WorldWideScience

Sample records for horn fission products

  1. Fission Product Library and Resource

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Padgett, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  2. Fission product solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A. [and others

    1998-02-01

    Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF).

  3. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    Science.gov (United States)

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  4. Fission product retention in the Oklo natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.; Benjamin, T.; Gancarz, A.; Loss, E.; Rosman, K.; DeLaeter, J.; Delmore, J.E.; Maeck, W.J.

    We present in this paper the abundances and isotopic composition of U and eight fission product elements in samples from well-defined locations in a cross section of one of the fossil reactors. These are unique data with regard to the chemical diversity represented by the elements measured in each of the samples. We will characterize the degree of retention of the fission products in the samples of the reactor zone and attempt to rationalize our observations by analogy with anthropogenic irradiated reactor fuel.

  5. Seasonal influence on horn production rate, horn abrasion, and horn quality in the hoof wall of Przewalski horses (Equus ferus przewalskii)

    OpenAIRE

    Patan, Bianca

    2010-01-01

    The monthly hoof horn production rate, monthly horn loss and the quality of the coronary horn was examined in the dorsal part of the hoof capsule of Przewalski horses. In order to demonstrate alterations induced by domestication, the results of this study were then compared to related data on the hooves of domestic horses in the literature and a concurrent study on the hoof of warm-blooded horses (KÖNIG, in preparation). The horn production rate and the horn loss were meas...

  6. Fission product studies at WAIT

    Energy Technology Data Exchange (ETDEWEB)

    De Laeter, J.R.; Rosman, K.J.R.; Loss, R.D. (Western Australian Inst. of Tech., South Bentley)

    1985-07-01

    A general review of fission yields is presented. The Mass Spectrometry Laboratory in the Department of Applied Physics at WAIT has been involved in a continuing programme of measuring the cumulative fission yields of the elements palladium, silver, cadmium, tin and tellurium for a variety of fissile materials (/sup 233/U, /sup 235/U, /sup 238/U and /sup 239/Pu) over a range of neutron energies. Results of studies into the isotopic composition and fission yields of samples from the Oklo natural reactor in Gabon, West Africa are summarised.

  7. Systematics of Fission-Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  8. Modeling Fission Product Sorption in Graphite Structures

    Energy Technology Data Exchange (ETDEWEB)

    Szlufarska, Izabela [University of Wisconsin, Madison, WI (United States); Morgan, Dane [University of Wisconsin, Madison, WI (United States); Allen, Todd [University of Wisconsin, Madison, WI (United States)

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  9. Recovery and use of fission product noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  10. Electron spectra from decay of fission products

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J K

    1982-09-01

    Electron spectra following decay of individual fission products (72 less than or equal to A less than or equal to 162) are obtained from the nuclear data given in the compilation using a listed and documented computer subroutine. Data are given for more than 500 radionuclides created during or after fission. The data include transition energies, absolute intensities, and shape parameters when known. An average beta-ray energy is given for fission products lacking experimental information on transition energies and intensities. For fission products having partial or incomplete decay information, the available data are utilized to provide best estimates of otherwise unknown decay schemes. This compilation is completely referenced and includes data available in the reviewed literature up to January 1982.

  11. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  12. Temperature dependence of fission product release rates

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.L.; McGown, M.E.; Reynolds, A.B.

    1984-10-01

    Fission product fractional release rates, K, used in the Albrecht-Wild model and measured at Kernforschungszentrum Karlsruhe and Oak Ridge National Laboratory can be fitted well by a single straight line for each fission product over the entire temperature range of the data when in K is plotted as a function of 1/T. Past applications of the Albrecht-Wild model have used plots of ln K versus T, which required three fits over the temperature range. Thus it is suggested that fractional release rates be represented by the Arrhenius form, K = K /SUB o/ exp(-Q/RT).

  13. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-07-01

    The second international information exchange meeting on actinide and fission product separation and transmutation, took place in Argonne National Laboratory in Illinois United States, on 11-13 November 1992. The proceedings are presented in four sessions: Current strategic system of actinide and fission product separation and transmutation, progress in R and D on partitioning processes wet and dry, progress in R and D on transmutation and refinements of neutronic and other data, development of the fuel cycle processes fuel types and targets. (A.L.B.)

  14. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  15. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  16. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The fourth international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Mito City in Japan, on 111-13 September 1996. The proceedings are presented in six sessions: the major programmes and international cooperation, the partitioning and transmutation programs, feasibility studies, particular separation processes, the accelerator driven transmutation, and the chemistry of the fuel cycle. (A.L.B.)

  17. Time dependent particle emission from fission products

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory

    2010-01-01

    Decay heating following nuclear fission is an important factor in the design of nuclear facilities; impacting a variety of aspects ranging from cooling requirements to shielding design. Calculations of decay heat, often assumed to be a simple product of activity and average decay product energy, are complicated by the so called 'pandemonium effect'. Elucidated in the 1970's this complication arises from beta-decays feeding high-energy nuclear levels; redistributing the available energy between betas and gammas. Increased interest in improving the theoretical predictions of decay probabilities has been, in part, motivated by the recent experimental effort utilizing the Total Absorption Gamma-ray Spectrometer (TAGS) to determine individual beta-decay transition probabilities to individual nuclear levels. Accurate predictions of decay heating require a detailed understanding of these transition probabilities, accurate representation of particle decays as well as reliable predictions of temporal inventories from fissioning systems. We will discuss a recent LANL effort to provide a time dependent study of particle emission from fission products through a combination of Quasiparticle Random Phase Approximation (QRPA) predictions of beta-decay probabilities, statistical Hauser-Feshbach techniques to obtain particle and gamma-ray emissions in statistical Hauser-Feshbach and the nuclear inventory code, CINDER.

  18. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D. [Argonne National Lab., IL (United States)

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  19. Chemical factors affecting fission product transport in severe LMFBR accidents

    Energy Technology Data Exchange (ETDEWEB)

    Wichner, R.P.; Jolley, R.L.; Gat, U.; Rodgers, B.R.

    1984-10-01

    This study was performed as a part of a larger evaluation effort on LMFBR accident, source-term estimation. Purpose was to provide basic chemical information regarding fission product, sodium coolant, and structural material interactions required to perform estimation of fission product transport under LMFBR accident conditions. Emphasis was placed on conditions within the reactor vessel; containment vessel conditions are discussed only briefly.

  20. Actinide and fission product separation and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-07-01

    The first international information exchange meeting on actinide and fission product separation and transmutation, took place in Mito in Japan, on 6-8 November 1990. It starts with a number of general overview papers to give us some broad perspectives. Following that it takes a look at some basic facts about physics and about the quantities of materials it is talking about. Then it proceeds to some specific aspects of partitioning, starting with evolution from today commercially applied processes and going on to other possibilities. At the end of the third session it takes a look at the significance of partitioning and transmutation of actinides before it embarks on two sessions on transmutation, first in reactors and second in accelerators. The last session is designed to throw back into the discussion the main points which need to be looked at when considering future work in this area. (A.L.B.)

  1. Thermodynamics of fission products in UO2+-x

    Energy Technology Data Exchange (ETDEWEB)

    Nerikar, Pankaj V [Los Alamos National Laboratory

    2009-01-01

    The stabilities of selected fission products - Xe, Cs, and Sr - are investigated as a function of non-stoichiometry x in UO{sub 2{+-}x}. In particular, density functional theory (OFT) is used to calculate the incorporation and solution energies of these fission products at the anion and cation vacancy sites, at the divacancy, and at the bound Schottky defect. In order to reproduce the correct insulating state of UO{sub 2}, the DFT calculations are performed using spin polarization and with the Hubbard U tenn. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. CS{sub 2}O is observed as a second stable phase and SrO is found to be soluble in the UO{sub 2} matrix for all stoichiometries. These observations mirror experimentally observed phenomena.

  2. Fission product studies in the symmetric mass region

    Energy Technology Data Exchange (ETDEWEB)

    De Laeter, J.R.; Rosman, K.J.R.; Loss, R.D. [Curtin Univ. of Technology, Perth (AU)

    1993-05-01

    Fission yields can be determined by radiochemical or mass spectrometric techniques. Mass spectrometry can provide more accurate data, particularly in the symmetric mass region where the probability of fission is low and uncertainties in isometric ratios occur. Fine structure in the mass distribution can usually only be determined by mass spectrometry. Many of the elements in the valley of symmetry have high ionization potentials and are therefore difficult to measure by solid source mass spectrometry. Analytical techniques have been developed to provide the sensitivity required to measure the small sample sizes available in fission product studies. Cumulative fission yields for ruthenium, palladium, cadmium, tin, and tellurium have been measured by mass spectrometry for the thermal and epicadmium fission of {sup 233}U and for thermal and epicadmium fission of {sup 239}Pu. These fission yields, which span the mass range 101 {le} A {le} 130, can be combined to give a mass yield curve for {sup 235}U in the valley region, which is symmetrical about A = 116.8 and exhibits fine structure in the mass 113 to 114 region. Fine structure in {sup 233}U is also present at mass 111. Mass spectrometric determinations of the fission yields of uranium ore at the Oklo mine site in Gabon enable the nuclear parameters of this natural reactor to be evaluated. This in turn enables the amounts of fission products produced in the reactor zone and the surrounding rocks enables an assessment to be made of the efficiency of this geological repository for containing radioactive waste. The elemental abundances can be determined by isotope dilution mass spectrometry. Unfortunately, the paucity of good fission yield data available for {sup 238}U by fast neutrons is a severe constraint in this evaluation.

  3. Analytical measurements of fission products during a severe nuclear accident

    Directory of Open Access Journals (Sweden)

    Doizi D.

    2018-01-01

    Full Text Available The Fukushima accident emphasized the fact that ways to monitor in real time the evolution of a nuclear reactor during a severe accident remain to be developed. No fission products were monitored during twelve days; only dose rates were measured, which is not sufficient to carry out an online diagnosis of the event. The first measurements were announced with little reliability for low volatile fission products. In order to improve the safety of nuclear plants and minimize the industrial, ecological and health consequences of a severe accident, it is necessary to develop new reliable measurement systems, operating at the earliest and closest to the emission source of fission products. Through the French program ANR « Projet d’Investissement d’Avenir », the aim of the DECA-PF project (diagnosis of core degradation from fission products measurements is to monitor in real time the release of the major fission products (krypton, xenon, gaseous forms of iodine and ruthenium outside the nuclear reactor containment. These products are released at different times during a nuclear accident and at different states of the nuclear core degradation. Thus, monitoring these fission products gives information on the situation inside the containment and helps to apply the Severe Accident Management procedures. Analytical techniques have been proposed and evaluated. The results are discussed here.

  4. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  5. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.G.; Newland, M.S. [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  6. Fission-product releases from a PHWR terminal debris bed

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; Bailey, D.G., E-mail: morgan.brown@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    During an unmitigated severe accident in a pressurized heavy water reactor (PHWR) with horizontal fuel channels, the core may disassemble and relocate to the bottom of the calandria vessel. The resulting heterogeneous in-vessel terminal debris bed (TDB) would likely be quenched by any remaining moderator, and some of the decay heat would be conducted through the calandria vessel shell to the surrounding reactor vault or shield tank water. As the moderator boiled off, the solid debris bed would transform into a more homogeneous molten corium pool located between top and bottom crusts. Until recently, the severe accident code MAAP-CANDU assumed that unreleased volatile and semi-volatile fission products remained in the TDB until after calandria vessel failure, due to low diffusivity through the top crust and the lack of gases or steam to flush released fission products from the debris. However, national and international experimental results indicate this assumption is unlikely; instead, high- and medium-volatility fission products would be released from a molten debris pool, and their volatility and transport should be taken into account in TDB modelling. The resulting change in the distribution of fission products within the reactor and containment, and the associated decay heat, can have significant effects upon the progression of the accident and fission-product releases to the environment. This article describes a postulated PHWR severe accident progression to generate a TDB and the effects of fission-product releases from the terminal debris, using the simple release model in the MAAP-CANDU severe accident code. It also provides insights from various experimental programs related to fission-product releases from core debris, and their applicability to the MAAP-CANDU TDB model. (author)

  7. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  8. Comparison of Fission Product Yields and Their Impact

    Energy Technology Data Exchange (ETDEWEB)

    S. Harrison

    2006-02-01

    This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.

  9. A Covariance Generation Methodology for Fission Product Yields

    Directory of Open Access Journals (Sweden)

    Terranova N.

    2016-01-01

    Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  10. A Covariance Generation Methodology for Fission Product Yields

    Science.gov (United States)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  11. Data summary report for fission product release test VI-5

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, M.F.; Lorenz, R.A.; Travis, J.R.; Webster, C.S.; Collins, J.L. (Oak Ridge National Lab., TN (United States))

    1991-10-01

    Test VI-5, the fifth in a series of high-temperature fission product release tests in a vertical test apparatus, was conducted in a flowing mixture of hydrogen and helium. The test specimen was a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium which had been irradiated to a burnup of {approximately}42 MWd/kg. Using a hot cell-mounted test apparatus, the fuel rod was heated in an induction furnace under simulated LWR accident conditions to two test temperatures, 2000 K for 20 min and then 2700 K for an additional 20 min. The released fission products were collected in three sequentially operated collection trains on components designed to measure fission product transport characteristics and facilitate sampling and analysis. The results from this test were compared with those obtained in previous tests in this series and with the CORSOR-M and ORNL diffusion release models for fission product release. 21 refs., 19 figs., 12 tabs.

  12. Gap transport of fission products in defective fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, H.W.; Lewis, B.J.

    1994-12-31

    The diffusive and convective transport of fission products released into the fuel-to-sheath gap of defective fuel has been modeled analytically and numerically for normal reactor operation and for accident conditions. The model is based on the results of in-reactor and out-of-pile annealing tests performed at the Chalk River Laboratories.

  13. Reactivity effects of fission product decay in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J.M.; Ahnert, C.

    1988-01-01

    The purpose of the work reported in this paper is to analyze the effects of fission product chains with radioactive decay on the reactivity in pressurized water reactor (PWR) cores, calculating their accumulation and absorption rates along fuel burnup at continuous operation and after shutdown periods extending from 1 day to a few months. The authors PWR version of the WIMS-D4 code is first used to obtain the individual number densities, absorption rates, and averaged cross sections for every nuclide of the fission product chains with significant decay rates, as a function of fuel burnup at continuous irradiation. Next, by an auxiliary ad hoc code, these data, have been processed together with the required one for fissile nuclides and boron, also taken from WIMS at each burnup step, to calculate the average or effective values relevant for the analysis and the decay and change in overall absorption after several shutdown times. (1) The reactivity effect of fission product decay changes significantly with the shutdown time. The maximum absorption increase by decay is reached in /approx/ 10 days' shutdown. (2) The dependence with fuel type, enrichment, and burnup is slight, but the change with previous power density is nearly linear, which might be significant after coast-down in previous cycles. (3) For long shutdown periods, the overall reactivity effect of decay in the three fission product chains considered is much less than if only the samarium peak due to /sup 149/Nd is considered.

  14. Fission properties and production mechanisms for the heaviest known elements

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.C.

    1981-01-01

    Mass yields of the spontaneous fission of Fm isotopes, Cf isotopes, and /sup 259/Md are discussed. Actinide yields were measured for bombardments of /sup 248/Cm with /sup 16/O, /sup 18/O, /sup 20/Ne, and /sup 22/Ne. A superheavy product might be produced by bombarding /sup 248/Cm with /sup 48/Ca ions. 12 figures. (DLC)

  15. Report on simulation of fission gas and fission product diffusion in UO2

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Tonks, Michael R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation Dept.; Cooper, Michael William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Goyal, Anuj [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Uberuaga, Blas P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division; Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Materials Science and Technology Division

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  16. The nuclear charge distribution of fission products of thermal neutron induced fission of /sup 235/U

    CERN Document Server

    Wollnik, H; Greif, J; Siegert, G

    1976-01-01

    Nuclear charge distributions of mass separated light fission products, 79

  17. NEANDC specialists meeting on yields and decay data of fission product nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, R.E.; Burrows, T.W. (eds.)

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  18. Superabsorbing gel for actinide, lanthanide, and fission product decontamination

    Science.gov (United States)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-06-07

    The present invention provides an aqueous gel composition for removing actinide ions, lanthanide ions, fission product ions, or a combination thereof from a porous surface contaminated therewith. The composition comprises a polymer mixture comprising a gel forming cross-linked polymer and a linear polymer. The linear polymer is present at a concentration that is less than the concentration of the cross-linked polymer. The polymer mixture is at least about 95% hydrated with an aqueous solution comprising about 0.1 to about 3 percent by weight (wt %) of a multi-dentate organic acid chelating agent, and about 0.02 to about 0.6 molar (M) carbonate salt, to form a gel. When applied to a porous surface contaminated with actinide ions, lanthanide ions, and/or other fission product ions, the aqueous gel absorbs contaminating ions from the surface.

  19. Long-lived fission product transmutation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ganev, I.K.; Lopatkin, A.V.; Naumov, V.V.; Reshetov, V.A.

    1993-12-31

    One of the main directions in the management of high-level radioactive wastes is the development of specialized reactors for transmutation with maximum support coefficients for the existing power reactor. The developments have shown that it is more expetitious to design the reactor for actinide transmutation and for fission products separately. For the above purposes, the FBR type fast neutron reactor and FMF type fast reactor with melted fuel were considered.

  20. Thermoradiation treatment of sewage sludge using reactor waste fission products

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M. C.; Hagengruber, R. L.; Zuppero, A. C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined.

  1. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    2005-05-01

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  2. Equilibrium Temperature Profiles within Fission Product Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  3. Fission product transport analysis. Quarterly progress report, July--September 1977. Task 2. [PWR, BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J.A.; Baybutt, P.; Jordan, H.; Denning, R.S.; Wooton, R.O.; Jung, R.G.

    1977-11-30

    Technical progress during this quarter consisted of completing and checking the model for emergency core cooling system (ECCS) water scrubbing of fission products for inclusion in the TRAP code, identifying fission product source terms data and information for initial use under assumed meltdown conditions, specifying the thermal-hydraulic conditions to be considered for fission product transport in postulated meltdown accidents, and choosing a control volume framework for initial use in development of the transport model for meltdown conditions.

  4. Enhancement of citric acid production with ram horn hydrolysate by Aspergillus niger.

    Science.gov (United States)

    Kurbanoglu, Esabi Basaran

    2004-03-01

    The potential use of ram horn hydrolysate (RHH) as a supplement for improvement of citric acid production by Aspergillus niger NRRL 330 was studied. For this purpose, first RHH was produced. Ram horns were hydrolyzed by treating with acid (6 N-H2SO4) and the RHH was obtained. With the addition of RHH to the fermentation medium with a final concentration of 4% (optimal concentration), citric acid value reached a maximum value (94 g/l), which is 52% higher than that of the control experiment. The addition of 4% (v/v) RHH enhanced citric acid accumulation, reduced residual sugar concentration and stimulated mycelial growth. Adding 4% RHH had no adverse effects on A. niger. As a result, RHH was found to be suitable as a valuable supplement for citric acid production in the submerged fermentation.

  5. Assessment of selected fission products in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Denham, M.

    1997-04-01

    Most of the radioactivity produced by the operation of a nuclear reactor results from the fission process, during which the nucleus of a fissionable atom (such as 235U) splits into two or more nuclei, which typically are radioactive. The Radionuclide Assessment Program (RAP) has reported on fission products cesium, strontium, iodine, and technetium. Many other radionuclides are produced by the fission process. Releases of several additional fission products that result in dose to the offsite population are discussed in this publication. They are 95Zr, 95Nb, 103Ru, 106Ru, 141Ce, and 144Ce. This document will discuss the production, release, migration, and dose to humans for each of these selected fission products.

  6. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A. [Argonne National Lab., IL (United States)

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  7. URBAN REHABILITATION: REINVENTING A PRODUCTIVE LANDSCAPE: Istanbul, Golden Horn Case Study

    Directory of Open Access Journals (Sweden)

    Çiğdem Canbay Türkyılmaz

    2013-07-01

    Full Text Available The international workshop “Golden Horn Urban Rehabilitation, Reinventing a Productive  Landscape” was hosted at Istanbul Kültür University (IKU, Turkey, during the dates of  the 4th to 11th July 2011. It counted with the bilateral collaboration of Istanbul Kültür University (IKU, Yildiz Technical University (YTU, Instituto Superior Manuel Teixeira Gomes (ISMAT, in Portugal and Studiomeb. The case study was located in the estuary area of Golden Horn, in Istanbul, and it was centred in the neighbourhoods of Balat, Fener and Hasköy, which are in an advanced process of urban and architectonic degradation. The paper presents our educative research methodology inside the program GreenEngines, developed during three years of continuous collaboration, and shows the  results of our international research cooperation in this specific case study. Our pedagogic research method uses the principles of landscape urbanism, landscape planning, and environmental planning. Our research aim, specifically for this workshop ws to educate students on the professional responsibility to create new sustainable   planning alternatives for urban rehabilitation in deteriorated urban areas, and specifically, in the case study of Golden Horn in Istanbul. Our research questions were centred in how to preserve and protect the multicultural and multifunctional character of Golden Horn, evaluating its built and socio-cultural heritage, together with how to regenerate the physical urban tissue, reinventing a new productive landscape. Our research statement considered that to achieve a sustainable urban rehabilitation, it was necessary that the  planning proposals should adapt to the cultural landscape and the local environment, creating a multifunctional character with different actors involved in the same urban context.

  8. Large acceptance magnetic focussing horns for production of a high intensity narrow band neutrino beam at the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, A.; Chimienti, L.; Leonhardt, W.; Monaghan, R.; Ryan, G.; Sandberg, J.; Sims, W.; Smith, G.; Stillman, P.; Thorwarth, H.

    1985-01-01

    A set of two large acceptance (20 to 140 mrad) horns have been designed and built to form a parallel beam of 3 GeV/c pions and kaons for the production of an intense, dichromatic neutrino beam. A set of beam plugs and collimators determined the momentum of the particles which pass through the horns. The cooling and maintenance of the horns and target was a particular concern since they were operated with an incident intensity of over 10/sup 13/ proton/sec. These systems were designed for simplicity, reliability, and easy replacement.

  9. Utilization as peptone for glycerol production of ram horn waste with a new process

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanoglu, Esabi Basaran E-mail: ekurbanoglu@yahoo.com; Kurbanoglu, Namudar Izzet

    2004-01-01

    A major component of the horns is protein. Peptones are defined as protein hydrolysates. The potential use of ram horn peptone (RHP) as a nitrogen source for glycerol production by Saccharomyces cerevisiae was studied. For this purpose, first, RHP was produced. Ram horns were hydrolyzed by treating with acids (6 N H{sub 2}SO{sub 4} and 6 N HCl) and neutralizing the solutions. The amounts of protein, nitrogen, ash, some minerals, total sugars, total lipids and amino acids of the RHP were determined. The RHP was compared with a bacto-tryptone from casein and other peptones. With the addition of RHP to the fermentation medium with a final concentration of 4% (optimal concentration), the glycerol value for 4 days reached a maximum value (8.5 g l{sup -1}), which is 25% higher than that of the bacto-tryptone (6.8 g l{sup -1}), 32% higher than that of bacto-peptone (6.4 g l{sup -1}) and 49% higher than that of fish peptone (5.7 g l{sup -1}). The results show that RHP can be utilized as a peptone and may be a valuable supplement in biotechnology.

  10. Fractal Model of Fission Product Release in Nuclear Fuel

    Science.gov (United States)

    Stankunas, Gediminas

    2012-09-01

    A model of fission gas migration in nuclear fuel pellet is proposed. Diffusion process of fission gas in granular structure of nuclear fuel with presence of inter-granular bubbles in the fuel matrix is simulated by fractional diffusion model. The Grunwald-Letnikov derivative parameter characterizes the influence of porous fuel matrix on the diffusion process of fission gas. A finite-difference method for solving fractional diffusion equations is considered. Numerical solution of diffusion equation shows correlation of fission gas release and Grunwald-Letnikov derivative parameter. Calculated profile of fission gas concentration distribution is similar to that obtained in the experimental studies. Diffusion of fission gas is modeled for real RBMK-1500 fuel operation conditions. A functional dependence of Grunwald-Letnikov derivative parameter with fuel burn-up is established.

  11. ZIRCONIUM AND FISSION PRODUCT MANAGEMENT IN THE ALSEP PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Carter, Jennifer C.; Niver, Cynthia M.; Gelis, Artem V.

    2013-09-29

    Solvent extraction systems that combine neutral donor extractants and acidic extractants are being investigated to provide a single process solvent for separating Am and Cm from acidic high-level liquid waste, including their separation from the trivalent lanthanides. This approach of combining extractants is collectively referred to as the Actinide-Lanthanide SEParation (ALSEP) process. Managing Zr and other fission products is one of the critical factors in developing the ALSEP process. In this work, a strategy has been developed in which Zr(IV) is extracted into the process solvent, then it is stripped from the solvent after the actinides have been selectively stripped. Molybdenum is strongly extracted into ALSEP solvents. Scrubbing the solvent with a citrate buffer before the actinide stripping step effectively removes Mo. Distribution ratios for Ru and Fe are low for extraction from HNO3, so these components can easily be routed to the high-level waste raffinate.

  12. Advanced model for the prediction of the neutron-rich fission product yields

    Directory of Open Access Journals (Sweden)

    Rubchenya V. A.

    2013-12-01

    Full Text Available The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP.

  13. Evaluation of Neutron Induced Reactions for 32 Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeong Il

    2007-02-15

    Neutron cross sections for 32 fission products were evaluated in the neutron-incident energy range from 10{sup -5} eV to 20 MeV. The list of fission products consists of the priority materials for several applications, extended to cover complete isotopic chains for three elements. The full list includes 8 individual isotopes, {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and 24 isotopes in complete isotopic chains for Nd (8), Sm (9) and Dy (7). Our evaluation methodology covers both the low energy region and the fast neutron region.In the low energy region, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. This resource was used to infer both the thermal values and the resolved resonance parameters that were validated against the capture resonance integrals. In the unresolved resonance region we performed the additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data.In the fast neutron region our evaluations are based on the nuclear reaction model code EMPIRE-2.19 validated against the experimental data. EMPIRE is the modular system of codes consisting of many nuclear reaction models, including the spherical and deformed Optical Model, Hauser-Feshbach theory with the width fluctuation correction and complete gamma-ray emission cascade, DWBA, Multi-step Direct and Multi-step Compound models, and several versions of the phenomenological preequilibrium models. The code is equipped with a power full GUI, allowing an easy access to support libraries such as RIPL and CSISRS, the graphical package, as well the utility codes for formatting and checking. In general, in our calculations we used the Reference Input Parameter Library, RIPL, for the initial set model parameters. These parameters were properly adjusted to reproduce the available experimental data taken from the CSISRS library. Our evaluations cover cross

  14. Transport of symmetric mass region fission products at the Oklo natural reactors

    Energy Technology Data Exchange (ETDEWEB)

    Loss, R.D.; Rosman, K.J.R.; De Laeter, J.R. (Western Australian Inst. of Tech., South Bentley (Australia). School of Physics and Geosciences)

    1984-05-01

    The isotopic composition of Pd, Ag, Cd and Te has been measured by solid source mass spectrometry for four samples from reactor zones 2, 3-4, 5-6 and 7, and from four host rock samples external to the reactor zones from the Oklo mine site. The concentrations of these elements have also been determined in the eight samples using the stable isotope dilution technique. Cumulative fission yields have been derived from the reactor zone samples after correcting where necessary for the terrestrial component of the element concerned. It has been shown that fission-produced Pd and Te are retained almost in their entirety in the uraninite reactor zone samples, whereas a significant fraction of fission-produced Ag and Cd have migrated from the reactor zones. Fission product Cd is observed in the host rock samples, whereas no strong evidence of fission-produced Ag could be found. This the fission-produced Ag which has migrated from the reactor zones has not been retained in the four host rock samples analysed, although the presence of fission product Ag may be masked by the presence of natural Ag. It is possible that the fission product Ag has been retained in the Oklo mine-site, and further host rock samples will be studied to evaluate this possibility. The implications of these results to the storage of radioactive wastes in natural geological repositories is discussed.

  15. Fission product behavior during the PBF (Power Burst Facility) Severe Fuel Damage Test 1-1

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J K; Petti, D A; Hagrman, D L; Jensen, S M; Cronenberg, A W

    1987-05-01

    In response to the accident at Three Mile Island Unit 2 (TMI-2), the United States Nuclear Regulatory Commission (USNRC) initiated a series of Severe Fuel Damage tests that were performed in the Power Burst Facility at the Idaho National Engineering Laboratory to obtain data necessary to understand (a) fission product release, transport, and deposition; (b) hydrogen generation; and (c) fuel/cladding material behavior during degraded core accidents. Data are presented about fission product behavior noted during the second experiment of this series, the Severe Fuel Damage Test 1-1, with an in-depth analysis of the fission product release, transport, and deposition phenomena that were observed. Real-time release and transport data of certain fission products were obtained from on-line gamma spectroscopy measurements. Liquid and gas effluent grab samples were collected at selected periods during the test transient. Additional information was obtained from steamline deposition analysis. From these and other data, fission product release rates and total release fractions are estimated and compared with predicted release behavior using current models. Fission product distributions and a mass balance are also summarized, and certain probable chemical forms are predicted for iodine, cesium, and tellurium. An in-depth evaluation of phenomena affecting the behavior of the high-volatility fission products - xenon, krypton, iodine, cesium, and tellurium - is presented. Analysis indicates that volatile release from fuel is strongly influenced by parameters other than fuel temperature. Fission product behavior during transport through the Power Burst Facility effluent line to the fission product monitoring system is assessed. Tellurium release behavior is also examined relatve to the extent of Zircaloy cladding oxidation. 81 fig., 53 tabs.

  16. Radiation Damage and Fission Product Release in Zirconium Nitride

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, Gerald W. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-08-29

    Zirconium nitride is a material of interest to the AFCI program due to some of its particular properties, such as its high melting point, strength and thermal conductivity. It is to be used as an inert matrix or diluent with a nuclear fuel based on transuranics. As such, it must sustain not only high temperatures, but also continuous irradiation from fission and decay products. This study addresses the issues of irradiation damage and fission product retention in zirconium nitride through an assessment of defects that are produced, how they react, and how predictions can be made as to the overall lifespan of the complete nuclear fuel package. Ion irradiation experiments are a standard method for producing radiation damage to a surface for observation. Cryogenic irradiations are performed to produce the maximum accumulation of defects, while elevated temperature irradiations may be used to allow defects to migrate and react to form clusters and loops. Cross-sectional transmission electron microscopy and grazing-incidence x-ray diffractometry were used in evaluating the effects that irradiation has on the crystal structure and microstructure of the material. Other techniques were employed to evaluate physical effects, such as nanoindentation and helium release measurements. Results of the irradiations showed that, at cryogenic temperatures, ZrN withstood over 200 displacements per atom without amorphization. No significant change to the lattice or microstructure was observed. At elevated temperatures, the large amount of damage showed mobility, but did not anneal significantly. Defect clustering was possibly observed, yet the size was too small to evaluate, and bubble formation was not observed. Defects, specifically nitrogen vacancies, affect the mechanical behavior of ZrN dramatically. Current and previous work on dislocations shows a distinct change in slip plane, which is evidence of the bonding characteristics. The stacking-fault energy changes dramatically with

  17. Rhamnolipid production by Pseudomonas aeruginosa OG1 using waste frying oil and ram horn peptone

    Science.gov (United States)

    Özdal, Murat; Gürkök, Sümeyra; Özdal, Özlem Gür; Kurbanoǧlu, Esabi Başaran

    2017-04-01

    Agro-industrial by-products are being explored as alternative low-cost nutrients for various bioprocesses. In this work, the applicability of ram horn peptone (RHP) and waste frying oil were investigated for rhamnolipid production by Pseudomonas aeruginosa as the sole nitrogen and carbon sources, respectively. The rhamnolipid yield was considerably influenced by the type of organic nitrogen source. Among the tested organic nitrogen sources, RHP proved to be the best nitrogen source for both biomass and rhamnolipid production. RHP was also tested at different concentrations and 10 g/L RHP resulted in the greatest yield of rhamnolipid (12.1 g/L) in the presence of waste frying oil as the sole carbon source. These results revealed that rhamnolipid could be produced efficiently and cost effectively by P. aeruginosa OG1 using RHP and waste frying oil.

  18. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    Energy Technology Data Exchange (ETDEWEB)

    Pigni, Marco T [ORNL; Francis, Matthew W [ORNL; Gauld, Ian C [ORNL

    2015-01-01

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.

  19. Fission product inventory calculation by a CASMO/ORIGEN coupling program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heon; Kim, Jong Kyung [Hanyang University, Seoul (Korea, Republic of); Choi, Hang Bok; Roh, Gyu Hong; Jung, In Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A CASMO/ORIGEN coupling utility program was developed to predict the composition of all the fission products in spent PWR fuels. The coupling program reads the CASMO output file, modifies the ORIGEN cross section library and reconstructs the ORIGEN input file at each depletion step. In ORIGEN, the burnup equation is solved for actinides and fission products based on the fission reaction rates and depletion flux of CASMO. A sample calculation has been performed using a 14 x 14 PWR fuel assembly and the results are given in this paper. 3 refs., 1 fig., 1 tab. (Author)

  20. Release of fission products from irradiated aluminide fuel at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T.; Kanda, K.; Mishima, K.

    1982-01-01

    Irradiated uranium aluminide fuel plates of 40% U-235 enrichment were heated for the determination of fission products released under flowing helium gas at temperatures up to and higher than the melting point of fuel-cladding material. The release of fission products from the fuel plate at temperature below 500/sup 0/C was found negligible. The firist rapid release of fission products was observed with the occurrence of blistering at 561 +- 1/sup 0/C on the plates. The next release at 585/sup 0/C might be caused by melting of the cladding material of 6061-Al alloy. The last release of fission product gases was occurred at the eutectic temperature of 640/sup 0/C of U-Al/sub x/. The released material was mostly xenon, but small amounts of iodine and cesium were observed.

  1. The LANL C-NR counting room and fission product yields

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, Kevin Richard [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  2. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    OpenAIRE

    Rainer Moormann

    2008-01-01

    Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA). The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental ...

  3. New Fission-Product Waste Forms: Development and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Alexandra Navrotsky

    2010-07-30

    Research performed on the program “New Fission Product Waste Forms: Development and Characterization,” in the last three years has fulfilled the objectives of the proposal which were to 1) establish ceramic waste forms for disposing of Cs, Sr and minor actinides, 2) fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of promising waste forms, 3) establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry, and 4) establish synthesis, testing, scaleup and commercialization routes for wasteform implementation through out in-kind collaborations. In addition, since Cs and Sr form new elements by radioactive decay, the behavior and thermodynamics of waste forms containing different proportions of Cs, Sr and their decay products were discovered using non-radioactive analogues. Collaborations among researchers from three institutions, UC Davis, Sandia National Laboratories, and Shott Inc., were formed to perform the primary work on the program. The unique expertise of each of the members in the areas of waste form development, structure/property relationships, hydrothermal and high temperature synthesis, crystal/glass production, and thermochemistry was critical to program success. In addition, collaborations with the Brigham Young Univeristy, Ben Gurion University, and Los Alamos National Laboratory, were established for standard entropies of ceramic waste forms, sol-gel synthesis, and high temperature synthesis. This work has had a significant impact in a number of areas. First, the studies of the thermodynamic stability of the mineral analogues provided an important technical foundation for assessment the viability of multicomponent oxide phases for Cs and Sr removal. Moreover, the thermodynamic data discovered in this program established information on the reaction

  4. Analysis of fission product behavior in the Saclay Spitfire Loop Test SSL-1. [HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.D.; Haire, M.J.; Ballagny, A.

    1978-02-01

    The behavior of the fission metal cesium and the fission gases krypton and xenon in the Saclay Spitfire Loop SSL-1 test has been compared to that predicted using General Atomic reference data and computer code models. This is the first in a series of analyses planned in order to provide quantitative validation of HTGR fission product design methods. In this analysis, the first attempt to rigorously verify fission product design methods, the FIPERQ code was used to model the diffusion of cesium graphite and release to the coolant stream. The comparisons showed that the cesium profile shape in the graphite web and the partition coefficient between fuel rod matrix material and fuel element graphite were correctly modeled, although the overall release was significantly underpredicted. Uncertainties in the source term (fissile particle failure fraction) and total release to the coolant precluded an accurate appraisal of the validity of FIPERQ. However, several recommendations are presented to improve the applicability of future in-pile test data for the validation of fission metal release codes. The half-life dependence of fission gas release during irradiation was found to be in good agreement with the model used in the reference design materials, providing assurance that this aspect of the fission gas release predictions is properly modeled.

  5. Photo-fission for the production of radioactive beams ALTO project

    CERN Document Server

    Essabaa, S; Ausset, P; Bajeat, O; Baronick, J P; Clapier, F; Coacolo, J L; Donzaud, C; Ducourtieux, M; Galas, S; Gardes, D; Grialou, D; Hosni, F; Guillemaud-Müller, D; Ibrahim, F; Junquera, T; Lau, C; Le Blanc, F; Lefort, H; Le Scornet, J C; Lesrel, J; Müller, A C; Obert, J; Perru, O; Potier, J C; Proust, J; Pougheon, F; Roussière, B; Rouvière, N; Sauvage, J; Sorlin, O; Tkatchenko, A; Verney, D; Waast, B; Rinolfi, Louis; Rossat, G; Forkel-Wirth, Doris; Müller, A; Bienvenu, G; Bourdon, J C; Garvey, Terence; Jacquemard, B; Omeich, M

    2003-01-01

    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe-1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed us to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. After the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL (Laboratoire de l'Accelerateur Lineaire) and CERN groups.

  6. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo [ed.

    1992-06-15

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.

  7. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  8. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    Science.gov (United States)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  9. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone

    Directory of Open Access Journals (Sweden)

    Esabi Basaran Kurbanoglu

    2015-06-01

    Full Text Available This work addresses the production of prodigiosin from ram horn peptone (RHP using MO-1, a local isolate in submerged culture. First, a novel gram-negative and rod-shaped bacterial strain, MO-1, was isolated from the body of the grasshopper (Poecilemon tauricola Ramme 1951, which was collected from pesticide-contaminated fields. Sequence analysis of 16S rDNA classified the microbe as Serratia marcescens. The substrate utilization potential (BIOLOG and fatty acid methyl ester profile (FAME of S. marcescens were also determined. The effect of RHP on the production of prodigiosin by S. marcescens MO-1 was investigated, and the results showed that RHP supplementation promoted the growth of MO-1 and increased the production of prodigiosin. A concentration of 0.4% (w/v RHP resulted in the greatest yield of prodigiosin (277.74 mg/L after 48 h when mannitol was used as the sole source of carbon. The pigment yield was also influenced by the types of carbon sources and peptones. As a result, RHP was demonstrated to be a suitable substrate for prodigiosin production. These results revealed that prodigiosin could be produced efficiently by S. marcescens using RHP.

  10. Enhanced production of prodigiosin by Serratia marcescens MO-1 using ram horn peptone.

    Science.gov (United States)

    Kurbanoglu, Esabi Basaran; Ozdal, Murat; Ozdal, Ozlem Gur; Algur, Omer Faruk

    2015-06-01

    This work addresses the production of prodigiosin from ram horn peptone (RHP) using MO-1, a local isolate in submerged culture. First, a novel gram-negative and rod-shaped bacterial strain, MO-1, was isolated from the body of the grasshopper (Poecilemon tauricola Ramme 1951), which was collected from pesticide-contaminated fields. Sequence analysis of 16S rDNA classified the microbe as Serratia marcescens. The substrate utilization potential (BIOLOG) and fatty acid methyl ester profile (FAME) of S. marcescens were also determined. The effect of RHP on the production of prodigiosin by S. marcescens MO-1 was investigated, and the results showed that RHP supplementation promoted the growth of MO-1 and increased the production of prodigiosin. A concentration of 0.4% (w/v) RHP resulted in the greatest yield of prodigiosin (277.74 mg/L) after 48 h when mannitol was used as the sole source of carbon. The pigment yield was also influenced by the types of carbon sources and peptones. As a result, RHP was demonstrated to be a suitable substrate for prodigiosin production. These results revealed that prodigiosin could be produced efficiently by S. marcescens using RHP.

  11. Addressing Fission Product Validation in MCNP Burnup Credit Criticality Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don [ORNL; Bowen, Douglas G [ORNL; Marshall, William BJ J [ORNL

    2015-01-01

    The US Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation issued Interim Staff Guidance (ISG) 8, Revision 3 in September 2012. This ISG provides guidance for NRC staff members’ review of burnup credit (BUC) analyses supporting transport and dry storage of pressurized water reactor spent nuclear fuel (SNF) in casks. The ISG includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MAs). Based on previous work documented in NRC Regulatory Guide (NUREG) Contractor Report (CR)-7109, the ISG recommends that NRC staff members accept the use of either 1.5 or 3% of the FP&MA worth—in addition to bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF—to conservatively account for the bias and bias uncertainty associated with the specified unvalidated FP&MAs. The ISG recommends (1) use of 1.5% of the FP&MA worth if a modern version of SCALE and its nuclear data are used and (2) 3% of the FP&MA worth for well qualified, industry standard code systems other than SCALE with the Evaluated Nuclear Data Files, Part B (ENDF/B),-V, ENDF/B-VI, or ENDF/B-VII cross sections libraries. The work presented in this paper provides a basis for extending the use of the 1.5% of the FP&MA worth bias to BUC criticality calculations performed using the Monte Carlo N-Particle (MCNP) code. The extended use of the 1.5% FP&MA worth bias is shown to be acceptable by comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII–based nuclear data. The comparison supports use of the 1.5% FP&MA worth bias when the MCNP code is used for criticality calculations, provided that the cask design is similar to the hypothetical generic BUC-32 cask model and that the credited FP&MA worth is no more than 0.1 Δkeff (ISG-8, Rev. 3, Recommendation 4).

  12. Uncertainties in fission-product decay-heat calculations

    Energy Technology Data Exchange (ETDEWEB)

    Oyamatsu, K.; Ohta, H.; Miyazono, T.; Tasaka, K. [Nagoya Univ. (Japan)

    1997-03-01

    The present precision of the aggregate decay heat calculations is studied quantitatively for 50 fissioning systems. In this evaluation, nuclear data and their uncertainty data are taken from ENDF/B-VI nuclear data library and those which are not available in this library are supplemented by a theoretical consideration. An approximate method is proposed to simplify the evaluation of the uncertainties in the aggregate decay heat calculations so that we can point out easily nuclei which cause large uncertainties in the calculated decay heat values. In this paper, we attempt to clarify the justification of the approximation which was not very clear at the early stage of the study. We find that the aggregate decay heat uncertainties for minor actinides such as Am and Cm isotopes are 3-5 times as large as those for {sup 235}U and {sup 239}Pu. The recommended values by Atomic Energy Society of Japan (AESJ) were given for 3 major fissioning systems, {sup 235}U(t), {sup 239}Pu(t) and {sup 238}U(f). The present results are consistent with the AESJ values for these systems although the two evaluations used different nuclear data libraries and approximations. Therefore, the present results can also be considered to supplement the uncertainty values for the remaining 17 fissioning systems in JNDC2, which were not treated in the AESJ evaluation. Furthermore, we attempt to list nuclear data which cause large uncertainties in decay heat calculations for the future revision of decay and yield data libraries. (author)

  13. Simulation of COMEDIE Fission Product Plateout Experiment Using GAMMA-FP

    Energy Technology Data Exchange (ETDEWEB)

    Tak, Nam-il; Yoon, Churl [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    FThis phenomenon is particularly important under a VHTR design with vented low pressure confinement (VLPC), because the vent allows the prompt release of fission products accumulated within the primary circuit to environment during an initial blow-down phase after pipe break accidents. In order to analyze the fission product plateout, an numerical model was developed by Yoo et al. and incorporated into the GAMMA-FP code in the past. The GAMMA-FP model was validated against two experiment data, i.e., VAMPYR-1 and OGL, during the development phase. One of the well-known experiments for fission product plateout is the COMEDIE experiment. In this work, the COMEDIE experiment has been simulated using the GAMMA-FP code to investigate the reliability and applicability of the plateout model of GAMMA-FP. The COMEDIE experiment for fission product plateout was simulated using the GAMMA-FP code in this work. A good agreement was achieved between the measured and predicted plateout activities. The existing solution scheme was modified to allow larger time step size for fission product analysis in order to speed-up the computational time. Nevertheless, the modification of the existing numerical model of GAMMA-FP is necessary when a simulation capability of a long duration of plateout period (e.g., 60 years) is targeted.

  14. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  15. Production of (S)-(-)-1-(1´-Napthyl) Ethanol by Rhodotorula glutinis Isolate Using Ram Horn Peptone

    OpenAIRE

    KURBANOĞLU, Esabi B.; ZİLBEYAZ, Kani; KURBANOĞLU, Namudar I.

    2014-01-01

    The bioreduction of 1-acetonaphthone 1 by locally isolated Rhodotorula glutinis strains using ram horn peptone (RHP) gave (S)-(-)-1-(1´-naphthyl) ethanol (2), an important pharmaceutical intermediate. R. glutinis strains were isolated from the water of fermented Salix leaves. Optimum fermentation conditions for the production of 2 were 200 rpm, 32 °C, and pH 6.5. The production of 2 with excellent enantiomeric excess (>99%), and good conversion (100%) and yield (78%) under op...

  16. Neutronic and thermal hydraulic analysis for production of fission molybdenum-99 at Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Massod; Bokhari, Ishtiaq Hussain; Mahmood, Tariq; Mahmood, Tayyab; Ahmad, Zahoor; Zaman, Qamar [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2008-02-15

    Neutronic and thermal hydraulic analysis for the fission molybdenum-99 production at PARR-1 has been performed. Low enriched uranium foil (<20% {sup 235}U) will be used as target material. Annular target designed by ANL (USA) will be irradiated in PARR-1 for the production of 100 Ci of molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at PINSTECH and its supply in the country. Neutronic and thermal hydraulic analysis were performed using various codes. Data shows that annular targets can be safely irradiated in PARR-1 for production of required amount of fission molybdenum-99.

  17. Nuclear charge distribution of fission products originated from fission of 238U nuclei induced by45-69 MeV protons

    Directory of Open Access Journals (Sweden)

    Houshyar Noshad

    2007-12-01

    Full Text Available  Fission of 238U nuclei was performed by 45-69 MeV protons at the Cyclotron and Radioisotope Center of Tohoku University in Japan. The fission products originated in the reaction were identified by using gamma spectroscopy. The experimental data show that the charge distribution of isobar fission products follows a Gaussian distribution with a standard deviation independent of the selected mass number. The standard deviations were measured for the reaction 238U(p, f with 45, 55, 65 and 69 MeV protons. For Ep = 45 MeV, the standard deviation obtained from the experiment is in agreement with the existing data and satisfies the prediction of the Hauser-Feshbach statistical model. For other proton energies, measurement of this quantity has not been reported in the literature. The experimental results show that the value of standard deviation increases, when the excitation energy of the fissioning nucleus increases. Furthermore, the most probable charge was determined for the isobar fission products detected in the experiment. The results are consistent with the prediction of the minimum potential energy (MPE model. Moreover, the experimental data show that nuclear charge polarization occurs in the fission process.

  18. Theoretical and experimental studies of the neutron rich fission product yields at intermediate energies

    Directory of Open Access Journals (Sweden)

    Äystö J.

