); N. Yannoutsos (Nikos); A. Langeveld (An); F.G. Grosveld (Frank)

    1999-01-01

    textabstractThe analysis of a number of cases of beta-globin thalassemia and hereditary persistence of fetal hemoglobin (HPFH) due to large deletions in the beta-globin locus has led to the identification of several DNA elements that have been implicated in the switch

  4. Unraveling Host-Vector-Arbovirus Interactions by Two-Gene High Resolution Melting Mosquito Bloodmeal Analysis in a Kenyan Wildlife-Livestock Interface.

    Directory of Open Access Journals (Sweden)

    David Omondi

    Full Text Available The blood-feeding patterns of mosquitoes are directly linked to the spread of pathogens that they transmit. Efficient identification of arthropod vector bloodmeal hosts can identify the diversity of vertebrate species potentially involved in disease transmission cycles. While molecular bloodmeal analyses rely on sequencing of cytochrome b (cyt b or cytochrome oxidase 1 gene PCR products, recently developed bloodmeal host identification based on high resolution melting (HRM analyses of cyt b PCR products is more cost-effective. To resolve the diverse vertebrate hosts that mosquitoes may potentially feed on in sub-Saharan Africa, we utilized HRM profiles of both cyt b and 16S ribosomal RNA genes. Among 445 blood-fed Aedeomyia, Aedes, Anopheles, Culex, Mansonia, and Mimomyia mosquitoes from Kenya's Lake Victoria and Lake Baringo regions where many mosquito-transmitted pathogens are endemic, we identified 33 bloodmeal hosts including humans, eight domestic animal species, six peridomestic animal species and 18 wildlife species. This resolution of vertebrate host species was only possible by comparing profiles of both cyt b and 16S markers, as melting profiles of some pairs of species were similar for either marker but not both. We identified mixed bloodmeals in a Culex pipiens from Mbita that had fed on a goat and a human and in two Mansonia africana mosquitoes from Baringo that each had fed on a rodent (Arvicanthis niloticus in addition to a human or baboon. We further detected Sindbis and Bunyamwera viruses in blood-fed mosquito homogenates by Vero cell culture and RT-PCR in Culex, Aedeomyia, Anopheles and Mansonia mosquitoes from Baringo that had fed on humans and livestock. The observed mosquito feeding on both arbovirus amplifying hosts (including sheep and goats and possible arbovirus reservoirs (birds, porcupine, baboons, rodents informs arbovirus disease epidemiology and vector control strategies.

  5. The role of fetal adrenal hormones in the switch from fetal to adult globin synthesis in the sheep.

    Science.gov (United States)

    Wintour, E M; Smith, M B; Bell, R J; McDougall, J G; Cauchi, M N

    1985-01-01

    The switch from gamma (fetal) to beta (adult) globin production was studied by the analysis of globin synthesis in chronically cannulated ovine fetuses and newborn lambs. The gamma/alpha globin synthesis ratio decreased from 0.98 +/- 0.11 (S.D.) (n = 4 samples) at 100-120 days of gestation to 0.15 +/- 0.07 (n = 4) in lambs of 150-156 days post-conception, and the beta/alpha synthesis ratio increased from 0.04 +/- 0.06 (n = 4) to 1.13 +/- 0.21 (n = 4) over the same period. In bilaterally adrenalectomized fetuses, which survived in utero until 151-156 days, the gamma/alpha and beta/alpha synthesis ratios were 0.64 +/- 0.14 (n = 3) and 0.25 +/- 0.07 (n = 3) respectively in the 150- to 156-day period. Bilateral adrenalectomy did not affect the time of onset of beta globin synthesis, but significantly decreased the rate. In one bilaterally adrenalectomized fetus the infusion of increasing concentrations of cortisol restored the rate of beta globin synthesis to normal. Treatment of three intact fetuses with 100 micrograms cortisol/h for 3 weeks, from 100 to 121 days, did not affect the timing or rate of switch from gamma to beta globin synthesis. Thus fetal adrenal secretions, probably cortisol, affected the rate of change of gamma to beta globin synthesis but other factors must have been involved in the initiation of the switch.

  6. Frequent gain and loss of introns in fungal cytochrome b genes.

    Directory of Open Access Journals (Sweden)

    Liang-Fen Yin

    Full Text Available In this study, all available cytochrome b (Cyt b genes from the GOBASE database were compiled and the evolutionary dynamics of the Cyt b gene introns was assessed. Cyt b gene introns were frequently present in the fungal kingdom and some lower plants, but generally absent or rare in Chromista, Protozoa, and Animalia. Fungal Cyt b introns were found at 35 positions in Cyt b genes and the number of introns varied at individual positions from a single representative to 32 different introns at position 131, showing a wide and patchy distribution. Many homologous introns were present at the same position in distantly related species but absent in closely related species, suggesting that introns of the Cyt b genes were frequently lost. On the other hand, highly similar intron sequences were observed in some distantly related species rather than in closely related species, suggesting that these introns were gained independently, likely through lateral transfers. The intron loss-and-gain events could be mediated by transpositions that might have occurred between nuclear and mitochondria. Southern hybridization analysis confirmed that some introns contained repetitive sequences and might be transposable elements. An intron gain in Botryotinia fuckeliana prevented the development of QoI fungicide resistance, suggesting that intron loss-and-gain events were not necessarily beneficial to their host organisms.

  7. Genetic analysis of the porcine group B rotavirus NSP2 gene from wild-type Brazilian strains

    Directory of Open Access Journals (Sweden)

    K.C. Médici

    2010-01-01

    Full Text Available Group B rotaviruses (RV-B were first identified in piglet feces, being later associated with diarrhea in humans, cattle, lambs, and rats. In human beings, the virus was only described in China, India, and Bangladesh, especially infecting adults. Only a few studies concerning molecular analysis of the RV-B NSP2 gene have been conducted, and porcine RV-B has not been characterized. In the present study, three porcine wild-type RV-B strains from piglet stool samples collected from Brazilian pig herds were used for analysis. PAGE results were inconclusive for those samples, but specific amplicons of the RV-B NSP2 gene (segment 8 were obtained in a semi-nested PCR assay. The three porcine RV-B strains showed the highest nucleotide identity with the human WH1 strain and the alignments with other published sequences resulted in three groups of strains divided according to host species. The group of human strains showed 92.4 to 99.7% nucleotide identity while the porcine strains of the Brazilian RV-B group showed 90.4 to 91.8% identity to each other. The identity of the Brazilian porcine RV-B strains with outer sequences consisting of group A and C rotaviruses was only 35.3 to 38.8%. A dendrogram was also constructed to group the strains into clusters according to host species: human, rat, and a distinct third cluster consisting exclusively of the Brazilian porcine RV-B strains. This is the first study of the porcine RV-B NSP2 gene that contributes to the partial characterization of this virus and demonstrates the relationship among RV-B strains from different host species.

  8. Transcriptional Profiling of Host Gene Expression in Chicken Embryo Fibroblasts Infected with Reticuloendotheliosis Virus Strain HA1101.

    Directory of Open Access Journals (Sweden)

    Ji Miao

    Full Text Available Reticuloendotheliosis virus (REV, a member of the Gammaretrovirus genus in the Retroviridae family, causes an immunosuppressive, oncogenic and runting-stunting syndrome in multiple avian hosts. To better understand the host interactions at the transcriptional level, microarray data analysis was performed in chicken embryo fibroblast cells at 1, 3, 5, and 7 days after infection with REV. This study identified 1,785 differentially expressed genes that were classified into several functional groups including signal transduction, immune response, biological adhesion and endocytosis. Significant differences were mainly observed in the expression of genes involved in the immune response, especially during the later post-infection time points. These results revealed that differentially expressed genes IL6, STAT1, MyD88, TLRs, NF-κB, IRF-7, and ISGs play important roles in the pathogenicity of REV infection. Our study is the first to use microarray analysis to investigate REV, and these findings provide insights into the underlying mechanisms of the host antiviral response and the molecular basis of viral pathogenesis.

  9. Host-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus.

    Science.gov (United States)

    Zhu, Lin; Zhu, Jian; Liu, Zhixue; Wang, Zhengyi; Zhou, Cheng; Wang, Hong

    2017-09-26

    Magnaporthe oryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induced RNA interference (RNAi) has emerged as a useful tool to study host-resistance genes for rice blast protection. Planta-generated silencing of targeted genes inside biotrophic pathogens can be achieved by expression of M. oryzae -derived gene fragments in the BMV-mediated gene silencing system, a technique termed host-induced gene silencing (HIGS). In this study, the effectiveness of BMV-mediated HIGS in M. oryzae was examined by targeting three predicted pathogenicity genes, MoABC1, MoMAC1 and MoPMK1 . Systemic generation of fungal gene-specific small interfering RNA (siRNA) molecules induced by inoculation of BMV viral vectors inhibited disease development and reduced the transcription of targeted fungal genes after subsequent M. oryzae inoculation. Combined introduction of fungal gene sequences in sense and antisense orientation mediated by the BMV silencing vectors significantly enhanced the efficiency of this host-generated trans-specific RNAi, implying that these fungal genes played crucial roles in pathogenicity. Collectively, our results indicated that BMV-HIGS system was a great strategy for protecting host plants against the invasion of pathogenic fungi.

  10. Host Gene Expression Analysis in Sri Lankan Melioidosis Patients

    Science.gov (United States)

    2017-06-19

    CCL5 Chemokine (C-C motif) ligand 5 /RANTES. IFNγ Interferon gamma TNFα Tumor necrosis factor alpha HMGB1 High mobility group box 1 protein /high...aim of this study was to analyze gene expression levels of human host factors in melioidosis patients and establish useful correlation with disease...PBMC’s) of study subjects. Gene expression profiles of 25 gene targets including 19 immune response genes and 6 epigenetic factors were analyzed by

  11. Beta-globin gene cluster haplotypes of Amerindian populations from the Brazilian Amazon region.

    Science.gov (United States)

    Guerreiro, J F; Figueiredo, M S; Zago, M A

    1994-01-01

    We have determined the beta-globin cluster haplotypes for 80 Indians from four Brazilian Amazon tribes: Kayapó, Wayampí, Wayana-Apalaí, and Arára. The results are analyzed together with 20 Yanomámi previously studied. From 2 to 4 different haplotypes were identified for each tribe, and 7 of the possible 32 haplotypes were found in a sample of 172 chromosomes for which the beta haplotypes were directly determined or derived from family studies. The haplotype distribution does not differ significantly among the five populations. The two most common haplotypes in all tribes were haplotypes 2 and 6, with average frequencies of 0.843 and 0.122, respectively. The genetic affinities between Brazilian Indians and other human populations were evaluated by estimates of genetic distance based on haplotype data. The lowest values were observed in relation to Asians, especially Chinese, Polynesians, and Micronesians.

  12. Crosstalk between histone modifications maintains the developmental pattern of gene expression on a tissue-specific locus.

    Science.gov (United States)

    Hosey, Alison M; Chaturvedi, Chandra-Prakash; Brand, Marjorie

    2010-05-16

    Genome wide studies have provided a wealth of information related to histone modifications. Particular modifications, which can encompass both broad and discrete regions, are associated with certain genomic elements and gene expression status. Here we focus on how studies on the beta-globin gene cluster can complement the genome wide effort through the thorough dissection of histone modifying protein crosstalk. The beta-globin locus serves as a model system to study both regulation of gene expression driven at a distance by enhancers and mechanisms of developmental switching of clustered genes. We investigate recent studies, which uncover that histone methyltransferases, recruited at the beta-globin enhancer, control gene expression by long range propagation on chromatin. Specifically, we focus on how seemingly antagonistic complexes, such as those including MLL2, G9a and UTX, can cooperate to functionally regulate developmentally controlled gene expression. Finally, we speculate on the mechanisms of chromatin modifying complex propagation on genomic domains.

  13. Chromatin loops, gene positioning, and gene expression

    NARCIS (Netherlands)

    Holwerda, S.; de Laat, W.

    2012-01-01

    Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the alpha- and beta-globin

  14. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions

    Science.gov (United States)

    2013-06-23

    equine hosts. Thus, the genes retained in B. mallei share a high sequence similarity to genes common to B. pseudomallei (3), and many virulence...oppor- tunistic infections in mammalian hosts. Even for the equine - adapted and, thus, more genetically constrained, B. mallei pathogen, we cannot...BioDrugs: Clin. Immunotherapeut., Biopharmaceut. Gene Therapy 17, 413–424 88. Anderson, D. M., and Frank, D. W. (2012) Five mechanisms of manipula

  15. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    Science.gov (United States)

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Biomonitoring of carcinogenic substances: enzymatic digestion of globin for detecting alkylated amino acids

    Science.gov (United States)

    Bader, Michael; Rauscher, Dankwart; Geibel, Kurt; Angerer, Juergen

    1993-03-01

    We report the application of proteases for the total hydrolysis of globin with subsequent determination of amino acids. Optimization of the proteolysis was made with respect to enzyme concentration, time of incubation and type of protease. Ethylene oxide modified globin was used to compare the results of the analysis of the N-terminal amino acid valine after enzymatic cleavage to those obtained from the widely used modified Edman procedure. It is shown that the cleavage is of good reproducibility and yields more alkylated amino acid than the Edman procedure.

  17. Extensive co-operation between the Epstein-Barr virus EBNA3 proteins in the manipulation of host gene expression and epigenetic chromatin modification.

    Directory of Open Access Journals (Sweden)

    Robert E White

    2010-11-01

    Full Text Available Epstein-Barr virus (EBV is able to drive the transformation of B-cells, resulting in the generation of lymphoblastoid cell lines (LCLs in vitro. EBV nuclear proteins EBNA3A and EBNA3C are necessary for efficient transformation, while EBNA3B is dispensable. We describe a transcriptome analysis of BL31 cells infected with a series of EBNA3-knockout EBVs, including one deleted for all three EBNA3 genes. Using Affymetrix Exon 1.0 ST microarrays analysed with the MMBGX algorithm, we have identified over 1000 genes whose regulation by EBV requires one of the EBNA3s. Remarkably, a third of the genes identified require more than one EBNA3 for their regulation, predominantly EBNA3C co-operating with either EBNA3B, EBNA3A or both. The microarray was validated by real-time PCR, while ChIP analysis of a selection of co-operatively repressed promoters indicates a role for polycomb group complexes. Targets include genes involved in apoptosis, cell migration and B-cell differentiation, and show a highly significant but subtle alteration in genes involved in mitosis. In order to assess the relevance of the BL31 system to LCLs, we analysed the transcriptome of a set of EBNA3B knockout (3BKO LCLs. Around a third of the genes whose expression level in LCLs was altered in the absence of EBNA3B were also altered in 3BKO-BL31 cell lines.Among these are TERT and TCL1A, implying that EBV-induced changes in the expression of these genes are not required for B-cell transformation. We also identify 26 genes that require both EBNA3A and EBNA3B for their regulation in LCLs. Together, this shows the complexity of the interaction between EBV and its host, whereby multiple EBNA3 proteins co-operate to modulate the behaviour of the host cell.

  18. The 3D chromatin structure of the mouse β-haemoglobin gene cluster

    NARCIS (Netherlands)

    M.P.C. van de Corput (Mariëtte); T.A. Knoch (Tobias); E. de Boer (Ernie); W.A. van Cappellen (Gert); M. Lesnussa (Michael); H.J.F.M.M. Eussen (Bert)

    2010-01-01

    textabstractHere we show a 3D DNA-FISH method to visualizes the 3D structure of the β-globin locus. Geometric size and shape measurements of the 3D rendered signals (128Kb) show that the volume of the β-globin locus decreases almost two fold upon gene activation. A decrease in length and a

  19. The effect of HBB:c.*+96T>C (3’UTR +1570 T>C on the mild b-thalassemia intermedia phenotype

    Directory of Open Access Journals (Sweden)

    Türker Bilgen

    2011-09-01

    Full Text Available Hemoglobin beta (HBB:c.*+96T>C substitution is very rare among β-globin gene mutations and its clinical significance remains to be clarified. The present study aimed to investigate the role of HBB:c.*+96T>C in the β-thalassemia intermedia phenotype in a Turkish family. The proband and parents were screened for β-globin gene mutations via direct sequencing. Hematological and physical examination results were recorded, and correlated according to genotype. The proband was compound heterozygous for Cod 8 (-AA and HBB:c.*+96T>C, whereas his mother and father were heterozygous for Cod 8 (-AA and HBB:c.*+96T>C, respectively. The father had almost normal hematological findings, whereas the mother had the typical β-thalassemia trait phenotype. The proband was diagnosed as mild β-thalassemia intermedia based on hepatosplenomegaly and hematological findings. To the best of our knowledge this is the first report of HBB:c.*+96T>C mutation in a Turkish family. HBB:c.* 96T>C substitution is a very rare, but clinically relevant β-globin gene mutation. Additionally, we think that if 1 spouse is a carrier for β-globin gene mutation the other should be screened for silent mutations, such as HBB:c.*+96T>C mutation of the β-globin gene, even if she/he does not have any clinical or hematological signs of the β-thalassemia trait phenotype.

  20. Expression of embryonic hemoglobin genes in mice heterozygous for α-thalassemia or β-duplication traits and in mice heterozygous for both traits

    International Nuclear Information System (INIS)

    Popp, R.A.; Marsh, C.L.; Skow, L.C.

    1981-01-01

    Hemoglobins of mouse embryos at 11.5 through 16.5 days of gestation were separated by electrophoresis on cellulose acetate and quantitated by a scanning densitometer to study the effects of two radiation-induced mutations on the expression of embryonic hemoglobin genes in mice. Normal mice produce three kinds of embryonic hemoglobins. In heterozygous α-thalassemic embryos, expression of EI (x 2 y 2 ) and EII (α 2 y 2 ) is deficient because the x- and α-globin genes of one of the allelic pairs of Hba on chromosome 11 was deleted or otherwise inactivated by X irradiation. Simultaneous inactivation of the x- and α-globin genes indicates that these genes must be closely linked. Reduced x- and α-chain synthesis results in an excess of y chains that associate as homotetramers. This unique y 4 hemoglobin also appears in β-duplication embryos where excess y chains are produced by the presence of three rather than two functional alleles of y- and β-globin genes. In double heterozygotes, which have a single functional allele of x- and α-globin genes and three functional alleles of y- and β-globin genes, synthesis of α and non-α chains is severely imbalanced and half of the total hemoglobin is y 4 . Mouse y 4 has a high affinity for oxygen, P 50 of less than 10 mm Hg, but it lacks cooperativity so is inefficient for oxygen transport. The death of double heterozygotes in late fetal or neonatal life may be in large part to oxygen deprivation to the tissues

  1. Gene expression plasticity across hosts of an invasive scale insect species

    DEFF Research Database (Denmark)

    Christodoulides, Nicholas; Van Dam, Alex; Peterson, Daniel A.

    2017-01-01

    For plant-eating insects, we still have only a nascent understanding of the genetic basis of host-use promiscuity. Here, to improve that situation, we investigated host-induced gene expression plasticity in the invasive lobate lac scale insect, Paratachardina pseudolobata (Hemiptera: Keriidae). We...

  2. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    Directory of Open Access Journals (Sweden)

    Shaw Edward I

    2010-09-01

    Full Text Available Abstract Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated and 901 (CAM treated THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold, eliminated the common gene expression changes. A stringent comparison (≥2 fold between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the

  3. Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum

    Directory of Open Access Journals (Sweden)

    Fang Qi

    2010-09-01

    Full Text Available Abstract Background The relationships between parasitoids and their insect hosts have attracted attention at two levels. First, the basic biology of host-parasitoid interactions is of fundamental interest. Second, parasitoids are widely used as biological control agents in sustainable agricultural programs. Females of the gregarious endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae inject venom along with eggs into their hosts. P. puparum does not inject polydnaviruses during oviposition. For this reason, P. puparum and its pupal host, the small white butterfly Pieris rapae (Lepidoptera: Pieridae, comprise an excellent model system for studying the influence of an endoparasitoid venom on the biology of the pupal host. P. puparum venom suppresses the immunity of its host, although the suppressive mechanisms are not fully understood. In this study, we tested our hypothesis that P. puparum venom influences host gene expression in the two main immunity-conferring tissues, hemocytes and fat body. Results At 1 h post-venom injection, we recorded significant decreases in transcript levels of 217 EST clones (revealing 113 genes identified in silico, including 62 unknown contigs derived from forward subtractive libraries of host hemocytes and in transcript levels of 288 EST clones (221 genes identified in silico, including 123 unknown contigs from libraries of host fat body. These genes are related to insect immune response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, stress response and transcriptional and translational regulation. We verified the reliability of the suppression subtractive hybridization (SSH data with semi-quantitative RT-PCR analysis of a set of randomly selected genes. This analysis showed that most of the selected genes were down-regulated after venom injection. Conclusions Our findings support our hypothesis that P. puparum venom influences gene expression in host hemocytes and fat body. Specifically

  4. Coordinate expression of heme and globin is essential for effective erythropoiesis.

    Science.gov (United States)

    Doty, Raymond T; Phelps, Susan R; Shadle, Christina; Sanchez-Bonilla, Marilyn; Keel, Siobán B; Abkowitz, Janis L

    2015-12-01

    Erythropoiesis requires rapid and extensive hemoglobin production. Heme activates globin transcription and translation; therefore, heme synthesis must precede globin synthesis. As free heme is a potent inducer of oxidative damage, its levels within cellular compartments require stringent regulation. Mice lacking the heme exporter FLVCR1 have a severe macrocytic anemia; however, the mechanisms that underlie erythropoiesis dysfunction in these animals are unclear. Here, we determined that erythropoiesis failure occurs in these animals at the CFU-E/proerythroblast stage, a point at which the transferrin receptor (CD71) is upregulated, iron is imported, and heme is synthesized--before ample globin is produced. From the CFU-E/proerythroblast (CD71(+) Ter119(-) cells) stage onward, erythroid progenitors exhibited excess heme content, increased cytoplasmic ROS, and increased apoptosis. Reducing heme synthesis in FLVCR1-defient animals via genetic and biochemical approaches improved the anemia, implying that heme excess causes, and is not just associated with, the erythroid marrow failure. Expression of the cell surface FLVCR1 isoform, but not the mitochondrial FLVCR1 isoform, restored normal rbc production, demonstrating that cellular heme export is essential. Together, these studies provide insight into how heme is regulated to allow effective erythropoiesis, show that erythropoiesis fails when heme is excessive, and emphasize the importance of evaluating Ter119(-) erythroid cells when studying erythroid marrow failure in murine models.

  5. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology.

    Science.gov (United States)

    Broderick, Nichole A; Buchon, Nicolas; Lemaitre, Bruno

    2014-05-27

    To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the

  6. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAs decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed

  7. Host gene expression profiles in ferrets infected with genetically distinct henipavirus strains.

    Directory of Open Access Journals (Sweden)

    Alberto J Leon

    2018-03-01

    Full Text Available Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.

  8. Representing virus-host interactions and other multi-organism processes in the Gene Ontology.

    Science.gov (United States)

    Foulger, R E; Osumi-Sutherland, D; McIntosh, B K; Hulo, C; Masson, P; Poux, S; Le Mercier, P; Lomax, J

    2015-07-28

    The Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms. To address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms. Building on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.

  9. Large-scale gene expression reveals different adaptations of Hyalopterus persikonus to winter and summer host plants.

    Science.gov (United States)

    Cui, Na; Yang, Peng-Cheng; Guo, Kun; Kang, Le; Cui, Feng

    2017-06-01

    Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large-scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme-copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin-converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR-1-like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  10. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum.

    Directory of Open Access Journals (Sweden)

    Jose C Garcia-Garcia

    2009-06-01

    Full Text Available Intracellular bacteria have evolved mechanisms that promote survival within hostile host environments, often resulting in functional dysregulation and disease. Using the Anaplasma phagocytophilum-infected granulocyte model, we establish a link between host chromatin modifications, defense gene transcription and intracellular bacterial infection. Infection of THP-1 cells with A. phagocytophilum led to silencing of host defense gene expression. Histone deacetylase 1 (HDAC1 expression, activity and binding to the defense gene promoters significantly increased during infection, which resulted in decreased histone H3 acetylation in infected cells. HDAC1 overexpression enhanced infection, whereas pharmacologic and siRNA HDAC1 inhibition significantly decreased bacterial load. HDAC2 does not seem to be involved, since HDAC2 silencing by siRNA had no effect on A. phagocytophilum intracellular propagation. These data indicate that HDAC up-regulation and epigenetic silencing of host cell defense genes is required for A. phagocytophilum infection. Bacterial epigenetic regulation of host cell gene transcription could be a general mechanism that enhances intracellular pathogen survival while altering cell function and promoting disease.

  11. Phytoplasma adapt to the diverse environments of their plant and insect hosts by altering gene expression

    DEFF Research Database (Denmark)

    Makarova, Olga; MacLean, Allyson M.; Nicolaisen, Mogens

    2015-01-01

    a role in host adaptation. 74 genes were up-regulated in insects and included genes involved in stress response, phospholipid synthesis, malate and pyruvate metabolism, hemolysin and transporter genes, multiple copies of thymidylate kinase, sigma factor and Zn-proteases genes. In plants, 34 genes...... encoding an immune dominant membrane protein, membrane-associated proteins, and multidrug resistance ABC-type transporters, were up-regulated. Differential regulation of gene expression thus appears to play an important role in host adaptation of phytoplasmas....

  12. Aquaporin family genes exhibit developmentally-regulated and host-dependent transcription patterns in the sea louse Caligus rogercresseyi.

    Science.gov (United States)

    Farlora, Rodolfo; Valenzuela-Muñoz, Valentina; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2016-07-01

    Aquaporins are small integral membrane proteins that function as pore channels for the transport of water and other small solutes across the cell membrane. Considering the important roles of these proteins in several biological processes, including host-parasite interactions, there has been increased research on aquaporin proteins recently. The present study expands on the knowledge of aquaporin family genes in parasitic copepods, examining diversity and expression during the ontogeny of the sea louse Caligus rogercresseyi. Furthermore, aquaporin expression was evaluated during the early infestation of Atlantic (Salmo salar) and Coho salmon (Oncorhynchus kisutch). Deep transcriptome sequencing data revealed eight full length and two partial open reading frames belonging to the aquaporin protein family. Clustering analyses with identified Caligidae sequences revealed three major clades of aquaglyceroporins (Cr-Glp), classical aquaporin channels (Cr-Bib and Cr-PripL), and unorthodox aquaporins (Cr-Aqp12-like). In silico analysis revealed differential expression of aquaporin genes between developmental stages and between sexes. Male-biased expression of Cr-Glp1_v1 and female-biased expression of Cr-Bib were further confirmed in adults by RT-qPCR. Additionally, gene expressions were measured for seven aquaporins during the early infestation stage. The majority of aquaporin genes showed significant differential transcription expressions between sea lice parasitizing different hosts, with Atlantic salmon sea lice exhibiting overall reduced expression as compared to Coho salmon. The observed differences in the regulation of aquaporin genes may reveal osmoregulatory adaptations associated with nutrient ingestion and metabolite waste export, exposing complex host-parasite relationships in C. rogercresseyi. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determination of the spectrum of beta-thalassemia genes in Spain by use of dot-blot analysis of amplified beta-globin DNA.

    OpenAIRE

    Amselem, S; Nunes, V; Vidaud, M; Estivill, X; Wong, C; d'Auriol, L; Vidaud, D; Galibert, F; Baiget, M; Goossens, M

    1988-01-01

    We have delineated the molecular lesions causing beta-thalassemia in Spain, a country that has witnessed the passage of different Mediterranean populations over the centuries, in order to evaluate the extent of heterogeneity of these mutations and to make possible simplified prenatal diagnosis of the disorder in that country. The use of the polymerase chain-reaction (PCR) technique to preferentially amplify beta-globin DNA sequences that contain the most frequent beta-thalassemia mutations in...

  14. Spread of a new parasitic B chromosome variant is facilitated by high gene flow.

    Directory of Open Access Journals (Sweden)

    María Inmaculada Manrique-Poyato

    Full Text Available The B24 chromosome variant emerged several decades ago in a Spanish population of the grasshopper Eyprepocnemis plorans and is currently reaching adjacent populations. Here we report, for the first time, how a parasitic B chromosome (a strictly vertically transmitted parasite expands its geographical range aided by high gene flow in the host species. For six years we analyzed B frequency in several populations to the east and west of the original population and found extensive spatial variation, but only a slight temporal trend. The highest B24 frequency was found in its original population (Torrox and it decreased closer to both the eastern and the western populations. The analysis of Inter Simple Sequence Repeat (ISSR markers showed the existence of a low but significant degree of population subdivision, as well as significant isolation by distance (IBD. Pairwise Nem estimates suggested the existence of high gene flow between the four populations located in the Torrox area, with higher values towards the east. No significant barriers to gene flow were found among these four populations, and we conclude that high gene flow is facilitating B24 diffusion both eastward and westward, with minor role for B24 drive due to the arrival of drive suppressor genes which are also frequent in the donor population.

  15. Influence of Wolbachia on host gene expression in an obligatory symbiosis

    Directory of Open Access Journals (Sweden)

    Kremer Natacha

    2012-01-01

    Full Text Available Abstract Background Wolbachia are intracellular bacteria known to be facultative reproductive parasites of numerous arthropod hosts. Apart from these reproductive manipulations, recent findings indicate that Wolbachia may also modify the host’s physiology, notably its immune function. In the parasitoid wasp, Asobara tabida, Wolbachia is necessary for oogenesis completion, and aposymbiotic females are unable to produce viable offspring. The absence of egg production is also associated with an increase in programmed cell death in the ovaries of aposymbiotic females, suggesting that a mechanism that ensures the maintenance of Wolbachia in the wasp could also be responsible for this dependence. In order to decipher the general mechanisms underlying host-Wolbachia interactions and the origin of the dependence, we developed transcriptomic approaches to compare gene expression in symbiotic and aposymbiotic individuals. Results As no genetic data were available on A. tabida, we constructed several Expressed Sequence Tags (EST libraries, and obtained 12,551 unigenes from this species. Gene expression was compared between symbiotic and aposymbiotic ovaries through in silico analysis and in vitro subtraction (SSH. As pleiotropic functions involved in immunity and development could play a major role in the establishment of dependence, the expression of genes involved in oogenesis, programmed cell death (PCD and immunity (broad sense was analyzed by quantitative RT-PCR. We showed that Wolbachia might interfere with these numerous biological processes, in particular some related to oxidative stress regulation. We also showed that Wolbachia may interact with immune gene expression to ensure its persistence within the host. Conclusions This study allowed us to constitute the first major dataset of the transcriptome of A. tabida, a species that is a model system for both host/Wolbachia and host/parasitoid interactions. More specifically, our results

  16. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  17. Biochemical and molecular investigations on qualitative and quantitative Hb polymorphism in the river buffalo (Bubalus bubalis L. population reared in Southern Italy

    Directory of Open Access Journals (Sweden)

    Mario Iorio

    2004-01-01

    Full Text Available On 398 river buffalo samples, randomly collected in distinct breeding areas of the Campania region, high-resolution analytical systems were used to identify both qualitative and quantitative variations of the Hb phenotype. Polyacrylamide gel isoelectric focusing and HPLC were used to determine the ratio between HBA1 and HBA2 globin chains; restriction endonuclease analysis was performed to assess whether quantitative variations in Hb bands were related to an unusual number of a-globin genes. In the two buffalo subpopulations, allele frequencies of the alpha and beta globin systems were calculated, and F statistics (FIS, FIT and FST were estimated as parameters of genetic diversity. The results suggest that: i as shown by RFLP analysis, only a couple of associated a globin genes account for the quantitative variations recorded at the phenotypic level; ii as expected, in the a globin gene system (HBA, the frequency of haplotype B (HBA-B largely exceeded that of haplotype A (HBA-A (95.1% vs 4.9%; iii the frequency of the usual allele at the beta locus is 0.6, as opposed to 0.4 of the slow variant; iiii the most significant component of variation of the genetic system of hemoglobin is between individuals within the same location.

  18. SuhB Is a Regulator of Multiple Virulence Genes and Essential for Pathogenesis of Pseudomonas aeruginosa

    Science.gov (United States)

    Li, Kewei; Xu, Chang; Jin, Yongxin; Sun, Ziyu; Liu, Chang; Shi, Jing; Chen, Gukui; Chen, Ronghao; Jin, Shouguang; Wu, Weihui

    2013-01-01

    ABSTRACT During initial colonization and chronic infection, pathogenic bacteria encounter distinct host environments. Adjusting gene expression accordingly is essential for the pathogenesis. Pseudomonas aeruginosa has evolved complicated regulatory networks to regulate different sets of virulence factors to facilitate colonization and persistence. The type III secretion system (T3SS) and motility are associated with acute infections, while biofilm formation and the type VI secretion system (T6SS) are associated with chronic persistence. To identify novel regulatory genes required for pathogenesis, we screened a P. aeruginosa transposon (Tn) insertion library and found suhB to be an essential gene for the T3SS gene expression. The expression of suhB was upregulated in a mouse acute lung infection model, and loss of suhB resulted in avirulence. Suppression of T3SS gene expression in the suhB mutant is linked to a defective translation of the T3SS master regulator, ExsA. Further studies demonstrated that suhB mutation led to the upregulation of GacA and its downstream small RNAs, RsmY and RsmZ, triggering T6SS expression and biofilm formation while inhibiting the T3SS. Our results demonstrate that an in vivo-inducible gene, suhB, reciprocally regulates genes associated with acute and chronic infections and plays an essential role in the pathogenesis of P. aeruginosa. PMID:24169572

  19. Sarcocystis pantherophis, n. sp. from eastern rat snakes (Pantherophis alleghaniensis) definitive hosts and interferongamma gene knockout mice as experimental intermediate hosts

    Science.gov (United States)

    Here we report a new species, Sarcocystis pantherophisi with the Eastern rat snake (Pantherophis alleghaniensis) as natural definitive host and the interferon gamma gene knockout (KO) mouse as the experimental intermediate host. Sporocysts (n=15) from intestinal contents of the snake were 17.3 x 10....

  20. Recent trends in the gene therapy of β-thalassemia

    Directory of Open Access Journals (Sweden)

    Finotti A

    2015-02-01

    Full Text Available Alessia Finotti,1–3 Laura Breda,4 Carsten W Lederer,6,7 Nicoletta Bianchi,1–3 Cristina Zuccato,1–3 Marina Kleanthous,6,7 Stefano Rivella,4,5 Roberto Gambari1–3 1Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy; 2Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy; 3Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy; 4Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA; 5Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA; 6Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus; 7Cyprus School of Molecular Medicine, Nicosia, Cyprus Abstract: The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most

  1. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Science.gov (United States)

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  2. Effect of selective T cell depletion of host and/or donor bone marrow on lymphopoietic repopulation, tolerance, and graft-vs-host disease in mixed allogeneic chimeras (B10 + B10.D2----B10)

    International Nuclear Information System (INIS)

    Ildstad, S.T.; Wren, S.M.; Bluestone, J.A.; Barbieri, S.A.; Stephany, D.; Sachs, D.H.

    1986-01-01

    Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. Experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it

  3. Genetic mapping of 14 avirulence genes in an EU-B04 × 1639 progeny of Venturia inaequalis.

    Science.gov (United States)

    Broggini, Giovanni A L; Bus, Vincent G M; Parravicini, Gabriella; Kumar, Satish; Groenwold, Remmelt; Gessler, Cesare

    2011-02-01

    Durable resistance to apple scab (Venturia inaequalis (Cke) Wint; anamorph Spilocaea pomi Fries) is one of the major goals of apple (Malus) breeding programs. Since current scab resistance breeding is heavily reliant on genes with gene-for-gene relationships, a good understanding of the genetic basis of host-pathogen interactions needs to be developed for this strategy to be successful. While the genomic organization of apple scab resistance genes has been studied extensively, little is known about the avirulence genes in the pathogen. The progeny of a cross of European V. inaequalis race (1) isolate EU-B04 and race (1,2,8,9) isolate 1639 was used to generate a genetic map based on microsatellite and AFLP markers, and investigated for inheritance of avirulence traits on 20 Malus accessions representing 17 scab resistance genes. The accessions comprised scab differential hosts (0), (1), (2), (8), and (9), and hosts carrying known as well as not previously reported secondary resistance genes, including some identified in crosses that have resistant accessions 'Geneva', 'Dolgo', Malus baccata jackii, M. micromalus, or 'Antonovka' in their pedigree. The latter genes appear to be narrow spectrum genes that showed gene-for-gene relationships as a segregation ratio of Avr:avr=1:1 was observed on 12 accessions, while a ratio of 3:1 was observed on five accessions and a ratio of 7:1 on one host. All progenies were shown to be pathogenic, as all of them were able to infect hosts (0) and (1). A genetic map consisting of 15 major linkage groups (LGs) and spanning 972cM was generated with the aid of 156 markers. The map position of 12 avirulence traits was determined: eight avirulence genes mapped into two separate clusters (1: AvrVdg2, AvrVv1, AvrVu1, AvrVrjrd; and 2: AvrVu2, AvrVh3.2, AvrVs1, AvrVu4), while four avirulence genes (AvrRvi8, AvrVv2, AvrVt57 and AvrVsv) mapped to different LGs. AvrRvi2 and AvrRvi9 also are genetically linked, but showed an interaction with Avr

  4. Host and viral determinants for MxB restriction of HIV-1 infection.

    Science.gov (United States)

    Matreyek, Kenneth A; Wang, Weifeng; Serrao, Erik; Singh, Parmit Kumar; Levin, Henry L; Engelman, Alan

    2014-10-25

    Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26-90 that contribute to MxB activity, finding sequences present within residues 27-50 particularly important. MxB inhibits HIV-1 by interfering with minimally two steps of infection

  5. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    Science.gov (United States)

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  6. Circulating MicroRNAs in Plasma of Hepatitis B e Antigen Positive Children Reveal Liver-Specific Target Genes

    DEFF Research Database (Denmark)

    Winther, Thilde Nordmann; Jacobsen, Kari Stougaard; Mirza, Aashiq Hussain

    2014-01-01

    Background and Aim. Hepatitis B e antigen positive (HBeAg-positive) children are at high risk of severe complications such as hepatocellular carcinoma and cirrhosis. Liver damage is caused by the host immune response to infected hepatocytes, and we hypothesise that specific microRNAs play a role...... in this complex interaction between virus and host. The study aimed to identify microRNAs with aberrant plasma expressions in HBeAg-positive children and with liver-specific target genes. Methods. By revisiting our previous screen of microRNA plasma levels in HBeAg-positive and HBeAg-negative children...... with chronic hepatitis B (CHB) and in healthy controls, candidate microRNAs with aberrant plasma expressions in HBeAg-positive children were identified. MicroRNAs targeting liver-specific genes were selected based on bioinformatics analysis and validated by qRT-PCR using plasma samples from 34 HBe...

  7. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    International Nuclear Information System (INIS)

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-01-01

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-κB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1β, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-κB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  8. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.

    2014-05-05

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  9. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    KAUST Repository

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. 2014 The Author(s) 2014.

  10. Detection in a Japanese population of a length polymorphism in the 5' flanking region of the human β-globin gene with denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Takahashi, Noria; Hiyama, Keiko; Kodaira, Mieko; Satoh, Chiyoko

    1992-10-01

    An analysis of the ATTTT repeat polymorphism located approximately 1,400 base pairs upstream from the β-globin structural gene was carried out by denaturing gradient gel electrophoresis (DGGE) of RNA:DNA duplexes. Genomic or cloned DNAs were digested with restriction enzymes and hybridized with 32 P-labeled RNA probes, and resulting RNA:DNA duplexes were examined by DGGE. A difference in the number of repeat units was recognized by differences in duplex mobility on the DGGE gel. In this study of 81 unrelated Japanese from Hiroshima, a sequence heteromorphism was observed at this site. Alleles with 5 and 6 repeats of the ATTTT unit, which had already been reported, were found in polymorphic proportions. In addition, two unreported alleles, one having 7 repeats and the other having an A-to-G nucleotide substitution in the 5th repeat, were detected. Family study data showed that the segregation of these four types of variants is consistent with an autosomal codominant mode of inheritance. This study also demonstrated that DGGE of RNA:DNA duplexes is a sensitive tool for detecting variations in DNA. (author)

  11. Variation in Gamma-Globin Expression before and after Induction with Hydroxyurea Associated with BCL11A, KLF1 and TAL1.