    2012-02-01

    Full Text Available A new method to measure the fission product independent yields employing the ion guide technique and a Penning trap as a precision mass filter, which allows an unambiguous identification of the nuclides is presented. The method was used to determine the independent yields in the proton-induced fission of 232Th and 238U at 25 MeV. The data were analyzed with the consistent model for description of the fission product formation cross section at the projectile energies up to 100 MeV. Pre-compound nucleon emission is described with the two-component exciton model using Monte Carlo method. Decay of excited compound nuclei is treated within time-dependent statistical model with inclusion of the nuclear friction effect. The charge distribution of the primary fragment isobaric chain was considered as a result of frozen quantal fluctuations of the isovector nuclear density. The theoretical predictions of the independent fission product cross sections are used for normalization of the measured fission product isotopic distributions.

  19. Spent Nuclear Fuel project estimate of volatile fission products release from multi-canister overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, T.D.

    1996-08-01

    Spent N-Reactor fuel will be moved from wet pool storage to dry storage at Hanford Washington. This fuel will be sequentially loaded into a Multiple Container Overpack (MCO), moved to the cold vacuum drying station, drained, cold vacuum dried, shipped to the Canister Storage Building (CSB), staged for up to 2 years,hot vacuum dried at 300 degrees C, hot conditioned at 150 degrees C, and finally, sealed and stored for up to 75 years in the CSB.During each proposed process step, the volatile radioactive fission products released to the atmosphere were estimated.Tritium is the only volatile fission product released insignificant amounts during each process step. For an accident scenario involving interior MCO temperature of 600 degrees C for up to 8 hours, it was estimated that many volatile fission products are released.

  20. Fission product release modelling for application of fuel-failure monitoring and detection - An overview

    Science.gov (United States)

    Lewis, B. J.; Chan, P. K.; El-Jaby, A.; Iglesias, F. C.; Fitchett, A.

    2017-06-01

    A review of fission product release theory is presented in support of fuel-failure monitoring analysis for the characterization and location of defective fuel. This work is used to describe: (i) the development of the steady-state Visual_DETECT code for coolant activity analysis to characterize failures in the core and the amount of tramp uranium; (ii) a generalization of this model in the STAR code for prediction of the time-dependent release of iodine and noble gas fission products to the coolant during reactor start-up, steady-state, shutdown, and bundle-shifting manoeuvres; (iii) an extension of the model to account for the release of fission products that are delayed-neutron precursors for assessment of fuel-failure location; and (iv) a simplification of the steady-state model to assess the methodology proposed by WANO for a fuel reliability indicator for water-cooled reactors.

  1. Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Shannon M.; Seiner, Brienne N.; Finn, Erin C.; Greenwood, Lawrence R.; Smith, Steven C.; Gregory, Stephanie J.; Haney, Morgan M.; Lucas, Dawn D.; Arrigo, Leah M.; Beacham, Tere A.; Swearingen, Kevin J.; Friese, Judah I.; Douglas, Matthew; Metz, Lori A.

    2015-05-01

    Mixed fission and activation materials resulting from various nuclear processes and events contain a wide range of isotopes for analysis spanning almost the entire periodic table. In some applications such as environmental monitoring, nuclear waste management, and national security a very limited amount of material is available for analysis and characterization so an integrated analysis scheme is needed to measure multiple radionuclides from one sample. This work describes the production of a complex synthetic sample containing fission products, activation products, and irradiated soil and determines the percent recovery of select isotopes through the integrated chemical separation scheme. Results were determined using gamma energy analysis of separated fractions and demonstrate high yields of Ag (76 ± 6%), Au (94 ± 7%), Cd (59 ± 2%), Co (93 ± 5%), Cs (88 ± 3%), Fe (62 ± 1%), Mn (70 ± 7%), Np (65 ± 5%), Sr (73 ± 2%) and Zn (72 ± 3%). Lower yields (< 25%) were measured for Ga, Ir, Sc, and W. Based on the results of this experiment, a complex synthetic sample can be prepared with low atom/fission ratios and isotopes of interest accurately and precisely measured following an integrated chemical separation method.

  2. Fission Product Yields from 232Th, 238U, and 235U Using 14 MeV Neutrons

    Science.gov (United States)

    Pierson, B. D.; Greenwood, L. R.; Flaska, M.; Pozzi, S. A.

    2017-01-01

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets-thorium-oxide, depleted uranium metal, and highly enriched uranium metal-at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields of short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for 89Kr, -90, and -92 and 138Xe, -139, and -140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were -10.2%, 4.5%, and -12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from 84As to 146La are presented.

  3. Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, B.D., E-mail: bpnuke@umich.edu [Department of Nuclear Engineering Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States); Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Greenwood, L.R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States); Flaska, M. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 227 Reber Bldg., University Park, PA 16802 (United States); Pozzi, S.A. [Department of Nuclear Engineering Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

    2017-01-15

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields of short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.

  4. Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1

    Science.gov (United States)

    Galinos, Christos; Dimitrov, Nikolay; Larsen, Torben J.; Natarajan, Anand; Hansen, Kurt S.

    2016-09-01

    This paper describes the development of a wind turbine (WT) component lifetime fatigue load variation map within an offshore wind farm. A case study on the offshore wind farm Horns Rev I is conducted with this purpose, by quantifying wake effects using the Dynamic Wake Meandering (DWM) method, which has previously been validated based on CFD, Lidar and full scale load measurements. Fully coupled aeroelastic load simulations using turbulent wind conditions are conducted for all wind directions and mean wind speeds between cut-in and cut-out using site specific turbulence level measurements. Based on the mean wind speed and direction distribution, the representative 20-year lifetime fatigue loads are calculated. It is found that the heaviest loaded WT is not the same when looking at blade root, tower top or tower base components. The blade loads are mainly dominated by the wake situations above rated wind speed and the highest loaded blades are in the easternmost row as the dominating wind direction is from West. Regarding the tower components, the highest loaded WTs are also located towards the eastern central location. The turbines with highest power production are, not surprisingly, the ones facing a free sector towards west and south. The power production results of few turbines are compared with SCADA data. The results of this paper are expected to have significance for operation and maintenance planning, where the schedules for inspection and service activities can be adjusted to the requirements arising from the varying fatigue levels. Furthermore, the results can be used in the context of remaining fatigue lifetime assessment and planning of decommissioning.

  5. Fission product transport analysis: task 2. Quarterly progress report, April--June 1976. [PWR; spent fuel casks

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J.A.; Baybutt, P.; Denning, R.S.; Jordan, H.; Wooton, R.O.

    1976-09-07

    Analysis methods and computer models for predicting fission product transport and deposition under postulated loss of coolant accident conditions within water-cooled reactor primary systems and shipping casks are being developed. Existing thermal-hydraulic analyses (RELAP-EM) form the basis for defining the conditions within the primary systems and the transport flow from which fission products deposit. The analyses to be developed in this study will provide methods for more realistically calculating the rate and magnitude of fission product release to the containment. Efforts during the reporting period were directed toward postulating the types of conditions to be assumed in developing the model for failed shipping casks, completing the PWR transport model format design, beginning the PWR transport model assembly and checkout, and performing various tasks related to fission product deposition rates, fission product chemistry, and thermal-hydraulic condition specification in support of the PWR model development.

  6. Compilation of Data on Radionuclide Data for Specific Activity, Specific Heat and Fission Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, A.; Thomason, R.S.

    2000-09-05

    This compilation was undertaken to update the data used in calculation of curie and heat loadings of waste containers in the Solid Waste Management Facility. The data has broad general use and has been cross-checked extensively in order to be of use in the Materials Accountability arena. The fission product cross-sections have been included because they are of use in the Environmental Remediation and Waste Management areas where radionuclides which are not readily detectable need to be calculated from the relative fission yields and material dispersion data.

  7. SEPARATION OF FISSION PRODUCT VALUES FROM THE HEXAVALENT PLUTONIUM BY CARRIER PRECIPITATION

    Science.gov (United States)

    Davies, T.H.

    1959-12-15

    An improved precipitation of fission products on bismuth phosphate from an aqueous mineral acid solution also containing hexavalent plutonium by incorporating, prior to bismuth phosphate precipitation, from 0.05 to 2.5 grams/ liter of zirconium phosphate, niobium oxide. and/or lanthanum fluoride is described. The plutonium remains in solution.

  8. Report on the Behavior of Fission Products in the Co-decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riddle, Catherine Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-30

    This document was prepared to meet FCT level 3 milestone M3FT-15IN0302042, “Generate Zr, Ru, Mo and Tc data for the Co-decontamination Process.” This work was carried out under the auspices of the Lab-Scale Testing of Reference Processes FCT work package. This document reports preliminary work in identifying the behavior of important fission products in a Co-decontamination flowsheet. Current results show that Tc, in the presence of Zr alone, does not behave as the Argonne Model for Universal Solvent Extraction (AMUSE) code would predict. The Tc distribution is reproducibly lower than predicted, with Zr distributions remaining close to the AMUSE code prediction. In addition, it appears there may be an intricate relationship between multiple fission product metals, in different combinations, that will have a direct impact on U, Tc and other important fission products such as Zr, Mo, and Rh. More extensive testing is required to adequately predict flowsheet behavior for these variances within the fission products.

  9. Fission products detection in irradiated TRIGA fuel by means of gamma spectroscopy and MCNP calculation.

    Science.gov (United States)

    Cagnazzo, M; Borio di Tigliole, A; Böck, H; Villa, M

    2018-02-03

    Aim of this work was the detection of fission products activity distribution along the axial dimension of irradiated fuel elements (FEs) at the TRIGA Mark II research reactor of the Technische Universität (TU) Wien. The activity distribution was measured by means of a customized fuel gamma scanning device, which includes a vertical lifting system to move the fuel rod along its vertical axis. For each investigated FE, a gamma spectrum measurement was performed along the vertical axis, with steps of 1 cm, in order to determine the axial distribution of the fission products. After the fuel elements underwent a relatively short cooling down period, different fission products were detected. The activity concentration was determined by calibrating the gamma detector with a standard calibration source of known activity and by MCNP6 simulations for the evaluation of self-absorption and geometric effects. Given the specific TRIGA fuel composition, a correction procedure is developed and used in this work for the measurement of the fission product Zr 95 . This measurement campaign is part of a more extended project aiming at the modelling of the TU Wien TRIGA reactor by means of different calculation codes (MCNP6, Serpent): the experimental results presented in this paper will be subsequently used for the benchmark of the models developed with the calculation codes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NARCIS (Netherlands)

    Di Lemma, F.G.; Colle, J.Y.; Rasmussen, G.; Konings, R.J.M.

    2015-01-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the

  11. Comparison of fission product release predictions using PARFUME with results from the AGR-1 irradiation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Blaise Collin

    2014-09-01

    This report documents comparisons between post-irradiation examination measurements and model predictions of silver (Ag), cesium (Cs), and strontium (Sr) release from selected tristructural isotropic (TRISO) fuel particles and compacts during the first irradiation test of the Advanced Gas Reactor program that occurred from December 2006 to November 2009 in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). The modeling was performed using the particle fuel model computer code PARFUME (PARticle FUel ModEl) developed at INL. PARFUME is an advanced gas-cooled reactor fuel performance modeling and analysis code (Miller 2009). It has been developed as an integrated mechanistic code that evaluates the thermal, mechanical, and physico-chemical behavior of fuel particles during irradiation to determine the failure probability of a population of fuel particles given the particle-to-particle statistical variations in physical dimensions and material properties that arise from the fuel fabrication process, accounting for all viable mechanisms that can lead to particle failure. The code also determines the diffusion of fission products from the fuel through the particle coating layers, and through the fuel matrix to the coolant boundary. The subsequent release of fission products is calculated at the compact level (release of fission products from the compact) but it can be assessed at the particle level by adjusting the diffusivity in the fuel matrix to very high values. Furthermore, the diffusivity of each layer can be individually set to a high value (typically 10-6 m2/s) to simulate a failed layer with no capability of fission product retention. In this study, the comparison to PIE focused on fission product release and because of the lack of failure in the irradiation, the probability of particle failure was not calculated. During the AGR-1 irradiation campaign, the fuel kernel produced and released fission products, which migrated through the successive

  12. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  13. Chemical burnup determination based on spectrophotometric measurement of total rare earth fission products, uranium, and plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Ortiz, M.R.; Rein, J.E.

    1975-10-01

    A chemical burnup procedure incorporates the ion-exchange separation of uranium, plutonium, and total rare earth fission products (as the fission monitor) followed by the spectrophotometric determination of each. The separation involves retaining uranyl and plutonyl chloride complexes on a macroporous anion exchange column from 12 M HCl, whereas the rare earths and most fission products pass through. Subsequently, plutonium is eluted with 0.1 M HI-12 M HCl and uranium with 0.1 M HCl. From the initial effluent of the first column, the rare earth group is separated on a second column of either (1) macroporous anion exchange resin from HNO/sub 3/-CH/sub 3/OH, or (2) pellicular cation exchange particles from HCl-C/sub 2/H/sub 5/OH. The HNO/sub 3/--CH/sub 3/OH system normally is used to separate the rare earth group from fuel cladding elements and other fission products. The HCl--C/sub 2/H/sub 5/OH system additionally separates the rare earth group from americium. Arsenazo III is the chromogenic agent for the spectrophotometric determination of the separated uranium, plutonium, and rare earth fractions.

  14. Effects of deep-horn AI on fertilization and embryo production in superovulated cows and heifers.

    Science.gov (United States)

    Carvalho, P D; Souza, A H; Sartori, R; Hackbart, K S; Dresch, A R; Vieira, L M; Baruselli, P S; Guenther, J N; Fricke, P M; Shaver, R D; Wiltbank, M C

    2013-12-01

    The primary objective of this study was to determine the effect of site of semen deposition on fertilization rate and embryo quality in superovulated cows. The hypothesis was that deposition of semen into the uterine horns would increase the fertilization rate compared with deposition of semen into the uterine body. The secondary objective was to evaluate the effect of uterine environment on fertilization rate and embryo quality. It was hypothesized that subclinical endometritis at the onset of superstimulation would decrease the fertilization rates and embryo quality. In experiment 1, 17 superovulated heifers were randomly assigned to receive artificial insemination (AI) into the uterine body or uterine horns. The total number of fertilized structures and fertilization rate from superovulated heifers was increased (P = 0.04 and P = 0.02, respectively) when semen was deposited into the uterine horns compared with the uterine body. Other embryo characteristics did not differ based on the site of semen deposition. In experiment 2, 14 lactating dairy cows were superovulated twice and were randomly assigned to receive AI into the uterine body or deep into the uterine horns using a crossover design. Neither fertilization rate nor any other embryo characteristics were improved when semen was placed deep into the uterine horns compared with the uterine body. In experiment 3, 72 superovulated lactating dairy cows were randomly assigned to receive AI into the uterine body or uterine horns. Before initiation of superstimulatory treatments, an endometrial cytology sample was collected from each cow. Ova/embryos were collected by a nonsurgical technique at 70 ± 3 days in milk. Similar to experiment 2, neither fertilization rate nor any other embryo characteristics differed based on the site of semen deposition in experiment 3. The percentage of cows with subclinical endometritis did not differ between treatments. Interestingly, there was a tendency (P = 0.09) for a reduction

  15. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowicz, Paul Andrew [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.

  16. Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.

    2016-11-01

    Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.

  17. Effects of microstructural constraints on the transport of fission products in uranium dioxide at low burnups

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Harn Chyi; Rudman, Karin; Krishnan, Kapil; McDonald, Robert [Arizona State University, Tempe, AZ (United States); Dickerson, Patricia [Los Alamos National Lab, Los Alamos, NM (United States); Gong, Bowen [Arizona State University, Tempe, AZ (United States); Peralta, Pedro, E-mail: pperalta@asu.edu [Arizona State University, Tempe, AZ (United States)

    2016-08-15

    Diffusion of fission gases in UO{sub 2} is studied at low burnups, before bubble growth and coalescence along grain boundaries (GBs) become dominant, using a 3-D finite element model that incorporates actual UO{sub 2} microstructures. Grain boundary diffusivities are assigned based on crystallography with lattice and GB diffusion coupled with temperature to account for temperature gradients. Heterogeneity of GB properties and connectivity can induce regions where concentration is locally higher than without GB diffusion. These regions are produced by “bottlenecks” in the GB network because of lack of connectivity among high diffusivity GBs due to crystallographic constraints, and they can lead to localized swelling. Effective diffusivities were calculated assuming a uniform distribution of high diffusivity among GBs. Results indicate an increase over the bulk diffusivity with a clear grain size effect and that connectivity and properties of different GBs become important factors on the variability of fission product concentration at the microscale. - Highlights: • Microstructure models are developed to study fission gas transport in oxide fuels. • Crystallographic and temperature dependent material properties are applied. • Fission product concentration is affected by grain boundary distribution. • High concentration regions can form as controlled by the grain boundary connectivity.

  18. Fission product transport analysis: Task 2. Quarterly progress report, January--March 1976. [PWR; spent fuel casks

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J.A.; Baybutt, P.; Denning, R.S.; Jordan, H.; Wooton, W.O.

    1976-06-09

    The escape of fission product activity from a water-cooled reactor under loss of coolant accident (LOCA) conditions is studied. It is the goal of the study to develop a primary system fission product transport and deposition model which is consistent with the emerging state of knowledge regarding fission product release from fuel rods and thermal-hydraulic analyses of emergency core cooling (ECC). The analyses to be developed will provide methods for more realistically calculating the rate and magnitude of fission product release to the containment. An analogous fission product transport and deposition model is also to be developed for spent fuel shipping casks under hypothetical LOCA conditions. Progress during this quarter was primarily in those areas associated with efforts to organize and initiate this study. Technical efforts were initiated (1) to develop the format to be used in the model analyzing fission product transport in pressurized water reactor (PWR) primary systems, (2) to define accidents for shipping casks which result in loss of coolant, (3) to derive from existing computer codes and additional calculations thermal-hydraulic conditions within PWR primary systems, and (4) to determine probable chemical forms for the various fission product species.

  19. FITPULS: a code for obtaining analytic fits to aggregate fission-product decay-energy spectra. [In FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    LaBauve, R.J.; George, D.C.; England, T.R.

    1980-03-01

    The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from /sup 235/U irradiated with a pulse (10/sup -4/ s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables.

  20. Studies of short-lived products of spallation fission reactions at TRIUMF

    CERN Document Server

    Bischoff, G; D'Auria, J M; Dautet, H; Lee, J K P; Pate, B D; Wiesehahn, W

    1976-01-01

    The gas-jet recoil transport technique has been used to transport products from spallation and fission reactions from a target chamber to a shielded location for nuclear spectroscopic studies. These involve X- beta - gamma coincidence measurements and (shortly) time- of-flight mass spectroscopy. It has been deduced that the proton beam at present intensities has no appreciable effect on the ability of ethylene and other cluster-producing gases to transport radioactivity. Preliminary results will be presented for shortlived fission products from uranium, and for spallation products of iodine and argon. The latter were obtained from the bombardment of gas and aerosol targets mixed with the transporting gas in the target chamber, which appears to be a generally useful technique.

  1. Irradiation effects and behaviour of fission products in zirconia and spinel; Effets d'irradiation et comportement des produits de fission dans la zircone et le spinelle

    Energy Technology Data Exchange (ETDEWEB)

    Gentils, A

    2003-10-01

    Crystalline oxides, such as zirconia (ZrO{sub 2}) and spinel (MgAl{sub 2}O{sub 4}), are promising inert matrices for the transmutation of plutonium and minor actinides. This work deals with the study of the physico-chemical properties of these matrices, more specifically their behaviour under irradiation and their capacity to retain fission products. Irradiations at low energy and incorporation of stable analogs of fission products (Cs, I, Xe) into yttria-stabilized zirconia and magnesium-aluminate spinel single crystals were performed by using the ion implanter IRMA (CSNSM-Orsay). Irradiations at high energy were made on several heavy ion accelerators (GANIL-Caen, ISL-Berlin, HIL-Warsaw). The damage induced by irradiation and the release of fission products were monitored by in situ Rutherford Backscattering Spectrometry experiments. Transmission electron microscopy was also used in order to determine the nature of the damage induced by irradiation. The results show that irradiation of ZrO{sub 2} and MgAl{sub 2}O{sub 4} with heavy ions (about hundred keV and about hundred MeV) induces a huge structural damage in crystalline matrices. Total disorder (amorphization) is however never reached in zirconia, contrary to what is observed in the case of spinel. The results also emphasize the essential role played by the concentration of implanted species on their retention capacity. A dramatic release of fission products was observed when the concentration exceeds a threshold of a few atomic percent. Irradiation of implanted samples with medium-energy noble-gas ions leads to an enhancement of the fission product release. The exfoliation of spinel crystals implanted at high concentration of Cs ions is observed after a thermal treatment at high temperature. (author)

  2. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

    Directory of Open Access Journals (Sweden)

    Seung-Kon Lee

    2016-06-01

    Full Text Available Molybdenum-99 (99Mo is the most important isotope because its daughter isotope, technetium-99m (99mTc, has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of 99Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of 99Mo technology developments. Most of the industrial-scale 99Mo processes have been based on the fission of 235U. Recently, important issues have been raised for the conversion of fission 99Mo targets from highly enriched uranium to low enriched uranium (LEU. The development of new LEU targets with higher density was requested to compensate for the loss of 99Mo yield, caused by a significant reduction of 235U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission 99Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the 99Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  3. NEW ENDF/B-VII.0 EVALUATIONS OF NEUTRON CROSS SECTIONS FOR 32 FISSION PRODUCTS.

    Energy Technology Data Exchange (ETDEWEB)

    KIM,H.; LEE, Y.-O.; HERMAN, M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.

    2007-04-22

    Neutron cross sections for fission products play important role not only in the design of extended burnup core and fast reactors, but also in the study of the backend fuel cycle and the criticality analysis of spent fuel. New evaluations in both the resonance and fast neutron regions were performed by the KAERI-BNL collaboration for 32 fission products. These were {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and complete isotope chains of {sup 142-148,150}Nd, {sup 144,147,148-154}Sm, and {sup 156,158,160-164}Dy. The evaluations cover a large amount of reaction channels, including all those needed for neutronics calculations. Also, they cover the entire energy range, from 10{sup -5} eV to 20 MeV, including the thermal, resolved, and unresolved resonance regions, and the fast neutron region.

  4. 81929 - Fission-Product Separation Based on Room - Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Robin D. Rogers

    2004-12-09

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics.

  5. Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst.

    Science.gov (United States)

    Li, Ji; Fu, Yu-Jie; Qu, Xue-Jin; Wang, Wei; Luo, Meng; Zhao, Chun-Jian; Zu, Yuan-Gang

    2012-03-01

    In this study, biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst was investigated. After illustration of the mechanisms of transesterification reactions catalyzed by typical ion exchange resins, the factors affecting microwave-assisted transesterification process were studied. A high conversion yield of about 96% was achieved under optimal conditions using high alkaline anion exchange resins as catalyst. Analyzing the FAMEs composition by GC-MS and main physical-chemical properties demonstrated that the biodiesel product prepared from yellow horn seed oil was of high quality. Compared with conventional alkali catalyst, the outstanding characteristics of reusability and operational stability made the resin catalyst more predominant for biodiesel production. In addition, a comprehensive kinetic model was established for analyzing the reaction. The results of present research showed that microwave-assisted transesterification process catalyzed by high alkaline anion exchange resin was a green, effective and economic technology for biodiesel industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Measurement of reaction cross sections of fission products induced by DT neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)

    1998-03-01

    With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)

  7. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huimin; Hussey, Charles L.

    2005-09-30

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  8. Fission-Product Separation Based on Room-Temperature Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Huimin

    2006-11-15

    The objectives of this project are (a) to synthesize new ionic liquids tailored for the extractive separation of Cs + and Sr 2+; (b) to select optimum macrocyclic extractants through studies of complexation of fission products with macrocyclic extractants and transport in new extraction systems based on ionic liquids; (c) to develop efficient processes to recycle ionic liquids and crown ethers; and (d) to investigate chemical stabilities of ionic liquids under strong acid, strong base, and high-level-radiation conditions.

  9. Revaporisation of fission product deposits in the primary circuit and its impact on accident source term

    OpenAIRE

    Bottomley, P.D.W.; Knebel, K.; Van Winckel, S.; Haste, T.; Souvi, S.M.O.; Auvinen, A; Kalilainen, J.; Kärkelä, T.

    2014-01-01

    Chemical revaporisation or physical resuspension of fission product deposits from the primary circuit is now recognised to be a major source term in the late phase of severe fuel degradation in a severe nuclear accident. These results come from tests carried out under different experimental projects in the European Commission (EC) Framework Programmes. These include the revaporisation tests carried out at the Transuranium Institute (ITU), Karlsruhe under the Fourth Framework Programme, the Ph...

  10. Fission Product Appearance Rate Coefficients in Design Basis Source Term Determinations – Past and Present

    OpenAIRE

    Perez Pedro B.; Hamawi John N.

    2017-01-01

    Nuclear power plant radiation protection design features are based on radionuclide source terms derived from conservative assumptions that envelope expected operating experience. Two parameters that significantly affect the radionuclide concentrations in the source term are failed fuel fraction and effective fission product appearance rate coefficients. Failed fuel fraction may be a regulatory based assumption such as in the U.S. Appearance rate coefficients are not specified in regulatory re...

  11. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  12. From EXILL (EXogam at the ILL to FIPPS (FIssion Product Prompt γ-ray Spectrometer

    Directory of Open Access Journals (Sweden)

    Blanc A.

    2015-01-01

    Full Text Available Within the EXILL campaign a large and efficient cluster of Ge-detectors was installed around a very well collimated neutron beam. This has allowed to carry out rather complete spectroscopic studies close to the line of stability using the (n,γ reaction. Neutron rich isotopes were produced by neutron induced fission and prompt spectroscopy was carried out. The isotope selection in this setup was based on a partially known level scheme and the use of triple coincidences. The latter is limiting the statistical sensitivity in the case of weak production yields. Based on the experiences of these campaigns we are currently developing a new setup: FIPPS (FIssion Product Prompt Spectroscopy. This setup combines a collimated neutron beam, a highly efficient cluster of Ge detectors, a gas filled magnet and auxiliary detectors. The presence of the gas filled magnet will allow us to identify fission products directly and should give access to a new quality of studies if compared to the EXILL campaign. The EXILL campaign and the FIPPS project are presented.

  13. Improvement in retention of solid fission products in HTGR fuel particles by ceramic kernel additives

    Energy Technology Data Exchange (ETDEWEB)

    Foerthmann, R.; Groos, E.; Gruebmeier, H.

    1975-08-15

    Increased requirements concerning the retention of long-lived solid fission products in fuel elements for use in advanced High Temperature Gas-cooled Reactors led to the development of coated particles with improved fission product retention which represent an alternative to silicon carbide-coated fuel particles. Two irradiation experiments have shown that the release of strontium, barium, and caesium from pyrocarbon-coated particles can be reduced by orders of magnitude if the oxide kernel contains alumina-silica additives. It was detected by electron microprobe analysis that the improved retention of the mentioned fission products in the fuel kernel is caused by formation of the stable aluminosilicates SrAl2Si2O8, BaAl2Si2O8and CsAlSi2O6 in the additional alumina-silica phase of the kernel.

  14. Insights on fission products behaviour in nuclear severe accident conditions by X-ray absorption spectroscopy

    Science.gov (United States)

    Geiger, E.; Bès, R.; Martin, Ph; Pontillon, Y.; Ducros, G.; Solari, P. L.

    2016-04-01

    Many research programs have been carried out aiming to understand the fission products behaviour during a Nuclear Severe Accident. Most of these programs used highly radioactive irradiated nuclear fuel, which requires complex instrumentation. Moreover, the radioactive character of samples hinders an accurate chemical characterisation. In order to overcome these difficulties, SIMFUEL stand out as an alternative to perform complementary tests. A sample made of UO2 doped with 11 fission products was submitted to an annealing test up to 1973 K in reducing atmosphere. The sample was characterized before and after the annealing test using SEM-EDS and XAS at the MARS beam-line, SOLEIL Synchrotron. It was found that the overall behaviour of several fission products (such as Mo, Ba, Pd and Ru) was similar to that observed experimentally in irradiated fuels and consistent with thermodynamic estimations. The experimental approach presented in this work has allowed obtaining information on chemical phases evolution under nuclear severe accident conditions, that are yet difficult to obtain using irradiated nuclear fuel samples.

  15. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    Science.gov (United States)

    Abrecht, David G; Schwantes, Jon M

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  16. Fission Product Separation from Pyrochemical Electrolyte by Cold Finger Melt Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Versey, Joshua R. [Univ. of Idaho, Moscow, ID (United States)

    2013-08-01

    This work contributes to the development of pyroprocessing technology as an economically viable means of separating used nuclear fuel from fission products and cladding materials. Electrolytic oxide reduction is used as a head-end step before electrorefining to reduce oxide fuel to metallic form. The electrolytic medium used in this technique is molten LiCl-Li2O. Groups I and II fission products, such as cesium (Cs) and strontium (Sr), have been shown to partition from the fuel into the molten LiCl-Li2O. Various approaches of separating these fission products from the salt have been investigated by different research groups. One promising approach is based on a layer crystallization method studied at the Korea Atomic Energy Research Institute (KAERI). Despite successful demonstration of this basic approach, there are questions that remain, especially concerning the development of economical and scalable operating parameters based on a comprehensive understanding of heat and mass transfer. This research explores these parameters through a series of experiments in which LiCl is purified, by concentrating CsCl in a liquid phase as purified LiCl is crystallized and removed via an argon-cooled cold finger.

  17. Fission-product energy release for times following thermal-neutron fission of /sup 235/U between 2 and 14000 seconds

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J.K.; Emery, J.F.; Love, T.A.; McConnell, J.W.; Northcutt, K.J.; Peelle, R.W.; Weaver, H.

    1977-10-01

    Fission-product decay energy-releases rates were measured for thermal-neutron fission of /sup 235/U. Samples of mass 1 to 10 ..mu..g were irradiated for 1 to 100 sec by use of the fast pneumatic-tube facility at the Oak Ridge Research Reactor. The resulting beta- and gamma-ray emissions were counted for times-after-fission between 2 and 14,000 seconds. The data were obtained for beta and gamma rays separately as spectral distributions, N(E/sub ..gamma../) vs E/sub ..gamma../ and N(E/sub beta/) vs E/sub ..beta../. For the gamma-ray data the spectra were obtained by using a NaI detector, while for the beta-ray data the spectra were obtained by using an NE-110 detector with an anticoincidence mantle. The raw data were unfolded to provide spectral distributions of modest resolution. These were integrated over E/sub ..gamma../ and E/sub ..beta../ to provide total yield and energy integrals as a function of time after fission. Results are low compared to the present 1973 ANS Decay-heat standard. A complete description of the experimental apparatus and data-reduction techniques is presented. The final integral data are given in tabular and graphical form and are compared with published data. 41 figures, 13 tables.

  18. Neutron activation analysis (NAA), radioisotope production via neutron activation (PNA) and fission product gas-jet (GJA)

    Energy Technology Data Exchange (ETDEWEB)

    Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    Three different non-diffractive applications of neutrons are outlined, neutron activation analysis, production of radionuclides, mostly for medical applications, and production of short-lived fission nuclides with a so-called gas-jet. It is shown that all three devices may be incorporated into one single insert at SINQ due to their different requests with respect to thermal neutron flux. Some applications of these three facilities are summarized. (author) 3 figs., 1 tab., 8 refs.

  19. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  20. Disposition of plutonium-239 via production of fission molybdenum-99.

    Science.gov (United States)

    Mushtaq, A

    2011-04-01

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Disposition of plutonium-239 via production of fission molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A., E-mail: muahtaq_a1953@hotmail.co [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2011-04-15

    A heritage of physical consequences of the U.S.-Soviet arms race has accumulated, the weapons-grade plutonium (WPu), which will become excess as a result of the dismantlement of the nuclear weapons under the arms reduction agreements. Disposition of Pu has been proposed by mixing WPu with high-level radioactive waste with subsequent vitrification into large, highly radioactive glass logs or fabrication into mixed oxide fuel with subsequent irradiation in existing light water reactors. A potential option may be the production of medical isotope molybdenum-99 by using Pu-239 targets.

  2. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  3. magnetic horn

    CERN Multimedia

    Neutrinos and antineutrinos are ideal for probing the weak force because it is effectively the only force they feel. How were they made? Protons fired into a metal target produce a tangle of secondary particles. A magnetic horn like this one, invented by Simon Van der Meer, selected pions and focused them into a sharp beam. Pions decay into muons and neutrinos or antineutrinos. The muons were stopped in a wall of 3000 tons of iron and 1000 tons of concrete, leaving the neutrinos or antineutrinos to reach the Gargamelle bubble chamber. A simple change of magnetic field direction on the horn flipped between focusing positively- or negatively-charged pion beams, and so between neutrinos and antineutrinos.

  4. Focusing horn

    CERN Multimedia

    1980-01-01

    This was the first magnetic horn developed by Simon Van der Meer to collect antiprotons in the AD complex. It was used for the AA (antiproton accumulator). Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV/c (protons at 26GeV/c, antiprotons at 3.6GeV/c) in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons. The development of this technology was a key step to the functioning of CERN's Super Proton Synchrotron as a proton - antiproton collider.

  5. Forensic DNA barcoding and bio-response studies of animal horn products used in traditional medicine.

    Directory of Open Access Journals (Sweden)

    Dan Yan

    Full Text Available BACKGROUND: Animal horns (AHs have been applied to traditional medicine for more than thousands of years, of which clinical effects have been confirmed by the history. But now parts of AHs have been listed in the items of wildlife conservation, which limits the use for traditional medicine. The contradiction between the development of traditional medicine and the protection of wild resources has already become the common concern of zoophilists, traditional medical professionals, economists, sociologists. We believe that to strengthen the identification for threatened animals, to prevent the circulation of them, and to seek fertile animals of corresponding bioactivities as substitutes are effective strategies to solve this problem. METHODOLOGY/PRINCIPAL FINDINGS: A powerful technique of DNA barcoding based on the mitochondrial gene cytochrome c oxidase I (COI was used to identify threatened animals of Bovidae and Cervidae, as well as their illegal adulterants (including 10 species and 47 specimens. Meanwhile, the microcalorimetric technique was used to characterize the differences of bio-responses when those animal specimens acted on model organism (Escherichia coli. We found that the COI gene could be used as a universal primer to identify threatened animals and illegal adulterants mentioned above. By analyzing 223 mitochondrial COI sequences, a 100% identification success rate was achieved. We further found that the horns of Mongolian Gazelle and Red Deer could be exploited as a substitute for some functions of endangered Saiga Antelope and Sika Deer in traditional medicine, respectively. CONCLUSION/SIGNIFICANCE: Although it needs a more comprehensive evaluation of bioequivalence in order to completely solve the problem of substitutes for threatened animals, we believe that the identification (DNA barcoding of threatened animals combined with seeking substitutions (bio-response can yet be regarded as a valid strategy for establishing a balance

  6. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  7. Rapid aqueous release of fission products from high burn-up LWR fuel: Experimental results and correlations with fission gas release

    Science.gov (United States)

    Johnson, L.; Günther-Leopold, I.; Kobler Waldis, J.; Linder, H. P.; Low, J.; Cui, D.; Ekeroth, E.; Spahiu, K.; Evins, L. Z.

    2012-01-01

    Studies of the rapid aqueous release of fission products from UO 2 and MOX fuel are of interest for the assessment of the safety of geological disposal of spent fuel, because of the associated potential contribution to dose in radiological safety assessment. Studies have shown that correlations between fission gas release (FGR) and the fraction rapidly leached of various long-lived fission products can provide a useful method to obtain some of this information. Previously, these studies have been limited largely to fuel with burn-up values below 50 MWd/kg U. Collaborative studies involving SKB, Studsvik, Nagra and PSI have provided new data on short-term release of 137Cs and 129I for a number of fuels irradiated to burn-ups of 50-75 MWd/kgU. In addition a method for analysis of leaching solutions for 79Se was developed. The results of the studies show that the fractional release of 137Cs is usually much lower than the FGR covering the entire range of burn-ups studied. Fractional 129I releases are somewhat larger, but only in cases in which the fuel was forcibly extracted from the cladding. Despite the expected high degree of segregation of fission gas (and by association 137Cs and 129I) in the high burn-up rim, no evidence was found for a significant contribution to release from the rim region. The method for 79Se analysis developed did not permit its detection. Nonetheless, based on the detection limit, the results suggest that 79Se is not preferentially leached from spent fuel.

  8. New accurate measurements of neutron emission probabilities for relevant fission products

    Directory of Open Access Journals (Sweden)

    Agramunt J.

    2017-01-01

    Full Text Available We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations.

  9. Review of tomography technique for 3-dimensional fission product distribution determination in irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pakr, D. G.; Hong, K. P.; Joo, Y. S.; Lee, H. K

    2006-04-15

    Tomography algorithm is reviewed in order to determine radial 2-dimensional fission product distribution of irradiated fuel rod and to reconstruct it's image using computer. Main contents are Radon transformation, Fourier central slice theorem, inverse Fourier transform, accompanied FBP(Filtered Back Projection) and BPB(Back Projection Filtering). In addition, another tomography reconstruction algorithm, namely, ART(Algebraic Reconstruction Technique) is reviewed briefly. According to reviewed results, we devise equipment for determining of 2-dimensional distribution of irradiated nuclear fuel using existing gamma scanning apparatus. On results of review, It is necessary to develop computer program of reconstruction algorithm for determining of object function and image reconstruction.

  10. Design and Expected Performance of the AGR-1 Fission Product Monitoring System (FPMS)

    Energy Technology Data Exchange (ETDEWEB)

    John K. (Jack) Hartwell; Dawn M. Scates

    2005-09-01

    The effluent from each test capsule of the AGR-1 experiment will be monitored by a detector system consisting of a gamma-ray spectrometer and a gross radiation detector. This collection of radiation measurement systems will be known as the AGR-1 Fission Product Monitoring System (FPMS). Proper design and functioning of the FPMS is critical to the success of the AGR-1 fuel test experiment.This document describes the AGR-1 FPMS and presents calculations indicating that this design will meet the pertinent test requirements.

  11. MICRO/NANO-STRUCTURAL EXAMINATION AND FISSION PRODUCT IDENTIFICATION IN NEUTRON IRRADIATED AGR-1 TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.; Hill, C. M.; Holesinger, T. G.; Wu, Y. Q.; Aguiara, J. A.

    2016-11-01

    Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retention to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows

  12. Transport of fission products with a helium gas-jet at TRIGA-SPEC

    Science.gov (United States)

    Eibach, M.; Beyer, T.; Blaum, K.; Block, M.; Eberhardt, K.; Herfurth, F.; Geppert, C.; Ketelaer, J.; Ketter, J.; Krämer, J.; Krieger, A.; Knuth, K.; Nagy, Sz.; Nörtershäuser, W.; Smorra, C.

    2010-02-01

    A helium gas-jet system for the transport of fission products from the research reactor TRIGA Mainz has been developed, characterized and tested within the TRIGA-SPEC experiment. For the first time at TRIGA Mainz carbon aerosol particles have been used for the transport of radionuclides from a target chamber with high efficiency. The radionuclides have been identified by means of γ-spectroscopy. Transport time, efficiency as well as the absolute number of transported radionuclides for several species have been determined. The design and the characterization of the gas-jet system are described and discussed.

  13. Measurement of the isomeric yield ratios of fission products with JYFLTRAP

    CERN Document Server

    Gorelov, D; Hakala, J; Jokinen, A; Kolhinen, V S; Koponen, J; Lantz, M; Matteram, A; Moore, I; Penttilä, H; Pohjalainen, I; Pomp, S; Rakopoulos, V; Reponen, M; Rinta-Antilav, S; Schonnenschein, V; Simutkin, V; Solders, A; Voss, A; Äystö, J

    2014-01-01

    Several isomeric yield ratios of fission products in 25 MeV pr oton-induced fis- sion of 238 U were measured recently at the JYFLTRAP facility. The ion-g uide separator on-line method was utilized to produce radioacti ve ions. The dou- ble Penning-trap mass spectrometer was used to separate iso meric and ground states by their masses. To verify the new experimental techn ique γ -spectro- scopy method was used to obtain the same isomeric ratios.

  14. Approaches to the RAW (Actinides, Fission Products) transmutation in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Lopatkin, A.; Tocheniy, L. [ENTEK-RDIPE, Moscow (Russian Federation)

    1994-12-31

    Within the framework of developing the general concept of large-scale environmentally safe use of nuclear reactor energy RDIPE, executes research of ways to radically decrease the hazard of high-level radioactive wastes (actinides, fission products) to be buried into the Earth. The opportunities are appreciated for replacement and transmutation of RAW fractions and nuclides into nuclear reactor with various spectrum at various irradiation regime, including specialized reactor with utmost parameters and blankets of fusion and linac-driven reactors. The results indicate on expediency of transmutation of actinides in fast reactor in closed fuel cycle. As to fission products, one part of them can be used in radiative technologies (Cs, Sr) or reused in reactor (Zr), other part (Sm, I, Tc) can be transmuted into power-generating reactor, so that together with other after long-time (200-300 years) controllable cooling to be bured into the Earth. In blanket the considerable influence on result of actinide irradiation can are rendered by the fast neutrons (fusion ones in the case of thermonuclear reactor or spalation ones in accelerator driven machine), the threshold reactions of (n,f), (n,2n), (n,3n) and etc. The fusion reactor has wide enough opportunities to form spectrum of neutrons, optimum for reactions (n,f), (n;{gamma}), (n,2n), including threshold ones, as well as the replacement of mass of several tons of RAW are technically possible. However, at fast neutron spectrum light actinide isotopes (U-232, Pu-236) are produced in quantities on 2-3 order up then in the case of fission reactor, but at softer one the probabilities of threshold reactions of even nuclei are reduced. This scheme in general permits to ensure the completion of radiative equivalence of uranium taken from the Earth, and appropriate RAW, directed into the Earth.

  15. Fission product data for thermal reactors. Part 2. Users manual for EPRI-CINDER code and data

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Wilson, W.B.; Stamatelatos, M.G.

    1976-12-01

    The objective of this project has been the production of a data library suitable for calculating the buildup of fission product nuclides during the operation of a thermal power reactor. This has been accomplished by reducing the fission product data from the fourth version of the national reference nuclear data base--ENDF/B into a series of linearized decay chains and calculating the effective yields and cross sections of the relevant nuclides. Two versions of the fission product library have been prepared: an 84 chain master library and a reduced 12 chain library, both of which can be used as input for the computer program CINDER. A users manual for an upgraded version of the burnup program CINDER (renamed EPRI-CINDER) is presented.

  16. Production and study of fission fragments, from Lohengrin to Alto; Production et etude des fragments de fission, de Lohengrin a Alto

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, F

    2005-06-15

    The study of nuclei far from stability is constitutive of the history of nuclear physics at its very beginning and has been making considerable great strides since then. The study of these nuclei give the opportunity to reach new information on the nuclear structure and thus to measure the solidity of our knowledge on nuclear matter and its validity when it is pushed to its limits. The reaction selected for the production of exotic nuclei in the framework of the PARRNe program is the fission of uranium 238. The nuclei produced have an intermediate mass and are very rich in neutrons. The technique to recover them in order to accelerate them is the thick target method called also the Isol technique. The installation of the ancient Lep injector at the Tandem line in Orsay (IPN) is expected to increase by a factor 100 the production rate of exotic nuclei in the PARRNe program, it is the Alto project. The work presented here concerns studies carried out at the Lohengrin spectrometer installed at the ILL in Grenoble, and at the Tandem installation in Orsay. This document is divided into 4 parts: 1) in flight techniques at Lohengrin, 2) the Isol technique, 3) magic numbers in the domain N=50, and 4) the Alto project.

  17. MODELING AND ANALYSIS OF FISSION PRODUCT TRANSPORT IN THE AGR-3/4 EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul W.; Collin, Blaise P.; Hawkes, Grant L.; Harp, Jason M.; Demkowicz, Paul A.; Petti, David A.

    2016-11-01

    In this work we describe the ongoing modeling and analysis efforts in support of the AGR-3/4 experiment. AGR-3/4 is intended to provide data to assess fission product retention and transport (e.g., diffusion coefficients) in fuel matrix and graphite materials. We describe a set of pre-test predictions that incorporate the results of detailed thermal and fission product release models into a coupled 1D radial diffusion model of the experiment, using diffusion coefficients reported in the literature for Ag, Cs, and Sr. We make some comparisons of the predicted Cs profiles to preliminary measured data for Cs and find these to be reasonable, in most cases within an order of magnitude. Our ultimate objective is to refine the diffusion coefficients using AGR-3/4 data, so we identify an analytical method for doing so and demonstrate its efficacy via a series of numerical experiments using the model predictions. Finally, we discuss development of a post-irradiation examination plan informed by the modeling effort and simulate some of the heating tests that are tentatively planned.

  18. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    Science.gov (United States)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  19. Cost analysis for application of solidified waste fission product canisters in U. S. Army steam plants

    Energy Technology Data Exchange (ETDEWEB)

    Sande, W.E.; Bjorklund, W.J.; Brooks, N.A.

    1977-04-01

    The main objectives of the present study are to design steam plants using projected waste fission product canister characteristics, to analyze the overall impact and cost/benefit to the nuclear fuel cycle associated with these plants, and to develop plans for this application if the cost analysis so warrants it. The construction and operation of a steam plant fueled with waste fission product canisters would require the involvement and cooperation of various government agencies and private industry; thus the philosophies of these groups were studied. These philosophies are discussed, followed by a forecast of canister supply, canister characteristics, and strategies for Army canister use. Another section describes the safety and licensing of these steam plants since this affects design and capital costs. The discussion of steam plant design includes boiler concepts, boiler heat transfer, canister temperature distributions, steam plant size, and steam plant operation. Also, canister transportation is discussed since this influences operating costs. Details of economics of Army steam plants are provided including steam plant capital costs, operating costs, fuel reprocessor savings due to Army canister storage, and overall economics. Recommendations are made in the final section.

  20. Distribution of fission products in Peach Bottom HTGR fuel element E11-07

    Energy Technology Data Exchange (ETDEWEB)

    Wichner, R.P.; Dyer, F.F.; Martin, W.J.; Bate, L.C.

    1977-04-01

    This is the second in a projected series of six post-irradiation examinations of Peach Bottom High-Temperature Gas-Cooled Reactor driver fuel elements. Element E11-07, the subject of this report, received an equivalent of 701 full-power days of irradiation prior to scheduled withdrawal. The examination procedures emphasized the determination of fission product distributions in the graphite portions of the fuel element. Continuous axial scans indicated a /sup 137/Cs inventory of 17 Ci in the graphite sleeve and 8.3 Ci in the spine at the time of element withdrawal from the core. In addition, the nuclides /sup 134/Cs, /sup 110m/Ag, /sup 60/Co, and /sup 154/Eu were found in the graphite portions of the fuel element in significant amounts. Radial distributions of these nuclides plus the distribution of the beta emitters /sup 3/H, /sup 14/C, and /sup 90/Sr were obtained at six axial locations, four within the fueled region and one each above and below. The radial dissection was accomplished by use of a manipulator-operated lathe in a hot cell. These profiles reveal an increased degree of penetration of /sup 134/Cs, relative to /sup 137/Cs, evidently due to a longer time spent as xenon precursor. In addition to fission product distribution, the appearance of the element components was recorded photographically, fuel compact and graphite dimensions were recorded at numerous locations, and metallographic examinations of the fuel were performed.

  1. Fission Product Appearance Rate Coefficients in Design Basis Source Term Determinations – Past and Present

    Directory of Open Access Journals (Sweden)

    Perez Pedro B.

    2017-01-01

    Full Text Available Nuclear power plant radiation protection design features are based on radionuclide source terms derived from conservative assumptions that envelope expected operating experience. Two parameters that significantly affect the radionuclide concentrations in the source term are failed fuel fraction and effective fission product appearance rate coefficients. Failed fuel fraction may be a regulatory based assumption such as in the U.S. Appearance rate coefficients are not specified in regulatory requirements, but have been referenced to experimental data that is over 50 years old. No doubt the source terms are conservative as demonstrated by operating experience that has included failed fuel, but it may be too conservative leading to over-designed shielding for normal operations as an example. Design basis source term methodologies for normal operations had not advanced until EPRI published in 2015 an updated ANSI/ANS 18.1 source term basis document. Our paper revisits the fission product appearance rate coefficients as applied in the derivation source terms following the original U.S. NRC NUREG-0017 methodology. New coefficients have been calculated based on recent EPRI results which demonstrate the conservatism in nuclear power plant shielding design.

  2. The Fission-Based  99Mo Production Process ROMOL-99 and Its Application to PINSTECH Islamabad

    Directory of Open Access Journals (Sweden)

    Rudolf Muenze

    2013-01-01

    Full Text Available An innovative process for fission based 99Mo production has been developed under Isotope Technologies Dresden (ITD GmbH (former Hans Wälischmiller GmbH (HWM, Branch Office Dresden, and its functionality has been tested and proved at the Pakistan Institute of Nuclear Science and Technology (PINSTECH, Islamabad. Targets made from uranium aluminum alloy clad with aluminum were irradiated in the core of Pakistan Research Reactor-1 (PARR-1. In the mean time more than 50 batches of fission molybdenum-99 (99Mo have been produced meeting the international purity/pharmacopoeia specifications using this ROMOL-99 process. The process is based on alkaline dissolution of the neutron irradiated targets in presence of NaNO3, chemically extracting the 99Mo from various fission products and purifying the product by column chromatography. This ROMOL-99 process will be described in some detail.

  3. Sensitivity analysis for CORSOR models simulating fission product release in LOFT-LP-FP-2 severe accident experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club; Pourgol-Mohammad, Mohammad [Sahand Univ. of Technology, Tabriz (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-03-15

    This paper deals with simulation, sensitivity and uncertainty analysis of LP-FP-2 experiment of LOFT test facility. The test facility simulates the major components and system response of a pressurized water reactor during a LOCA. MELCOR code is used for predicting the fission product release from the core fuel elements in LOFT LP-FP-2 experiment. Moreover, sensitivity and uncertainty analysis is performed for different CORSOR models simulating release of fission products in severe accident calculations for nuclear power plants. The calculated values for the fission product release are compared under different modeling options to the experimental data available from the experiment. In conclusion, the performance of 8 CORSOR modeling options is assessed for available modeling alternatives in the code structure.

  4. Development of a model to predict fission product behaviour in spherical fuel elements during water ingress events

    Energy Technology Data Exchange (ETDEWEB)

    Merwe, J.J. van der [PBMR, PO Box 9396, Centurion 0046 (South Africa)]. E-mail: hanno.vdmerwe@pbmr.co.za; Coetzee, P.P. [Randse Afrikaans University, PO Box 524, Auckland Park 2006 (South Africa)

    2007-01-15

    At PBMR gaseous fission product releases from spherical fuel elements under normal conditions are calculated by the code NOBLEG. The ability of NOBLEG to calculate noble gas and halogen release under oxidizing conditions during water ingress was developed. Observations made during the water vapour injection tests performed during the irradiation experiment HFR-K6, were used to determine simple relations that can be used to predict gaseous fission product release from spherical fuel elements under oxidizing conditions caused by small water ingress events, for PBMR operational temperatures. A new model was proposed to explain peculiarities observed during the water injection tests.

  5. Sorption of {sup 239}Np and {sup 235}U fission products by zeolite Y, Mexican natural erionite, and bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, M.T.; Solache, M.; Iturbe, J.L. [Instituto Nacional de Investigaciones Nucleares, C.P. (Mexico)]|[Universidad Autonoma Metropolitana, C.P. (Mexico)] [and others

    1996-09-01

    Zeolite Y, erionite, and bentonite have been used in this work to remove {sup 239}Np and {sup 235}U fission products from aqueous solutions at various pH values. It was found that the sorption of fission products by aluminosilicates takes place by different mechanisms, mainly ion exchange, precipitation, and electrostatic surface interaction. The radionuclides content was determined by {gamma}-spectrometry, and X-ray diffraction was used to learn whether the solids maintained their crystallinity at different pH values.

  6. Fission-product releases to the primary system of EBR-II from April 1975 to March 1977

    Energy Technology Data Exchange (ETDEWEB)

    So, B Y.C.; Lambert, J D.B.; Kirn, F S; Armstrong, J R; Ebersole, E R; Laug, M T

    1979-05-01

    This report describes the 14 releases of fission products that occurred in EBR-II from April 1975 to March 1977. Each release was readily detected, and all but one (in a driver-fuel subassembly) was identified with a particular subassembly. Xenon tagging was the primary method of identification, although other methods were used where appropriate. Methods of monitoring and identifying fission-product sources are discussed, and each release and identification is described. Effects of breached elements on plant availability were minimal in this period. From all evidence, cladding breaching on elements in EBR-II continues to be a benign process.

  7. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    Science.gov (United States)

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  8. A Research Program for Fission Product/Dust Transport in HTGR’s

    Energy Technology Data Exchange (ETDEWEB)

    Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States)

    2016-02-01

    High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuel was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.

  9. IMPACT OF THE CHEMICAL FORM OF IN-CONTAINMENT SOURCE ON FISSION PRODUCT RELEASE FROM WWER-1000/V-320 TYPE NPP CONTAINMENT DURING LOCA

    Directory of Open Access Journals (Sweden)

    Adam Kecek

    2016-12-01

    Full Text Available Nuclear power plant accidents may be followed by a release of fission products into the environment. This release is dependent on several phenomena, such as chemistry, pressure, type of the accident etc. The aim of this paper is to assess the impact of the chemical form of iodine on the fission product release into the environment.

  10. Anterior Horn Cell Diseases

    Directory of Open Access Journals (Sweden)

    Merve Firinciogullari

    2016-09-01

    Full Text Available The anterior horn cells control all voluntary movement. Motor activity, respiratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells. Diseases that damage the anterior horn cells, therefore, have a profound impact. Symptoms of anterior horn cell loss (weakness, falling, choking lead patients to seek medical attention. In this article, anterior horn diseases were reviewed, diagnostic criteria and management were discussed in detail. [Archives Medical Review Journal 2016; 25(3.000: 269-303

  11. Low enriched uranium foil plate target for the production of fission Molybdenum-99 in Pakistan Research Reactor-1

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A. [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Federal Area 44000 (Pakistan)], E-mail: mushtaqa@pinstech.org.pk; Iqbal, Masood; Bokhari, Ishtiaq Hussain; Mahmood, Tayyab [Nuclear Engineering Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Federal Area 44000 (Pakistan)

    2009-04-15

    Low enriched uranium foil (19.99% {sup 235}U) will be used as target material for the production of fission Molybdenum-99 in Pakistan Research Reactor-1 (PARR-1). LEU foil plate target proposed by University of Missouri Research Reactor (MURR) will be irradiated in PARR-1 for the production of 100Ci of Molybdenum-99 at the end of irradiation, which will be sufficient to prepare required {sup 99}Mo/{sup 99m}Tc generators at Pakistan Institute of Nuclear Science and Technology, Islamabad (PINSTECH) and its supply in the country. Neutronic and thermal hydraulic analysis for the fission Molybdenum-99 production at PARR-1 has been performed. Power levels in target foil plates and their corresponding irradiation time durations were initially determined by neutronic analysis to have the required neutron fluence. Finally, the thermal hydraulic analysis has been carried out for the proposed design of the target holder using LEU foil plates for fission Molybdenum-99 production at PARR-1. Data shows that LEU foil plate targets can be safely irradiated in PARR-1 for production of desired amount of fission Molybdenum-99.

  12. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  13. Magnitude of fission product depositions from atmospheric nuclear weapon test fallout in France.

    Science.gov (United States)

    Renaud, Philippe; Louvat, Didier

    2004-04-01

    The external dose attributable to fallout from worldwide atmospheric nuclear testing, which represents about 40% of the total effective dose received before 2000, is dominated by specific fission products such as 95Zr, 104Ba, 106Ru, 103Ru, and 144Ce, which are far less well-documented than 90Sr and 137Cs. The depositions of these nuclides over France were calculated on the basis of activity measurements in air and rainwater samples collected from 1961 to 1977. These depositions were then compared to the same radionuclides activities measured in grass during that period. This study shows that the transfer and deposition processes occur in a very similar manner for all the studied radionuclides. Depositions calculated in this study, consistent in most cases with UNSCEAR estimates, constitute a good basis for the external dose assessment of nuclear weapon test fallout over Western Europe.

  14. Structural stability and fission product behaviour in U{sub 3}Si

    Energy Technology Data Exchange (ETDEWEB)

    Middleburgh, S.C., E-mail: simon.middleburgh@hotmail.co.uk [IME, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia); Westinghouse Electric Sweden AB, SE-72163 Västerås (Sweden); Burr, P.A. [Department of Materials, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); King, D.J.M.; Edwards, L.; Lumpkin, G.R. [IME, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales (Australia); Grimes, R.W. [Department of Materials, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2015-11-15

    The crystalline and amorphous structures of U{sub 3}Si have been investigated using density functional theory techniques for the first time. The effects of disorder and the impact of fission products has been separated to understand the swelling characteristics of U{sub 3}Si in both crystalline and amorphous U{sub 3}Si. Initially, the stability of the three experimentally observed polymorphs of U{sub 3}Si were explored. Subsequently, we modelled the amorphous U{sub 3}Si system and conclude that initial increase in volume observed experimentally at low temperature corresponds well with the volume change that occurs with the observed amorphisation of the material. The solubility of Xe and Zr into both the crystalline and amorphous systems was subsequently investigated.

  15. First-principles study of defects and fission product behavior in uranium diboride

    Science.gov (United States)

    Jossou, Ericmoore; Oladimeji, Dotun; Malakkal, Linu; Middleburgh, Simon; Szpunar, Barbara; Szpunar, Jerzy

    2017-10-01

    A Systematic study of defects and incorporation of xenon (Xe) and zirconium (Zr) fission products in uranium diboride (UB2) has been investigated using density functional theory (DFT) calculations as implemented in Quantum ESPRESSO code. The incorporation and solution energies show that both FPs (Xe and Zr) are most stable in U vacancies with Zr being more stable than Xe. A volume expansion is observed as the concentration of Xe increases in the fuel matrix while Zr incorporation leads to a contraction. Bader charge analysis is used to establish the formation of Zr-B ionic/covalent bond due to large electron transfer observed while there is only a weak electronic interaction between Xe and the UB2 lattice. Finally, using climbing-image nudged elastic band calculation, we found that the energy barrier of U in UB2 is 0.08 eV higher than B migration energy.

  16. Laboratory-Scale Bismuth Phosphate Extraction Process Simulation To Track Fate of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. JEFFREY; Lindberg, Michael J.; Jones, Thomas E.; Schaef, Herbert T.; Krupka, Kenneth M.

    2007-02-28

    Recent field investigation that collected and characterized vadose zone sediments from beneath inactive liquid disposal facilities at the Hanford 200 Areas show lower than expected concentrations of a long-term risk driver, Tc-99. Therefore laboratory studies were performed to re-create one of the three processes that were used to separate the plutonium from spent fuel and that created most of the wastes disposed or currently stored in tanks at Hanford. The laboratory simulations were used to compare with current estimates based mainly on flow sheet estimates and spotty historical data. Three simulations of the bismuth phosphate precipitation process show that less that 1% of the Tc-99, Cs-135/137, Sr-90, I-129 carry down with the Pu product and thus these isotopes should have remained within the metals waste streams that after neutralization were sent to single shell tanks. Conversely, these isotopes should not be expected to be found in the first and subsequent cycle waste streams that went to cribs. Measurable quantities (~20 to 30%) of the lanthanides, yttrium, and trivalent actinides (Am and Cm) do precipitate with the Pu product, which is higher than the 10% estimate made for current inventory projections. Surprisingly, Se (added as selenate form) also shows about 10% association with the Pu/bismuth phosphate solids. We speculate that the incorporation of some Se into the bismuth phosphate precipitate is caused by selenate substitution into crystal lattice sites for the phosphate. The bulk of the U daughter product Th-234 and Np-237 daughter product Pa-233 also associate with the solids. We suspect that the Pa daughter products of U (Pa-234 and Pa-231) would also co-precipitate with the bismuth phosphate induced solids. No more than 1 % of the Sr-90 and Sb-125 should carry down with the Pu product that ultimately was purified. Thus the current scheme used to estimate where fission products end up being disposed overestimates by one order of magnitude the

  17. Separation of Fission Molybdenum from Low Enriched Uranium Products by Precipitation with α-Benzoin Oxime

    Directory of Open Access Journals (Sweden)

    WANG Qing-gui;LIANG Ji-xin;WU Yu-xuan;XIANG Xue-qin;LUO Zhi-fu

    2016-11-01

    Full Text Available To separate molybdenum-99 from fission products of low enriched uranium (LEU by precipitation with α-benzoin oxime (α-BO, influences of temperature, concentration of nitrate, molar ratio of α-BO to Mo, radiation dose and uranium concentration on precipitating molybdenum with α-BO had been evaluated. Re-dissolution of MoO2(α-BO2 was performed. The decontamination factors of impurity elements including strontium、 zirconium、 ruthenium、 cesium、 cerium、 iodine-131 and uranium had been determined. The recovery yield of Mo for the separation procedure was calculated. It showed that, at the room temperature, with 1 mol/L of nitric acid concentration , higher than 2 of molar ratio of α-BO to Mo, when α-BO was dissolved in anhydrous ethanol or 0.4 mol/L sodium hydroxide solution, higher than 95% of Mo recovery yield could be obtained. Under the radiation dose rate of 5 000 Gy/h, when the radiation dose increased, Mo recovery yield decreased instead. When the total radiation dose of α-BO was below 8.25×105 Gy, Mo recovery yield was higher than 85%.When uranium concentration increased, Mo recovery yield decreased. MoO2(α-BO2 precipitate could be dissolved in sodium hydroxide of 0.5 mol/L within 15 minutes. Effective decontamination for all major impurity elements including strontium, zirconium, ruthenium, cesium,cerium, iodine and uranium were observed. This study has paved the pay for further research for fission 99Mo production.

  18. Fission product determination in irradiated fuel processing waste (electrophoresis); Dosage des produits de fission dans les effluents de traitement des combustibles irradies (electrophorese)

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, J.M.; Tret, J. [Commissariat a l' Energie Atomique, Centre de Marcoule, 30 - Bagnols-sur-Ceze (France). Centre de Production de Plutonium de Marcoule. Services d' Extraction du Plutonium

    1966-07-01

    This dosage method concerns fission products present in the waste produced from the processing of cooled irradiated fuels. - Sr, Cs, Ce, Y, Ru by quantitative analysis; - Zr, Nb by qualitative analysis. It includes electrophoresis on paper strips one meter long which is then analysed between two window-less Geiger counters. For an activity of 10{sup -2} {mu}Ci of any cation in a 10 {mu}l spot, the standard error {sigma} if 3 to 4 per cent. complete analysis lasts about 5 hours. (authors) [French] Cette methode de dosage concerne les produits de fission presents dans les effluents de traitement des combustibles irradies refroidis: - Sr, Cs, Ce, Y, Ru en analyse quantitative; - Zr, Nb en analyse qualitative. Elle comporte une electrophorese sur bande de papier de un metre de longueur suivie d'un depouillement entre deux compteurs Geiger sans fenetre. Pour une activite de 10{sup -2} {mu}Ci d'un cation quelconque dans une tache de 10 {mu}l l'erreur standard {sigma} est de 3 a 4 pour cent. L'analyse complete demande environ 5 heures. (auteurs)

  19. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  20. Synthesis of Actinide Materials for the Study of Basic Actinide Science and Rapid Separation of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Dorhout, Jacquelyn Marie [Univ. of Nevada, Las Vegas, NV (United States)

    2017-11-28

    This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations. Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO3. Different types of frameworks also yield different results.

  1. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  2. Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1

    DEFF Research Database (Denmark)

    Galinos, Christos; Dimitrov, Nikolay Krasimirov; Larsen, Torben J.

    2016-01-01

    , the ones facing a free sector towards west and south. The power production results of few turbines are compared with SCADA data. The results of this paper are expected to have significance for operation and maintenance planning, where the schedules for inspection and service activities can be adjusted...... above rated wind speed and the highest loaded blades are in the easternmost row as the dominating wind direction is from West. Regarding the tower components, the highest loaded WTs are also located towards the eastern central location. The turbines with highest power production are, not surprisingly...

  3. Superasymmetric fission at intermediate energy and production of neutron-rich nuclei with A

    NARCIS (Netherlands)

    Huhta, M; Dendooven, P; Honkanen, A; Jokinen, A; Lhersonneau, G; Oinonen, M; Penttila, H; Perajarvi, K; Rubchenya, VA; Aysto, J

    1997-01-01

    The yields of neutron-rich Ni, Cu, Zn, Ga and Ge-isotopes were measured in 25 MeV proton induced fission of U-238 using the ion guide-based isotope separator technique. The results indicate enhancement for superasymmetric mass division at intermediate excitation energy of the fissioning nucleus and

  4. Fission product behavior in high-temperature water: CsI vs MoO4

    Science.gov (United States)

    Kanjana, K.; Silva, K.; Channuie, J.

    2017-09-01

    Fission product behaviors of Cs, a major element released in a severe nuclear accident, still remain unclear. The question frequently addressed is whether Cs released will be in the form of Cs2MoO4 or CsOH. This is a challenging issue since it has been demonstrated that the reaction between Cs2MoO4 and water leading to CsOH production is thermodynamically favored. The present research aims at investigation of CsOH generation through this chemical channel. A high-temperature setup with a flow system based on the cooling system of a water-cooled nuclear reactor has been assembled. The reaction between aqueous solutions of CsI and Na2MoO4 in a high-corrosion-resistant hot cell (Hastelloy) has been studied up to 80 °C in deoxygenated system. The products have been characterized using FTIR and XRD. The results have shown that there is no reaction between CsI and Na2MoO4 under the experimental conditions.

  5. Controlling Pu behavior on Titania: Implications for LEU Fission-Based Mo-99 Production

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Brown, M. Alex [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Heltemes, Thad A. [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Vandegrift, George F. [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States

    2017-09-29

    Molybdenum-99 is the parent isotope of the most widely used isotope, technetium-99m, in all diagnostic nuclear medicine procedures. Due to proliferation concerns associated with the use of highly enriched uranium (HEU), the preferred method of fission-based Mo-99 production uses low enriched uranium (LEU) targets. Using LEU versus HEU for Mo-99 production produces similar to 30 times more Pu-239, due to neutron capture on U-238 to produce Np-239, which ultimately decays to Pu-239 (t(1/2) = 24,110 yr). Argonne National Laboratory is supporting a potential US Mo-99 producer in their efforts to produce Mo-99 from an LEU solution. In order to mitigate the generation of large volumes of greater-than-class-C (GTCC) low level waste (Pu-239 concentrations greater than 1 nCi/g), we have focused our efforts on the separation chemistry of Pu and Mo with a titania sorbent in sulfate media. Results from batch and column experiments show that temperature and acid wash concentration can be used to control Pu behavior on titania.

  6. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.L. [Oak Ridge National Lab., TN (United States)

    1994-06-01

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena and presents major conclusions on the state of the art.

  7. Waste form evaluation for RECl 3 and REO x fission products separated from used electrochemical salt

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Pierce, David A.; Crum, Jarrod V.; Williams, Benjamin D.; Snyder, Michelle M. V.; Peterson, Jacob A.

    2018-04-01

    The work presented here is based off the concept that the rare earth chloride (RECl3) fission products mixture within the used electrorefiner (ER) salt can be selectively removed as RECl3 (not yet demonstrated) or precipitated out as REOCl through oxygen sparging (has been demonstrated). This paper presents data showing the feasibility of immobilizing a mixture of RECl3’s at 10 mass% into a TeO2-PbO glass and it shows that this same mixture of RECl3’s can be oxidized to REOCl at 300°C and then to REOx by 1200°C. When the REOx mixture is heated at temperatures >1200°C, the ratios of REOx’s change. The mixture of REOx was then immobilized in a LABS glass at a high loading of 60 mass%. Both the TeO2-PbO glass and LABS glass systems show good chemical durability. The advantages and disadvantages of tellurite and LABS glasses are compared.

  8. Actinide, lanthanide and fission product speciation and electrochemistry in high and low temperature ionic melts

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Anand I.; Kinoshita, Hajime; Koster, Anne L.; May, Iain; Sharrad, Clint A.; Volkovich, Vladimir A.; Fox, O. Danny; Jones, Chris J.; Lewin, Bob G.; Charnock, John M.; Hennig, Christoph

    2004-07-01

    There is currently a great deal of research interest in the development of molten salt technology, both classical high temperature melts and low temperature ionic liquids, for the electrochemical separation of the actinides from spent nuclear fuel. We are interested in gaining a better understanding of actinide and key fission product speciation and electrochemical properties in a range of melts. Our studies in high temperature alkali metal melts (including LiCl and LiCl-KCl and CsCl-NaCl eutectics) have focussed on in-situ species of U, Th, Tc and Ru using X-ray absorption spectroscopy (XAS, both EXAFS and XANES) and electronic absorption spectroscopy (EAS). We report unusual actinide speciation in high temperature melts and an evaluation of the likelihood of Ru or Tc volatilization during plant operation. Our studies in lower temperature melts (ionic liquids) have focussed on salts containing tertiary alkyl group 15 cations and the bis(tri-fluor-methyl)sulfonyl)imide anion, melts which we have shown to have exceptionally wide electrochemical windows. We report Ln, Th, U and Np speciation (XAS, EAS and vibrational spectroscopy) and electrochemistry in these melts and relate the solution studies to crystallographic characterised benchmark species. (authors)

  9. Analysis of fission product transport under terminated LOCA conditions. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J.A.; Baybutt, P.; Jordan, H.; Denning, R.S.; Wooton, R.O.

    1977-12-30

    An analytical model was developed to allow preditions of the source term to the containment as dependent on release from the fuel pins and deposition within the primary system. The model was developed into a flexible computer code adaptable to various geometrical arrangements and flow paths. The calculational framework was established in such a way to permit, in principle, the determination of particle and vapor transport and deposition in a general system of control volumes connected by fluid flow in an arbitrary way. This framework requires as input the rate of fission product release to the primary flow, as a function of time for each vapor and particulate species to be considered, and a complete, time dependent, thermal-hydraulic description of the system. TRAP-PWR, TRAP-BWR and TRACK computer codes are specializations, described in detail in the text of this report, of the general framework. The nature of these specializations depends strongly on the degree of detail with which the transporting fluid medium is modeled.

  10. Fission product iodine release and retention in nuclear reactor accidents— experimental programme at PSI

    Science.gov (United States)

    Bruchertseifer, H.; Cripps, R.; Guentay, S.; Jaeckel, B.

    2003-01-01

    Iodine radionuclides constitute one of the most important fission products of uranium and plutonium. If the volatile forms would be released into the environment during a severe accident, a potential health hazard would then ensue. Understanding its behaviour is an important prerequisite for planning appropriate mitigation measures. Improved and extensive knowledge of the main iodine species and their reactions important for the release and retention processes in the reactor containment is thus mandatory. The aim of PSI's radiolytical studies is to improve the current thermodynamic and kinetic databases and the models for iodine used in severe accident computer codes. Formation of sparingly soluble silver iodide (AgI) in a PWR containment sump can substantially reduce volatile iodine fraction in the containment atmosphere. However, the effectiveness is dependent on its radiation stability. The direct radiolytic decomposition of AgI and the effect of impurities on iodine volatilisation were experimentally determined at PSI using a remote-controlled and automated high activity 188W/Re generator (40 GBq/ml). Low molecular weight organic iodides are difficult to be retained in engineered safety systems. Investigation of radiolytic decomposition of methyl iodide in aqueous solutions, combined with an on-line analysis of iodine species is currently under investigation at PSI.

  11. Separation of the rare-earth fission product poisons from spent nuclear fuel

    Science.gov (United States)

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  12. Gas emission from the UO2 samples, containing fission products and burnable absorber

    Science.gov (United States)

    Kopytin, V. P.; Baranov, V. G.; Burlakova, M. A.; Tenishev, A. V.; Kuzmin, R. S.; Pokrovskiy, S. A.; Mikhalchik, V. V.

    2016-04-01

    The process gas released from the fuel pellets of uranium fuel during fuel burn-up reduces the thermal conductivity of the rod-shell gap, enhances hydrogen embrittlement of the cladding material, causes it's carbonization, as well as transport processes in the fuel. In this study a technique of investigating the thermal desorption of gases from the UO2 fuel material were perfected in the temperature range 300-2000 K for uniform sample heating rate of 15 K/min in vacuum. The characteristic kinetic dependences are acquired for the gas emission from UO2 samples, containing simulators of fission products (SFP) and the burnable neutron absorber (BNA). Depending on the amount of SFP and BNA contained in the sample thermal desorption gas spectra (TDGS) vary. The composition of emitted gas varies, as well as the number of peaks in the TDGS and the peaks shift to higher temperatures. This indicates that introduction of SFPs and BNA alters the sample material structure and cause the creation of so- called traps which have different bonding energies to the gases. The traps can be a grid of dislocations, voids, and contained in the UO2 matrix SFP and BNA. Similar processes will occur in the fuel pellets in the real conditions of the Nuclear Power Plant as well.

  13. Study on collection efficiency of fission products by spray: Experimental device and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ducret, D.; Roblot, D.; Vendel, J. [Institut de Protection et de Surete Nucleaire, Gif-Sur-Yvette (France); Billarand, Y. [ECCO Pharmacie et Chimie, Neuilly (France)

    1997-08-01

    Consequences of an hypothetical overheating reactor accident in nuclear power plants can be limited by spraying cold water drops into containment building. The spray reduces the pressure and the temperature levels by condensation of steam and leads to the washout of fission products (aerosols and gaseous iodine). The present study includes a large program devoted to the evaluation of realistic washout rates. An experimental device (named CARAIDAS) was designed and built in order to determine the collection efficiency of aerosols and iodine absorption by drops with representative conditions of post-accident atmosphere. This experimental device is presented in the paper and more particularly: (1) the experimental enclosure in which representative thermodynamic conditions can be achieved, (2) the monosized drops generator, the drops diameter measurement and the drops collector, (3) the cesium iodide aerosols generator and the aerosols measurements. Modelling of steam condensation on drops aerosols collection and iodine absorption are described. First experimental and code results on drops and aerosols behaviour are compared. 8 refs., 18 figs.

  14. Fast-neutron interaction with the fission product {sup 103}Rh

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B. [Argonne National Lab., IL (United States)]|[Arizona Univ., Tucson, AZ (United States); Guenther, P.T. [Argonne National Lab., IL (United States)

    1993-09-01

    Neutron total and differential elastic- and inelastic-scattering cross sections of {sup 103}Rh are measured from {approximately} 0.7 to 4.5 MeV (totals) and from {approximately} 1.5 to 10 MeV (scattering) with sufficient detail to define the energy-averaged behavior of the neutron processes. Neutrons corresponding to excitations of groups of levels at 334 {plus_minus} 13, 536 {plus_minus} 10, 648 {plus_minus} 25, 796 {plus_minus} 20, 864 {plus_minus} 22, 1120 {plus_minus} 22, 1279 {plus_minus} 60, 1481 {plus_minus} 27 and 1683 {plus_minus} 39 keV were observed. Additional groups at 1840 {plus_minus} 79 and 1991 {plus_minus} 71 key were tentatively identified. Assuming the target is a collective nucleus reasonably approximated by a simple one-phonon vibrator, spherical-optical, dispersive-optical, and coupled-channels models were developed from the data base with attention to the parameterization of the large inelastic-scattering cross sections. The physical properties of these models are compared with theoretical predictions and the systematics of similar model parameterizations in this mass region. In particular, it is shown that the inelastic-scattering cross section of the {sup 103}Rh fission product is large at the relatively low energies of applied interest.

  15. Hot beta particles in the lung: Results from dogs exposed to fission product radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, F.F.; Griffith, W.C.; Hobbs, C.H. [and others

    1995-12-01

    The Chernobyl nuclear reactor accident resulted in the release of uranium dioxide fuel and fission product radionuclides into the environment with the fallout of respirable, highly radioactive particles that have been termed {open_quotes}hot beta particles.{close_quotes} There is concern that these hot beta particles (containing an average of 150-20,000 Bq/particle), when inhaled and deposited in the lung, may present an extraordinary hazard for the induction of lung cancer. We reviewed data from a group of studies in dogs exposed to different quantities of beta-emitting radionuclides with varied physical half-lives to determine if those that inhaled hot beta particles were at unusual risk for lung cancer. This analysis indicates that the average dose to the lung is adequate to predict biologic effects of lung cancer for inhaled beta-emitting radionuclides in the range of 5-50 Gy to the lung and with particle activities in the range of 0.10-50 Bq/particle.

  16. Evaporation release behavior of volatile fission products from liquid sodium pool to the inert cover gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakagiri, T.; Miyahara, S. [Oarai Engineering Center, Power Reactor and Nuclear Fuel Development Corp., Oaraimachi, Ibaraki (Japan)

    1996-12-01

    In fuel failure of sodium cooled fast breeder reactors, released volatile fission products (VFPs) such as iodine and cesium from the fuel will be dissolved into the liquid sodium coolant and transferred to the cover vaporization. In the cover gas system of the reactor, natural convection occurs due to temperature differences between the sodium pool and the gas phase. The release rates of VFPs together with sodium vaporization are considered to be controlled by the convection. In this study, three analytical models are developed and examined to calculate the transient release rates using the equilibrium partition coefficients of VFPs. The calculated release rates are compared with experimental results for sodium and sodium iodide. The release rate of sodium is closest to the calculation by the heterogeneous nucleation theory. The release rate of sodium iodide obtained from the experiment is between the release rates calculated by the model based on heat-and-mass transfer analogy and the Hill`s theory. From this study, it is confirmed that the realistic release rate of sodium is able to be calculated by the model based on the heterogeneous nucleation theory. The conservative release rate of sodium iodide is able to be calculated by the model based on the Hill`s theory using the equilibrium partition coefficient of sodium iodide. (author) 7 figs., 1 tab., 3 refs.

  17. Fission product transport analysis: Task 2. Quarterly progress report, April--June 1977. [PWR; BWR; primary system reflooding following LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J.A.; Jordan, H.; Baybutt, P.; Wooton, R.O.; Denning, R.S.

    1977-09-30

    Continuing activities associated with modeling the transport and deposition of fission products within PWR and BWR primary systems during the reflood time period following a terminated LOCA are reported. The original scope of the overall project has been expanded to include consideration of conditions consistent with those leading to postulated core meltdown situations. Initial tasks on this continuation study involve limited improvements to the TRAP codes and performance of sensitivity analyses for terminated LOCA's plus the evaluation of thermal-hydraulic conditions for use in evaluating fission product transport and deposition in postulated meltdown situations. Beyond these initial tasks, emphasis will be concentrated solely on meltdown analyses. Major efforts within the past quarter have included completion in final form of the informal interim report on analyses for terminated LOCA conditions, initiation of improvement for the TRAP codes to include additional fission product deposition mechanisms, consideration of suitable methods for performing the sensitivity analyses, specification of ranges for variables to be covered in the sensitivity analyses, and initiation of efforts to specify flow conditions to be assumed in future development of analysis procedures applicable to meltdown conditions.

  18. Transmutation of nuclear waste. Status report RAS programme 1994: Recycling and transmutation of actinides and fission products

    Energy Technology Data Exchange (ETDEWEB)

    Cordfunke, E.H.P.; Gruppelaar, H.; Franken, W.M.P.

    1995-07-01

    This report describes the status and progress of the Dutch RAS programme on `Recycling and Transmutation of Actinides and Fission Products` over the year 1994, which is the first year of the second 4-year programme. This programme is outlined and a short progress report is given over 1994, including a listing of 23 reports and publications over the year 1994. Highlights of 1994 were: The completion of long-lived fission-product transmutation studies, the initiation of small-scale demonstration experiments in the HFR on Tc and I, the issue of reports on the potential of the ALMR (Advanced Liquid Metal Reactor) for transmutation adn the participation and international cooperation on irradiation experiments with actinides in inert matrices. The remaining chapters contain more extended contributions on recent developments and selected topics, under the headings: Benefits and risks of partitioning and transmutation, Perspective of chemical partitioning, Inert matrices, Evolutionary options (MOX), Perspective of heavy water reactors, Perspective of fast burners, Perspective of accelerator-based systems, Thorium cycle, Fission-product transmutation, End scenarios, and Executive summary and recommendations. (orig.).

  19. A physical description of fission product behavior fuels for advanced power reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  20. Energy dependence of fission product yields from 235U, 238U, and 239Pu with monoenergetic neutrons between thermal and 14.8 MeV

    Science.gov (United States)

    Gooden, Matthew; Arnold, Charles; Bhike, Megha; Bredeweg, Todd; Fowler, Malcolm; Krishichayan; Tonchev, Anton; Tornow, Werner; Stoyer, Mark; Vieira, David; Wilhelmy, Jerry

    2017-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and γ-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. γ-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033.

  1. Extracellular glucose supports lactate production but not aerobic metabolism in cardiomyocytes from both normoglycemic Atlantic cod and low glycemic short-horned sculpin.

    Science.gov (United States)

    Clow, Kathy A; Short, Connie E; Driedzic, William R

    2016-05-01

    Fish exhibit a wide range of species-specific blood glucose levels. How this relates to glucose utilization is yet to be fully realized. Here, we assessed glucose transport and metabolism in myocytes isolated from Atlantic cod (Gadus morhua) and short-horned sculpin (Myoxocephalus scorpius), species with blood glucose levels of 3.7 and 0.57 mmol l(-1), respectively. Glucose metabolism was assessed by the production of (3)H2O from [2-(3)H]glucose. Glucose metabolism was 3.5- to 6-fold higher by myocytes from Atlantic cod than by those from short-horned sculpin at the same level of extracellular glucose. In Atlantic cod myocytes, glucose metabolism displayed what appears to be a saturable component with respect to extracellular glucose, and cytochalasin B inhibited glucose metabolism. These features revealed a facilitated glucose diffusion mechanism that accounts for between 30% and 55% of glucose entry at physiological levels of extracellular glucose. Facilitated glucose diffusion appears to be minimal in myocytes for short-horned sculpin. Glucose entry by simple diffusion occurs in both cell types with the same linear relationship between glucose metabolism and extracellular glucose concentration, presumably due to similarities in membrane composition. Oxygen consumption by myocytes incubated in medium containing physiological levels of extracellular glucose (Atlantic cod 5 mmol l(-1), short-horned sculpin 0.5 mmol l(-1)) was similar in the two species and was not decreased by cytochalasin B, suggesting that these cells have the capability of oxidizing alternative on-board metabolic fuels. Cells produced lactate at low rates but glycogen levels did not change during the incubation period. In cells from both species, glucose utilization assessed by both simple chemical analysis of glucose disappearance from the medium and (3)H2O production was half the rate of lactate production and as such extracellular glucose was not available for oxidative metabolism

  2. Fission product release and microstructure changes of irradiated MOX fuel at high temperatures

    Science.gov (United States)

    Colle, J.-Y.; Hiernaut, J.-P.; Wiss, T.; Beneš, O.; Thiele, H.; Papaioannou, D.; Rondinella, V. V.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.

    2013-11-01

    -GAMES (Quantitative gas measurement system), described in detail in [15].For each of the samples, fragments were also annealed and measured in the KEMS up to specific temperatures corresponding to different stages of the FGs or He release. These fragments were subsequently analysed by Scanning Electron Microscopy (SEM, Philips XL40) [16] in order to investigate the relationship between structural changes, burn-up, irradiation temperature and fission products release. SEM observations were also done on the samples before the KEMS experiments and the fracture surface appearance of the samples is shown in Fig. 3, revealing the presence of the high burnup structure (HBS) in the Pu-rich agglomerates.A summary of the 12 samples analysed by KEMS, SEM and Q-GAMES is given in Table 1. At 1300 K no clear change potentially related to gas release appears in the UM and PA. At 1450 K a beginning of grain boundaries opening can be observed as well as rounding of the grains attributed to thermal etching. At 1600 K a densification is observed in the PA, smalls grains seem to agglomerate. At 1800 K grain coalescence has occurred in the PA together with formation of large pores. In the UM one observes the formation of a network of intergranular channels. Finally, at 2100 K re-sintering proceeds further and large intra-granular bubbles and five metal precipitates becomes visible. The micrographs of sample type B at 1700 K in Fig. 10, show the formation of small intergranular channel not observed on the image of the sample type A at 1600 K. At 2200 K the intragranular bubbles and intergranular channel are larger than for the sample type A at 2100 K.Images of sample type C (close to pellet centre) are shown in Fig. 11. The PAs did not show the typical HBS-like restructuring but rather loose (open) grains boundaries attributed to the high irradiation temperature. Also big cavities or very large grain boundaries of ˜10 μm were observed (picture 1). The same structure is observed for the UM. After heating

  3. Experimental investigations relevant for hydrogen and fission product issues raised by the Fukushima accident

    Directory of Open Access Journals (Sweden)

    Sanjeev Gupta

    2015-02-01

    Full Text Available The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS, unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled

  4. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    Energy Technology Data Exchange (ETDEWEB)

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  5. Evaluation of Fission Product Critical Experiments and Associated Biases for Burnup Credit Validation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don [ORNL; Rearden, Bradley T [ORNL; Reed, Davis Allan [ORNL

    2010-01-01

    One of the challenges associated with implementation of burnup credit is the validation of criticality calculations used in the safety evaluation; in particular the availability and use of applicable critical experiment data. The purpose of the validation is to quantify the relationship between reality and calculated results. Validation and determination of bias and bias uncertainty require the identification of sets of critical experiments that are similar to the criticality safety models. A principal challenge for crediting fission products (FP) in a burnup credit safety evaluation is the limited availability of relevant FP critical experiments for bias and bias uncertainty determination. This paper provides an evaluation of the available critical experiments that include FPs, along with bounding, burnup-dependent estimates of FP biases generated by combining energy dependent sensitivity data for a typical burnup credit application with the nuclear data uncertainty information distributed with SCALE 6. A method for determining separate bias and bias uncertainty values for individual FPs and illustrative results is presented. Finally, a FP bias calculation method based on data adjustment techniques and reactivity sensitivity coefficients calculated with the SCALE sensitivity/uncertainty tools and some typical results is presented. Using the methods described in this paper, the cross-section bias for a representative high-capacity spent fuel cask associated with the ENDF/B-VII nuclear data for 16 most important stable or near stable FPs is predicted to be no greater than 2% of the total worth of the 16 FPs, or less than 0.13 % k/k.

  6. Investigation of the integral beta-spectra of235U(nth, f)- and239Pu(nth, f)-fission products

    Science.gov (United States)

    Keyser, U.

    1985-09-01

    The integral β--spectra of235U and239Pu fission products have been measured with a plastic scintillator telescope at an external neutron guide tube at the high flux reactor of the ILL in Grenoble. The highly enriched targets (150 800 γg/cm2) were placed in a fission chamber at a distance of approximately 110 m from the reactor core. From the measured beta-spectra absolute counting rates per MeV and fission have been calculated, which are compared with the results of earlier experiments of other authors and with recent theoretical calculations.

  7. Radiochemistry and the Study of Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered: In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.

  8. Development of a fission product transport module predicting the behavior of radiological materials during sever accidents in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung Seok; Rhee, Bo Wook; Kim, Dong Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    Korea Atomic Energy Research Institute is developing a fission product transport module for predicting the behavior of radioactive materials in the primary cooling system of a nuclear power plant as a separate module, which will be connected to a severe accident analysis code, Core Meltdown Progression Accident Simulation Software (COMPASS). This fission product transport (COMPASS-FP) module consists of a fission product release model, an aerosol generation model, and an aerosol transport model. In the fission product release model there are three submodels based on empirical correlations, and they are used to simulate the fission product gases release from the reactor core. In the aerosol generation model, the mass conservation law and Raoult's law are applied to the mixture of vapors and droplets of the fission products in a specified control volume to find the generation of the aerosol droplet. In the aerosol transport model, empirical correlations available from the open literature are used to simulate the aerosol removal processes owing to the gravitational settling, inertia impaction, diffusiophoresis, and thermophoresis. The COMPASS-FP module was validated against Aerosol Behavior Code Validation and Evaluation (ABCOVE-5) test performed by Hanford Engineering Development Laboratory for comparing the prediction and test data. The comparison results assuming a non-spherical aerosol shape for the suspended aerosol mass concentration showed a good agreement with an error range of about ±6%. It was found that the COMPASS-FP module produced the reasonable results of the fission product gases release, the aerosol generation, and the gravitational settling in the aerosol removal processes for ABCOVE-5. However, more validation for other aerosol removal models needs to be performed.

  9. Flibe blanket concept for transmuting transuranic elements and long lived fission products.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    2000-11-15

    A Molten salt (Flibe) fusion blanket concept has been developed to solve the disposition problems of the spent nuclear fuel and the transuranic elements. This blanket concept can achieve the top rated solution, the complete elimination of the transuranic elements and the long-lived fission products. Small driven fusion devices with low neutron wall loading and low neutron fluence can perform this function. A 344-MW integrated fusion power from D-T plasmas for thirty years with an availability factor of 0.75 can dispose of 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. In addition, the utilization of this blanket concept eliminates the need for a geological repository site, which is a major advantage. This application provides an excellent opportunity to develop and to enhance the public acceptance of the fusion energy for the future. The energy from the transmutation process is utilized to produce revenue. Flibe, lithium-lead eutectic, and liquid lead are possible candidates. The liquid blankets have several features, which are suited for W application. It can operate at constant thermal power without interruption for refueling by adjusting the concentration of the transuranic elements and lithium-6. These liquids operate at low-pressure, which reduces the primary stresses in the structure material. Development and fabrication costs of solid transuranic materials are eliminated. Burnup limit of the transuranic elements due to radiation effects is eliminated. Heat is generated within the liquid, which simplifies the heat removal process without producing thermal stresses. These blanket concepts have large negative temperature coefficient with respect to the blanket reactivity, which enhances the safety performance. These liquids are chemically and thermally stable under irradiation conditions, which minimize the radioactive waste volume. The operational record of the Molten Salt Breeder Reactor with Flibe was very successful

  10. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.

    Science.gov (United States)

    Dezerald, Lucile; Kohanoff, Jorge J; Correa, Alfredo A; Caro, Alfredo; Pellenq, Roland J-M; Ulm, Franz J; Saúl, Andrés

    2015-11-17

    One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.

  11. Nuclear Forensics and Radiochemistry: Fission

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-07

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  12. Summary Report: Glass-Ceramic Waste Forms for Combined Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Riley, Brian J.; Turo, Laura A.; Tang, Ming; Kossoy, Anna

    2011-09-23

    Glass-ceramic waste form development began in FY 2010 examining two combined waste stream options: (1) alkaline earth (CS) + lanthanide (Ln), and (2) + transition metal (TM) fission-product waste streams generated by the uranium extraction (UREX+) separations process. Glass-ceramics were successfully developed for both options however; Option 2 was selected over Option 1, at the conclusion of 2010, because Option 2 immobilized all three waste streams with only a minimal decrease in waste loading. During the first year, a series of three glass (Option 2) were fabricated that varied waste loading-WL (42, 45, and 50 mass%) at fixed molar ratios of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali both at 1.75. These glass-ceramics were slow cooled and characterized in terms of phase assemblage and preliminary irradiation stability. This fiscal year, further characterization was performed on the FY 2010 Option 2 glass-ceramics in terms of: static leach testing, phase analysis by transmission electron microscopy (TEM), and irradiation stability (electron and ion). Also, a new series of glass-ceramics were developed for Option 2 that varied the additives: Al{sub 2}O{sub 3} (0-6 mass%), molar ratio of CaO/MoO{sub 3} and B{sub 2}O{sub 3}/alkali (1.75 to 2.25) and waste loading (50, 55, and 60 mass%). Lastly, phase pure powellite and oxyapatite were synthesized for irradiation studies. Results of this fiscal year studies showed compositional flexibility, chemical stability, and radiation stability in the current glass-ceramic system. First, the phase assemblages and microstructure of all of the FY 2010 and 2011 glass-ceramics are very similar once subjected to the slow cool heat treatment. The phases identified in these glass-ceramics were oxyapatite, powellite, cerianite, and ln-borosilicate. This shows that variations in waste loading or additives can be accommodated without drastically changing the phase assemblage of the waste form, thus making the processing and performance

  13. Properties of the platinoid fission products during vitrification of high-level radioactive waste

    Science.gov (United States)

    Gong, W.; Lutze, W.; Perez-Cardenas, F.; Matlack, K. S.; Pegg, I. L.

    2006-05-01

    Platinoid fission products present in high-level nuclear wastes present particular challenges to their treatment by vitrification. The platinoid metals Ru, Rh, Pd, and their compounds are sparingly soluble in borosilicate glass melts. During glass melting under oxidizing conditions, the platinoids form small crystals of highly dense solid intermetallic phases and oxides. Under reducing conditions, the platinoids form only intermetallic phases. A fraction of these crystals settles to the bottom of the melting furnace, forming an immobile sludge. The fraction settling reported in the literature is highly variable. In the present work, the fraction settling was found to be >90% under reducing conditions but only 10 to 20% under oxidizing conditions. The thickness of the sludge layer depends on the volume fraction of platinoid crystals in the sludge, which is poorly known (typically ~0.06 under oxidizing conditions). Since the electrical conductivity of the sludge can be >10X that of the melt, in joule-heated melters the presence of such a layer can lead to diversion of the electric current, thereby compromising melter operability. The time to failure by this mechanism is clearly of practical importance. A variety of data are required in order to estimate the time to failure due to this mechanism and such data must be obtained under conditions representative of those in a full-size melting furnace. We have acquired such data using a melting furnace installed in our laboratory. This furnace is a one-third scale prototype of the system to be used for the vitrification of defense HLW at Hanford, WA. In the present work, simulated Hanford HLW material was combined with glass formers to produce a melter feed slurry that was then spiked with the platinoids. Over one thousand chemical and optical analyses were performed on hundreds of samples taken from the feed, various locations inside the furnace, the glass melt during pouring, the solid glass, and various locations along

  14. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  15. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  16. Specifications and qualification of uranium/aluminum alloy plate target for the production of fission molybdenum-99

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaq, A., E-mail: mushtaqa@pinstech.org.p [Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad (Pakistan)

    2011-01-15

    Research highlights: Production of fission Mo-99 at PINSTECH, Islamabad. U/Al alloy plate targets developed at PINSTECH, Islamabad. Equipments and techniques for qualification of moly target plates. Safe irradiation of target plates in the core of PARR-1. Development of LEU target plates and modification in dissolver required. - Abstract: In all probability, the same criteria applied to evaluate the safety of the reactor fuel shall be used to evaluate the safety of the targets used for the production of fission molybdenum-99. Thus, neutronic and thermal hydraulics considerations will dictate the maximum power of the targets, their uranium content, and the uniformity requirements for their loading. Radiography technique is capable of characterizing both meat location and density. Specifically, target plates that meet fuel density specifications can be irradiated with little risk of power peaking and hot spots. An adequate characterization and qualification of target plate cladding is also critical, because cladding breaches will contaminate the reactor coolant. Bend testing is a dependable way of testing bond strength while Ultrasonic Testing (UT) examinations qualify both bonding homogeneity and minimum thickness of that cladding. The bonding quality is inspected by means of a blister test. Lastly, optical microscopy is applied for clad thickness, which further supports the veracity of the UT characterization method. Natural U/Al alloy plate targets have been safely irradiated in the core of Pakistan Research Reactor-1.