    Directory of Open Access Journals (Sweden)

    Amanda J Grieco

    Full Text Available The molecular mechanisms governing γ-globin expression in a subset of fetal hemoglobin (α2γ2: HbF expressing red blood cells (F-cells and the mechanisms underlying the variability of response to hydroxyurea induced γ-globin expression in the treatment of sickle cell disease are not completely understood. Here we analyzed intra-person clonal populations of basophilic erythroblasts (baso-Es derived from bone marrow common myeloid progenitors in serum free cultures and report the level of fetal hemoglobin production in F-cells negatively correlates with expression of BCL11A, KLF1 and TAL1. We then examined the effects of hydroxyurea on these three transcription factors and conclude that a successful induction of γ-globin includes a reduction in BCL11A, KLF1 and TAL1 expression. These data suggests that expression changes in this transcription factor network modulate γ-globin expression in F-cells during steady state erythropoiesis and after induction with hydroxyurea.

  12. Phytoalexin detoxification genes and gene products: Implication for the evolution of host specific traits for pathogenicity. Final report

    International Nuclear Information System (INIS)

    VanEtten, H.

    1997-01-01

    The overall objectives of this research were to determine which differences among PDA genes were associated with different levels of virulence on pea and to clone and characterize a MAK gene. The authors also proposed to characterize the pisatin detoxifying system in pea pathogens in addition to N. haematococca to assess whether pathogens of a common host had evolved similar pathogenicity genes

  13. Phytoalexin detoxification genes and gene products: Implication for the evolution of host specific traits for pathogenicity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    VanEtten, H.

    1997-06-01

    The overall objectives of this research were to determine which differences among PDA genes were associated with different levels of virulence on pea and to clone and characterize a MAK gene. The authors also proposed to characterize the pisatin detoxifying system in pea pathogens in addition to N. haematococca to assess whether pathogens of a common host had evolved similar pathogenicity genes.

  14. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    Science.gov (United States)

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. A role for host cell exocytosis in InlB-mediated internalisation of Listeria monocytogenes.

    Science.gov (United States)

    Van Ngo, Hoan; Bhalla, Manmeet; Chen, Da-Yuan; Ireton, Keith

    2017-11-01

    The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB-mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB-dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB-mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB-mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection. © 2017 John Wiley & Sons Ltd.

  16. Semisynthetic hemoglobin A: Reconstitution of functional tetramer from semisynthetic α-globin

    International Nuclear Information System (INIS)

    Sahni, G.; Cho, Y.J.; Iyer, K.S.; Khan, S.A.; Seetharam, R.; Acharya, A.S.

    1989-01-01

    The optimal conditions for the semisynthesis of α-globin through Staphylococcus aureus V8 protease condensation of a synthetic fragment (α 1-30 ) with the complementary apo fragment (α 31-141 ) in the presence of structure-inducing organic cosolvents and the reconstitution of the functional tetramer from semisynthetic α-globin have been investigated. The protease-catalyzed ligation of the complementary apo fragments α 1-30 and α 31-141 proceeds with very high selectivity at pH 6.0 and 4 degree C in the presence of 1-propanol as the organic cosolvent. A 30% 1-propanol solution was optimal for the semisynthetic reaction, and the synthetic reaction attained an equilibrium (approximately 50%) in 72 h. The synthetic reaction proceeds smoothly over a wide pH range (pH 5-8). Besides, the semisynthetic system is flexible, and it also proceeded well if trifluoroethanol or 2-propanol was used instead of 1-propanol. However, glycerol, a versatile organic cosolvent used in all other proteosynthetic reactions reported in the literature, was not very efficient as an organic cosolvent in the present synthetic reaction. The semisynthetic α-globin prepared with 1-propanol as the organic cosolvent has been reconstituted into HbA. The semisynthetic HbA was then purified by CM-cellulose chromatography. The semisynthetic HbA is indistinguishable from native HbA, in terms of its structural and functional properties. The semisynthetic approach provides the flexibility in protein engineering studies for the incorporation of spectroscopic labels ( 13 C- and/or 15 N-labeled amino acids), noncoded amino acids, or unnatural bond functionalities, which at present is not possible with genetic approaches

  17. The New Self-Inactivating Lentiviral Vector for Thalassemia Gene Therapy Combining Two HPFH Activating Elements Corrects Human Thalassemic Hematopoietic Stem Cells

    Science.gov (United States)

    Papanikolaou, Eleni; Georgomanoli, Maria; Stamateris, Evangelos; Panetsos, Fottes; Karagiorga, Markisia; Tsaftaridis, Panagiotis; Graphakos, Stelios

    2012-01-01

    Abstract To address how low titer, variable expression, and gene silencing affect gene therapy vectors for hemoglobinopathies, in a previous study we successfully used the HPFH (hereditary persistence of fetal hemoglobin)-2 enhancer in a series of oncoretroviral vectors. On the basis of these data, we generated a novel insulated self-inactivating (SIN) lentiviral vector, termed GGHI, carrying the Aγ-globin gene with the −117 HPFH point mutation and the HPFH-2 enhancer and exhibiting a pancellular pattern of Aγ-globin gene expression in MEL-585 clones. To assess the eventual clinical feasibility of this vector, GGHI was tested on CD34+ hematopoietic stem cells from nonmobilized peripheral blood or bone marrow from 20 patients with β-thalassemia. Our results show that GGHI increased the production of γ-globin by 32.9% as measured by high-performance liquid chromatography (p=0.001), with a mean vector copy number per cell of 1.1 and a mean transduction efficiency of 40.3%. Transduced populations also exhibited a lower rate of apoptosis and resulted in improvement of erythropoiesis with a higher percentage of orthochromatic erythroblasts. This is the first report of a locus control region (LCR)-free SIN insulated lentiviral vector that can be used to efficiently produce the anticipated therapeutic levels of γ-globin protein in the erythroid progeny of primary human thalassemic hematopoietic stem cells in vitro. PMID:21875313

  18. Comparative Genomics of Smut Pathogens: Insights From Orphans and Positively Selected Genes Into Host Specialization

    Directory of Open Access Journals (Sweden)

    Juliana Benevenuto

    2018-04-01

    Full Text Available Host specialization is a key evolutionary process for the diversification and emergence of new pathogens. However, the molecular determinants of host range are poorly understood. Smut fungi are biotrophic pathogens that have distinct and narrow host ranges based on largely unknown genetic determinants. Hence, we aimed to expand comparative genomics analyses of smut fungi by including more species infecting different hosts and to define orphans and positively selected genes to gain further insights into the genetics basis of host specialization. We analyzed nine lineages of smut fungi isolated from eight crop and non-crop hosts: maize, barley, sugarcane, wheat, oats, Zizania latifolia (Manchurian rice, Echinochloa colona (a wild grass, and Persicaria sp. (a wild dicot plant. We assembled two new genomes: Ustilago hordei (strain Uhor01 isolated from oats and U. tritici (strain CBS 119.19 isolated from wheat. The smut genomes were of small sizes, ranging from 18.38 to 24.63 Mb. U. hordei species experienced genome expansions due to the proliferation of transposable elements and the amount of these elements varied among the two strains. Phylogenetic analysis confirmed that Ustilago is not a monophyletic genus and, furthermore, detected misclassification of the U. tritici specimen. The comparison between smut pathogens of crop and non-crop hosts did not reveal distinct signatures, suggesting that host domestication did not play a dominant role in shaping the evolution of smuts. We found that host specialization in smut fungi likely has a complex genetic basis: different functional categories were enriched in orphans and lineage-specific selected genes. The diversification and gain/loss of effector genes are probably the most important determinants of host specificity.

  19. Genome Comparison of Erythromycin Resistant Campylobacter from Turkeys Identifies Hosts and Pathways for Horizontal Spread of erm(B Genes

    Directory of Open Access Journals (Sweden)

    Diego Florez-Cuadrado

    2017-11-01

    Full Text Available Pathogens in the genus Campylobacter are the most common cause of food-borne bacterial gastro-enteritis. Campylobacteriosis, caused principally by Campylobacter jejuni and Campylobacter coli, is transmitted to humans by food of animal origin, especially poultry. As for many pathogens, antimicrobial resistance in Campylobacter is increasing at an alarming rate. Erythromycin prescription is the treatment of choice for clinical cases requiring antimicrobial therapy but this is compromised by mobility of the erythromycin resistance gene erm(B between strains. Here, we evaluate resistance to six antimicrobials in 170 Campylobacter isolates (133 C. coli and 37 C. jejuni from turkeys. Erythromycin resistant isolates (n = 85; 81 C. coli and 4 C. jejuni were screened for the presence of the erm(B gene, that has not previously been identified in isolates from turkeys. The genomes of two positive C. coli isolates were sequenced and in both isolates the erm(B gene clustered with resistance determinants against aminoglycosides plus tetracycline, including aad9, aadE, aph(2″-IIIa, aph(3′-IIIa, and tet(O genes. Comparative genomic analysis identified identical erm(B sequences among Campylobacter from turkeys, Streptococcus suis from pigs and Enterococcus faecium and Clostridium difficile from humans. This is consistent with multiple horizontal transfer events among different bacterial species colonizing turkeys. This example highlights the potential for dissemination of antimicrobial resistance across bacterial species boundaries which may compromise their effectiveness in antimicrobial therapy.

  20. A bimetallic nanocomposite modified genosensor for recognition and determination of thalassemia gene.

    Science.gov (United States)

    Hamidi-Asl, Ezat; Raoof, Jahan Bakhsh; Naghizadeh, Nahid; Akhavan-Niaki, Haleh; Ojani, Reza; Banihashemi, Ali

    2016-10-01

    The main roles of DNA in the cells are to maintain and properly express genetic information. It is important to have analytical methods capable of fast and sensitive detection of DNA damage. DNA hybridization sensors are well suited for diagnostics and other purposes, including determination of bacteria and viruses. Beta thalassemias (βth) are due to mutations in the β-globin gene. In this study, an electrochemical biosensor which detects the sequences related to the β-globin gene issued from real samples amplified by polymerase chain reaction (PCR) is described for the first time. The biosensor relies on the immobilization of 20-mer single stranded oligonucleotide (probe) related to βth sequence on the carbon paste electrode (CPE) modified by 15% silver (Ag) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode and hybridization of this oligonucleotide with its complementary sequence (target). The extent of hybridization between the probe and target sequences was shown by using linear sweep voltammetry (LSV) with methylene blue (MB) as hybridization indicator. The selectivity of sensor was investigated using PCR samples containing non-complementary oligonucleotides. The detection limit of biosensor was calculated about 470.0pg/μL. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of gene silencing of CypB on gastric cancer cells.

    Science.gov (United States)

    Guo, Feng; Zhang, Ying; Zhao, Chun-Na; Li, Lin; Guo, Yan-Jun

    2015-04-01

    To determine the effect of gene silencing of cyclophilin B (CypB) on growth and proliferation of gastric cancer cells. CypB siRNA lentivirus (LV-CypB-si) and control lentivirus (LV-si-con) were produced. CypB expression in gastric cancer cell lines was detected by Western blot. BGC823 and SGC7901 cells were chosen to be infected with LV-si-con and LV-CypB-si, and stable transfectants were isolated. The cell groups transfected with LV-CypB-siRNA, LV-siRNA-con and transfected no carrier were served as the experimental group, the implicit control group and the blank control group respectively. MTT and colony formation assays were used to examine the effect of CypB on the cell growth and proliferation in vitro. Cell cycle was analyzed with flow cytometry. The expression of VEGFR of BGC823-si and SGC7901-si was detected by Western blot. Gene silencing of CypB can inhibit gastric cancer cell growth, proliferation, cell cycle progress and tumorigenesis. CypB expression level was obviously higher in SGC7901 and BGC823 than MKN28 and GES. These two cell lines were infected with LV-si-con and LV-CypB-si respectively. MTT and cloney formation assays showed a significantly decreased rate of cell proliferation from the forth day or the fifth day in cells transfected with LV-CypB-si (PCypB resulted in slightly decreased percentage of S phase and increased percentage of G1 (PCypB could promote the G1-S transition of gastric cancer cell. In addition, the expression of VEGF of BGC823 and SGC7901 transfected with CypB siRNA was reduced in comparison with the implicit control group and the blank control group. Gene silencing of CypB decreases gastric cancer cells proliferation and in vivo tumorigenesis. These findings indiccate CypB could be a potential biomarker and therapeutic target for gastric cancer. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  2. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Schembri, Mark A.; Sweet, Matthew J.

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  3. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  4. Loss of Major DNase I Hypersensitive Sites in Duplicatedglobin Gene Cluster Incompletely Silences HBB Gene Expression

    Czech Academy of Sciences Publication Activity Database

    Reading, N. S.; Shooter, C.; Song, J.; Miller, R.; Agarwal, A.; Láníková, Lucie; Clark, B.; Thein, S.L.; Divoký, V.; Prchal, J.T.

    2016-01-01

    Roč. 37, č. 11 (2016), s. 1153-1156 ISSN 1059-7794 R&D Projects: GA MŠk(CZ) LH15223 Institutional support: RVO:68378050 Keywords : globin genes * regulation * sickle cell disease * HBB duplication Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.601, year: 2016

  5. Hemoglobin alpha 2 gene +861 G>A polymorphism in Turkish ...

    African Journals Online (AJOL)

    Dilay Ciglidag Dungul

    carrying individuals with intact beta globin gene. DNA was extracted from peripheral blood sam- ples of seven healthy carrier individuals who have abnormal hemoglobin variants and 16 control individuals from Turkey. Complete coding and intronic sequences of HBA1 and HBA2 genes were amplified by polymerase chain ...

  6. B-chromosome effects on Hsp70 gene expression does not occur at transcriptional level in the grasshopper Eyprepocnemis plorans.

    Science.gov (United States)

    Navarro-Domínguez, Beatriz; Cabrero, Josefa; Camacho, Juan Pedro M; López-León, María Dolores

    2016-10-01

    As intragenomic parasites, B chromosomes can elicit stress in the host genome, thus inducing a response for host adaptation to this kind of continuous parasitism. In the grasshopper Eyprepocnemis plorans, B-chromosome presence has been previously associated with a decrease in the amount of the heat-shock protein 70 (HSP70). To investigate whether this effect is already apparent at transcriptional level, we analyze the expression levels of the Hsp70 gene in gonads and somatic tissues of males and females with and without B chromosomes from two populations, where the predominant B chromosome variants (B2 and B24) exhibit different levels of parasitism, by means of quantitative real-time PCR (qPCR) on complementary DNA (cDNA). The results revealed the absence of significant differences for Hsp70 transcripts associated with B-chromosome presence in virtually all samples. This indicates that the decrease in HSP70 protein levels, formerly reported in this species, may not be a consequence of transcriptional down-regulation of Hsp70 genes, but the result of post-transcriptional regulation. These results will help to design future studies oriented to identifying factors modulating Hsp70 expression, and will also contribute to uncover the biological role of B chromosomes in eukaryotic genomes.

  7. Cellular promoters incorporated into the adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and beta-globin promoters.

    OpenAIRE

    Babiss, L E; Friedman, J M; Darnell, J E

    1986-01-01

    In the accompanying paper (Friedman et al., Mol. Cell. Biol. 6:3791-3797, 1986), hepatoma-specific expression of the rat albumin promoter within the adenovirus genome was demonstrated. However, the rate of transcription was very low compared with that of the endogenous chromosomal albumin gene. Here we show that in hepatoma cells the adenovirus E1A enhancer, especially in the presence of E1A protein, greatly stimulates transcription from the albumin promoter but not the mouse beta-globin prom...

  8. Testing local host adaptation and phenotypic plasticity in a herbivore when alternative related host plants occur sympatrically.

    Directory of Open Access Journals (Sweden)

    Lorena Ruiz-Montoya

    Full Text Available Host race formation in phytophagous insects can be an early stage of adaptive speciation. However, the evolution of phenotypic plasticity in host use is another possible outcome. Using a reciprocal transplant experiment we tested the hypothesis of local adaptation in the aphid Brevicoryne brassicae. Aphid genotypes derived from two sympatric host plants, Brassica oleracea and B. campestris, were assessed in order to measure the extent of phenotypic plasticity in morphological and life history traits in relation to the host plants. We obtained an index of phenotypic plasticity for each genotype. Morphological variation of aphids was summarized by principal components analysis. Significant effects of recipient host on morphological variation and life history traits (establishment, age at first reproduction, number of nymphs, and intrinsic growth rate were detected. We did not detected genotype × host plant interaction; in general the genotypes developed better on B. campestris, independent of the host plant species from which they were collected. Therefore, there was no evidence to suggest local adaptation. Regarding plasticity, significant differences among genotypes in the index of plasticity were detected. Furthermore, significant selection on PC1 (general aphid body size on B. campestris, and on PC1 and PC2 (body length relative to body size on B. oleracea was detected. The elevation of the reaction norm of PC1 and the slope of the reaction norm for PC2 (i.e., plasticity were under directional selection. Thus, host plant species constitute distinct selective environments for B. brassicae. Aphid genotypes expressed different phenotypes in response to the host plant with low or nil fitness costs. Phenotypic plasticity and gene flow limits natural selection for host specialization promoting the maintenance of genetic variation in host exploitation.

  9. Hepatitis B virus DNA integration and transactivation of cellular genes

    Directory of Open Access Journals (Sweden)

    Vijay Kumar

    2007-02-01

    Full Text Available

    Chronic hepatitis B virus (HBV infection is etiologically related to human hepatocellular carcinoma (HCC. Most HCCs contain integrated HBV DNA in hepatocyte, suggesting that the integration may be involved in carcinogenesis. Available data on the integrants from human hepatocellular carcinomas seem to represent primary integrants as well as the products of secondary rearrangements. By means of structural analyses of the possible primary integrants, it has been observed that the replication intermediates of the viral genome are the preferred substrates for integration. The integrated HBV DNA and the target cellular DNA are invariably associated with deletions, possibly reflecting the substrate for, and the mechanism of, the integration reaction. The host DNA sequences as well as the target site of integration in chromosomes are selected randomly suggesting that HBV DNA integration should bring about random mutagenic effects. Analysis of the samples recovered from hepatocellular carcinomas show that the integrated HBV DNA can mediate secondary rearrangements of chromosomes, such as translocations, inversions, deletions and (possibly amplifications. The integration of HBV DNA into the host genome occurs at early steps of clonal tumor expansion. The integration has been shown in a number of cases to affect a variety of cancer-related genes and to exert insertional mutagenesis. However, in contrast to the woodchuck model, in which specific HBV-DNA integration is detectable in most cases, insertional activation or inactivation of cellular genes appears to be a rare event in man. The discovery of transactivating functions exerted by HBx and truncated HBs(urface proteins supports the notion that these could be relevant to hepatocarcinogenesis as these transactivator sequences have been found in a large number of HCC tumors or hepatoma-derived cell lines. The HBx

  10. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction.

    Science.gov (United States)

    Jackson, Andrew P; Otto, Thomas D; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B; Moussa, Ehab; Nair, Mridul; Reid, Adam J; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A; Weir, William; Wastling, Jonathan M; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R; Pain, Arnab

    2014-06-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5' ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Hb H disease resulting from the association of an αº-thalassemia allele [-(α20.5] with an unstable α-globin variant [Hb Icaria]: first report on the occurrence in Brazil

    Directory of Open Access Journals (Sweden)

    Elza M. Kimura

    2009-01-01

    Full Text Available Hb H Disease is caused by the loss or inactivation of three of the four functional a-globin genes. Patients present chronic hemolytic anemia and splenomegaly. In some cases, occasional blood transfusions are required. Deletions are the main cause of this type of thalassemia (α-thalassemia. We describe here an unusual case of Hb H disease caused by the combination of a common αº deletion [-(α20.5] with a rare point mutation (c.427T > A, thus resulting in an elongated and unstable α-globin variant, Hb Icaria, (X142K, with 31 additional amino-acid residues. Very high levels of Hb H and Hb Bart's were detected in the patient's red blood cells (14.7 and 19.0%, respectively. This is the first description of this infrequent association in the Brazilian population.

  12. Hemoglobin alpha 2 gene +861 G>A polymorphism in Turkish ...

    African Journals Online (AJOL)

    Thalassemia is an inherited blood disorder which is divided into two groups: alpha and beta. HBA1 and HBA2 are the two genes associated with alpha thalassemia. The aim of this study is to investigate abnormal hemoglobin variants of alpha globin gene in healthy abnormal hemoglobin carrying individuals with intact beta ...

  13. Schistosoma mansoni mucin gene (SmPoMuc expression: epigenetic control to shape adaptation to a new host.

    Directory of Open Access Journals (Sweden)

    Cecile Perrin

    Full Text Available The digenetic trematode Schistosoma mansoni is a human parasite that uses the mollusc Biomphalaria glabrata as intermediate host. Specific S. mansoni strains can infect efficiently only certain B. glabrata strains (compatible strain while others are incompatible. Strain-specific differences in transcription of a conserved family of polymorphic mucins (SmPoMucs in S. mansoni are the principle determinants for this compatibility. In the present study, we investigated the bases of the control of SmPoMuc expression that evolved to evade B. glabrata diversified antigen recognition molecules. We compared the DNA sequences and chromatin structure of SmPoMuc promoters of two S. mansoni strains that are either compatible (C or incompatible (IC with a reference snail host. We reveal that although sequence differences are observed between active promoter regions of SmPoMuc genes, the sequences of the promoters are not diverse and are conserved between IC and C strains, suggesting that genetics alone cannot explain the evolution of compatibility polymorphism. In contrast, promoters carry epigenetic marks that are significantly different between the C and IC strains. Moreover, we show that modifications of the structure of the chromatin of the parasite modify transcription of SmPoMuc in the IC strain compared to the C strain and correlate with the presence of additional combinations of SmPoMuc transcripts only observed in the IC phenotype. Our results indicate that transcription polymorphism of a gene family that is responsible for an important adaptive trait of the parasite is epigenetically encoded. These strain-specific epigenetic marks are heritable, but can change while the underlying genetic information remains stable. This suggests that epigenetic changes may be important for the early steps in the adaptation of pathogens to new hosts, and might be an initial step in adaptive evolution in general.

  14. Molecular basis for nondeletion alpha-thalassemia in American blacks. Alpha 2(116GAG----UAG).

    OpenAIRE

    Liebhaber, S A; Coleman, M B; Adams, J G; Cash, F E; Steinberg, M H

    1987-01-01

    An American black woman was found to have the phenotype of moderately severe alpha-thalassemia normally associated with the loss of two to three alpha-globin genes despite an alpha-globin gene map that demonstrated the loss of only a single alpha-globin gene (-alpha/alpha alpha). Several individuals in her kindred with normal alpha-globin gene mapping studies (alpha alpha/alpha alpha) had mild alpha-thalassemia hematologic values consistent with the loss of one to two alpha-globin genes. Thes...

  15. E1B-55K mediated regulation of RNF4 STUbL promotes HAdV gene expression.

    Science.gov (United States)

    Müncheberg, Sarah; Hay, Ron T; Ip, Wing H; Meyer, Tina; Weiß, Christina; Brenke, Jara; Masser, Sawinee; Hadian, Kamyar; Dobner, Thomas; Schreiner, Sabrina

    2018-04-25

    HAdV E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in non-permissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 Ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established.RNF4, a cellular SUMO-targeted Ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM, and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNAi resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies. IMPORTANCE Daxx is a PML-NB-associated transcription factor, which was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 Ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain productive viral life

  16. In vivo immunologic selection of class I major histocompatibility complex gene deletion variants from the B16-BL6 melanoma.

    Science.gov (United States)

    Talmadge, J E; Talmadge, C B; Zbar, B; McEwen, R; Meeker, A K; Tribble, H

    1987-06-01

    The mechanism by which tumor allografts escape host immunologic attack was investigated. B16-BL6 cells (the bladder 6 subline of the B16 melanoma) (H-2b) were transfected with a gene (Dd) encoding an allogeneic class I major histocompatibility complex antigen. Clones that expressed Dd antigen were injected into the footpads of nonimmune syngeneic mice, syngeneic immune mice, and nude mice. Under conditions of immunologic selection a clone that contained multiple copies of the transfected gene formed variants that lacked the transfected gene. Primary tumors and pulmonary metastases of immunized mice and pulmonary metastases of nonimmunized mice had lost the Dd gene and, in most cases, all of the associated plasmid. In contrast, in immunodeficient nude mice, primary tumors and pulmonary metastases retained the Dd gene and the associated plasmid. Deletion of genes encoding cell surface antigens may be one of the mechanisms by which allogeneic tumors escape immunologic attack.

  17. Relationship of interleukin-1B gene promoter region polymorphism with Helicobacter pylori infection and gastritis.

    Science.gov (United States)

    Ramis, Ivy Bastos; Vianna, Júlia Silveira; Halicki, Priscila Cristina Bartolomeu; Lara, Caroline; Tadiotto, Thássia Fernanda; da Silva Maciel, João Batista; Gonçalves, Carla Vitola; von Groll, Andrea; Dellagostin, Odir Antônio; da Silva, Pedro Eduardo Almeida

    2015-09-29

    Helicobacter pylori infection is associated with gastritis, peptic ulcer disease and gastric carcinoma. The severity of damage is determined by the interplay between environmental/behavioral factors, bacterial pathogenicity genes and host genetic polymorphisms that can influence the secretion levels of inflammatory cytokines. Accordingly, this study aimed to identify polymorphisms in the IL-1B and IL-1RN genes and their associations with H. pylori infection, cagA gene of H. pylori, and gastroduodenal diseases. Gastric biopsy samples from 151 patients infected with H. pylori and 76 uninfected individuals were analyzed. H. pylori infection was diagnosed by histology and PCR. Polymorphisms at positions -511, -31 and +3954 of the IL-1B gene were detected by PCR-RFLP, and an analysis of the VNTR polymorphism of the IL-1RN gene was performed by PCR. It was observed that the presence of the T/T genotype at position -511 and the C/C genotype at position -31 were associated with H. pylori infection and with an increased risk of gastritis in H. pylori-positive patients. Additionally, strains from patients H. pylori-positive carrying the cagA gene was significantly related with the T/T genotype at position -511 of IL-1B.  No association of polymorphisms at position +3954 of IL-1B and in the IL-1RN with H. pylori infection and with risk of severe gastric diseases was found. We demonstrated that polymorphisms in the promoter region of the IL-1B gene (at positions -511 and -31) are associated with an enhanced risk of H. pylori infection as well as gastritis in H. pylori-positive patients.

  18. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Zhou Xuguo

    2009-10-01

    Full Text Available Abstract Background Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i a host gut cDNA library and (ii a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. Results Over 10,000 expressed sequence tags (ESTs were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450. Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. Conclusion To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort

  19. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    Science.gov (United States)

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  20. Toxicity of the bacteriophage λ cII gene product to Escherichia coli arises from inhibition of host cell DNA replication

    International Nuclear Information System (INIS)

    Kedzierska, Barbara; Glinkowska, Monika; Iwanicki, Adam; Obuchowski, Michal; Sojka, Piotr; Thomas, Mark S.; Wegrzyn, Grzegorz

    2003-01-01

    The bacteriophage λ cII gene codes for a transcriptional activator protein which is a crucial regulator at the stage of the 'lysis-versus-lysogeny' decision during phage development. The CII protein is highly toxic to the host, Escherichia coli, when overproduced. However, the molecular mechanism of this toxicity is not known. Here we demonstrate that DNA synthesis, but not total RNA synthesis, is strongly inhibited in cII-overexpressing E. coli cells. The toxicity was also observed when the transcriptional stimulator activity of CII was abolished either by a point mutation in the cII gene or by a point mutation, rpoA341, in the gene coding for the RNA polymerase α subunit. Moreover, inhibition of cell growth, caused by both wild-type and mutant CII proteins in either rpoA + or rpoA341 hosts, could be relieved by overexpression of the E. coli dnaB and dnaC genes. In vitro replication of an oriC-based plasmid DNA was somewhat impaired by the presence of the CII, and several CII-resistant E. coli strains contain mutations near dnaC. We conclude that the DNA replication machinery may be a target for the toxic activity of CII

  1. A Survey of ABO, Rhesus (D) Antigen and Haemoglobin Genes ...

    African Journals Online (AJOL)

    olayemitoyin

    transporting the bound oxygen throughout the body where it is used in ... the globin genes that alter the protein composition but not necessarily ... oxygen carrying capacity and hence the rate of aerobic metabolic ... to participate in the exercise.

  2. Evolution of the HIV-1 nef gene in HLA-B*57 Positive Elite Suppressors

    Directory of Open Access Journals (Sweden)

    Siliciano Robert F

    2010-11-01

    Full Text Available Abstract Elite controllers or suppressors (ES are HIV-1 infected patients who maintain viral loads of gag and nef in HLA-B*57 positive ES. We previously showed evolution in the gag gene of ES which surprisingly was mostly due to synonymous mutations rather than non-synonymous mutation in targeted CTL epitopes. This finding could be the result of structural constraints on Gag, and we therefore examined the less conserved nef gene. We found slow evolution of nef in plasma virus in some ES. This evolution is mostly due to synonymous mutations and occurs at a rate similar to that seen in the gag gene in the same patients. The results provide further evidence of ongoing viral replication in ES and suggest that the nef and gag genes in these patients respond similarly to selective pressure from the host.

  3. Prediction of graft-versus-host disease in humans by donor gene-expression profiling.

    Directory of Open Access Journals (Sweden)

    Chantal Baron

    2007-01-01

    Full Text Available BACKGROUND: Graft-versus-host disease (GVHD results from recognition of host antigens by donor T cells following allogeneic hematopoietic cell transplantation (AHCT. Notably, histoincompatibility between donor and recipient is necessary but not sufficient to elicit GVHD. Therefore, we tested the hypothesis that some donors may be "stronger alloresponders" than others, and consequently more likely to elicit GVHD. METHODS AND FINDINGS: To this end, we measured the gene-expression profiles of CD4(+ and CD8(+ T cells from 50 AHCT donors with microarrays. We report that pre-AHCT gene-expression profiling segregates donors whose recipient suffered from GVHD or not. Using quantitative PCR, established statistical tests, and analysis of multiple independent training-test datasets, we found that for chronic GVHD the "dangerous donor" trait (occurrence of GVHD in the recipient is under polygenic control and is shaped by the activity of genes that regulate transforming growth factor-beta signaling and cell proliferation. CONCLUSIONS: These findings strongly suggest that the donor gene-expression profile has a dominant influence on the occurrence of GVHD in the recipient. The ability to discriminate strong and weak alloresponders using gene-expression profiling could pave the way to personalized transplantation medicine.

  4. Differential gene expression in Varroa jacobsoni mites following a host shift to European honey bees (Apis mellifera).

    Science.gov (United States)

    Andino, Gladys K; Gribskov, Michael; Anderson, Denis L; Evans, Jay D; Hunt, Greg J

    2016-11-16

    Varroa mites are widely considered the biggest honey bee health problem worldwide. Until recently, Varroa jacobsoni has been found to live and reproduce only in Asian honey bee (Apis cerana) colonies, while V. destructor successfully reproduces in both A. cerana and A. mellifera colonies. However, we have identified an island population of V. jacobsoni that is highly destructive to A. mellifera, the primary species used for pollination and honey production. The ability of these populations of mites to cross the host species boundary potentially represents an enormous threat to apiculture, and is presumably due to genetic variation that exists among populations of V. jacobsoni that influences gene expression and reproductive status. In this work, we investigate differences in gene expression between populations of V. jacobsoni reproducing on A. cerana and those either reproducing or not capable of reproducing on A. mellifera, in order to gain insight into differences that allow V. jacobsoni to overcome its normal species tropism. We sequenced and assembled a de novo transcriptome of V. jacobsoni. We also performed a differential gene expression analysis contrasting biological replicates of V. jacobsoni populations that differ in their ability to reproduce on A. mellifera. Using the edgeR, EBSeq and DESeq R packages for differential gene expression analysis, we found 287 differentially expressed genes (FDR ≤ 0.05), of which 91% were up regulated in mites reproducing on A. mellifera. In addition, mites found reproducing on A. mellifera showed substantially more variation in expression among replicates. We searched for orthologous genes in public databases and were able to associate 100 of these 287 differentially expressed genes with a functional description. There is differential gene expression between the two mite groups, with more variation in gene expression among mites that were able to reproduce on A. mellifera. A small set of genes showed reduced

  5. Development of a gene silencing DNA vector derived from a broad host range geminivirus

    Directory of Open Access Journals (Sweden)

    Hancock Leandria C

    2009-07-01

    Full Text Available Abstract Background Gene silencing is proving to be a powerful tool for genetic, developmental, and physiological analyses. The use of viral induced gene silencing (VIGS offers advantages to transgenic approaches as it can be potentially applied to non-model systems for which transgenic techniques are not readily available. However, many VIGS vectors are derived from Gemini viruses that have limited host ranges. We present a new, unipartite vector that is derived from a curtovirus that has a broad host range and will be amenable to use in many non-model systems. Results The construction of a gene silencing vector derived from the geminivirus Beet curly top virus (BCTV, named pWSRi, is reported. Two versions of the vector have been developed to allow application by biolistic techniques or by agro-infiltration. We demonstrate its ability to silence nuclear genes including ribulose bisphosphate carboxylase small subunit (rbcS, transketolase, the sulfur allele of magnesium chelatase (ChlI, and two homeotic transcription factors in spinach or tomato by generating gene-specific knock-down phenotypes. Onset of phenotypes occurred 3 to 12 weeks post-inoculation, depending on the target gene, in organs that developed after the application. The vector lacks movement genes and we found no evidence for significant spread from the site of inoculation. However, viral amplification in inoculated tissue was detected and is necessary for systemic silencing, suggesting that signals generated from active viral replicons are efficiently transported within the plant. Conclusion The unique properties of the pWSRi vector, the ability to silence genes in meristem tissue, the separation of virus and silencing phenotypes, and the broad natural host range of BCTV, suggest that it will have wide utility.

  6. Biochemical Characterization of Echinococcus multilocularis Antigen B3 Reveals Insight into Adaptation and Maintenance of Parasitic Homeostasis at the Host-Parasite Interface.

    Science.gov (United States)

    Ahn, Chun-Seob; Kim, Jeong-Geun; Han, Xiumin; Bae, Young-An; Park, Woo-Jae; Kang, Insug; Wang, Hu; Kong, Yoon

    2017-02-03

    Alveolar echinococcosis (AE) caused by Echinococcus multilocularis metacestode is frequently associated with deleterious zoonotic helminthiasis. The growth patterns and morphological features of AE, such as invasion of the liver parenchyme and multiplication into multivesiculated masses, are similar to those of malignant tumors. AE has been increasingly detected in several regions of Europe, North America, Central Asia, and northwestern China. An isoform of E. multilocularis antigen B3 (EmAgB3) shows a specific immunoreactivity against patient sera of active-stage AE, suggesting that EmAgB3 might play important roles during adaptation of the parasite to hosts. However, expression patterns and biochemical properties of EmAgB3 remained elusive. The protein profile and nature of component proteins of E. multilocularis hydatid fluid (EmHF) have never been addressed. In this study, we conducted proteome analysis of EmHF of AE cysts harvested from immunocompetent mice. We observed the molecular and biochemical properties of EmAgB3, including differential transcription patterns of paralogous genes, macromolecular protein status by self-assembly, distinct oligomeric states according to individual anatomical compartments of the worm, and hydrophobic ligand-binding protein activity. We also demonstrated tissue expression patterns of EmAgB3 transcript and protein. EmAgB3 might participate in immune response and recruitment of essential host lipids at the host-parasite interface. Our results might contribute to an in depth understanding of the biophysical and biological features of EmAgB3, thus providing insights into the design of novel targets to control AE.

  7. Epigenetic interplay between mouse endogenous retroviruses and host genes.

    Science.gov (United States)

    Rebollo, Rita; Miceli-Royer, Katharine; Zhang, Ying; Farivar, Sharareh; Gagnier, Liane; Mager, Dixie L

    2012-10-03

    Transposable elements are often the targets of repressive epigenetic modifications such as DNA methylation that, in theory, have the potential to spread toward nearby genes and induce epigenetic silencing. To better understand the role of DNA methylation in the relationship between transposable elements and genes, we assessed the methylation state of mouse endogenous retroviruses (ERVs) located near genes. We found that ERVs of the ETn/MusD family show decreased DNA methylation when near transcription start sites in tissues where the nearby gene is expressed. ERVs belonging to the IAP family, however, are generally heavily methylated, regardless of the genomic environment and the tissue studied. Furthermore, we found full-length ETn and IAP copies that display differential DNA methylation between their two long terminal repeats (LTRs), suggesting that the environment surrounding gene promoters can prevent methylation of the nearby LTR. Spreading from methylated ERV copies to nearby genes was rarely observed, with the regions between the ERVs and genes apparently acting as a boundary, enriched in H3K4me3 and CTCF, which possibly protects the unmethylated gene promoter. Furthermore, the flanking regions of unmethylated ERV copies harbor H3K4me3, consistent with spreading of euchromatin from the host gene toward ERV insertions. We have shown that spreading of DNA methylation from ERV copies toward active gene promoters is rare. We provide evidence that genes can be protected from ERV-induced heterochromatin spreading by either blocking the invasion of repressive marks or by spreading euchromatin toward the ERV copy.

  8. A global RNA-seq-driven analysis of CHO host and production cell lines reveals distinct differential expression patterns of genes contributing to recombinant antibody glycosylation.

    Science.gov (United States)

    Könitzer, Jennifer D; Müller, Markus M; Leparc, Germán; Pauers, Martin; Bechmann, Jan; Schulz, Patrick; Schaub, Jochen; Enenkel, Barbara; Hildebrandt, Tobias; Hampel, Martin; Tolstrup, Anne B

    2015-09-01

    Boehringer Ingelheim uses two CHO-DG44 lines for manufacturing biotherapeutics, BI-HEX-1 and BI-HEX-2, which produce distinct cell type-specific antibody glycosylation patterns. A recently established CHO-K1 descended host, BI-HEX-K1, generates antibodies with glycosylation profiles differing from CHO-DG44. Manufacturing process development is significantly influenced by these unique profiles. To investigate the underlying glycosylation related gene expression, we leveraged our CHO host and production cell RNA-seqtranscriptomics and product quality database together with the CHO-K1 genome. We observed that each BI-HEX host and antibody producing cell line has a unique gene expression fingerprint. CHO-DG44 cells only transcribe Fut10, Gfpt2 and ST8Sia6 when expressing antibodies. BI-HEX-K1 cells express ST8Sia6 at host cell level. We detected a link between BI-HEX-1/BI-HEX-2 antibody galactosylation and mannosylation and the gene expression of the B4galt gene family and genes controlling mannose processing. Furthermore, we found major differences between the CHO-DG44 and CHO-K1 lineages in the expression of sialyl transferases and enzymes synthesizing sialic acid precursors, providing a rationale for the lack of immunogenic NeuGc/NGNA synthesis in CHO. Our study highlights the value of systems biotechnology to understand glycoprotein synthesis and product glycoprofiles. Such data improve future production clone selection and process development strategies for better steering of biotherapeutic product quality. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Virulence Genotyping of Pasteurella multocida Isolated from Multiple Hosts from India

    Directory of Open Access Journals (Sweden)

    Laxmi Narayan Sarangi

    2014-01-01

    Full Text Available In this study, 108 P. multocida isolates recovered from various host animals such as cattle, buffalo, swine, poultry (chicken, duck, and emu and rabbits were screened for carriage of 8 virulence associated genes. The results revealed some unique information on the prevalence of virulence associated genes among Indian isolates. With the exception of toxA gene, all other virulence associated genes were found to be regularly distributed among host species. Association study between capsule type and virulence genes suggested that pfhA, nanB, and nanH genes were regularly distributed among all serotypes with the exception of CapD, whereas toxA gene was found to be positively associated with CapD and CapA. The frequency of hgbA and nanH genes among swine isolates of Indian origin was found to be less in comparison to its equivalents around the globe. Interestingly, very high prevalence of tbpA gene was observed among poultry, swine, and rabbit isolates. Likewise, very high prevalence of pfhA gene (95.3% was observed among Indian isolates, irrespective of host species origin.

  10. Virulence genotyping of Pasteurella multocida isolated from multiple hosts from India.

    Science.gov (United States)

    Sarangi, Laxmi Narayan; Priyadarshini, Adyasha; Kumar, Santosh; Thomas, Prasad; Gupta, Santosh Kumar; Nagaleekar, Viswas Konasagara; Singh, Vijendra Pal

    2014-01-01

    In this study, 108 P. multocida isolates recovered from various host animals such as cattle, buffalo, swine, poultry (chicken, duck, and emu) and rabbits were screened for carriage of 8 virulence associated genes. The results revealed some unique information on the prevalence of virulence associated genes among Indian isolates. With the exception of toxA gene, all other virulence associated genes were found to be regularly distributed among host species. Association study between capsule type and virulence genes suggested that pfhA, nanB, and nanH genes were regularly distributed among all serotypes with the exception of CapD, whereas toxA gene was found to be positively associated with CapD and CapA. The frequency of hgbA and nanH genes among swine isolates of Indian origin was found to be less in comparison to its equivalents around the globe. Interestingly, very high prevalence of tbpA gene was observed among poultry, swine, and rabbit isolates. Likewise, very high prevalence of pfhA gene (95.3%) was observed among Indian isolates, irrespective of host species origin.

  11. The amino acid sequences of two alpha chains of hemoglobins from Komodo dragon Varanus komodoensis and phylogenetic relationships of amniotes.

    Science.gov (United States)

    Fushitani, K; Higashiyama, K; Moriyama, E N; Imai, K; Hosokawa, K

    1996-09-01

    To elucidate phylogenetic relationships among amniotes and the evolution of alpha globins, hemoglobins were analyzed from the Komodo dragon (Komodo monitor lizard) Varanus komodoensis, the world's largest extant lizard, inhabiting Komodo Islands, Indonesia. Four unique globin chains (alpha A, alpha D, beta B, and beta C) were isolated in an equal molar ratio by high performance liquid chromatography from the hemolysate. The amino acid sequences of two alpha chains were determined. The alpha D chain has a glutamine at E7 as does an alpha chain of a snake, Liophis miliaris, but the alpha A chain has a histidine at E7 like the majority of hemoglobins. Phylogenetic analyses of 19 globins including two alpha chains of Komodo dragon and ones from representative amniotes showed the following results: (1) The a chains of squamates (snakes and lizards), which have a glutamine at E7, are clustered with the embryonic alpha globin family, which typically includes the alpha D chain from birds; (2) birds form a sister group with other reptiles but not with mammals; (3) the genes for embryonic and adult types of alpha globins were possibly produced by duplication of the ancestral alpha gene before ancestral amniotes diverged, indicating that each of the present amniotes might carry descendants of the two types of alpha globin genes; (4) squamates first split off from the ancestor of other reptiles and birds.

  12. Molecular phylogeny of ateline new world monkeys (Platyrrhini, atelinae) based on gamma-globin gene sequences: evidence that brachyteles is the sister group of lagothrix.

    Science.gov (United States)

    Meireles, C M; Czelusniak, J; Schneider, M P; Muniz, J A; Brigido, M C; Ferreira, H S; Goodman, M

    1999-06-01

    Nucleotide sequences, each spanning approximately 7 kb of the contiguous gamma1 and gamma2 globin genomic loci, were determined for seven species representing all extant genera (Ateles, Lagothrix, Brachyteles, and Alouatta) of the New World monkey subfamily Atelinae. After aligning these seven ateline sequences with outgroup sequences from several other primate (non-ateline) genera, they were analyzed by maximum parsimony, maximum likelihood, and neighbor-joining algorithms. All three analyzes estimated the same phylogenetic relationships: [Alouatta [Ateles (Brachyteles, Lagothrix)

  13. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement

    Directory of Open Access Journals (Sweden)

    Gene A Morrill

    2016-09-01

    Full Text Available ABSTRACT: Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb; neuroglobin (Ngb; myoglobin (Mb; hemoglobin (Hb subunits Hba(α and Hbb(β] contain either a transmembrane (TM helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol-binding (CRAC/CARC domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba and pore-lining region (Hbb. The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, band 3, which contains a large internal cavity and 12 TM helices (5 being pore-lining regions. The Hba TM helix may be the erythrocyte membrane band 3 attachment site. Band 3 contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO movement within the large internal cavities and

  14. Microbiota-Induced Changes in Drosophila melanogaster Host Gene Expression and Gut Morphology

    Science.gov (United States)

    Buchon, Nicolas

    2014-01-01

    ABSTRACT To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. PMID:24865556

  15. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  16. Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera.

    Science.gov (United States)

    Saini, Ravi Prakash; Raman, Venkat; Dhandapani, Gurusamy; Malhotra, Era Vaidya; Sreevathsa, Rohini; Kumar, Polumetla Ananda; Sharma, Tilak R; Pattanayak, Debasis

    2018-01-01

    The polyphagous insect-pest, Helicoverpa armigera, is a serious threat to a number of economically important crops. Chemical application and/or cultivation of Bt transgenic crops are the two strategies available now for insect-pest management. However, environmental pollution and long-term sustainability are major concerns against these two options. RNAi is now considered as a promising technology to complement Bt to tackle insect-pests menace. In this study, we report host-delivered silencing of HaAce1 gene, encoding the predominant isoform of H. armigera acetylcholinesterase, by an artificial microRNA, HaAce1-amiR1. Arabidopsis pre-miRNA164b was modified by replacing miR164b/miR164b* sequences with HaAce1-amiR1/HaAce1-amiR1* sequences. The recombinant HaAce1-preamiRNA1 was put under the control of CaMV 35S promoter and NOS terminator of plant binary vector pBI121, and the resultant vector cassette was used for tobacco transformation. Two transgenic tobacco lines expressing HaAce1-amiR1 was used for detached leaf insect feeding bioassays. Larval mortality of 25% and adult deformity of 20% were observed in transgenic treated insect group over that control tobacco treated insect group. The reduction in the steady-state level of HaAce1 mRNA was 70-80% in the defective adults compared to control. Our results demonstrate promise for host-delivered amiRNA-mediated silencing of HaAce1 gene for H. armigera management.

  17. ribB and ribBA genes from Acidithiobacillus ferrooxidans: expression levels under different growth conditions and phylogenetic analysis.

    Science.gov (United States)

    Knegt, Fábio H P; Mello, Luciane V; Reis, Fernanda C; Santos, Marcos T; Vicentini, Renato; Ferraz, Lúcio F C; Ottoboni, Laura M M

    2008-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative, chemolithoautotrophic bacterium involved in metal bioleaching. Using the RNA arbitrarily primed polymerase chain reaction (RAP-PCR), we have identified several cDNAs that were differentially expressed when A. ferrooxidans LR was submitted to potassium- and phosphate-limiting conditions. One of these cDNAs showed similarity with ribB. An analysis of the A. ferrooxidans ATCC 23270 genome, made available by The Institute for Genomic Research, showed that the ribB gene was not located in the rib operon, but a ribBA gene was present in this operon instead. The ribBA gene was isolated from A. ferrooxidans LR and expression of both ribB and ribBA was investigated. Transcript levels of both genes were enhanced in cells grown in the absence of K2HPO4, in the presence of zinc and copper sulfate and in different pHs. Transcript levels decreased upon exposure to a temperature higher than the ideal 30 degrees C and at pH 1.2. A comparative genomic analysis using the A. ferrooxidans ATCC 23270 genome revealed similar putative regulatory elements for both genes. Moreover, an RFN element was identified upstream from the ribB gene. Phylogenetic analysis of the distribution of RibB and RibBA in bacteria showed six different combinations. We suggest that the presence of duplicated riboflavin synthesis genes in bacteria must provide their host with some benefit in certain stressful situations.

  18. Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence.

    Science.gov (United States)

    Sengupta, Isha; Das, Dipanwita; Singh, Shivaram Prasad; Chakravarty, Runu; Das, Chandrima

    2017-12-15

    Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  20. Estimating immunoregulatory gene networks in human herpesvirus type 6-infected T cells

    International Nuclear Information System (INIS)

    Takaku, Tomoiku; Ohyashiki, Junko H.; Zhang, Yu; Ohyashiki, Kazuma

    2005-01-01

    The immune response to viral infection involves complex network of dynamic gene and protein interactions. We present here the dynamic gene network of the host immune response during human herpesvirus type 6 (HHV-6) infection in an adult T-cell leukemia cell line. Using a pathway-focused oligonucleotide DNA microarray, we found a possible association between chemokine genes regulating Th1/Th2 balance and genes regulating T-cell proliferation during HHV-6B infection. Gene network analysis using an integrated comprehensive workbench, VoyaGene, revealed that a gene encoding a TEC-family kinase, ITK, might be a putative modulator in the host immune response against HHV-6B infection. We conclude that Th2-dominated inflammatory reaction in host cells may play an important role in HHV-6B-infected T cells, thereby suggesting the possibility that ITK might be a therapeutic target in diseases related to dysregulation of Th1/Th2 balance. This study describes a novel approach to find genes related with the complex host-virus interaction using microarray data employing the Bayesian statistical framework

  1. Human Herpesvirus 6B Induces Hypomethylation on Chromosome 17p13.3, Correlating with Increased Gene Expression and Virus Integration.

    Science.gov (United States)

    Engdahl, Elin; Dunn, Nicky; Niehusmann, Pitt; Wideman, Sarah; Wipfler, Peter; Becker, Albert J; Ekström, Tomas J; Almgren, Malin; Fogdell-Hahn, Anna

    2017-06-01

    Human herpesvirus 6B (HHV-6B) is a neurotropic betaherpesvirus that achieves latency by integrating its genome into host cell chromosomes. Several viruses can induce epigenetic modifications in their host cells, but no study has investigated the epigenetic modifications induced by HHV-6B. This study analyzed methylation with an Illumina 450K array, comparing HHV-6B-infected and uninfected Molt-3 T cells 3 days postinfection. Bisulfite pyrosequencing was used to validate the Illumina results and to investigate methylation over time in vitro Expression of genes was investigated using quantitative PCR (qPCR), and virus integration was investigated with PCR. A total of 406 CpG sites showed a significant HHV-6B-induced change in methylation in vitro Remarkably, 86% (351/406) of these CpGs were located integration in Molt-3 cell DNA 3 days after infection. The telomere at 17p has repeatedly been described as an integration site for HHV-6B, and we show for the first time that HHV-6B induces hypomethylation in this region during acute infection, which may play a role in the integration process, possibly by making the DNA more accessible. IMPORTANCE The ability to establish latency in the host is a hallmark of herpesviruses, but the mechanisms differ. Human herpesvirus 6B (HHV-6B) is known to establish latency through integration of its genome into the telomeric regions of host cells, with the ability to reactivate. Our study is the first to show that HHV-6B specifically induces hypomethylated regions close to the telomeres and that integrating viruses may use the host methylation machinery to facilitate their integration process. The results from this study contribute to knowledge of HHV-6B biology and virus-host interaction. This in turn will lead to further progress in our understanding of the underlying mechanisms by which HHV-6B contributes to pathological processes and may have important implications in both disease prevention and treatment. Copyright © 2017 American

  2. Complexities in human herpesvirus-6A and -6B binding to host cells

    International Nuclear Information System (INIS)

    Pedersen, Simon Metz; Hoellsberg, Per

    2006-01-01

    Human herpesvirus-6A and -6B uses the cellular receptor CD46 for fusion and infection of the host cell. The viral glycoprotein complex gH-gL from HHV-6A binds to the short consensus repeat 2 and 3 in CD46. Although all the major isoforms of CD46 bind the virus, certain isoforms may have higher affinity than others for the virus. Within recent years, elucidation of the viral complex has identified additional HHV-6A and -6B specific glycoproteins. Thus, gH-gL associates with a gQ1-gQ2 dimer to form a heterotetrameric complex. In addition, a novel complex consisting of gH-gL-gO has been described that does not bind CD46. Accumulating evidence suggests that an additional HHV-6A and -6B receptor exists. The previous simple picture of HHV-6A/B-host cell contact therefore includes more layers of complexities on both the viral and the host cell side of the interaction

  3. Expression of fully functional tetrameric human hemoglobin in Escherichia coli

    International Nuclear Information System (INIS)

    Hoffman, S.J.; Looker, D.L.; Roehrich, J.M.; Cozart, P.E.; Durfee, S.L.; Tedesco, J.L.; Stetler, G.L.

    1990-01-01

    Synthesis genes encoding the human α- and β-globin polypeptides have been expressed from a single operon in Escherichia coli. The α- and β-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to >5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of α- and β-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C 4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A 0 and comigrates with hemoglobin A 0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A 0 . The authors have also expressed the α- and β-globin genes separately and found that the expression of the α-globin gene alone results in a marked decrease in the accumulation of α-globin in the cell. Separate expression of the β-globin gene results in high levels of insoluble β-globin. These observations suggest that the presence of α- and β-globin in the same cell stabilizes α-globin and aids the correct folding of β-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein

  4. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Directory of Open Access Journals (Sweden)

    Sebastian Hannemann

    Full Text Available Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS, which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  5. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    Science.gov (United States)

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  6. Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution

    Science.gov (United States)

    Joop, Gerrit

    2018-01-01

    Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test for cross-resistance towards Bacillus thuringiensis and Pseudomonas entomophila in the red flour beetle Tribolium castaneum, which was previously allowed to coevolve with the generalist entomopathogenic fungus Beauveria bassiana. We combine survival and gene expression assays upon infection to test for cross-resistance and underlying mechanisms. We show that larvae of T. castaneum that evolved with B. bassiana under coevolutionary conditions were positively cross-resistant to the bacterium B. thuringiensis, but not P. entomophila. Positive cross-resistance was mirrored at the gene expression level with markers that were representative of the oral route of infection being upregulated upon B. bassiana exposure. We find that positive cross-resistance towards B. thuringiensis evolved in T. castaneum as a consequence of its coevolutionary interactions with B. bassiana. This cross-resistance appears to be a consequence of resistance to oral toxicity. The fact that coevolution with B. bassiana results in resistance to B. thuringiensis, but not P. entomophila implies that B. thuringiensis and B. bassiana may share mechanisms of infection or toxicity not shared by P. entomophila. This supports previous suggestions that B. bassiana may possess Cry-like toxins, similar to those found in B. thuringiensis, which allow it to infect orally. PMID:29495405

  7. Cross-Resistance: A Consequence of Bi-partite Host-Parasite Coevolution

    Directory of Open Access Journals (Sweden)

    Tilottama Biswas

    2018-02-01

    Full Text Available Host-parasite coevolution can influence interactions of the host and parasite with the wider ecological community. One way that this may manifest is in cross-resistance towards other parasites, which has been observed to occur in some host-parasite evolution experiments. In this paper, we test for cross-resistance towards Bacillus thuringiensis and Pseudomonas entomophila in the red flour beetle Tribolium castaneum, which was previously allowed to coevolve with the generalist entomopathogenic fungus Beauveria bassiana. We combine survival and gene expression assays upon infection to test for cross-resistance and underlying mechanisms. We show that larvae of T. castaneum that evolved with B. bassiana under coevolutionary conditions were positively cross-resistant to the bacterium B. thuringiensis, but not P. entomophila. Positive cross-resistance was mirrored at the gene expression level with markers that were representative of the oral route of infection being upregulated upon B. bassiana exposure. We find that positive cross-resistance towards B. thuringiensis evolved in T. castaneum as a consequence of its coevolutionary interactions with B. bassiana. This cross-resistance appears to be a consequence of resistance to oral toxicity. The fact that coevolution with B. bassiana results in resistance to B. thuringiensis, but not P. entomophila implies that B. thuringiensis and B. bassiana may share mechanisms of infection or toxicity not shared by P. entomophila. This supports previous suggestions that B. bassiana may possess Cry-like toxins, similar to those found in B. thuringiensis, which allow it to infect orally.

  8. Disease association with two Helicobacter pylori duplicate outer membrane protein genes, homB and homA.

    Science.gov (United States)

    Oleastro, Monica; Cordeiro, Rita; Yamaoka, Yoshio; Queiroz, Dulciene; Mégraud, Francis; Monteiro, Lurdes; Ménard, Armelle

    2009-06-22

    homB encodes a Helicobacter pylori outer membrane protein. This gene was previously associated with peptic ulcer disease (PUD) and was shown to induce activation of interleukin-8 secretion in vitro, as well as contributing to bacterial adherence. Its 90%-similar gene, homA, was previously correlated with gastritis. The present study aimed to evaluate the gastric disease association with homB and homA, as well as with the H. pylori virulence factors cagA, babA and vacA, in 415 H. pylori strains isolated from patients from East Asian and Western countries. The correlation among these genotypes was also evaluated. Both homB and homA genes were heterogeneously distributed worldwide, with a marked difference between East Asian and Western strains. In Western strains (n = 234, 124 PUD and 110 non-ulcer dyspepsia (NUD), homB, cagA and vacA s1 were all significantly associated with PUD (p = 0.025, p = 0.014, p = 0.039, respectively), and homA was closely correlated with NUD (p = 0.072). In East Asian strains (n = 138, 73 PUD and 65 NUD), homB was found more frequently than homA, and none of these genes was associated with the clinical outcome. Overall, homB was associated with the presence of cagA (p = 0.043) and vacA s1 (p homA was found more frequently in cagA-negative (p = 0.062) and vacA s2 (p homA copy number were observed, with a clear geographical specificity, suggesting an involvement of these genes in host adaptation. A correlation between the homB two-copy genotype and PUD was also observed, emphasizing the role of homB in the virulence of the strain. The global results suggest that homB and homA contribute to the determination of clinical outcome.

  9. Factor IX gene haplotypes in Amerindians.

    Science.gov (United States)

    Franco, R F; Araújo, A G; Zago, M A; Guerreiro, J F; Figueiredo, M S

    1997-02-01

    We have determined the haplotypes of the factor IX gene for 95 Indians from 5 Brazilian Amazon tribes: Wayampí, Wayana-Apalaí, Kayapó, Arára, and Yanomámi. Eight polymorphisms linked to the factor IX gene were investigated: MseI (at 5', nt -698), BamHI (at 5', nt -561), DdeI (intron 1), BamHI (intron 2), XmnI (intron 3), TaqI (intron 4), MspI (intron 4), and HhaI (at 3', approximately 8 kb). The results of the haplotype distribution and the allele frequencies for each of the factor IX gene polymorphisms in Amerindians were similar to the results reported for Asian populations but differed from results for other ethnic groups. Only five haplotypes were identified within the entire Amerindian study population, and the haplotype distribution was significantly different among the five tribes, with one (Arára) to four (Wayampí) haplotypes being found per tribe. These findings indicate a significant heterogeneity among the Indian tribes and contrast with the homogeneous distribution of the beta-globin gene cluster haplotypes but agree with our recent findings on the distribution of alpha-globin gene cluster haplotypes and the allele frequencies for six VNTRs in the same Amerindian tribes. Our data represent the first study of factor IX-associated polymorphisms in Amerindian populations and emphasizes the applicability of these genetic markers for population and human evolution studies.

  10. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  11. Host-selective toxins of Pyrenophora tritici-repentis induce common responses associated with host susceptibility.

    Directory of Open Access Journals (Sweden)

    Iovanna Pandelova

    Full Text Available Pyrenophora tritici-repentis (Ptr, a necrotrophic fungus and the causal agent of tan spot of wheat, produces one or a combination of host-selective toxins (HSTs necessary for disease development. The two most studied toxins produced by Ptr, Ptr ToxA (ToxA and Ptr ToxB (ToxB, are proteins that cause necrotic or chlorotic symptoms respectively. Investigation of host responses induced by HSTs provides better insight into the nature of the host susceptibility. Microarray analysis of ToxA has provided evidence that it can elicit responses similar to those associated with defense. In order to evaluate whether there are consistent host responses associated with susceptibility, a similar analysis of ToxB-induced changes in the same sensitive cultivar was conducted. Comparative analysis of ToxA- and ToxB-induced transcriptional changes showed that similar groups of genes encoding WRKY transcription factors, RLKs, PRs, components of the phenylpropanoid and jasmonic acid pathways are activated. ROS accumulation and photosystem dysfunction proved to be common mechanism-of-action for these toxins. Despite similarities in defense responses, transcriptional and biochemical responses as well as symptom development occur more rapidly for ToxA compared to ToxB, which could be explained by differences in perception as well as by differences in activation of a specific process, for example, ethylene biosynthesis in ToxA treatment. Results of this study suggest that perception of HSTs will result in activation of defense responses as part of a susceptible interaction and further supports the hypothesis that necrotrophic fungi exploit defense responses in order to induce cell death.

  12. Naturally Occurring Frameshift Mutations in the tvb Receptor Gene Are Responsible for Decreased Susceptibility of Chicken to Infection with Avian Leukosis Virus Subgroups B, D, and E.

    Science.gov (United States)

    Li, Xinjian; Chen, Weiguo; Zhang, Huanmin; Li, Aijun; Shu, Dingming; Li, Hongxing; Dai, Zhenkai; Yan, Yiming; Zhang, Xinheng; Lin, Wencheng; Ma, Jingyun; Xie, Qingmei

    2018-04-15

    The group of highly related avian leukosis viruses (ALVs) in chickens are thought to have evolved from a common retroviral ancestor into six subgroups, A to E and J. These ALV subgroups use diverse cellular proteins encoded by four genetic loci in chickens as receptors to gain entry into host cells. Hosts exposed to ALVs might be under selective pressure to develop resistance to ALV infection. Indeed, resistance alleles have previously been identified in all four receptor loci in chickens. The tvb gene encodes a receptor, which determines the susceptibility of host cells to ALV subgroup B (ALV-B), ALV-D, and ALV-E. Here we describe the identification of two novel alleles of the tvb receptor gene, which possess independent insertions each within exon 4. The insertions resulted in frameshift mutations that reveal a premature stop codon that causes nonsense-mediated decay of the mutant mRNA and the production of truncated Tvb protein. As a result, we observed that the frameshift mutations in the tvb gene significantly lower the binding affinity of the truncated Tvb receptors for the ALV-B, ALV-D, and ALV-E envelope glycoproteins and significantly reduce susceptibility to infection by ALV-B, ALV-D and ALV-E in vitro and in vivo Taken together, these findings suggest that frameshift mutation can be a molecular mechanism of reducing susceptibility to ALV and enhance our understanding of virus-host coevolution. IMPORTANCE Avian leukosis virus (ALV) once caused devastating economic loss to the U.S. poultry industry prior the current eradication schemes in place, and it continues to cause severe calamity to the poultry industry in China and Southeast Asia, where deployment of a complete eradication scheme remains a challenge. The tvb gene encodes the cellular receptor necessary for subgroup B, D, and E ALV infection. Two tvb allelic variants that resulted from frameshift mutations have been identified in this study, which have been shown to have significantly reduced

  13. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  14. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  15. Deletion of a malaria invasion gene reduces death and anemia, in model hosts.

    Directory of Open Access Journals (Sweden)

    Noé D Gómez

    Full Text Available Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite 'toxins' have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease.

  16. Trans-suppression of host CDH3 and LOXL4 genes during Cryptosporidium parvum infection involves nuclear delivery of parasite Cdg7_FLc_1000 RNA.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Li, Yao; Pang, Jing; Dong, Stephanie; Strauss-Soukup, Juliane K; Chen, Xian-Ming

    2018-05-01

    Intestinal infection by Cryptosporidium parvum causes significant alterations in the gene expression profile in host epithelial cells. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of human intestinal cryptosporidiosis, we report here that trans-suppression of the cadherin 3 (CDH3) and lysyl oxidase like 4 (LOXL4) genes in human intestinal epithelial cells following C. parvum infection involves host delivery of the Cdg7_FLc_1000 RNA, a C. parvum RNA that has been previously demonstrated to be delivered into the nuclei of infected host cells. Downregulation of CDH3 and LOXL4 genes was detected in host epithelial cells following C. parvum infection or in cells expressing the parasite Cdg7_FLc_1000 RNA. Knockdown of Cdg7_FLc_1000 attenuated the trans-suppression of CDH3 and LOXL4 genes in host cells induced by infection. Interestingly, Cdg7_FLc_1000 was detected to be recruited to the promoter regions of both CDH3 and LOXL4 gene loci in host cells following C. parvum infection. Host delivery of Cdg7_FLc_1000 promoted the PH domain zinc finger protein 1 (PRDM1)-mediated H3K9 methylation associated with trans-suppression in the CDH3 gene locus, but not the LOXL4 gene. Therefore, our data suggest that host delivery of Cdg7_FLc_1000 causes CDH3 trans-suppression in human intestinal epithelial cells following C. parvum infection through PRDM1-mediated H3K9 methylation in the CDH3 gene locus, whereas Cdg7_FLc_1000 induces trans-suppression of the host LOXL4 gene through H3K9/H3K27 methylation-independent mechanisms. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  17. Yersinia pestis Requires Host Rab1b for Survival in Macrophages.

    Directory of Open Access Journals (Sweden)

    Michael G Connor

    2015-10-01

    Full Text Available Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH.

  18. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome.

    Science.gov (United States)

    Yang, Zhantao; Keel, Siobán B; Shimamura, Akiko; Liu, Li; Gerds, Aaron T; Li, Henry Y; Wood, Brent L; Scott, Bart L; Abkowitz, Janis L

    2016-05-11

    Diamond Blackfan anemia (DBA) and myelodysplastic syndrome (MDS) with isolated del(5q) are severe macrocytic anemias; although both are associated with impaired ribosome assembly, why the anemia occurs is not known. We cultured marrow cells from DBA (n = 3) and del(5q) MDS (n = 6) patients and determined how heme (a toxic chemical) and globin (a protein) are coordinated. We show that globin translation initiates slowly, whereas heme synthesis proceeds normally. This results in insufficient globin protein, excess heme and excess reactive oxygen species in early erythroid precursors, and CFU-E (colony-forming unit-erythroid)/proerythroblast cell death. The cells that can more rapidly and effectively export heme or can slow heme synthesis preferentially survive and appropriately mature. Consistent with these observations, treatment with 10 μM succinylacetone, a specific inhibitor of heme synthesis, improved the erythroid cell output of DBA and del(5q) MDS marrow cultures by 68 to 95% (P = 0.03 to 0.05), whereas the erythroid cell output of concurrent control marrow cultures decreased by 4 to 13%. Our studies demonstrate that erythropoiesis fails when heme exceeds globin. Our data further suggest that therapies that decrease heme synthesis (or facilitate heme export) could improve the red blood cell production of persons with DBA, del(5q) MDS, and perhaps other macrocytic anemias. Copyright © 2016, American Association for the Advancement of Science.

  19. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.

    Science.gov (United States)

    Domingues-Hamdi, Elisa; Vasseur, Corinne; Fournier, Jean-Baptiste; Marden, Michael C; Wajcman, Henri; Baudin-Creuza, Véronique

    2014-01-01

    Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSPWT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain.

  20. Mathematical modeling of erythrocyte chimerism informs genetic intervention strategies for sickle cell disease.

    Science.gov (United States)

    Altrock, Philipp M; Brendel, Christian; Renella, Raffaele; Orkin, Stuart H; Williams, David A; Michor, Franziska

    2016-09-01

    Recent advances in gene therapy and genome-engineering technologies offer the opportunity to correct sickle cell disease (SCD), a heritable disorder caused by a point mutation in the β-globin gene. The developmental switch from fetal γ-globin to adult β-globin is governed in part by the transcription factor (TF) BCL11A. This TF has been proposed as a therapeutic target for reactivation of γ-globin and concomitant reduction of β-sickle globin. In this and other approaches, genetic alteration of a portion of the hematopoietic stem cell (HSC) compartment leads to a mixture of sickling and corrected red blood cells (RBCs) in periphery. To reverse the sickling phenotype, a certain proportion of corrected RBCs is necessary; the degree of HSC alteration required to achieve a desired fraction of corrected RBCs remains unknown. To address this issue, we developed a mathematical model describing aging and survival of sickle-susceptible and normal RBCs; the former can have a selective survival advantage leading to their overrepresentation. We identified the level of bone marrow chimerism required for successful stem cell-based gene therapies in SCD. Our findings were further informed using an experimental mouse model, where we transplanted mixtures of Berkeley SCD and normal murine bone marrow cells to establish chimeric grafts in murine hosts. Our integrative theoretical and experimental approach identifies the target frequency of HSC alterations required for effective treatment of sickling syndromes in humans. Our work replaces episodic observations of such target frequencies with a mathematical modeling framework that covers a large and continuous spectrum of chimerism conditions. Am. J. Hematol. 91:931-937, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. No serological evidence that harbour porpoises are additional hosts of influenza B viruses

    NARCIS (Netherlands)

    R. Bodewes (Rogier); M.W.G. van de Bildt (Marco); C.E. van Elk; P.E. Bunskoek (Paulien); D.A.M.C. van de Vijver (David); S.L. Smits (Saskia); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses

  2. Conserved genomic organisation of Group B Sox genes in insects.

    Directory of Open Access Journals (Sweden)

    Woerfel Gertrud

    2005-05-01

    Full Text Available Abstract Background Sox domain containing genes are important metazoan transcriptional regulators implicated in a wide rage of developmental processes. The vertebrate B subgroup contains the Sox1, Sox2 and Sox3 genes that have early functions in neural development. Previous studies show that Drosophila Group B genes have been functionally conserved since they play essential roles in early neural specification and mutations in the Drosophila Dichaete and SoxN genes can be rescued with mammalian Sox genes. Despite their importance, the extent and organisation of the Group B family in Drosophila has not been fully characterised, an important step in using Drosophila to examine conserved aspects of Group B Sox gene function. Results We have used the directed cDNA sequencing along with the output from the publicly-available genome sequencing projects to examine the structure of Group B Sox domain genes in Drosophila melanogaster, Drosophila pseudoobscura, Anopheles gambiae and Apis mellifora. All of the insect genomes contain four genes encoding Group B proteins, two of which are intronless, as is the case with vertebrate group B genes. As has been previously reported and unusually for Group B genes, two of the insect group B genes, Sox21a and Sox21b, contain introns within their DNA-binding domains. We find that the highly unusual multi-exon structure of the Sox21b gene is common to the insects. In addition, we find that three of the group B Sox genes are organised in a linked cluster in the insect genomes. By in situ hybridisation we show that the pattern of expression of each of the four group B genes during embryogenesis is conserved between D. melanogaster and D. pseudoobscura. Conclusion The DNA-binding domain sequences and genomic organisation of the group B genes have been conserved over 300 My of evolution since the last common ancestor of the Hymenoptera and the Diptera. Our analysis suggests insects have two Group B1 genes, SoxN and

  3. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  4. Host cell subversion by Toxoplasma GRA16, an exported dense granule protein that targets the host cell nucleus and alters gene expression.

    Science.gov (United States)

    Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali

    2013-04-17

    After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral.

    Science.gov (United States)

    Smith-Keune, C; Dove, S

    2008-01-01

    Recent incidences of mass coral bleaching indicate that major reef building corals are increasingly suffering thermal stress associated with climate-related temperature increases. The development of pulse amplitude modulated (PAM) fluorometry has enabled rapid detection of the onset of thermal stress within coral algal symbionts, but sensitive biomarkers of thermal stress specific to the host coral have been slower to emerge. Differential display reverse transcription polymerase chain reaction (DDRT-PCR) was used to produce fingerprints of gene expression for the reef-building coral Acropora millepora exposed to 33 degrees C. Changes in the expression of 23 out of 399 putative genes occurred within 144 h. Down-regulation of one host-specific gene (AmA1a) occurred within just 6 h. Full-length sequencing revealed the product of this gene to be an all-protein chromatophore (green fluorescent protein [GFP]-homolog). RT-PCR revealed consistent down-regulation of this GFP-homolog for three replicate colonies within 6 h at both 32 degrees C and 33 degrees C but not at lower temperatures. Down-regulation of this host gene preceded significant decreases in the photosynthetic activity of photosystem II (dark-adapted F (v)/F (m)) of algal symbionts as measured by PAM fluorometry. Gene expression of host-specific genes such as GFP-homologs may therefore prove to be highly sensitive indicators for the onset of thermal stress within host coral cells.

  6. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    Science.gov (United States)

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  7. S-(3-Aminobenzanthron-2-yl)cysteine in the globin of rats as a novel type of adduct and possible biomarker of exposure to 3-nitrobenzanthrone, a potent environmental carcinogen.

    Science.gov (United States)

    Linhart, Igor; Hanzlíková, Iveta; Mráz, Jaroslav; Dušková, Šárka

    2017-10-01

    3-Nitrobenzanthrone (3-NBA), a potent environmental mutagen and carcinogen, is known to be activated in vivo to 3-benzanthronylnitrenium ion which forms both NH and C2-bound adducts with DNA and also reacts with glutathione giving rise to urinary 3-aminobenzanthron-2-ylmercapturic acid. In this study, acid hydrolysate of globin from rats dosed intraperitoneally with 3-NBA was analysed by HPLC/MS to identify a novel type of cysteine adduct, 3-aminobenzanthron-2-ylcysteine (3-ABA-Cys), confirmed using a synthesised standard. The 3-ABA-Cys levels in globin peaked after single 3-NBA doses of 1 and 2 mg/kg on day 2 to attain 0.25 and 0.49 nmol/g globin, respectively, thereafter declining slowly to 70-80% of their maximum values during 15 days. After dosing rats for three consecutive days with 1 mg 3-NBA/kg a significant cumulation of 3-ABA-Cys in globin was observed. 3-ABA-Cys was also found in the plasma hydrolysate. Herein, after dosing with 1 and 2 mg 3-NBA/kg the adduct levels peaked on day 1 at 0.15 and 0.51 nmol/ml plasma, respectively, thereafter declining rapidly to undetectable levels on day 15. In addition, sulphinamide adducts were also found in the exposed rats, measured indirectly as 3-aminobenzanthrone (3-ABA) split off from globin by mild acid hydrolysis. Levels of both types of adducts in the globin samples parallelled very well with 3-ABA/3-ABA-Cys ratio being around 1:8. In conclusion, 3-ABA-Cys is the first example of arylnitrenium-cysteine adduct in globin representing a new promising class of biomarkers to assess cumulative exposures to aromatic amines, nitroaromatics and heteroaromatic amines.

  8. Towards a "Golden Standard" for computing globin stability: Stability and structure sensitivity of myoglobin mutants

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2015-01-01

    Fast and accurate computation of protein stability is increasingly important for e.g. protein engineering and protein misfolding diseases, but no consensus methods exist for important proteins such as globins, and performance may depend on the type of structural input given. This paper reports be...

  9. Gene therapy for sickle cell disease: An update.

    Science.gov (United States)

    Demirci, Selami; Uchida, Naoya; Tisdale, John F

    2018-05-30

    Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice. Published by Elsevier Inc.

  10. Staphylococcal Superantigens Spark Host-Mediated Danger Signals

    Directory of Open Access Journals (Sweden)

    Terry eKrakauer

    2016-02-01

    Full Text Available Staphylococcal enterotoxin B (SEB of Staphylococcus aureus, and related superantigenic toxins produced by myriad microbes, are potent stimulators of the immune system causing a variety of human diseases from transient food poisoning to lethal toxic shock. These protein toxins bind directly to specific V regions of T-cell receptors (TCR and major histocompatibility complex (MHC class II on antigen-presenting cells, resulting in hyperactivation of T lymphocytes and monocytes / macrophages. Activated host cells produce excessive amounts of proinflammatory cytokines and chemokines, especially tumor necrosis factor α, interleukin 1 (IL-1, IL-2, interferon γ (IFNγ, and macrophage chemoattractant protein 1 causing clinical symptoms of fever, hypotension, and shock. Because of superantigen-induced T cells skewed towards TH1 helper cells, and the induction of proinflammatory cytokines, superantigens can exacerbate autoimmune diseases. Upon TCR / MHC ligation, pathways induced by superantigens include the mitogen-activated protein kinase cascades and cytokine receptor signaling, resulting in activation of NFκB and the phosphoinositide 3-kinase / mammalian target of rapamycin pathways. Various mouse models exist to study SEB-induced shock including those with potentiating agents, transgenic mice and an SEB-only model. However, therapeutics to treat toxic shock remain elusive as host response genes central to pathogenesis of superantigens have only been identified recently. Gene profiling of a murine model for SEB-induced shock reveals novel molecules upregulated in multiple organs not previously associated with SEB-induced responses. The pivotal genes include intracellular DNA / RNA sensors, apoptosis / DNA damage-related molecules, immunoproteasome components, as well as anti-viral and IFN-stimulated genes. The host-wide induction of these, and other, anti-microbial defense genes provide evidence that SEB elicits danger signals resulting in multi

  11. Riboflavin Provisioning Underlies Wolbachia's Fitness Contribution to Its Insect Host.

    Science.gov (United States)

    Moriyama, Minoru; Nikoh, Naruo; Hosokawa, Takahiro; Fukatsu, Takema

    2015-11-10

    Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host's fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia's genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia's riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. Conventionally, Wolbachia has been regarded as a parasitic bacterial endosymbiont that manipulates the host insect's reproduction in a

  12. Análise dos haplótipos do gene da betaS-globina no Ceará Analysis of betaS-globin gene haplotypes in Ceará, Brazil

    Directory of Open Access Journals (Sweden)

    Gentil Claudino de Galiza Neto

    2005-10-01

    Full Text Available No presente trabalho abordam-se vários aspectos relacionados à natureza molecular da anemia falciforme (AF, desordem hematológica de caráter hereditário. A descoberta do polimorfismo do DNA no grupamento do gene betaS, originando diferentes haplótipos da doença, permitiu ampliar o conhecimento em torno da heterogeneidade clínica observada nos pacientes falcêmicos nas mais diversas regiões do mundo. Analisaram-se os diferentes haplótipos e seus parâmetros hematológicos, presentes em um grupo de 22 pacientes naturais e procedentes do estado do Ceará. A distribuição das freqüências dos haplótipos encontrados foi de 55,9% para Benin; 41,2% para República Centro-Africana (CAR; e de 2,9% para o haplótipo Senegal. Esses dados, em comparação com os demais estudos realizados no Brasil, mostram associação entre os seus valores para um alfa de 5% (p The present work deals with numerous aspects related to the molecular nature of sickle cell anemia. The discovery of the DNA polymorphism in the betas-globin gene cluster, gave origin to different haplotypes of the disease, making possible to enlarge the knowledge about the clinical heterogenity observed on the patients with sickle cell disease, in the various regions of the world. The different haplotypes and its hematological parameters were analysed in a group of 22 patients born in the State of Ceará, northeast of Brazil. The distribution found in the haplotypes frequency was of 55.9% for the Benin, of 41.2% for the CAR, and of 2.9% for Senegal haplotype. The data, compared to the others works done in Brazil, show relations among their values to alpha of 5% (p < 0,05. The results make possible a full understanding of the pathophisiology of the illness and of its clinical complexity in our State, as well as it allows a better knowledge of the sickle cell disease in our country.

  13. Comparison of MicroRNAs Mediated in Reactivation of the γ-Globin in β-Thalassemia Patients, Responders and Non-Responders to Hydroxyurea.