  17. Thermodynamical analysis of the fission product release in the ORNL VI-3 and VI-5 tests; Analyse thermodynamique du relachement des produits de fission dans les essais ORNL VI-3 et VI-5

    Energy Technology Data Exchange (ETDEWEB)

    Defoort, J.; Froment, K

    1998-06-01

    The thermodynamical equilibrium hypothesis has been applied to the tests ORNL (Oak Ridge National Laboratory) VI-3 and VI-5 (Vertical Induction heated), to study fission release products. Irradiated fuel samples were heated under oxidizing (VI-3) and reducing (VI-5) controlled atmosphere. They can be compared to the Vercors 4 and 5 tests. The thermodynamical calculus results of barium and ruthenium fission products release, agree in the lump with measures, whatever the gas phase nature. The strontium release calculus under reducing atmosphere, is largely upper than those measured and correctly evaluated under oxidizing atmosphere. These results confirm those obtained for Vercors 4 and 5 and show the interest of the select model. (A.L.B.)

  18. Quantification of Uncertainties due to 235,238U, 239,240,241Pu and Fission Products Nuclear Data Uncertainties for a PWR Fuel Assembly

    Science.gov (United States)

    da Cruz, D. F.; Rochman, D.; Koning, A. J.

    2014-04-01

    Uncertainty analysis on reactivity and discharged inventory for a typical PWR fuel element as a result of uncertainties in 235,238U, 239,240,241Pu, and fission products nuclear data was performed. The Total Monte-Carlo (TMC) method was applied using the deterministic transport code DRAGON. The nuclear data used in this study is from the JEFF-3.1 evaluations, with the exception of the nuclear data files for U, Pu and fission products isotopes, which are taken from the nuclear data library TENDL-2012. Results show that the calculated total uncertainty in keff (as result of uncertainties in nuclear data of the considered isotopes) is virtually independent on fuel burnp and amounts to 700 pcm. The uncertainties in inventory of the discharged fuel is dependent on the element considered and lies in the range 1-15% for most fission products, and is below 5% for the most important actinides.

  19. Assessment of Fission Product Cross-Section Data for Burnup Credit Applications

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Luiz C [ORNL; Derrien, Herve [ORNL; Dunn, Michael E [ORNL; Mueller, Don [ORNL

    2007-12-01

    Past efforts by the Department of Energy (DOE), the Electric Power Research Institute (EPRI), the Nuclear Regulatory Commission (NRC), and others have provided sufficient technical information to enable the NRC to issue regulatory guidance for implementation of pressurized-water reactor (PWR) burnup credit; however, consideration of only the reactivity change due to the major actinides is recommended in the guidance. Moreover, DOE, NRC, and EPRI have noted the need for additional scientific and technical data to justify expanding PWR burnup credit to include fission product (FP) nuclides and enable burnup credit implementation for boiling-water reactor (BWR) spent nuclear fuel (SNF). The criticality safety assessment needed for burnup credit applications will utilize computational analyses of packages containing SNF with FP nuclides. Over the years, significant efforts have been devoted to the nuclear data evaluation of major isotopes pertinent to reactor applications (i.e., uranium, plutonium, etc.); however, efforts to evaluate FP cross-section data in the resonance region have been less thorough relative to actinide data. In particular, resonance region cross-section measurements with corresponding R-matrix resonance analyses have not been performed for FP nuclides. Therefore, the objective of this work is to assess the status and performance of existing FP cross-section and cross-section uncertainty data in the resonance region for use in burnup credit analyses. Recommendations for new cross-section measurements and/or evaluations are made based on the data assessment. The assessment focuses on seven primary FP isotopes (103Rh, 133Cs, 143Nd, 149Sm, 151Sm, 152Sm, and 155Gd) that impact reactivity analyses of transportation packages and two FP isotopes (153Eu and 155Eu) that impact prediction of 155Gd concentrations. Much of the assessment work was completed in 2005, and the assessment focused on the latest FP cross-section evaluations available in the

  20. Measuring and predicting the transport of actinides and fission product contaminants in unsaturated prairie soil

    Science.gov (United States)

    Sims, D. J.

    Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix

  1. The VERCORS safety program, source term analytical study with special emphasis on the release of non volatile fission products and transuranic elements

    Energy Technology Data Exchange (ETDEWEB)

    Ducros, G.; Andre, B.; Tourasse, M. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Technologies Avancees; Maro, D. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire

    1995-12-31

    This document is not a true report but the succession of transparencies listing the main titles of subjects that have been developed in oral form at CSARP Meeting. The main interest of the document is in large computer designed figures. The subject is the VERCORS program (which extends the HEVA experimental program) devoted to the determination of the source term of fission products released from PWR fuel samples during a severe accident sequence. The experiment is performed in a shielded hot cell at CEA Grenoble plant. Measurements aimed at characterizing fission products releases and structural materials as a function of fuel temperature and oxidising / reducing conditions of the environment. (author).

  2. Neutronic and thermal-hydraulic analysis of fission molybdenum-99 production at Tehran Research Reactor using LEU plate targets.

    Science.gov (United States)

    Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi

    2016-12-01

    Efficient and safe production of molybdenum-99 ( 99 Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced 99 Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient 99 Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Standard test method for gamma energy emission from fission products in uranium hexafluoride and uranyl nitrate solution

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the measurement of gamma energy emitted from fission products in uranium hexafluoride (UF6) and uranyl nitrate solution. It is intended to provide a method for demonstrating compliance with UF6 specifications C 787 and C 996 and uranyl nitrate specification C 788. 1.2 The lower limit of detection is 5000 MeV Bq/kg (MeV/kg per second) of uranium and is the square root of the sum of the squares of the individual reporting limits of the nuclides to be measured. The limit of detection was determined on a pure, aged natural uranium (ANU) solution. The value is dependent upon detector efficiency and background. 1.3 The nuclides to be measured are106Ru/ 106Rh, 103Ru,137Cs, 144Ce, 144Pr, 141Ce, 95Zr, 95Nb, and 125Sb. Other gamma energy-emitting fission nuclides present in the spectrum at detectable levels should be identified and quantified as required by the data quality objectives. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its us...

  4. MELCOR 1.8.5 modeling aspects of fission product release, transport and deposition an assessment with recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.

    2010-04-01

    The Phebus and VERCORS data have played an important role in contemporary understanding and modeling of fission product release and transport from damaged light water reactor fuel. The data from these test programs have allowed improvement of MELCOR modeling of release and transport processes for both low enrichment uranium fuel as well as high burnup and mixed oxide (MOX) fuels. This paper discusses the synthesis of these findings in the MELCOR severe accident code. Based on recent assessments of MELCOR 1.8.5 fission product release modeling against the Phebus FPT-1 test and on observations from the ISP-46 exercise, modifications to the default MELCOR 1.8.5 release models are recommended. The assessments identified an alternative set of Booth diffusion parameters recommended by ORNL (ORNL-Booth), which produced significantly improved release predictions for cesium and other fission product groups. Some adjustments to the scaling factors in the ORNL-Booth model were made for selected fission product groups, including UO{sub 2}, Mo and Ru in order to obtain better comparisons with the FPT-1 data. The adjusted model, referred to as 'Modified ORNL-Booth,' was subsequently compared to original ORNL VI fission product release experiments and to more recently performed French VERCORS tests, and the comparisons was as favorable or better than the original CORSOR-M MELCOR default release model. These modified ORNL-Booth parameters, input to MELCOR 1.8.5 as 'sensitivity coefficients' (i.e. user input that over-rides the code defaults) are recommended for the interim period until improved release models can be implemented into MELCOR. For the case of ruthenium release in air-oxidizing conditions, some additional modifications to the Ru class vapor pressure are recommended based on estimates of the RuO{sub 2} vapor pressure over mildly hyperstoichiometric UO{sub 2}. The increased vapor pressure for this class significantly increases the net transport of Ru

  5. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses--Criticality (keff) Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Scaglione, John M [ORNL; Mueller, Don [ORNL; Wagner, John C [ORNL

    2011-01-01

    One of the most significant remaining challenges associated with expanded implementation of burnup credit in the United States is the validation of depletion and criticality calculations used in the safety evaluation - in particular, the availability and use of applicable measured data to support validation, especially for fission products. Applicants and regulatory reviewers have been constrained by both a scarcity of data and a lack of clear technical basis or approach for use of the data. U.S. Nuclear Regulatory Commission (NRC) staff have noted that the rationale for restricting their Interim Staff Guidance on burnup credit (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issue of validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach (both depletion and criticality) for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the criticality (k{sub eff}) validation approach, and resulting observations and recommendations. Validation of the isotopic composition (depletion) calculations is addressed in a companion paper at this conference. For criticality validation, the approach is to utilize (1) available laboratory critical experiment (LCE) data from the International Handbook of Evaluated Criticality Safety Benchmark Experiments and the French Haut Taux de Combustion (HTC) program to support validation of the principal actinides and (2) calculated sensitivities, nuclear data uncertainties, and the limited available fission

  6. Delayed Fission Product Gamma-Ray Transmission Through Low Enriched UO2 Fuel Pin Lattices in Air

    Energy Technology Data Exchange (ETDEWEB)

    Trumbull, TH [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2004-10-18

    The transmission of delayed fission-product gamma rays through various arrangements of low-enriched UO2 fuel pin lattices in an air medium was studied. Experimental measurements, point-kernel and Monte Carlo photon transport calculations were performed to demonstrate the shielding effect of ordered lattices of fuel pins on the resulting gamma-ray dose to a detector outside the lattice. The variation of the gamma-ray dose on the outside of the lattice as a function of radial position, the so-called “channeling” effect, was analyzed. Techniques for performing experimental measurements and data reduction at Rensselaer Polytechnic Institute’s Reactor Critical Facility (RCF) were derived. An experimental apparatus was constructed to hold the arrangements of fuel pins for the measurements. A gamma-ray spectroscopy system consisting of a sodium-iodide scintillation detector was used to collect data. Measurements were made with and without a collimator installed. A point-kernel transport code was developed to map the radial dependence of the gamma-ray flux. Input files for the Monte Carlo code, MCNP, were also developed to accurately model the experimental measurements. The results of the calculations were compared to the experimental measurements. In order to determine the delayed fission-product gamma-ray source for the calculations, a technique was developed using a previously written code, DELBG and the reactor state-point data obtained during the experimental measurements. Calculations were performed demonstrating the effects of material homogenization on the gamma-ray transmission through the fuel pin lattice.Homogeneous and heterogeneous calculations were performed for all RCF fuel pin lattices as well as for a typical commercial pressurized water reactor fuel bundle. The results of the study demonstrated the effectiveness of the experimental measurements to isolate the channeling effect of delayed fission-product gamma-rays through lattices of RCF fuel pins

  7. Delayed neutron spectra and their uncertainties in fission product summation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)

    1997-03-01

    Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)

  8. Assessment of pheromone production and response in fission yeast by a halo test of induced sporulation

    DEFF Research Database (Denmark)

    Egel, R; Willer, M; Kjaerulff, S

    1994-01-01

    We describe a rapid, sensitive and semi-quantitative plate assay for monitoring pheromone activity in the fission yeast Schizosaccharomyces pombe. It is based on the observation that meiosis requires stimulation by pheromone and exploits diploid strains that will only sporulate after addition...... of exogenous pheromone. The tester strains are heterozygous for mating type, are non-switching, and are mutated in one of the early subfunctions (either mat1-Mc or mat1-Pc), so that meiosis is only induced after exposure to exogenous pheromone (M-factor or P-factor, respectively). Pheromone activity...... is assessed as an iodine-positive halo of sporulation surrounding the pheromone source, and the width of the halo is related to the amount of pheromone being produced. The assay is sufficiently sensitive to monitor the low amount of M-factor produced by an M mam1 strain, and its sensitivity towards P...

  9. On-line fission products measurements during a PWR severe accident: the French DECA-PF project

    Energy Technology Data Exchange (ETDEWEB)

    Ducros, G.; Allinei, P.G.; Roure, C. [CEA, DEN, F-13108 Saint-Paul-lez-Durance, (France); Rozel, C. [EDF SEPTEN, 12-14 Avenue Dutrievoz, F-69628, Villeurbanne, (France); Blanc De Lanaute, N. [CANBERRA, 1 rue des Herons, F-78182, Saint Quentin en Yvelines, (France); Musoyan, G. [AREVA, Tour AREVA, 1 place Jean Millier, F-92084 Paris La Defense Cedex, (France)

    2015-07-01

    Following the Fukushima accident, a lot of recommendations was drawn by international organizations (IAEA, OECD, NUGENIA network...) in order to improve the safety in such accidental conditions and mitigate their consequences. One of these recommendations was to improve the robustness of the instrumentation, which was dramatically lacking at Fukushima, as well as to better determine the Source Term involved in nuclear accident. The DECA-PF project (Diagnosis of a degraded reactor core through Fission Product measurements) was elaborated in this context and selected as one of 21 collaborative R and D projects in the field of nuclear safety and radioprotection, funded in May 2013 by the French National Research Agency. Over the months following the Fukushima accident, a CEA crisis team was held in order to analyze on-line the situation taking into account the data delivered by TEPCO and other organizations. Despite the difficulties encountered concerning the reliability of these data, the work performed showed the high capacity of Fission Products (FP) measurements to get a diagnosis relative to the status of the reactors and the spent fuel pools (SFP). Based on these FP measurements, it was possible to conclude that the main origin of the releases was coming from the cores and not from the SFP, in particular for SFP-4 which was of high concern, and that the degradation level of the reactors was very large, including probably an extensive core melting. To improve the reliability of this kind of diagnosis, the necessity to get such measurements as soon as possible after the accident and as near as possible from the reactor was stressed. In this way the present DECA-PF project intends to develop a new and innovative instrumentation taking into account the design of the French nuclear power plants on which sand bed filters have been implemented for severe accident management. Three complementary techniques, devoted to measure the FP release on-line, are being studied

  10. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  11. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mcclellan, Kenneth James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lashley, Jason Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Byler, Darrin David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  12. Inductively coupled plasma-mass spectrometry studies of the chemistry of fission products and actinides in high level wastes: lessons that can be applied to environmental measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kinard, W.F. [Dept. of Chemistry, Coll. of Charleston, SC (United States); Bibler, N.E. [Westinghouse Savannah River Technology Center (SRTC), Westinghouse Savannah River Corp., Aiken, SC (United States); Coleman, C.J. [Westinghouse Savannah River Technology Center (SRTC), Westinghouse Savannah River Corp., Aiken, SC (United States); Wyrick, S.B. [Science Applications International, Gaithersburg, MD (United States)

    1994-12-31

    Actinide and fission product concentrations in HLW (high level wastes) from the Savannah River Site (SRS) in South Carolina and from Tank 101-SY at the Hanfrod Site in the state of Washington have been measured by inductively coupled plasma-mass spectrometry. Isotopic assignments based on fission yield predictions has enabled the analyses to be made without further separations other than the chemical processing used to separate waste streams. Isotopic patterns related to weapons reactor procuction are proposed as possible tracers for environmental measurements. (orig.)

  13. First results for fluid dynamics, neutronics and fission product behavior in HTR applying the HTR code package (HCP) prototype

    Energy Technology Data Exchange (ETDEWEB)

    Allelein, H.-J., E-mail: h.j.allelein@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH Aachen University, 52064 Aachen (Germany); Kasselmann, S.; Xhonneux, A.; Tantillo, F.; Trabadela, A.; Lambertz, D. [Forschungszentrum Jülich, 52425 Jülich (Germany)

    2016-09-15

    To simulate the different aspects of High Temperature Reactor (HTR) cores, a variety of specialized computer codes have been developed at Forschungszentrum Jülich (IEK-6) and Aachen University (LRST) in the last decades. In order to preserve knowledge, to overcome present limitations and to make these codes applicable to modern computer clusters, these individual programs are being integrated into a consistent code package. The so-called HTR code package (HCP) couples the related and recently applied physics models in a highly integrated manner and therefore allows to simulate phenomena with higher precision in space and time while at the same time applying state-of-the-art programming techniques and standards. This paper provides an overview of the status of the HCP and reports about first benchmark results for an HCP prototype which couples the fluid dynamics and time dependent neutronics code MGT-3D, the burn up code TNT and the fission product release code STACY. Due to the coupling of MGT-3D and TNT, a first step towards a new reactor operation and accident simulation code was made, where nuclide concentrations calculated by TNT lead to new cross sections, which are fed back into MGT-3D. Selected operation scenarios of the HTR-Module 200 concept plant and the HTTR were chosen to be simulated with the HCP prototype. The fission product release during normal operation conditions will be calculated with STACY based on a core status derived from SERPENT and MGT-3D. Comparisons will be shown against data generated by SERPENT and the legacy codes VSOP99/11, NAKURE and FRESCO-II.

  14. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  15. HTGR fuels and core development program. Quarterly progress report for period ending February 29, 1976. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-31

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and the data are presented in tables, graphs, and photographs.

  16. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    S. Frank

    2009-09-01

    An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion

  17. Antiproton focusing horn

    CERN Multimedia

    1992-01-01

    This focusing horn was developed in 1992 by Remo Maccaferri, Jean Claude Schnuriger and Lubrano di Scampamorte and is still operating in the AD complex at CERN (as of 2017). This device could pulse at 400 KA (160 KA for the previous version). This enabled an antiproton collection ten times better than the old one. Firstly, protons were accelerated to an energy of 26 GeV/c and ejected onto a metal target. From the spray of emerging particles, the magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, ten antiprotons were captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 - three hundred thousand million - antiprotons. Originally magnetic focusing horns were developed by Simon van der Meer - see for example object AC-022 in this database.

  18. Development of an integrated fission product release and transport code for spatially resolved full-core calculations of V/HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Xhonneux, Andre, E-mail: a.xhonneux@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology RWTH-Aachen, 52064 Aachen (Germany); Allelein, Hans-Josef [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology RWTH-Aachen, 52064 Aachen (Germany)

    2014-05-01

    The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR

  19. The natural horn as an efficient sound radiating system ...

    African Journals Online (AJOL)

    Results obtained showed that the locally made horn are efficient sound radiating systems and are therefore excellent for sound production in local musical renditions. These findings, in addition to the portability and low cost of the horns qualify them to be highly recommended for use in music making and for other purposes ...

  20. Fission fragment distributions within dynamical approach

    Science.gov (United States)

    Mazurek, K.; Nadtochy, P. N.; Ryabov, E. G.; Adeev, G. D.

    2017-04-01

    The review covers recent developments and achievements in the dynamical description of fission process at high excitation energy. It is shown that the dynamical approach based on multidimensional Langevin equations combined with the statistical description of nuclear decay by particles evaporation is capable of fairly well describing the formation of fission fragment mass-energy, charge, and angular distributions of fission fragments in coincidence with the pre- and post-scission particle emission. The final yields of fission and evaporation residues channels products could be obtained. The detailed description of fission dynamics allows studying different stages of fission process, indicating the most important ingredients governing fission process and studying in detail such fundamental nuclear properties as nuclear viscosity and fission timescale. The tasks and perspectives of multidimensional dynamical approach are also discussed.

  1. Development of ionization technique for measurement of fast neutron induced fission products yields of {sup 237}Np

    Energy Technology Data Exchange (ETDEWEB)

    Goverdovski, A.A.; Khryachkov, V.A.; Ketlerov, V.V.; Mitrofanov, V.F.; Ostapenko, Yu.B.; Semenova, N.N.; Fomichev, A.N.; Rodina, L.F. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    Twin gridded ionization chamber and corresponding software was designed for measurements of masses, kinetic energies and nuclear charges of fission fragments from fast neutron induced fission of {sup 237}Np. The ionization detector design, electronics, data acquisition and processing system and the test results are presented in this paper. (J.P.N.)

  2. Ternary fission

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  3. Ternary fission

    Indian Academy of Sciences (India)

    Recently, we have studied the various aspects associated with the ternary fission process. A model, called the three-cluster model (TCM) [1–6] has been put forth. This accounts for the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the ...

  4. Methodology and experimental setup for measuring short-lives fission product yields in actinides induced fission by charged particles; Metodologia e montagem experimental para a medicao de rendimentos de produtos de fissao de meia vida curta na fissao de actinideos por particulas carregadas

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, A.V.

    1995-07-01

    The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs.

  5. [Horn and cupping].

    Science.gov (United States)

    Huang, Tao; Wu, Mozheng; Lu, Yang

    2016-10-12

    Cupping, with an ancient name of horn method, possessed other different names and operational approaches through the history. There was wrong information about cupping which was passed on due to unawareness of predecessors. Through probing into the literature and history, this article summarizes and studies warming cupping, cupping over needles, water boiled cupping and fire cupping.

  6. The effect of claw horn disruption lesions and body condition score at dry-off on survivability, reproductive performance, and milk production in the subsequent lactation.

    Science.gov (United States)

    Machado, V S; Caixeta, L S; McArt, J A A; Bicalho, R C

    2010-09-01

    The objective of this study was to evaluate the effects of claw horn disruption lesions (CHDL; sole ulcers and white line disease) and body condition score (BCS) at dry-off on survivability, milk production, and reproductive performance during the subsequent lactation. An observational prospective cohort study was conducted on a large commercial dairy in Cayuga County, New York, from September 2008 until January 2009. A total of 573 cows enrolled at dry-off were scored for body condition and hoof trimmed; digits were visually inspected for the presence of CHDL. The BCS data were recategorized into a 3-level variable BCS group (BCSG), with cows with BCS3 placed in BCSG 3 (n=206). Cows in BCSG 2 were 1.35 and 1.02 times more likely to conceive than cows in BCSG 1 and 3, respectively. The cull/death hazard for BCSG 1 cows was 1.55 and 1.47 times higher than for cows in BCSG 2 and BCSG 3, respectively. Milk yield for cows in BCSG 2 (44.6 kg/d, 95% CI 43.4-45.8) was significantly greater than that for cows in BCSG 1 (41.5 kg/d, 95% CI 39.8-43.3). Cows with previous lactation days openmilk>14,054 kg had a similar 1.6 times higher odds of being classified into BCSG 1. Claw horn disruption lesions were found in 24.4% of the cows (n=140) at dry-off. Cows without CHDL were 1.4 times more likely to conceive than cows with CHDL. Additionally, lesion cows were 1.7 times more likely to die or be culled than nonlesion cows. Absence of CHDL did not have a significant effect on milk yield. These findings highlight the importance of claw health and BCS at the end of lactation on future survival and performance. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Hypocenter relocation of microseismic events using a 3-D velocity model of the shale-gas production site in the Horn River Basin

    Science.gov (United States)

    Woo, J. U.; Kim, J. H.; Rhie, J.; Kang, T. S.

    2016-12-01

    Microseismic monitoring is a crucial process to evaluate the efficiency of hydro-fracking and to understand the development of fracture networks. Consequently, it can provide valuable information for designing the post hydro-fracking stages and estimating the stimulated rock volumes. The fundamental information is a set of source parameters of microseismic events. The most important parameter is the hypocenter of event, and thus the accurate hypocenter determination is a key for the successful microseismic monitoring. The accuracy of hypocenters for a given dataset of seismic phase arrival times is dependent on that of the velocity model used in the seismic analysis. In this study, we evaluated how a 3-D model can affect the accuracy of hypocenters. We used auto-picked P- and S-wave travel-time data of about 8,000 events at the commercial shale gas production site in the Horn River Basin, Canada. The initial hypocenters of the events were determined using a single-difference linear inversion algorithm with a 1-D velocity model obtained from the well-logging data. Then we iteratively inverted travel times of events for the 3-D velocity perturbations and relocated their hypocenters using double-difference algorithm. Significant reduction of the errors in the final hypocenter was obtained. This result indicates that the 3-D model is useful for improving the performance of microseismic monitoring.

  8. AA, Inner Conductor of Magnetic Horn

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    Antiprotons emerging at large angles from the production target (hit by an intense 26 GeV proton beam from the PS), were focused into the acceptance of the injection line of the AA by means of a "magnetic horn" (current-sheet lens). Here we see an early protype of the horn's inner conductor, machined from solid aluminium to a thickness of less than 1 mm. The 1st version had to withstand pulses of 150 kA, 15 us long, every 2.4 s. See 8801040 for a later version.

  9. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  10. Spallation reaction study for fission products in nuclear waste: Cross section measurements for {sup 137}Cs and {sup 90}Sr on proton and deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H., E-mail: wanghe@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otsu, H.; Sakurai, H.; Ahn, D.S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Doornenbal, P.; Fukuda, N.; Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kawakami, S. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Koyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kubo, T.; Kubono, S.; Lorusso, G. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Maeda, Y. [Department of Applied Physics, University of Miyazaki, Miyazaki 889-2192 (Japan); Makinaga, A. [Graduate School of Medicine, Hokkaido University, North-14, West-5, Kita-ku, Sapporo 060-8648 (Japan); Momiyama, S. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakano, K. [Department of Advanced Energy Engineering Science, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Niikura, M. [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Shiga, Y. [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2016-03-10

    We have studied spallation reactions for the fission products {sup 137}Cs and {sup 90}Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of {sup 137}Cs and {sup 90}Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  11. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, Georgeta [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Wagner, John C [ORNL

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address the issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for

  12. Irradiation effects and diffusion of fission products (cesium and iodine) in silicon carbide; Effets d'irradiation et diffusion des produits de fission (cesium et iode) dans le carbure de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Audren, A

    2007-03-15

    Silicon carbide is envisaged as a cladding material for the nuclear fuel in the fourth generation reactors. The aim of this work is to study the capacity to retain fission products and the structure evolution of this material under the combined effects of temperature and irradiation. The low energy ion implantations and the incorporation of stable analogues of fission products (Cs and I) in single crystalline 6H-SiC samples were performed by using the ion implanter or the accelerator of the CSNSM. The high energy heavy ion irradiations were made at GANIL. The evolution of the implanted ion profiles and the crystal structure were studied by RBS and Channeling. Complementary information were obtained by using the UV-visible absorption spectroscopy. The low energy ion implantations at room temperature induce a fast structural damage in the crystal. On the other hand, it is possible to attain a small disorder rate in the crystal during implantation by increasing the implantation temperature (600 C). The high energy heavy ion irradiations do not damage the SiC crystals. On the contrary, they cause an annealing of the disorder created by the low energy implantations. The implanted ions (I) do not diffuse during low or high energy ion irradiations at room temperature and at 600 C. However, a diffusion of Cs ions was observed during a post-implantation annealing at 1300 C. At this temperature, the crystal which had an extended amorphous layer starts to recover a single-crystal structure. (author)

  13. Use of electron beams for the production of radioactive nuclei through photo-fission; Utilisation de faisceaux d'electrons pour la production des noyaux radioactifs par photo-fission

    Energy Technology Data Exchange (ETDEWEB)

    M' garrech, Slah

    2004-09-01

    The IPN (institute of nuclear physics) of Orsay decided to build a linear accelerator in order to produce an electron beam of 50 MeV energy and of 10 {mu}A average intensity. It is the ALTO project (Linear Accelerator near the Tandem of Orsay). This project will be dedicated to the production of the radioactive ions using the photo-fission process. The central topic of this thesis is the study of the beam dynamics of the ALTO facility. The first part presents studies concerning the injector. The simulations made with the simulation code PARMELA allowed the optimization of the characteristics of pre-buncher (dephasing HF, accelerating field peak...) to obtain a good bunching factor at the entrance of the buncher and at the entrance of the accelerating section according to the distance separating the two systems. The second part of this thesis is related to measurements of transverse emittance of the beam at the buncher exit. The three gradients method has been selected and the optical system used is a solenoid. The results obtained are in good agreement with former measurements. Finally a calculation of the beam line was carried out to optimize the transport of the beam to the PARRNe target without degrading its characteristics. The calculation codes that have been used are BETA and TRACE-WIN. (author)

  14. Heterogeneous UO{sub 2} fuel irradiated up to a high burn-up: Investigation of the HBS and of fission product releases

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Lamontagne, J. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Nakae, N. [JNES, Toranomon Towers Office, 4-1-28, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Kitagawa, T. [MNF, 622-1 Funaishikawa, Tokai-mura, Naka-gun, Ibaraki 319-1197 (Japan); Kosaka, Y. [NDC, 622-12 Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Tverberg, T. [IFE, P.O. Box 173, NO-1751 Halden (Norway)

    2013-11-15

    A UO{sub 2} fuel with a heterogeneous distribution of {sup 235}U was irradiated up to a high burn-up in the Halden Boiling Water Reactor (HBWR). The last 100 days of irradiation were performed with an increased level of linear power. The effect of the heterogeneous fissile isotope distribution on the formation of the HBS was studied free of the possible influence of Pu which exists in heterogeneous MOX fuels. The HBS formed in {sup 235}U-rich agglomerates and its main characteristics were very similar to those of the HBS formed in Pu-rich agglomerates of heterogeneous MOX fuels. The maximum local contents of Nd and Xe before HBS formation were studied in this fuel. In addition to a Pu effect that promotes the HBS phenomenon, comparison with previous results for heterogeneous MOX fuels showed that the local fission product concentration was not the only parameter that has to be taken into consideration. It appears that the local actinide depletion by fission and/or the energy locally deposited through electronic interactions in the fission fragment recoils also have an effect on the HBS formation threshold. Moreover, a major release of fission gases from the peripheral {sup 235}U-rich agglomerates of HBS bubbles and a Cs radial movement are also evidenced in this heterogeneous UO{sub 2}. Cs deposits on the peripheral grain boundaries, including the HBS grain boundaries, are considered to reveal the release paths.

  15. Magnetic Focusing Horn

    CERN Multimedia

    1974-01-01

    This magnetic focusing horn was used for the AA (antiproton accumulator). Its development was an important step towards using CERN's Super Proton Synchrotron as a proton - antiproton collider. This eventually led to the discovery of the W and Z particles in 1983. Making an antiproton beam took a lot of time and effort. Firstly, protons were accelerated to an energy of 26 GeV in the PS and ejected onto a metal target. From the spray of emerging particles, a magnetic horn picked out 3.6 GeV antiprotons for injection into the AA through a wide-aperture focusing quadrupole magnet. For a million protons hitting the target, just one antiproton was captured, 'cooled' and accumulated. It took 3 days to make a beam of 3 x 10^11 -, three hundred thousand million - antiprotons.

  16. Investigation of the Distribution of Fission Products Silver, Palladium and Cadmium in Neutron Irradiated SIC using a Cs Corrected HRTEM

    Energy Technology Data Exchange (ETDEWEB)

    I. J. van Rooyen; E. Olivier; J. H Neethlin

    2014-10-01

    Electron microscopy examinations of selected coated particles from the first advanced gas reactor experiment (AGR-1) at Idaho National Laboratory (INL) provided important information on fission product distribution and chemical composition. Furthermore, recent research using STEM analysis led to the discovery of Ag at SiC grain boundaries and triple junctions. As these Ag precipitates were nano-sized, high resolution transmission electron microscopy (HRTEM) examination was used to provide more information at the atomic level. This paper describes some of the first HRTEM results obtained by examining a particle from Compact 4-1-1, which was irradiated to an average burnup of 19.26% fissions per initial metal atom (FIMA), a time average, volume-averaged temperature of 1072°C; a time average, peak temperature of 1182°C and an average fast fluence of 4.13 x 1021 n/cm2. Based on gamma analysis, it is estimated that this particle may have released as much as 10% of its available Ag-110m inventory during irradiation. The HRTEM investigation focused on Ag, Pd, Cd and U due to the interest in Ag transport mechanisms and possible correlation with Pd, Ag and U previously found. Additionally, Compact 4-1-1 contains fuel particles fabricated with a different fuel carrier gas composition and lower deposition temperatures for the SiC layer relative to the Baseline fabrication conditions, which are expected to reduce the concentration of SiC defects resulting from uranium dispersion. Pd, Ag, and Cd were found to co-exist in some of the SiC grain boundaries and triple junctions whilst U was found to be present in the micron-sized precipitates as well as separately in selected areas at grain boundaries. This study confirmed the presence of Pd both at inter- and intragranular positions; in the latter case specifically at stacking faults. Small Pd nodules were observed at a distance of about 6.5 micron from the inner PyC/SiC interface.

  17. Wet deposition of fission-product isotopes to North America from the Fukushima Dai-ichi incident, March 2011

    Science.gov (United States)

    Wetherbee, Gregory A.; Gay, David A.; Debey, Timothy M.; Lehmann, Christopher M.B.; Nilles, Mark A.

    2012-01-01

    Using the infrastructure of the National Atmospheric Deposition Program (NADP), numerous measurements of radionuclide wet deposition over North America were made for 167 NADP sites before and after the Fukushima Dai-ichi Nuclear Power Station incident of March 12, 2011. For the period from March 8 through April 5, 2011, wet-only precipitation samples were collected by NADP and analyzed for fission-product isotopes within whole-water and filterable solid samples by the United States Geological Survey using gamma spectrometry. Variable amounts of 131I, 134Cs, or 137Cs were measured at approximately 21% of sampled NADP sites distributed widely across the contiguous United States and Alaska. Calculated 1- to 2-week individual radionuclide deposition fluxes ranged from 0.47 to 5100 Becquerels per square meter during the sampling period. Wet deposition activity was small compared to measured activity already present in U.S. soil. NADP networks responded to this complex disaster, and provided scientifically valid measurements that are comparable and complementary to other networks in North America and Europe.

  18. Wet deposition of fission-product isotopes to North America from the Fukushima Dai-ichi incident, March 2011.

    Science.gov (United States)

    Wetherbee, Gregory A; Gay, David A; Debey, Timothy M; Lehmann, Christopher M B; Nilles, Mark A

    2012-03-06

    Using the infrastructure of the National Atmospheric Deposition Program (NADP), numerous measurements of radionuclide wet deposition over North America were made for 167 NADP sites before and after the Fukushima Dai-ichi Nuclear Power Station incident of March 12, 2011. For the period from March 8 through April 5, 2011, wet-only precipitation samples were collected by NADP and analyzed for fission-product isotopes within whole-water and filterable solid samples by the United States Geological Survey using gamma spectrometry. Variable amounts of (131)I, (134)Cs, or (137)Cs were measured at approximately 21% of sampled NADP sites distributed widely across the contiguous United States and Alaska. Calculated 1- to 2-week individual radionuclide deposition fluxes ranged from 0.47 to 5100 Becquerels per square meter during the sampling period. Wet deposition activity was small compared to measured activity already present in U.S. soil. NADP networks responded to this complex disaster, and provided scientifically valid measurements that are comparable and complementary to other networks in North America and Europe.

  19. An Assessment of Fission Product Scrubbing in Sodium Pools Following a Core Damage Event in a Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, M.; Farmer, M.; Grabaskas, D.

    2017-06-26

    The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination of gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.

  20. Fission products and structural materials release, transport and containment behaviour in Phebus FPT-0 and FPT-1

    Energy Technology Data Exchange (ETDEWEB)

    Hanniet, N.; Garnier, Y.; Jacquemain, D. [Institut de Protection et de Surete Nucleaire - IPSN, Departement de Recherches en Securite - DRS, CEA Cadarache - F 13108 Saint Paul Lez Durance (France)

    1999-07-01

    The Phebus F.P. program is a wide international effort to investigate, through a series of in-pile integral experiments, LWR severe accident phenomena, in particular bundle degradation and the subsequent release and transport of radioactive materials up to the containment. Two tests simulating a low pressure cold leg break under a steam rich environment have already been successfully performed: FPT-0 in December 1993 with trace irradiated fuel and FPT-1 in July 1996 with re-irradiated BR3 fuel. Both tests have provided experimental data of high interest, particularly in the field of fission products and structural materials release from the fuel bundle, transport in the reactor coolant system (RCS) and behaviour in the containment. The analysis of FPT-1 is currently in progress, nevertheless main observations made for FPT-10 are confirmed by first FPT-1 results, i.e.: - the main mass transport phases through the RCS correspond to bundle degradation events (fuel oxidation, material re-location, pool formation); - significant amount of gaseous iodine are injected in the model containment during bundle oxidation phases; - the aerosols are multi-component with the structural materials dominant in mass; - the retention is low in the RCS pipes but aerosol deposition on containment walls is significant; - the containment sump chemistry is marked by aerosol material dissolution and the resulting iodine trapping by silver. Those results are described in some detail in the following paper. (author)

  1. Advances in Development of the Fission Product Extraction Process for the Separation of Cesium and Strontium from Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    JAck D. Law

    2007-09-01

    The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.

  2. Release of fission products from irradiated SRP fuels at elevated temperature. Data report on the first stage of the SRP source term study

    Energy Technology Data Exchange (ETDEWEB)

    Woodley, R.E.

    1986-06-01

    For a sound evaluation of the consequences of a hypothetical nuclear reactor accident, a knowledge of the extent of fission product release from the fuel at anticipated temperatures and atmosphere conditions is required. Measurements of fission product release have been performed with a variety of nuclear fuels under various conditions of temperature and atmosphere. While the use of data obtained on fuels similar to the fuel of interest may provide a reasonable estimate of release fractions, precise information of this nature can only be obtained from measurements employing specimens of the actual fuels used in the nuclear reactor under consideration. The two fuels of interest in the present study are an alloy, a dispersion of UAl/sub 4/ in an aluminum matrix, and a cermet, a dispersion of U/sub 3/O/sub 8/ in an aluminum matrix. Both fuels are clad in aluminum.

  3. Microscopic description of complex nuclear decay: Multimodal fission

    Science.gov (United States)

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  4. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    Science.gov (United States)

    Sakama, M.; Nagano, Y.; Kitade, T.; Shikino, O.; Nakayama, S.

    2014-06-01

    Radioactive fission product 131I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, 134Cs and 137Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m-3 in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of 134Cs and 137Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m-3) variation of stable cesium (133Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  5. Correlation between Asian Dust and Specific Radioactivities of Fission Products Included in Airborne Samples in Tokushima, Shikoku Island, Japan, Due to the Fukushima Nuclear Accident

    Energy Technology Data Exchange (ETDEWEB)

    Sakama, M., E-mail: minorusakama@tokushima-u.ac.jp [Department of Radiological Science, Division of Biomedical Information Sciences, Institute of Health Biosciences, The University of Tokushima, Tokushima 770-8509 (Japan); Nagano, Y. [Department of Radiological Science, Division of Biomedical Information Sciences, Institute of Health Biosciences, The University of Tokushima, Tokushima 770-8509 (Japan); Kitade, T. [Department of Laboratory, M and S Instruments Inc., Osaka 532-0005 (Japan); Shikino, O. [Department of Inorganic Analysis, PerkinElmer Japan Co. Ltd., Yokohama 240-0005 (Japan); Nakayama, S. [Department of Nuclear Science, Institute of Socio-Arts and Sciences, The University of Tokushima, Tokushima 770-8502 (Japan)

    2014-06-15

    Radioactive fission product {sup 131}I released from the Fukushima Daiichi Nuclear Power Plants (FD-NPP) was first detected on March 23, 2011 in an airborne aerosol sample collected at Tokushima, Shikoku Island, located in western Japan. Two other radioactive fission products, {sup 134}Cs and {sup 137}Cs were also observed in a sample collected from April 2 to 4, 2011. The maximum specific radioactivities observed in this work were about 2.5 to 3.5 mBq×m{sup -3} in a airborne aerosol sample collected on April 6. During the course of the continuous monitoring, we also made our first observation of seasonal Asian Dust and those fission products associated with the FDNPP accident concurrently from May 2 to 5, 2011. We found that the specific radioactivities of {sup 134}Cs and {sup 137}Cs decreased drastically only during the period of Asian Dust. And also, it was found that this trend was very similar to the atmospheric elemental concentration (ng×m{sup -3}) variation of stable cesium ({sup 133}Cs) quantified by elemental analyses using our developed ICP-DRC-MS instrument.

  6. (d,p)-transfer induced fission of heavy radioactive beams

    CERN Document Server

    Veselsky, Martin

    2012-01-01

    (d,p)-transfer induced fission is proposed as a tool to study low energy fission of exotic heavy nuclei. Primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission offers a possibility for systematic study the low energy fission of heavy exotic nuclei at the ISOLDE.

  7. High priority nuclear data request list. The data for long-lived fission products, minor actinides and the thorium cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, J. [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 75 - Paris (France)

    2002-07-01

    This workshop is organised by the Research Group GEDEON together with CERN, OECD-NEA and the CFDN (French Committee for Nuclear Data). It is the continuation of the one at CERN on September 21 and 22, 1998, jointly organised with EC, GEDEON and OCDE-NEA. This last one is centred on the CERN proposal of a facility for neutron production up to 250 MeV, devoted to neutron data measurements. The first aim of the Paris workshop is to identify the present status of specific nuclear data relevant to innovative options (accelerator driven system - ADS and thorium) in the nuclear fuel cycle, beyond what has been gathered for standard reactors (PWR, FBR) and for the associated fuel cycles based on uranium and plutonium. The following topics were presented and discussed: 1. extension of present evaluated nuclear data files beyond 20 MeV needed to correctly describe the high energy part (up to approximately 200 MeV) of the spallation process used to generate the external neutrons needed for the sub-critical assemblies; 2. differential and integral cross section data in relation with the use of a thorium based; 3. the same for minor actinides and some long-lived fission residues likely to be destroyed in reactors; 4. the same for new type of materials such as lead or lead-bismuth, to be used as spallation target or as cooling, in relation with corrosion and irradiation effects. Beyond these specific issues, ADS will also take advantage of better known nuclear data coming from the existing reactors in operation. Very recent results related to spallation target physics such as neutron and residues production from heavy targets were also presented at this workshop. One very important aim of this workshop is also to bring physicists from different origin, especially from CERN, to cooperate in a program on nuclear data in relation with innovative options. This document brings together two articles entitled ''high priority nuclear data request list. The data for long lived

  8. Minimization of the fission product waste by using thorium based fuel instead of uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, A. Abdelghafar, E-mail: Agalahom@yahoo.com

    2017-04-01

    This research discusses the neutronic characteristics of VVER-1200 assembly fueled with five different fuel types based on thorium. These types of fuel based on mixing thorium as a fertile material with different fissile materials. The neutronic characteristics of these fuels are investigated by comparing their neutronic characteristics with the conventional uranium dioxide fuel using the MCNPX code. The objective of this study is to reduce the production of long-lived actinides, get rid of plutonium component and to improve the fuel cycle economy while maintaining acceptable values of the neutronic safety parameters such as moderator temperature coefficient, Doppler coefficient and effective delayed neutrons (β). The thorium based fuel has a more negative Doppler coefficient than uranium dioxide fuel. The moderator temperature coefficient (MTC) has been calculated for the different proposed fuels. Also, the fissile inventory ratio has been calculated at different burnup step. The use of Th-232 as a fertile material instead of U-238 in a nuclear fuel is the most promising fuel in VVER-1200 as it is the ideal solution to avoid the production of more plutonium components and long-lived minor actinides. The reactor grade plutonium accumulated in light water reactor with burnup can be recycled by mixing it with Th-232 to fuel the VVER-1200 assembly. The concentrations of Xe-135 and Sm-151 have been investigated, due to their high thermal neutron absorption cross section.

  9. Horn installed in CNGS tunnel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The horn is installed for the CERN Neutrinos to Gran Sasso (CNGS) project. Protons collide with a graphite target producing charged particles that are focussed by the magnetic field in the horn. These particles will then pass into a decay tube where they decay into neutrinos, which travel towards a detector at Gran Sasso 732 km away in Italy.

  10. Bursting deep dorsal horn neurons

    DEFF Research Database (Denmark)

    Carlsen, Eva Meier; Rasmussen, Rune

    2017-01-01

    In a recent publication, Thaweerattanasinp et al. (J Neurophysiol 116: 1644–1653, 2016) investigated spinal cord injury and firing properties of deep dorsal horn neurons during NMDA or zolmitriptan application by employing electrophysiology in an in vitro spinal cord preparation. Deep dorsal horn...

  11. Measurement of isotopic cross sections of the fission fragments produced in 500 AMeV {sup 208}Pb + p reaction; Etude de la production des fragments de fission issus de la reaction {sup 208}Pb + p a 500 AMeV

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Dominguez, B

    2003-03-01

    The aim of this work is the study of the fission fragments produced in the spallation reaction {sup 208}Pb + p at 500 AMeV. The fission fragments from Z=23 up to Z=59 have been detected and identified by using the inverse kinematics technique with the high-resolution spectrometer FRS. The production cross sections and the recoil velocities of 430 nuclei have been measured. The measured data have been compared with previous data. The isotopic distributions show a high precision. However, the absolute value of the fission cross section is higher than expected. From the experimental data the characteristics of the average fissioning system have been reconstructed (Z{sub fis}, A{sub fis}, E*{sub fis}). In addition, the number of post-fission neutrons emitted from the fission fragments, v{sub post}, has been determined by using a new method. The experimental data have been compared to the two-steps models describing the spallation reaction. The impact of the model parameters on the observables has been analysed and the reasons Leading to the observed differences between the codes are also presented. This analyse shows a good agreement with the INCL4+ABLA code. (author)

  12. Exploring hydro-meteorological drought patterns over the Greater Horn of Africa (1979-2014) using remote sensing and reanalysis products

    Science.gov (United States)

    Awange, J. L.; Khandu; Schumacher, M.; Forootan, E.; Heck, B.

    2016-08-01

    Spatio-temporal patterns of hydrological droughts over the Greater Horn of Africa (GHA) are explored based on total water storage (TWS) changes derived from time-variable gravity field solutions of Gravity Recovery And Climate Experiment (GRACE, 2002-2014), together with those simulated by Modern Retrospective Analysis for Research Application (MERRA, 1980-2014). These hydrological extremes are then related to meteorological drought events estimated from observed monthly precipitation products of Global Precipitation Climatology Center (GPCC, 1979-2010) and Tropical Rainfall Measuring Mission (TRMM, 1998-2014). The major focus of this contribution lies on the application of spatial Independent Component Analysis (sICA) to extract distinguished regions with similar rainfall and TWS with similar overall trend and seasonality. Rainfall and TWS are used to estimate Standard Precipitation Indices (SPIs) and Total Storage Deficit Indices (TSDIs), respectively that are employed to characterize frequency and intensity of hydro-meteorological droughts over GHA. Significant positive (negative) changes in monthly rainfall over Ethiopia (Sudan) between 2002 and 2010 leading to a significant increase in TWS over the central GHA region were noted in both MERRA and GRACE TWS (2002-2014). However, these trends were completely reversed in the long-term (1980-2010) records of rainfall (GPCC) and TWS (MERRA). The four independent hydrological sub-regions extracted based on the sICA (i.e., Lake Victoria Basin, Ethiopia-Sudanese border, South Sudan, and Tanzania) indicated fairly distinct temporal patterns that matched reasonably well between precipitation and TWS changes. While meteorological droughts were found to be consistent with most previous studies in all sub-regions, their impacts are clearly observed in the TWS changes resulting in multiple years of extreme hydrological droughts. Correlations between SPI and TSDI were found to be significant over Lake Victoria Basin, South

  13. AA, inner conductor of a magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    At the start-up of the AA and during its initial operation, magnetic horns focused the antiprotons emanating from the production target. These "current-sheet lenses" had a thin inner conductor (for minimum absorption of antiprotons), machined from aluminium to wall thicknesses of 0.7 or 1 mm. The half-sine pulses rose to 150 kA in 8 microsec. The angular acceptance was 50 mrad.