    Science.gov (United States)

    Hojjati, Mohammad T; Azarkeivan, Azita; Pourfathollah, Ali A; Amirizadeh, Naser

    2017-03-01

    Drug induction of Hb F seems to be an ideal therapy for patients with hemoglobin (Hb) disorders, and many efforts have been made to reveal the mechanism behind it. Thus, we examined in vivo expression of some microRNAs (miRNAs) that are thought to be involved in this process. Among β-thalassemia (β-thal) patients who were undergoing hydroxyurea (HU) therapy in the past 3 months and five healthy individuals, five responders and five non-responders, were also included in the study. Erythroid progenitors were isolated by magnetic activated cell sorting (MACS) and miRNA expression analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We showed that γ-globin, miR-210 and miR-486-3p had higher levels in the responders than the non-responders group. Moreover, miR-150 and miR-320 had higher levels in the healthy group than both non-responders and responders groups, but the expression of miR-96 did not show any significant difference between the study groups. To the best of our knowledge, this is the first study proposing that 'induction of cellular hypoxic condition by Hb F inducing agents' could be the milestone of possible mechanisms that explain why responders are able to reactivate γ-globin genes and subsequently, more production of Hb F, in response to these agents in comparison to non-responders. However, further investigations need to be performed to verify this hypothesis.

  14. Overexpression of stress-related genes in Cuscuta campestris in response to host defense reactions

    Directory of Open Access Journals (Sweden)

    Hamed Rezaei

    2017-07-01

    Full Text Available Herb dodder ( Cuscuta spp. is one of the most important parasitic plants that can severely affect crop yields in the world. So far, interactions of this parasitic plant with hosts were not investigated adequately. Here, we conducted a differential expression analyzes and identified a number of genes that were differentially expressed in haustorium tissue compared with the stem of Cuscuta campestris growing on Alfalfa. We obtained 439 cDNA fragments from haustoria (parasite-host connection zone and stems (25 cm away from connections zones using the cDNA-AFLP (Amplified Fragment Length Polymorphism method with eight different primer combinations. Of 439 transcript-derived fragments (TDFs that were detected, 145 fragments were identified as differentially expressed genes. Five TDF sequences were similar to known functional genes involved in signal transduction, metabolism, respiration, and stress responses. Genes encoding DEAD-box ATP-dependent RNA helicase, potential heme-binding protein, lysine-specific demethylase 5A were selected for qRT-PCR. The qRT-PCR analyzes confirmed the results obtained using cDNA-AFLP. Our findings shed light on the elicitation of dodder defense responses in the connection zone to overcome plant defense reactions.

  15. Riboflavin Provisioning Underlies Wolbachia’s Fitness Contribution to Its Insect Host

    Science.gov (United States)

    Moriyama, Minoru; Nikoh, Naruo; Hosokawa, Takahiro

    2015-01-01

    ABSTRACT Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host’s fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia’s genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia’s riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. PMID:26556278

  16. A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome

    Energy Technology Data Exchange (ETDEWEB)

    Heilbronn, R.; zur Hausen, H. (Deutsches Krebsforschungszentrum, Heidelberg (West Germany))

    1989-09-01

    Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of sic HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensable for SV40 DNA amplification. The results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.

  17. Phylogenetic relations of humans and African apes from DNA sequences in the Psi eta-globin region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M.M.; Slightom, J.L.; Goodman, M.

    1987-10-16

    Sequences from the upstream and downstream flanking DNA regions of the Psi eta-globin locus in Pan troglodytes (common chimpanzee), Gorilla gorilla (gorilla), and Pongo pygmaeus (orangutan, the closest living relative to Homo, Pan, and Gorilla) provided further data for evaluating the phylogenetic relations of humans and African apes. These newly sequenced orthologs (an additional 4.9 kilobase pairs (kbp) for each species) were combined with published Psi eta-gene sequences and then compared to the same orthologous stretch (a continuous 7.1-kbp region) available for humans. Phylogenetic analysis of these nucleotide sequences by the parsimony method indicated (i) that human and chimpanzee are more closely related to each other than either is to gorilla and (ii) that the slowdown in the rate of sequence evolution evident in higher primates is especially pronounced in humans. These results indicate that features unique to African apes (but not to humans) are primitive and that even local molecular clocks should be applied with caution.

  18. Co-evolutionary interactions between host resistance and pathogen avirulence genes in rice-Magnaporthe oryzae pathosystem.

    Science.gov (United States)

    Singh, Pankaj Kumar; Ray, Soham; Thakur, Shallu; Rathour, Rajeev; Sharma, Vinay; Sharma, Tilak Raj

    2018-06-01

    Rice and Magnaporthe oryzae constitutes an ideal pathosystem for studying host-pathogen interaction in cereals crops. There are two alternative hypotheses, viz. Arms race and Trench warfare, which explain the co-evolutionary dynamics of hosts and pathogens which are under continuous confrontation. Arms race proposes that both R- and Avr- genes of host and pathogen, respectively, undergo positive selection. Alternatively, trench warfare suggests that either R- or Avr- gene in the pathosystem is under balanced selection intending to stabilize the genetic advantage gained over the opposition. Here, we made an attempt to test the above-stated hypotheses in rice-M. oryzae pathosystem at loci of three R-Avr gene pairs, Piz-t-AvrPiz-t, Pi54-AvrPi54 and Pita-AvrPita using allele mining approach. Allele mining is an efficient way to capture allelic variants existing in the population and to study the selective forces imposed on the variants during evolution. Results of nucleotide diversity, neutrality statistics and phylogenetic analyses reveal that Piz-t, Pi54 and AvrPita are diversified and under positive selection at their corresponding loci, while their counterparts, AvrPiz-t, AvrPi54 and Pita are conserved and under balancing selection, in nature. These results imply that rice-M. oryzae populations are engaged in a trench warfare at least at the three R/Avr loci studied. It is a maiden attempt to study the co-evolution of three R-Avr gene pairs in this pathosystem. Knowledge gained from this study will help in understanding the evolutionary dynamics of host-pathogen interaction in a better way and will also aid in developing new durable blast resistant rice varieties in future. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Identification of Candidate B-Lymphoma Genes by Cross-Species Gene Expression Profiling

    Science.gov (United States)

    Tompkins, Van S.; Han, Seong-Su; Olivier, Alicia; Syrbu, Sergei; Bair, Thomas; Button, Anna; Jacobus, Laura; Wang, Zebin; Lifton, Samuel; Raychaudhuri, Pradip; Morse, Herbert C.; Weiner, George; Link, Brian; Smith, Brian J.; Janz, Siegfried

    2013-01-01

    Comparative genome-wide expression profiling of malignant tumor counterparts across the human-mouse species barrier has a successful track record as a gene discovery tool in liver, breast, lung, prostate and other cancers, but has been largely neglected in studies on neoplasms of mature B-lymphocytes such as diffuse large B cell lymphoma (DLBCL) and Burkitt lymphoma (BL). We used global gene expression profiles of DLBCL-like tumors that arose spontaneously in Myc-transgenic C57BL/6 mice as a phylogenetically conserved filter for analyzing the human DLBCL transcriptome. The human and mouse lymphomas were found to have 60 concordantly deregulated genes in common, including 8 genes that Cox hazard regression analysis associated with overall survival in a published landmark dataset of DLBCL. Genetic network analysis of the 60 genes followed by biological validation studies indicate FOXM1 as a candidate DLBCL and BL gene, supporting a number of studies contending that FOXM1 is a therapeutic target in mature B cell tumors. Our findings demonstrate the value of the “mouse filter” for genomic studies of human B-lineage neoplasms for which a vast knowledge base already exists. PMID:24130802

  20. Host genetic variation influences gene expression response to rhinovirus infection.

    Directory of Open Access Journals (Sweden)

    Minal Çalışkan

    2015-04-01

    Full Text Available Rhinovirus (RV is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs, namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5 and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3. The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  1. Host genetic variation influences gene expression response to rhinovirus infection.

    Science.gov (United States)

    Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole

    2015-04-01

    Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  2. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  3. Hb A2 Episkopi - a novel δ-globin chain variant [HBD:c.428C>T] in a family of mixed Cypriot-Lebanese descent.

    Science.gov (United States)

    Lederer, Carsten W; Pavlou, Eleni; Tanteles, George A; Evangelidou, Paola; Sismani, Carolina; Kolnagou, Annita; Sitarou, Maria; Christou, Soteroulla; Hadjigavriel, Michael; Kleanthous, Marina

    2017-06-01

    Thalassaemia is a potentially lethal inherited anaemia, caused by reduced or absent synthesis of globin chains. Measurement of the minor adult haemoglobin Hb A 2 , combining α- with δ-globin, is critical for the routine diagnosis of carrier status for α- or β-thalassaemia. Here, we aim to characterize a novel δ-globin variant, Hb A 2 Episkopi, in a single family of mixed Lebanese and Cypriot ancestry with mild hypochromic anaemia and otherwise normal globin genotype, which also presents with a coincidental 0.78-Mb sequence duplication on chromosome 1 (1q44) and developmental abnormalities. Analyses included comprehensive haematological analyses, cation-exchange high-performance liquid chromatography (CE-HPLC), cellulose acetate electrophoresis (CAE), Sanger sequencing and structure-based stability predictions for Hb A 2 Episkopi. The GCT > GTT missense mutation, underlying Hb A 2 Episkopi, HBD:c.428C > T, introduces a cd142 codon change in the mature protein, resulting in reduced normal Hb A 2 amounts and a novel, less abundant Hb A 2 variant (HGVS: HBD:p.A143V), detectable as a delayed peak by CE-HPLC. The latter was in line with structure-based stability predictions, which indicated that the substitution of a marginal, non-helical and non-interface residue, five amino acids from the δ-globin chain carboxy-terminus, was moderately destabilizing. Detection of the new variant depends on the diagnostic set-up and had failed by CAE and on an independent CE-HPLC system, which, in unfavourable circumstances, may lead to misdiagnoses of β-thalassaemia as α-thalassaemia. Given the mixed background of the affected family, the ethnic origin of the mutation is unclear, and this study thus suggests awareness for possible detection of Hb A 2 Episkopi in both the Cypriot and the Lebanese populations.

  4. Global Transcriptional Regulation of Backbone Genes in Broad-Host-Range Plasmid RA3 from the IncU Group Involves Segregation Protein KorB (ParB Family).

    Science.gov (United States)

    Kulinska, Anna; Godziszewska, Jolanta; Wojciechowska, Anna; Ludwiczak, Marta; Jagura-Burdzy, Grazyna

    2016-04-01

    The KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequence parSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacent mobC promoter driving expression of the mobC-nicoperon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions in Escherichia coli, since its overexpression in transnegatively interferes with mini-RA3 replication and stable maintenance of RA3. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Trans-suppression of defense DEFB1 gene in intestinal epithelial cells following Cryptosporidium parvum infection is associated with host delivery of parasite Cdg7_FLc_1000 RNA.

    Science.gov (United States)

    Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Zhang, Xin-Tian; Li, Min; Dolata, Courtney E; Chen, Xian-Ming

    2018-03-01

    To counteract host immunity, Cryptosporidium parvum has evolved multiple strategies to suppress host antimicrobial defense. One such strategy is to reduce the production of the antimicrobial peptide beta-defensin 1 (DEFB1) by host epithelial cells but the underlying mechanisms remain unclear. Recent studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of intestinal cryptosporidiosis, in this study, we analyzed the expression profile of host beta-defensin genes in host cells following infection. We found that C. parvum infection caused a significant downregulation of the DEFB1 gene. Interestingly, downregulation of DEFB1 gene was associated with host delivery of Cdg7_FLc_1000 RNA transcript, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected host cells. Knockdown of Cdg7_FLc_1000 in host cells could attenuate the trans-suppression of host DEFB1 gene and decreased the parasite burden. Therefore, our data suggest that trans-suppression of DEFB1 gene in intestinal epithelial cells following C. parvum infection involves host delivery of parasite Cdg7_FLc_1000 RNA, a process that may be relevant to the epithelial defense evasion by C. parvum at the early stage of infection.

  6. Two cloned β thalassemia genes are associated with amber mutations at codon 39

    Science.gov (United States)

    Pergolizzi, Robert; Spritz, Richard A.; Spence, Sally; Goossens, Michel; Kan, Yuet Wai; Bank, Arthur

    1981-01-01

    Two β globin genes from patients with the β+ thalassemia phenotype have been cloned and sequenced. A single nucleotide change from CAG to TAG (an amber mutation) at codon 39 is the only difference from normal in both genes analyzed. The results are consistent with the assumption that both patients are doubly heterozygous for β+ and β° thalassemia, and that we have isolated and analyzed the β° thalassemia gene. Images PMID:6278453

  7. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics

    Directory of Open Access Journals (Sweden)

    Yongqun eHe

    2012-02-01

    Full Text Available Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of ten classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  8. Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics

    Science.gov (United States)

    He, Yongqun

    2011-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594

  9. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.

    Science.gov (United States)

    Becker, A; Kaufmann, K; Freialdenhoven, A; Vincent, C; Li, M-A; Saedler, H; Theissen, G

    2002-02-01

    Class B floral homeotic genes specify the identity of petals and stamens during the development of angiosperm flowers. Recently, putative orthologs of these genes have been identified in different gymnosperms. Together, these genes constitute a clade, termed B genes. Here we report that diverse seed plants also contain members of a hitherto unknown sister clade of the B genes, termed B(sister) (B(s)) genes. We have isolated members of the B(s) clade from the gymnosperm Gnetum gnemon, the monocotyledonous angiosperm Zea mays and the eudicots Arabidopsis thaliana and Antirrhinum majus. In addition, MADS-box genes from the basal angiosperm Asarum europaeum and the eudicot Petunia hybrida were identified as B(s) genes. Comprehensive expression studies revealed that B(s) genes are mainly transcribed in female reproductive organs (ovules and carpel walls). This is in clear contrast to the B genes, which are predominantly expressed in male reproductive organs (and in angiosperm petals). Our data suggest that the B(s) genes played an important role during the evolution of the reproductive structures in seed plants. The establishment of distinct B and B(s) gene lineages after duplication of an ancestral gene may have accompanied the evolution of male microsporophylls and female megasporophylls 400-300 million years ago. During flower evolution, expression of B(s) genes diversified, but the focus of expression remained in female reproductive organs. Our findings imply that a clade of highly conserved close relatives of class B floral homeotic genes has been completely overlooked until recently and awaits further evaluation of its developmental and evolutionary importance. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00438-001-0615-8.

  10. Determination of proteolytic activity using L-[4,5-3H]leucine-labelled globin as a substrate

    International Nuclear Information System (INIS)

    Maliopoulou, T.B.; Dionyssiou-Asteriou, A.; Loucopoulos, D.

    1980-01-01

    A simple and sensitive method for the assay of proteolytic enzyme activity is described. This is based on the digestion of L-[4,5- 3 H]leucine globin by proteolytic enzymes and radioactivity measurement of the trichloroacetic acid soluble cleavage products. (Auth.)

  11. Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum.

    Science.gov (United States)

    Baroncelli, Riccardo; Amby, Daniel Buchvaldt; Zapparata, Antonio; Sarrocco, Sabrina; Vannacci, Giovanni; Le Floch, Gaétan; Harrison, Richard J; Holub, Eric; Sukno, Serenella A; Sreenivasaprasad, Surapareddy; Thon, Michael R

    2016-08-05

    Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content.

  12. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Chen [Department of Physics, Xiamen University, Xiamen (China); Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan, E-mail: fangt@xmu.edu.cn [Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen (China)

    2016-06-20

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  13. ON THE HOST GALAXY OF GRB 150101B AND THE ASSOCIATED ACTIVE GALACTIC NUCLEUS

    International Nuclear Information System (INIS)

    Xie, Chen; Fang, Taotao; Wang, Junfeng; Liu, Tong; Jiang, Xiaochuan

    2016-01-01

    We present a multi-wavelength analysis of the host galaxy of short-duration gamma-ray burst (GRB) 150101B. Follow-up optical and X-ray observations suggested that the host galaxy, 2MASX J12320498-1056010, likely harbors low-luminosity active galactic nuclei (AGNs). Our modeling of the spectral energy distribution has confirmed the nature of the AGN, making it the first reported GRB host that contains an AGN. We have also found the host galaxy is a massive elliptical galaxy with stellar population of ∼5.7 Gyr, one of the oldest among the short-duration GRB hosts. Our analysis suggests that the host galaxy can be classified as an X-ray bright, optically normal galaxy, and the central AGN is likely dominated by a radiatively inefficient accretion flow. Our work explores an interesting connection that may exist between GRB and AGN activities of the host galaxy, which can help in understanding the host environment of the GRB events and the roles of AGN feedback.

  14. The interaction between endogenous 30S ribosomal subunit protein S11 and Cucumber mosaic virus LS2b protein affects viral replication, infection and gene silencing suppressor activity.

    Directory of Open Access Journals (Sweden)

    Ruilin Wang

    Full Text Available Cucumber mosaic virus (CMV is a model virus for plant-virus protein interaction and mechanism research because of its wide distribution, high-level of replication and simple genome structure. The 2b protein is a multifunctional protein encoded by CMV that suppresses RNA silencing-based antiviral defense and contributes to CMV virulence in host plants. In this report, 12 host proteins were identified as CMV LS2b binding partners using the yeast two-hybrid screen system from the Arabidopsis thaliana cDNA library. Among the host proteins, 30S ribosomal subunit protein S11 (RPS11 was selected for further studies. The interaction between LS2b and full-length RPS11 was confirmed using the yeast two-hybrid system. Bimolecular fluorescence complementation (BIFC assays observed by confocal laser microscopy and Glutathione S-transferase (GST pull-down assays were used to verify the interaction between endogenous NbRPS11 and viral CMVLS2b both in vivo and in vitro. TRV-based gene silencing vector was used to knockdown NbRPS11 transcription, and immunoblot analysis revealed a decline in infectious viral RNA replication and a decrease in CMV infection in RPS11 down-regulated Nicotiana benthamiana plants. Thus, the knockdown of RPS11 likely inhibited CMV replication and accumulation. The gene silencing suppressor activity of CMV2b protein was reduced by the RPS11 knockdown. This study demonstrated that the function of viral LS2b protein was remarkably affected by the interaction with host RPS11 protein.

  15. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  16. Therapeutic hemoglobin levels after gene transfer in β-thalassemia mice and in hematopoietic cells of β-thalassemia and sickle cells disease patients.

    Directory of Open Access Journals (Sweden)

    Laura Breda

    Full Text Available Preclinical and clinical studies demonstrate the feasibility of treating β-thalassemia and Sickle Cell Disease (SCD by lentiviral-mediated transfer of the human β-globin gene. However, previous studies have not addressed whether the ability of lentiviral vectors to increase hemoglobin synthesis might vary in different patients.We generated lentiviral vectors carrying the human β-globin gene with and without an ankyrin insulator and compared their ability to induce hemoglobin synthesis in vitro and in thalassemic mice. We found that insertion of an ankyrin insulator leads to higher, potentially therapeutic levels of human β-globin through a novel mechanism that links the rate of transcription of the transgenic β-globin mRNA during erythroid differentiation with polysomal binding and efficient translation, as reported here for the first time. We also established a preclinical assay to test the ability of this novel vector to synthesize adult hemoglobin in erythroid precursors and in CD34(+ cells isolated from patients affected by β-thalassemia and SCD. Among the thalassemic patients, we identified a subset of specimens in which hemoglobin production can be achieved using fewer copies of the vector integrated than in others. In SCD specimens the treatment with AnkT9W ameliorates erythropoiesis by increasing adult hemoglobin (Hb A and concurrently reducing the sickling tetramer (Hb S.Our results suggest two major findings. First, we discovered that for the purpose of expressing the β-globin gene the ankyrin element is particularly suitable. Second, our analysis of a large group of specimens from β-thalassemic and SCD patients indicates that clinical trials could benefit from a simple test to predict the relationship between the number of vector copies integrated and the total amount of hemoglobin produced in the erythroid cells of prospective patients. This approach would provide vital information to select the best candidates for these

  17. Gene Therapy in Thalassemia and Hemoglobinopathies

    OpenAIRE

    Breda, Laura; Gambari, Roberto; Rivella, Stefano

    2009-01-01

    Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approac...

  18. Systematic documentation and analysis of human genetic variation using the microattribution approach

    Science.gov (United States)

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R.; Peterson, Kenneth R.; Maglott, Donna; Basak, A. Nazli; Clark, Barnaby; Faustino, Paula; Felice, Alex E.; Francina, Alain; Gallivan, Monica V. E.; Georgitsi, Marianthi; Gibbons, Richard J.; Giordano, Piero C.; Harteveld, Cornelis L.; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N.; Papadopoulos, Petros; Pavlovic, Sonja; Philipsen, Sjaak; Radmilovic, Milena; Riemer, Cathy; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John; Wiemann, Claudia; Zukic, Branka; Chui, David H. K.; Wajcman, Henri; Hardison, Ross C.; Patrinos, George P.

    2013-01-01

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to these disorders, and then implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories 1. A total of 1,941 unique genetic variants in 37 genes, encoding globins (HBA2, HBA1, HBG2, HBG1, HBD, HBB) and other erythroid proteins (ALOX5AP, AQP9, ARG2, ASS1, ATRX, BCL11A, CNTNAP2, CSNK2A1, EPAS1, ERCC2, FLT1, GATA1, GPM6B, HAO2, HBS1L, KDR, KL, KLF1, MAP2K1, MAP3K5, MAP3K7, MYB, NOS1, NOS2, NOS3, NOX3, NUP133, PDE7B, SMAD3, SMAD6, and TOX) are currently documented in these databases with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants and now provides a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The large repository of previously reported data, together with more recent data, acquired by microattribution, demonstrates how the comprehensive documentation of human variation will provide key insights into normal biological processes and how these are perturbed in human genetic disease. Using the microattribution process set out here, datasets which took decades to accumulate for the globin genes could be assembled rapidly for other genes and disease systems. The principles established here for the globin gene system will serve as a model for other systems and the analysis of other common and/or complex human genetic diseases. PMID:21423179

  19. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity.

    Science.gov (United States)

    Jonckheere, Wim; Dermauw, Wannes; Khalighi, Mousaalreza; Pavlidi, Nena; Reubens, Wim; Baggerman, Geert; Tirry, Luc; Menschaert, Gerben; Kant, Merijn R; Vanholme, Bartel; Van Leeuwen, Thomas

    2018-01-01

    The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.

  20. Novel Fri1-like Viruses Infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy.

    Science.gov (United States)

    Popova, Anastasia V; Lavysh, Daria G; Klimuk, Evgeniy I; Edelstein, Mikhail V; Bogun, Alexander G; Shneider, Mikhail M; Goncharov, Artemiy E; Leonov, Sergey V; Severinov, Konstantin V

    2017-07-17

    Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp) and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor-recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.

  1. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  2. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Directory of Open Access Journals (Sweden)

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  3. Dynamic Changes in Host Gene Expression following In Vitro Viral Mimic Stimulation in Crocodile Cells

    Directory of Open Access Journals (Sweden)

    Subir Sarker

    2017-11-01

    Full Text Available The initial control of viral infection in a host is dominated by a very well orchestrated early innate immune system; however, very little is known about the ability of a host to control viral infection outside of mammals. The reptiles offer an evolutionary bridge between the fish and mammals, with the crocodile having evolved from the archosauria clade that included the dinosaurs, and being the largest living reptile species. Using an RNA-seq approach, we have defined the dynamic changes of a passaged primary crocodile cell line to stimulation with both RNA and DNA viral mimics. Cells displayed a marked upregulation of many genes known to be involved in the mammalian response to viral infection, including viperin, Mx1, IRF7, IRF1, and RIG-I with approximately 10% of the genes being uncharacterized transcripts. Both pathway and genome analysis suggested that the crocodile may utilize the main known mammalian TLR and cytosolic antiviral RNA signaling pathways, with the pathways being responsible for sensing DNA viruses less clear. Viral mimic stimulation upregulated the type I interferon, IFN-Omega, with many known antiviral interferon-stimulated genes also being upregulated. This work demonstrates for the first time that reptiles show functional regulation of many known and unknown antiviral pathways and effector genes. An enhanced knowledge of these ancient antiviral pathways will not only add to our understanding of the host antiviral innate response in non-mammalian species, but is critical to fully comprehend the complexity of the mammalian innate immune response to viral infection.

  4. Helicobacter pylori virulence genes and microevolution in host and the clinical outcome: review article

    Directory of Open Access Journals (Sweden)

    Seyedeh Zahra Bakhti

    2014-12-01

    Full Text Available Helicobacter pylori (H. pylori is the causative agent in development of gastroduode-nal diseases, such as chronic atrophic gastritis, peptic ulcers, mucosa associated lym-phoid tissue (MALT lymphoma, and gastric cancer. H. pylori has been associated with inflammation in cardia, showing the fact that infection with this bacterium could also be a risk factor for gastric cardia cancer. Gastric cancer is the fourth most common cancer worldwide. This is the second leading cause of cancer-related deaths, and ap-proximately 700,000 people succumb each year to gastric adenocarcinoma. It has been estimated that 69% of the Iranian population currently harbor H. pylori infection. The prevalence of duodenal ulcer and gastric cancer is high in Iranian populations. However, this has been largely influenced by geographic and/or ethnic origin. Epidemi-ology studies have shown that host, environmental, and bacterial factors determine the outcome of H. pylori infection. The bacterium contains allelic diversity and high genet-ic variability into core- and virulence-genes and that this diversity is geographically and ethnically structured. The genetic diversity within H. pylori is greater than within most other bacteria, and its diversity is more than 50-fold higher than that of human DNA. The maintenance of high diversification makes this bacterium to cope with particular challenges in individual hosts. It has been reported that the recombination contributed to the creation of new genes and gene family. Furthermore, the microevolution in cagA and vacA genes is a common event, leading to a change in the virulence phenotype. These factors contribute to the bacterial survival in acidic conditions in stomach and protect it from host immune system, causing tissue damage and clinical disease. In this review article, we discussed the correlation between H. pylori virulence factors and clin-ical outcomes, microevolution of H. pylori virulence genes in a single host

  5. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  6. A low stringency polymerase chain reaction approach to the identification of Biomphalaria glabrata and B. tenagophila, intermediate snail hosts of Schistosoma mansoni in Brazil

    Directory of Open Access Journals (Sweden)

    Teofânia HDA Vidigal

    1996-12-01

    Full Text Available The low stringency-polymerase chain reaction (LS-PCR with a pair of specific primers for the amplification of the 18S rRNA gene was evaluated as a means of differentiating between the two Schistosoma mansoni intermediate host species in Brazil: Biomphalaria glabrata and B. tenagophila. Individual snails obtained from different states of Brazil were used and the amplification patterns obtained showed a high degree of genetic variability in these species. Nevertheless, 4 and 3 clearly defined specific diagnostic bands was observed in individuals from B. glabrata and B. tenagophila respectively. The detection of snail specific diagnostic bands suggests the possibility of reliable species differentiation at the DNA level using LS-PCR.

  7. No serological evidence that harbour porpoises are additional hosts of influenza B viruses.

    Directory of Open Access Journals (Sweden)

    Rogier Bodewes

    Full Text Available Influenza A and B viruses circulate among humans causing epidemics almost annually. While various hosts for influenza A viruses exist, influenza B viruses have been detected only in humans and seals. However, recurrent infections of seals in Dutch coastal waters with influenza B viruses that are antigenetically distinct from influenza B viruses circulating among humans suggest that influenza B viruses have been introduced into this seal population by another, non-human, host. Harbour porpoises (Phocoena phocoena are sympatric with seals in these waters and are also occasionally in close contact with humans after stranding and subsequent rehabilitation. In addition, virus attachment studies demonstrated that influenza B viruses can bind to cells of the respiratory tract of these animals. Therefore, we hypothesized that harbour porpoises might be a reservoir of influenza B viruses. In the present study, an unique set of serum samples from 79 harbour porpoises, stranded alive on the Dutch coast between 2003 and 2013, was tested for the presence of antibodies against influenza B viruses by use of the hemagglutination inhibition test and for antibodies against influenza A viruses by use of a competitive influenza A nucleoprotein ELISA. No antibodies were detected against either virus, suggesting that influenza A and B virus infections of harbour porpoises in Dutch coastal waters are not common, which was supported by statistical analysis of the dataset.

  8. Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection

    Science.gov (United States)

    Mol, Juliana P. S.; Costa, Erica A.; Carvalho, Alex F.; Sun, Yao-Hui; Tsolis, Reneé M.; Paixão, Tatiane A.; Santos, Renato L.

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; Pabortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  9. Central importance of immunoglobulin A in host defense against Giardia spp.

    Science.gov (United States)

    Langford, T Dianne; Housley, Michael P; Boes, Marianne; Chen, Jianzhu; Kagnoff, Martin F; Gillin, Frances D; Eckmann, Lars

    2002-01-01

    The protozoan pathogen Giardia is an important cause of parasitic diarrheal disease worldwide. It colonizes the lumen of the small intestine, suggesting that effective host defenses must act luminally. Immunoglobulin A (IgA) antibodies are presumed to be important for controlling Giardia infection, but direct evidence for this function is lacking. B-cell-independent effector mechanisms also exist and may be equally important for antigiardial host defense. To determine the importance of the immunoglobulin isotypes that are transported into the intestinal lumen, IgA and IgM, for antigiardial host defense, we infected gene-targeted mice lacking IgA-expressing B-cells, IgM-secreting B-cells, or all B-cells as controls with Giardia muris or Giardia lamblia GS/M-83-H7. We found that IgA-deficient mice could not eradicate either G. muris or G. lamblia infection, demonstrating that IgA is required for their clearance. Furthermore, although neither B-cell-deficient nor IgA-deficient mice could clear G. muris infections, IgA-deficient mice controlled infection significantly better than B-cell-deficient mice, suggesting the existence of B-cell-dependent but IgA-independent antigiardial defenses. In contrast, mice deficient for secreted IgM antibodies cleared G. muris infection normally, indicating that they have no unique functions in antigiardial host defense. These data, together with the finding that B-cell-deficient mice have some, albeit limited, residual capacity to control G. muris infection, show that IgA-dependent host defenses are central for eradicating Giardia spp. Moreover, B-cell-dependent but IgA-independent and B-cell-independent antigiardial host defenses exist but are less important for controlling infection.

  10. Analysis of odorant-binding protein gene family members in the polyembryonic wasp, Copidosoma floridanum: evidence for caste bias and host interaction.

    Science.gov (United States)

    Donnell, David M

    2014-01-01

    The polyembryonic wasp Copidosoma floridanum produces two larval castes, soldiers and reproductives, during development within its caterpillar host. Primary structures were determined for 6 odorant-binding protein (OBP) gene family members in Copidosoma and then analyzed alongside two formerly sequenced OBP genes from this wasp. The genes were examined for caste-bias in expression patterns using reverse transcription-polymerase chain reaction (RT-PCR) and in situ expression studies. Six of the 8 genes show a clear bias in gene expression towards one or the other larval caste. Of the 3 distinct in situ probe hybridization patterns observed in this study, none lie in tissues with clear chemosensory functions. Two of the patterns suggest the majority of the Copidosoma OBP gene family members discovered thus far come into contact with host hemolymph. Most of these OBPs are expressed exclusively in the serosal membrane encompassing each of the reproductive larvae. The absence of expression in the membrane surrounding soldier larvae strongly suggests these OBPs are performing caste-specific functions in the host. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction.

    Directory of Open Access Journals (Sweden)

    Patrick S Mitchell

    2015-12-01

    Full Text Available Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host

  12. Regulatory cascade and biological activity of Beauveria bassiana oosporein that limits bacterial growth after host death.

    Science.gov (United States)

    Fan, Yanhua; Liu, Xi; Keyhani, Nemat O; Tang, Guirong; Pei, Yan; Zhang, Wenwen; Tong, Sheng

    2017-02-28

    The regulatory network and biological functions of the fungal secondary metabolite oosporein have remained obscure. Beauveria bassiana has evolved the ability to parasitize insects and outcompete microbial challengers for assimilation of host nutrients. A novel zinc finger transcription factor, BbSmr1 ( B. bassiana secondary metabolite regulator 1), was identified in a screen for oosporein overproduction. Deletion of Bbsmr1 resulted in up-regulation of the oosporein biosynthetic gene cluster ( OpS genes) and constitutive oosporein production. Oosporein production was abolished in double mutants of Bbsmr1 and a second transcription factor, OpS3 , within the oosporein gene cluster ( ΔBbsmr1ΔOpS3 ), indicating that BbSmr1 acts as a negative regulator of OpS3 expression. Real-time quantitative PCR and a GFP promoter fusion construct of OpS1 , the oosporein polyketide synthase, indicated that OpS1 is expressed mainly in insect cadavers at 24-48 h after death. Bacterial colony analysis in B. bassiana -infected insect hosts revealed increasing counts until host death, with a dramatic decrease (∼90%) after death that correlated with oosporein production. In vitro studies verified the inhibitory activity of oosporein against bacteria derived from insect cadavers. These results suggest that oosporein acts as an antimicrobial compound to limit microbial competition on B. bassiana -killed hosts, allowing the fungus to maximally use host nutrients to grow and sporulate on infected cadavers.

  13. Role of RecA protein in untargeted UV mutagenesis of bacteriophage lambda: evidence for the requirement for the dinB gene

    International Nuclear Information System (INIS)

    Brotcorne-Lannoye, A.; Maenhaut-Michel, G.

    1986-01-01

    Untargeted UV mutagenesis of bacteriophage lambda--i.e., the increased recovery of lambda mutants when unirradiated lambda infects UV-irradiated Escherichia coli--is thought to be mediated by a transient decrease in DNA replication fidelity, generating mutations in the newly synthesized strands. Using the bacteriophage lambda cI857----lambda c mutation system, we provide evidence that the RecA protein, shown previously to be required for this mutagenic pathway, is no longer needed when the LexA protein is inactivated by mutation. We suggest that the error-prone DNA replication responsible for UV-induced untargeted mutagenesis is turned on by the presence of replication-blocking lesions in the host cell DNA and that the RecA protein is required only to derepress the relevant din gene(s). This is in contrast to mutagenesis of irradiated bacteria or irradiated phage lambda, in which activated RecA protein has a second role in mutagenesis in addition to the cleavage of the LexA protein. Among the tested din genes, the dinB gene product (in addition to the uvrA and uvrB gene products) was found to be required for untargeted mutagenesis of bacteriophage lambda. To our knowledge, a phenotype associated with the dinB gene has not been reported previously

  14. Novel Fri1-like Viruses Infecting Acinetobacter baumannii—vB_AbaP_AS11 and vB_AbaP_AS12—Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy.

    Directory of Open Access Journals (Sweden)

    Anastasia V. Popova

    2017-07-01

    Full Text Available Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp and 41,402 bp share 86.3% nucleotide sequence identity with the most variable regions falling in host receptor–recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.

  15. A new alpha(0)-thalassemia deletion found in a Dutch family (--(AW)).

    NARCIS (Netherlands)

    Phylipsen, M.; Vogelaar, I.P.; Schaap, R.A.; Arkesteijn, S.G.; Boxma, G.L.; Helden, W.C. van; Wildschut, I.C.; Bruin-Roest, A.C. de; Giordano, P.C.; Harteveld, C.L.

    2010-01-01

    Alpha-thalassemia is an inherited hemoglobin disorder characterized by a microcytic hypochromic anemia caused by a quantitative reduction of the alpha-globin chain. The majority of the alpha-thalassemias is caused by deletions in the alpha-globin gene cluster. A deletion in the alpha-globin gene

  16. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  17. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  18. Detection of trans-acting factors for hemoglobin switching by cell fusions

    International Nuclear Information System (INIS)

    Broyles, R.H.; Palmer, J.C.; Smith, D.J.; Ramseyer, T.H.

    1986-01-01

    The authors have devised protocols for chemically fusing erythroid cells from amphibians of different developmental stages, so that we may study the short-term effects of trans-acting factors on globin gene expression. The authors are performing both homospecifc (Rana x Rana) and heterospecific (Rana x Xenopus) fusions; and they are detecting the expression of specific globin genes with selective radioactive labeling ( 35 S-methionine is incorporated only into adult globins), polyacrylamide gel electrophoresis, monospecific antisera, and cDNA probes that are species-and developmental stage-specific. Their results indicate that: (1) there are factors in tadpole erythroblasts that can reactivate adult Hb synthesis in mature, synthetically-inactive adult RBCs; (2) there are factors in tadpole erythroblasts that can reactivate tadpole globin genes in adult RBCs; and (3) there are factors in adult erythroid cells that apparently activate adult globin genes in tadpole RBCs. These results suggests that erythroid cells from animals of different developmental stages possess different sets of globin gene-specific trans-acting factors which can be studied with a system that exhibits normal developmental Hb switching

  19. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    Science.gov (United States)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  20. Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host

    Directory of Open Access Journals (Sweden)

    Jiun-Yan eDing

    2016-03-01

    Full Text Available The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its host. Testosterone degradation and type III secretion system are commonly present in Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, this bacterium could move into coral cells via endocytosis after binding to coral’s Eph receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase are possible type III secretion effectors that might help coral to prevent mitochondrial dysfunction and promote gluconeogenesis, especially under stress conditions. Based on all these findings, we inferred that E. montiporae was a facultative endosymbiont that can recognize, translocate, communicate and modulate its coral host.

  1. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    Science.gov (United States)

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  2. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Cucchiara, A.; Prochaska, J. X.; Werk, J. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Perley, D.; Cao, Y. [Department of Astronomy, California Institute of Technology, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD (United States); Cardwell, A.; Turner, J. [Gemini South Observatory, AURA, Casilla 603, La Serena (Chile); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cobb, B. E., E-mail: acucchia@ucolick.org [The George Washington University, Washington, DC (United States)

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial

  3. Population structure and virulence gene profiles of Streptococcus agalactiae collected from different hosts worldwide.

    Science.gov (United States)

    Morach, Marina; Stephan, Roger; Schmitt, Sarah; Ewers, Christa; Zschöck, Michael; Reyes-Velez, Julian; Gilli, Urs; Del Pilar Crespo-Ortiz, María; Crumlish, Margaret; Gunturu, Revathi; Daubenberger, Claudia A; Ip, Margaret; Regli, Walter; Johler, Sophia

    2018-03-01

    Streptococcus agalactiae is a leading cause of morbidity and mortality among neonates and causes severe infections in pregnant women and nonpregnant predisposed adults, in addition to various animal species worldwide. Still, information on the population structure of S. agalactiae and the geographical distribution of different clones is limited. Further data are urgently needed to identify particularly successful clones and obtain insights into possible routes of transmission within one host species and across species borders. We aimed to determine the population structure and virulence gene profiles of S. agalactiae strains from a diverse set of sources and geographical origins. To this end, 373 S. agalactiae isolates obtained from humans and animals from five different continents were typed by DNA microarray profiling. A total of 242 different S. agalactiae strains were identified and further analyzed. Particularly successful clonal lineages, hybridization patterns, and strains were identified that were spread across different continents and/or were present in more than one host species. In particular, several strains were detected in both humans and cattle, and several canine strains were also detected in samples from human, bovine, and porcine hosts. The findings of our study suggest that although S. agalactiae is well adapted to various hosts including humans, cattle, dogs, rodents, and fish, interspecies transmission is possible and occurs between humans and cows, dogs, and rabbits. The virulence and resistance gene profiles presented enable new insights into interspecies transmission and make a crucial contribution to the identification of suitable targets for therapeutic agents and vaccines.

  4. Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4.

    Science.gov (United States)

    Tiemann, B; Depping, R; Rüger, W

    1999-01-01

    There is increasing experimental evidence that ADP-ribosylation of host proteins is an important means to regulate gene expression of bacteriophage T4. Surprisingly, this phage codes for three different ADP-ribosyltransferases, gene products Alt, ModA, and ModB, modifying partially overlapping sets of host proteins. While gene product Alt already has been isolated as a recombinant protein and its action on host RNA polymerases and transcription regulation have been studied, the nucleotide sequences of the two mod genes was published only recently. Their mode of action in the course of the infection cycle and the consequences of the ADP-ribosylations catalyzed by these enzymes remain to be investigated. Here we describe the cloning of the genes, the overexpression, purification, and partial characterization of ADP-ribosyltransferases ModA and ModB. Both proteins seem to act independently, and the ADP-ribosyl moieties are transferred to different sets of host proteins. While gene product ModA, similarly to the Alt protein, acts also on the alpha-subunit of host RNA polymerase, the ModB activity serves another set of proteins, one of which was identified as the S1 protein associated with the 30S subunit of the E. coli ribosomes.

  5. Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.

    Directory of Open Access Journals (Sweden)

    Haipeng Ci

    Full Text Available BACKGROUND: The arginine vasopressin receptor (AVPR and oxytocin receptor (OXTR genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. METHODOLOGY/PRINCIPAL FINDINGS: This study assessed interactions between the clock gene (rs1801260, rs6832769 and the OXTR (rs1042778, rs237887 and AVPR1b (rs28373064 genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436. The Prosocial Tendencies Measure (PTM-R was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. CONCLUSIONS: The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.

  6. Clock gene modulates roles of OXTR and AVPR1b genes in prosociality.

    Science.gov (United States)

    Ci, Haipeng; Wu, Nan; Su, Yanjie

    2014-01-01

    The arginine vasopressin receptor (AVPR) and oxytocin receptor (OXTR) genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene. This study assessed interactions between the clock gene (rs1801260, rs6832769) and the OXTR (rs1042778, rs237887) and AVPR1b (rs28373064) genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436). The Prosocial Tendencies Measure (PTM-R) was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups. The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.

  7. Sequence Variation in Toxoplasma gondii rop17 Gene among Strains from Different Hosts and Geographical Locations

    Directory of Open Access Journals (Sweden)

    Nian-Zhang Zhang

    2014-01-01

    Full Text Available Genetic diversity of T. gondii is a concern of many studies, due to the biological and epidemiological diversity of this parasite. The present study examined sequence variation in rhoptry protein 17 (ROP17 gene among T. gondii isolates from different hosts and geographical regions. The rop17 gene was amplified and sequenced from 10 T. gondii strains, and phylogenetic relationship among these T. gondii strains was reconstructed using maximum parsimony (MP, neighbor-joining (NJ, and maximum likelihood (ML analyses. The partial rop17 gene sequences were 1375 bp in length and A+T contents varied from 49.45% to 50.11% among all examined T. gondii strains. Sequence analysis identified 33 variable nucleotide positions (2.1%, 16 of which were identified as transitions. Phylogeny reconstruction based on rop17 gene data revealed two major clusters which could readily distinguish Type I and Type II strains. Analyses of sequence variations in nucleotides and amino acids among these strains revealed high ratio of nonsynonymous to synonymous polymorphisms (>1, indicating that rop17 shows signs of positive selection. This study demonstrated the existence of slightly high sequence variability in the rop17 gene sequences among T. gondii strains from different hosts and geographical regions, suggesting that rop17 gene may represent a new genetic marker for population genetic studies of T. gondii isolates.

  8. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    Directory of Open Access Journals (Sweden)

    Queiroux Clothilde

    2012-05-01

    Full Text Available Abstract Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.

  9. N-alkylvaline levels in globin as a new type of biomarker in risk assessment of alkylating agents.

    Science.gov (United States)

    Lewalter, J

    1996-01-01

    Adducts with the N-terminal valine of erythrocyte globin can serve as individual biomarkers of systemic and cellular exposure to endogenous and exogenous alkylating agents. In contrast to "detoxification markers" of this kind of mecapturic acids derived from alkylation of glutathione, individual N-alkylations of valine in globin reflect the formally "toxifying" part of the stress due to alkylating agents transformed into the ultimate toxicant. Thus, in contrast to the traditional methods of biological monitoring this approach enables a better evaluation of systemic exposure to reactive agents, adapted more sensibly to the exposure situation over the whole life span of erythrocytes, and it can serve as a specific biomarker of exposure for the purpose of health surveillance in occupational medicine. An individual evaluation of exposures in comparison with the range of corresponding background levels is discussed from the point of view of supplementary risk assessment in medical surveillance of occupationally exposed persons.

  10. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity

    DEFF Research Database (Denmark)

    El Qaidi, Samir; Chen, Kangming; Halim, Adnan

    2017-01-01

    proteins with N-acetyl-D-glucosamine to inhibit antibacterial and inflammatory host responses. NleB is conserved among the attaching/effacing pathogens enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and Citrobacter rodentium. Moreover, Salmonella enterica strains encode up to three Nle......B orthologs named SseK1, SseK2, and SseK3. However, there are conflicting reports regarding the activities and host protein targets among the NleB/SseK orthologs. Therefore, here we performed in vitro glycosylation assays and cell culture experiments to compare the activities and substrate specificities...... of these effectors. SseK1, SseK3, EHEC NleB1, EPEC NleB1, and C. rodentium NleB blocked TNF-mediated NF-κB pathway activation, whereas SseK2 and NleB2 did not. C. rodentium NleB, EHEC NleB1, and SseK1 glycosylated host glyceraldehyde 3-phosphate dehydrogenase (GAPDH). C. rodentium NleB, EHEC NleB1, EPEC NleB1...

  11. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    Science.gov (United States)

    Vega-Arreguín, Julio C; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici - plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici . Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici . VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1 , also enhanced susceptibility to P. capsici in N. edwardsonii , as well as in the susceptible plants N. benthamiana and N. clevelandii . The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance.

  12. The cytotoxic type 3 secretion system 1 of Vibrio rewires host gene expression to subvert cell death and activate cell survival pathways.

    Science.gov (United States)

    De Nisco, Nicole J; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-05-16

    Bacterial effectors potently manipulate host signaling pathways. The marine bacterium Vibrio parahaemolyticus ( V. para ) delivers effectors into host cells through two type 3 secretion systems (T3SSs). T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate nonapoptotic cell death. To understand how the concerted action of T3SS1 effectors globally affects host cell signaling, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1 + ) to those in cells infected with V. para lacking T3SS1 (T3SS1 - ). Overall, the host transcriptional response to both T3SS1 + and T3SS1 - V. para was rapid, robust, and temporally dynamic. T3SS1 rewired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors targeted host cells at the posttranslational level to cause cytotoxicity, V. para T3SS1 also precipitated a host transcriptional response that initially activated cell survival and repressed cell death networks. The increased expression of several key prosurvival transcripts mediated by T3SS1 depended on a host signaling pathway that is silenced posttranslationally later in infection. Together, our analysis reveals a complex interplay between the roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. Copyright © 2017, American Association for the Advancement of Science.

  13. Investigation of the role of genes encoding zinc exporters zntA, zitB, and fieF during Salmonella typhimurium infection

    DEFF Research Database (Denmark)

    Huang, Kaisong; Wang, Dan; Frederiksen, Rikki F.

    2018-01-01

    The transition metal zinc is involved in crucial biological processes in all living organisms and is essential for survival of Salmonella in the host. However, little is known about the role of genes encoding zinc efflux transporters during Salmonella infection. In this study, we constructed...... deletion mutants for genes encoding zinc exporters (zntA, zitB, and fieF) in the wild-type (WT) strain Salmonella enterica serovar Typhimurium (S. Typhimurium) 4/74. The mutants 4/74ΔzntA and 4/74ΔzntA/zitB exhibited a dramatic growth delay and abrogated growth ability, respectively, in Luria Bertani...... medium supplemented with 0.25 mM ZnCl2 or 1.5 mM CuSO4 compared to the WT strain. In order to investigate the role of genes encoding zinc exporters on survival of S. Typhimurium inside cells, amoeba and macrophage infection models were used. No significant differences in uptake or survival were detected...

  14. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D.; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M.; Webster, Thomas C.; Su, Songkun

    2016-01-01

    ABSTRACT Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors

  15. Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections.

    Science.gov (United States)

    Li, Wenfeng; Evans, Jay D; Huang, Qiang; Rodríguez-García, Cristina; Liu, Jie; Hamilton, Michele; Grozinger, Christina M; Webster, Thomas C; Su, Songkun; Chen, Yan Ping

    2016-11-15

    Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate

  16. Nucleoside Analog-treated Chronic Hepatitis B Patients showed Reduced Expression of PECAM-1 Gene in Peripheral Blood Mononuclear Cells in Bangladesh

    Science.gov (United States)

    Tabassum, Shahina; Ullah Munshi, Saif; Hossain, Marufa; Imam, Akhter

    2014-01-01

    ABSTRACT Background and aim Assessment of therapeutic response is important for monitoring the prognosis and to take decision for cessation of nucleoside analogues therapy in chronic hepatitis B patients. In addition to serum alanine aminotransferase (ALT), hepatitis B virus (HBV) deoxyribonucleic acid (DNA) load and HBeAg status, identification of molecular markers associated with host immune response would be essential to assess therapeutic response. In this regard the current study was performed with the aim to detect expression of platelet endothelial cell adhesion molecule (PECAM)-I gene in peripheral blood monocytes (PBMCs) of treated chronic hepatitis B patients and also to correlate expression of this gene with serum HBV DNA load and serum ALT levels. Materials and methods The study analyzed 60 chronic hepatitis B (CHB) patients, including 30 untreated and 30 nucleoside analogs treated and 10 healthy controls. PECAM-1 gene expression/ transcripts were detected by conventional RT-PCR. Results The expression PECAM-1 mRNA in the PBMCs of CHB patients was significantly higher in untreated (3.17 ± 0.75) than the treated patients (1.64 ± 0.29) (p Tabassum S, Munshi SU, Hossain M, Imam A. Nucleoside Analog-treated Chronic Hepatitis B Patients showed Reduced Expression of PECAM-1 Gene in Peripheral Blood Mononuclear Cells in Bangladesh. Euroasian J Hepato-Gastroenterol 2014;4(2):87-91. PMID:29699354

  17. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  18. Brucella TIR-like protein TcpB/Btp1 specifically targets the host adaptor protein MAL/TIRAP to promote infection.

    Science.gov (United States)

    Li, Wenna; Ke, Yuehua; Wang, Yufei; Yang, Mingjuan; Gao, Junguang; Zhan, Shaoxia; Xinying, Du; Huang, Liuyu; Li, Wenfeng; Chen, Zeliang; Li, Juan

    2016-08-26

    Brucella spp. are known to avoid host immune recognition and weaken the immune response to infection. Brucella like accomplish this by employing two clever strategies, called the stealth strategy and hijacking strategy. The TIR domain-containing protein (TcpB/Btp1) of Brucella melitensis is thought to be involved in inhibiting host NF-κB activation by binding to adaptors downstream of Toll-like receptors. However, of the five TIR domain-containing adaptors conserved in mammals, whether MyD88 or MAL, even other three adaptors, are specifically targeted by TcpB has not been identified. Here, we confirmed the effect of TcpB on B.melitensis virulence in mice and found that TcpB selectively targets MAL. By using siRNA against MAL, we found that TcpB from B.melitensis is involved in intracellular survival and that MAL affects intracellular replication of B.melitensis. Our results confirm that TcpB specifically targets MAL/TIRAP to disrupt downstream signaling pathways and promote intra-host survival of Brucella spp. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici.

    Science.gov (United States)

    Reeves, Gregory; Monroy-Barbosa, Ariadna; Bosland, Paul W

    2013-05-01

    A novel disease resistance inhibitor gene (inhibitor of P. capsici resistance [Ipcr]), found in the chile pepper (Capsicum annuum) variety 'New Mexico Capsicum Accession 10399' (NMCA10399), inhibits resistance to Phytophthora capsici but not to other species of Phytophthora. When a highly P. capsici-resistant variety was hybridized with NMCA10399, the resultant F1 populations, when screened, were completely susceptible to P. capsici for root rot and foliar blight disease syndromes, despite the dominance inheritance of P. capsici resistance in chile pepper. The F2 population displayed a 3:13 resistant-to-susceptible (R:S) ratio. The testcross population displayed a 1:1 R:S ratio, and a backcross population to NMCA10399 displayed complete susceptibility. These results demonstrate the presence of a single dominant inhibitor gene affecting P. capsici resistance in chile pepper. Moreover, when lines carrying the Ipcr gene were challenged against six Phytophthora spp., the nonhost resistance was not overcome. Therefore, the Ipcr gene is interfering with host-specific resistance but not the pathogen- or microbe-associated molecular pattern nonhost responses.

  20. Genome wide transcriptome profiling of a murine acute melioidosis model reveals new insights into how Burkholderia pseudomallei overcomes host innate immunity

    Directory of Open Access Journals (Sweden)

    Nathan Sheila

    2010-11-01

    Full Text Available Abstract Background At present, very little is known about how Burkholderia pseudomallei (B. pseudomallei interacts with its host to elicit melioidosis symptoms. We established a murine acute-phase melioidosis model and used DNA microarray technology to investigate the global host/pathogen interaction. We compared the transcriptome of infected liver and spleen with uninfected tissues over an infection period of 42 hr to identify genes whose expression is altered in response to an acute infection. Results Viable B. pseudomallei cells were consistently detected in the blood, liver and spleen during the 42 hr course of infection. Microarray analysis of the liver and spleen over this time course demonstrated that genes involved in immune response, stress response, cell cycle regulation, proteasomal degradation, cellular metabolism and signal transduction pathways were differentially regulated. Up regulation of toll-like receptor 2 (TLR2 gene expression suggested that a TLR2-mediated signalling pathway is responsible for recognition and initiation of an inflammatory response to the acute B. pseudomallei infection. Most of the highly elevated inflammatory genes are a cohort of "core host immune response" genes commonly seen in general inflammation infections. Concomitant to this initial inflammatory response, we observed an increase in transcripts associated with cell-death, caspase activation and peptidoglysis that ultimately promote tissue injury in the host. The complement system responsible for restoring host cellular homeostasis and eliminating intracellular bacteria was activated only after 24 hr post-infection. However, at this time point, diverse host nutrient metabolic and cellular pathways including glycolysis, fatty acid metabolism and tricarboxylic acid (TCA cycle were repressed. Conclusions This detailed picture of the host transcriptional response during acute melioidosis highlights a broad range of innate immune mechanisms that are

  1. Characterization of adult α- and β-globin elevated by hydrogen peroxide in cervical cancer cells that play a cytoprotective role against oxidative insults.

    Directory of Open Access Journals (Sweden)

    Xiaolei Li

    Full Text Available OBJECTIVES: Hemoglobin (Hgb is the main oxygen and carbon dioxide carrier in cells of erythroid lineage and is responsible for oxygen delivery to the respiring tissues of the body. However, Hgb is also expressed in nonerythroid cells. In the present study, the expression of Hgb in human uterine cervix carcinoma cells and its role in cervical cancer were investigated. METHODOLOGY: The expression level of Hgb in cervical cancer tissues was assessed by quantitative reverse transcriptase-PCR (qRT-PCR. We applied multiple methods, such as RT-PCR, immunoblotting, and immunohistochemical analysis, to confirm Hgb expression in cervical cancer cells. The effects of ectopic expression of Hgb and Hgb mutants on oxidative stress and cell viability were investigated by cellular reactive oxygen species (ROS analysis and lactate dehydrogenase (LDH array, respectively. Both Annexin V staining assay by flow cytometry and caspase-3 activity assay were used, respectively, to evaluate cell apoptosis. RESULTS: qRT-PCR analysis showed that Hgb-α- (HBA1 and Hgb-β-globin (HBB gene expression was significantly higher in cervical carcinoma than in normal cervical tissues, whereas the expression of hematopoietic transcription factors and erythrocyte specific marker genes was not increased. Immunostaining experiments confirmed the expression of Hgb in cancer cells of the uterine cervix. Hgb mRNA and protein were also detected in the human cervical carcinoma cell lines SiHa and CaSki, and Hgb expression was up-regulated by hydrogen peroxide-induced oxidative stress. Importantly, ectopic expression of wild type HBA1/HBB or HBA1, rather than mutants HBA1(H88R/HBB(H93R unable to bind hemo, suppressed oxidative stress and improved cell viability. CONCLUSIONS: The present findings show for the first time that Hgb is expressed in cervical carcinoma cells and may act as an antioxidant, attenuating oxidative stress-induced damage in cervical cancer cells. These data provide a

  2. Occurrence of the structural enterocin A, P, B, L50B genes in enterococci of different origin.

    Science.gov (United States)

    Strompfová, Viola; Lauková, Andrea; Simonová, Monika; Marcináková, Miroslava

    2008-12-10

    Enterococci are well-known producers of antimicrobial peptides--bacteriocins (enterocins) and the number of characterized enterocins has been significantly increased. Recently, enterocins are of great interest for their potential as biopreservatives in food or feed while research on enterocins as alternative antimicrobials in humans and animals is only at the beginning. The present study provides a survey about the occurrence of enterocin structural genes A, P, B, L50B in a target of 427 strains of Enterococcus faecium (368) and Enterococcus faecalis (59) species from different sources (animal isolates, food and feed) performed by PCR method. Based on our results, 234 strains possessed one or more enterocin structural gene(s). The genes of enterocin P and enterocin A were the most frequently detected structural genes among the PCR positive strains (170 and 155 strains, respectively). Different frequency of the enterocin genes occurrence was detected in strains according to their origin; the strains from horses and silage showed the highest frequency of enterocin genes presence. All possible combinations of the tested genes occurred at least twice except the combination of the gene of enterocin B and L50B which possessed neither strain. The gene of enterocin A was exclusively detected among E. faecium strains, while the gene of enterocin P, B, L50B were detected in strains of both species E. faecium and E. faecalis. In conclusion, a high-frequency and variability of enterocin structural genes exists among enterococci of different origin what offers a big possibility to find effective bacteriocin-producing strains for their application in veterinary medicine.

  3. Identification of transcription coactivator OCA-B-dependent genes involved in antigen-dependent B cell differentiation by cDNA array analyses.

    Science.gov (United States)

    Kim, Unkyu; Siegel, Rachael; Ren, Xiaodi; Gunther, Cary S; Gaasterland, Terry; Roeder, Robert G

    2003-07-22

    The tissue-specific transcriptional coactivator OCA-B is required for antigen-dependent B cell differentiation events, including germinal center formation. However, the identity of OCA-B target genes involved in this process is unknown. This study has used large-scale cDNA arrays to monitor changes in gene expression patterns that accompany mature B cell differentiation. B cell receptor ligation alone induces many genes involved in B cell expansion, whereas B cell receptor and helper T cell costimulation induce genes associated with B cell effector function. OCA-B expression is induced by both B cell receptor ligation alone and helper T cell costimulation, suggesting that OCA-B is involved in B cell expansion as well as B cell function. Accordingly, several genes involved in cell proliferation and signaling, such as Lck, Kcnn4, Cdc37, cyclin D3, B4galt1, and Ms4a11, have been identified as OCA-B-dependent genes. Further studies on the roles played by these genes in B cells will contribute to an understanding of B cell differentiation.

  4. Patterns of oligonucleotide sequences in viral and host cell RNA identify mediators of the host innate immune system.

    Directory of Open Access Journals (Sweden)

    Benjamin D Greenbaum

    Full Text Available The innate immune response provides a first line of defense against pathogens by targeting generic differential features that are present in foreign organisms but not in the host. These innate responses generate selection forces acting both in pathogens and hosts that further determine their co-evolution. Here we analyze the nucleic acid sequence fingerprints of these selection forces acting in parallel on both host innate immune genes and ssRNA viral genomes. We do this by identifying dinucleotide biases in the coding regions of innate immune response genes in plasmacytoid dendritic cells, and then use this signal to identify other significant host innate immune genes. The persistence of these biases in the orthologous groups of genes in humans and chickens is also examined. We then compare the significant motifs in highly expressed genes of the innate immune system to those in ssRNA viruses and study the evolution of these motifs in the H1N1 influenza genome. We argue that the significant under-represented motif pattern of CpG in an AU context--which is found in both the ssRNA viruses and innate genes, and has decreased throughout the history of H1N1 influenza replication in humans--is immunostimulatory and has been selected against during the co-evolution of viruses and host innate immune genes. This shows how differences in host immune biology can drive the evolution of viruses that jump into species with different immune priorities than the original host.

  5. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation.

    Science.gov (United States)

    Xu, Donglin; Zhou, Guohui

    2017-02-10

    Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host

  6. Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface.

    Directory of Open Access Journals (Sweden)

    Vanda Juranic Lisnic

    Full Text Available Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq. We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus

  7. Transcriptomic insights into the alternative splicing-mediated adaptation of the entomopathogenic fungus Beauveria bassiana to host niches: autophagy-related gene 8 as an example.

    Science.gov (United States)

    Dong, Wei-Xia; Ding, Jin-Li; Gao, Yang; Peng, Yue-Jin; Feng, Ming-Guang; Ying, Sheng-Hua

    2017-10-01

    Alternative splicing (AS) regulates various biological processes in fungi by extending the cellular proteome. However, comprehensive studies investigating AS in entomopathogenic fungi are lacking. Based on transcriptome data obtained via dual RNA-seq, the first overview of AS events was developed for Beauveria bassiana growing in an insect haemocoel. The AS was demonstrated for 556 of 8840 expressed genes, accounting for 5.4% of the total genes in B. bassiana. Intron retention was the most abundant type of AS, accounting for 87.1% of all splicing events and exon skipping events were rare, only accounting for 2.0% of all events. Functional distribution analysis indicated an association between alternatively spliced genes and several physiological processes. Notably, B. bassiana autophagy-related gene 8 (BbATG8), an indispensable gene for autophagy, was spliced at an alternative 5' splice site to generate two transcripts (BbATG8-α and BbATG8-β). The BbATG8-α transcript was necessary for fungal autophagy and oxidation tolerance, while the BbATG8-β transcript was not. These two transcripts differentially contributed to the formation of conidia or blastospores as well as fungal virulence. Thus, AS acts as a powerful post-transcriptional regulatory strategy in insect mycopathogens and significantly mediates fungal transcriptional adaption to host niches. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. HS5 of the human β-globin Locus Control Region: a developmental stage-specific border in erythroid cells.

    NARCIS (Netherlands)

    A. Wai (Albert); N. Gillemans (Nynke); S. Raguz-Bolognesi (Selina); S. Pruzina (Sara); G. Zafarana (Gaetano); D.N. Meijer (Dies); F.G. Grosveld (Frank); J.N.J. Philipsen (Sjaak)

    2003-01-01

    textabstractElements with insulator/border activity have been characterized most extensively in Drosophila melanogaster. In vertebrates, the first example of such an element was provided by a hypersensitive site of the chicken beta-globin locus, cHS4. It has been proposed that the homologous site in

  9. Structural Diversification of Lyngbyatoxin A by Host-Dependent Heterologous Expression of the tleABC Biosynthetic Gene Cluster.

    Science.gov (United States)

    Zhang, Lihan; Hoshino, Shotaro; Awakawa, Takayoshi; Wakimoto, Toshiyuki; Abe, Ikuro

    2016-08-03

    Natural products have enormous structural diversity, yet little is known about how such diversity is achieved in nature. Here we report the structural diversification of a cyanotoxin-lyngbyatoxin A-and its biosynthetic intermediates by heterologous expression of the Streptomyces-derived tleABC biosynthetic gene cluster in three different Streptomyces hosts: S. lividans, S. albus, and S. avermitilis. Notably, the isolated lyngbyatoxin derivatives, including four new natural products, were biosynthesized by crosstalk between the heterologous tleABC gene cluster and the endogenous host enzymes. The simple strategy described here has expanded the structural diversity of lyngbyatoxin A and its biosynthetic intermediates, and provides opportunities for investigation of the currently underestimated hidden biosynthetic crosstalk. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.

    Directory of Open Access Journals (Sweden)

    Dong Ding

    Full Text Available Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs. Here we devised a massive anchored parallel sequencing (MAPS method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues, we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1 containing IPR003961 (Fibronectin, type III domain, 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1 containing IPR013032 (EGF-like region, conserved site, and three genes (PDE7A, PDE4B, PDE11A containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase. Enriched pathways include hsa04512 (ECM-receptor interaction, hsa04510 (Focal adhesion, and hsa04012 (ErbB signaling pathway. Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1 and telomerase reverse transcriptase (TERT1, two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5, phosphatase and actin regulator 4 (PHACTR4, and RNA binding protein fox-1 homolog (C. elegans 1 (RBFOX1. Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list

  11. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range

    DEFF Research Database (Denmark)

    Radutoiu, Simona; Madsen, Lene H; Madsen, Esben B

    2007-01-01

    and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L...

  12. Molecular characterization of Babesia peircei and Babesia ugwidiensis provides insight into the evolution and host specificity of avian piroplasmids

    Directory of Open Access Journals (Sweden)

    Michael J. Yabsley

    2017-12-01

    Full Text Available There are 16 recognized species of avian-infecting Babesia spp. (Piroplasmida: Babesiidae. While the classification of piroplasmids has been historically based on morphological differences, geographic isolation and presumed host and/or vector specificities, recent studies employing gene sequence analysis have provided insight into their phylogenetic relationships and host distribution and specificity. In this study, we analyzed the sequences of the 18S rRNA gene and ITS-1 and ITS-2 regions of two Babesia species from South African seabirds: Babesia peircei from African penguins (Spheniscus demersus and Babesia ugwidiensis from Bank and Cape cormorants (Phalacrocorax neglectus and P. capensis, respectively. Our results show that avian Babesia spp. are not monophyletic, with at least three distinct phylogenetic groups. B. peircei and B. ugwidiensis are closely related, and fall within the same phylogenetic group as B. ardeae (from herons Ardea cinerea, B. poelea (from boobies Sula spp. and B. uriae (from murres Uria aalge. The validity of B. peircei and B. ugwidiensis as separate species is corroborated by both morphological and genetic evidence. On the other hand, our results indicate that B. poelea might be a synonym of B. peircei, which in turn would be a host generalist that infects seabirds from multiple orders. Further studies combining morphological and molecular methods are warranted to clarify the taxonomy, phylogeny and host distribution of avian piroplasmids. Keywords: Africa, Babesia, Piroplasmida, Phalacrocoracidae, Spheniscidae, Tick-borne pathogen

  13. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.

    Science.gov (United States)

    Brutesco, Catherine; Prévéral, Sandra; Escoffier, Camille; Descamps, Elodie C T; Prudent, Elsa; Cayron, Julien; Dumas, Louis; Ricquebourg, Manon; Adryanczyk-Perrier, Géraldine; de Groot, Arjan; Garcia, Daniel; Rodrigue, Agnès; Pignol, David; Ginet, Nicolas

    2017-01-01

    Whole-cell biosensors based on reporter genes allow detection of toxic metals in water with high selectivity and sensitivity under laboratory conditions; nevertheless, their transfer to a commercial inline water analyzer requires specific adaptation and optimization to field conditions as well as economical considerations. We focused here on both the influence of the bacterial host and the choice of the reporter gene by following the responses of global toxicity biosensors based on constitutive bacterial promoters as well as arsenite biosensors based on the arsenite-inducible P ars promoter. We observed important variations of the bioluminescence emission levels in five different Escherichia coli strains harboring two different lux-based biosensors, suggesting that the best host strain has to be empirically selected for each new biosensor under construction. We also investigated the bioluminescence reporter gene system transferred into Deinococcus deserti, an environmental, desiccation- and radiation-tolerant bacterium that would reduce the manufacturing costs of bacterial biosensors for commercial water analyzers and open the field of biodetection in radioactive environments. We thus successfully obtained a cell survival biosensor and a metal biosensor able to detect a concentration as low as 100 nM of arsenite in D. deserti. We demonstrated that the arsenite biosensor resisted desiccation and remained functional after 7 days stored in air-dried D. deserti cells. We also report here the use of a new near-infrared (NIR) fluorescent reporter candidate, a bacteriophytochrome from the magnetotactic bacterium Magnetospirillum magneticum AMB-1, which showed a NIR fluorescent signal that remained optimal despite increasing sample turbidity, while in similar conditions, a drastic loss of the lux-based biosensors signal was observed.

  14. Retrotransposons of the Tnt1B family are mobile in Nicotiana plumbaginifolia and can induce alternative splicing of the host gene upon insertion.

    Science.gov (United States)

    Leprinc, A S; Grandbastien, M A; Christian, M

    2001-11-01

    Active retrotransposons have been identified in Nicotiana plumbaginifolia by their ability to disrupt the nitrate reductase gene in chlorate-resistant mutants selected from protoplast-derived cultures. In mutants E23 and F97, two independent insertions of Tnp2, a new retrotransposon closely related to the tobacco Tnt1 elements, were detected in the nitrate reductase gene. These two Tnp2 elements are members of the Tnt1B subfamily which shows that Tnt1B elements can be active and mutagenic in the N. plumbaginifolia genome. Furthermore, these results suggest that Tnt1B is the most active family of Tntl elements in N. plumbaginifolia, whereas in tobacco only members of the Tnt1A subfamily were found inserted in the nitrate reductase gene. The transcriptional regulations of Tnp2 and Tnt1A elements are most probably different due to non-conserved U3 regions. Our results thus support the hypothesis that different Nicotiana species contain different active Tntl subfamilies and that only one active Tntl subfamily might be maintained in each of these species. The Tnp2 insertion found in the F97 mutant was found to be spliced out of the nitrate reductase mRNA by activation of cryptic donor and acceptor sites in the nitrate reductase and the Tnp2 sequences respectively.

  15. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Directory of Open Access Journals (Sweden)

    Jillian C Carmichael

    2018-05-01

    Full Text Available All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1, direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor, we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B, and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4 blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  16. The HSV-1 mechanisms of cell-to-cell spread and fusion are critically dependent on host PTP1B.

    Science.gov (United States)

    Carmichael, Jillian C; Yokota, Hiroki; Craven, Rebecca C; Schmitt, Anthony; Wills, John W

    2018-05-01

    All herpesviruses have mechanisms for passing through cell junctions, which exclude neutralizing antibodies and offer a clear path to neighboring, uninfected cells. In the case of herpes simplex virus type 1 (HSV-1), direct cell-to-cell transmission takes place between epithelial cells and sensory neurons, where latency is established. The spreading mechanism is poorly understood, but mutations in four different HSV-1 genes can dysregulate it, causing neighboring cells to fuse to produce syncytia. Because the host proteins involved are largely unknown (other than the virus entry receptor), we were intrigued by an earlier discovery that cells infected with wild-type HSV-1 will form syncytia when treated with salubrinal. A biotinylated derivative of this drug was used to pull down cellular complexes, which were analyzed by mass spectrometry. One candidate was a protein tyrosine phosphatase (PTP1B), and although it ultimately proved not to be the target of salubrinal, it was found to be critical for the mechanism of cell-to-cell spread. In particular, a highly specific inhibitor of PTP1B (CAS 765317-72-4) blocked salubrinal-induced fusion, and by itself resulted in a dramatic reduction in the ability of HSV-1 to spread in the presence of neutralizing antibodies. The importance of this phosphatase was confirmed in the absence of drugs by using PTP1B-/- cells. Importantly, replication assays showed that virus titers were unaffected when PTP1B was inhibited or absent. Only cell-to-cell spread was altered. We also examined the effects of salubrinal and the PTP1B inhibitor on the four Syn mutants of HSV-1, and strikingly different responses were found. That is, both drugs individually enhanced fusion for some mutants and reduced fusion for others. PTP1B is the first host factor identified to be specifically required for cell-to-cell spread, and it may be a therapeutic target for preventing HSV-1 reactivation disease.

  17. Comparative genomics of neuroglobin reveals its early origins.

    Directory of Open Access Journals (Sweden)

    Jasmin Dröge

    Full Text Available Neuroglobin (Ngb is a hexacoordinated globin expressed mainly in the central and peripheral nervous system of vertebrates. Although several hypotheses have been put forward regarding the role of neuroglobin, its definite function remains uncertain. Ngb appears to have a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. Ngb is phylogenetically ancient and has a substitution rate nearly four times lower than that of other vertebrate globins, e.g. hemoglobin. Despite its high sequence conservation among vertebrates Ngb seems to be elusive in invertebrates.We determined candidate orthologs in invertebrates and identified a globin of the placozoan Trichoplax adhaerens that is most likely orthologous to vertebrate Ngb and confirmed the orthologous relationship of the polymeric globin of the sea urchin Strongylocentrotus purpuratus to Ngb. The putative orthologous globin genes are located next to genes orthologous to vertebrate POMT2 similarly to localization of vertebrate Ngb. The shared syntenic position of the globins from Trichoplax, the sea urchin and of vertebrate Ngb strongly suggests that they are orthologous. A search for conserved transcription factor binding sites (TFBSs in the promoter regions of the Ngb genes of different vertebrates via phylogenetic footprinting revealed several TFBSs, which may contribute to the specific expression of Ngb, whereas a comparative analysis with myoglobin revealed several common TFBSs, suggestive of regulatory mechanisms common to globin genes.Identification of the placozoan and echinoderm genes orthologous to vertebrate neuroglobin strongly supports the hypothesis of the early evolutionary origin of this globin, as it shows that neuroglobin was already present in the placozoan-bilaterian last common ancestor. Computational determination of the transcription factor binding sites repertoire provides on the one hand a set of transcriptional factors that are

  18. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    Science.gov (United States)

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  19. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    Science.gov (United States)

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus , a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays , and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays , there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus . Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus .

  20. Evasion of host immune defenses by human papillomavirus.

    Science.gov (United States)

    Westrich, Joseph A; Warren, Cody J; Pyeon, Dohun

    2017-03-02

    A majority of human papillomavirus (HPV) infections are asymptomatic and self-resolving in the absence of medical interventions. Various innate and adaptive immune responses, as well as physical barriers, have been implicated in controlling early HPV infections. However, if HPV overcomes these host immune defenses and establishes persistence in basal keratinocytes, it becomes very difficult for the host to eliminate the infection. The HPV oncoproteins E5, E6, and E7 are important in regulating host immune responses. These oncoproteins dysregulate gene expression, protein-protein interactions, posttranslational modifications, and cellular trafficking of critical host immune modulators. In addition to the HPV oncoproteins, sequence variation and dinucleotide depletion in papillomavirus genomes has been suggested as an alternative strategy for evasion of host immune defenses. Since anti-HPV host immune responses are also considered to be important for antitumor immunity, immune dysregulation by HPV during virus persistence may contribute to immune suppression essential for HPV-associated cancer progression. Here, we discuss cellular pathways dysregulated by HPV that allow the virus to evade various host immune defenses. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    International Nuclear Information System (INIS)

    Andria, Verania; Reichenauer, Thomas G.; Sessitsch, Angela

    2009-01-01

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  2. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Andria, Verania [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Unit of Environmental Resources and Technologies, A-2444 Seibersdorf (Austria); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.a [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2009-12-15

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  3. Simultaneous RNA-seq based transcriptional profiling of intracellular Brucella abortus and B. abortus-infected murine macrophages.

    Science.gov (United States)

    Hop, Huynh Tan; Arayan, Lauren Togonon; Reyes, Alisha Wehdnesday Bernardo; Huy, Tran Xuan Ngoc; Min, WonGi; Lee, Hu Jang; Son, Jee Soo; Kim, Suk

    2017-12-01

    Brucella is a zoonotic pathogen that survives within macrophages; however the replicative mechanisms involved are not fully understood. We describe the isolation of sufficient Brucella abortus RNA from primary host cell environment using modified reported methods for RNA-seq analysis, and simultaneously characterize the transcriptional profiles of intracellular B. abortus and bone marrow-derived macrophages (BMM) from BALB/c mice at 24 h (replicative phase) post-infection. Our results revealed that 25.12% (801/3190) and 16.16% (515/3190) of the total B. abortus genes were up-regulated and down-regulated at >2-fold, respectively as compared to the free-living B. abortus. Among >5-fold differentially expressed genes, the up-regulated genes are mostly involved in DNA, RNA manipulations as well as protein biosynthesis and secretion while the down-regulated genes are mainly involved in energy production and metabolism. On the other hand, the host responses during B. abortus infection revealed that 14.01% (6071/43,346) of BMM genes were reproducibly transcribed at >5-fold during infection. Transcription of cytokines, chemokines and transcriptional factors, such as tumor necrosis factor (Tnf), interleukin-1α (Il1α), interleukin-1β (Il1β), interleukin-6 (Il6), interleukin-12 (Il12), chemokine C-X-C motif (CXCL) family, nuclear factor kappa B (Nf-κb), signal transducer and activator of transcription 1 (Stat1), that may contribute to host defense were markedly induced while transcription of various genes involved in cell proliferation and metabolism were suppressed upon B. abortus infection. In conclusion, these data suggest that Brucella modulates gene expression in hostile intracellular environment while simultaneously alters the host pathways that may lead to the pathogen's intracellular survival and infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High Frequency of Hb E-Saskatoon (HBB: c.67G > A) in Brazilians: A New Genetic Origin?

    Science.gov (United States)

    Wagner, Sandrine C; Lindenau, Juliana D; Castro, Simone M de; Santin, Ana Paula; Zaleski, Carina F; Azevedo, Laura A; Ribeiro Dos Santos, Ândrea K C; Dos Santos, Sidney E B; Hutz, Mara H

    2016-08-01

    Hb E-Saskatoon [β22(B4)Glu→Lys, HBB: c.67G > A] is a rare, nonpathological β-globin variant that was first described in a Canadian woman of Scottish and Dutch ancestry and has since then been detected in several populations. The aim of the present study was to identify the origin of Hb E-Saskatoon in Brazil using β-globin haplotypes and genetic ancestry in carriers of this hemoglobin (Hb) variant. Blood samples were investigated by isoelectric focusing (IEF) and high performance liquid chromatography (HPLC) using commercial kits. Hb E-Saskatoon was confirmed by amplification of the HBB gene, followed by sequence analysis. Haplotypes of the β-globin gene were determined by polymerase chain reaction (PCR), followed by digestion with specific restriction enzymes. Individual ancestry was estimated with 48 biallelic insertion/deletions using three 16-plex PCR amplifications. The IEF pattern was similar to Hbs C (HBB: c.19G > A) and Hb E (HBB: c.79G > A) [isoelectric point (pI): 7.59-7.65], and HPLC results showed an elution in the Hb S (HBB: c.20A > T) window [retention time (RT): 4.26-4.38]. DNA sequencing of the amplified β-globin gene showed a mutation at codon 22 (GAA>AAA) corresponding to Hb E-Saskatoon. A total of 11 cases of this variant were identified. In nine unrelated individuals, Hb E-Saskatoon was in linkage disequilibrium with haplotype 2 [+ - - - -]. All subjects showed a high degree of European contribution (mean = 0.85). Hb E-Saskatoon occurred on the β-globin gene of haplotype 2 in all Brazilian carriers. These findings suggest a different genetic origin for this Hb variant from that previously described.

  5. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    Directory of Open Access Journals (Sweden)

    C. J. Carter

    2013-01-01

    Full Text Available Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (multiple sclerosis, and autism (, but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD to 33% (MS of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as to the disease itself.

  6. Host genetics affect microbial ecosystems via host immunity.

    Science.gov (United States)

    El Kafsi, Hela; Gorochov, Guy; Larsen, Martin

    2016-10-01

    Genetic evolution of multicellular organisms has occurred in response to environmental challenges, including competition for nutrients, climate change, physical and chemical stressors, and pathogens. However, fitness of an organism is dependent not only on defense efficacy, but also on the ability to take advantage of symbiotic organisms. Indeed, microbes not only encompass pathogenicity, but also enable efficient nutrient uptake from diets nondegradable by the host itself. Moreover, microbes play important roles in the development of host immunity. Here we review associations between specific host genes and variance in microbiota composition and compare with interactions between microbes and host immunity. Recent genome-wide association studies reveal that symbiosis between host and microbiota is the exquisite result of genetic coevolution. Moreover, a subset of microbes from human and mouse microbiota have been identified to interact with humoral and cellular immunity. Interestingly, microbes associated with both host genetics and host immunity are taxonomically related. Most involved are Bifidobacterium, Lactobacillus, and Akkermansia, which are dually associated with both host immunity and host genetics. We conclude that future therapeutics targeting microbiota in the context of chronic inflammatory diseases need to consider both immune and genetic host features associated with microbiota homeostasis.