  14. Fission product separations testing

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.A.; DePaoli, S.M. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    The initial goal of this task is to adequately understand the treatment needs of the end user in treating contaminated wastewater. These needs are then incorporated into the evaluation of new treatment technologies for wastewater treatment. Pertinent information is than supplied to the end user so that they can select a preferred process to meet their waste treatment needs. New sorbent materials, ion-exchange materials, or other processes of interest to DOE`s Office of Environmental Restoration (EM-40) will be evaluated initially for the removal of {sup 90}Sr and {sup 137}Cs from groundwater and process wastewater. Laboratory studies will strive to obtain a quantitative understanding of the behavior of these new materials and to evaluate their sorption efficiency in reference to a standard benchmark treatment technique. Testing of the new materials will begin by conducting scoping tests where new treatment materials are compared with standard, commercially available materials in batch shaker tests. Experimental data for the most promising sorbents will then be fit to an equilibrium model so that nuclide sorption can be predicted for variable wastewater composition. Additional testing with actual wastewater will be conducted with two or three of the most effective treatment methods. Once batch testing of a treatment method is completed, dynamic column tests will be performed to validate the equilibrium sorption model and to obtain the defining column operating parameters for scaling up the technology.

  15. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    About 3000 different isotopes have been discovered until now. A recent compilation sum- marized details of the discovery of all isotopes [1–4] including the year, laboratory and country of discovery as well as the production mechanism used to produce the isotopes. Fission, one of the largest contributing production ...

  16. Neutron production from (. cap alpha. ,n) reactions and spontaneous fission in ThO/sub 2/, UO/sub 2/, and (U,Pu)O/sub 2/ fuels

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R.T.; Wilson, W.B.

    1981-06-01

    Available alpha-particle stopping cross-section and /sup 17/ /sup 18/O(..cap alpha..,n) cross-section data were adjusted, fitted, and used in calculating the thick-target neutron production function for alpha particles below 10 MeV in oxide fuels. The spent UO/sub 2/ function produced was folded with actinide decay spectra to determine (..cap alpha..,n) neutron production by each of 89 actinides. Spontaneous-fission (SF) neutron production for 40 actinides was calculated as the product of anti ..nu..(SF) and SF branching-fraction values accumulated or estimated from available data. These contributions and total neutron production in spent UO/sub 2/ fuel are tabulated and, when combined with any calculated inventory, describe the spent UO/sub 2/ neutron source. All data are tabulated and methodology is described to permit easy extension to specialized problems.

  17. Fast-Mixed Spectrum Reactor progress report. Results of the FMSR Benchmark calculations and an assessment of current fission product libraries

    Energy Technology Data Exchange (ETDEWEB)

    Ludewig, H.; Durston, C.; Atefi, B.; Cerbone, R.J.

    1980-06-01

    As part of the Initial Feasibility Study of the Fast Mixed Spectrum Reactor, a series of benchmark calculations were made to determine the sensitivity of the physics analysis to differences in methods and data. Argonne National Laboratory (ANL), the Massachusetts Institute of Technology (MIT), and Oak Ridge National Laboratory (ORNL) were invited to participate with Brookhaven National Laboratory in the analysis of a FMSR model prescribed by BNL. Detailed comparisons are made including a comprehensive study on the adequacy of the fission product treatments.

  18. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    Directory of Open Access Journals (Sweden)

    Wang He

    2017-01-01

    Full Text Available Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  19. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    Science.gov (United States)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shupei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shinichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  20. Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Mehdi Dehjourian

    2016-08-01

    Full Text Available The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  1. Study of the Effect of (U0.8Pu0.2O2 Uranium–Plutonium Mixed Fuel Fission Products on a Living Organism

    Directory of Open Access Journals (Sweden)

    Ayagoz Baimukhanova

    2016-08-01

    Full Text Available The article describes the results of experiments conducted on pigs to determine the effect of plutonium, which is the most radiotoxic and highly active element in the range of mixed fuel (U0.8Pu0.2O2 fission products, on living organisms. The results will allow empirical prediction of the emergency plutonium radiation dose for various organs and tissues of humans in case of an accident in a reactor running on mixed fuel (U0.8Pu0.2O2.

  2. A suitability study of the fission product phantom and the bottle manikin absorption phantom for calibration of in vivo bioassay equipment for the DOELAP accreditation testing program

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, P.C.; Lynch, T.P.

    1991-08-01

    Pacific Northwest laboratory (PNL) conducted an intercomparison study of the Fission Product phantom and the bottle manikin absorption (BOMAB) phantom for the US Department of Energy (DOE) to determine the consistency of calibration response of the two phantoms and their suitability for certification and use under a planned bioassay laboratory accreditation program. The study was initiated to determine calibration factors for both types of phantoms and to evaluate the suitability of their use in DOE Laboratory Accreditation Program (DOELAP) round-robin testing. The BOMAB was found to be more appropriate for the DOELAP testing program. 9 refs., 9 figs., 9 tabs.

  3. Production of neutron-rich copper isotopes in 30-MeV proton-induced fission of sup 2 sup 3 sup 8 U

    CERN Document Server

    Kruglov, K; Bruyneel, B; Dean, S S; Franchoo, S; Huyse, M; Kudryavtsev, Y; Müller, W F; Prasad, N V S; Raabe, R; Reusen, I; Schmidt, K H; Van De Vel, K; Van Duppen, P; Van Roosbroeck, J; Weissman, L

    2002-01-01

    The neutron-rich isotopes sup 7 sup 0 sup - sup 7 sup 6 Cu have been produced in 30-MeV proton-induced fission of sup 2 sup 3 sup 8 U using the Ion Guide Laser Ion Source (IGLIS) at LISOL. The production rates of the copper isotopes, and of the nickel and cobalt isotopes that were measured earlier, are compared to cross section calculations. Based on these new results an estimate for the cross section of sup 7 sup 8 Ni is given.

  4. HTGR fuels and core development program. Quarterly progress report for the period ending February 28, 1978. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The work documented here includes the design, analysis, and testing of the reactor core and its components comprising the fuel elements, hexagonal reflector elements, plenum elements, neutron sources, control rods, and reserve shutdown material. Also included are studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and, where appropriate, the data are presented in tables, graphs, and photographs.

  5. Uranium Fission Track Integrator for Measurement of Energy Production in the Subcritical Uranium Blanket of Electronuclear Assembly

    CERN Document Server

    Chultem, D; Krivopustov, M I

    2001-01-01

    Using nuclear track detectors in the uranium blanket of electronuclear assembly partial fission integrals have been measured. The merit of this method lies in the fact that uranium fission integrals are determined in every points of measurement as well as in whole volume of blanket. In addition, not only measurement of neutron spectra \\Phi(E_n) but also without going into details of excitation functions: \\sigma_f^5(E_n) and \\sigma_f^8(E_n) in wide range of energies, without recourse to group averaged cross sections are not required. The method was tested in the experiment on uranium blanket of electronuclear assembly "Energy plus transmutation" calorimetry at 1.5 GeV beam from synchrophasotron (JINR).

  6. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    dependence of angular anisotropy while 16O+232Th systems shows higher anisotropies for the symmetric fission products [58]. The trend is thus reversed compared to the light ion- induced fission. Mass-resolved angular distribution studies were also carried out in the. 20Ne+181Ta [28], 20Ne+208Pb [26] and 20Ne+232Th ...

  7. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  8. Study of proton- and deuteron-induced spallation reactions on the long-lived fission product 93Zr at 105 MeV/nucleon in inverse kinematics

    Science.gov (United States)

    Kawase, Shoichiro; Nakano, Keita; Watanabe, Yukinobu; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, Deuk Soon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Jun'ichi; Uesaka, Meiko; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission product ^{93}Zr have been studied in order to provide basic data necessary for nuclear waste transmutation. Isotopic-production cross sections via proton- and deuteron-induced spallation reactions on ^{93}Zr at 105 MeV/nucleon were measured in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Remarkable jumps in isotopic production originating from the neutron magic number N=50 were observed in Zr and Y isotopes. The experimental results were compared to the PHITS calculations considering both the intranuclear cascade and evaporation processes, and the calculations greatly overestimated the measured production yield, corresponding to few-nucleon-removal reactions. The present data suggest that the spallation reaction is a potential candidate for the treatment of ^{93}Zr in spent nuclear fuel.

  9. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  10. Microscopic description of complex nuclear decay: multimodal fission

    OpenAIRE

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-01-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fissi...

  11. Effect of the β decay of metallic fission products on the chemical and phase compositions of the uranium-plutonium nitride nuclear fuel irradiated by fast neutrons

    Science.gov (United States)

    Bondarenko, G. G.; Androsov, A. V.; Bulatov, G. S.; Gedgovd, K. N.; Lyubimov, D. Yu.; Yakunkin, M. M.

    2016-09-01

    Thermodynamic analysis of the chemical and phase compositions of uranium-plutonium nitride (U0.8Pu0.2)N0.995 irradiated by fast neutrons to a burn-up fraction of 14% shows that a structure, which consists of a solid solution based on uranium and plutonium nitrides and containing some elements (americium, neptunium, zirconium, yttrium, lanthanides), individual condensed phases (U2N3, CeRu2, Ba3N2, CsI, Sr3N2, LaSe), metallic molybdenum and technetium, and U(Ru, Rh, Pd)3 intermetallics, forms due to the accumulation of metallic fission products. The contents and compositions of these phases are calculated. The change in the chemical and phase compositions of the irradiated uranium-plutonium nitride during the β decay of metallic radioactive fission products is studied. The kinetics of the transformations of 95Nb41N, 143Pr59N, 151Sm62N, and 147NdN into 95Mo42 + Ns.s., 143Nd60N, 151Eu63N, and 147SmN, respectively, is calculated.

  12. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.

    Science.gov (United States)

    Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ

    2015-01-01

    This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo.

  13. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  14. Activation Energy for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1952-08-29

    The experimentally determined exponential dependence of spontaneous fission rate on Z{sup 2}/A has been used to derive an expression for the dependence of the fission activation energy on Z{sup 2}/A. This expression has been used to calculate the activation energy for slow neutron induced fission and photofission. The correlation with the experimental data on these types of fission seems to be quite good.

  15. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  16. Production of neutron-rich nuclei in fission induced by neutrons generated by the p+ sup 1 sup 3 C reaction at 55 MeV

    CERN Document Server

    Stroe, L; Andrighetto, A; Tecchio, L B; Dendooven, P; Huikari, J; Pentillä, H; Peraejaervi, K; Wang, Y

    2003-01-01

    Cross-sections for the production of neutron-rich nuclei obtained by neutron-induced fission of natural uranium have been measured. The neutrons were generated by bombarding a sup 1 sup 3 C target with 55 MeV protons. The results, position of the maximum in the (Z, A)-plane, width and magnitude, are very comparable with those where the neutrons are generated by bombardment of natural sup 1 sup 2 C graphite with 50 MeV deuterons. Depending on the geometry of the converter/target assembly the isotope yields, however, are a factor of 2-3 lower due to less efficient production of neutrons per primary projectile, especially at small forward angles. (orig.)

  17. Correlation measurements of fission-fragment properties

    Directory of Open Access Journals (Sweden)

    Oberstedt A.

    2010-10-01

    Full Text Available For the development of future nuclear fission applications and for a responsible handling of nuclear waste the a-priori assessment of the fission-fragments’ heat production and toxicity is a fundamental necessity. The success of an indispensable modelling of the fission process strongly depends on a good understanding of the particular mechanism of scission, the mass fragmentation and partition of excitation energy. Experimental observables are fission-fragment properties like mass- and energy-distributions, and the prompt neutron as well as γ-ray multiplicities and emission spectra. The latter quantities should preferably be known as a function of fragment mass and excitation energy. Those data are highly demanded as published by the OECD-NEA in its high priority data request list. With the construction of the double (v, E spectrometer VERDI we aim at measuring pre- and post-neutron masses directly and simultaneously to avoid prompt neutron corrections. From the simultaneous measurement of pre- and post-neutron fission-fragment data the prompt neutron multiplicity may then be inferred fully correlated with fragment mass yield and total kinetic energy. Using an ultra-fast fission event trigger spectral prompt fission γ-ray measurements may be performed. For that purpose recently developed lanthanum-halide detectors, with excellent timing characteristics, were coupled to the VERDI spectrometer allowing for a very good discrimination of fission γ-rays and prompt neutrons due to their different time-of-flight.

  18. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2009-10-25

    Advanced theoretical methods and high-performance computers may finally unlock the secrets of nuclear fission, a fundamental nuclear decay that is of great relevance to society. In this work, we studied the phenomenon of spontaneous fission using the symmetry-unrestricted nuclear density functional theory (DFT). Our results show that many observed properties of fissioning nuclei can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. From the calculated collective potential and collective mass, we estimated spontaneous fission half-lives, and good agreement with experimental data was found. We also predicted a new phenomenon of trimodal spontaneous fission for some transfermium isotopes. Our calculations demonstrate that fission barriers of excited superheavy nuclei vary rapidly with particle number, pointing to the importance of shell effects even at large excitation energies. The results are consistent with recent experiments where superheavy elements were created by bombarding an actinide target with 48-calcium; yet even at high excitation energies, sizable fission barriers remained. Not only does this reveal clues about the conditions for creating new elements, it also provides a wider context for understanding other types of fission. Understanding of the fission process is crucial for many areas of science and technology. Fission governs existence of many transuranium elements, including the predicted long-lived superheavy species. In nuclear astrophysics, fission influences the formation of heavy elements on the final stages of the r-process in a very high neutron density environment. Fission applications are numerous. Improved understanding of the fission process will enable scientists to enhance the safety and reliability of the nation’s nuclear stockpile and nuclear reactors. The deployment of a fleet of safe and efficient advanced reactors, which will also minimize radiotoxic

  19. Preliminary treatment of chlorinated streams containing fission products: mechanisms leading to crystalline phases in molten chloride media; Pretraitement pyrochimique de flux charges en produits de fission: mecanismes conduisant a l'obtention de phases cristallines en milieux chlorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, D

    2008-10-15

    The world of the nuclear power gets ready for profound modifications so that 'the atom' can aspire in conformance with long-lasting energy: it is what we call the development of generation IV nuclear systems. So, the new pyrochemical separation processes for the spent fuel reprocessing are currently being investigated. Techniques in molten chloride media generate an ultimate flow (with high chlorine content) which cannot be incorporated in conventional glass matrices. This flow is entirely water-soluble and must be conditioned in a chemical form which is compatible with a long-term disposal. This work of thesis consists in studying new ways for the management of the chlorinated streams loaded with fission products (FP). To do it, a strategy of selective FP extraction via the in situ formation of crystalline phases was retained. The possibility of extracting rare earths in the eutectic LiCl-KCl was demonstrated via the development of a new way of synthesis of rare earth phosphates (TRPO{sub 4}). As regards alkaline earths, the conversion of strontium and barium chlorides to the corresponding tungstates or molybdates was studied in different solvents. Mechanisms leading to the crystalline phases in molten chloride media were studied via the coupling of NMR and XRD techniques. First of all, it has been shown that these mechanisms are dependent on the stability of the used precursors. So in the case of the formation of rare earth phosphates the solvent is chemically active. On the other hand, in the case of the formation of alkaline earth tungstates it would seem that the solvent plays the role of structuring agent which can control the ability to react of chlorides. (author)

  20. Fission product removal by containment spray - influence of the distance between the drops on the aerosol collection efficiency; Influence de la densite spatiale des gouttes d'aspersion sur l'efficacite de collecte des produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Gauchet, N

    2000-07-01

    This work is within the framework of the studies that are conducted at the IPSN concerning the loss of coolant in a nuclear reactor. During this kind of accident, a spray system in the reactor containment induces the scrubbing of fission products in the atmosphere, and allows the decrease of their concentration in the containment. Our objective is to study the influence of the distance between the drops of their aerosol collection efficiency. This is not taken into account in the existing models. We stimulate the various aerosol collection mechanisms with one free falling drop using computational fluid dynamics codes. The mechanisms are: deposition by brownian diffusion, impaction and interception of the particles by the drop, and collection of particles in the presence of steam condensation at the surface of the drop. These phenomena are studied for drops ranging in diameter from 100 to 700 micrometers, falling in a saturated air-steam mixture whose temperature varies between 20 and 140 degrees Celsius, and total pressure varies between 1 and 5 bars. We validate these models with results available in the literature and with experimental results CARAIDAS. Then we apply these models to the case of three aligned drops, which constitutes a case for which the proximity of the drops has a strong influence on the collection of aerosols. While varying the distance between the drop from 5 to 25 drop diameters, we can highlight the modification of the collection efficiency of each mechanism related to the disturbance of the velocity and concentration fields in the vicinity of the drops. We note that the strongest variations of efficiency observed are in the field of impaction, and that the steam condensation at the surface of the drops limits the decrease. (authors)

  1. VESPA. Behaviour of long-lived fission and activation products in the nearfield of a nuclear waste repository and the possibilities of their retention

    Energy Technology Data Exchange (ETDEWEB)

    Bischofer, Barbara; Hagemann, Sven [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Altmaier, Marcus [Karlsruher Institut fuer Technologie (KIT) (Germany); and others

    2016-06-15

    The present document is the final report of the Joint Research Project VESPA (Behaviour of Long-lived Fission and Activation Products in the Near Field of a Nuclear Waste Repository and the Possibilities of Their Retention), started in July 2010 with a duration of four years. The following four institutions were collaborative Partners in VESPA: - Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH - Institut fuer Energie- und Klimaforschung, IEK-6: Nukleare Entsorgung und Reaktorsicherheit, Forschungszentrum Juelich (FZJ) - Institut fuer Ressourcenoekologie (IRE), Helmholtz-Zentrum Dresden-Rossendorf (HZDR) - Institut fuer Nukleare Entsorgung (INE), Karlsruher Institut fuer Technologie (KIT) VESPA was funded by the German Federal Ministry of Economics and Energy (BMWi) under the contract numbers 02 E 10770 (GRS), 02 E 10780 (FZJ-IEF-6), 02 E 10790 (HZDR-IRE), 02 E 10800 (KIT-INE).

  2. Instant release of fission products in leaching experiments with high burn-up nuclear fuels in the framework of the Euratom project FIRST- Nuclides

    Science.gov (United States)

    Lemmens, K.; González-Robles, E.; Kienzler, B.; Curti, E.; Serrano-Purroy, D.; Sureda, R.; Martínez-Torrents, A.; Roth, O.; Slonszki, E.; Mennecart, T.; Günther-Leopold, I.; Hózer, Z.

    2017-02-01

    The instant release of fission products from high burn-up UO2 fuels and one MOX fuel was investigated by means of leach tests. The samples covered PWR and BWR fuels at average rod burn-up in the range of 45-63 GWd/tHM and included clad fuel segments, fuel segments with opened cladding, fuel fragments and fuel powder. The tests were performed with sodium chloride - bicarbonate solutions under oxidizing conditions and, for one test, in reducing Ar/H2 atmosphere. The iodine and cesium release could be partially explained by the differences in sample preparation, leading to different sizes and properties of the exposed surface areas. Iodine and cesium releases tend to correlate with FGR and linear power rating, but the scatter of the data is significant. Although the gap between the fuel and the cladding was closed in some high burn-up samples, fissures still provide possible preferential transport pathways.

  3. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP Keff calculations for PWR burnup credit casks

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Wagner, John C [ORNL; Bowen, Douglas G [ORNL

    2015-09-01

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.

  4. Influence of noble metal fission products and uranium on the microstructure and corrosion behaviour of D9 stainless steel–zirconium metal waste form alloy

    Energy Technology Data Exchange (ETDEWEB)

    Bairi, Lipika Rani, E-mail: lrbairi@gmail.com; Mallika, C., E-mail: mallika@igcar.gov.in; Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in

    2014-05-01

    Highlights: • D9SS–Zr based Metal Waste Form (MWF) alloys were developed. • Microstructure of Noble Metal Fission Products (NMFPs) and U added MWF alloys was elucidated. • Zr-rich intermetallic phase hosts NMFP and U. • Leaching studies revealed the formation of stable hydrated passive film in NMFP–U–MWF alloys. - Abstract: Metal waste form (MWF) alloys of composition D9SS–8.5Zr, D9SS–10Zr–1NMFP and D9SS–10Zr–1NMFP–10U were prepared by casting of D9SS (Ti-modified austenitic 316 stainless steel), zirconium, NMFPs (noble metal fission products) and uranium for evaluating the influence of NMFPs and U on the microstructure and corrosion resistance of MWF alloys. Gradual increase in the hardness value was observed with the addition of NMFPs and uranium. Microstructural characterisation revealed the formation of Zr-rich intermetallic phases in these alloys which act as hosts for NMFPs and U. Fe–Zr and Ni–Zr based intermetallics were identified in D9SS–Zr and D9SS–Zr–NMFP alloys by XRD technique. In the U added alloy, UZrO{sub 2} and NiU{sub 2} were observed along with Fe–Zr and Ni–Zr intermetallics. Electrochemical corrosion monitoring confirmed active corrosion potential and higher passive current density with the addition of NMFPs and U. The MWF alloy with NMFPs showed higher break down potential with high polarization resistance revealing stable passive film.

  5. Conclusions from V and V studies on the German codes PANAMA and FRESCO for HTGR fuel performance and fission product release

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K., E-mail: k.verfondern@fz-juelich.de [Research Center Jülich, 52425, Jülich (Germany); Cao, J.; Liu, T. [Tsinghua University, Beijing (China); Allelein, H.-J. [Research Center Jülich, 52425, Jülich (Germany); RWTH Aachen, 52072, Aachen (Germany)

    2014-05-01

    In modern HTGR reactors, the fuel element represents the principal barrier against release of the fission products generated during reactor operation. Both the acquired experience from HTGR operation and experimental data from accident simulation testing of the fuel have always been accompanied by intensive efforts of mathematical fuel performance modeling taking into consideration as far as possible the physical phenomena that may occur. The computer codes FRESCO and PANAMA both developed at the Research Center Jülich in Germany in the early 1980s have become essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These two codes are also presently being used for a conservative estimation of the source term, i.e., quantity and duration of radionuclide release, for the Chinese demonstration project HTR-PM. A description of the comprehensive efforts in the past on code verification and validation (V and V) including the most recent studies of code-to-code benchmarking studies and code-to-experiment comparisons as part of the IAEA directed CRP-6 project will be given. The conclusions drawn from those activities will be given with regard to the codes’ ability to allow for a conservative quantification of the source term as part of safety and risk analyses for pebble-bed HTGRs. Recommendations for further model improvement have been taken into account in the new code development, STACY, combining the PANAMA and FRESCO model approach and other features, as a module of the HTR Code Package (HCP)

  6. Report to the DOE nuclear data committee. [EV RANGE 10-100; CROSS SECTIONS; PHOTONEUTRONS; NEUTRONS; GAMMA RADIATION; COUPLED CHANNEL THEORY; DIFFERENTIAL CROSS SECTIONS; MEV RANGE 01-10; ; CAPTURE; GAMMA SPECTRA; THERMAL NEUTRONS; COMPUTER CALCULATIONS; DECAY; FISSION PRODUCTS; FISSION YIELD; SHELL MODELS; NUCLEAR DATA COLLECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Haight, R.C.

    1981-03-01

    Topics covered include: studies of (n, charged particle) reactions with 14 to 15 MeV neutrons; photoneutron cross sections for /sup 15/N; neutron radiative capture; Lane-model analysis of (p,p) and (n,n) scattering on the even tin isotopes; neutron scattering cross sections for /sup 181/Ta, /sup 197/Au, /sup 209/Bi, /sup 232/Th, and /sup 238/U inferred from proton scattering and charge exchange cross sections; neutron-induced fission cross sections of /sup 245/Cm and /sup 242/Am; fission neutron multiplicities for /sup 245/Cm and /sup 242/Am; the transport of 14 MeV neutrons through heavy materials 150 < A < 208; /sup 249/Cm energy levels from measurement of thermal neutron capture gamma rays; /sup 231/Th energy levels from neutron capture gamma ray and conversion electron spectroscopy; new measurements of conversion electron binding energies in berkelium and californium; nuclear level densities; relative importance of statistical vs. valence neutron capture in the mass-90 region; determination of properties of short-lived fission products; fission yield of /sup 87/Br and /sup 137/I from 15 nuclei ranging from /sup 232/Th to /sup 249/Cf; evaluation of charged particle data for the ECPL library; evaluation of secondary charged-particle energy and angular distributions for ENDL; and evaluated nuclear structure libraries derived from the table of isotopes. (GHT)

  7. Nuclear fission: a review of experimental advances and phenomenology

    Science.gov (United States)

    Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.

    2018-01-01

    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions

  8. Fifty years of nuclear fission: Nuclear data and measurements series

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, J.E.

    1989-06-01

    This report is the written version of a colloquium first presented at Argonne National Laboratory in January 1989. The paper begins with an historical preamble about the events leading to the discovery of nuclear fission. This leads naturally to an account of early results and understanding of the fission phenomena. Some of the key concepts in the development of fission theory are then discussed. The main theme of this discussion is the topography of the fission barrier, in which the interplay of the liquid-drop model and nucleon shell effects lead to a wide range of fascinating phenomena encompassing metastable isomers, intermediate-structure effects in fission cross-sections, and large changes in fission product properties. It is shown how study of these changing effects and theoretical calculations of the potential energy of the deformed nucleus have led to broad qualitative understanding of the nature of the fission process. 54 refs., 35 figs.

  9. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  10. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris: Status Report and FY16 Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Faye, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shaughnessy, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-19

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will be addressed in addition to a summary of the isotopes that are already regularly produced. This is a planning document only.

  11. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  12. Contribution to the study of the behaviour, in the urban environment, during the runoff of rainwater, of the fission products emitted during a nuclear accident; Contribution a l`etude du devenir, en milieu urbain, pendant le ruissellement des eaux pluviales, des produits de fission emis en cas d`accident nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Pioch, M.

    1993-05-24

    In the context of research into the environmental consequences of a serious accident occurring on a pressurized water reactor, this paper concerns the experimental study of behaviour of five fission products (caesium, strontium, iodine, ruthenium and tellurium) in the urban environment under the action of rainwater. Stable or radioactive multiple-element aerosols were produced. Their physicochemical characteristics and their solubility in rainwater were studied. Caesium and rubidium forms solutions totally and quickly, while strontium is partially soluble (approximately 50 %) and iodine is only slightly soluble. The behaviour of fission products on five urban surfaces was then studied. Batch experiments showed that the retention of dissolved forms of radioelements varied according to the material. The reactions involved are ion exchange reactions. The presence of certain ions in water (in particular NH{sub 4}{sup +}) increase the desorption of radioelements. Using a laboratory rainfall simulator, the re-entrainment of fission products by rainwater was examined. Two modes of deposition and two intensities of rainfall were simulated. The desorption of radioelements is greater after wet deposition and remobilization is reduced by an increase in intensity of rainfall. An addition of NH{sub 4}{sup +} in water is especially effective in the case of wet depositions. Suggestions are made in order to improve experimental protocols and continue the research. (author). 75 refs., 51 figs., 69 tabs., 14 appends.

  13. Relativistic Coulomb fission

    Science.gov (United States)

    Norbury, John W.

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  14. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    Energy Technology Data Exchange (ETDEWEB)

    Gharibyan, Narek [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  15. Experimental tests of the production process of Mo-99 fission in the hot cell; Pruebas experimentales del proceso de produccion de 99-Mo de fision en la celda caliente

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez M, V.; Lopez C, R

    1991-12-15

    The production method of {sup 99} Mo of fission obtains to this with a specific activity of several orders of great magnitude to the one obtained by other methods (as that of irradiation of a target constituted by an alloy or that of irradiation with neutrons of targets of molybdenum of natural isotopic composition or enriched with {sup 98} Mo) and perhaps the most important it is that by this method hundred of Ci of {sup 99} Mo can be obtained by production process. The development of the production process of {sup 99} Mo of fission, is closely linked with the development of techniques for the handling of high radioactivities, particularly the handling of radioactive gases, also with the deposit and elimination of radioactive wastes and with the construction of safety targets for its irradiation in a nuclear reactor. (Author)

  16. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

  17. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    Science.gov (United States)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  18. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  19. Influence of noble metal fission products and uranium on the microstructure and corrosion behaviour of D9 stainless steel-zirconium metal waste form alloy

    Science.gov (United States)

    Bairi, Lipika Rani; Mallika, C.; Kamachi Mudali, U.

    2014-05-01

    Metal waste form (MWF) alloys of composition D9SS-8.5Zr, D9SS-10Zr-1NMFP and D9SS-10Zr-1NMFP-10U were prepared by casting of D9SS (Ti-modified austenitic 316 stainless steel), zirconium, NMFPs (noble metal fission products) and uranium for evaluating the influence of NMFPs and U on the microstructure and corrosion resistance of MWF alloys. Gradual increase in the hardness value was observed with the addition of NMFPs and uranium. Microstructural characterisation revealed the formation of Zr-rich intermetallic phases in these alloys which act as hosts for NMFPs and U. Fe-Zr and Ni-Zr based intermetallics were identified in D9SS-Zr and D9SS-Zr-NMFP alloys by XRD technique. In the U added alloy, UZrO2 and NiU2 were observed along with Fe-Zr and Ni-Zr intermetallics. Electrochemical corrosion monitoring confirmed active corrosion potential and higher passive current density with the addition of NMFPs and U. The MWF alloy with NMFPs showed higher break down potential with high polarization resistance revealing stable passive film.

  20. Evaluation of resolved resonance parameters of fission product nuclides with atomic numbers Z=46-51 for JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yutaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-08-01

    Resolved resonance parameters of the following fission product nuclides with atomic numbers Z=46-51 have been evaluated for JENDL-3.2: {sup 102,104,105,106,107,108,110}Pd, {sup 107,109,110m}Ag, {sup 106,108,110,111,112,113,114,116}Cd, {sup 113,115I}n, {sup 121,123}Sb. Evaluation was made on the basis of JENDL-2 for most nuclides and of the data recommended by Mughabghab et al. for the nuclides whose data have not been contained in JENDL-2. Data measured after the JENDL-2 evaluation (1982) have been taken into account in the evaluation. Spin of the resonance state and angular momentum of the incident neutron have been given for all levels. When there exist no measured data, the spin has been given tentatively on the basis of a random sampling technique using their statistical properties, and the angular momentum was also tentatively given on the basis of the Bayes`s theorem on conditional probability using the s- and p-wave strength functions and average level spacings. The resonance parameters have been evaluated so as to reproduce measured capture area of individual resonance levels, thermal cross section and resonance integral. Evaluated results have been compiled into JENDL-3.2 in the formats of ENDF-5 and ENDF-6. (author)

  1. Method of computer-based operator instruction system for diagnosing fission product transport and release in nuclear power plants. [COINS system

    Energy Technology Data Exchange (ETDEWEB)

    Kodaira, Hideki; Kondo, Shunsuke; Togo, Yasumasa

    1984-03-01

    A computer-based operater instruction system (COINS) for diagnosing fission product (FP) transport and release in nuclear power plants (NPPs) is proposed and a conceptual design for COINS is studied in this paper. COINS can be described in the most general way as a computer-based information processing system which takes in plant data, processes it, and displays the results to the NPP's operating crew. Our major concern for COINS is, however, not to evaluate general plant dynamics, but to monitor the distribution of the whole radioactive materials such as FP, and to diagnose the plant state in the view of FP transport during the NPP's lifetime. Several functions demanded of COINS are: (a) during normal operation, to certify the fuel integrity and the effectiveness of the purification systems, (b) in an unusual event, to identify the event and to monitor the amount of FP release with accuracy, and (c) in case of a rare occurrence, to estimate the maximum potential release.

  2. Applications of inductively coupled plasma-mass spectrometry to the determination of actinides and fission products in high level radioactive wastes at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kinard, W.F. [College of Charleston, SC (United States). Dept. of Chemistry; Bibler, N.E.; Coleman, C.J.; Dewberry, R.A.; Boyce, W.T. [Westinghouse Savannah River Technology Center, Aiken, SC (United States); Wyrick, S.B. [Science Applications International, Gaithersburg, MD (United States)

    1995-12-31

    Four years of experience in applying inductively coupled plasma-mass spectrometry (ICP-MS) to the analysis of actinides and fission products in high level waste (HLW) samples at the Savannah River Site has led to the development of a number of techniques to aid in the interpretation of the mass spectral data. The goal has been to develop rapid and reliable analytical procedures that provide the necessary chemical and isotopic information to answer the process needs of the customers. Techniques that have been developed include the writing of computer software to strip the experimental data from the instrumental data files into spreadsheets or into a spectral data processing package so that the raw mass spectra can be overlain for comparison or plotted with higher output resolution. These procedures have been applied to problems ranging from the analysis of the high level waste tanks to reactor moderator water as well as environmental samples. Criticality safety analyses in some HLW waste treatment processes depend upon actinide concentration and isotopic information generated by ICP-MS, particularly in tanks with high concentrations of {sup 137}Cs and {sup 90}Sr. Experimental results for a number of these applications will be presented. These procedures represent a considerable saving in time and expense as compared to conventional chemical separation followed by radiochemical analyses, as well as decreased radiation exposure for the analysts.

  3. Radiochemical applications of insoluble sulfate columns. Analytical possibilities in the field of the fission product solutions; Aplicaciones radioquimica de las columnas de precipitados de sulfatos insolubles. Contribucion al estudio de las soluciones envejecidas de productos de fision

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, M.; Sauvagnac, R.

    1962-07-01

    In this paper we go on with our study of the heterogeneous ion-isotopic exchange in column. At present, we apply it to determine the radiochemical composition of the raw solutions used in the industrial recuperation of the long-lived fission products. The separation of the radioelements contained in these solutions is carried out mainly by making use of small columns, 1-3 cm height, of BaSO{sub 4} or SrSO{sub 4}, under selected experimental conditions. These columns behave like a special type of inorganic exchangers, working by absorption or by ion-isotopic exchange depending on the cases,a nd they provide the means for the selective separation of several important fission products employing very small volumes of fixing and eluting solutions. (Author) 11 refs.

  4. Fission products in National Atmospheric Deposition Program—Wet deposition samples prior to and following the Fukushima Dai-Ichi Nuclear Power Plant incident, March 8?April 5, 2011

    Science.gov (United States)

    Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.

    2012-01-01

    Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.

  5. Fission in a Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  6. The VERDI fission fragment spectrometer

    Directory of Open Access Journals (Sweden)

    Frégeau M.O.

    2013-12-01

    Full Text Available The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution.

  7. Mapping speed for an array of corrugated horns.

    Science.gov (United States)

    Padin, Stephen

    2010-01-20

    I address the choice of horn diameter for millimeter-wave array receivers with corrugated horns. For maximum point-source mapping speed, in both total power and polarization with typical receiver noise contributions and a close-packed horn array that fills the field of view, the optimum horn diameter is 1.6-1.7Flambda, where F is the focal ratio. A +/-25% change in horn diameter gives effect on the mapping speed and optimum horn diameter.

  8. Pyrosequencing-based analysis of the microbiome associated with the horn fly, Haematobia irritans.

    Directory of Open Access Journals (Sweden)

    Azhahianambi Palavesam

    Full Text Available The horn fly, Haematobia irritans, is one of the most economically important pests of cattle. Insecticides have been a major element of horn fly management programs. Growing concerns with insecticide resistance, insecticide residues on farm products, and non-availability of new generation insecticides, are serious issues for the livestock industry. Alternative horn fly control methods offer the promise to decrease the use of insecticides and reduce the amount of insecticide residues on livestock products and give an impetus to the organic livestock farming segment. The horn fly, an obligatory blood feeder, requires the help of microflora to supply additional nutrients and metabolize the blood meal. Recent advancements in DNA sequencing methodologies enable researchers to examine the microflora diversity independent of culture methods. We used the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP method to carry out the classification analysis of bacterial flora in adult female and male horn flies and horn fly eggs. The bTEFAP method identified 16S rDNA sequences in our samples which allowed the identification of various prokaryotic taxa associated with the life stage examined. This is the first comprehensive report of bacterial flora associated with the horn fly using a culture-independent method. Several rumen, environmental, symbiotic and pathogenic bacteria associated with the horn fly were identified and quantified. This is the first report of the presence of Wolbachia in horn flies of USA origin and is the first report of the presence of Rikenella in an obligatory blood feeding insect.

  9. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Continuation from 8010293: Finally, the sandwich line with the horn is placed on the ground, for the horn to be inspected and, if needed, exchanged for a new one. The whole procedure was trained with several members of the AA team, for quick and safe handling, and to share the radiation dose amongst them.

  10. Spherical Horn Array for Wideband Propagation Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Pedersen, Gert Frølund

    2011-01-01

    A spherical array of horn antennas designed to obtain directional channel information and characteristics is introduced. A dual-polarized quad-ridged horn antenna with open flared boundaries and coaxial feeding for the frequency band 600 MHz–6 GHz is used as the element of the array. Matching...... for a wideband multipath propagation studies....

  11. Horn belief change: A contraction core

    CSIR Research Space (South Africa)

    Booth, R

    2010-08-01

    Full Text Available The authors show that Booth et al.’s Horn contraction based on infra-remainder sets corresponds exactly to kernel contraction for belief sets. This result is obtained via a detour through Horn contraction for belief bases, which supports...

  12. Fission enhanced diffusion of uranium in zirconia

    Science.gov (United States)

    Bérerd, N.; Chevarier, A.; Moncoffre, N.; Sainsot, Ph.; Faust, H.; Catalette, H.

    2005-11-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin 235UO2 layer in direct contact with an oxidised zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 1011 ions cm-2 s-1 and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10-15 cm2 s-1 at 480 °C and compared to uranium thermal diffusion data in ZrO2 in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  13. Eye injuries caused by cow horns.

    Science.gov (United States)

    Goldblum, D; Frueh, B E; Koerner, F

    1999-01-01

    To assess ocular injuries caused by cow horns; to investigate clinical findings, treatment, and visual outcome in a population of dairy farmers; and to propose possible preventive measures. A retrospective review was conducted to identify patients seen over a 45-month period with cow horn-inflicted eye injuries. Eleven patients were identified and their charts reviewed for demographics, mechanism of injury, initial and final visual acuity, surgeries performed, and anatomic outcome. The mean age of the patients was 64 years. Seven patients had open-globe injuries with vitreous hemorrhage. In five cases, pars plana vitrectomy was performed. Final best-corrected visual acuity was cow horn injuries studied caused severe permanent impairment of vision. Owing to the blunt nature of the horns, a significant amount of energy is imparted into the eye. To prevent these injuries, coagulation of the horns should be performed 2 weeks after a calf's birth or farmers should be advised to wear safety glasses.

  14. Correlated prompt fission data in transport simulations

    Science.gov (United States)

    Talou, P.; Vogt, R.; Randrup, J.; Rising, M. E.; Pozzi, S. A.; Verbeke, J.; Andrews, M. T.; Clarke, S. D.; Jaffke, P.; Jandel, M.; Kawano, T.; Marcath, M. J.; Meierbachtol, K.; Nakae, L.; Rusev, G.; Sood, A.; Stetcu, I.; Walker, C.

    2018-01-01

    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and γ-ray spectra, angular distributions of the emitted particles, n - n, n - γ, and γ - γ correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and γ rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in

  15. Horn growth patterns in Alpine chamois.

    Science.gov (United States)

    Corlatti, Luca; Gugiatti, Alessandro; Imperio, Simona

    2015-06-01

    The analysis of horn growth may provide important information about the allocation of metabolic resources to secondary sexual traits. Depending on the selective advantages offered by horn size during intra- and inter-specific interactions, ungulates may show different investment in horn development, and growth variations within species may be influenced by several parameters, such as sex, age, or resource availability. We investigated the horn growth patterns in two hunted populations of Alpine chamois (Rupicapra r. rupicapra) in the Central Italian Alps. We tested the role of individual heterogeneity on the growth pattern and explored the variation in annulus length as a function of different factors (sex, age, hunting location, cohort). We then investigated the mechanisms underlying horn growth trajectories to test for the occurrence of compensatory or recovery growth and their potential differences between sexes and populations. Annulus length varied as a function of sex, age of individuals and, marginally, hunting location; no effect of cohort or individual heterogeneity was detected. Male and female chamois showed compensatory horn growth within the first 5½ years of life, though the partial convergence of horn trajectories in chamois suggests that this mechanisms would best be described as 'recovery growth'. Compensation rates were greater in males than in females, while only compensatory growth rates up to 2½ years of age were different in the two populations. Besides confirming the sex- and age-dependent pattern of horn development, our study suggests that the mechanism of recovery growth supports the hypothesis of horn size as a weakly selected sexual trait in male and female chamois. Furthermore, the greater compensation rates in horn growth shown by male chamois possibly suggest selective effects of hunting on age at first reproduction, while different compensation rates between populations may suggest the occurrence of some plasticity in resource

  16. Study of the fission products fixation in the hydroxyapatite mineral; Estudio de la fijacion de productos de fision en el mineral hidroxiapatita

    Energy Technology Data Exchange (ETDEWEB)

    Soriano R, J. M.

    2011-07-01

    In this research work, sorption properties of hydroxyapatite in aqueous solutions were studied using Na{sup +} and K{sup +} ion behavior. In addition, the fission products {sup 99}Tc and {sup 107}Pd uptake was studied to determine their sorption mechanisms on hydroxyapatite. This research was conducted in two stages. The first stage aimed to identify surface reactive sites of hydroxyapatite surface. This surface study was performed by the radiotracer method using {sup 24}Na and {sup 42}K radionuclides and applying the ion-exchange theory. It provides evidence in terms of the saturation curves of individual behaviour of the Na{sup +} and K{sup +} cations. Hydroxyapatite reactive sites were identified and quantified from the results and application of the ion-exchange model: a mono-functional site of 0.28 mmol g{sup -1} for the sodium hydroxylate form and a dipr otic site with two saturation curves of 0.14 mmol g{sup -1} each, for the sodium phosphate form. In a second stage, the sorption of fission products, Tc and Pd, on hydroxyapatite was studied. This sorption was expressed in terms of distribution coefficients obtained with equivalent radiotracers: {sup 99m}Tc and {sup 109}Pd. Tc presented a low sorption affinity on hydroxyapatite in aqueous medium 0.02 M NaH{sub 2}PO{sub 4} and the results also show that Tc is not sorbed from perchlorate medium (0.01 M Ca(ClO{sub 4}){sub 2}). Sorption behaviour of Pd(II) on hydroxyapatite was studied for different experimental conditions, with parameter such as: ph, aqueous medium (0.01 M NaClO{sub 4}, 0.01 M and 0.025 M Ca(ClO{sub 4}){sub 2}, and 0.02 M NaH{sub 2}PO{sub 4}), the solid solution ratio (10, 4 and 0.020 g/L), and the palladium concentration were studied. Pd sorption was complete at solid-solution ratios 10 and 4 g/L. A strong sorption affinity of hydroxyapatite for palladium was obtained at solid-solution ratio 0.020 g/L. In the interpretation of the results it was considered the aqueous chemistry of palladium

  17. Solar Versus Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; McNatt, Jeremiah; Martini, Michael C.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions to Mars using In-situ resource utilization (ISRU). The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar-power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. This “pathfinder” design utilized a 4.5 meter diameter lander. Its primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander’s ISRU payload would demonstrate liquid oxygen propellant production from atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept’s propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept’s propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,128 to 2,425 kg, versus the 2,751 kg fission power scheme. However, solar power masses increase as landing sites are selected further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling.

  18. Mass spectrometry for the determination of fission products 135Cs, 137Cs and 90Sr: A review of methodology and applications

    Science.gov (United States)

    Bu, Wenting; Zheng, Jian; Liu, Xuemei; Long, Kaiming; Hu, Sheng; Uchida, Shigeo

    2016-05-01

    The radioactive fission products 135Cs, 137Cs and 90Sr have been released into the environment by human activities such as nuclear weapon tests, nuclear fuel reprocessing and nuclear power plant accidents. Monitoring of these radionuclides is important for dose assessment. Moreover, the 135Cs/137Cs isotopic ratio can be used as an important long-term fingerprint for radioactive source identification as it varies with weapon, reactor and fuel types. In recent years, mass spectrometry has become a powerful method for the determination of 135Cs, 137Cs and 90Sr in environmental samples. Mass spectrometry is characterized by the high sensitivity and low detection limit and the relatively shorter sample preparation and analysis times compared with radiometric methods. However, the mass spectrometric determination of radiocesium and 90Sr is affected by the peak tailings of the stable nuclides 133Cs and 88Sr, respectively, and the related isobaric and polyatomic interferences. Chemical separation and optimization of the mass spectrometry instrumental setup are strongly needed prior to the mass spectrometry detection. In this paper, we have reviewed the published works about the determination of 135Cs, 137Cs and 90Sr by mass spectrometry. The mass spectrometric techniques we cover are resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICP-MS). For each technique, the principles or strategies used for the analysis of these radionuclides are discussed; these included the abundance sensitivity, ways to suppress the interference signals, and the instrumental setup. In particular, the chemical procedures for eliminating the interferences are also summarized. To date, triple quadrupole ICP-MS (ICP-QQQ) showed great ability for the analysis of these radionuclides and the detection limits were as low as 0.01 pg/mL levels. Finally, some investigations on the

  19. Re-interpretation of the ERMINE-V experiment validation of fission product integral cross section in the fast energy range

    Directory of Open Access Journals (Sweden)

    Ros Paul

    2017-01-01

    Full Text Available The current knowledge of nuclear data in the fast neutron energy range is not as good as in the thermal range, resulting in larger propagated uncertainties in integral quantities such as critical masses or reactivity effects. This situation makes it difficult to get the full benefit from recent advances in modeling and simulation. Zero power facilities such as the French ZPR MINERVE have already demonstrated that they can contribute to significantly reduce those uncertainties thanks to dedicated experiments. Historically, MINERVE has been mainly dedicated to thermal spectrum studies. However, experiments involving fast-thermal coupled cores were also performed in MINERVE as part of the ERMINE program, in order to improve nuclear data in fast spectra for the two French SFRs: PHENIX and SUPERPHENIX. Some of those experiments have been recently revisited. In particular, a full characterization of ZONA-1 and ZONA-3, two different cores loaded in the ERMINE V campaign, has been done, with much attention paid to possible sources of errors. It includes detailed geometric descriptions, energy profiles of the direct and adjoint fluxes and spectral indices obtained thanks to Monte Carlo calculations and compared to a reference fast core configuration. Sample oscillation experiments of separated fission products such as 103Rh or 99Tc, which were part of the ERMINE V program, have been simulated using recently-developed options in the TRIPOLI-4 code and compared to the experimental values. The present paper describes the corresponding results. The findings motivate in-depth studies for designing optimized coupled-core conditions in ZEPHYR, a new ZPR which will replace MINERVE and will provide integral data to meet the needs of Gen-III and Gen-IV reactors.