  7. Transcriptome profiling during a natural host-parasite interaction.

    Science.gov (United States)

    McTaggart, Seanna J; Cézard, Timothée; Garbutt, Jennie S; Wilson, Phil J; Little, Tom J

    2015-08-28

    Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes.

  8. Genome-wide association study for host response to bovine leukemia virus in Holstein cows.

    Science.gov (United States)

    Brym, P; Bojarojć-Nosowicz, B; Oleński, K; Hering, D M; Ruść, A; Kaczmarczyk, E; Kamiński, S

    2016-07-01

    The mechanisms of leukemogenesis induced by bovine leukemia virus (BLV) and the processes underlying the phenomenon of differential host response to BLV infection still remain poorly understood. The aim of the study was to screen the entire cattle genome to identify markers and candidate genes that might be involved in host response to bovine leukemia virus infection. A genome-wide association study was performed using Holstein cows naturally infected by BLV. A data set included 43 cows (BLV positive) and 30 cows (BLV negative) genotyped for 54,609 SNP markers (Illumina Bovine SNP50 BeadChip). The BLV status of cows was determined by serum ELISA, nested-PCR and hematological counts. Linear Regression Analysis with a False Discovery Rate and kinship matrix (computed on the autosomal SNPs) was calculated to find out which SNP markers significantly differentiate BLV-positive and BLV-negative cows. Nine markers reached genome-wide significance. The most significant SNPs were located on chromosomes 23 (rs41583098), 3 (rs109405425, rs110785500) and 8 (rs43564499) in close vicinity of a patatin-like phospholipase domain containing 1 (PNPLA1); adaptor-related protein complex 4, beta 1 subunit (AP4B1); tripartite motif-containing 45 (TRIM45) and cell division cycle associated 2 (CDCA2) genes, respectively. Furthermore, a list of 41 candidate genes was composed based on their proximity to significant markers (within a distance of ca. 1 Mb) and functional involvement in processes potentially underlying BLV-induced pathogenesis. In conclusion, it was demonstrated that host response to BLV infection involves nine sub-regions of the cattle genome (represented by 9 SNP markers), containing many genes which, based on the literature, could be involved to enzootic bovine leukemia progression. New group of promising candidate genes associated with the host response to BLV infection were identified and could therefore be a target for future studies. The functions of candidate genes

  9. Enhanced Host-Parasite Resistance Based on Down-Regulation of Phelipanche aegyptiaca Target Genes Is Likely by Mobile Small RNA

    Directory of Open Access Journals (Sweden)

    Neeraj K. Dubey

    2017-09-01

    Full Text Available RNA silencing refers to diverse mechanisms that control gene expression at transcriptional and post-transcriptional levels which can also be used in parasitic pathogens of plants that Broomrapes (Orobanche/Phelipanche spp. are holoparasitic plants that subsist on the roots of a variety of agricultural crops and cause severe negative effects on the yield and yield quality of those crops. Effective methods for controlling parasitic weeds are scarce, with only a few known cases of genetic resistance. In the current study, we suggest an improved strategy for the control of parasitic weeds based on trans-specific gene-silencing of three parasite genes at once. We used two strategies to express dsRNA containing selected sequences of three Phelipanche aegyptiaca genes PaACS, PaM6PR, and PaPrx1 (pma: transient expression using Tobacco rattle virus (TRV:pma as a virus-induced gene-silencing vector and stable expression in transgenic tomato Solanum lycopersicum (Mill. plants harboring a hairpin construct (pBINPLUS35:pma. siRNA-mediated transgene-silencing (20–24 nt was detected in the host plants. Our results demonstrate that the quantities of PaACS and PaM6PR transcripts from P. aegyptiaca tubercles grown on transgenic tomato or on TRV-infected Nicotiana benthamiana plants were significantly reduced. However, only partial reductions in the quantity of PaPrx1 transcripts were observed in the parasite tubercles grown on tomato and on N. benthamiana plants. Concomitant with the suppression of the target genes, there were significant decreases in the number and weight of the parasite tubercles that grew on the host plants, in both the transient and the stable experimental systems. The results of the work carried out using both strategies point to the movement of mobile exogenous siRNA from the host to the parasite, leading to the impaired expression of essential parasite target genes.

  10. IL-4 Up-Regulates MiR-21 and the MiRNAs Hosted in the CLCN5 Gene in Chronic Lymphocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    Natalia Ruiz-Lafuente

    Full Text Available Interleukin 4 (IL-4 induces B-cell differentiation and survival of chronic lymphocytic leukemia (CLL cells. MicroRNAs (miRNAs regulate mRNA and protein expression, and several miRNAs, deregulated in CLL, might play roles as oncogenes or tumor suppressors. We have studied the miRNA profile of CLL, and its response to IL-4, by oligonucleotide microarrays, resulting in the detection of a set of 129 mature miRNAs consistently expressed in CLL, which included 41 differentially expressed compared to normal B cells (NBC, and 6 significantly underexpressed in ZAP-70 positive patients. IL-4 stimulation brought about up-regulation of the 5p and 3p mature variants of the miR-21 gene, which maps immediately downstream to the VMP1 gene, and of the mature forms generated from the miR-362 (3p and 5p, miR-500a (3p, miR-502 (3p, and miR-532 (3p and 5p genes, which map within the third intron of the CLCN5 gene. Both genes are in turn regulated by IL-4, suggesting that these miRNAs were regulated by IL-4 as passengers from their carrier genes. Their levels of up-regulation by IL-4 significantly correlated with cytoprotection. MiR-21 has been reported to be leukemogenic, associated to bad prognosis in CLL, and the miRNA more frequently overexpressed in human cancer. Up-regulation by IL-4 of miR-21 and the miRNAs hosted in the CLCN5 locus may contribute to evasion of apoptosis of CLL cells. These findings indicate that the IL-4 pathway and the miRNAs induced by IL-4 are promising targets for the development of novel therapies in CLL.

  11. Babesia vesperuginis, a neglected piroplasmid: new host and geographical records, and phylogenetic relations.

    Science.gov (United States)

    Corduneanu, Alexandra; Hrazdilová, Kristýna; Sándor, Attila D; Matei, Ioana Adriana; Ionică, Angela Monica; Barti, Levente; Ciocănău, Marius-Alexandru; Măntoiu, Dragoş Ștefan; Coroiu, Ioan; Hornok, Sándor; Fuehrer, Hans-Peter; Leitner, Natascha; Bagó, Zoltán; Stefke, Katharina; Modrý, David; Mihalca, Andrei Daniel

    2017-12-06

    Babesia spp. are hemoparasites which infect the red blood cells of a large variety of mammals. In bats, the only known species of the genus is Babesia vesperuginis. However, except a few old reports, the host range and geographical distribution of this bat parasite have been poorly studied. This study aimed to investigate the presence of piroplasms in tissues of bats collected in four different countries from eastern and central Europe: Austria, Czech Republic, Hungary and Romania. A total of 461 bat carcasses (24 species) were collected between 2001 and 2016 from caves, mines and buildings. PCR was performed using specific primers targeting a portion of the 18S rDNA nuclear gene and cytochrome c oxidase subunit 1 mitochondrial gene, followed by sequencing. The results of this study show for the first time the presence of B. vesperuginis in bats in central and eastern Europe. The phylogenetic analysis of the 18S rDNA nuclear gene revealed no variability between the sequences and the phylogenetic analysis of the cox1 mitochondrial gene proved that B. vesperuginis could be divided into two subclades. Our study showed a broad geographical distribution of B. vesperuginis in European bats, reporting its presence in five new host species (M. cf. alcathoe, M. bechsteinii, M. myotis, Pi. nathusii and V. murinus) and three new countries.

  12. Age-specific interaction between the parasitoid, Encarsia formosa and its host, the silverleaf whitefly, Bemisia tabaci (Strain B

    Directory of Open Access Journals (Sweden)

    Jing S. Hu

    2003-08-01

    Full Text Available The effect of hostage, the instar of Bemisia tabaci (Gennadius parasitized, on the growth and development of Encarsia formosa (Gahan was studied. E. formosa was able to parasitize and complete its life cycle no matter which instar of B. tabaci (Strain B, [also identified as B. argentifolii (Bellows and Perring], was provided for oviposition, but parasitoid development was significantly slower when 1st or 2nd instar B. tabaci rather than 3rd or 4th instars were parasitized. Host age influenced the day on which E. formosa nymphs hatching from eggs was first observed. Mean embryonic development was significantly longer when 1st (5.4 days rather than 2nd, 3rd or 4th instars (4.1, 3.4 and 3.5 days, respectively were parasitized. The duration of the 1st instar parasitoid and the pupa, but not the 2nd or 3rd instar parasitoid, were also significantly greater when 1st instars were parasitized than when older host instars were parasitized. Interestingly, no matter which instar was parasitized, the parasitoid did not molt to the 3rd instar until the 4th instar host had reached a depth of about 0.23 mm (Stage 4-5 and had initiated the nymphal-adult molt and adult development. Histological studies revealed that whitefly eye and wing structures had either disintegrated or were adult in nature whenever a 3rd instar parasitoid was present. It appears, then, that the molt of the parasitoid to its last instar is associated with the host whitefly's nymphal-adult molt. However, the initiation of the host's final molt, while a prerequisite for the parasitoid's 2nd-3rd instar molt, did not necessarily trigger this molt. In contrast to its significant effect on various aspects of parasitoid development, host instar did not significantly influence the mean size of the parasitoid larva, pupa, or adult. Larval and pupal length and adult head width were similar for all parasitoids, regardless of which host instar was parasitized as was adult longevity. Adult parasitoid

  13. VirF-Independent Regulation of Shigella virB Transcription is Mediated by the Small RNA RyhB

    Science.gov (United States)

    Broach, William H.; Egan, Nicholas; Wing, Helen J.; Payne, Shelley M.; Murphy, Erin R.

    2012-01-01

    Infection of the human host by Shigella species requires the coordinated production of specific Shigella virulence factors, a process mediated largely by the VirF/VirB regulatory cascade. VirF promotes the transcription of virB, a gene encoding the transcriptional activator of several virulence-associated genes. This study reveals that transcription of virB is also regulated by the small RNA RyhB, and importantly, that this regulation is not achieved indirectly via modulation of VirF activity. These data are the first to demonstrate that the regulation of virB transcription can be uncoupled from the master regulator VirF. It is also established that efficient RyhB-dependent regulation of transcription is facilitated by specific nucleic acid sequences within virB. This study not only reveals RyhB-dependent regulation of virB transcription as a novel point of control in the central regulatory circuit modulating Shigella virulence, but also highlights the versatility of RyhB in controlling bacterial gene expression. PMID:22701677

  14. Host-specific adaptation of HIV-1 subtype B in the Japanese population.

    Science.gov (United States)

    Chikata, Takayuki; Carlson, Jonathan M; Tamura, Yoshiko; Borghan, Mohamed Ali; Naruto, Takuya; Hashimoto, Masao; Murakoshi, Hayato; Le, Anh Q; Mallal, Simon; John, Mina; Gatanaga, Hiroyuki; Oka, Shinichi; Brumme, Zabrina L; Takiguchi, Masafumi

    2014-05-01

    The extent to which HIV-1 clade B strains exhibit population-specific adaptations to host HLA alleles remains incompletely known, in part due to incomplete characterization of HLA-associated HIV-1 polymorphisms (HLA-APs) in different global populations. Moreover, it remains unknown to what extent the same HLA alleles may drive significantly different escape pathways across populations. As the Japanese population exhibits distinctive HLA class I allele distributions, comparative analysis of HLA-APs between HIV-1 clade B-infected Japanese and non-Asian cohorts could shed light on these questions. However, HLA-APs remain incompletely mapped in Japan. In a cohort of 430 treatment-naive Japanese with chronic HIV-1 clade B infection, we identified 284 HLA-APs in Gag, Pol, and Nef using phylogenetically corrected methods. The number of HLA-associated substitutions in Pol, notably those restricted by HLA-B*52:01, was weakly inversely correlated with the plasma viral load (pVL), suggesting that the transmission and persistence of B*52:01-driven Pol mutations could modulate the pVL. Differential selection of HLA-APs between HLA subtype members, including those differing only with respect to substitutions outside the peptide-binding groove, was observed, meriting further investigation as to their mechanisms of selection. Notably, two-thirds of HLA-APs identified in Japan had not been reported in previous studies of predominantly Caucasian cohorts and were attributable to HLA alleles unique to, or enriched in, Japan. We also identified 71 cases where the same HLA allele drove significantly different escape pathways in Japan versus predominantly Caucasian cohorts. Our results underscore the distinct global evolution of HIV-1 clade B as a result of host population-specific cellular immune pressures. Cytotoxic T lymphocyte (CTL) escape mutations in HIV-1 are broadly predictable based on the HLA class I alleles expressed by the host. Because HLA allele distributions differ among

  15. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia.

    Science.gov (United States)

    Sunkavalli, Ushasree; Aguilar, Carmen; Silva, Ricardo Jorge; Sharan, Malvika; Cruz, Ana Rita; Tawk, Caroline; Maudet, Claire; Mano, Miguel; Eulalio, Ana

    2017-04-01

    MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.

  16. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia.

    Directory of Open Access Journals (Sweden)

    Ushasree Sunkavalli

    2017-04-01

    Full Text Available MicroRNAs play an important role in the interplay between bacterial pathogens and host cells, participating as host defense mechanisms, as well as exploited by bacteria to subvert host cellular functions. Here, we show that microRNAs modulate infection by Shigella flexneri, a major causative agent of bacillary dysentery in humans. Specifically, we characterize the dual regulatory role of miR-29b-2-5p during infection, showing that this microRNA strongly favors Shigella infection by promoting both bacterial binding to host cells and intracellular replication. Using a combination of transcriptome analysis and targeted high-content RNAi screening, we identify UNC5C as a direct target of miR-29b-2-5p and show its pivotal role in the modulation of Shigella binding to host cells. MiR-29b-2-5p, through repression of UNC5C, strongly enhances filopodia formation thus increasing Shigella capture and promoting bacterial invasion. The increase of filopodia formation mediated by miR-29b-2-5p is dependent on RhoF and Cdc42 Rho-GTPases. Interestingly, the levels of miR-29b-2-5p, but not of other mature microRNAs from the same precursor, are decreased upon Shigella replication at late times post-infection, through degradation of the mature microRNA by the exonuclease PNPT1. While the relatively high basal levels of miR-29b-2-5p at the start of infection ensure efficient Shigella capture by host cell filopodia, dampening of miR-29b-2-5p levels later during infection may constitute a bacterial strategy to favor a balanced intracellular replication to avoid premature cell death and favor dissemination to neighboring cells, or alternatively, part of the host response to counteract Shigella infection. Overall, these findings reveal a previously unappreciated role of microRNAs, and in particular miR-29b-2-5p, in the interaction of Shigella with host cells.

  17. NF-kappa B genes have a major role in Inflammatory Breast Cancer

    International Nuclear Information System (INIS)

    Lerebours, Florence; Vacher, Sophie; Andrieu, Catherine; Espie, Marc; Marty, Michel; Lidereau, Rosette; Bieche, Ivan

    2008-01-01

    IBC (Inflammatory Breast cancer) is a rare form of breast cancer with a particular phenotype. New molecular targets are needed to improve the treatment of this rapidly fatal disease. Given the role of NF-κB-related genes in cell proliferation, invasiveness, angiogenesis and inflammation, we postulated that they might be deregulated in IBC. We measured the mRNA expression levels of 60 NF-κB-related genes by using real-time quantitative RT-PCR in a well-defined series of 35 IBCs, by comparison with 22 stage IIB and III non inflammatory breast cancers. Twenty-four distant metastases of breast cancer served as 'poor prognosis' breast tumor controls. Thirty-five (58%) of the 60 NF-κB-related genes were significantly upregulated in IBC compared with non IBC. The upregulated genes were NF-κB genes (NFKB1, RELA, IKBKG, NFKBIB, NFKB2, REL, CHUK), apoptosis genes (MCL1L, TNFAIP3/A20, GADD45B, FASLG, MCL1S, IER3L, TNFRSF10B/TRAILR2), immune response genes (CD40, CD48, TNFSF11/RANKL, TNFRSF11A/RANK, CCL2/MCP-1, CD40LG, IL15, GBP1), proliferation genes (CCND2, CCND3, CSF1R, CSF1, SOD2), tumor-promoting genes (CXCL12, SELE, TNC, VCAM1, ICAM1, PLAU/UPA) or angiogenesis genes (PTGS2/COX2, CXCL1/GRO1). Only two of these 35 genes (PTGS2/COX2 and CXCL1/GRO1)were also upregulated in breast cancer metastases. We identified a five-gene molecular signature that matched patient outcomes, consisting of IL8 and VEGF plus three NF-κB-unrelated genes that we had previously identified as prognostic markers in the same series of IBC. The NF-κB pathway appears to play a major role in IBC, possibly contributing to the unusual phenotype and aggressiveness of this form of breast cancer. Some upregulated NF-κB-related genes might serve as novel therapeutic targets in IBC

  18. Adenovirus small E1A employs the lysine acetylases p300/CBP and tumor suppressor Rb to repress select host genes and promote productive virus infection.

    Science.gov (United States)

    Ferrari, Roberto; Gou, Dawei; Jawdekar, Gauri; Johnson, Sarah A; Nava, Miguel; Su, Trent; Yousef, Ahmed F; Zemke, Nathan R; Pellegrini, Matteo; Kurdistani, Siavash K; Berk, Arnold J

    2014-11-12

    Oncogenic transformation by adenovirus small e1a depends on simultaneous interactions with the host lysine acetylases p300/CBP and the tumor suppressor RB. How these interactions influence cellular gene expression remains unclear. We find that e1a displaces RBs from E2F transcription factors and promotes p300 acetylation of RB1 K873/K874 to lock it into a repressing conformation that interacts with repressive chromatin-modifying enzymes. These repressing p300-e1a-RB1 complexes specifically interact with host genes that have unusually high p300 association within the gene body. The TGF-β, TNF-, and interleukin-signaling pathway components are enriched among such p300-targeted genes. The p300-e1a-RB1 complex condenses chromatin in a manner dependent on HDAC activity, p300 lysine acetylase activity, the p300 bromodomain, and RB K873/K874 and e1a K239 acetylation to repress host genes that would otherwise inhibit productive virus infection. Thus, adenovirus employs e1a to repress host genes that interfere with viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Interaction of Hb Grey Lynn (Vientiane) [α91(FG3)Leu>Phe (α1)] with Hb E [β26(B8) Glu>Lys] and α(+)-thalassemia: Molecular and Hematological Analysis.

    Science.gov (United States)

    Singha, Kritsada; Fucharoen, Goonnapa; Fucharoen, Supan

    2015-01-01

    Hemoglobin (Hb) Grey Lynn is a Hb variant caused by a mutation at codon 91 of α1-globin gene whereas Hb E is a common β-globin chain variant among Southeast Asian population. We report two hitherto undescribed conditions of Hb Grey Lynn found in Thai individuals. The study was done on two unrelated Thai subjects. Hematological parameters were recorded and Hb analysis was carried out using automated Hb analyzers. Mutations were identified by DNA analysis. Hematological features of the patients were compared with those of various forms of Hb Grey Lynn documented previously. Hb and DNA analyses identified a heterozygous Hb Grey Lynn in one patient and a double heterozygous Hb Grey Lynn and Hb E with α(+)-thalassemia in another. Interaction of α(Grey Lynn) with β(E) chains leads to the formation of a new Hb variant, namely the Hb Grey Lynn E (α(GL)2β(E)2), detectable by liquid chromatography (10.3%) but masked by Hb E on capillary electrophoresis. Interaction of these multiple globin gene defects could lead to complex hemoglobinopathies requiring combined analysis with multiple Hb analyzers followed by DNA testing to provide accurate diagnosis of the cases.

  20. Expression of the dspA/E gene of Erwinia amylovora in non-host plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hasan Murat Aksoy

    2017-01-01

    Full Text Available In the Erwinia amylovora genome, the hrp gene cluster containing the dspA/E/EB/F operon plays a crucial role in mediating the pathogenicity and the hypersensitive response (HR in the host plant. The role of the dspA/E gene derived from E. amylovora was investigated by monitoring the expression of the β-glucuronidase (GUS reporter system in transgenic Arabidopsis thaliana cv. Pri-Gus seedlings. A mutant ΔdspA/E strain of E. amylovora was generated to contain a deletion of the dspA/E gene for the purpose of this study. Two-week-old seedlings of GUS transgenic Arabidopsis were vacuum-infiltrated with the wild-type and the mutant (ΔdspA/E E. amylovora strains. The Arabidopsis seedlings were fixed and stained for GUS activity after 3–5 days following infiltration. The appearance of dense spots with blue staining on the Arabidopsis leaves indicated the typical characteristic of GUS activity. This observation indicated that the wild-type E. amylovora strain had induced a successful and efficient infection on the A. thaliana Pri-Gus leaves. In contrast, there was no visible GUS expression on leaf tissues which were inoculated with the ΔdspA/E mutant E. amylovora strain. These results indicate that the dspA/E gene is required by the bacterial cells to induce HR in non-host plants.

  1. Frequency of Gγ-globin promoter -158 (C>T) XmnI polymorphism in patients with homozygous/compound heterozygous beta thalassaemia.

    Science.gov (United States)

    Ali, Nadir; Ayyub, Muhammad; Khan, Saleem Ahmed; Ahmed, Suhaib; Abbas, Kazim; Malik, Hamid Saeed; Tashfeen, Sunila

    2015-03-01

    Response to hydroxyurea therapy in homozygous or compound heterozygous beta thalassaemia (BT) has been reported as more favourable in the presence of XmnI polymorphism. The prevalence of XmnI polymorphism may vary with BT phenotypes and genotypes, and differs geographically in distribution. Prevalence of XmnI polymorphism is not known in northern Pakistan. To determine the frequency of Gγ-globin promoter -158 (C>T) XmnI polymorphism (XmnI polymorphism) in patients with homozygous or compound heterozygous beta thalassaemia. Polymerase chain reaction (PCR) for common beta thalassaemia mutations and Gγ-globin promoter -158 (C>T) XmnI polymorphism was performed on 107 blood samples of transfusion dependent beta thalassaemia (BT) patients in Pakistan. One hundred samples of unrelated BT traits and 94 samples of healthy subjects as controls were also analysed for BT mutations and XmnI polymorphism. Out of 301 DNA samples, XmnI polymorphism was detected in 71(24%); in normal controls, XmnI polymorphism was detected in 34/94 (36%) subjects; while in homozygous/compound heterozygous BT, it was detected in 14/107(13%) patients (Fisher's exact test, p=.0002). In heterozygous BT group, XmnI polymorphism was detected in 23/100 subjects (Fisher's exact test, p=.03 with normal controls, and p=.049 with homozygous/compound heterozygous BT). The most common BT genotype was Frame Shift (Fr) 8-9/Fr 8-9, and none of the patients with this genotype had XmnI polymorphism. The second most common genotype was IVSI-5/IVSI-5; 4/26 (15%). Cases with this genotype had XmnI polymorphism. XmnI polymorphism in homozygous/compound heterozygous BT group is 13%. The most common genotype associated with XmnI polymorphism was IVSI-5/IVSI-5. Copyright © 2015 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.

  2. Human gastric mucins differently regulate Helicobacter pylori proliferation, gene expression and interactions with host cells.

    Directory of Open Access Journals (Sweden)

    Emma C Skoog

    Full Text Available Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host.

  3. BacHBerry:: BACterial Hosts for production of Bioactive phenolics from bERRY fruits

    DEFF Research Database (Denmark)

    Dudnik, Alexey; Almeida, A. Filipa; Andrade, Ricardo

    2017-01-01

    BACterial Hosts for production of Bioactive phenolics from bERRY fruits (BacHBerry) was a 3-year project funded by the Seventh Framework Programme (FP7) of the European Union that ran between November 2013 and October 2016. The overall aim of the project was to establish a sustainable and economi...

  4. Host restriction factors in retroviral infection: promises in virus-host interaction

    Directory of Open Access Journals (Sweden)

    Zheng Yong-Hui

    2012-12-01

    Full Text Available Abstract Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs, and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef.

  5. The Role of B Cell Targeting in Chronic Graft-Versus-Host Disease

    Directory of Open Access Journals (Sweden)

    Ruben Rhoades

    2017-10-01

    Full Text Available Chronic graft-versus-host disease (cGVHD is a leading cause of late morbidity and mortality following allogeneic stem cell transplantation. Current therapies, including corticosteroids and calcineurin inhibitors, are only effective in roughly 50% of cases; therefore, new treatment strategies are under investigation. What was previously felt to be a T cell disease has more recently been shown to involve activation of both T and B cells, as well as a number of cytokines. With a better understanding of its pathophysiology have come more expansive preclinical and clinical trials, many focused on B cell signaling. This report briefly reviews our current understanding of cGVHD pathophysiology and reviews clinical and preclinical trials with B cell-targeted agents.

  6. Cloning of the Bacillus subtilis recE+ gene and functional expression of recE+ in B. subtilis

    International Nuclear Information System (INIS)

    Marrero, R.; Yasbin, R.E.

    1988-01-01

    By use of the Bacillus subtilis bacteriophage cloning vehicle Phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages Phi 105Rec Phi1 (3.85-kilobase insert) and Phi 105Rec Phi4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE + strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage Phi105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either Phi 105Rec Phi 1 or Phi 105RecPhi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages Phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages Phi 105RecPhi 1 and Phi 105Rec Phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA + gene product antibodies. Collectively, these data demonstrate that the recE + gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination

  7. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Beaudoin, Trevor; Zhang, Li; Hinz, Aaron J; Parr, Christopher J; Mah, Thien-Fah

    2012-06-01

    Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.

  8. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato.

    Science.gov (United States)

    Mamta; Reddy, K R K; Rajam, M V

    2016-02-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a devastating agricultural insect pest with broad spectrum of host range, causing million dollars crop loss annually. Limitations in the present conventional and transgenic approaches have made it crucial to develop sustainable and environmental friendly methods for crop improvement. In the present study, host-induced RNA interference (HI-RNAi) approach was used to develop H. armigera resistant tobacco and tomato plants. Chitinase (HaCHI) gene, critically required for insect molting and metamorphosis was selected as a potential target. Hair-pin RNAi construct was prepared from the conserved off-target free partial HaCHI gene sequence and was used to generate several HaCHI-RNAi tobacco and tomato plants. Northern hybridization confirmed the production of HaCHI gene-specific siRNAs in HaCHI-RNAi tobacco and tomato lines. Continuous feeding on leaves of RNAi lines drastically reduced the target gene transcripts and consequently, affected the overall growth and survival of H. armigera. Various developmental deformities were also manifested in H. armigera larvae after feeding on the leaves of RNAi lines. These results demonstrated the role of chitinase in insect development and potential of HI-RNAi for effective management of H. armigera.

  9. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.

    Science.gov (United States)

    Smith, Eric E; Malik, Harmit S

    2009-05-01

    Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.

  10. Functional and Expression Analyses of the Pneumocystis MAT Genes Suggest Obligate Sexuality through Primary Homothallism within Host Lungs

    Directory of Open Access Journals (Sweden)

    S. Richard

    2018-02-01

    Full Text Available Fungi of the genus Pneumocystis are obligate parasites that colonize mammals’ lungs and are host species specific. Pneumocystis jirovecii and Pneumocystis carinii infect, respectively, humans and rats. They can turn into opportunistic pathogens in immunosuppressed hosts, causing severe pneumonia. Their cell cycle is poorly known, mainly because of the absence of an established method of culture in vitro. It is thought to include both asexual and sexual phases. Comparative genomic analysis suggested that their mode of sexual reproduction is primary homothallism involving a single mating type (MAT locus encompassing plus and minus genes (matMc, matMi, and matPi; Almeida et al., mBio 6:e02250-14, 2015. Thus, each strain would be capable of sexual reproduction alone (self-fertility. However, this is a working hypothesis derived from computational analyses that is, in addition, based on the genome sequences of single isolates. Here, we tested this hypothesis in the wet laboratory. The function of the P. jirovecii and P. carinii matMc genes was ascertained by restoration of sporulation in the corresponding mutant of fission yeast. Using PCR, we found the same single MAT locus in all P. jirovecii isolates and showed that all three MAT genes are often concomitantly expressed during pneumonia. Extensive homology searches did not identify other types of MAT transcription factors in the genomes or cis-acting motifs flanking the MAT locus that could have been involved in MAT switching or silencing. Our observations suggest that Pneumocystis sexuality through primary homothallism is obligate within host lungs to complete the cell cycle, i.e., produce asci necessary for airborne transmission to new hosts.

  11. Host Cell Responses to Persistent Mycoplasmas - Different Stages in Infection of HeLa Cells with Mycoplasma hominis

    Science.gov (United States)

    Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit

    2013-01-01

    Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of

  12. Genome-Wide Analysis of Host Responses to Four Different Types of Microorganisms in Bombyx Mori (Lepidoptera: Bombycidae).

    Science.gov (United States)

    Cheng, Tingcai; Lin, Ping; Huang, Lulin; Wu, Yuqian; Jin, Shengkai; Liu, Chun; Xia, Qingyou

    2016-01-01

    Several pathogenic microorganisms have been used to investigate the genome-wide transcriptional responses of Bombyx mori to infection. However, studies have so far each focused on one microorganism, and systematic genome-wide comparison of transcriptional responses to different pathogenic microorganisms has not been undertaken. Here, we surveyed transcriptional responses of B. mori to its natural bacterial, viral, and fungal pathogens, Bacillus bombyseptieus, B. mori nucleopolyhedrovirus (BmNPV), and Beauveria bassiana, respectively, and to nonpathogenic Escherichia coli, by microarray analysis. In total, the expression of 2,436, 1,804, 1,743, and 912 B. mori genes was modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Notably, the expression of 620, 400, 177, or 165 of these genes was only modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, or E. coli, respectively. In contrast to the expression of genes related to juvenile hormone synthesis and metabolism, that of genes encoding juvenile hormone binding proteins was microorganism-specific. Three basal metabolic pathways were modulated by infection with any of the four microorganisms, and 3, 14, 5, and 2 metabolic pathways were specifically modulated by infection with B. bombyseptieus, BmNPV, B. bassiana, and E. coli, respectively. Interestingly, BmNPV infection modulated the JAK/STAT signaling pathway, whereas both the Imd and Toll signaling pathways were modulated by infection with B. bombyseptieus, B. bassiana, or E. coli These results elucidate potential molecular mechanisms of the host response to different microorganisms, and provide a foundation for further work on host-pathogen interaction. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae.

    Science.gov (United States)

    Wang, Sibao; Leclerque, Andreas; Pava-Ripoll, Monica; Fang, Weiguo; St Leger, Raymond J

    2009-06-01

    Many strains of Metarhizium anisopliae have broad host ranges, but others are specialists and adapted to particular hosts. Patterns of gene duplication, divergence, and deletion in three generalist and three specialist strains were investigated by heterologous hybridization of genomic DNA to genes from the generalist strain Ma2575. As expected, major life processes are highly conserved, presumably due to purifying selection. However, up to 7% of Ma2575 genes were highly divergent or absent in specialist strains. Many of these sequences are conserved in other fungal species, suggesting that there has been rapid evolution and loss in specialist Metarhizium genomes. Some poorly hybridizing genes in specialists were functionally coordinated, indicative of reductive evolution. These included several involved in toxin biosynthesis and sugar metabolism in root exudates, suggesting that specialists are losing genes required to live in alternative hosts or as saprophytes. Several components of mobile genetic elements were also highly divergent or lost in specialists. Exceptionally, the genome of the specialist cricket pathogen Ma443 contained extra insertion elements that might play a role in generating evolutionary novelty. This study throws light on the abundance of orphans in genomes, as 15% of orphan sequences were found to be rapidly evolving in the Ma2575 lineage.

  14. Members of the genera Paenibacillus and Rhodococcus harbor genes homologous to enterococcal glycopeptide resistance genes vanA and vanB

    DEFF Research Database (Denmark)

    Guardabassi, L.; Christensen, H.; Hasman, Henrik

    2004-01-01

    Genes homologous to enterococcal glycopeptide resistance genes vanA and vanB were found in glycopeptide-resistant Paenibacillus and Rhodococcus strains from soil. The putative D-Ala:D-Lac ligase genes in Paenibacillus thiaminolyticus PT-2B1 and Paenibacillus apiarius PA-B2B were closely related...

  15. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Directory of Open Access Journals (Sweden)

    Ting Xiang Neik

    2017-11-01

    Full Text Available Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae, Blackleg (Leptosphaeria maculans and L. biglobosa, Sclerotinia Stem Rot (Sclerotinia sclerotiorum, and Downy Mildew (Hyaloperonospora parasitica. We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.

  16. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus

    Science.gov (United States)

    Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline

    2017-01-01

    Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558

  17. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia.

    Science.gov (United States)

    Modares Sadeghi, Mehran; Shariati, Laleh; Hejazi, Zahra; Shahbazi, Mansoureh; Tabatabaiefar, Mohammad Amin; Khanahmad, Hossein

    2018-03-01

    β-thalassemia is a common autosomal recessive disorder characterized by a deficiency in the synthesis of β-chains. Evidences show that increased HbF levels improve the symptoms in patients with β-thalassemia or sickle cell anemia. In this study, ZFN technology was applied to induce a mutation in the binding domain region of SOX6 to reactivate γ-globin expression. The sequences coding for ZFP arrays were designed and sub cloned in TDH plus as a transfer vector. The ZFN expression was confirmed using Western blot analysis. In the next step, using the site-directed mutagenesis strategy through the overlap PCR, a missense mutation (D64V) was induced in the catalytic domain of the integrase gene in the packaging plasmid and verified using DNA sequencing. Then, the integrase minus lentivirus containing ZFN cassette was packaged. Transduction of K562 cells with this virus was performed. Mutation detection assay was performed. The indel percentage of the cells transducted with lenti virus containing ZFN was 31%. After 5 days of erythroid differentiation with 15 μg/mL cisplatin, the levels of γ-globin mRNA were sixfold in the cells treated with ZFN compared to untreated cells. In the meantime, the measurement of HbF expression levels was carried out using hemoglobin electrophoresis and showed the same results. Integrase minus lentivirus can provide a useful tool for efficient transient gene expression and helps avoid disadvantages of gene targeting using the native virus. The ZFN strategy applied here to induce indel on SOX6 gene in adult erythroid progenitors may provide a method to activate fetal hemoglobin expression in individuals with β-thalassemia. © 2017 Wiley Periodicals, Inc.

  18. Phenotypic variability of Filipino beta(o)-thalassemia/HbE patients in Indonesia.

    Science.gov (United States)

    Setianingsih, I; Williamson, R; Daud, D; Harahap, A; Marzuki, S; Forrest, S

    1999-09-01

    Three Indonesian patients with identical genotypes, each compound heterozygotes for Filipino beta(o)-thalassemia/HbE, expressed different clinical severities. One patient has mild disease and is transfusion independent, while the other two are severely affected and transfusion dependent. The size of the Filipino beta(o)-globin gene deletion was confirmed to be 45 kb, resolving conflicting values given in the literature. Neither ameliorating genetic factors such as alpha-globin gene deletions or the XmnI restriction site polymorphism at position -158 upstream of the (G)gamma-globin gene, nor differences in beta-globin gene haplotype, explain the phenotypic variation. These observations have implications for the development of antenatal diagnosis in Indonesia, as at present it is not possible to give an accurate prediction of severity of phenotype for this common genotype. Copyright 1999 Wiley-Liss, Inc.

  19. Roles of bHLH genes in neural stem cell differentiation

    International Nuclear Information System (INIS)

    Kageyama, Ryoichiro; Ohtsuka, Toshiyuki; Hatakeyama, Jun; Ohsawa, Ryosuke

    2005-01-01

    Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and become depleted without making the later born cell types such as astrocytes and ependymal cells. Thus, Hes genes are essential for maintenance of neural stem cells to make cells not only in correct numbers but also in full diversity. Hes genes antagonize the activator-type bHLH genes, which include Mash1, Math and Neurogenin. The activator-type bHLH genes promote the neuronal fate determination and induce expression of Notch ligands such as Delta. These ligands activate Notch signaling and upregulate Hes1 and Hes5 expression in neighboring cells, thereby maintaining these cells undifferentiated. Thus, the activator-type and repressor-type bHLH genes regulate each other, allowing only subsets of cells to undergo differentiation while keeping others to stay neural stem cells. This regulation is essential for generation of complex brain structures of appropriate size, shape and cell arrangement

  20. Genome degradation in Brucella ovis corresponds with narrowing of its host range and tissue tropism.

    Directory of Open Access Journals (Sweden)

    Renee M Tsolis

    Full Text Available Brucella ovis is a veterinary pathogen associated with epididymitis in sheep. Despite its genetic similarity to the zoonotic pathogens B. abortus, B. melitensis and B. suis, B. ovis does not cause zoonotic disease. Genomic analysis of the type strain ATCC25840 revealed a high percentage of pseudogenes and increased numbers of transposable elements compared to the zoonotic Brucella species, suggesting that genome degradation has occurred concomitant with narrowing of the host range of B. ovis. The absence of genomic island 2, encoding functions required for lipopolysaccharide biosynthesis, as well as inactivation of genes encoding urease, nutrient uptake and utilization, and outer membrane proteins may be factors contributing to the avirulence of B. ovis for humans. A 26.5 kb region of B. ovis ATCC25840 Chromosome II was absent from all the sequenced human pathogenic Brucella genomes, but was present in all of 17 B. ovis isolates tested and in three B. ceti isolates, suggesting that this DNA region may be of use for differentiating B. ovis from other Brucella spp. This is the first genomic analysis of a non-zoonotic Brucella species. The results suggest that inactivation of genes involved in nutrient acquisition and utilization, cell envelope structure and urease may have played a role in narrowing of the tissue tropism and host range of B. ovis.

  1. Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Weickert, M J; Pagratis, M; Curry, S R; Blackmore, R

    1997-01-01

    Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E. coli. Fermentation expression of rHb1.1 at 30 degrees C from cultures containing a medium or high globin gene dosage (pBR-based or pUC-based plasmids with rHb1.1 genes under the control of the tac promoter) was compared. A medium gene dosage resulted in rHb1.1 accumulating to approximately 7% of the soluble cell protein, of which 78% was soluble. A high globin gene dosage resulted in a > or = 3-fold increase in total globin to 23 to 24% of the soluble cell protein, but 70% was insoluble. Accumulation of insoluble rHb1.1 began immediately upon induction. The proportion of rHb1.1 from the high globin gene dosage that accumulated as insoluble globin was affected by reducing (i) the inducer concentration and (ii) the temperature. Reducing the inducer concentration reduced globin synthesis up to eightfold but increased the proportion of soluble rHb1.1 to 93%. In contrast, total globin protein synthesis was barely affected by reducing the temperature from 30 to 26 degrees C, while soluble globin accumulation increased > 2-fold to approximately 15% of the soluble cell protein. The contrast between the effects of reducing rates of protein synthesis and accumulation and those of reducing temperature suggests that lower temperature stabilizes one or more folding intermediates. We propose a simplified physical model which integrates protein synthesis, folding, and heme association. This model shows that temperature-dependent apoglobin stability is the most critical factor in soluble rHb1.1 accumulation. PMID:9361418

  2. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Directory of Open Access Journals (Sweden)

    Rodolphe Pontier-Bres

    Full Text Available Salmonella enterica serovar Typhimurium (ST is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux in the GIT of mice pretreated with streptomycin. Photonic emission (PE was measured in GIT extracts (stomach, small intestine, cecum and colon at various time periods post-infection (PI. PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1 the faster elimination of ST-lux in the feces, and (2 reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1 increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2 elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  3. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    Science.gov (United States)

    Pontier-Bres, Rodolphe; Munro, Patrick; Boyer, Laurent; Anty, Rodolphe; Imbert, Véronique; Terciolo, Chloé; André, Fréderic; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean-François; Czerucka, Dorota

    2014-01-01

    Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  4. Characterisation and confirmation of rare beta-thalassaemia mutations in the Malay, Chinese and Indian ethnic groups in Malaysia.

    Science.gov (United States)

    Tan, Jin Ai Mary Anne; Chin, Pui See; Wong, Yean Ching; Tan, Kim Lian; Chan, Lee Lee; George, Elizabeth

    2006-10-01

    In Malaysia, about 4.5% of the Malay and Chinese populations are heterozygous carriers of beta-thalassaemia. The initial identification of rare beta-globin gene mutations by genomic sequencing will allow the development of simpler and cost-effective PCR-based techniques to complement the existing amplification refractory mutation system (ARMS) and gap-PCR used for the identification of beta-thalassaemia mutations. DNA from 173 beta-thalassaemia carriers and five beta-thalassaemia major patients from the Malay, Chinese and Indian ethnic groups were first analysed by ARMS and gap-PCR. Ninety-five per cent (174/183) of the 183 beta-globin genes studied were characterised using these two techiques. The remaining nine uncharacterised beta-globin genes (4.9%) were analysed using genomic sequencing of a 904 bp amplified PCR product consisting of the promoter region, exon 1, intervening sequence (IVS) 1, exon 2 and the 5' IVS2 regions of the beta-globin gene. The rare beta-globin mutations detected in the Chinese patients were CD27/28 (+C) and CD43 (GAG-TAG), and -88 (C-T) in an Indian patient. Beta-globin mutations at CD16 (-C), IVS1-1 (G-A), IVS2-1 (G-A), -86 (C-G) and Haemoglobin South Florida (CD1, GTG-ATG) were confirmed in the Malay patients. The seven rare beta-globin mutations and a rare haemoglobin variant confirmed in this study have been described in other populations but have not been previously described in Malaysian beta-thalassemia patients.

  5. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  6. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  7. Infection-Induced Retrotransposon-Derived Noncoding RNAs Enhance Herpesviral Gene Expression via the NF-κB Pathway.

    Directory of Open Access Journals (Sweden)

    John Karijolich

    Full Text Available Short interspersed nuclear elements (SINEs are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68 infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKβ-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.

  8. Neonatal Gene Therapy for Hemophilia B by a Novel Adenovirus Vector Showing Reduced Leaky Expression of Viral Genes.

    Science.gov (United States)

    Iizuka, Shunsuke; Sakurai, Fuminori; Tachibana, Masashi; Ohashi, Kazuo; Mizuguchi, Hiroyuki

    2017-09-15

    Gene therapy during neonatal and infant stages is a promising approach for hemophilia B, a congenital disorder caused by deficiency of blood coagulation factor IX (FIX). An adenovirus (Ad) vector has high potential for use in neonatal or infant gene therapy for hemophilia B due to its superior transduction properties; however, leaky expression of Ad genes often reduces the transduction efficiencies by Ad protein-mediated tissue damage. Here, we used a novel Ad vector, Ad-E4-122aT, which exhibits a reduction in the leaky expression of Ad genes in liver, in gene therapy studies for neonatal hemophilia B mice. Ad-E4-122aT exhibited significantly higher transduction efficiencies than a conventional Ad vector in neonatal mice. In neonatal hemophilia B mice, a single neonatal injection of Ad-E4-122aT expressing human FIX (hFIX) (Ad-E4-122aT-AHAFIX) maintained more than 6% of the normal plasma hFIX activity levels for approximately 100 days. Sequential administration of Ad-E4-122aT-AHAFIX resulted in more than 100% of the plasma hFIX activity levels for more than 100 days and rescued the bleeding phenotypes of hemophilia B mice. In addition, immunotolerance to hFIX was induced by Ad-E4-122aT-AHAFIX administration in neonatal hemophilia B mice. These results indicated that Ad-E4-122aT is a promising gene delivery vector for neonatal or infant gene therapy for hemophilia B.

  9. Differences in the gene expression profiles of haemocytes from schistosome-susceptible and -resistant biomphalaria glabrata exposed to Schistosoma mansoni excretory-secretory products.

    Directory of Open Access Journals (Sweden)

    Zahida Zahoor

    Full Text Available During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory-secretory products (ESPs that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni-resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20 μg/ml for 1 h, using a 5K B. glabrata cDNA microarray. Ninety-eight genes were found differentially expressed between haemocytes from the two snail strains, 57 resistant specific and 41 susceptible specific, 60 of which had no known homologue in GenBank. Known differentially expressed resistant-snail genes included the nuclear factor kappa B subunit Relish, elongation factor 1α, 40S ribosomal protein S9, and matrilin; known susceptible-snail specific genes included cathepsins D and L, and theromacin. Comparative analysis with other gene expression studies revealed 38 of the 98 identified genes to be uniquely differentially expressed in haemocytes in the presence of ESPs, thus identifying for the first time schistosome ESPs as important molecules that influence global snail host-defence cell gene expression profiles. Such immunomodulation may benefit the schistosome, enabling its survival and successful development in the snail host.

  10. Use of quantitative real time PCR for a genome-wide study of AYWB phytoplasma gene expression in plant and insect hosts

    DEFF Research Database (Denmark)

    Makarova, Olga; MacLean, Allyson M.; Hogenhout, Saskia A.

    2011-01-01

    this technique for reliable gene expression quantification of phytoplasmas on a large scale. In our experimental setup, 242 genes of aster yellows phytoplasma strain witches' broom (AY-WB) were tested for differences in expression in plant and insect host environments, and were shown to be predominantly...

  11. Infection of Burkholderia cepacia induces homeostatic responses in the host for their prolonged survival: the microarray perspective.

    Directory of Open Access Journals (Sweden)

    Vanitha Mariappan

    Full Text Available Burkholderia cepacia is an opportunistic human pathogen associated with life-threatening pulmonary infections in immunocompromised individuals. Pathogenesis of B. cepacia infection involves adherence, colonisation, invasion, survival and persistence in the host. In addition, B. cepacia are also known to secrete factors, which are associated with virulence in the pathogenesis of the infection. In this study, the host factor that may be the cause of the infection was elucidated in human epithelial cell line, A549, that was exposed to live B. cepacia (mid-log phase and its secretory proteins (mid-log and early-stationary phases using the Illumina Human Ref-8 microarray platform. The non-infection A549 cells were used as a control. Expression of the host genes that are related to apoptosis, inflammation and cell cycle as well as metabolic pathways were differentially regulated during the infection. Apoptosis of the host cells and secretion of pro-inflammatory cytokines were found to be inhibited by both live B. cepacia and its secretory proteins. In contrast, the host cell cycle and metabolic processes, particularly glycolysis/glycogenesis and fatty acid metabolism were transcriptionally up-regulated during the infection. Our microarray analysis provided preliminary insights into mechanisms of B. cepacia pathogenesis. The understanding of host response to an infection would provide novel therapeutic targets both for enhancing the host's defences and repressing detrimental responses induced by the invading pathogen.

  12. Structural characterization of hemoglobins from Monilifera and Frenulata tubeworms (Siboglinids): first discovery of giant hexagonal-bilayer hemoglobin in the former "Pogonophora" group.

    Science.gov (United States)

    Meunier, Cédric; Andersen, Ann C; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck

    2010-01-01

    Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.

  13. HSPA5 is an essential host factor for Ebola virus infection.

    Science.gov (United States)

    Reid, St Patrick; Shurtleff, Amy C; Costantino, Julie A; Tritsch, Sarah R; Retterer, Cary; Spurgers, Kevin B; Bavari, Sina

    2014-09-01

    Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures. Published by Elsevier B.V.

  14. Food-grade host/vector expression system for Lactobacillus casei based on complementation of plasmid-associated phospho-beta-galactosidase gene lacG.

    Science.gov (United States)

    Takala, T M; Saris, P E J; Tynkkynen, S S H

    2003-01-01

    A new food-grade host/vector system for Lactobacillus casei based on lactose selection was constructed. The wild-type non-starter host Lb. casei strain E utilizes lactose via a plasmid-encoded phosphotransferase system. For food-grade cloning, a stable lactose-deficient mutant was constructed by deleting a 141-bp fragment from the phospho-beta-galactosidase gene lacG via gene replacement. The deletion resulted in an inactive phospho-beta-galactosidase enzyme with an internal in-frame deletion of 47 amino acids. A complementation plasmid was constructed containing a replicon from Lactococcus lactis, the lacG gene from Lb. casei, and the constitutive promoter of pepR for lacG expression from Lb. rhamnosus. The expression of the lacG gene from the resulting food-grade plasmid pLEB600 restored the ability of the lactose-negative mutant strain to grow on lactose to the wild-type level. The vector pLEB600 was used for expression of the proline iminopeptidase gene pepI from Lb. helveticus in Lb. casei. The results show that the food-grade expression system reported in this paper can be used for expression of foreign genes in Lb. casei.

  15. Complexities in human herpesvirus-6A and -6B binding to host cells

    DEFF Research Database (Denmark)

    Pedersen, Simon Metz; Höllsberg, Per

    2006-01-01

    Human herpesvirus-6A and -6B uses the cellular receptor CD46 for fusion and infection of the host cell. The viral glycoprotein complex gH-gL from HHV-6A binds to the short consensus repeat 2 and 3 in CD46. Although all the major isoforms of CD46 bind the virus, certain isoforms may have higher...

  16. Hereditary Persistence of Fetal Hemoglobin Caused by Single Nucleotide Promoter Mutations in Sickle Cell Trait and Hb SC Disease.

    Science.gov (United States)

    Akinbami, Anthony O; Campbell, Andrew D; Han, Zeqiu J; Luo, Hong-Yuan; Chui, David H K; Steinberg, Martin H

    2016-01-01

    Hereditary persistence of fetal hemoglobin (HPFH) can be caused by point mutations in the γ-globin gene promoters. We report three rare cases: a child compound heterozygous for Hb S (HBB: c.20A > T) and HPFH with a novel point mutation in the (A)γ-globin gene promoter who had 42.0% Hb S, 17.0% Hb A and 38.0% Hb F; a man with Hb SC (HBB: c.19G > A) disease and a point mutation in the (G)γ-globin gene promoter who had 54.0% Hb S, 18.0% Hb C and 25.0% Hb F; a child heterozygous for Hb S and HPFH due to mutations in both the (A)γ- and (G)γ-globin gene promoters in cis [(G)γ(A)γ(β(+)) HPFH], with 67.0% Hb A, 6.5% Hb S and 25.0% Hb F.

  17. Construction of a fusion gene containing hepatitis B virus L gene ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... the successful construction of a recombinant yeast expression vector containing gene coding L protein and Ag85B ..... the production of memory T cells, promote cytokine secretion and ... Dual DNA vaccination of rainbow trout.

  18. Herpes simplex virus types 1 and 2 induce shutoff of host protein synthesis by different mechanisms in Friend erythroleukemia cells

    International Nuclear Information System (INIS)

    Hill, T.M.; Sinden, R.R.; Sadler, J.R.

    1983-01-01

    Herpes simplex virus type 1 (HSV-1) and HSV-2 disrupt host protein synthesis after viral infection. We have treated both viral types with agents which prevent transcription of the viral genome and used these treated viruses to infect induced Friend erythroleukemia cells. By measuring the changes in globin synthesis after infection, we have determined whether expression of the viral genome precedes the shutoff of host protein synthesis or whether the inhibitor molecule enters the cells as part of the virion. HSV-2-induced shutoff of host protein synthesis was insensitive to the effects of shortwave (254-nm) UV light and actinomycin D. Both of the treatments inhibited HSV-1-induced host protein shutoff. Likewise, treatment of HSV-1 with the cross-linking agent 4,5',8-trimethylpsoralen and longwave (360-nm) UV light prevented HSV-1 from inhibiting cellular protein synthesis. Treatment of HSV-2 with 4,5',8-trimethylpsoralen did not affect the ability of the virus to interfere with host protein synthesis, except at the highest doses of longwave UV light. It was determined that the highest longwave UV dosage damaged the HSV-2 virion as well as cross-linking the viral DNA. The results suggest that HSV-2 uses a virion-associated component to inhibit host protein synthesis and that HSV-1 requires the expression of the viral genome to cause cellular protein synthesis shutoff

  19. Detection of genes regulated by Lmx1b during limb dorsalization.

    Science.gov (United States)

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. © 2012 The Authors. Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  20. Genome-wide identification and characterization of the bHLH gene family in tomato.

    Science.gov (United States)

    Sun, Hua; Fan, Hua-Jie; Ling, Hong-Qing

    2015-01-22

    The basic helix-loop-helix (bHLH) proteins are a large superfamily of transcription factors, and play a central role in a wide range of metabolic, physiological, and developmental processes in higher organisms. Tomato is an important vegetable crop, and its genome sequence has been published recently. However, the bHLH gene family of tomato has not been systematically identified and characterized yet. In this study, we identified 159 bHLH protein-encoding genes (SlbHLH) in tomato genome and analyzed their structures. Although bHLH domains were conserved among the bHLH proteins between tomato and Arabidopsis, the intron sequences and distribution of tomato bHLH genes were extremely different compared with Arabidopsis. The gene duplication analysis showed that 58.5% and 6.3% of SlbHLH genes belonged to low-stringency and high-stringency duplication, respectively, indicating that the SlbHLH genes are mainly generated via short low-stringency region duplication in tomato. Subsequently, we classified the SlbHLH genes into 21 subfamilies by phylogenetic tree analysis, and predicted their possible functions by comparison with their homologous genes of Arabidopsis. Moreover, the expression profile analysis of SlbHLH genes from 10 different tissues showed that 21 SlbHLH genes exhibited tissue-specific expression. Further, we identified that 11 SlbHLH genes were associated with fruit development and ripening (eight of them associated with young fruit development and three with fruit ripening). The evolutionary analysis revealed that 92% SlbHLH genes might be evolved from ancestor(s) originated from early land plant, and 8% from algae. In this work, we systematically identified SlbHLHs by analyzing the tomato genome sequence using a set of bioinformatics approaches, and characterized their chromosomal distribution, gene structures, duplication, phylogenetic relationship and expression profiles, as well predicted their possible biological functions via comparative analysis

  1. A Family with γ-Thalassemia and High Hb A2 Levels.

    Science.gov (United States)

    Parmeggiani, Giulia; Gualandi, Francesca; Selvatici, Rita; Rimessi, Paola; Bigoni, Stefania; Taddei Masieri, Marina; Dolcini, Bernadetta; Venturoli, Anna; Cappabianca, Maria P; Ferlini, Alessandra; Ravani, Anna

    2016-06-01

    We describe a family carrying a γ-globin gene deletion associated with an increase of Hb A2 level beyond the normal range. The family included the proband, his sister and their father, all with increased Hb A2 and normal Hb F levels. The proband and his sister showed borderline values of mean corpuscular volume (MCV) and reduced values of mean corpuscular hemoglobin (Hb) (MCH). The proband was referred to our Medical Genetics Service for preconception counseling together with his partner, a typical β-thalassemia (β-thal) carrier. The results were negative for the most frequent α-thalassemia (α-thal) mutations, and had no significant sequence variations of the coding sequences and promoter of the β- and δ-globin genes. Quantitative analysis by multiplex ligation-dependent probe amplification (MPLA) of the β-globin gene cluster detected a heterozygous deletion, ranging between 2.1 and 4.7 kb, in the proband, his sister and the father. The deletion involved the (G)γ gene and (G)γ-(A)γ intergenic region, whereas the 3' region of the (A)γ gene was preserved. A subsequent gap-polymerase chain reaction (gap-PCR) showed that a hybrid (GA)γ fusion gene was present. The deletion segregated with the elevation of Hb A2. The MLPA analysis of the β-globin gene cluster in 150 control alleles excluded a common polymorphism. Despite stronger evidence being needed, the described family suggests a possible role of this γ-globin gene deletion in contributing to Hb A2 elevation, possibly by altering the transcription regulation of the cluster. We propose γ-globin gene dosage analysis to be performed in patients with unexplained elevated Hb A2 levels.

  2. The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes.

    Directory of Open Access Journals (Sweden)

    Muriel Vayssier-Taussat

    2010-06-01

    Full Text Available Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The alpha-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage

  3. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini

    Directory of Open Access Journals (Sweden)

    Laura E. Williams

    2015-04-01

    Full Text Available Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA of these six Blochmannia genomes is reduced (690 protein coding genes, consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of

  4. Genes required for Lactococcus garvieae survival in a fish host.

    Science.gov (United States)

    Menéndez, Aurora; Fernández, Lucia; Reimundo, Pilar; Guijarro, José A

    2007-10-01

    Lactococcus garvieae is considered an emergent pathogen in aquaculture and it is also associated with mastitis in domestic animals as well as human endocarditis and septicaemia. In spite of this, the pathogenic mechanisms of this bacterium are poorly understood. Signature-tagged mutagenesis was used to identify virulence factors and to establish the basis of pathogen-host interactions. A library of 1250 L. garvieae UNIUD074-tagged Tn917 mutants in 25 pools was screened for the ability to grow in fish. Among them, 29 mutants (approx. 2.4 %) were identified which could not be recovered from rainbow trout following infection. Sequence analysis of the tagged Tn917-interrupted genes in these mutants indicated the participation in pathogenesis of the transcriptional regulatory proteins homologous to GidA and MerR; the metabolic enzymes asparagine synthetase A and alpha-acetolactate synthase; the ABC transport system of glutamine and a calcium-transporting ATPase; the dltA locus involved in alanylation of teichoic acids; and hypothetical proteins containing EAL and Eis domains, among others. Competence index experiments in several of the selected mutants confirmed the relevance of the Tn917-interrupted genes in the development of the infection process. The results suggested some of the metabolic routes and enzymic systems necessary for the complete virulence of this bacterium. This work is believed to represent the first report of a genome-wide scan for virulence factors in L. garvieae. The identified genes will further our understanding of the pathogenesis of L. garvieae infections and may provide targets for intervention or lead to the development of novel therapies.

  5. Gene structure, expression, and DNA methylation characteristics of sea cucumber cyclin B gene during aestivation.

    Science.gov (United States)

    Zhu, Aijun; Chen, Muyan; Zhang, Xiumei; Storey, Kenneth B

    2016-12-05

    The sea cucumber, Apostichopus japonicus, is a good model for studying environmentally-induced aestivation by a marine invertebrate. One of the central requirements of aestivation is the repression of energy-expensive cellular processes such as cell cycle progression. The present study identified the gene structure of the cell cycle regulator, cyclin B, and detected the expression levels of this gene over three stages of the annual aestivation-arousal cycle. Furthermore, the DNA methylation characteristics of cyclin B were analyzed in non-aestivation and deep-aestivation stages of sea cucumbers. We found that the cyclin B promoter contains a CpG island, three CCAAT-boxes and three cell cycle gene homology regions (CHRs). Application of qRT-PCR analysis showed significant downregulation of cyclin B transcript levels during deep-aestivation in comparison with non-aestivation in both intestine and longitudinal muscle, and these returned to basal levels after arousal from aestivation. Methylation analysis of the cyclin B core promoter revealed that its methylation level showed significant differences between non-aestivation and deep-aestivation stages (p<0.05) and interestingly, a positive correlation between Cyclin B transcripts expression and methylation levels of the core promoter was also observed. Our findings suggest that cell cycle progression may be reversibly arrested during aestivation as indicated by the changes in cyclin B expression levels and we propose that DNA methylation is one of the regulatory mechanisms involved in cyclin B transcriptional variation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Gene expression profiles in BCL11B-siRNA treated malignant T cells

    Directory of Open Access Journals (Sweden)

    Grabarczyk Piotr

    2011-05-01

    Full Text Available Abstract Background Downregulation of the B-cell chronic lymphocytic leukemia (CLL/lymphoma11B (BCL11B gene by small interfering RNA (siRNA leads to growth inhibition and apoptosis of the human T-cell acute lymphoblastic leukemia (T-ALL cell line Molt-4. To further characterize the molecular mechanism, a global gene expression profile of BCL11B-siRNA -treated Molt-4 cells was established. The expression profiles of several genes were further validated in the BCL11B-siRNA -treated Molt-4 cells and primary T-ALL cells. Results 142 genes were found to be upregulated and 109 genes downregulated in the BCL11B-siRNA -treated Molt-4 cells by microarray analysis. Among apoptosis-related genes, three pro-apoptotic genes, TNFSF10, BIK, BNIP3, were upregulated and one anti-apoptotic gene, BCL2L1 was downregulated. Moreover, the expression of SPP1 and CREBBP genes involved in the transforming growth factor (TGF-β pathway was down 16-fold. Expression levels of TNFSF10, BCL2L1, SPP1, and CREBBP were also examined by real-time PCR. A similar expression pattern of TNFSF10, BCL2L1, and SPP1 was identified. However, CREBBP was not downregulated in the BLC11B-siRNA -treated Molt-4 cells. Conclusion BCL11B-siRNA treatment altered expression profiles of TNFSF10, BCL2L1, and SPP1 in both Molt-4 T cell line and primary T-ALL cells.

  7. Co-expression of the Thermotoga neapolitana aglB gene with an upstream 3'-coding fragment of the malG gene improves enzymatic characteristics of recombinant AglB cyclomaltodextrinase.

    Science.gov (United States)

    Lunina, Natalia A; Agafonova, Elena V; Chekanovskaya, Lyudmila A; Dvortsov, Igor A; Berezina, Oksana V; Shedova, Ekaterina N; Kostrov, Sergey V; Velikodvorskaya, Galina A

    2007-07-01

    A cluster of Thermotoga neapolitana genes participating in starch degradation includes the malG gene of sugar transport protein and the aglB gene of cyclomaltodextrinase. The start and stop codons of these genes share a common overlapping sequence, aTGAtg. Here, we compared properties of expression products of three different constructs with aglB from T. neapolitana. The first expression vector contained the aglB gene linked to an upstream 90-bp 3'-terminal region of the malG gene with the stop codon overlapping with the start codon of aglB. The second construct included the isolated coding sequence of aglB with two tandem potential start codons. The expression product of this construct in Escherichia coli had two tandem Met residues at its N terminus and was characterized by low thermostability and high tendency to aggregate. In contrast, co-expression of aglB and the 3'-terminal region of malG (the first construct) resulted in AglB with only one N-terminal Met residue and a much higher specific activity of cyclomaltodextrinase. Moreover, the enzyme expressed by such a construct was more thermostable and less prone to aggregation. The third construct was the same as the second one except that it contained only one ATG start codon. The product of its expression had kinetic and other properties similar to those of the enzyme with only one N-terminal Met residue.

  8. Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Nigel P S Crawford

    2007-11-01

    Full Text Available A novel candidate metastasis modifier, ribosomal RNA processing 1 homolog B (Rrp1b, was identified through two independent approaches. First, yeast two-hybrid, immunoprecipitation, and functional assays demonstrated a physical and functional interaction between Rrp1b and the previous identified metastasis modifier Sipa1. In parallel, using mouse and human metastasis gene expression data it was observed that extracellular matrix (ECM genes are common components of metastasis predictive signatures, suggesting that ECM genes are either important markers or causal factors in metastasis. To investigate the relationship between ECM genes and poor prognosis in breast cancer, expression quantitative trait locus analysis of polyoma middle-T transgene-induced mammary tumor was performed. ECM gene expression was found to be consistently associated with Rrp1b expression. In vitro expression of Rrp1b significantly altered ECM gene expression, tumor growth, and dissemination in metastasis assays. Furthermore, a gene signature induced by ectopic expression of Rrp1b in tumor cells predicted survival in a human breast cancer gene expression dataset. Finally, constitutional polymorphism within RRP1B was found to be significantly associated with tumor progression in two independent breast cancer cohorts. These data suggest that RRP1B may be a novel susceptibility gene for breast cancer progression and metastasis.

  9. Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella

    NARCIS (Netherlands)

    Garcia-Fernandez, A.; Fortini, D.; Veldman, K.T.; Mevius, D.J.; Carattoli, A.

    2009-01-01

    The aim of this study was to identify and characterize plasmids carrying qnrS1, qnrB2 and qnrB19 genes identified in Salmonella strains from The Netherlands. The identification of plasmids may help to follow the dissemination of these resistance genes in different countries and environments.

  10. In silico identification of NF-kappaB-regulated genes in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Eizirik Decio L

    2007-02-01

    Full Text Available Abstract Background Pancreatic beta-cells are the target of an autoimmune attack in type 1 diabetes mellitus (T1DM. This is mediated in part by cytokines, such as interleukin (IL-1β and interferon (IFN-γ. These cytokines modify the expression of hundreds of genes, leading to beta-cell dysfunction and death by apoptosis. Several of these cytokine-induced genes are potentially regulated by the IL-1β-activated transcription factor (TF nuclear factor (NF-κB, and previous studies by our group have shown that cytokine-induced NF-κB activation is pro-apoptotic in beta-cells. To identify NF-κB-regulated gene networks in beta-cells we presently used a discriminant analysis-based approach to predict NF-κB responding genes on the basis of putative regulatory elements. Results The performance of linear and quadratic discriminant analysis (LDA, QDA in identifying NF-κB-responding genes was examined on a dataset of 240 positive and negative examples of NF-κB regulation, using stratified cross-validation with an internal leave-one-out cross-validation (LOOCV loop for automated feature selection and noise reduction. LDA performed slightly better than QDA, achieving 61% sensitivity, 91% specificity and 87% positive predictive value, and allowing the identification of 231, 251 and 580 NF-κB putative target genes in insulin-producing INS-1E cells, primary rat beta-cells and human pancreatic islets, respectively. Predicted NF-κB targets had a significant enrichment in genes regulated by cytokines (IL-1β or IL-1β + IFN-γ and double stranded RNA (dsRNA, as compared to genes not regulated by these NF-κB-dependent stimuli. We increased the confidence of the predictions by selecting only evolutionary stable genes, i.e. genes with homologs predicted as NF-κB targets in rat, mouse, human and chimpanzee. Conclusion The present in silico analysis allowed us to identify novel regulatory targets of NF-κB using a supervised classification method based on

  11. Discovering Host Genes Involved in the Infection by the Tomato Yellow Leaf Curl Virus Complex and in the Establishment of Resistance to the Virus Using Tobacco Rattle Virus-based Post Transcriptional Gene Silencing

    Directory of Open Access Journals (Sweden)

    Rosa Lozano-Durán

    2013-03-01

    Full Text Available The development of high-throughput technologies allows for evaluating gene expression at the whole-genome level. Together with proteomic and metabolomic studies, these analyses have resulted in the identification of plant genes whose function or expression is altered as a consequence of pathogen attacks. Members of the Tomato yellow leaf curl virus (TYLCV complex are among the most important pathogens impairing production of agricultural crops worldwide. To understand how these geminiviruses subjugate plant defenses, and to devise counter-measures, it is essential to identify the host genes affected by infection and to determine their role in susceptible and resistant plants. We have used a reverse genetics approach based on Tobacco rattle virus-induced gene silencing (TRV-VIGS to uncover genes involved in viral infection of susceptible plants, and to identify genes underlying virus resistance. To identify host genes with a role in geminivirus infection, we have engineered a Nicotiana benthamiana line, coined 2IRGFP, which over-expresses GFP upon virus infection. With this system, we have achieved an accurate description of the dynamics of virus replication in space and time. Upon silencing selected N. benthamiana genes previously shown to be related to host response to geminivirus infection, we have identified eighteen genes involved in a wide array of cellular processes. Plant genes involved in geminivirus resistance were studied by comparing two tomato lines: one resistant (R, the other susceptible (S to the virus. Sixty-nine genes preferentially expressed in R tomatoes were identified by screening cDNA libraries from infected and uninfected R and S genotypes. Out of the 25 genes studied so far, the silencing of five led to the total collapse of resistance, suggesting their involvement in the resistance gene network. This review of our results indicates that TRV-VIGS is an exquisite reverse genetics tool that may provide new insights into the

  12. Identification and comprehensive evaluation of reference genes for RT-qPCR analysis of host gene-expression in Brassica juncea-aphid interaction using microarray data.

    Science.gov (United States)

    Ram, Chet; Koramutla, Murali Krishna; Bhattacharya, Ramcharan

    2017-07-01

    Brassica juncea is a chief oil yielding crop in many parts of the world including India. With advancement of molecular techniques, RT-qPCR based study of gene-expression has become an integral part of experimentations in crop breeding. In RT-qPCR, use of appropriate reference gene(s) is pivotal. The virtue of the reference genes, being constant in expression throughout the experimental treatments, needs to be validated case by case. Appropriate reference gene(s) for normalization of gene-expression data in B. juncea during the biotic stress of aphid infestation is not known. In the present investigation, 11 reference genes identified from microarray database of Arabidopsis-aphid interaction at a cut off FDR ≤0.1, along with two known reference genes of B. juncea, were analyzed for their expression stability upon aphid infestation. These included 6 frequently used and 5 newly identified reference genes. Ranking orders of the reference genes in terms of expression stability were calculated using advanced statistical approaches such as geNorm, NormFinder, delta Ct and BestKeeper. The analysis suggested CAC, TUA and DUF179 as the most suitable reference genes. Further, normalization of the gene-expression data of STP4 and PR1 by the most and the least stable reference gene, respectively has demonstrated importance and applicability of the recommended reference genes in aphid infested samples of B. juncea. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut.

    Directory of Open Access Journals (Sweden)

    Vincent Raquin

    2017-12-01

    Full Text Available Dengue virus (DENV causes more human infections than any other mosquito-borne virus. The current lack of antiviral strategies has prompted genome-wide screens for host genes that are required for DENV infectivity. Earlier transcriptomic studies that identified DENV host factors in the primary vector Aedes aegypti used inbred laboratory colonies and/or pools of mosquitoes that erase individual variation. Here, we performed transcriptome sequencing on individual midguts in a field-derived Ae. aegypti population to identify new candidate host factors modulating DENV replication. We analyzed the transcriptomic data using an approach that accounts for individual co-variation between viral RNA load and gene expression. This approach generates a prediction about the agonist or antagonist effect of candidate genes on DENV replication based on the sign of the correlation between gene expression and viral RNA load. Using this method, we identified 39 candidate genes that went undetected by conventional pairwise comparison of gene expression levels between DENV-infected midguts and uninfected controls. Only four candidate genes were detected by both methods, emphasizing their complementarity. We demonstrated the value of our approach by functional validation of a candidate agonist gene encoding a sterol regulatory element-binding protein (SREBP, which was identified by correlation analysis but not by pairwise comparison. We confirmed that SREBP promotes DENV infection in the midgut by RNAi-mediated gene knockdown in vivo. We suggest that our approach for transcriptomic analysis can empower genome-wide screens for potential agonist or antagonist factors by leveraging inter-individual variation in gene expression. More generally, this method is applicable to a wide range of phenotypic traits displaying inter-individual variation.

  14. The expression of nifB gene from Herbaspirillum seropedicae is dependent upon the NifA and RpoN proteins.

    Science.gov (United States)

    Rego, Fabiane G M; Pedrosa, Fábio O; Chubatsu, Leda S; Yates, M Geoffrey; Wassem, Roseli; Steffens, Maria B R; Rigo, Liu U; Souza, Emanuel M

    2006-12-01

    The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a -24/-12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.

  15. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Feixiong Cheng

    2016-09-01

    Full Text Available Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase. Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline that may be potential for antiviral indication (e.g. anti-Ebola. In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  16. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication

    Directory of Open Access Journals (Sweden)

    Xiao-Long Wang

    2015-01-01

    Full Text Available The basic leucine zipper (bZIP transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple, Prunus persica (peach, and Fragaria vesca (strawberry, respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry.

  17. Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.

    Science.gov (United States)

    Elliott, R W; Barlow, D; Hogan, B L

    1985-08-01

    We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.

  18. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling.

    Directory of Open Access Journals (Sweden)

    Stéphanie Cornen

    Full Text Available Breast cancers (BCs of the luminal B subtype are estrogen receptor-positive (ER+, highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs, DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15 and UTRN (6q24, were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.

  19. Cloning of the Bacillus subtilis recE/sup +/ gene and functional expression of recE/sup +/ in B. subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, R.; Yasbin, R.E.

    1988-01-01

    By use of the Bacillus subtilis bacteriophage cloning vehicle Phi 105J23, B. subtilis chromosomal MboI fragments have been cloned that alleviate the pleiotropic effects of the recE4 mutation. The recombinant bacteriophages Phi 105Rec Phi1 (3.85-kilobase insert) and Phi 105Rec Phi4 (3.3-kilobase insert) both conferred on the recE4 strain YB1015 resistance to ethylmethane sulfonate, methylmethane sulfonate, mitomycin C, and UV irradiation comparable with the resistance observed in recE/sup +/ strains. While strain YB1015 (recE4) and its derivatives lysogenized with bacteriophage Phi105J23 were not transformed to prototrophy by B. subtilis chromosomal DNA, strain YB1015 lysogenized with either Phi 105Rec Phi 1 or Phi 105RecPhi 4 was susceptible to transformation with homologous B. subtilis chromosomal DNA. The heteroimmune prophages Phi 105 and SPO2 were essentially uninducible in strain YB1015. Significantly, both recombinant prophages Phi 105RecPhi 1 and Phi 105Rec Phi 4 were fully inducible and allowed the spontaneous and mitomycin C-dependent induction of a coresident SPO2 prophage in a recE4 host. The presence of the recombinant prophages also restored the ability of din genes to be induced in strains carrying the recE4 mutation. Finally, both recombinant bacteriophages elaborated a mitomycin C-inducible, 45-kilodalton protein that was immunoreactive with Escherichia coli recA/sup +/ gene product antibodies. Collectively, these data demonstrate that the recE/sup +/ gene has been cloned and that this gene elaborates the 45-kilodalton protein that is involved in SOB induction and homologous recombination.

  20. A Family of Salmonella Type III Secretion Effector Proteins Selectively Targets the NF-κB Signaling Pathway to Preserve Host Homeostasis.

    Science.gov (United States)

    Sun, Hui; Kamanova, Jana; Lara-Tejero, Maria; Galán, Jorge E

    2016-03-01

    Microbial infections usually lead to host innate immune responses and inflammation. These responses most often limit pathogen replication although they can also result in host-tissue damage. The enteropathogenic bacteria Salmonella Typhimurium utilizes a type III secretion system to induce intestinal inflammation by delivering specific effector proteins that stimulate signal transduction pathways resulting in the production of pro-inflammatory cytokines. We show here that a family of related Salmonella Typhimurium effector proteins PipA, GogA and GtgA redundantly target components of the NF-κB signaling pathway to inhibit transcriptional responses leading to inflammation. We show that these effector proteins are proteases that cleave both the RelA (p65) and RelB transcription factors but do not target p100 (NF-κB2) or p105 (NF-κB1). A Salmonella Typhimurium strain lacking these effectors showed increased ability to stimulate NF-κB and increased virulence in an animal model of infection. These results indicate that bacterial pathogens can evolve determinants to preserve host homeostasis and that those determinants can reduce the pathogen's virulence.

  1. Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients.

    Science.gov (United States)

    Vrabec, Katarina; Boštjančič, Emanuela; Koritnik, Blaž; Leonardis, Lea; Dolenc Grošelj, Leja; Zidar, Janez; Rogelj, Boris; Glavač, Damjan; Ravnik-Glavač, Metka

    2018-01-01

    Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential expression of 10 miRNAs, including miR-9, miR-338, miR-638, miR-663a, miR-124a, miR-143, miR-451a, miR-132, miR-206, and let-7b, for which some connection to ALS was shown previously in ALS culture cells, animal models or patients, and in three miRNA host genes, including C1orf61 (miR-9), AATK (miR-338), and DNM2 (miR-638), in leukocyte samples of 84 patients with sporadic ALS. We observed significant aberrant dysregulation across our patient cohort for miR-124a, miR-206, miR-9, let-7b, and miR-638. Since we did not use neurological controls we cannot rule out that the revealed differences in expression of investigated miRNAs are specific for ALS. Nevertheless, the group of these five miRNAs is worth of additional research in leukocytes of larger cohorts from different populations in order to verify their potential association to ALS disease. We also detected a significant up-regulation of the AAKT gene and down-regulation of the DNM2 gene, and thus, for the first time, we connected these with sporadic ALS cases. These findings open up new research toward miRNAs as diagnostic biomarkers and epigenetic processes involved in ALS. The detected significant deregulation of AAKT and DNM2 in sporadic ALS also represents an interesting finding. The DNM2 gene was previously found to be mutated in Charcot-Marie-Tooth neuropathy-type CMT2M and centronuclear myopathy (CNM). In addition, as recent studies connected AATK and frontotemporal dementia (FTD) and DNM2 and hereditary spastic paraplegia (HSP), these two genes together with our results genetically connect, at least in part, five diseases, including FTD, HSP, Charcot-Marie-Tooth (type CMT2M), CNM, and ALS

  2. Mitochondrial nad2 gene is co-transcripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea).

    Science.gov (United States)

    Yang, Jing-Hua; Zhang, Ming-Fang; Yu, Jing-Quan

    2009-02-01

    The transcriptional patterns of mitochondrial respiratory related genes were investigated in cytoplasmic male-sterile and fertile maintainer lines of stem mustard, Brassica juncea. There were numerous differences in nad2 (subunit 2 of NADH dehydrogenase) between stem mustard CMS and its maintainer line. One novel open reading frame, hereafter named orfB gene, was located at the downstream of mitochondrial nad2 gene in the CMS. The novel orfB gene had high similarity with YMF19 family protein, orfB in Raphanus sativus, Helianthus annuus, Nicotiana tabacum and Beta vulgaris, orfB-CMS in Daucus carota, atp8 gene in Arabidopsis thaliana, 5' flanking of orf224 in B. napus (nap CMS) and 5' flanking of orf220 gene in CMS Brassica juncea. Three copies probed by specific fragment (amplified by primers of nad2F and nad2R from CMS) were found in the CMS line following Southern blotting digested with HindIII, but only a single copy in its maintainer line. Meanwhile, two transcripts were shown in the CMS line following Northern blotting while only one transcript was detected in the maintainer line, which were probed by specific fragment (amplified by primers of nad2F and nad2R from CMS). Meanwhile, the expression of nad2 gene was reduced in CMS bud compared to that in its maintainer line. We thus suggested that nad2 gene may be co-transcripted with CMS-associated orfB gene in the CMS. In addition, the specific fragment that was amplified by primers of nad2F and nad2R just spanned partial sequences of nad2 gene and orfB gene. Such alterations in the nad2 gene would impact the activity of NADH dehydrogenase, and subsequently signaling, inducing the expression of nuclear genes involved in male sterility in this type of cytoplasmic male sterility.

  3. A new social gene in Dictyostelium discoideum, chtB

    Directory of Open Access Journals (Sweden)

    Santorelli Lorenzo A

    2013-01-01

    Full Text Available Abstract Background Competitive social interactions are ubiquitous in nature, but their genetic basis is difficult to determine. Much can be learned from single gene knockouts in a eukaryote microbe. The mutants can be competed with the parent to discern the social impact of that specific gene. Dictyostelium discoideum is a social amoeba that exhibits cooperative behavior in the construction of a multicellular fruiting body. It is a good model organism to study the genetic basis of cooperation since it has a sequenced genome and it is amenable to genetic manipulation. When two strains of D. discoideum are mixed, a cheater strain can exploit its social partner by differentiating more spore than its fair share relative to stalk cells. Cheater strains can be generated in the lab or found in the wild and genetic analyses have shown that cheating behavior can be achieved through many pathways. Results We have characterized the knockout mutant chtB, which was isolated from a screen for cheater mutants that were also able to form normal fruiting bodies on their own. When mixed in equal proportions with parental strain cells, chtB mutants contributed almost 60% of the total number of spores. To do so, chtB cells inhibit wild type cells from becoming spores, as indicated by counts and by the wild type cells’ reduced expression of the prespore gene, cotB. We found no obvious fitness costs (morphology, doubling time in liquid medium, spore production, and germination efficiency associated with the cheating ability of the chtB knockout. Conclusions In this study we describe a new gene in D. discoideum, chtB, which when knocked out inhibits the parental strain from producing spores. Moreover, under lab conditions, we did not detect any fitness costs associated with this behavior.