  20. Re-interpretation of the ERMINE-V experiment validation of fission product integral cross section in the fast energy range

    Science.gov (United States)

    Ros, Paul; Leconte, Pierre; Blaise, Patrick; Naymeh, Laurent

    2017-09-01

    The current knowledge of nuclear data in the fast neutron energy range is not as good as in the thermal range, resulting in larger propagated uncertainties in integral quantities such as critical masses or reactivity effects. This situation makes it difficult to get the full benefit from recent advances in modeling and simulation. Zero power facilities such as the French ZPR MINERVE have already demonstrated that they can contribute to significantly reduce those uncertainties thanks to dedicated experiments. Historically, MINERVE has been mainly dedicated to thermal spectrum studies. However, experiments involving fast-thermal coupled cores were also performed in MINERVE as part of the ERMINE program, in order to improve nuclear data in fast spectra for the two French SFRs: PHENIX and SUPERPHENIX. Some of those experiments have been recently revisited. In particular, a full characterization of ZONA-1 and ZONA-3, two different cores loaded in the ERMINE V campaign, has been done, with much attention paid to possible sources of errors. It includes detailed geometric descriptions, energy profiles of the direct and adjoint fluxes and spectral indices obtained thanks to Monte Carlo calculations and compared to a reference fast core configuration. Sample oscillation experiments of separated fission products such as 103Rh or 99Tc, which were part of the ERMINE V program, have been simulated using recently-developed options in the TRIPOLI-4 code and compared to the experimental values. The present paper describes the corresponding results. The findings motivate in-depth studies for designing optimized coupled-core conditions in ZEPHYR, a new ZPR which will replace MINERVE and will provide integral data to meet the needs of Gen-III and Gen-IV reactors.

  1. Horn of Africa food crisis

    CERN Multimedia

    Staff Association

    2011-01-01

    YOU ARE WONDERFUL, THANK YOU! As we have indicated previously, the Horn of Africa is experiencing an extremely severe food crisis as a result of one of the toughest droughts since the early 1950s. A total of over 12 million people in Djibouti, Ethiopia, Somalia, Kenya and Uganda are severely affected by this devastating crisis and the UN has officially declared famine in these regions. In addition, children are the most vulnerable victims, with more than half a million children at risk of imminent death from severe malnutrition and an estimated 2.3 million children already malnourished. At the beginning of August we opened an account to receive your donations. We are pleased to announce that the funds received are 30’500 CHF, the total sum of which will be transferred to UNICEF. We would like to thank all those who have contributed to this important cause. Rolf Heuer Director-General Michel Goossens President of the Staff Association

  2. 12MW Horns Rev experiment

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Peña, A.; Mikkelsen, Torben

    The 12MW project with the full title ‘12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore’ has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis...... relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting...... profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported....

  3. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  4. Proportioning of {sup 79}Se and {sup 126}Sn long life radionuclides in the fission products solutions coming from spent fuels processing; Dosage des radionucleides a vie longue {sup 79}Se et {sup 126}Sn dans les solutions de produits de fission issues du traitement des combustibles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Comte, J

    2001-11-01

    The determination of radionuclides present in waste resulting from the nuclear fuel reprocessing is a request from the regulatory authorities to ensure an optimal management of the storage sites. Long-lived radionuclides (T{sub 1/2} > 30 years) are particularly concerned owing to the fact that their impact must be considered for the long term. Safety studies have established a list of long-lived radionuclides (LLRN) whose quantification is essential for the management of the disposal site. Among these, several are pure {beta} emitters, present at low concentration levels in complex matrices. Their determination, by radiochemical method or mass spectrometry, involves selective chemical separations from the others {beta}/{gamma} emitters and from the measurement interfering elements. The work undertaken in this thesis relates to the development of analytical methods for the determination of two long-lived radionuclides: selenium 79 and tin 126, in acid solutions of fission products present in nuclear fuel reprocessing plant. For selenium 79, a {beta} emitter with a half live estimated to be 10{sup 6} years, the bibliography describes different chemical separation methods including precipitation, liquid-liquid extraction and chromatography on ionic resins. After optimisation on a synthetic solution, two of these techniques, precipitation by potassium iodine and separation with ion exchange resins were applied to a genuine solution of fission products at Cogema La Hague. The results showed that only the ion exchange method allows us to obtain a solution sufficiently decontaminated (FD{beta}{gamma} = 250) with a significant selenium recovery yield (85%). This separation allows the measurement of the {sup 79}Se by electrothermal vaporization coupled with inductively coupled plasma mass spectrometry (ETV-ICP/MS), after transfer of the samples to CEA/Cadarache. The concentration of {sup 79}Se measured is 0,42 mg/L in the solution of fission products with an isotopic ratio

  5. The SeaHorn Verification Framework

    Science.gov (United States)

    Gurfinkel, Arie; Kahsai, Temesghen; Komuravelli, Anvesh; Navas, Jorge A.

    2015-01-01

    In this paper, we present SeaHorn, a software verification framework. The key distinguishing feature of SeaHorn is its modular design that separates the concerns of the syntax of the programming language, its operational semantics, and the verification semantics. SeaHorn encompasses several novelties: it (a) encodes verification conditions using an efficient yet precise inter-procedural technique, (b) provides flexibility in the verification semantics to allow different levels of precision, (c) leverages the state-of-the-art in software model checking and abstract interpretation for verification, and (d) uses Horn-clauses as an intermediate language to represent verification conditions which simplifies interfacing with multiple verification tools based on Horn-clauses. SeaHorn provides users with a powerful verification tool and researchers with an extensible and customizable framework for experimenting with new software verification techniques. The effectiveness and scalability of SeaHorn are demonstrated by an extensive experimental evaluation using benchmarks from SV-COMP 2015 and real avionics code.

  6. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  7. The Plinius/Colima CA-U3 test on fission-product aerosol release over a VVER-type corium pool; L'essai Plinius/Colima CA-U3 sur le relachement des aerosols de produits de fission au-dessus d'un bain de corium de type VVER

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Piluso, P.; Correggio, P.; Godin-Jacqmin, L

    2007-07-01

    In a hypothetical case of severe accident in a PWR type VVER-440, a complex corium pool could be formed and fission products could be released. In order to study aerosols release in terms of mechanisms, kinetics, nature or quantity, and to better precise the source term of VVER-440, a series of experiments have been performed in the Colima facility and the test Colima CA-U3 has been successfully performed thanks to technological modifications to melt a prototypical corium at 2760 C degrees. Specific instrumentation has allowed us to follow the evolution of the corium melt and the release, transport and deposition of the fission products. The main conclusions are: -) there is a large release of Cr, Te, Sr, Pr and Rh (>95%w), -) there is a significant release of Fe (50%w), -) there is a small release of Ba, Ce, La, Nb, Nd and Y (<90%w), -) there is a very small release of U in proportion (<5%w) but it is one of the major released species in mass, and -) there is no release of Zr. The Colima experimental results are consistent with previous experiments on irradiated fuels except for Ba, Fe and U releases. (A.C.)

  8. Wave power plant at Horns Rev. Screening[Denmark]; Boelgekraftanlaeg ved Horns Rev. Screening

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Hans C.; Nielsen, Kim; Steenstrup, P.R.; Friis-Madsen, E.; Wigant, L.

    2005-12-15

    The objective for the analysis has been to establish data for the sea at Horns Rev wind farm in the North Sea in order to assess the opportunity for using the site as test site for demonstration of wave energy devices exemplified by three different devices under development in Denmark. For comparison alternative sites like Hanstholm, Samsoe and Nissum Bredning are also assessed as well as the test centre EMEC at the Orkney Islands and the proposed test site Wave Hub at the north coast of Cornwall. The analysis shows that it is possible without major technical problems to connect 2-4 MW power generated by 3 different wave energy devices (AquaBuOY, Wave Star Energy and Wave Dragon) to the wind farm at Horns Rev (www.hornsrev.dk). The expenses for connection and regulation within the wind farm is about 200,000 DKK (30,00 EURO). On top of this comes the cost for individual sub sea cable connection to the wave devices, pull in of the sub sea cable through the existing J-tube in turbine T04 and the necessary regulation/control system in the individual wave devices to avoid damaging the power system in case of too high production. The analysis of the co-production of wind and wave power is dealt with in a separate report which shows that over a time period of half to one hour the time variation for wind generated electricity is 3 times as large as for wave energy generated power based on the actual measurement at Horns Rev. Further on the analysis shows that the wave generated power is more predictable than wind energy generated power as the power from the waves first is present about 2 hours after the wind is acting and last for 3 to 6 hours after the wind dies out; 6 to 12 hours with wind from west. The time is off course strongly depending of the direction of the wind i.e. the fetch. As this special report has a more general scope than the analysis as such it is reported in English (Annex Report II). The analysis shows that it is up to the individual device developer

  9. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; hide

    2016-01-01

    A multi-discipline team of experts from the National Aeronautics and Space Administration (NASA) developed Mars surface power system point design solutions for two conceptual missions. The primary goal of this study was to compare the relative merits of solar- versus fission-powered versions of each surface mission. First, the team compared three different solar power options against a fission power system concept for a sub-scale, uncrewed demonstration mission. The 4.5 meter (m) diameter pathfinder lander's primary mission would be to demonstrate Mars entry, descent, and landing techniques. Once on the Martian surface, the lander's In Situ Resource Utilization (ISRU) payload would demonstrate liquid oxygen propellant production using atmospheric resources. For the purpose of this exercise, location was assumed to be at the Martian equator. The three solar concepts considered included a system that only operated during daylight hours (at roughly half the daily propellant production rate of a round-the-clock fission design), a battery-augmented system that operated through the night (matching the fission concept's propellant production rate), and a system that operated only during daylight, but at a higher rate (again, matching the fission concept's propellant production rate). Including 30% mass growth allowance, total payload masses for the three solar concepts ranged from 1,116 to 2,396 kg, versus the 2,686 kg fission power scheme. However, solar power masses are expected to approach or exceed the fission payload mass at landing sites further from the equator, making landing site selection a key driver in the final power system decision. The team also noted that detailed reliability analysis should be performed on daytime-only solar power schemes to assess potential issues with frequent ISRU system on/off cycling. Next, the team developed a solar-powered point design solution for a conceptual four-crew, 500-day surface mission consisting of up to four landers per

  10. AA, sandwich line with magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The magnetic horn, focusing the antiprotons emanating from the target, was affixed to a sandwich line through which the 150 kA pulses were supplied. Expecting to have to change from time to time the fragile horn (inner conductor only 0.7 mm thick), the assembly was designed for quick exchange. At the lower end of the sandwich line we see the connectors for the high-current cables, at the upper end the magnet horn. It has just been lifted from the V-supports which held it aligned downstream of the target. Continue with 8010293.

  11. Story of Fission

    Indian Academy of Sciences (India)

    IAS Admin

    tained efforts involving many scientists led by Hahn and. Meitner to ... world. Nuclear energy is one of the clean sources of energy and contributes very little to global warming. The discovery of fission of uranium in 1939 changed forever the way society at ... nuclear world with the discovery of neutron by Rutherford's student ...

  12. Story of Fission

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 3. Story of Fission: Unlocking Power of the Nucleus. Amit Roy. General Article Volume 21 Issue 3 March 2016 pp 247-258. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/021/03/0247-0258 ...

  13. Assembly of the magnetic horns under way

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Ahmed Cherif of the EST Division's Metrology Service checks the straightness of the inner conductor of the first magnetic horn for CNGS. The tolerance is less than one millimetre over a length of approximately 6.5 metres.

  14. Next steps in propositional horn contraction

    CSIR Research Space (South Africa)

    Booth, R

    2009-06-01

    Full Text Available not opted for this choice.) Our start- ing point for defining Horn e-contraction is in terms of Del- grande’s definition of e-remainder sets. Definition 3.1 (Horn e-Remainder Sets) For a belief setH , X ∈ H ↓e Φ iff (i) X ⊆ H , (ii) X 6|= Φ, and (iii...) for every X ′ s.t. X ⊂ X ′ ⊆ H , X ′ |= Φ. We refer to the elements of H ↓eΦ as the Horn e-remainder sets of H w.r.t. Φ. It is easy to verify that all Horn e-remainder sets are belief sets. Also, H ↓eΦ = ∅ iff |= Φ. We now proceed to define selection...

  15. Follicular infundibulum tumour presenting as cutaneous horn

    Directory of Open Access Journals (Sweden)

    Jayaraman M

    1996-01-01

    Full Text Available Tumour of follicular infundibulum is an organoid tumour with a plate like growth attached to the epidermis with connection from the follicular epithelium. We are reporting such a case unusually presenting as cutaneous horn.

  16. Planar Rotary Piezoelectric Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Geiyer, Daniel; Ostlund, Patrick N.; Allen, Phillip

    2011-01-01

    A motor involves a simple design that can be embedded into a plate structure by incorporating ultrasonic horn actuators into the plate. The piezoelectric material that is integrated into the horns is pre-stressed with flexures. Piezoelectric actuators are attractive for their ability to generate precision high strokes, torques, and forces while operating under relatively harsh conditions (temperatures at single-digit K to as high as 1,273 K). Electromagnetic motors (EM) typically have high rotational speed and low torque. In order to produce a useful torque, these motors are geared down to reduce the speed and increase the torque. This gearing adds mass and reduces the efficiency of the EM. Piezoelectric motors can be designed with high torques and lower speeds directly without the need for gears. Designs were developed for producing rotary motion based on the Barth concept of an ultrasonic horn driving a rotor. This idea was extended to a linear motor design by having the horns drive a slider. The unique feature of these motors is that they can be designed in a monolithic planar structure. The design is a unidirectional motor, which is driven by eight horn actuators, that rotates in the clockwise direction. There are two sets of flexures. The flexures around the piezoelectric material are pre-stress flexures and they pre-load the piezoelectric disks to maintain their being operated under compression when electric field is applied. The other set of flexures is a mounting flexure that attaches to the horn at the nodal point and can be designed to generate a normal force between the horn tip and the rotor so that to first order it operates independently and compensates for the wear between the horn and the rotor.

  17. Horn of Africa food crisis

    CERN Multimedia

    Association du personnel

    2011-01-01

    Dear colleagues, As many of you are already aware, the Horn of Africa is experiencing an extremely severe food crisis as a result of one of the toughest droughts since the early 1950s. A total of over 12 million people in Djibouti, Ethiopia, Somalia, Kenya and Uganda are severely affected by this devastating crisis and the UN has officially declared famine in these regions. In addition, children are the most vulnerable victims, with more than a half million children at risk of imminent death from severe malnutrition and an estimated 2.3 million children already malnourished. An immediate, determined mobilization is required in order to avert an imminent humanitarian catastrophe and to prevent millions of people from being robbed of a future through the scourge of hunger and malnutrition. CERN has decided to join this international mobilization by specifically opening an account for those who want to make a donation to help the drought- and famine-affected populations in the region. Children being the first...

  18. Isotopic production cross-sections and recoil velocities of spallation-fission fragments in the reaction 238U(1A GeV)+e

    CERN Document Server

    Pereira, J; Wlazlo, W; Benlliure, J; Casarejos, E; Armbruster, P; Bernas, M; Enqvist, T; Legrain, R; Leray, S; Rejmund, F; Mustapha, B; Schmidt, K.-H; Stéphan, C; Taïeb, J; Tassan-Got, L; Volant, C; Boudard, A; Czajkowski, S; 10.1103/PhysRevC.75.014602

    2007-01-01

    Fission fragments of 1A GeV 238U nuclei interacting with a deuterium target have been investigatedwith the Fragment Separator (FRS) at GSI (Darmstadt) by measuring their isotopicproduction cross-sections and recoil velocities. The results, along with those obtained recently forspallation-evaporation fragments, provide a comprehensive analysis of the spallation nuclear productionsin the reaction 238U(1A GeV)+d. Details about experiment performance, data reductionand results will be presented.

  19. Measurement/Evaluation Techniques and Nuclear Data Associated with Fission of 239Pu by Fission Spectrum Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Baisden, P; Bauge, E; Ferguson, J; Gilliam, D; Granier, T; Jeanloz, R; McMillan, C; Robertson, D; Thompson, P; Verdon, C; Wilkerson, C; Young, P

    2010-03-16

    This Panel was chartered to review and assess new evaluations of work on fission product data, as well as the evaluation process used by the two U.S. nuclear weapons physics laboratories. The work focuses on fission product yields resulting from fission spectrum neutrons incident on plutonium, and includes data from measurements that had not been previously published as well as new or revised fission product cumulative yield data, and related quantities such as Q values and R values. This report documents the Panel's assessment of the work presented by Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). Based on the work presented we have seven key observations: (1) Experiments conducted in the 1970s at LANL, some of which were performed in association with a larger, NIST-led, program, have recently been documented. A preliminary assessment of this work, which will be referred to in this document as ILRR-LANL, shows it to be technically sound. (2) LLNL has done a thorough, unbiased review and evaluation of the available literature and is in the process of incorporating the previously unavailable LANL data into its evaluation of key fission product yields. The results of the LLNL effort, which includes a preliminary evaluation of the ILRR-LANL data, have been documented. (3) LANL has also conducted an evaluation of fission product yields for fission spectrum neutrons on plutonium including a meta-analysis of benchmark data as part of a planned upgrade to the ENDF/B compilation. We found that the approach of using meta-analysis provides valuable additional insight for evaluating the sparse data sets involved in this assessment. (4) Both laboratories have provided convincing evidence for energy dependence in the fission product yield of {sup 147}Nd produced from the bombardment of {sup 239}Pu with fission spectrum neutrons over an incident neutron energy range of 0.2 to 1.9 MeV. (5) Consistent, complete, and explicit treatment

  20. The rams horn in western history

    Science.gov (United States)

    Lubman, David

    2003-10-01

    The shofar or rams horn-one of the most ancient of surviving aerophones-may have originated with early Neolithic herders. The shofar is mentioned frequently and importantly in the Hebrew bible and in later biblical and post-biblical literature. Despite its long history, contemporary ritual uses, and profound symbolic significance to western religion, no documentation of shofar acoustical properties was found. Since ancient times, shepherds of many cultures have fashioned sound instruments from the horns of herd animals for practical and musical uses. Shepherd horns of other cultures exhibit an evolution of form and technology (e.g., the inclusion of finger holes). The shofar is unique in having retained its primitive form. It is suggested that after centuries of practical use, the shofar became emblematic of the shepherd culture. Ritual use then developed, which froze its form. A modern ritual rams horn played by an experienced blower was examined. This rather short horn was determined to have a source strength of 92 dB (A) at 1 m, a fundamental frequency near 420 Hz, and maximum power output between 1.2 and 1.8 kHz. Sample sounds and detection range estimates are provided.

  1. Examination of Hybrid Metal Coatings for Mitigation of Fission Product Release and Corrosion Protection of LWR SiC/SiC

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Caen K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Joseph R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    There is a need to increase the safety margins of current and future light water reactors (LWRs) due to the unfortunate events at Fukushima Daiichi Nuclear Plant. Safety is crucial to restore public confidence in nuclear energy, acknowledged as an economical, high-­density energy solution to climate change. The development of accident-­tolerant fuel (ATF) concepts is crucial to this endeavor. The objective of ATF is to delay the consequences of accident progression, being inset in high temperature steam and maintaining high thermomechanical strength for radionuclide retention. The use of advanced SiCf-­SiC composite as a substitute for zircaloy-­based cladding is being considered. However, at normal operations, SiC is vulnerable to the reactor coolant and may corrode at an unacceptable rate. As a ceramic-­matrix composite material, it is likely to undergo microcracking operation, which may compromise the ability to contain gaseous fission products. A proposed solution to both issues is the application of mitigation coatings for use in normal operations. At Oak Ridge National Laboratory (ORNL), three coating technologies have been investigated with industry collaborators and vendors. These are electrochemical deposition, cathodic arc physical vapor deposition (PVD hereafter) and vacuum plasma spray (VPS). The objective of this document is to summarize these processing technologies, the resultant as-­processed microstructures and properties of the coatings. In all processes, substrate constraint resulted in substantial tensile stresses within the coating layer. Each technology must mitigate this tensile stress. Electrochemical coatings use chromium as the coolant facing material, and are deposited on a nickel or carbon “bond coat”. This is economical but suffers microcracking in the chromium layer. PVD-­based coatings use chromium and titanium in both metallic form and nitrides, and can be deposited defense-­in-­depth as multilayers. This vapor method

  2. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  3. Calculation of 239Pu fission observables in an event-by-event simulation

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-03-31

    The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.

  4. RARE PRESENTATION OF RUPTURED RUDIMENTARY HORN PREGNANCY

    Directory of Open Access Journals (Sweden)

    Shergill Harbhajan K, Grover Suparna, Chhabra Ajay

    2015-10-01

    Full Text Available It is a rare occurrence for the rudimentary horn of uterus to harbour a pregnancy and the usual outcome is devastating leading to a spontaneous rupture in second trimester with the patient presenting in shock with massive intra-peritoneal haemorrhage and if appropriate management is not instituted in time it may lead to high rate of mortality. We report an unusual case of rupture rudimentary horn pregnancy who presented as a chronic ectopic with an adnexal mass and surprisingly with no sign of shock. Diagnosis is often difficult in such a situation which puts the treating gynaecologist in dilemma. High clinical suspicion supplemented with radiological findings helped clinch the diagnosis and laparotomy was performed followed by resection of the rudimentary horn to prevent future complications.

  5. Constraint Specialisation in Horn Clause Verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2015-01-01

    We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query-answer transformation of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top-down and p......We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query-answer transformation of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top...... results on verification problems show that this is an effective transformation, both in our own verification tools (convex polyhedra analyser) and as a pre-processor to other Horn clause verification tools....

  6. Constraint specialisation in Horn clause verification

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick

    2017-01-01

    We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query–answer transformed version of a given set of clauses and a goal. The constraints from the model are then used to compute a speciali......We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query–answer transformed version of a given set of clauses and a goal. The constraints from the model are then used to compute...... underlying the clauses. Experimental results on verification problems show that this is an effective transformation, both in our own verification tools (based on a convex polyhedra analyser) and as a pre-processor to other Horn clause verification tools....

  7. Monolithic Flexure Pre-Stressed Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Allen, Phillip Grant (Inventor)

    2015-01-01

    A monolithic ultrasonic horn where the horn, backing, and pre-stress structures are combined in a single monolithic piece is disclosed. Pre-stress is applied by external flexure structures. The provision of the external flexures has numerous advantages including the elimination of the need for a pre-stress bolt. The removal of the pre-stress bolt eliminates potential internal electric discharge points in the actuator. In addition, it reduces the chances of mechanical failure in the actuator stacks that result from the free surface in the hole of conventional ring stacks. In addition, the removal of the stress bolt and the corresponding reduction in the overall number of parts reduces the overall complexity of the resulting ultrasonic horn actuator and simplifies the ease of the design, fabrication and integration of the actuator of the present invention into other structures.

  8. Fusion-Fission process and gamma spectroscopy of binary products in light heavy ion collisions (40 {<=} A{sub CN} {<=} 60); Processus de fusion-fission et spectroscopie gamma des produits binaires dans les collisions entre ions lourds legers (40 {<=} A{sub NC} {<=} 60)

    Energy Technology Data Exchange (ETDEWEB)

    Nouicer, Rachid [Institut de Recherche Subatomique, CNRS-IN2P3 - Universite Louis Pasteur, 67 - Strasbourg (France)

    1997-11-21

    During the work on which this Thesis is based, the significant role of the Fusion-Fission Asymmetric mechanism in light heavy ion collisions (A{sub NC} {<=} 60) has been emphasized. The Spin Dis-alignment in the oblate-oblate system has supplied evidence for the first time for the Butterfly mode in a resonant-like reaction. These two aspects, one macroscopic and the other more closely related to microscopic effects are certainly different from a conceptual point of view but are quite complementary for a global understanding of dinuclear systems. In the first part, inclusive and exclusive measurements of the {sup 35}Cl + {sup 12}C and {sup 35}Cl + {sup 24}Mg reaction have been performed at 8 MeV/nucleon in the Saclay experiment. These measurements have permitted us to verify the origin of products which have given rise of the asymmetric fusion-fission mechanism and which have demonstrated that the three-body process in this energy range is very weak. In the second part the {sup 28}Si + {sup 28}Si reaction has been performed at the resonance energy E{sub lab}> = 111.6 MeV at Strasbourg with the Eurogam phase II multi-detector array and VIVITRON accelerator. An angular momentum J{sup {pi}} 38{sup +} for inelastic and mutual channels of the {sup 28}Si + {sup 28}Si exit channel has been measured and has supplied evidence for a spin dis-alignment which has been interpreted in the framework of a molecular model by Butterfly motion. The spectroscopic study of {sup 32}S nucleus, has revealed the occurrence of a new {gamma}-ray transition 0{sup +}(8507.8 keV) {yields} 2{sub 1}{sup +}(2230.2 keV). (author) 105 refs., 116 figs., 26 tabs.

  9. Horn's Biologically Active Substances - Can We Replace Horns of Critically Endangered Species (Saiga) by Horns of More Abundant Animals?

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Romanov, O.

    2017-01-01

    Roč. 7, č. 1 (2017), s. 3-11 ISSN 2210-3155 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:67985823 Keywords : biologically active compounds * horn * rhinoceros * saiga * traditional Chinese medicine Subject RIV: CB - Analytical Chemistry, Separation

  10. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    nuclear decay using the Bohr–Wheeler fission width is usually found to underpredict the pre-scission multiplicities beyond a certain threshold energy [5]. We first briefly re-visit the transition-state model to examine its underlying assumptions which may not be valid for fission at high excitation energies. Pramana – J. Phys.

  11. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    Abstract. Fission theory is used to explain α decay. Also, the analytical superasymmetric fission. (ASAF) model is successfully employed to make a systematic search and to predict, with other mod- els, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few ...

  12. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    2015-08-04

    Aug 4, 2015 ... Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a ...

  13. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    and penetrability for binary nuclear configurations typical for fission processes. The deformed two- ... Finally, the WKB method is used to calculate penetrabilities and spontaneous fission half-lives. Calculations ... the mass tensor components contain binary character of the process, because the pairing. Pramana – J. Phys.

  14. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    2015-07-24

    Jul 24, 2015 ... Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers' prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the ...

  15. Fission hindrance and nuclear viscosity

    Indian Academy of Sciences (India)

    2015-07-29

    Jul 29, 2015 ... We discuss the role of nuclear viscosity in hindering the fission of heavy nuclei as observed in the experimental measurements of GDR -ray spectra from the fissioning nuclei. We review a set of experiments carried out and reported by us previously [see Dioszegi et al, Phys. Rev. C 61, 024613 (2000); ...

  16. Squamous cell carcinoma presenting as cutaneous horn in diabetic ...

    African Journals Online (AJOL)

    ... not the horn itself, which is just dead keratin, but rather the nature of the underlying disease, although the horns are usually benign and that's why the case is reported. Keywords: Cutaneous horn; Cornu cutaneum; Squamous Cell Carcinoma; Diabetes Mellitus. Sudanese Journal of Dermatology Vol. 4 (2) 2006: pp. 86-91 ...

  17. The horn bases of the Reedbuck Redunca arundinum

    Directory of Open Access Journals (Sweden)

    H. Jungius

    1975-07-01

    Full Text Available The structure and function of the horn bases of the reedbuck Redunca arundinum are discussed. It is shown that the white colouration which often occurs is not caused by glandular secretion but by small horn particles which are shed, exposing the lighter coloured material underneath. The shining horn base probably plays a role in the display behaviour of males.

  18. Mass distribution in 22 MeV neutron-induced fission of sup 2 sup 3 sup 5 U

    CERN Document Server

    Feng Jing; Yang Yi; Bao Jie; Li Ze; Qi Bu Jia; Zhou Zu Ying; Tang Hong Qing; Ruan Xi Chao; Cui An Zhi; Sun Hong Qing; Zhang Sheng Dong; Guo Jing Ru

    2002-01-01

    The chain yields of 29 product nuclides are determined for the fission of sup 2 sup 3 sup 5 U induced by 22 MeV neutrons. Fission rate is monitored with a double-fission chamber. Fission product activities are measured by HPGe gamma ray spectrometry. Time of flight technique is used to measure the neutron spectrum in order to estimate fission events induced by break-up neutrons and scattering neutrons. A mass distribution curve is obtained after correction for background neutrons

  19. Simulations of the stopping efficiencies of fission ion guides

    Science.gov (United States)

    Solders, Andreas; Al-Adili, Ali; Gorelov, Dmitry; Jansson, Kaj; Jokinen, Ari; Kolhinen, Veli; Lantz, Mattias; Mattera, Andrea; Moore, Ian; Nilsson, Niklas; Norlin, Martin; Penttilä, Heikki; Pomp, Stephan; Prokofiev, Alexander V.; Rakopoulos, Vasileios; Rinta-Antila, Sami; Simutkin, Vasily

    2017-09-01

    With the Ion Guide Isotope Separator On-Line (IGISOL) facility, located at the University of Jyväskylä, products of nuclear reactions are separated by mass. The high resolving power of the JYFLTRAP Penning trap, with full separation of individual nuclides, capacitates the study of nuclides far from the line of stability. For the production of neutron-rich medium-heavy nuclides, fissioning of actinides is a feasible reaction. This can be achieved with protons from an in-house accelerator or, alternatively, with neutrons through the addition of a newly developed Be(p,xn)-converter. The hereby-obtained fission products are used in nuclear data measurements, for example fission yields, nuclear masses, Q-values and decay spectroscopy. Prior to separation, the ionized reaction products are stopped in a helium-filled gas cell, referred to as the ion-guide. In this work we present simulations of the stopping of fission products in an ion guide developed for neutron-induced fission. The production and extraction rates are evaluated and compared against experimental values.

  20. Assembly of the magnetic horns under way

    CERN Multimedia

    2003-01-01

    One of the key components of the CNGS facility is the system of magnetic lenses, known as horns, which are to point the pions and kaons that will decay into muons and muon-neutrinos in the direction of the Gran Sasso Laboratory. Positioned at the end of the target, which produces the pions and kaons, the system comprises two of these horns. The first focuses the positively charged pions and kaons, which have an energy of approximately 35 GeV, and defocuses the negative particles. Unfortunately, it has a tendency to cause excessive deflection of particles that have energies of less than 35 GeV and insufficient deflection of those with energies of more than 35 GeV. These negative effects are corrected by the second horn (also known as the reflector), which is positioned 40 metres from the first. Ahmed Cherif of the EST Division's Metrology Service checks the straightness of the inner conductor of the first magnetic horn for CNGS. The tolerance is less than one millimetre over a length of approximately 6.5 metre...

  1. Population dynamics of Prostephanus truncatus (Horn) and ...

    African Journals Online (AJOL)

    The effects of three maize varieties and two storage seasons on the population dynamics of Prostephanus truncates (Horn) and Sitophilus zeamais Motschulsky were observed in the traditional `Ewe' barn in the field. Two local varieties, Dzolokpuita and Abutia and an improved variety, Abeleehi, were stored with the husk on ...

  2. Reflectance measurement validation using acoustic horns.

    Science.gov (United States)

    Rasetshwane, Daniel M; Neely, Stephen T

    2015-10-01

    Variability in wideband acoustic reflectance (and absorbance) measurements adversely affects the clinical utility of reflectance for diagnosis of middle-ear disorders. A reflectance standard would encourage consistency across different measurement systems and help identify calibration related issues. Theoretical equations exist for the reflectance of finite-length exponential, conical, and parabolic acoustic horns. Reflectance measurements were repeatedly made in each of these three horn shapes and the results were compared to the corresponding theoretical reflectance. A method is described of adjusting acoustic impedance measurements to compensate for spreading of the wave front that propagates from the small diameter sound port of the probe to the larger diameter of the acoustic cavity. Agreement between measured and theoretical reflectance was less than 1 dB at most frequencies in the range from 0.2 to 10 kHz. Pearson correlation coefficients were greater than 0.95 between measured and theoretical time-domain reflectance within the flare region of the horns. The agreement suggests that the distributed reflectance of acoustic horns may be useful for validating reflectance measurements made in human ear canals; however, refinements to reflectance measurement methods may still be needed.

  3. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  4. A new UK fission yield evaluation UKFY3.7

    Science.gov (United States)

    Mills, Robert William

    2017-09-01

    The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.

  5. Fission in the Zoantharia Palythoa caribaeorum (Duchassaing and Michelotii, 1860) populations: a latitudinal comparison

    OpenAIRE

    A.; Acosta; González, A.M. (Ana)

    2007-01-01

    There are few regional studies attempting to compare the asexual reproductive output of marine populations, particularly when they are exposed to different environmental conditions. In this study we compared Caribbean and Southwestern Atlantic Palythoa caribaeorum populations in terms of ramet production, the minimum colony size for fission, and the relationship between fission frequency and colony size. Fission process was quantified in Ponta Recife and Praia Portinho, Sao Paulo, Brazil, and...

  6. 9 CFR 95.11 - Bones, horns, and hoofs for trophies or museums; disinfected hoofs.

    Science.gov (United States)

    2010-01-01

    ... or museums; disinfected hoofs. 95.11 Section 95.11 Animals and Animal Products ANIMAL AND PLANT..., OFFERED FOR ENTRY INTO THE UNITED STATES § 95.11 Bones, horns, and hoofs for trophies or museums..., and sinew and are offered for entry as trophies or for consignment to museums may be imported without...

  7. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  8. Effects of the Botanical Compound p-Anisaldehyde on Horn Fly (Diptera: Muscidae) Repellency, Mortality, and Reproduction.

    Science.gov (United States)

    Showler, Allan T; Harlien, Jessica L

    2018-01-10

    The horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae), is an economically important obligate blood feeder that mainly attacks cattle in Europe, Asia, and North and South America. As horn fly resistance to conventional insecticides becomes more common, alternative control tactics, such as application of bioactive botanical natural products are being investigated. p-Anisaldehyde has been found in many plant species, and it has shown effects that include mortality, attractancy, and interference with host seeking. The series of bioassays we developed was effective for assessing a range of horn fly responses to chemicals and probably those of some other filth fly species. In our study, p-anisaldehyde was lethal to horn fly eggs at concentrations of 0.00001%, and possibly less. Mixed into cow manure, 5000-20,000 ppm p-anisaldehyde reduced horn fly larvae by 85.4%-100%. p-Anisaldehyde caused some immobilization of adult horn flies when exposed by direct contract with spray droplets and by fumigation. Mortality was 90%-100% in response to 5%-10% concentrations by 30 min, and LD50 and LD90 values are reported for five times from 30 min-4 h. Complete horn fly mortality was achieved by fumigation with 0.75% p-anisaldehyde by 3 h in an enclosed space, and we determined that fumigation was more (≈12.5-fold) lethal to adult horn flies than sprayed droplets. Although horn flies were not repelled by p-anisaldehyde in static air tube olfactometers, the compound completely deterred feeding from cotton pads soaked in bovine blood in response to concentrations of 0.6% and greater in ventilated containers. Although horn fly control is not likely to use fumigation methods, p-anisaldehyde might be useful for adult control using sprays and egg and larval control using feed-through techniques. Exposure to sublethal concentrations of p-anisaldehyde did not affect horn fly egg production and hatching. Aside from causing different responses in the same species of arthropod, p

  9. Study of fission fragment de-excitation by gamma-ray spectrometry with the EXILL experiment

    Science.gov (United States)

    Materna, Thomas; a, Michal Rapał; Letourneau, Alain; Marchix, Anthony; Litaize, Olivier; Sérot, Olivier; Urban, Waldemar; Blanc, Aurélien; Jentschel, Michael; Köster, Ulli; Mutti, Paolo; Soldner, Torsten; Simpson, Gary; Ur, Călin A.; France, Gilles de

    2017-09-01

    A large array of Ge detectors installed at ILL, around a 235U target irradiated with cold neutrons, (EXILL) allowed measurement of prompt gamma-ray cascades occurring in fission fragments with an unambiguous determination of fragments. Here we present preliminary results of a systematic comparison between experimental γ-ray intensities and those obtained from the Monte-Carlo simulation code FIFRELIN, which is dedicated to the de-excitation of fission fragments. Major γ-ray intensities in the 142Ba and 92Kr fission products, extracted from EXILL data, were compared to FIFRELIN, as well as to reported values (when available) obtained with EUROGAM2 in the spontaneous fission of 248Cm. The evolution of γ-ray intensities in 92Kr versus the complementary partner in fission (i.e. versus the total number of evaporated neutrons by the fission pair) was then extracted and compared to FIFRELIN.

  10. Singlet Fission Involves an Interplay between Energetic Driving Force and Electronic Coupling in Perylenediimide Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Justin C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Le, Aaron K. [University of Texas, Austin; Bender, Jon A. [University of Texas, Austin; Cotton, Daniel E. [University of Texas, Austin; Roberts, Sean T. [University of Texas, Austin

    2017-12-14

    Due to its ability to offset thermalization losses in photoharvesting systems, singlet fission has become a topic of research interest. During singlet fission, a high energy spin-singlet state in an organic semiconductor divides its energy to form two lower energy spin-triplet excitations on neighboring chromophores. While key insights into mechanisms leading to singlet fission have been gained recently, developing photostable compounds that undergo quantitative singlet fission remains a key challenge. In this report, we explore triplet exciton production via singlet fission in films of perylenediimides, a class of compounds with a long history of use as industrial dyes and pigments due to their photostability. As singlet fission necessitates electron transfer between neighboring molecules, its rate and yield depend sensitively on their local arrangement. By adding different functional groups at their imide positions, we control how perylenediimides pack in the solid state.

  11. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    Directory of Open Access Journals (Sweden)

    Ramos D.

    2016-01-01

    Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  12. Superheavy nuclei and fission barriers

    Science.gov (United States)

    Lu, Bing-Nan; Zhao, Jie; Zhao, En-Guang; Zhou, Shan-Gui

    In this chapter, we will present relativistic mean field (RMF) description of heavy and superheavy nuclei (SHN). We will discuss the shell structure and magic numbers in the mass region of SHN, binding energies and α decay Q values, shapes of ground states and potential energy surfaces and fission barriers. We particularly focus on the multidimensionally-constrained covariant density functional theories (CDFT) and the applications of CDFT to the study of exotic nuclear shapes and fission barriers.

  13. Piracy off the Horn of Africa

    Science.gov (United States)

    2011-04-27

    Coordination Centre in Dar es Salaam , Tanzania, and a new regional maritime information center in Sana’a, Yemen—support the information sharing...AND ADDRESS( ES ) Congressional Research Service, The Library of Congress ,101 Independence Avenue SE,Washington,DC,20540-7500 8. PERFORMING ORGANIZATION...CRS Report for Congress Prepared for Members and Committees of Congress Piracy off the Horn of Africa Lauren Ploch Analyst in African

  14. The effect of nearby timpani strokes on horn playing.

    Science.gov (United States)

    Chen, Jer-Ming; Smith, John; Wolfe, Joe

    2014-01-01

    Horn players have observed that timpani strokes can interfere disruptively with their playing, especially when they are seated close to the timpani. Measuring the horn's transfer function in the bell-to-mouthpiece direction reveals that the horn behaves as an acoustic impedance matching device, capable of transmitting waves with pressure gains of at least 20 dB near horn playing resonances. During moderate to loud timpani strokes, the horn transmits an overall impulse gain response of at least 16 dB from the bell to the mouthpiece, while evidence of non-linear bore propagation can be observed for louder strokes. If the timpani is tuned near a horn resonance, as is usually the case, further bore resonance interactions may be observed leading to gains of ∼26 dB from bell to mouthpiece. Finally, measurements of horn playing made under conditions approximating playing reveal that timpani strokes sounding near the horn bell are capable of disrupting horn playing by affecting the amplitude, periodicity, and frequency of the pressure signal generated at the horn player's lips.

  15. LS1 Report: Thank you magnetic horn!

    CERN Multimedia

    Antonella Del Rosso & Katarina Anthony

    2014-01-01

    Experiments at the Antimatter Decelerator (AD) have been receiving beams since the beginning of this week. There is a crucial element at the heart of the chain that prepares the antiproton beam: the so-called magnetic horn, a delicate piece of equipment that had to be refurbished during LS1 and that is now showing just how well it can perform.   View from the top of the target and horn trolley, along the direction of the beam. Antiprotons for the AD are produced by smashing a beam of protons from the PS onto an iridium target. However, the particles produced by the nuclear interactions are emitted at very wide angles; without a focussing element, all these precious particles would be lost. “A magnetic horn is placed at the exit of the target to focus back a large fraction of the negative particles, including antiprotons, parallel to the beam line and with the right momentum,” explains Marco Calviani, physicist in the EN Department and the expert in charge of the AD targe...

  16. The effect of medial meniscal horn injury on knee stability.

    Science.gov (United States)

    Chen, Lianxu; Linde-Rosen, Monica; Hwang, Sun Chul; Zhou, Jingbin; Xie, Qiang; Smolinski, Patrick; Fu, Freddie H

    2015-01-01

    This study investigated the effect of damage of the posterior and anterior horns of the medial meniscus on knee stability. Twenty fresh-frozen porcine knees were divided into two groups (anterior horn and posterior horn injury). Each group was tested in three states: intact medial meniscus, posterior or anterior horn of medial meniscus resection and total medial meniscectomy. A robotic testing system was used to test anterior tibial translation (ATT) at 30° (full extension), 60° and 90° of knee flexion with an external anterior tibial load of 89 N, internal rotation (IR) and external rotation (ER) at 30° and 60° of knee flexion under a 4 N m tibial rotation torque. In response to an IR torque, there was a significant difference between the state of intact medial meniscus and anterior and posterior horn damage, except for anterior horn resection at 60° of knee flexion. In response to an ER torque, there were no significant differences between the state of intact meniscus and horn damage except for anterior horn resection at 30° of knee flexion. Meniscal damage had no significant effect on ATT. The results indicated that the posterior horn was more important in controlling the IR stability than the anterior horn with knee flexion, and the anterior horn was more important in controlling the ER stability than the posterior horn at full knee extension in the anterior cruciate ligament-intact knee. These findings further the understanding of the mechanisms, the prevention of injuries and rehabilitation of meniscal horn injury in clinical practice.

  17. Biconical antennas and conical horns with elliptic cross section

    Science.gov (United States)

    Blume, Siegfried; Grafmueller, Bernhard

    1988-08-01

    The mode-matching technique is applied to the problem of radiation from a conical antenna with elliptic cross section including the degeneration to a sector antenna. In the `guiding region' of the antenna the transverse electromagnetic wave is considered as well as higher-order waves which are described by products of Lamefunctions which satisfy the boundary conditions. In the exterior region, the field is expanded into products of Lamepolynomials. Antenna input impedances and far-field patterns are shown as results. In addition to computing the far-field patterns of a conical horn with elliptic cross section by the aperture field method, the authors analyze the radiation field by a multiple expansion analogous to the authors analyze method described above.

  18. Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Liu, A., E-mail: aoliu@fnal.gov [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Bross, A.; Neuffer, D. [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    2015-09-11

    This paper describes the strategy for optimizing the magnetic horn for the neutrinos from STORed Muons (nuSTORM) facility. The nuSTORM magnetic horn is the primary collection device for the secondary particles generated by bombarding a solid target with 120 GeV protons. As a consequence of the non-conventional beamline designed for nuSTORM, the requirements on the horn are different from those for a conventional neutrino beamline. At nuSTORM, muons decay while circulating in the storage ring, and the detectors are placed downstream of the production straight so as to be exposed to the neutrinos from muon decay. nuSTORM aims at precisely measuring the neutrino cross sections, and providing a definitive statement about the existence of sterile neutrinos. The nuSTORM horn aims at focusing the pions into a certain phase space so that more muons from pion decay can be accepted by the decay ring. The paper demonstrates a numerical method that was developed to optimize the horn design to gain higher neutrino flux from the circulating muons. A Genetic Algorithm (GA) was applied to the simultaneous optimization of the two objectives in this study. The application of the technique discussed in this paper is not limited to either the nuSTORM facility or muon based facilities, but can be used for other neutrino facilities that use magnetic horns as collection devices.

  19. Radioactive wastes from {sup 99}Mo production by nuclear fission according to the irradiation time; Rejeitos radioativos gerados na producao de {sup 99}Mo por fissao nuclear, em funcao dos tempos de irradiacao

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Goro; Dellamano, Jose Claudio, E-mail: hiromoto@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    One of the premises, provided for in Brazilian Multipurpose Reactor, is a {sup 99} Mo production facility by nuclear fission. In this study, it was verified the influence of tow parameters, the mass of {sup 235}U and the irradiation time of the target, in the total activity of radioactive wastes generated by the process. The simulation was performed using the computational code Origen S®, considering that the target would be composed of an alloy of UAl{sub x} with {sup 235}U enriched to 19.9% and irradiated in a flux of thermal neutrons of 1 x 10{sup 14} n.cm{sup -2}.s{sup -1} for the production of 185 TBq of {sup 99}Mo per week. The results obtained for 3 to 21 days of continuous irradiation targets with different masses of {sup 235}U show that the amount of radioactive waste generated in terms of activity, does not seem to be dominant aspect to be considered in the choice for the {sup 99}Mo production parameters, since it was observed an increase of a factor of at most 4 in the total activity of the wastes over the 100,000 years considered.

  20. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability.

    Science.gov (United States)

    Hagan, I; Yanagida, M

    1995-05-01

    Spindle formation in fission yeast occurs by the interdigitation of two microtubule arrays extending from duplicated spindle pole bodies which span the nuclear membrane. By screening a bank of temperature-sensitive mutants by anti-tubulin immunofluorescence microscopy, we previously identified the sad1.1 mutation (Hagan, I., and M. Yanagida. 1990. Nature (Lond.). 347:563-566). Here we describe the isolation and characterization of the sad1+ gene. We show that the sad1.1 mutation affected both spindle formation and function. The sad1+ gene is a novel essential gene that encodes a protein with a predicted molecular mass of 58 kD. Deletion of the gene was lethal resulting in identical phenotypes to the sad1.1 mutation. Sequence analysis predicted a potential membrane-spanning domain and an acidic amino terminus. Sad1 protein migrated as two bands of 82 and 84 kD on SDS-PAGE, considerably slower than its predicted mobility, and was exclusively associated with the spindle pole body (SPB) throughout the mitotic and meiotic cycles. Microtubule integrity was not required for Sad1 association with the SPB. Upon the differentiation of the SPB in metaphase of meiosis II, Sad1-staining patterns similarly changed from a dot to a crescent supporting an integral role in SPB function. Moderate overexpression of Sad1 led to association with the nuclear periphery. As Sad1 was not detected in the cytoplasmic microtubule-organizing centers activated at the end of anaphase or kinetochores, we suggest that Sad1 is not a general component of microtubule-interacting structures per se, but is an essential mitotic component that associates with the SPB but is not required for microtubule nucleation. Sad1 may play a role in SPB structure, such as maintaining a functional interface with the nuclear membrane or in providing an anchor for the attachment of microtubule motor proteins.

  1. Beetle horns and horned beetles: emerging models in developmental evolution and ecology.

    Science.gov (United States)

    Kijimoto, Teiya; Pespeni, Melissa; Beckers, Oliver; Moczek, Armin P

    2013-01-01

    Many important questions in developmental biology increasingly interface with related questions in other biological disciplines such as evolutionary biology and ecology. In this article, we review and summarize recent progress in the development of horned beetles and beetle horns as study systems amenable to the integration of a wide range of approaches, from gene function analysis in the laboratory to population ecological and behavioral studies in the field. Specifically, we focus on three key questions at the current interface of developmental biology, evolutionary biology and ecology: (1) the developmental mechanisms underlying the origin and diversification of novel, complex traits, (2) the relationship between phenotypic diversification and the diversification of genes and transcriptomes, and (3) the role of behavior as a leader or follower in developmental evolution. For each question we discuss how work on horned beetles is contributing to our current understanding of key issues, as well as highlight challenges and opportunities for future studies. Copyright © 2012 Wiley Periodicals, Inc.

  2. Energy dependence of 238U fission yields investigated in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Veselsky M.

    2010-03-01

    Full Text Available The production cross sections of neutron-rich fission residues produced in reactions induced by a 238U beam impinging onto Pb and Be targets were investigated at the Fragment Separator (FRS at GSI using the inverse kinematic technique. These data allowed us to discuss the optimum energies in fission for producing the most neutron-rich residues.

  3. Pregnant noncommunicating rudimentary uterine horn with placenta percreta.

    Science.gov (United States)

    Henriet, Emmanuelle; Roman, Horace; Zanati, Joel; Lebreton, Bernard; Sabourin, Jean-Christophe; Loic, Marpeau

    2008-01-01

    To report a placenta percreta in a 7-week gestational rudimentary noncommunicating uterine horn pregnancy. A 28-year-old woman with no complaints presented with a rudimentary uterine horn pregnancy at 7-weeks gestation. The diagnosis was suspected by ultrasonography and diagnosed by laparoscopy. Laparoscopic excision of the rudimentary uterine horn and ipsilateral salpingectomy were performed, as well as biopsy of several peritoneal endometriosis lesions. A 7-week gestation pregnancy with placenta percreta was identified in the rudimentary uterine horn. No communication was found with the right unicornuate uterus. Endometriosis was confirmed. Clinical outcome was favorable. Placenta percreta may occur in rudimentary uterine horn pregnancies, but accidents may be avoided by an early diagnosis and surgical management. However, in young women who desire pregnancy, planned laparoscopic resection of a rudimentary uterine horn revealed accidentally should be discussed.

  4. Beta-delayed fission probabilities of transfermium nuclei, involved in the r-process

    Science.gov (United States)

    Panov, I.; Lutostansky, Yu; Thielemann, F.-K.

    2016-01-01

    For the nucleosynthesis of heavy and superheavy nuclei fission becomes very important when the r-process runs in a very high neutron density environment. In part, fission is responsible for the formation of heavy nuclei due to the inclusion of fission products as new seed nuclei (fission cycling). More than that, beta-delayed fission, along with spontaneous fission, is responsible in the late stages of the r-process for the suppression of superheavy element yields. For beta-delayed fission probability calculations a model description of the beta-strength- functions is required. Extended theoretical predictions for astro-physical applications were provided long ago, and new predictions also for superheavy nuclei with uptodate nuclear input are needed. For the further extension of data to heavier transactinides the models of strength- functions should be modified, taking into account more complicated level schemes. In our present calculations the strength-function model is based on the quasi-particle approximation of Finite Fermi Systems Theory. The probabilities of beta-delayed fission and beta-delayed neutron emission are calculated for some transfermium neutron-rich nuclei, and the influence of beta-delayed fission upon superheavy element formation is discussed.

  5. Uranium mill monitoring for natural fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Apt, K.E.

    1977-12-01

    Isotopic monitoring of the product stream from operating uranium mills is proposed for discovering other possible natural fission reactors; aspects of their occurrence and discovery are considered. Uranium mill operating characteristics are formulated in terms of the total uranium capacity, the uranium throughput, and the dilution half-time of the mill. The requirements for detection of milled reactor-zone uranium are expressed in terms of the dilution half-time and the sampling frequency. Detection of different amounts of reactor ore with varying degrees of /sup 235/U depletion is considered.

  6. Radiation pattern synthesis for circular aperture horn antennas.

    Science.gov (United States)

    Ludwig, A. C.

    1966-01-01

    Radiation pattern synthesis for circular aperture horn antennas, assuming aperture distribution consisting of fields of cylindrical waveguide modes and by linear combination of radiation pattern functions

  7. Recoil-alpha-fission and recoil-alpha-alpha-fission events observed in the reaction Ca-48 + Am-243

    CERN Document Server

    Forsberg, U; Andersson, L -L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Golubev, P; Gregorich, K E; Gross, C J; Herzberg, R -D; Hessberger, F P; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Sarmiento, L G; Schädel, M; Yakushev, A; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Dobaczewski, J; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nazarewicz, W; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Shi, Y; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2015-01-01

    Products of the fusion-evaporation reaction Ca-48 + Am-243 were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum f\\"ur Schwerionenforschung. Amongst the detected thirty correlated alpha-decay chains associated with the production of element Z=115, two recoil-alpha-fission and five recoil-alpha-alpha-fission events were observed. The latter are similar to four such events reported from experiments performed at the Dubna gas-filled separator. Contrary to their interpretation, we propose an alternative view, namely to assign eight of these eleven decay chains of recoil-alpha(-alpha)-fission type to start from the 3n-evaporation channel 115-288. The other three decay chains remain viable candidates for the 2n-evaporation channel 115-289.

  8. Measurement of radioactive isotopes by {gamma} and x rays spectrometry with INa crystals. application to radiochemistry of some fission and activation products; Mesures d'isotopes radioactifs par spectrometrie {gamma} et x a l'aide de cristaux INa. application a la radiochimie de certains produits de fission et d'activation

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, P.; Boile, G.; Simonet, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The measurement of an number of atoms N may be obtained by detection of one {gamma} ray emitted if its branching ratio K{sub E} is known (number of E energy {gamma} transitions/number of disintegrations). N = A/{lambda} N{sub {gamma}}{sub E} / (K{sub E} * {lambda}) This measurement is effectuated in well-defined geometry, {gamma} rays emitted by the source are detected by a calibrated NaI crystal which is connected to a photomultiplier delivering electric impulses analysed by a multichannel analyser. Crystals are chosen according to energy, intensity of measured rays and of background. Calibration is established with standard sources or by total absolute efficiency of a definite crystal. Half-life, energy of measured photopeak branching ratio have been determined for these isotopes: Fission products: {sup 95}Zr, {sup 95}Nb, {sup 99}Mo, {sup 103}Ru, {sup 106}Ru, {sup 111}Ag, {sup 115}Cd, {sup 115m}Cd, {sup 132}Te, {sup 129m}Te, {sup 134}Cs, {sup 136}Cs, {sup 137}Cs, {sup 140}Ba, {sup 140}La. Rare earth elements: {sup 91}Y, {sup 141}Ce, {sup 144}Ce, {sup 147}Nd, {sup 156}Eu. Products from reactions (n, {gamma}) (n, 2n): 1{sup 10}Ag, {sup 124}Sb, {sup 239}Np, {sup 237}U, {sup 241}Am. (authors) [French] La mesure du nombre d'atomes N d'un isotope peut s'effectuer sur un rayonnement {gamma} si l'on connait le rapport d'embranchement K{sub E} (nombre de rayonnements {gamma} d'energie E/nombre de desintegrations). N = A/{lambda} N{sub {gamma}}{sub E} / (K{sub E} * {lambda}) La mesure s'effectue en geometrie definie; les rayonnements {gamma} emis par la source sous mylar sont detectes par un cristal INa etalonne en fonction de l'energie, lequel est relie a un photomultiplicateur delivrant des impulsions electriques qui seront analysees par un selecteur multicanaux. La connaissance de la distribution theorique (effet photoelectrique, compton, paires, retrodiffusion, echappement... ) permet de determiner qualitativement si les elements

  9. Search for Singlet Fission Chromophores

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Z.; Akdag, A.; Smith, M. B.; Dron, P.; Johnson, J. C.; Nozik, A. J.; Michl, J.

    2012-01-01

    Singlet fission, in which a singlet excited chromophore shares its energy with a ground-state neighbor and both end up in their triplet states, is of potential interest for solar cells. Only a handful of compounds, mostly alternant hydrocarbons, are known to perform efficiently. In view of the large number of conditions that a successful candidate for a practical cell has to meet, it appears desirable to extend the present list of high performers to additional classes of compounds. We have (i) identified design rules for new singlet fission chromophores and for their coupling to covalent dimers, (ii) synthesized them, and (iii) evaluated their performance as neat solids or covalent dimers.

  10. Preliminary Results from the Triple Fission-Ejecta Correlations Trial (TRIFECTA) at ORNL

    Science.gov (United States)

    Peters, William; Smith, M. S.; Galindo-Uribarri, A.; Temanson, E.; Smith, K.; Paulauskas, S. V.; Thornsberry, C.; Jones, K. L.; Grzywacz, R.; Cizewski, J. A.

    2017-09-01

    Despite fission having been studied for almost 80 years, there is a shortage of data on the correlations of multiple fission products needed to benchmark advanced theoretical models of fission. A pioneering experiment underway at ORNL, the Triple Fission-Ejecta Correlations Trial (TRIFECTA), involves the measurement of energy and angular correlations between prompt 252Cf fission neutrons and gamma rays with respect to one fission fragment in time-coincidence. The mass of one fragment is determined, with 4 amu precision, by using 2 micro-channel plate timing detectors and a silicon total-energy detector. Time-coincident data from auxiliary detectors are also recorded: 6 NaI detectors to measure gamma-ray multiplicity, 1 HPGe detector to measure the high-resolution gamma-ray spectrum, and an array of 28 VANDLE modules to measure the neutron spectrum and multiplicity. For the first time, correlations between coincident fragment - gamma - neutron fission products can be studied, as a function of fragment mass. Utilizing certain unique gamma-ray transitions recorded by the HPGe detector, we were able to determine the neutron energy and angular correlations of specific fission fragments. Preliminary results on neutron - neutron angular correlations, gamma-ray vs. neutron multiplicity, and other correlations will be presented, along with plans for future improvements. Work supported in part by the Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC, for the U.S. Department of Energy. Done...processed 708 records...16:18:14

  11. Target development for the Munich fission fragment accelerator

    CERN Document Server

    Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P

    2002-01-01

    The target for the Munich Fission Fragment Accelerator (MAFF) consists of typically 1 g of the fission material sup 2 sup 3 sup 5 U in the form of UC sub 2 , dispersed homogeneously in a cylindrical graphite matrix, which is encapsulated in a protective Re container. This special type of target is currently under development. The problems related to its manufacture are discussed. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2700 K during operation. Extensive tests are required to study the long-term behaviour of the involved materials at these conditions. For this purpose a resistively heated high vacuum furnace has been set up, which allows high-temperature heat treatment of target samples for a period of up to 1000 h.

  12. Development of JENDL Decay and Fission Yield Data Libraries

    Science.gov (United States)

    Katakura, J.

    2014-04-01

    Decay and fission yield data of fission products have been developed for decay heat calculations to constitute one of the special purpose files of JENDL (Japanese Nuclear Data Library). The decay data in the previous JENDL decay data file have been updated based on the data extracted from ENSDF (Evaluated Nuclear Structure Data File) and those by Total Absorption Gamma-ray Spectroscopy (TAGS) measurements reported recently. Fission yield data have also been updated in order to maintain consistency between the decay and yield data files. Decay heat calculations were performed using the updated decay and yield data, and the results were compared with measured decay heat data to demonstrate their applicability. The uncertainties of the calculated results were obtained by sensitivity analyses. The resulting JENDL calculations and their uncertainty were compared with those from the ENDF and JEFF evaluated files.

  13. Fission fragment mass and angular distributions: Probes to study ...

    Indian Academy of Sciences (India)

    trajectories bypass the saddle point (fission barrier) when the charge product of the col- liding nuclei exceeds a ... projectile combination, mass asymmetry of the entrance channel, static deformation of the colliding partners ... et al [8], we have considered the charge-to-mass ratio of the target and the projectile to lie along the ...

  14. Modelling and simulation the radioactive source-term of fission products in PWR type reactors; Modelagem e simulacao do termo-fonte radioativo de produtos de fissao em reatores nucleares do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Porfirio, Rogilson Nazare da Silva

    1996-07-01

    The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)

  15. Current research and development activities on fission products and hydrogen risk after the accident at Fukushima Daiichi Nuclear Power Station

    Directory of Open Access Journals (Sweden)

    Takeshi Nishimura

    2015-02-01

    Full Text Available After the Fukushima Daiichi nuclear power plant (NPP accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel, containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

  16. Study of Deposit Cesium-137 (137Cs Activity as a Result of Fission Product from The Fukushima Daiichi Nuclear Power Plant at Japan after Earthquake and Tsunami in 2011

    Directory of Open Access Journals (Sweden)

    Rahpita Windriani

    2014-10-01

    Full Text Available Study of deposit Cesium-137 (137Cs activity as a result of the fission product of Fukushima Daiichi Nuclear Power Plant after earthquake and tsunami in 2011 has been done. The purpose of the present research is to study the deposit 137Cs activity on the land and the Sea of Japan and then to estimate a model of 137Cs distribution on the earth's surface of Japan. The stability of nuclei decay equation is used to obtain a deposit 137Cs activity depending on time, theoretically. The Pasquill-Gifford equation is used to estimate a distribution of 137Cs activity on the earth surface from the original source. The results suggested that Hatachinaka city, the largest measurement point, for about 60 years forward, 137Cs activity levels reach about 54 Bq. In the Sea of Japan at the point of sensor C47, which it has the largest value, the accumulation of deposit 137Cs activity gives about 0.69 Bq at the time of the next 60 years. For the distribution of 137Cs activity, the concentration values at a distance of 200 m from the original source obtained maximum for all case.

  17. Planar Rotary Motor Using Ultrasonic Horns

    Science.gov (United States)

    Sherrit, Stewart; Bao, Xiaoqi; Badescu, Mircea; Chang, Zensheu; Geiyer, Daniel; Allen, Phillip; Ostlund, Patrick; Bar-Cohen, Yoseph

    2011-01-01

    One of the first piezoelectric motor designs with significant rotational speeds was outlined by Barth. This device used extensional piezoelectric elements to produce a time varying force at a distance r from the center of a centrally supported disk. These extensional actuators produced micro-steps at a high frequency with the end result being macroscopic rotation of the disk and high torque. The rotation direction is controlled by the choice of the actuators and the direction of the extension about the rotor center. A recent advancement in producing pre-stressed power ultrasonic horns using flexures allows for the development of high torque ultrasonic motors based on the Barth's idea that can be fabricated in a 2D plate or in more complicated 3D structures. In addition to the pre-stress flexures the design also allows for the use of flexures to produce the rotor/horn normal force. The torque can be controlled by the number of actuators in the plane and the amplitude of the normal force. This paper will present analytical and experimental results obtained from testing prototype planar motors.

  18. Wave propagation inside the Agbo horn | Nwachukwu | Nigerian ...

    African Journals Online (AJOL)

    ... comparable to that of modern horns and other musical instruments in emitting harmonious vibrations of even and odd harmonics when excited. This investigation has further shown that the “agbo” horns can be used for fourier analysis and amplitude modulation. They also have characteristics similar to violin, piano, oboe, ...

  19. Rudimentary horn pregnancy: Pre-rupture diagnosis and management

    African Journals Online (AJOL)

    Rudimentary horn pregnancy is a rare obstetric entity and the diagnosis and management may pose some problems especially in a low-resource center. We report our experience in diagnosing and managing a case of fetal death in a rudimentary horn.

  20. Electron wave collimation by conical horns : computer simulation

    NARCIS (Netherlands)

    Michielsen, K.; de Raedt, H.

    1991-01-01

    Results are presented of extensive numerical simulations of electron wave packets transmitted by horns. A detailed quantitative analysis is given of the collimation of the electron wave by horn-like devices. It is demonstrated that the electron wave collimation effect cannot be described in terms of

  1. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming

    Science.gov (United States)

    The objective of this study was to evaluate variations in podophyllotoxin concentrations in Juniperus species found in the Big Horn Mountains in Wyoming. It was found that Juniperus species in the Big Horn Mountains included three species; J. communis L. (common juniper), J. horizontalis Moench. (c...

  2. Occupational cow horn eye injuries in Ibadan, Nigeria | Ibrahim ...

    African Journals Online (AJOL)

    This case series aims to describe the clinical features, management, and outcome of occupational eye injuries caused by cow horns and to recommend possible preventive measures. A review of patients with cow horn inflicted eye injuries seen at the University College Hospital, Ibadan between January 2006, and ...

  3. Toward a Regional Security Architecture for the Horn of Africa ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Toward a Regional Security Architecture for the Horn of Africa - Phase II. The Horn of Africa region has endured decades of destruction and human suffering due to long and interrelated wars. Moreover, conflict in one country tends to affect its neighbours, mainly through the flow of refugees and weapons. Building on work ...

  4. Cryptographic protocol verification using tractable classes of horn clauses

    DEFF Research Database (Denmark)

    Seidl, Helmut; Neeraj Verma, Kumar

    2007-01-01

    We consider secrecy problems for cryptographic protocols modeled using Horn clauses and present general classes of Horn clauses which can be efficiently decided. Besides simplifying the methods for the class of flat and onevariable clauses introduced for modeling of protocols with single blind...

  5. Contraction core for horn belief change: preliminary report

    CSIR Research Space (South Africa)

    Booth, R

    2010-05-01

    Full Text Available In this paper the authors continue recent investigations into belief change for Horn logic. The main contribution is a result which shows that the construction method for Horn contraction for belief sets based on infraremainder sets, as recently...

  6. Hard bottom substrate monitoring Horns Rev offshore wind farm. Annual status report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.; Pedersen, John

    2004-05-15

    Elsam and Eltra built the offshore demonstration wind farm at Horns Rev in the North Sea. Elsam is the owner and is responsible for the operation of the wind farm. Eltra is responsible for the connection of the wind farm to the national onshore grid. In the summer months of 2002, Elsam constructed the world's largest offshore wind farm off the Danish west coast. The wind farm is sited 14-20 km into the North Sea, west of Blaevands Huk. The first wind turbine was erected in May 2002 and the last wind turbine tower of a total of 80 was in place by August 2002. The construction work was completed with the last connecting cables sluiced down in September 2002. All the wind turbines were in production by December 2002. The expected impact of the wind farm will primarily be an alternation of habitats due to the introduction of hard bottom substrates as wind turbine towers and scour protections. A continuous development in the epifouling communities will be expected together with an introduction of new or alien species in the area. The indigenous benthic community in the area of Horns Rev can be characterised by infauna species belonging to the Goniadella-Spisula community. This community is typical of sandbanks in the North Sea area, although communities in such areas are very variable and site-specific. Character species used as indicators for environmental changes in the Horns Rev area are the bristle worms Goniadella bobretzkii, Ophelia borealis, Psione remota and Orbinia sertulata and the mussels Goodallia triangularis and Spisula solida. In connection with the implementation of the monitoring programme concerning the ecological impact of the introduction of hard substrate related to the Horns Rev Wind Farm, surveys on hard bottom substrate was conducted in March 2003 and in September 2003. This report describes the first year results of surveys on hard substrate after the completion of the offshore wind farm at Horns Rev. (au)

  7. Reflectance of acoustic horns and solution of the inverse problem

    Science.gov (United States)

    Rasetshwane, Daniel M.; Neely, Stephen T.; Allen, Jont B.; Shera, Christopher A.

    2012-01-01

    A method is described for solving the inverse problem of determining the profile of an acoustic horn when time-domain reflectance (TDR) is known only at the entrance. The method involves recasting Webster’s horn equation in terms of forward and backward propagating wave variables. An essential feature of this method is a requirement that the backward propagating wave be continuous at the wave-front at all locations beyond the entrance. Derivation of the inverse solution raises questions about the meaning of causality in the context of wave propagation in non-uniform tubes. Exact reflectance expressions are presented for infinite exponential, conical and parabolic horns based on exact solutions of the horn equation. Diameter functions obtained with the inverse solution are a good match to all three horn profiles. PMID:22423684

  8. Spontaneous fission of superheavy nuclei

    Indian Academy of Sciences (India)

    2015-08-02

    Aug 2, 2015 ... The macroscopic–microscopic method is extended to calculate the deformation energy and penetrability for binary nuclear configurations typical for fission processes. The deformed two-centre shell model is used to obtain single-particle energy levels for the transition region of two partially overlapped ...

  9. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Structural studies of heavy nuclei are quite challenging due to increased competition from fission, particularly at high spins. Nuclei in the actinide region exhibit a variety of interesting phenomena. Recent advances in instrumentation and analysis techniques have made feasible sensitive measurements of ...

  10. Nuclear fission with inertial confinement

    CERN Document Server

    Koshkarev, D G

    2002-01-01

    The possibility of initiating the explosive fission reaction in a small quantity of fissile material through the heavy ions beam from the powerful accelerator-driver, developed for realization of the thermonuclear synthesis in the deuterium-tritium cylindrical targets with the direct ignition, is considered. The consequences of applying this method in the nuclear engineering are discussed

  11. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    Energy Technology Data Exchange (ETDEWEB)

    Farget, F.; Schmidt, K.H.; Clement, E.; Delaune, O.; Derkx, X.; Dijon, A.; Golabek, C.; Lemasson, A.; Roger, T.; Schmitt, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Caamano, M.; Ramos, D.; Benlliure, J.; Cortina, D.; Fernandez-Dominguez, B.; Paradela, C. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Rodriguez-Tajes, C. [CEA/DSM-CNRS/IN2P3, GANIL, Caen (France); Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Audouin, L. [Universite Paris-Sud 11, CNRS/IN2P3, Institut de Physique Nucleaire, Orsay (France); Casarejos, E. [Universidade de Vigo, Vigo (Spain); Dore, D.; Salsac, M.D. [Centre de Saclay, CEA, Irfu, Gif-sur-Yvette (France); Gaudefroy, L. [CEA DAM Ile-de-France, BP 12, Bruyeres-le-Chatel (France); Heinz, A. [Chalmers Tekniska Hoegskola, Fundamental Fysik, Goeteborg (Sweden); Jurado, B. [Universite Bordeaux, CENBG, UMR 5797 CNRS/IN2P3, Gradignan (France)

    2015-12-15

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus {sup 250}Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission. (orig.)

  12. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    Science.gov (United States)

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Empirical investigation of wind farm blockage effects in Horn Rev 1 offshore wind farm

    DEFF Research Database (Denmark)

    Mitraszewski, Karol; Hansen, Kurt Schaldemose; Nygaard, Nicolai

    We present an empirical study of wind farm blockage effects based on Horns Rev 1 SCADA data. The mean inflow non-uniformities in wind speed are analyzed by calculating the mean power outputs of turbines located along the outer edges of the farm for different wind directions, wind speeds...... and stability conditions. This forms a basis for understanding of the blockage effects and their influence on wind farm production....

  14. Available sustainable alternatives replace endangered animal horn based on their proteomic analysis and bio-effect evaluation.

    Science.gov (United States)

    Liu, Rui; Wang, Fei; Huang, Qiong; Duan, Jin-Ao; Liu, Pei; Shang, Erxin; Zhu, Dong; Wen, Hongmei; Qian, Dawei

    2016-10-27

    The use of endangered animal products in traditional Chinese medicine (TCM) and other ethno-medicines is culturally widespread across many regions of Asia. In the present study, traditional efficacies of seven types of animal horn including antipyretic, sedative and procoagulant activities were evaluated. Shotgun proteomic analysis was performed on material from horns following separation into soluble and insoluble fractions. Over 200 proteins were identified in each sample using nano LC-MS/MS, and these were classified according to their molecular function and cellular component using principal component analysis (PCA). The results indicated that seven horns showed antipyretic, sedative and procoagulant effect. Proteomic analysis showed that YH and WBH were similar to RH in terms of protein profile, and GH was similar to SAH. In addition, YH and GH were similar to RH in their cellular component classification profile. PCA based on the composition of keratin and keratin-associated proteins showed that constituents of WBH and GH were similar to RH and SAH, respectively. This is the first analysis of the protein content of animal horns used in TCM, and it is effective to substitute the horn of endangered animals with sustainable alternatives from domestic animals.

  15. A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding.

    Science.gov (United States)

    Nguyen, Huu-Tu; Nguyen, Hai-Dang; Uan, Jun-Yen; Wang, Dung-An

    2014-12-01

    A new horn with high displacement amplification for ultrasonic welding is developed. The profile of the horn is a nonrational B-spline curve with an open uniform knot vector. The ultrasonic actuation of the horn exploits the first longitudinal displacement mode of the horn. The horn is designed by an optimization scheme and finite element analyses. Performances of the proposed horn have been evaluated by experiments. The displacement amplification of the proposed horn is 41.4% and 8.6% higher than that of the traditional catenoidal horn and a Bézier-profile horn, respectively, with the same length and end surface diameters. The developed horn has a lower displacement amplification than the nonuniform rational B-spline profiled horn but a much smoother stress distribution. The developed horn, the catenoidal horn, and the Bézier horn are fabricated and used for ultrasonic welding of lap-shear specimens. The bonding strength of the joints welded by the open uniform nonrational B-spline (OUNBS) horn is the highest among the three horns for the various welding parameters considered. The locations of the failure mode and the distribution of the voids of the specimens are investigated to explain the reason of the high bonding strength achieved by the OUNBS horn. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Phebus PF (fission products): major international research programme in nuclear safety; Phebus PF: programme international majeur de recherche en surete nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective consists in reproducing experimentally at small scale the core meltdown in a PWR type reactor, in order to study the mechanisms of core meltdown, as well as the quantity, the nature and the behaviour of radioactive products released in such a situation. The programme Phebus PF aims to improve the knowledge of these phenomena. This knowledge must allow to better appreciate the procedures and means to prevent and limit the consequences of such accidents. (N.C.)

  17. Heavy neutron-deficient radioactive beams: fission studies and fragment distributions

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.H.; Benlliure, J.; Heinz, A.; Voss, B. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Boeckstiegel, C.; Grewe, A.; Steinhaeuser, S.; Clerc, H.G.; Jong, M. de; Junghans, A.R.; Mueller, J. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik; Pfuetzner, M. [Warsaw Univ. (Poland). Inst. of Experimental Physics

    1998-02-01

    The secondary-beam facility of GSI Darmstadt was used to study the fission process of short-lived radioactive nuclei. Relativistic secondary projectiles were produced by fragmentation of a 1 A GeV {sup 238}U primary beam and identified in nuclear charge and mass number. Their production cross sections were determined, and the fission competition in the statistical deexcitation was deduced for long isotopical chains. New results on the enhancement of the nuclear level density in spherical and deformed nuclei due to collective rotational and vibrational excitations were obtained. Using these reaction products as secondary beams, the dipole giant resonance was excited by electromagnetic interactions in a secondary lead target, and fission from excitation energies around 11 MeV was induced. The fission fragments were identified in nuclear charge, and their velocity vectors were determined. Elemental yields and total kinetic energies have been determined for a number of neutron-deficient actinides and preactinides which were not accessible with conventional techniques. The characteristics of multimodal fission of nuclei around {sup 226}Th were systematically investigated and related to the influence of shell effects on the potential energy and on the level density between fission barrier and scission. A systematic view on the large number of elemental yields measured gave rise to a new interpretation of the enhanced production of even elements in nuclear fission and allowed for a new understanding of pair breaking in large-scale collective motion. (orig.)

  18. Horn Clauses for Communicating Timed Systems

    Directory of Open Access Journals (Sweden)

    Hossein Hojjat

    2014-12-01

    Full Text Available Languages based on the theory of timed automata are a well established approach for modelling and analysing real-time systems, with many applications both in industrial and academic context. Model checking for timed automata has been studied extensively during the last two decades; however, even now industrial-grade model checkers are available only for few timed automata dialects (in particular Uppaal timed automata, exhibit limited scalability for systems with large discrete state space, or cannot handle parametrised systems. We explore the use of Horn constraints and off-the-shelf model checkers for analysis of networks of timed automata. The resulting analysis method is fully symbolic and applicable to systems with large or infinite discrete state space, and can be extended to include various language features, for instance Uppaal-style communication/broadcast channels and BIP-style interactions, and systems with infinite parallelism. Experiments demonstrate the feasibility of the method.

  19. Prompt fission γ-ray data from spontaneous fission and the mechanism of fission-fragment de-excitation

    Directory of Open Access Journals (Sweden)

    Oberstedt Stephan

    2017-01-01

    Full Text Available The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f, 239Pu(nth, f, and 252Cf(sf. Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS characteristics (average number of photons per fission, average total energy per fission and mean photon energy from 252Cf(sf, 235U(nth, f and 239,241Pu(nth, f within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.

  20. Prompt fission γ-ray data from spontaneous fission and the mechanism of fission-fragment de-excitation

    Science.gov (United States)

    Oberstedt, Stephan; Dragic, Aleksandar; Gatera, Angelique; Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Andreas

    2017-09-01

    The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f), 239Pu(nth, f), and 252Cf(sf). Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS) characteristics (average number of photons per fission, average total energy per fission and mean photon energy) from 252Cf(sf), 235U(nth, f) and 239,241Pu(nth, f) within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf) show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.

  1. On the origin of Ammon's horn.

    Science.gov (United States)

    Iniesta, I

    2014-10-01

    Greek and Roman worship of their gods and myths go back to Ancient Egyptian times. Images engraved in Greco-Roman coinage range from references to the assassination of Caesar and legendary stories like the arrival of a snake shaped demi-god Aesculapius to save the Romans from the plague, to invocations of major deities including Apollo the physician or Ammon the protector. Depicted with the horns of a ram, Ammon was adopted by the Greeks as an epithet of Zeus and later incorporated by the Romans as Jupiter. References to the cult of Ammon appear on tetradrachms minted for Alexander The Great and on provincial Roman coins struck under Claudius. It is thrilling to hold a coin depicting Marcus Aurelius with Salus on the reverse and think that it could have been handed to Galen in payment for his services. However, it is rare to find figures other than rulers on coins and the physician of Pergamum is no exception. Inspired by the Renaissance school of Padua, French anatomists in the Enlightenment (Garengeot in 1742 and Flurant in 1752) continued reviving ancient myths and named the curve-shaped-inner portion of the temporal lobe Ammon's horn. Outstanding scholars who studied this primitive structure of the brain included Lorente de Nó and his mentor Cajal, whose portrait appeared on fifty-pesetas notes issued in 1935. As primary sources of great archaeological and artistic value, Greco-Roman coins provide information about the origins of the myths and gods of classical antiquity and continue to inspire the arts and sciences to this day. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  2. A fission fragment detector for correlated fission output studies

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, S., E-mail: smosby@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tovesson, F.; Couture, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Duke, D.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States); Kleinrath, V. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Idaho State University, Pocatello, ID 83201 (United States); Meharchand, R.; Meierbachtol, K.; O' Donnell, J.M.; Perdue, B.; Richman, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shields, D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Colorado School of Mines, Golden, CO 80401 (United States)

    2014-09-01

    A digital data acquisition system has been combined with a double Frisch gridded ionization chamber for use at both moderated and unmoderated neutron sources at the Los Alamos Neutron Science (LANSCE) facility. The high efficiency of the instrument combined with intense LANSCE beams and new acquisition system permits fission output measurements across 11 orders of magnitude incident neutron energy. The acquisition and analysis system is presented along with the first in-beam performance tests of the setup.

  3. Polarographic determination of Iodide and Iodate, in Solutions Coming from Aerosols in Fission Products Containment Studies in Nuclear Power Stations; Determinacion Polarografica de Especies de Iodo (Ioduro y Iodato) en Soluciones Procedentes de Aerosoles, para Estudios de Contencion de Productos de Fision en Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, M.; Ballesteros, O.; Fernandez, M.; Clavero, M.; Gonzalez, A. M. [Ciemat, Madrid (Spain)

    2000-07-01

    A polarographic method is described for the iodine species determination, iodide and iodate in water solutions. the iodate can be determined by differential pulse polarography. Calibration curves and the detection and determination limits have been obtained. Iodides is oxidized to iodate with sodium hypochlorite and the excess of oxidizing agent is destroyed with sodium sulphide. The concentration of iodide is calculated as the difference between the concentration of iodate in the sample before and after the oxidation. As an application, species of iodine in samples coming from the experimental plants GIRS (Gaseous Iodine Removal by Sprays) of Nuclear Fission Department of the CIEMAT, dedicated to fission products containment studies in nuclear power station, were determined. (Author) 10 refs.

  4. Addressing Different Active Neutron Interrogation Signatures from Fissionable Material

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; E. H. Seabury

    2009-10-01

    In a continuing effort to examine portable methods for implementing active neutron interrogation for detecting shielded fissionable material research is underway to investigate the utility of analyzing multiple time-correlated signatures. Time correlation refers here to the existence of unique characteristics of the fission interrogation signature related to the start and end of an irradiation, as well as signatures present in between individual pulses of an irradiating source. Traditional measurement approaches in this area have typically worked to detect die-away neutrons after the end of each pulse, neutrons in between pulses related to the decay of neutron emitting fission products, or neutrons or gamma rays related to the decay of neutron emitting fission products after the end of an irradiation exposure. In this paper we discus the potential weaknesses of assessing only one signature versus multiple signatures and make the assertion that multiple complimentary and orthogonal measurements should be used to bolster the performance of active interrogation systems, helping to minimize susceptibility to the weaknesses of individual signatures on their own. Recognizing that the problem of detection is a problem of low count rates, we are exploring methods to integrate commonly used signatures with rarely used signatures to improve detection capabilities for these measurements. In this paper we will discuss initial activity in this area with this approach together with observations of some of the strengths and weaknesses of using these different signatures.

  5. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  6. EST and microarray analysis of horn development in Onthophagus beetles

    Directory of Open Access Journals (Sweden)

    Tang Zuojian

    2009-10-01

    Full Text Available Abstract Background The origin of novel traits and their subsequent diversification represent central themes in evo-devo and evolutionary ecology. Here we explore the genetic and genomic basis of a class of traits that is both novel and highly diverse, in a group of organisms that is ecologically complex and experimentally tractable: horned beetles. Results We developed two high quality, normalized cDNA libraries for larval and pupal Onthophagus taurus and sequenced 3,488 ESTs that assembled into 451 contigs and 2,330 singletons. We present the annotation and a comparative analysis of the conservation of the sequences. Microarrays developed from the combined libraries were then used to contrast the transcriptome of developing primordia of head horns, prothoracic horns, and legs. Our experiments identify a first comprehensive list of candidate genes for the evolution and diversification of beetle horns. We find that developing horns and legs show many similarities as well as important differences in their transcription profiles, suggesting that the origin of horns was mediated partly, but not entirely, by the recruitment of genes involved in the formation of more traditional appendages such as legs. Furthermore, we find that horns developing from the head and prothorax differ in their transcription profiles to a degree that suggests that head and prothoracic horns are not serial homologs, but instead may have evolved independently from each other. Conclusion We have laid the foundation for a systematic analysis of the genetic basis of horned beetle development and diversification with the potential to contribute significantly to several major frontiers in evolutionary developmental biology.

  7. Chain yields from 19.1 MeV neutron-induced fission of sup 2 sup 3 sup 5 U

    CERN Document Server

    Bao Jie; Feng Jing; Guo Jing Ru; Li Ze; LiuYongHui; Sun Hong Qing; Yang Yi; Zhang Sheng Dong

    2001-01-01

    Chain yields for 35 mass chains were determined for the fission of sup 2 sup 3 sup 5 U induced by 19.1 MeV neutrons for the first time. Absolute fission rate was monitored with a double fission chamber; fission product activities were measured by HPGe gamma-ray spectrometry. Threshold detector method was used to measured the neutron spectrum in order to estimate the fission events induced by break-up neutrons and scattering neutrons from the environment. A mass distribution curve has been obtained

  8. Fusion-fission studies on 19F+206,208Pb and 11B,19F+238U reactions around barrier energies at IUAC facility

    Science.gov (United States)

    Pullanhiotan, Sugathan; Dubey, Rakesh; Yadav, Chandrabhan; Jhingan, Akhil; Komalan Satheedas, Golda; Nedumbally, Saneesh; Kumar, Mohit

    2017-11-01

    Fission process is strongly influenced by entrance channel dynamical variables. Among these, the nuclear charge product, mass asymmetry and deformation play important role in fission dynamics. Reaction characteristics are distinguished by investigating the properties of fission mass and angular distributions. Experiments using actinide targets are challenging due to many conflicting results making unambiguous identification of quasi-fission difficult. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission mechanism and role of entrance channel parameters and deformation. Fragment mass distribution, angular distribution and neutron multiplicity measurements are performed to study reactions using spherical and deformed targets.

  9. Mass distributions of 22.0 MeV neutron-induced fission of sup 2 sup 3 sup 8 U

    CERN Document Server

    LiuYongHui; Cui An Zhi; Feng Jing; Guo Jing Ru; Li Ze; Qi Bu Jia; Ruan Xi Chao; Sun Hong Qing; Tang Hong Qing; Yang Yi; Zhang Sheng Dong; Zhou Zu Ying

    2001-01-01

    Chain yields of 32 chains were determined for the fission of sup 2 sup 3 sup 8 U induced by 22.0 MeV mono-energetic neutrons for the first time. Fission product activities were measured by HPGe gamma ray spectrometry without chemical separation. Absolute fission rate was monitored with a double fission chamber. The efficiency of the fission chamber was checked by determination of sup 1 sup 9 sup 8 Au activity from sup 1 sup 9 sup 7 Au(n, gamma) sup 1 sup 9 sup 8 Au reaction

  10. Formal verification of communication protocols using quantized Horn clauses

    Science.gov (United States)

    Balu, Radhakrishnan

    2016-05-01

    The stochastic nature of quantum communication protocols naturally lends itself for expression via probabilistic logic languages. In this work we describe quantized computation using Horn clauses and base the semantics on quantum probability. Turing computable Horn clauses are very convenient to work with and the formalism can be extended to general form of first order languages. Towards this end we build a Hilbert space of H-interpretations and a corresponding non commutative von Neumann algebra of bounded linear operators. We demonstrate the expressive power of the language by casting quantum communication protocols as Horn clauses.

  11. Inner conductor of the magnetic double-horn for the neutrino oscillation experiment with BEBC

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    In 1980 renewed interest arose in probing for neutrino non-zero masses and associated neutrino oscillations. Low-energy muon-neutrino beams (produced with a proton beam from the PS) were directed towards the SPS neutrino detectors, BEBC, WA1 and WA18 (Annual Report 1982, p.43, Fig.13). Experiments PS169 (WA1) and PS181 (WA18) were "disappearence" experiments and used a "bare" production target, whereas experiment PS180 (BEBC), looked for electron-neutrino "appearence" and used a horn-focused beam. The manufacture of the inner conductor of the double-horn (a particular breed of current-sheet lens) required exceedingly delicate machining. For further pictures see 8304055 and Annual Report 1982, p.137; and p.43 for a description of the experiments.

  12. On the Suitability of a Solenoid Horn for the ESS Neutrino Superbeam

    CERN Document Server

    Olvegård, Maja; Ruber, R; Ziemann, R; Koutchouk, J -P

    2015-01-01

    The European Spallation Source (ESS), now under construction in Lund, Sweden, offers unique opportunities for experimental physics, not only in neutron science but potentially in particle physics. The ESS neutrino superbeam project plans to use a 5 MW proton beam from the ESS linac to generate a high intensity neutrino superbeam, with the final goal of detecting leptonic CP-violation in an underground megaton Cherenkov water detector. The neutrino production requires a second target station and a complex focusing system for the pions emerging from the target. The normal-conducting magnetic horns that are normally used for these applications cannot accept the 2.86 ms long proton pulses of the ESS linac, which means that pulse shortening in an accumulator ring would be required. That, in turn, requires H- operation in the linac to accommodate the high intensity. As an attractive alternative, we investigate the possibility of using superconducting solenoids for the pion focusing. This solenoid horn system needs ...

  13. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  14. Fission-like events in the 12C+169Tm system at low excitation energies

    Science.gov (United States)

    Sood, Arshiya; Singh, Pushpendra P.; Sahoo, Rudra N.; Kumar, Pawan; Yadav, Abhishek; Sharma, Vijay R.; Shuaib, Mohd.; Sharma, Manoj K.; Singh, Devendra P.; Gupta, Unnati; Kumar, R.; Aydin, S.; Singh, B. P.; Wollersheim, H. J.; Prasad, R.

    2017-07-01

    Background: Fission has been found to be a dominating mode of deexcitation in heavy-ion induced reactions at high excitation energies. The phenomenon of heavy-ion induced fission has been extensively investigated with highly fissile actinide nuclei, yet there is a dearth of comprehensive understanding of underlying dynamics, particularly in the below actinide region and at low excitation energies. Purpose: Prime objective of this work is to study different aspects of heavy-ion induced fission ensuing from the evolution of composite system formed via complete and/or incomplete fusion in the 12C+169Tm system at low incident energies, i.e., Elab≈6.4 , 6.9, and 7.4 A MeV, as well as to understand charge and mass distributions of fission fragments. Method: The recoil-catcher activation technique followed by offline γ spectroscopy was used to measure production cross sections of fission-like events. The evaporation residues were identified by their characteristic γ rays and vetted by the decay-curve analysis. Charge and mass distributions of fission-like events were studied to obtain dispersion parameters of fission fragments. Results: In the present work, 26 fission-like events (32 ≤Z ≤49 ) were identified at different excitation energies. The mass distribution of fission fragments is found to be broad and symmetric, manifesting their production via compound nuclear processes. The dispersion parameters of fission fragments obtained from the analysis of mass and isotopic yield distributions are found to be in good accord with the reported values obtained for different fissioning systems. A self-consistent approach was employed to determine the isobaric yield distribution. Conclusions: The present work suggests that fission is one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies, i.e., E*≈57 , 63, and 69 MeV, where evaporation of light nuclear particle(s) and/or γ rays are assumed to be the sole

  15. Some safety studies for conceptual fusion--fission hybrid reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kastenberg, W.E.; Okrent, D.

    1978-07-01

    The objective of this study was to make a preliminary examination of some potential safety questions for conceptual fusion-fission hybrid reactors. The study and subsequent analysis was largely based upon reference to one design, a conceptual mirror fusion-fission reactor, operating on the deuterium-tritium plasma fusion fuel cycle and the uranium-plutonium fission fuel cycle. The blanket is a fast-spectrum, uranium carbide, helium cooled, subcritical reactor, optimized for the production of fissile fuel. An attempt was made to generalize the results wherever possible.

  16. The resonance neutron fission on heavy nuclei

    CERN Document Server

    Kopach, Yu N; Furman, V I; Alfimenkov, V P; Lason', L; Pikelner, L B; Gonin, N N; Kozlovskij, L K; Tambovtsev, D I; Gagarskij, A M; Petrov, G A; Sokolov, V E

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned sup 2 sup 3 sup 5 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances

  17. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  18. Cutaneous horn and thermal keratosis in erythema AB igne

    Directory of Open Access Journals (Sweden)

    Sood Apra

    2002-01-01

    Full Text Available A 46 - year - old Kashmiri lady developed erythema ab igne on both legs. She subsequently developed multiple keratoses and a cutaneous horn in the involved skin. An uncommon association of these three clinical conditions is being presented.

  19. Measurements of Fission Cross Sections of Actinides

    CERN Multimedia

    Wiescher, M; Cox, J; Dahlfors, M

    2002-01-01

    A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.

  20. Occupational Cow Horn Eye Injuries in Ibadan, Nigeria

    OpenAIRE

    Ibrahim, OA; Olusanya, BA

    2014-01-01

    This case series aims to describe the clinical features, management, and outcome of occupational eye injuries caused by cow horns and to recommend possible preventive measures. A review of patients with cow horn inflicted eye injuries seen at the University College Hospital, Ibadan between January 2006, and December 2011 was conducted. Three patients were identified, and their charts were reviewed for demographic information, mechanism of injury, initial and final visual acuity, surgeries per...

  1. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  2. Combating Rhino Horn Trafficking: The Need to Disrupt Criminal Networks.

    Directory of Open Access Journals (Sweden)

    Timothy C Haas

    Full Text Available The onslaught on the World's wildlife continues despite numerous initiatives aimed at curbing it. We build a model that integrates rhino horn trade with rhino population dynamics in order to evaluate the impact of various management policies on rhino sustainability. In our model, an agent-based sub-model of horn trade from the poaching event up through a purchase of rhino horn in Asia impacts rhino abundance. A data-validated, individual-based sub-model of the rhino population of South Africa provides these abundance values. We evaluate policies that consist of different combinations of legal trade initiatives, demand reduction marketing campaigns, increased anti-poaching measures within protected areas, and transnational policing initiatives aimed at disrupting those criminal syndicates engaged in horn trafficking. Simulation runs of our model over the next 35 years produces a sustainable rhino population under only one management policy. This policy includes both a transnational policing effort aimed at dismantling those criminal networks engaged in rhino horn trafficking-coupled with increases in legal economic opportunities for people living next to protected areas where rhinos live. This multi-faceted approach should be the focus of the international debate on strategies to combat the current slaughter of rhino rather than the binary debate about whether rhino horn trade should be legalized. This approach to the evaluation of wildlife management policies may be useful to apply to other species threatened by wildlife trafficking.

  3. Combating Rhino Horn Trafficking: The Need to Disrupt Criminal Networks.

    Science.gov (United States)

    Haas, Timothy C; Ferreira, Sam M

    2016-01-01

    The onslaught on the World's wildlife continues despite numerous initiatives aimed at curbing it. We build a model that integrates rhino horn trade with rhino population dynamics in order to evaluate the impact of various management policies on rhino sustainability. In our model, an agent-based sub-model of horn trade from the poaching event up through a purchase of rhino horn in Asia impacts rhino abundance. A data-validated, individual-based sub-model of the rhino population of South Africa provides these abundance values. We evaluate policies that consist of different combinations of legal trade initiatives, demand reduction marketing campaigns, increased anti-poaching measures within protected areas, and transnational policing initiatives aimed at disrupting those criminal syndicates engaged in horn trafficking. Simulation runs of our model over the next 35 years produces a sustainable rhino population under only one management policy. This policy includes both a transnational policing effort aimed at dismantling those criminal networks engaged in rhino horn trafficking-coupled with increases in legal economic opportunities for people living next to protected areas where rhinos live. This multi-faceted approach should be the focus of the international debate on strategies to combat the current slaughter of rhino rather than the binary debate about whether rhino horn trade should be legalized. This approach to the evaluation of wildlife management policies may be useful to apply to other species threatened by wildlife trafficking.

  4. Cutaneous Horn-Related Kaposi's Sarcoma: A Case Report

    Science.gov (United States)

    Onak Kandemir, Nilufer; Gun, Banu Dogan; Barut, Figen; Solak Tekin, Nilgun; Ozdamar, Sukru Oguz

    2010-01-01

    Cutaneous horn is characterized by the accumulation of abnormal keratinized material and may occur in association with a variety of benign, premalignant, and malignant cutaneous lesions. Cutaneous horn occurs very rarely in association with soft-tissue neoplasias. A cutaneous horn located on the toe was completely removed by excision in a 78-year-old male patient. Macroscopic examination revealed a hemorrhagic nodular lesion, 0.5 cm in diameter, located on the dermis underlying the cutaneous horn with a height of 1 cm. Histopathological examination revealed a neoplastic lesion consisting of fusiform cells and extravasated erythrocytes underlying the compact keratin mass. The immunohistochemical analysis showed immunoexpression of endothelial markers and HHV8 in fusiform cells. The case was evaluated as “cutaneous horn developed in a nodular stage Kaposi's sarcoma.” Our case is the second case of cutaneous horn related to Kaposi's sarcoma reported in the English literature and is presented in this case report with its clinical and histopathological features. PMID:20862349

  5. Cutaneous Horn-Related Kaposi's Sarcoma: A Case Report

    Directory of Open Access Journals (Sweden)

    Nilufer Onak Kandemir

    2010-01-01

    Full Text Available Cutaneous horn is characterized by the accumulation of abnormal keratinized material and may occur in association with a variety of benign, premalignant, and malignant cutaneous lesions. Cutaneous horn occurs very rarely in association with soft-tissue neoplasias. A cutaneous horn located on the toe was completely removed by excision in a 78-year-old male patient. Macroscopic examination revealed a hemorrhagic nodular lesion, 0.5 cm in diameter, located on the dermis underlying the cutaneous horn with a height of 1 cm. Histopathological examination revealed a neoplastic lesion consisting of fusiform cells and extravasated erythrocytes underlying the compact keratin mass. The immunohistochemical analysis showed immunoexpression of endothelial markers and HHV8 in fusiform cells. The case was evaluated as “cutaneous horn developed in a nodular stage Kaposi's sarcoma.” Our case is the second case of cutaneous horn related to Kaposi's sarcoma reported in the English literature and is presented in this case report with its clinical and histopathological features.