  4. Myxovirus resistance 1 gene polymorphisms and outcomes of viral hepatitis B and C infections in Moroccan patients.

    Science.gov (United States)

    Rebbani, Khadija; Ababou, Mostafa; Nadifi, Sellama; Kandil, Mostafa; Marchio, Agnès; Pineau, Pascal; Ezzikouri, Sayeh; Benjelloun, Soumaya

    2017-04-01

    Host genetic factors may influence the establishment of chronicity or spontaneous clearance in viral hepatitis B and C infections. More light was shed on the role played by interferon-stimulated genes in the innate immunity. Myxovirus resistance 1 (MX1) is one of those key genes that have reported to inhibit several viruses. The present study aims to explore the possible association of -88G/T and -123C/A promoter variants of MX1 with susceptibility to chronic hepatitis B and C and/or with spontaneous clearance in a Moroccan population. The -88G/T and -123C/A SNPs were genotyped by PCR-RFLP in 538 individuals stratified into HBV chronically infected patients (n = 120), HCV-chronically infected patients (n = 115), HBV spontaneously resolved subjects (n = 114), HCV spontaneously resolved group (n = 52), and healthy controls (n = 137). A significant association of -123C allele with HBV spontaneous clearance has been found (P = 0.002, OR = 2.34; 95%CI [1.36-4]). In addition, a significant correlation between the MX1-GC haplotype and HBV spontaneous clearance (P C/A polymorphisms with regard to HCV infection was observed in this study. Here, we show that for North African patients with chronic hepatitis, MX1 gene variation at position -123 may influence the outcome of HBV infection but not HCV infection. J. Med. Virol. 89:647-652, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Methylated Host Cell Gene Promoters and Human Papillomavirus Type 16 and 18 Predicting Cervical Lesions and Cancer.

    Directory of Open Access Journals (Sweden)

    Nina Milutin Gašperov

    Full Text Available Change in the host and/or human papillomavirus (HPV DNA methylation profile is probably one of the main factors responsible for the malignant progression of cervical lesions to cancer. To investigate those changes we studied 173 cervical samples with different grades of cervical lesion, from normal to cervical cancer. The methylation status of nine cellular gene promoters, CCNA1, CDH1, C13ORF18, DAPK1, HIC1, RARβ2, hTERT1, hTERT2 and TWIST1, was investigated by Methylation Specific Polymerase Chain Reaction (MSP. The methylation of HPV18 L1-gene was also investigated by MSP, while the methylated cytosines within four regions, L1, 5'LCR, enhancer, and promoter of the HPV16 genome covering 19 CpG sites were evaluated by bisulfite sequencing. Statistically significant methylation biomarkers distinguishing between cervical precursor lesions from normal cervix were primarily C13ORF18 and secondly CCNA1, and those distinguishing cervical cancer from normal or cervical precursor lesions were CCNA1, C13ORF18, hTERT1, hTERT2 and TWIST1. In addition, the methylation analysis of individual CpG sites of the HPV16 genome in different sample groups, notably the 7455 and 7694 sites, proved to be more important than the overall methylation frequency. The majority of HPV18 positive samples contained both methylated and unmethylated L1 gene, and samples with L1-gene methylated forms alone had better prognosis when correlated with the host cell gene promoters' methylation profiles. In conclusion, both cellular and viral methylation biomarkers should be used for monitoring cervical lesion progression to prevent invasive cervical cancer.

  6. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Directory of Open Access Journals (Sweden)

    Victoria A Meliopoulos

    Full Text Available Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB, cAMP/calcium signaling (CRE/CREB, and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  7. MicroRNA regulation of human protease genes essential for influenza virus replication.

    Science.gov (United States)

    Meliopoulos, Victoria A; Andersen, Lauren E; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J Keegan; Tompkins, S Mark; Tripp, Ralph A

    2012-01-01

    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  8. Host genes related to paneth cells and xenobiotic metabolism are associated with shifts in human ileum-associated microbial composition.

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    Full Text Available The aim of this study was to integrate human clinical, genotype, mRNA microarray and 16 S rRNA sequence data collected on 84 subjects with ileal Crohn's disease, ulcerative colitis or control patients without inflammatory bowel diseases in order to interrogate how host-microbial interactions are perturbed in inflammatory bowel diseases (IBD. Ex-vivo ileal mucosal biopsies were collected from the disease unaffected proximal margin of the ileum resected from patients who were undergoing initial intestinal surgery. Both RNA and DNA were extracted from the mucosal biopsy samples. Patients were genotyped for the three major NOD2 variants (Leufs1007, R702W, and G908R and the ATG16L1T300A variant. Whole human genome mRNA expression profiles were generated using Agilent microarrays. Microbial composition profiles were determined by 454 pyrosequencing of the V3-V5 hypervariable region of the bacterial 16 S rRNA gene. The results of permutation based multivariate analysis of variance and covariance (MANCOVA support the hypothesis that host mucosal Paneth cell and xenobiotic metabolism genes play an important role in host microbial interactions.

  9. Polygalacturonase gene pgxB in Aspergillus niger is a virulence factor in apple fruit.

    Science.gov (United States)

    Liu, Cheng-Qian; Hu, Kang-Di; Li, Ting-Ting; Yang, Ying; Yang, Feng; Li, Yan-Hong; Liu, He-Ping; Chen, Xiao-Yan; Zhang, Hua

    2017-01-01

    Aspergillus niger, a saprophytic fungus, is widely distributed in soil, air and cereals, and can cause postharvest diseases in fruit. Polygalacturonase (PG) is one of the main enzymes in fungal pathogens to degrade plant cell wall. To evaluate whether the deletion of an exo-polygalacturonase gene pgxB would influence fungal pathogenicity to fruit, pgxB gene was deleted in Aspergillus niger MA 70.15 (wild type) via homologous recombination. The ΔpgxB mutant showed similar growth behavior compared with the wild type. Pectin medium induced significant higher expression of all pectinase genes in both wild type and ΔpgxB in comparison to potato dextrose agar medium. However, the ΔpgxB mutant was less virulent on apple fruits as the necrosis diameter caused by ΔpgxB mutant was significantly smaller than that of wild type. Results of quantitive-PCR showed that, in the process of infection in apple fruit, gene expressions of polygalacturonase genes pgaI, pgaII, pgaA, pgaC, pgaD and pgaE were enhanced in ΔpgxB mutant in comparison to wild type. These results prove that, despite the increased gene expression of other polygalacturonase genes in ΔpgxB mutant, the lack of pgxB gene significantly reduced the virulence of A. niger on apple fruit, suggesting that pgxB plays an important role in the infection process on the apple fruit.

  10. Class B Gene Expression and the Modified ABC Model in Nongrass Monocots

    Directory of Open Access Journals (Sweden)

    Akira Kanno

    2007-01-01

    Full Text Available The discovery of the MADS-box genes and the study of model plants such as Arabidopsis thaliana and Antirrhinum majus have greatly improved our understanding of the molecular mechanisms driving the diversity in floral development. The class B genes, which belong to the MADS-box gene family, are important regulators of the development of petals and stamens in flowering plants. Many nongrass monocot flowers have two whorls of petaloid organs, which are called tepals. To explain this floral morphology, the modified ABC model was proposed. This model was exemplified by the tulip, in which expansion and restriction of class B gene expression is linked to the transition of floral morphologies in whorl 1. The expression patterns of class B genes from many monocot species nicely fit this model; however, those from some species, such as asparagus, do not. In this review, we summarize the relationship between class B gene expression and floral morphology in nongrass monocots, such as Liliales (Liliaceae and Asparagales species, and discuss the applicability of the modified ABC model to monocot flowers.

  11. Expression of a truncated Hmga1b gene induces gigantism, lipomatosis and B-cell lymphomas in mice.

    Science.gov (United States)

    Fedele, Monica; Visone, Rosa; De Martino, Ivana; Palmieri, Dario; Valentino, Teresa; Esposito, Francesco; Klein-Szanto, Andres; Arra, Claudio; Ciarmiello, Andrea; Croce, Carlo M; Fusco, Alfredo

    2011-02-01

    HMGA1 gene rearrangements have been frequently described in human lipomas. In vitro studies suggest that HMGA1 proteins have a negative role in the control of adipocyte cell growth, and that HMGA1 gene truncation acts in a dominant-negative fashion. Therefore, to define better the role of the HMGA1 alterations in the generation of human lipomas, we generated mice carrying an Hmga1b truncated (Hmga1b/T) gene. These mice develop a giant phenotype together with a drastic expansion of the retroperitoneal and subcutaneous white adipose tissue. We show that the activation of the E2F pathway likely accounts, at least in part, for this phenotype. Interestingly, the Hmga1b/T mice also develop B-cell lymphomas similar to that occurring in Hmga1-knockout mice, supporting a dominant-negative role of the Hmga1b/T mutant also in vivo. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Characterization of transcription factor networks involved in umbilical cord blood CD34+ stem cells-derived erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Biaoru Li

    Full Text Available Fetal stem cells isolated from umbilical cord blood (UCB possess a great capacity for proliferation and differentiation and serve as a valuable model system to study gene regulation. Expanded knowledge of the molecular control of hemoglobin synthesis will provide a basis for rational design of therapies for β-hemoglobinopathies. Transcriptome data are available for erythroid progenitors derived from adult stem cells, however studies to define molecular mechanisms controlling globin gene regulation during fetal erythropoiesis are limited. Here, we utilize UCB-CD34+ stem cells induced to undergo erythroid differentiation to characterize the transcriptome and transcription factor networks (TFNs associated with the γ/β-globin switch during fetal erythropoiesis. UCB-CD34+ stem cells grown in the one-phase liquid culture system displayed a higher proliferative capacity than adult CD34+ stem cells. The γ/β-globin switch was observed after day 42 during fetal erythropoiesis in contrast to adult progenitors where the switch occurred around day 21. To gain insights into transcription factors involved in globin gene regulation, microarray analysis was performed on RNA isolated from UCB-CD34+ cell-derived erythroid progenitors harvested on day 21, 42, 49 and 56 using the HumanHT-12 Expression BeadChip. After data normalization, Gene Set Enrichment Analysis identified transcription factors (TFs with significant changes in expression during the γ/β-globin switch. Forty-five TFs were silenced by day 56 (Profile-1 and 30 TFs were activated by day 56 (Profile-2. Both GSEA datasets were analyzed using the MIMI Cytoscape platform, which discovered TFNs centered on KLF4 and GATA2 (Profile-1 and KLF1 and GATA1 for Profile-2 genes. Subsequent shRNA studies in KU812 leukemia cells and human erythroid progenitors generated from UCB-CD34+ cells supported a negative role of MAFB in γ-globin regulation. The characteristics of erythroblasts derived from UCB-CD34

  13. Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes

    Directory of Open Access Journals (Sweden)

    Mittal Dheeraj

    2010-02-01

    Full Text Available Abstract Background ClpB-cyt/HSP100 protein acts as chaperone, mediating disaggregation of denatured proteins. Previous studies have shown that ClpB-cyt/HSP100 gene belongs to the group class I Clp ATPase proteins and ClpB-cyt/HSP100 transcript is regulated by heat stress and developmental cues. Results Nine ORFs were noted to constitute rice class I Clp ATPases in the following manner: 3 ClpB proteins (ClpB-cyt, Os05g44340; ClpB-m, Os02g08490; ClpB-c, Os03g31300, 4 ClpC proteins (ClpC1, Os04g32560; ClpC2, Os12g12580; ClpC3, Os11g16590; ClpC4, Os11g16770 and 2 ClpD proteins (ClpD1, Os02g32520; ClpD2, Os04g33210. Using the respective signal sequences cloned upstream to GFP/CFP reporter proteins and transient expression studies with onion epidermal cells, evidence is provided that rice ClpB-m and Clp-c proteins are indeed localized to their respective cell locations mitochondria and chloroplasts, respectively. Associated with their diverse cell locations, domain structures of OsClpB-c, OsClpB-m and OsClpB-cyt proteins are noted to possess a high-level conservation. OsClpB-cyt transcript is shown to be enriched at milk and dough stages of seed development. While expression of OsClpB-m was significantly less as compared to its cytoplasmic and chloroplastic counterparts in different tissues, this transcript showed highest heat-induced expression amongst the 3 ClpB proteins. OsClpC1 and OsClpC2 are predicted to be chloroplast-localized as is the case with all known plant ClpC proteins. However, the fact that OsClpC3 protein appears mitochondrial/chloroplastic with equal probability and OsClpC4 a plasma membrane protein reflects functional diversity of this class. Different class I Clp ATPase transcripts were noted to be cross-induced by a host of different abiotic stress conditions. Complementation assays of Δhsp104 mutant yeast cells showed that OsClpB-cyt, OsClpB-m, OsClpC1 and OsClpD1 have significantly positive effects. Remarkably, OsClpD1 gene

  14. Downregulation of host tryptophan-aspartate containing coat (TACO gene restricts the entry and survival of Leishmania donovani in human macrophage model

    Directory of Open Access Journals (Sweden)

    Venkateswara Reddy Gogulamudi

    2015-10-01

    Full Text Available Leishmania are obligate intracellular protozoan parasites of mammalian hosts. Promastigotes of Leishmania are internalized by macrophages and transformed into amastigotes in phagosomes, and replicate in phagolysosomes. Phagosomal maturation arrest is known to play a central role in the survival of pathogenic Leishmania within activated macrophages. Recently, tryptophan-aspartate containing coat (TACO gene has been recognized as playing a crucial role in the survival of Mycobacterium tuberculosis within human macrophages by arresting the phagosome maturation process. We postulated that a similar association of TACO gene with phagosomes would prevent the vacuole from maturation in the case of Leishmania. In this study we attempted to define the effect of TACO gene downregulation on the uptake/survival of Leishmania donovani intracellularly, by treatment with Vitamin D3/Retinoic acid (RA & Chenodeoxycholic acid (CDCA/Retinoic acid (RA combinations in human THP-1 macrophages (in vitro. Treatment with these molecules downregulated the TACO gene in macrophages, resulting in reduced parasite load and marked reduction of disease progression in L. donovani infected macrophages. Taken together, these results suggest that TACO gene downregulation may play a role in subverting macrophage machinery in establishing the L.donovani replicative niche inside the host. Our study is the first to highlight the importantrole of the TACO gene in Leishmania entry, and to identify TACO gene downregulation as potential drug target against leishmaniasis.

  15. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aravalli, Rajagopal N., E-mail: aravalli@umn.edu [Department of Radiology, University of Minnesota Medical School, MMC 292, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Park, Chang W. [Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Steer, Clifford J., E-mail: steer001@umn.edu [Department of Medicine, University of Minnesota Medical School, MMC 36, 420 Delaware Street SE, Minneapolis, MN 55455 (United States); Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455 (United States)

    2016-08-26

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.

  16. Detection of Sleeping Beauty transposition in the genome of host cells by non-radioactive Southern blot analysis

    International Nuclear Information System (INIS)

    Aravalli, Rajagopal N.; Park, Chang W.; Steer, Clifford J.

    2016-01-01

    The Sleeping Beauty transposon (SB-Tn) system is being used widely as a DNA vector for the delivery of therapeutic transgenes, as well as a tool for the insertional mutagenesis in animal models. In order to accurately assess the insertional potential and properties related to the integration of SB it is essential to determine the copy number of SB-Tn in the host genome. Recently developed SB100X transposase has demonstrated an integration rate that was much higher than the original SB10 and that of other versions of hyperactive SB transposases, such as HSB3 or HSB17. In this study, we have constructed a series of SB vectors carrying either a DsRed or a human β-globin transgene that was encompassed by cHS4 insulator elements, and containing the SB100X transposase gene outside the SB-Tn unit within the same vector in cis configuration. These SB-Tn constructs were introduced into the K-562 erythroid cell line, and their presence in the genomes of host cells was analyzed by Southern blot analysis using non-radioactive probes. Many copies of SB-Tn insertions were detected in host cells regardless of transgene sequences or the presence of cHS4 insulator elements. Interestingly, the size difference of 2.4 kb between insulated SB and non-insulated controls did not reflect the proportional difference in copy numbers of inserted SB-Tns. We then attempted methylation-sensitive Southern blots to assess the potential influence of cHS4 insulator elements on the epigenetic modification of SB-Tn. Our results indicated that SB100X was able to integrate at multiple sites with the number of SB-Tn copies larger than 6 kb in size. In addition, the non-radioactive Southern blot protocols developed here will be useful to detect integrated SB-Tn copies in any mammalian cell type.

  17. Using the Pathogen-Host Interactions database (PHI-base to investigate plant pathogen genomes and genes implicated in virulence

    Directory of Open Access Journals (Sweden)

    Martin eUrban

    2015-08-01

    Full Text Available New pathogen-host interaction mechanisms can be revealed by integrating mutant phenotype data with genetic information. PHI-base is a multi-species manually curated database combining peer-reviewed published phenotype data from plant and animal pathogens and gene/protein information in a single database.

  18. Macromolecule exchange in Cuscuta-host plant interactions.

    Science.gov (United States)

    Kim, Gunjune; Westwood, James H

    2015-08-01

    Cuscuta species (dodders) are parasitic plants that are able to grow on many different host plants and can be destructive to crops. The connections between Cuscuta and its hosts allow movement of not only water and small nutrients, but also macromolecules including mRNA, proteins and viruses. Recent studies show that RNAs move bidirectionally between hosts and parasites and involve a large number of different genes. Although the function of mobile mRNAs has not been demonstrated in this system, small RNAs are also transmitted and a silencing construct expressed in hosts is able to affect expression of the target gene in the parasite. High throughput sequencing of host-parasite associations has the potential to greatly accelerate understanding of this remarkable interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner.

    Science.gov (United States)

    Carbonell, Alberto; Dujovny, Gabriela; García, Juan Antonio; Valli, Adrian

    2012-02-01

    Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.

  20. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis.

    Science.gov (United States)

    Garavaglia, Betiana S; Thomas, Ludivine; Gottig, Natalia; Dunger, Germán; Garofalo, Cecilia G; Daurelio, Lucas D; Ndimba, Bongani; Orellano, Elena G; Gehring, Chris; Ottado, Jorgelina

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.

  1. Selfish restriction modification genes: resistance of a resident R/M plasmid to displacement by an incompatible plasmid mediated by host killing.

    Science.gov (United States)

    Naito, Y; Naito, T; Kobayashi, I

    1998-01-01

    Previous work from this laboratory demonstrated that plasmids carrying a type II restriction-modification gene complex are not easily lost from their bacterial host because plasmid-free segregant cells are killed through chromosome cleavage. Here, we have followed the course of events that takes place when an Escherichia coli rec BC sbcA strain carrying a plasmid coding for the PaeR7I restriction-modification (R/M) gene complex is transformed by a plasmid with an identical origin of replication. The number of transformants that appeared was far fewer than with the restriction-minus (r-) control. Most of the transformants were very small. After prolonged incubation, the number and the size of the colonies increased, but this increase never attained the level of the r- control. Most of the transformed colonies retained the drug-resistance of the resident, r+ m+ plasmid. These results indicate that post-segregational host killing occurs when a plasmid bearing an R/M gene complex is displaced by an incompatible plasmid. Such cell killing eliminates the competitor plasmid along with the host and, thus, would allow persistence of the R/M plasmid in the neighboring, clonal host cells in nature. This phenomenon is reminiscent of mammalian apoptosis and other forms of altruistic cell death strategy against infection. This type of resistance to displacement was also studied in a wild type Escherichia coli strain that was normal for homologous recombination (rec+). A number of differences between the recBC sbcA strain and the rec+ strain were observed and these will be discussed.

  2. Genome-Wide Screen for Saccharomyces cerevisiae Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host

    Directory of Open Access Journals (Sweden)

    Sujal S. Phadke

    2018-01-01

    Full Text Available Environmental opportunistic pathogens can exploit vulnerable hosts through expression of traits selected for in their natural environments. Pathogenicity is itself a complicated trait underpinned by multiple complex traits, such as thermotolerance, morphology, and stress response. The baker’s yeast, Saccharomyces cerevisiae, is a species with broad environmental tolerance that has been increasingly reported as an opportunistic pathogen of humans. Here we leveraged the genetic resources available in yeast and a model insect species, the greater waxmoth Galleria mellonella, to provide a genome-wide analysis of pathogenicity factors. Using serial passaging experiments of genetically marked wild-type strains, a hybrid strain was identified as the most fit genotype across all replicates. To dissect the genetic basis for pathogenicity in the hybrid isolate, bulk segregant analysis was performed which revealed eight quantitative trait loci significantly differing between the two bulks with alleles from both parents contributing to pathogenicity. A second passaging experiment with a library of deletion mutants for most yeast genes identified a large number of mutations whose relative fitness differed in vivo vs. in vitro, including mutations in genes controlling cell wall integrity, mitochondrial function, and tyrosine metabolism. Yeast is presumably subjected to a massive assault by the innate insect immune system that leads to melanization of the host and to a large bottleneck in yeast population size. Our data support that resistance to the innate immune response of the insect is key to survival in the host and identifies shared genetic mechanisms between S. cerevisiae and other opportunistic fungal pathogens.

  3. Ontology-based representation and analysis of host-Brucella interactions.

    Science.gov (United States)

    Lin, Yu; Xiang, Zuoshuang; He, Yongqun

    2015-01-01

    Biomedical ontologies are representations of classes of entities in the biomedical domain and how these classes are related in computer- and human-interpretable formats. Ontologies support data standardization and exchange and provide a basis for computer-assisted automated reasoning. IDOBRU is an ontology in the domain of Brucella and brucellosis. Brucella is a Gram-negative intracellular bacterium that causes brucellosis, the most common zoonotic disease in the world. In this study, IDOBRU is used as a platform to model and analyze how the hosts, especially host macrophages, interact with virulent Brucella strains or live attenuated Brucella vaccine strains. Such a study allows us to better integrate and understand intricate Brucella pathogenesis and host immunity mechanisms. Different levels of host-Brucella interactions based on different host cell types and Brucella strains were first defined ontologically. Three important processes of virulent Brucella interacting with host macrophages were represented: Brucella entry into macrophage, intracellular trafficking, and intracellular replication. Two Brucella pathogenesis mechanisms were ontologically represented: Brucella Type IV secretion system that supports intracellular trafficking and replication, and Brucella erythritol metabolism that participates in Brucella intracellular survival and pathogenesis. The host cell death pathway is critical to the outcome of host-Brucella interactions. For better survival and replication, virulent Brucella prevents macrophage cell death. However, live attenuated B. abortus vaccine strain RB51 induces caspase-2-mediated proinflammatory cell death. Brucella-associated cell death processes are represented in IDOBRU. The gene and protein information of 432 manually annotated Brucella virulence factors were represented using the Ontology of Genes and Genomes (OGG) and Protein Ontology (PRO), respectively. Seven inference rules were defined to capture the knowledge of host

  4. HisB as novel selection marker for gene targeting approaches in Aspergillus niger.

    Science.gov (United States)

    Fiedler, Markus R M; Gensheimer, Tarek; Kubisch, Christin; Meyer, Vera

    2017-03-08

    For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.

  5. Induction of virulence gene expression in Staphylococcus aureus by pulmonary surfactant.

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Yasukawa, Jyunichiro; Suzuki, Yutaka; Hamamoto, Hiroshi; Sekimizu, Kazuhisa

    2014-04-01

    We performed a genomewide analysis using a next-generation sequencer to investigate the effect of pulmonary surfactant on gene expression in Staphylococcus aureus, a clinically important opportunistic pathogen. RNA sequence (RNA-seq) analysis of bacterial transcripts at late log phase revealed 142 genes that were upregulated >2-fold following the addition of pulmonary surfactant to the culture medium. Among these genes, we confirmed by quantitative reverse transcription-PCR analysis that mRNA amounts for genes encoding ESAT-6 secretion system C (EssC), an unknown hypothetical protein (NWMN_0246; also called pulmonary surfactant-inducible factor A [PsiA] in this study), and hemolysin gamma subunit B (HlgB) were increased 3- to 10-fold by the surfactant treatment. Among the major constituents of pulmonary surfactant, i.e., phospholipids and palmitate, only palmitate, which is the most abundant fatty acid in the pulmonary surfactant and a known antibacterial substance, stimulated the expression of these three genes. Moreover, these genes were also induced by supplementing the culture with detergents. The induction of gene expression by surfactant or palmitate was not observed in a disruption mutant of the sigB gene, which encodes an alternative sigma factor involved in bacterial stress responses. Furthermore, each disruption mutant of the essC, psiA, and hlgB genes showed attenuation of both survival in the lung and host-killing ability in a murine pneumonia model. These findings suggest that S. aureus resists membrane stress caused by free fatty acids present in the pulmonary surfactant through the regulation of virulence gene expression, which contributes to its pathogenesis within the lungs of the host animal.

  6. Analysis of IL12B gene variants in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Jürgen Glas

    Full Text Available BACKGROUND: IL12B encodes the p40 subunit of IL-12, which is also part of IL-23. Recent genome-wide association studies identified IL12B and IL23R as susceptibility genes for inflammatory bowel disease (IBD. However, the phenotypic effects and potential gene-gene interactions of IL12B variants are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed IL12B gene variants regarding association with Crohn's disease (CD and ulcerative colitis (UC. Genomic DNA from 2196 individuals including 913 CD patients, 318 UC patients and 965 healthy, unrelated controls was analyzed for four SNPs in the IL12B gene region (rs3212227, rs17860508, rs10045431, rs6887695. Our analysis revealed an association of the IL12B SNP rs6887695 with susceptibility to IBD (p = 0.035; OR 1.15 [95% CI 1.01-1.31] including a trend for rs6887695 for association with CD (OR 1.41; [0.99-1.31], p = 0.066 and UC (OR 1.18 [0.97-1.43], p = 0.092. CD patients, who were homozygous C/C carriers of this SNP, had significantly more often non-stricturing, non-penetrating disease than carriers of the G allele (p = 6.8×10(-5; OR = 2.84, 95% CI 1.66-4.84, while C/C homozygous UC patients had less often extensive colitis than G allele carriers (p = 0.029; OR = 0.36, 95% CI 0.14-0.92. In silico analysis predicted stronger binding of the minor C allele of rs6887695 to the transcription factor RORα which is involved in Th17 differentiation. Differences regarding the binding to the major and minor allele sequence of rs6887695 were also predicted for the transcription factors HSF1, HSF2, MZF1 and Oct-1. Epistasis analysis revealed weak epistasis of the IL12B SNP rs6887695 with several SNPs (rs11889341, rs7574865, rs7568275, rs8179673, rs10181656, rs7582694 in the STAT4 gene which encodes the major IL-12 downstream transcription factor STAT4 (p<0.05 but there was no epistasis between IL23R and IL12B variants. CONCLUSIONS/SIGNIFICANCE: The IL12B SNP rs6887695

  7. A cheZ-Like Gene in Azorhizobium caulinodans Is a Key Gene in the Control of Chemotaxis and Colonization of the Host Plant.

    Science.gov (United States)

    Liu, Xiaolin; Liu, Wei; Sun, Yu; Xia, Chunlei; Elmerich, Claudine; Xie, Zhihong

    2018-02-01

    Chemotaxis can provide bacteria with competitive advantages for survival in complex environments. The CheZ chemotaxis protein is a phosphatase, affecting the flagellar motor in Escherichia coli by dephosphorylating the response regulator phosphorylated CheY protein (CheY∼P) responsible for clockwise rotation. A cheZ gene has been found in Azorhizobium caulinodans ORS571, in contrast to other rhizobial species studied so far. The CheZ protein in strain ORS571 has a conserved motif similar to that corresponding to the phosphatase active site in E. coli The construction of a cheZ deletion mutant strain and of cheZ mutant strains carrying a mutation in residues of the putative phosphatase active site showed that strain ORS571 participates in chemotaxis and motility, causing a hyperreversal behavior. In addition, the properties of the cheZ deletion mutant revealed that ORS571 CheZ is involved in other physiological processes, since it displayed increased flocculation, biofilm formation, exopolysaccharide (EPS) production, and host root colonization. In particular, it was observed that the expression of several exp genes, involved in EPS synthesis, was upregulated in the cheZ mutant compared to that in the wild type, suggesting that CheZ negatively controls exp gene expression through an unknown mechanism. It is proposed that CheZ influences the Azorhizobium -plant association by negatively regulating early colonization via the regulation of EPS production. This report established that CheZ in A. caulinodans plays roles in chemotaxis and the symbiotic association with the host plant. IMPORTANCE Chemotaxis allows bacteria to swim toward plant roots and is beneficial to the establishment of various plant-microbe associations. The level of CheY phosphorylation (CheY∼P) is central to the chemotaxis signal transduction. The mechanism of the signal termination of CheY∼P remains poorly characterized among Alphaproteobacteria , except for Sinorhizobium meliloti , which

  8. Predominant porB1A and porB1B genotypes and correlation of gene mutations with drug resistance in Neisseria gonorrhoeae isolates in Eastern China

    Directory of Open Access Journals (Sweden)

    Tang Renxian

    2010-11-01

    Full Text Available Abstract Background Variations of porB1A and porB1B genes and their serotypes exist in Neisseria gonorrhoeae isolates from different geographical areas, and some site mutations in the porB1B gene correlate with drug resistance. Methods The β-lactamase production of N. gonorrhoeae isolates was determined by paper acidometric test and nitrocefin discs. The porB1A and porB1B genes of 315 non-penicillinase-producting N. gonorrhoeae (non-PPNG strains were amplified by PCR for sequencing to determine serotypes and site mutations. A duplex PCR was designed to simultaneously detect both porB1A and porB1B genes. Penicillin and tetracycline resistance was assessed by an in vitro drug sensitivity test. Results Of the N. gonorrhoeae isolates, 31.1% tested positive for porB1A and 68.9% for porB1B genes. All the 98 porB1A+ isolates belonging to IA6 serotype with either no mutation at the 120 and 121 sites (88.8% or a D120G (11.2% mutation and were no resistance to both penicillin and tetracycline. Among the 217 porB1B+ isolates, 26.7%, 22.6% and 11.5% belonged to IB3, IB3/6 and IB4 serotypes, respectively. Particularly, two novel chimeric serotypes, IB3/6-IB2 and IB2-IB4-IB2, were found in 77 and 8 porB1B+ isolates. Two hundred and twelve (97.7% of the porB1B+ isolates were presented G120 and/or A121 mutations with 163 (76.9% at both sites. Interestingly, within the 77 porB1B+ isolates belonging to IB3/6-IB2 serotype, 15 were discovered to possess novel deletions at both A121 and N122 sites. All the replacement mutations at these sites in PorB1B were correlated with resistance and the deletion mutation showed the highest resistance. Conclusion N. gonorrhoeae isolates circulating in Eastern China include a sole PorB1A serotype (IA6 and five PorB1B serotypes. Multiple mutations in porB1B genes, including novel A121 and N122 deletions, are correlated with high levels of penicillin and tetracycline resistance.

  9. Upregulation of heat shock protein genes by envenomation of ectoparasitoid Bracon hebetor in larval host of Indian meal moth Plodia interpunctella.

    Science.gov (United States)

    Shim, Jae-Kyoung; Ha, Dae-Myung; Nho, Si-Kab; Song, Kyung-Sik; Lee, Kyeong-Yeoll

    2008-03-01

    Effect of envenomation of ectoparasitoid Bracon hebetor was determined on the heart rate and the expression of shsp, hsc70 and hsp90 of the lepidopteran host Plodia interpunctella. Envenomated host larvae were promptly immobilized but heart rate was not changed until 4 days after envenomation. Northern hybridization showed that each hsp gene was differentially influenced by envenomation: continued high induction of shsp, gradual strong induction of hsc70, but no induction of hsp90. Our results suggest that upregulation of both shsp and hsc70 may produce potent factors that have important roles in the mechanism of host-parasitoid relationship.

  10. Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Shatadru Ghosh Roy

    2016-11-01

    Full Text Available Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV, the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.

  11. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88.

    Science.gov (United States)

    Larsson, Erik; Tremaroli, Valentina; Lee, Ying Shiuan; Koren, Omry; Nookaew, Intawat; Fricker, Ashwana; Nielsen, Jens; Ley, Ruth E; Bäckhed, Fredrik

    2012-08-01

    The gut microbiota has profound effects on host physiology but local host-microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88-/- mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88-/- mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.

  12. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus.

    Science.gov (United States)

    Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin

    2017-10-24

    The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .

  13. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children.

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D; Chen, Jingyang; Morrison, Robert; Castle, John C; Biery, Matthew C; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K; Duffy, Patrick E

    2011-03-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases.

  14. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases. PMID:21317536

  15. Inherited Inflammatory Response Genes Are Associated with B-Cell Non-Hodgkin's Lymphoma Risk and Survival.

    Directory of Open Access Journals (Sweden)

    Kaspar René Nielsen

    Full Text Available Malignant B-cell clones are affected by both acquired genetic alterations and by inherited genetic variations changing the inflammatory tumour microenvironment.We investigated 50 inflammatory response gene polymorphisms in 355 B-cell non-Hodgkin's lymphoma (B-NHL samples encompassing 216 diffuse large B cell lymphoma (DLBCL and 139 follicular lymphoma (FL and 307 controls. The effect of single genes and haplotypes were investigated and gene-expression analysis was applied for selected genes. Since interaction between risk genes can have a large impact on phenotype, two-way gene-gene interaction analysis was included.We found inherited SNPs in genes critical for inflammatory pathways; TLR9, IL4, TAP2, IL2RA, FCGR2A, TNFA, IL10RB, GALNT12, IL12A and IL1B were significantly associated with disease risk and SELE, IL1RN, TNFA, TAP2, MBL2, IL5, CX3CR1, CHI3L1 and IL12A were, associated with overall survival (OS in specific diagnostic entities of B-NHL. We discovered noteworthy interactions between DLBCL risk alleles on IL10 and IL4RA and FL risk alleles on IL4RA and IL4. In relation to OS, a highly significant interaction was observed in DLBCL for IL4RA (rs1805010 * IL10 (rs1800890 (HR = 0.11 (0.02-0.50. Finally, we explored the expression of risk genes from the gene-gene interaction analysis in normal B-cell subtypes showing a different expression of IL4RA, IL10, IL10RB genes supporting a pathogenetic effect of these interactions in the germinal center.The present findings support the importance of inflammatory genes in B-cell lymphomas. We found association between polymorphic sites in inflammatory response genes and risk as well as outcome in B-NHL and suggest an effect of gene-gene interactions during the stepwise oncogenesis.

  16. Porcine lung surfactant protein B gene (SFTPB)

    DEFF Research Database (Denmark)

    Cirera Salicio, Susanna; Fredholm, Merete

    2008-01-01

    The porcine surfactant protein B (SFTPB) is a single copy gene on chromosome 3. Three different cDNAs for the SFTPB have been isolated and sequenced. Nucleotide sequence comparison revealed six nonsynonymous single nucleotide polymorphisms (SNPs), four synonymous SNPs and an in-frame deletion of 69...... bp in the region coding for the active protein. Northern analysis showed lung-specific expression of three different isoforms of the SFTPB transcript. The expression level for the SFTPB gene is low in 50 days-old fetus and it increases during lung development. Quantitative real-time polymerase chain...

  17. Sequence Variation in Rhoptry Neck Protein 10 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations

    Directory of Open Access Journals (Sweden)

    Yu ZHAO

    2017-09-01

    Full Text Available Background: Toxoplasma gondii, as a eukaryotic parasite of the phylum Apicomplexa, can infect almost all the warm-blooded animals and humans, causing toxoplasmosis. Rhoptry neck proteins (RONs play a key role in the invasion process of T. gondii and are potential vaccine candidate molecules against toxoplasmosis.Methods: The present study examined sequence variation in the rhoptry neck protein 10 (TgRON10 gene among 10 T. gondii isolates from different hosts and geographical locations from Lanzhou province during 2014, and compared with the corresponding sequences of strains ME49 and VEG obtained from the ToxoDB database, using polymerase chain reaction (PCR amplification, sequence analysis, and phylogenetic reconstruction by Bayesian inference (BI and maximum parsimony (MP. Results: Analysis of all the 12 TgRON10 genomic and cDNA sequences revealed 7 exons and 6 introns in the TgRON10 gDNA. The complete genomic sequence of the TgRON10 gene ranged from 4759 bp to 4763 bp, and sequence variation was 0-0.6% among the 12 T. gondii isolates, indicating a low sequence variation in TgRON10 gene. Phylogenetic analysis of TgRON10 sequences showed that the cluster of the 12 T. gondii isolates was not completely consistent with their respective genotypes.Conclusion: TgRON10 gene is not a suitable genetic marker for the differentiation of T. gondii isolates from different hosts and geographical locations, but may represent a potential vaccine candidate against toxoplasmosis, worth further studies.

  18. Sequence Variation in Rhoptry Neck Protein 10 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations.

    Science.gov (United States)

    Zhao, Yu; Zhou, Donghui; Chen, Jia; Sun, Xiaolin

    2017-01-01

    Toxoplasma gondii, as a eukaryotic parasite of the phylum Apicomplexa, can infect almost all the warm-blooded animals and humans, causing toxoplasmosis. Rhoptry neck proteins (RONs) play a key role in the invasion process of T. gondii and are potential vaccine candidate molecules against toxoplasmosis. The present study examined sequence variation in the rhoptry neck protein 10 (TgRON10) gene among 10 T. gondii isolates from different hosts and geographical locations from Lanzhou province during 2014, and compared with the corresponding sequences of strains ME49 and VEG obtained from the ToxoDB database, using polymerase chain reaction (PCR) amplification, sequence analysis, and phylogenetic reconstruction by Bayesian inference (BI) and maximum parsimony (MP). Analysis of all the 12 TgRON10 genomic and cDNA sequences revealed 7 exons and 6 introns in the TgRON10 gDNA. The complete genomic sequence of the TgRON10 gene ranged from 4759 bp to 4763 bp, and sequence variation was 0-0.6% among the 12 T. gondii isolates, indicating a low sequence variation in TgRON10 gene. Phylogenetic analysis of TgRON10 sequences showed that the cluster of the 12 T. gondii isolates was not completely consistent with their respective genotypes. TgRON10 gene is not a suitable genetic marker for the differentiation of T. gondii isolates from different hosts and geographical locations, but may represent a potential vaccine candidate against toxoplasmosis, worth further studies.

  19. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    Science.gov (United States)

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  20. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton

    Science.gov (United States)

    Chambouvet, Aurélie; Milner, David S.; Attah, Victoria; Terrado, Ramón; Lovejoy, Connie; Moreau, Hervé; Derelle, Évelyne; Richards, Thomas A.

    2017-01-01

    Phytoplankton community structure is shaped by both bottom–up factors, such as nutrient availability, and top–down processes, such as predation. Here we show that marine viruses can blur these distinctions, being able to amend how host cells acquire nutrients from their environment while also predating and lysing their algal hosts. Viral genomes often encode genes derived from their host. These genes may allow the virus to manipulate host metabolism to improve viral fitness. We identify in the genome of a phytoplankton virus, which infects the small green alga Ostreococcus tauri, a host-derived ammonium transporter. This gene is transcribed during infection and when expressed in yeast mutants the viral protein is located to the plasma membrane and rescues growth when cultured with ammonium as the sole nitrogen source. We also show that viral infection alters the nature of nitrogen compound uptake of host cells, by both increasing substrate affinity and allowing the host to access diverse nitrogen sources. This is important because the availability of nitrogen often limits phytoplankton growth. Collectively, these data show that a virus can acquire genes encoding nutrient transporters from a host genome and that expression of the viral gene can alter the nutrient uptake behavior of host cells. These results have implications for understanding how viruses manipulate the physiology and ecology of phytoplankton, influence marine nutrient cycles, and act as vectors for horizontal gene transfer. PMID:28827361