  6. Delayed Fission Gamma-ray Characteristics of Th-232 U-233 U-235 U-238 and Pu-239

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Taylor [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Parma, Edward J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Delayed fission gamma-rays play an important role in determining the time dependent ioniz- ing dose for experiments in the central irradiation cavity of the Annular Core Research Reactor (ACRR). Delayed gamma-rays are produced from both fission product decay and from acti- vation of materials in the core, such as cladding and support structures. Knowing both the delayed gamma-ray emission rate and the time-dependent gamma-ray energy spectrum is nec- essary in order to properly determine the dose contributions from delayed fission gamma-rays. This information is especially important when attempting to deconvolute the time-dependent neutron, prompt gamma-ray, and delayed gamma-ray contribution to the response of a diamond photo-conducting diode (PCD) or fission chamber in time frames of milliseconds to seconds following a reactor pulse. This work focused on investigating delayed gamma-ray character- istics produced from fission products from thermal, fast, and high energy fission of Th-232, U-233, U-235, U-238, and Pu-239. This work uses a modified version of CINDER2008, a transmutation code developed at Los Alamos National Laboratory, to model time and energy dependent photon characteristics due to fission. This modified code adds the capability to track photon-induced transmutations, photo-fission, and the subsequent radiation caused by fission products due to photo-fission. The data is compared against previous work done with SNL- modified CINDER2008 [ 1 ] and experimental data [ 2 , 3 ] and other published literature, includ- ing ENDF/B-VII.1 [ 4 ]. The ability to produce a high-fidelity (7,428 group) energy-dependent photon fluence at various times post-fission can improve the delayed photon characterization for radiation effects tests at research reactors, as well as other applications.

  7. Thirty years of collaboration with Gabriel Horn.

    Science.gov (United States)

    Bateson, Patrick

    2015-03-01

    All the collaborative work described in this review was on the process of behavioural imprinting occurring early in the life of domestic chicks. Finding a link between learning and a change in the brain was only a first step in establishing a representation of the imprinting object. A series of overlapping experiments were necessary to eliminate alternative explanations. Once completed, a structure, the intermediate and medial mesopallium (IMM), was found to be strongly linked to the formation of a neural representation of the object used for imprinting the birds. With the site identified, lesion experiments showed that it was necessary for imprinting but not associative learning. Also the two sides of the brain responded differently with the left IMM acting as a permanent store and the right side acting as a way station to other parts of the brain. The collaborative work led to many studies by Gabriel Horn with others on the molecular and cellular bases of imprinting, and also to neural net modelling and behavioural studies with me on the nature of category formation in intact animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Comparison of neutron induced fission and capture in Np-237 and Pu-239 irradiated in QUINTA assembly with 660 MeV proton beam

    Science.gov (United States)

    Kilim, Stanislaw; Strugalska-Gola, Elzbieta; Szuta, Marcin; Bielewicz, Marcin; Tyutyunnikov, Sergey; Stegailov, Vladimir

    2017-03-01

    Two Np-237 samples and one Pu-239 were irradiated in spallation neutrons produced in ADS setup QUINTA. The accelerated beam consisted of protons of energy 660 MeV. The method was based on gamma-ray spectrometry measurement. During analysis of the spectra several fission products and one actinide were identified. Fission product activities gave the number of fissions. The actinide (Np-238), a result of neutron capture by Np-237 gave the number of captures. In a similar manner the number of fissions in Pu-239 was determined. The Pu-240, a product of neutron capture by Pu-239, activity was impossible to measure.

  9. Comparison of neutron induced fission and capture in Np-237 and Pu-239 irradiated in QUINTA assembly with 660 MeV proton beam

    Directory of Open Access Journals (Sweden)

    Kilim Stanislaw

    2017-01-01

    Full Text Available Two Np-237 samples and one Pu-239 were irradiated in spallation neutrons produced in ADS setup QUINTA. The accelerated beam consisted of protons of energy 660 MeV. The method was based on gamma-ray spectrometry measurement. During analysis of the spectra several fission products and one actinide were identified. Fission product activities gave the number of fissions. The actinide (Np-238, a result of neutron capture by Np-237 gave the number of captures. In a similar manner the number of fissions in Pu-239 was determined. The Pu-240, a product of neutron capture by Pu-239, activity was impossible to measure.

  10. Reproductive success of Horned Lark and McCown's Longspur in relation to wind energy infrastructure

    Science.gov (United States)

    Mahoney, Anika; Chalfoun, Anna D.

    2016-01-01

    Wind energy is a rapidly expanding industry with potential indirect effects to wildlife populations that are largely unexplored. In 2011 and 2012, we monitored 211 nests of 2 grassland songbirds, Horned Lark (Eremophila alpestris) and McCown's Longspur (Rhynchophanes mccownii), at 3 wind farms and 2 undeveloped reference sites in Wyoming, USA. We evaluated several indices of reproductive investment and success: clutch size, size-adjusted nestling mass, daily nest survival rate, and number of fledglings. We compared reproductive success between wind farms and undeveloped sites and modeled reproductive success within wind farms as a function of wind energy infrastructure and habitat. Size-adjusted nestling mass of Horned Lark was weakly negatively related to turbine density. In 2011, nest survival of Horned Lark decreased 55% as turbine density increased from 10 to 39 within 2 km of the nest. In 2012, however, nest survival of Horned Lark was best predicted by the combination of vegetation height, distance to shrub edge, and turbine density, with survival increasing weakly with increasing vegetation height. McCown's Longspur nest survival was weakly positively related to vegetation density at the nest site when considered with the amount of grassland habitat in the neighborhood and turbine density within 1 km of the nest. Habitat and distance to infrastructure did not explain clutch size or number of fledglings for either species, or size-adjusted nestling mass for McCown's Longspur. Our results suggest that the influence of wind energy infrastructure varies temporally and by species, even among species using similar habitats. Turbine density was repeatedly the most informative measure of wind energy development. Turbine density could influence wildlife responses to wind energy production and may become increasingly important to consider as development continues in areas with high-quality wind resources.

  11. Hard bottom substrate monitoring Horns Rev offshore wind farm. Annual status report. 2004

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.; Pedersen, John

    2005-05-15

    Elsam and Eltra have built the offshore demonstration wind farm at Horns Rev in the North Sea. Elsam is the owner and is responsible for the operation of the wind farm. Eltra is responsible for the connection of the wind farm to the national onshore grid. In the summer months of 2002, Elsam constructed the world's largest offshore wind farm at the Danish west coast. The wind farm is located 14-20 km into the North Sea, west of Blaevands Huk. The first wind turbine foundation was in place in March 2002 and the last mono-pile was in place in August 2002 for a total of 80. The construction work was completed with the last connecting cables sluiced down in September 2002. All the wind turbines were in production in December 2002. The expected impact from the wind farm will primarily be an alternation of habitats due to the introduction of hard bottom substrates as wind mono-piles and scour protections. A continuous development in the epifouling communities will be expected together with an introduction of new or alien species in the area. The indigenous benthic community in the area of Horn Rev can be characterised by infauna species belonging to the Goniadella-Spisula community. This community is typical of sandbanks in the North Sea area, although communities in such areas are very variable and site specific. Character species used as indicators for environmental changes in the Horns Rev area are the bristle worms Goniadella bobretzkii, Ophelia borealis, Psione remota and Orbinia sertulata and the mussels Goodallia triangularis and Spisula solida. In connection with the implementation of the monitoring programme concerning the ecological impact of the introduction of hard substrate related to the Horns Rev Wind Farm, surveys on hard bottom substrates were initialised in March 2003 with monitoring conducted in September 2003 and March and September 2004. This report describes the results from surveys on hard substrates in 2004. (au)

  12. Fission-Produced99Mo Without a Nuclear Reactor.

    Science.gov (United States)

    Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C

    2017-03-01

    99 Mo, the parent of the widely used medical isotope 99m Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99 Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99 Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99 Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99 Mo production run are presented. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    2015-07-22

    Jul 22, 2015 ... The discovery of nuclear fission in 1938–1939 had a profound influence on the field of nuclear physics and it brought this branch of physics into the forefront as it was recognized for having the potential for its seminal influence on modern society. Although many of the basic features of actinide fission were ...

  14. Closing temperatures of different fission track clocks

    Science.gov (United States)

    Sharma, Y. P.; Lal, N.; Bal, K. D.; Parshad, R.; Nagpaul, K. K.

    1980-05-01

    The fission track closing temperatures of the minerals which are found to be suitable for fission track geochronology have been calculated for various cooling rates using the stepwise cooling. Biotite is found to have the lowest closing temperature whereas the sphene is having the highest. The closing temperature falls with decrease in cooling rate.

  15. Some aspects of fission and quasifission processes

    Indian Academy of Sciences (India)

    The correct interpretation of these resonances was first given in [12]. This happened just as I started my Ph.D. studies at the Niels. Bohr Institute in Copenhagen, where many of the key players in the newly invigorated field of fission studies were resident at that time, both theorists and experimentalists. I got involved in fission ...

  16. Prompt fission neutron spectrum of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, Vienna (Austria); Chen, Y. -J. [China Institute of Atomic Energy, Beijing (China); Hambsch, F. J. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Jurado, B. [CENBG, CNRS/IN2P3, Gradignan (France); Kornilov, N. [Ohio Univ., Athens, OH (United States); Lestone, J. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Litaize, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Morillon, B. [CEA, DAM, DIF, Arpajon (France); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Oberstedt, S. [European Commission, Joint Research Centre - IRRM, Geel (Belgium); Ohsawa, T. [Kinki Univ., Osaka-fu (Japan); Otuka, N. [International Atomic Energy Agency, Vienna (Austria); Pronyaev, V. G. [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Saxena, A. [Bhabha Atomic Research Centre, Mumbai (India); Schmidt, K. H. [CENBG, CNRS/IN2P3, Gradignan (France); Serot, O. [CEA, DEN, DER, SPRC, Saint-Paul-Lez-Durance (France); Shcherbakov, O. A. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation); Shu, N. -C. [China Institute of Atomic Energy, Beijing (China); Smith, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Talou, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, A. [International Atomic Energy Agency, Vienna (Austria); Tudora, A. C. [Univ. of Bucharest, Magurele (Romania); Vogt, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of California, Davis, CA (United States); Vorobyev, A. S. [Petersburg Nuclear Physics Institute of NRC " Kurchatov Institute" , Gatchina (Russian Federation)

    2016-01-06

    Here, the energy spectrum of prompt neutron emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  17. Coulomb fission of a dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Merlino, R. L., E-mail: robert-merlino@uiowa.edu; Meyer, J. K. [Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 (United States); Avinash, K. [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Sen, A. [Institute for Plasma Research, Gandhinagar (India)

    2016-06-15

    Experimental observations are presented of the splitting (fission) of a suspension of charged microparticles (dusty plasma) into two fragments when the plasma was suddenly turned off. The triggering mechanism for fissioning of the dust cloud is discussed in terms of a pinching instability driven by the ion drag force.

  18. Seventy-five years of nuclear fission

    Indian Academy of Sciences (India)

    2015-07-19

    Jul 19, 2015 ... Nuclear fission process is one of the most important discoveries of the twentieth century. In these 75 years since its discovery, the nuclear fission related research has not only provided new insights in the physics of large scale motion, deformation and subsequent division of a heavy nucleus, but has also ...

  19. Family Bovidae (Hollow-horned Ruminants)

    Science.gov (United States)

    Groves, Colin P.; Leslie, David M.; Huffman, Brent A.; Valdez, Raul; Habibi, Khushal; Weinberg, Paul; Burton, James; Jarman, Peter; Robichaud, William

    2015-01-01

    Probably the single most eye-catching aspect of the current volume is the explosion of species recognized in the family Bovidae (Hollow-horned Ruminants). In 2005, the third edition of Mammal Species of the World listed 143 species in 50 genera of Bovidae. That list, prepared by the late Peter Grubb, was somewhat traditional and provisional, as he was engaged with his long-time colleague, Colin Groves, in a substantial revision of ungulate taxonomy. Their work, which will be published later this year, is the culmination of years of study of this important and wide-ranging family by these two venerable authorities. Colin Groves is the lead author for Bovidae in this volume of HMW, and in it we recognize all 279 species in 54 genera that are documented in his and Peter Grubb’s ground-breaking work.At the root of this expanded number of recognized species is our changing view of the modern species concept. Like a growing number of taxonomists, Groves favors a phylogenetic species concept, which he defines as the smallest population or aggregation of populations that has fixed heritable differences from other such populations or aggregations. This is in contrast to the traditional biological species concept, which requires reproductive isolation between such populations. The difficulty in determining that reproductive isolation led to an underrepresentation of the number of species in many groups. Clearly there remain problems in determining which differences between populations are heritable, and the system used here undoubtedly will continue to be tweaked as our understanding grows. For now, this greatly expanded version of Bovidae species limits seems the best answer. One of the goals of HMW is to provide an up-to-date summary of the conservation status for every species of mammal, and this expanded species concept better enables us to explore the true conservation situation of each.

  20. Piracy around the Horn of Africa

    Directory of Open Access Journals (Sweden)

    Joshua Ho

    2009-09-01

    Full Text Available Piracy around the Horn of Africa has risen to a level serious enough for the international community to take concerted action to secure an international sea lane. However, the efforts so far have been initiated mainly by the international community while regional efforts are only just beginning. In the short term, more action will have to be taken at the operational level like dispatching more ships and integrating the operations of ships already deployed to the area. In the longer term, the root causes of piracy and the grievances of the Somali people have to be addressed. In particular, there is a need to restore law and order in Somalia by supporting moderate leaders in their attempts to create a representative government.La piraterie au large de la Corne de l’Afrique a augmenté à un degré tel que la communauté internationale a décidé d’agir de concert pour sécuriser cette voie maritime. Néanmoins, si les efforts entrepris sont principalement ceux de la communauté internationale, les démarches régionales ne sont qu’à leur commencement. Dans le court terme, davantage d’initiatives devront être prises au niveau opérationnel, comme l’envoi de bateaux supplémentaires et la coordination des actions menées. Dans le plus long terme, il faudra s’attaquer aux racines de la piraterie et aux difficultés auxquelles doivent faire face les Somaliens. Il s’agit en particulier de restaurer l’état de droit en supportant les chefs de file modérés dans leur tentative de créer un gouvernement représentatif.

  1. Fission Surface Power Technology Development Status

    Science.gov (United States)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  2. Fission and Properties of Neutron-Rich Nuclei

    Science.gov (United States)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    spontaneous fission of [symbol]Cf / A. V. Daniel ... [et al.]. Magnetic moment measurements in a radioactive beam environment / N. Benczer-Koller and G. Kumbartzki. g-Factor measurements of picosecond states: opportunities and limitations of the recoil-in-vacuum method / N. J. Stone ... [et al.]. Precision mass measurements and trap-assisted spectroscopy of fission products from Ni to Pd / A. Jokinen -- Fission II. Fission research at IRMM / F.-J. Hambsch. Fission yield measurements at the IGISOL facility with JYFLTRAP / H. Penttilä ... [et al.]. Fission of radioactive beams and dissipation in nuclear matter / A. Heinz (for the CHARMS collaboration). Fission of [symbol]U at 80 MeVlu and search for new neutron-rich isotopes / C.M. Folden, III ... [et al.]. Measurement of the average energy and multiplicity of prompt-fission neutrons and gamma rays from [symbol], [symbol], and [symbol] for incident neutron energies of 1 to 200 MeV / R. C. Haight ... [et al.]. Fission measurements with DANCE / M. Jandel ... [et al.]. Measured and calculated neutron-induced fission cross sections of [symbol]Pu / F. Tovesson and T. S. Hill. The fission barrier landscape / L. Phair and L. G. Moretto. Fast neutron-induced fission of some actinides and sub-actinides / A. B. Lautev ... [et al.] -- Fission III/Nuclear structure III. Complex structure in even-odd staggering of fission fragment yields / M. Caamāno and F. Rejmund. The surrogate method: past, present and future / S. R. Lesher ... [et al]. Effects of nuclear incompressibility on heavy-ion fusion / H. Esbensen and Ş. Mişicu. High spin states in [symbol]Pm / A. Dhal ... [et al]. Structure of [symbol]Sm, spherical vibrator versus softly deformed rotor / J. B. Gupta -- Astrophysics. Measuring the astrophysical S-factor in plasmas / A. Bonasera ... [et al.]. Is there shell quenching or shape coexistence in Cd isotopes near N = 82? / J. K. Hwang, A. V. Ramayya and J. H. Hamilton. Spectroscopy of neutron-rich palladium and cadmium isostopes

  3. Cumulative yields of stable and long-lived isotopes of tin in neutron-induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, K.J.R.; DeLaeter, J.R. (Western Australian Inst. of Tech., South Bentley); Boldeman, J.W. (Australian Atomic Energy Commission Research Establishment, Lucas Heights. Physics Div.); Thode, H.G. (McMaster Univ., Hamilton, Ontario (Canada). Dept. of Chemistry)

    1983-11-01

    The relative cumulative fission yields of the six stable isotopes of tin (sup(117)Sn, sup(118)Sn, sup(119)Sn, sup(120)Sn, sup(122)Sn, and sup(124)Sn) and the long-lived isotope sup(126)Sn have been measured in the thermal and epicadmium neutron fission of sup(233)U and sup(235)U, and the epicadmium neutron fission of sup(238)U. Nanogram-sized fission product tin samples were extracted from irradiated uranium samples and analyzed in a solid source mass spectrometer. In each case a smooth curve can be drawn through the yield points of the seven isotopes of tin. There is, therefore, no evidence of fine structure in the 117 < = A < = 126 portion of the symmetric mass region.

  4. An Unexpected Near Term Pregnancy in a Rudimentary Uterine Horn

    Directory of Open Access Journals (Sweden)

    Elisabete Gonçalves

    2013-01-01

    Full Text Available Unicornuate uterus occurs due to a complete or partial nondevelopment of one Mullerian duct; sometimes it is associated with a rudimentary horn, which can communicate or not with uterine cavity or contain functional endometrium. Pregnancy in a rudimentary horn is rare and the outcome almost always unfavorable, usually ending in rupture during the first or second trimester with significant morbidity and mortality. Despite the availability and advances on imagiologic procedures, recognition of this ectopic pregnancy is frequently made at laparotomy after abdominal pain and collapse. The authors describe a case of a primigravida with 34 weeks of gestation admitted with a preeclampsia with severity criteria. A cesarean for fetal malpresentation was done and, unexpectedly, a rudimentary horn pregnancy was found with a live newborn. In the literature, few reports of a horn pregnancy reaching the viability with a live newborn are described, enhancing the clinical importance of this case. A review of literature concerning the epidemics, clinical presentation, and appropriate management of uterine horn pregnancies is made.

  5. Effect of Calcereous Cow Horn and Storage on the Physicochemical Properties of Cement-Bonded Particleboards from Groundnut Hulls

    Directory of Open Access Journals (Sweden)

    Ogunkunle Olaoluwa Ayobami

    2013-01-01

    Full Text Available Fine particles of the groundnut hull and cow horn samples were prepared and subjected to hydration experiments with Portland cement with the moisture content maintained around 12%. All the compatibility factor values were very well above 60% making the different combinations appropriate for particleboard production. Metal analyses suggested high concentrations of Ca in both samples with values of  wt% and  wt% for the cow horn and groundnut hull samples, respectively. Potassium was also present in high concentrations but was lower than that of calcium. The cow horn was found to be a good substitute for the synthetic additives. Combinations of with the cow horn gave better compatibility ( between the groundnut hull particles and the Portland cement due to chelation, with the hot-water-treated samples being the best. Bond formation was established through the hydroxyl (–OH, carbonyl (C=O, esters or ethers (C–O, and amide (N–H functional groups on the groundnut hall samples. Storage over a period of time also gave a better compatibility of the groundnut hull sample with cement even in the absence of hot-water pretreatments and chemical additives.

  6. Cold fission from isomeric states of superheavy nuclei

    Science.gov (United States)

    Sandulescu, A.; Mirea, M.

    2014-07-01

    Correlations between the potential energy surface structure and the mass distributions observed in the production of superheavy nuclei are evidenced. The isomeric states are identified by spanning the multidimensional configuration space from the contact point of the colliding nuclei up to the formation of the compound nucleus. The available degrees of freedom are the elongation, the necking, the mass asymmetry, and the deformations of the two colliding nuclei. Using the macroscopic-microscopic model based on the Woods-Saxon two-center shell model, several minima in the potential energy landscape were revealed. The fission process from these isomeric states was investigated and the probabilities of realization of possible partitions were calculated in the WKB approximation. The inertia was computed in the framework of the cranking model. The identified correlations indicate that the mass distribution attributed to quasifission in previous studies can be alternatively explained as a cold-fission process from excited states.

  7. Microstructure and mechanical properties of horns derived from three domestic bovines.

    Science.gov (United States)

    Zhang, Quan-bin; Li, Chun; Pan, Yan-ting; Shan, Guang-hua; Cao, Ping; He, Jia; Lin, Zhong-shi; Ao, Ning-jian; Huang, Yao-xiong

    2013-12-01

    The microstructure and mechanical properties of horns derived from three domestic bovines (buffalo, cattle and sheep) were examined. The effects of water content, sampling position and orientation of three bovid horns on mechanical properties were systematically investigated by uniaxial tension and micron indentation tests. Meanwhile, the material composition and metal element contents were determined by Raman spectroscopy and elemental analysis respectively, and the microstructures of the horns were measured by scanning electron microscopy (SEM). Results show that the mechanical properties of horns have negative correlation with water contents and depend on sampling position and orientation. The spatial variations of the mechanical properties in horns are attributed to the different keratinization degrees in the proximal, middle and distal parts. And the mechanical properties of horns in the longitudinal direction are better than those in transverse. Among the three kinds of horns, the mechanical properties of buffalo horn are the best, followed by cattle horn, and those in sheep horn are the worst. This is due to the differences in material composition, metal element, and the microstructures of the horns. But the mechanical properties of buffalo horns are not dependent on the source of the buffalo. Therefore, regular engineered buffalo keratinous materials with standard mechanical properties can be obtained from different buffalo horns by using proper preparation methods. © 2013.

  8. Standard Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes two procedures for the measurement of reaction rates by determining the amount of the fission product 140Ba produced by the non-threshold reactions 235U(n,f), 241Am(n,f), and 239Pu(n,f), and by the threshold reactions 238U(n,f), 237Np(n,f), and 232Th(n,f). 1.2 These reactions produce many fission products, among which is 140Ba, having a half-life of 12.752 days. 140Ba emits gamma rays of several energies; however, these are not easily detected in the presence of other fission products. Competing activity from other fission products requires that a chemical separation be employed or that the 140Ba activity be determined indirectly by counting its daughter product 140La. This test method describes both procedure (a), the nondestructive determination of 140Ba by the direct counting of 140La several days after irradiation, and procedure (b), the chemical separation of 140Ba and the subsequent counting of 140Ba or its daughter 140La. 1.3 With suitable techniques, fission neutron fl...

  9. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    Energy Technology Data Exchange (ETDEWEB)

    Zaja, Ivan [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bai, Xiaowen, E-mail: xibai@mcw.edu [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bosnjak, Zeljko J. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  10. Pre-scission configuration of the tri-nuclear system at spontaneous ternary fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Nasirov, A.K. [Joint Institute for Nuclear Research, BLTP, Dubna (Russian Federation); Institute of Nuclear Physics, Ulugbek, Tashkent (Uzbekistan); Tashkhodjaev, R.B. [Institute of Nuclear Physics, Ulugbek, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Oertzen, W. von [Helmholtz-Zentrum Berlin, Berlin (Germany); Freie Universitaet, Fachbereich Physik, Berlin (Germany)

    2016-05-15

    The potential energy surface for the pre-scission configurations of tri-nuclear systems formed in the spontaneous ternary fission of {sup 252}Cf is calculated. The fission channel {sup 70}Ni+{sup 50}Ca+{sup 132}Sn is chosen as one of the more probable channels of true ternary fission of {sup 252}Cf. A study of the collinear arrangement of the reaction products for true ternary fission is the aim of this work. The results are presented as a function of the relative distance R{sub 12} between the centres of mass of {sup 70}Ni and {sup 132}Sn and the distance from the centre of mass of {sup 50}Ca, which is perpendicular to R{sub 12}. The results show that only for a particular range of the R{sub 12} values the collinear tripartion of the fissioning nucleus occurs. (orig.)

  11. TSAR modeling of a TEM horn and surrounding structure

    Science.gov (United States)

    Ng, W. C.; Pennock, S. T.

    1993-11-01

    Modeling of a TEM horn was performed with the TSAR FDTD electromagnetics code. The modeling was done in stages, beginning with the simplest case, the bare antenna itself. Complexity was added in the form of a dielectric lens, an enclosing cylinder, a layer of absorber inside the cylinder, resistive terminations between the horn and cylinder, and a flat plate over all, electrically separate from the cylinder. The final configuration included all of the above, plus a ring of ferrite inside the cylinder, just ahead of the horn. Predictions of the far-field were made at roughly ten degree increments, more closely spaced near boresight, in both vertical and horizontal planes, through the antenna's centerline. Time histories at those points were evaluated, and from the time histories power densities were calculated. Both time histories and power densities will be presented for the configurations modeled.

  12. Assembly techniques used in construction of neutrino horns at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Sims, W.P.; Carroll, A.; Leonhardt, W.; Monaghan, R.; Pearson, C.; Pendzick, A.; Ryan, G.; Sandberg, J.; Smith, G.; Stillman, P.

    1987-01-01

    This paper will describe the techniques used in the assembly of the neutrino focusing horns which were installed in the fast extracted beam at the Alternating Gradient Synchrotron. The horns are coaxial magnetic lenses that are pulsed to a maximum of 14 kV and 300 kA. The materials and techniques used are further complicated by the fact that the horn must survive in a high radiation environment. We will describe both the techniques and materials that were used in making the high current electrical connections. This will include the silver plating of aluminum, methods for handling thermal expansion and large magnetic forces, and the fabrication of rigid coaxial conductors. The techniques described in this paper can be used in the assembly of any pulsed high current device.

  13. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  14. Investigation of the fission yields of the fast neutron-induced fission of {sup 233}U; Mesure de la distribution en masse et en charge des produits de la fission rapide de l'{sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    1999-09-01

    As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)

  15. Role of effective distance in the fission mechanism study by the double-energy measurement for uranium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto [Osaka Univ., Suita (Japan)] [and others

    1997-09-01

    Fission product kinetic energies were measured by the double-energy method for thermal-neutron fission of {sup 235,233}U and proton-induced fission of {sup 238}U at the 15.8-MeV excitation. From the obtained energy-mass correlation data, the kinetic-energy distribution was constructed from each mass bin to evaluate the first moment of the kinetic energy for a given fragment mass. The resulting kinetic energy was then converted to the effective distance between the charge centers at the moment of scission. The effective distances deduced for the proton-induced fission was concluded to be classified into two constant values, one for asymmetric and the other for symmetric mode, irrespective of the mass though an additional component was further extracted in the asymmetric mass region. This indicates that the fission takes place via two well-defined saddles, followed by the random neck rupture. On the contrary, the effective distances obtained for thermal-neutron induced fission turned out to lie along the contour line at the same level as the equilibrium deformation in the two-dimensional potential map. This strongly suggests that it is essentially a barrier-penetrating type of fission rather than the over-barrier fission. (author). 73 refs.

  16. Mechanical properties of the bovine claw horn during lactation.

    Science.gov (United States)

    Winkler, B; Margerison, J K

    2012-04-01

    Claw horn disorders are one of the main causes of lameness in dairy cows globally. This study aimed to develop material testing techniques to assess changes in the mechanical properties of bovine claw horn (BCH) and to compare these mechanical properties with existing methods of assessing claw horn disorders during lactation. Lameness was also measured through locomotion scoring to assess the clinical significance of changes observed in the scoring for lesions. Experiment 1 used 8 claws collected from four 12 to 18 mo old beef heifers, to develop BCH sample storage methods and techniques to test the mechanical properties of BCH (puncture resistance and elastic modulus). The increase in the moisture content of BCH had a significant negative exponential effect on the elastic modulus of the sole and white line claw horn and a linear reduction in the puncture resistance of BCH. Placing BCH samples in sealed plastic bags and storing them either at 2°C or by freezing samples at -22°C did not alter the dry matter content and, consequently, the mechanical properties of the claw horn tissue. In experiment 2, BCH was collected from 36 lactating dairy cows and mechanical properties were tested using puncture resistance. Puncture resistance of the sole area of the claw horn decreased significantly when hemorrhages in the tested area increased. The puncture resistance of the sole and white line areas decreased at d 160 postpartum when the cows exhibited higher lesion scores and was lower in hind claws that had higher lesion scores when compared with the fore claws. The highest puncture resistance was found at 270 d postpartum, when the animals were at pasture. Puncture resistance was found to be an effective technique for assessing the effect of period of lactation and increasing hemorrhage levels on the mechanical properties and structural strength of bovine claw horn. It was found to be a good method of comparing changes and differences in mechanical properties and

  17. Preliminary AD-Horn Thermomechanical and Electrodynamic Simulations

    CERN Document Server

    AUTHOR|(CDS)2095747; Horvath, David; Calviani, Marco

    2016-01-01

    As part of the Antiproton Decelerator (AD) target area consolidation activities planned for LS2, it has been necessary to perform a comprehensive study of the thermo-structural behaviour of the AD magnetic horn during operation, in order to detail specific requirements for the upgrade projects and testing procedures. The present work illustrates the preliminary results of the finite element analysis carried out to evaluate the thermal and structural behaviour of the device, as well as the methodology used to model and solve the thermomechanical and electrodynamic simulations performed in the AD magnetic horn.

  18. Fission cross section measurements for minor actinides

    Energy Technology Data Exchange (ETDEWEB)

    Fursov, B. [IPPE, Obninsk (Russian Federation)

    1997-03-01

    The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)

  19. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  20. An internationally standardized species identification test for use on suspected seized rhinoceros horn in the illegal wildlife trade.

    Science.gov (United States)

    Ewart, Kyle M; Frankham, Greta J; McEwing, Ross; Webster, Lucy M I; Ciavaglia, Sherryn A; Linacre, Adrian M T; The, Dang Tat; Ovouthan, Kanitia; Johnson, Rebecca N

    2018-01-01

    Rhinoceros (rhino) numbers have dwindled substantially over the past century. As a result, three of the five species are now considered to be critically endangered, one species is vulnerable and one species is near-threatened. Poaching has increased dramatically over the past decade due to a growing demand for rhino horn products, primarily in Asia. Improved wildlife forensic techniques, such as validated tests for species identification of seized horns, are critical to aid current enforcement and prosecution efforts and provide a deterrent to future rhino horn trafficking. Here, we present an internationally standardized species identification test based on a 230 base pair cytochrome-b region. This test improves on previous nested PCR protocols and can be used for the discrimination of samples with The assay was designed to amplify water buffalo samples, a common 'rhino horn' substitute, but to exclude human DNA, a common contaminant. Phylogenetic analyses using this partial cytochrome-b region resolved the five extant rhino species. Testing successfully returned a sequence and correct identification for all of the known rhino horn samples and vouchered rhino samples from museum and zoo collections, and provided species level identification for 47 out of 52 unknown samples from seizures. Validation and standardization was carried out across five different laboratories, in four different countries, demonstrating it to be an effective and reproducible test, robust to inter laboratory variation in equipment and consumables (such as PCR reagents). This is one of the first species identification tests to be internationally standardized to produce data for evidential proceedings and the first published validated test for rhinos, one of the flagship species groups of the illegal wildlife trade and for which forensic tools are urgently required. This study serves as a model for how species identification tests should be standardized and disseminated for wildlife forensic

  1. A new fission chamber dedicated to Prompt Fission Neutron Spectra measurements

    Energy Technology Data Exchange (ETDEWEB)

    Taieb, J.; Laurent, B., E-mail: benoit.laurent@cea.fr; Bélier, G.; Sardet, A.; Varignon, C.

    2016-10-11

    New fission chambers dedicated to Prompt Fission Neutron Spectra measurements with the time-of-flight technique have been developed. The actinide mass embedded in the chamber was maximized, while the alpha-fission discrimination and the time resolution were optimized. Moreover, to reduce the neutron background and spectra distortions, neutron scattering with the materials were minimized by the choice of material and structure. These chambers were then tested and validated during tests and in-beam experiments.

  2. Modelling of fission gas swelling in the high burnup UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Lee, Chan Bock; Bang, Je Gun; Jung, Yeon Ho

    1999-06-01

    Discharge burnup of the fuel in LWR has been increased to improve the fuel economy, and currently the high burnup fuel of over 70 MWd/kg U-rod avg. is being developed by the fuel vendors worldwide. At high burnup, thermal / mechanical properties of the fuel is known to change and new phenomenon could arise. This report describes the model development on fission gas swelling in high burnup UO{sub 2} fuel. For the low burnup fuel, swelling only by the solid fission products has been considered in the fuel performance analysis. However, at high burnup fuel, swelling by fission gas bubbles can not be neglected anymore. Therefore, fission gas swelling model which can predictbubble swelling of the high burnup UO{sub 2} fuel during the steady-state and the transient conditions in LWR was developed. Based on the bubble growth model, the empirical fission gas swelling model was developed as function of burnup, time and temperature. The model showed that fuel bubble swelling would be proportional to the burnup by the power of 1.157 and to the time by the power of 0.157. Comparison of the model prediction with the measured fission gas swelling data under the various burnup and temperature conditions showed that the model would predict the measured data reasonably well. (author). 20 refs., 8 tabs., 17 figs.

  3. Analysis of the effect of UO{sub 2} high burnup microstructure on fission gas release

    Energy Technology Data Exchange (ETDEWEB)

    Jernkvist, Lars Olof; Massih, Ali [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2002-10-01

    This report deals with high-burnup phenomena with relevance to fission gas release from UO{sub 2} nuclear fuel. In particular, we study how the fission gas release is affected by local buildup of fissile plutonium isotopes and fission products at the fuel pellet periphery, with subsequent formation of a characteristic high-burnup rim zone micro-structure. An important aspect of these high-burnup effects is the degradation of fuel thermal conductivity, for which prevalent models are analysed and compared with respect to their theoretical bases and supporting experimental data. Moreover, the Halden IFA-429/519.9 high-burnup experiment is analysed by use of the FRAPCON3 computer code, into which modified and extended models for fission gas release are introduced. These models account for the change in Xe/Kr-ratio of produced and released fission gas with respect to time and space. In addition, several alternative correlations for fuel thermal conductivity are implemented, and their impact on calculated fission gas release is studied. The calculated fission gas release fraction in IFA-429/519.9 strongly depends on what correlation is used for the fuel thermal conductivity, since thermal release dominates over athermal release in this particular experiment. The conducted calculations show that athermal release processes account for less than 10% of the total gas release. However, athermal release from the fuel pellet rim zone is presumably underestimated by our models. This conclusion is corroborated by comparisons between measured and calculated Xe/Kr-ratios of the released fission gas.

  4. Horns Rev offshore wind farm. Environmental impact assessment of sea bottom and marine biology

    Energy Technology Data Exchange (ETDEWEB)

    Leonhard, S.B.

    2000-03-15

    An Environmental Impact Assessment (EIA) of a planned 150 MW offshore wind farm at Horns Rev has been carried out for the marine biology and sea bottom in the area, and includes vegetation and benthic fauna. The study forms part of a total EIA of the planned offshore wind farm. This EIA study has been drawn up in accordance with the guidelines laid down by the Ministry of Environment and Energy in the publication, 'Guidelines for preparation of EIAstudies for offshore wind farms. Horns Rev is situated off Blaevands Huk, which is Denmark's most westerly point. It is a shallow reef with water depths between 2 and 9 metres and is primarily composed of sand, gravel and pebbles. The area designated for the wind farm lies directly south of Horns Rev and is dominated by sand with a median particle size of 0.3 mm. Along the edges, towards areas of greater depth, the particle size increases. There are areas of fine sand in the deepest area, and in isolated pockets within the proposed wind farm site. The sediment is characterised by a very low (<1%) organic matter content. On the basis of the expected impact from the establishment of the wind farm, it is not deemed necessary to carry out special programmes during the construction phase for monitoring of the environmental-biological conditions. A monitoring and control programme is recommended during the production phase in order to follow the copper concentration in bivalves, or alternatively to initiate recovery or elimination of the copper-laden waste. A control programme is recommended during the production phase in order to follow the establishment and succession of the fouling community on the wind turbine foundations and scour-protecting revetments. (BA)

  5. Target conception for the Munich fission fragment accelerator

    CERN Document Server

    Maier, H J; Gross, M L; Grossmann, R; Kester, O; Thirolf, P

    1999-01-01

    For the new high-flux reactor FRM II, the fission fragment accelerator MAFF is under design. MAFF will supply intense mass-separated radioactive ion beams of very neutron-rich nuclei with energies around the Coulomb barrier. A central part of this accelerator is the ion source with the fission target, which is operated at a neutron flux of 1.5x10 sup 1 sup 4 cm sup - sup 2 s sup - sup 1. The target consists of typically 1 g of sup 2 sup 3 sup 5 U dispersed in a cylindrical graphite matrix, which is encapsulated in a Re container. To enable diffusion and extraction of the fission products, the target has to be maintained at a temperature of up to 2400 deg. C during operation. It has to stand this temperature for at least one reactor cycle of 1250 h. Comprehensive tests are required to study the long-term behaviour of the involved materials at these conditions prior to operation in the reactor. The present paper gives details of the target conception and the projected tests.

  6. Monitoring system for a liquid-cooled nuclear fission reactor

    Science.gov (United States)

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  7. The influence of the horn effect in tyre/road noise

    NARCIS (Netherlands)

    Schutte, J.H.; Wijnant, Ysbrand H.; de Boer, Andries

    2015-01-01

    The horn effect is known as an important amplification mechanism in tyre/road noise. The name is referring to the geometry between tyre and road surface which resembles an exponential horn. The horn effect is a common subject for both experimental and numerical research. Contrary to previous studies

  8. An Engaged Pragmatist: Uncovering and Assessing Ernest Horn's View of Moral Education

    Science.gov (United States)

    Schul, James E.; Hamot, Gregory E.

    2011-01-01

    Ernest Horn was a curriculum professor at The University of Iowa in the early to mid-twentieth century. Predominantly known at the time for his spelling research, Horn also made important contributions to the field of social studies education. This historical inquiry illuminates one of Horn's contributions to social studies education by examining…

  9. Characteristics of spontaneous fission of 250No

    Science.gov (United States)

    Svirikhin, A. I.; Andreev, A. V.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Kuznetsova, A. A.; Malyshev, O. N.; Popeko, A. G.; Popov, Y. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Schneidman, T. M.; Gall, B.; Dorvaux, O.; Brione, P.; Hauschild, K.; Lopez-Martenz, A.; Rezynkina, K.; Mullins, S.; Jones, P.; Mosat, P.

    2017-07-01

    This study describes an experiment on investigating the properties of spontaneous fission of shortlived neutron-deficient nuclei synthesized in the reaction of complete fusion 48Ca + 204Pb = 252No*. The experiment is performed using the SHELS separator and the beam of multicharged ions at U-400 accelerator (LNR, JINR). Two activities undergoing spontaneous fission, which can be related to the ground and isomeric states of 250No nucleus, are registered. The half-lives, total kinetic energies of fission fragments, and neutron multiplicities are measured for the short-lived nuclei. The average number of neutrons per fission for the activity with t 1/2 = 5.1 ± 0.3 μs is = 4.38 ± 0.13 μs, and for nuclei with the half-life t 1/2 = 36 ± 3 μs it is xxxxx.

  10. Is channeling of fission tracks taking place?

    CERN Document Server

    Yada, K

    1999-01-01

    A single crystal of natural zircon which is sliced to have (010) basal plane and thinned by ion thinning is electron microscopically observed after slow neutron irradiation to ascertain whether channeling of the nuclear fission fragments is taking place or not. A fairly large number of the induced fission tracks are recognized at low magnification images where a considerable number of them are parallel to low-index lattice planes such as 100, 001, 101, 301, 103 though their directions changed some time up to several degrees. High resolution images of fission tracks often show a variety of zigzag passing of the tracks along low-index lattice planes in atomistic level. The rate of the tracks which are parallel to these low-index lattice planes is fairly high as about 45%, which strongly suggests that channeling of the fission tracks is taking place.

  11. A new neutron counter for fission research

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, B., E-mail: benoit.laurent@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Granier, T.; Bélier, G.; Chatillon, A.; Martin, J.-F.; Taieb, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Hambsch, F.-J. [EC-JRC Institute for Reference Materials and Measurements (IRMM), Retieseweg, 2440 Geel (Belgium); Tovesson, F.; Laptev, A.B.; Haight, R.C.; Nelson, R.O.; O' Donnell, J.M. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-01

    A new neutron counter for research experiments on nuclear fission has been developed. This instrument is designed for the detection of prompt fission neutrons within relatively high levels of gamma and neutron background. It is composed of a set of {sup 3}He proportional counters arranged within a block of polyethylene which serves as moderator. The detection properties have been studied by means of Monte Carlo simulations and experiments with radioactive sources. These properties are confirmed by an experiment on neutron-induced fission of {sup 238}U at the WNR facility of the Los Alamos Neutron Science Center during which the mean prompt fission neutron multiplicity, or ν{sup ¯} has been measured from 1 to 20 MeV of incident neutron energy.

  12. Mass distribution in 19.1 MeV neutron-induced fission of sup 2 sup 3 sup 5 U

    CERN Document Server

    Bao Jie; Yang Yi; Feng Jing; Li Ze; Cui An Zhi; Sun Hong Qing; Zhang Sheng Dong; Guo Jing Ru

    2002-01-01

    35 chain yields are determined for the fission of sup 2 sup 3 sup 5 U induced by 19.1 MeV neutrons by HPGe gamma-ray spectrometry. Absolute fission rate is monitored with a double-fission chamber. The efficiency of the fission chamber is checked with absolute determination of sup 1 sup 9 sup 8 Au activity from sup 1 sup 9 sup 7 Au (n, gamma) sup 1 sup 9 sup 8 Au reaction for the first time. Fission product activities of irradiated sup 2 sup 3 sup 5 U foils are measured by HPGe gamma-ray spectrometry without chemical separation. Threshold detector method is used to estimate the fission events induced by neutrons of other energies

  13. Neutron-induced fission cross sections of 233U and 243Am in the energy range 0.5 Mev En 20 MeV @ n_TOF

    CERN Document Server

    Belloni, F; Milazzo, P M; Calviani, M; Colonna, N; Mastinu, P; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvár, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Koehler, P; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vazl, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    Neutron-induced fission cross-sections of actinides have been recently measured at the neutron time of flight facility n_TOF at CERN in the frame of a research project involving isotopes relevant for nuclear astrophysics and nuclear technologies. Fission fragments are detected by a gas counter with good discrimination between nuclear fission products and background events. Neutron-induced fission cross-sections of 233U and 243Am were determined relative to 235U. The present paper reports the results obtained at neutron energies between 0.5 and 20 MeV.

  14. Fission of ionized alkali metal clusters

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E.; Vitturi, A. (Trento Univ. (Italy). Dipartimento di Fisica Istituto Nazionale di Fisica Nucleare, Povo (Italy))

    1990-09-01

    We study the symmetric fragmentation of ionized alkali clusters within a liquid-drop type model. The interplay of surface and Coulomb interactions leads to a stability condition against small deformations which depends on the ratio Z{sup 2}/N. For systems which are stable small-amplitude oscillations we consider the possibility of large-amplitude modes eventually leading to fission and give, in terms of the same quantity, an estimate of the potential barrier for this fission channel. (orig.).

  15. Live Cell Imaging in Fission Yeast.

    Science.gov (United States)

    Mulvihill, Daniel P

    2017-10-03

    Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission yeast. © 2017 Cold Spring Harbor Laboratory Press.

  16. In-beam Fission Study at JAEA

    OpenAIRE

    Nishio Katsuhisa

    2013-01-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sec...

  17. Live Cell Imaging in Fission Yeast

    OpenAIRE

    Mulvihill, Daniel P.

    2017-01-01

    Live cell imaging complements the array of biochemical and molecular genetic approaches to provide a comprehensive insight into functional dependencies and molecular interactions in fission yeast. Fluorescent proteins and vital dyes reveal dynamic changes in the spatial distribution of organelles and the proteome and how each alters in response to changes in environmental and genetic composition. This introduction discusses key issues and basic image analysis for live cell imaging of fission ...

  18. 163 COUNTER-TERRORISM IN THE GREATER HORN OF AFRICA ...

    African Journals Online (AJOL)

    Administrator

    2010-07-11

    Jul 11, 2010 ... Al-Shabaab, a fundamentalist group in Somalia immediately claimed responsibility. These events sparked widespread debate within scholarly circles as far as the counter-terrorism agenda in the Greater Horn of Africa is concerned. In recent years, terrorism has grown to become a vice of global magnitude.

  19. penetrating orbito-cranial and ocular cow- horn injuries

    African Journals Online (AJOL)

    Cow horn eye injuries are not common but are devastating causes of uniocular blindness amongst young active population. Early and appropriate intervention can save the life of the patient depending on the severity of the injury. This uncommon cause of unilateral visual loss can be prevented if slaughtering of cows are ...

  20. Traumatic rupture of the globe caused by cow horns.

    Science.gov (United States)

    Helbig, H; Iseli, H P

    2002-01-01

    We investigated the epidemiology, clinical findings and functional outcome of open-globe injuries caused by cow horns over a 50-year period in eastern Switzerland. We retrospectively evaluated the files of cases with ruptures of the globe caused by cow horns between 1950 and 1999. We found 59 cases with ruptures of the globe by cow horns, accounting for 5% of all open-globe injuries. The incidence of these accidents did not change during the observation period. Twenty-two eyes (37%) were enucleated. Only 7 eyes (12%) retained a vision of > or = 0.1. Between 1950 and 1989 only 2/43 eyes (5%) reached a vision of > or = 0.1. In the 1990's, with the introduction of vitreous surgery 5/16 eyes (31%) had a vision of > or = 0.1. Four patients (7%) had blinding eye disease in the partner eye, and three (5%) had a second open-globe trauma. In rural regions, with cattle breeding, open-globe injuries by cow horns are relatively common and the frequency is still the same as 50 years ago. The visual prognosis of these eyes is still guarded, but functional results have improved with the introduction of vitreous surgery. Patients who have had a rupture of the globe appear to have an increased risk for partner eye trauma. Therefore, all efforts are justified to preserve even limited vision in severely injured eyes.