WorldWideScience

Sample records for hormone-sensitive lipase hsl

  1. Hormone-sensitive lipase (HSL) expression and regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Langfort, J; Ploug, T; Ihlemann, J

    1998-01-01

    Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle...... epinephrine increased neutral lipase activity by beta-adrenergic mechanisms involving cyclic AMP-dependent protein kinase (PKA). The increase was paralleled by an increase in glycogen phosphorylase activity and could be abolished by antiserum against HSL. Electrical stimulation caused a transient increase...... in activity of both neutral lipase and glycogen phosphorylase. The increase in lipase activity during contractions was not influenced by sympathectomy or propranolol. Training diminished the epinephrine induced lipase activation in muscle but enhanced the activation as well as the overall concentration...

  2. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  3. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms

    DEFF Research Database (Denmark)

    Krintel, Christian; Klint, Cecilia; Lindvall, Håkan

    2010-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa) expressed in a tissue-dependen...

  4. Essential role of hormone-sensitive lipase (HSL) in the maintenance of lipid storage in Mycobacterium leprae-infected macrophages.

    Science.gov (United States)

    Tanigawa, Kazunari; Degang, Yang; Kawashima, Akira; Akama, Takeshi; Yoshihara, Aya; Ishido, Yuko; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-05-01

    Mycobacterium leprae (M. leprae), the causative agent of leprosy, parasitizes within the foamy or enlarged phagosome of macrophages where rich lipids accumulate. Although the mechanisms for lipid accumulation in the phagosome have been clarified, it is still unclear how such large amounts of lipids escape degradation. To further explore underlying mechanisms involved in lipid catabolism in M. leprae-infected host cells, we examined the expression of hormone-sensitive lipase (HSL), a key enzyme in fatty acid mobilization and lipolysis, in human macrophage THP-1 cells. We found that infection by live M. leprae significantly suppressed HSL expression levels. This suppression was not observed with dead M. leprae or latex beads. Macrophage activation by peptidoglycan (PGN), the ligand for toll-like receptor 2 (TLR2), increased HSL expression; however, live M. leprae suppressed this increase. HSL expression was abolished in the slit-skin smear specimens from patients with lepromatous and borderline leprosy. In addition, the recovery of HSL expression was observed in patients who experienced a lepra reaction, which is a cell-mediated, delayed-type hypersensitivity immune response, or in patients who were successfully treated with multi-drug therapy. These results suggest that M. leprae suppresses lipid degradation through inhibition of HSL expression, and that the monitoring of HSL mRNA levels in slit-skin smear specimens may be a useful indicator of patient prognosis.

  5. Hormone-sensitive lipase as mediator of lipolysis in contracting skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2005-01-01

    The authors propose that the enzyme hormone-sensitive lipase (HSL), which is the rate-limiting enzyme for hydrolysis of triacylglycerol in adipocytes, also regulates the intramyocellular triacylglycerol mobilization and is controlled by mechanisms similar to those regulating glycogen phosphorylas...

  6. Biochemical and Structural Analysis of Hormone-sensitive Lipase Homolog EstE7: Insight into the Stabilized Dimerization of HSL-Homolog Proteins

    International Nuclear Information System (INIS)

    Nam, Ki Hyun; Park, Sung Ha; Lee, Won Ho; Hwang, Kwang Yeon

    2010-01-01

    Hormone sensitive lipase (HSL) plays a major role in energy homeostasis and lipid metabolism. Several crystal structures of HSL-homolog proteins have been identified, which has led to a better understanding of its molecular function. HSLhomolog proteins exit as both monomer and dimer, but the biochemical and structural basis for such oligomeric states has not been successfully elucidated. Therefore, we determined the crystal structure of HSL-homolog protein EstE7 from a metagenome library at 2.2 A resolution and characterized the oligomeric states of EstE7 both structurally and biochemically. EstE7 protein prefers the dimeric state in solution, which is supported by its higher enzymatic activity in the dimeric state. In the crystal form, EstE7 protein shows two-types of dimeric interface. Specifically, dimerization via the external β8-strand occurred through tight association between two pseudosymmetric folds via salt bridges, hydrogen bonds and van der Waals interactions. This dimer formation was similar to that of other HSL-homolog protein structures such as AFEST, BEFA, and EstE1. We anticipate that our results will provide insight into the oligomeric state of HSLhomolog proteins

  7. The effect of exercise training on hormone-sensitive lipase in rat intra-abdominal adipose tissue and muscle

    DEFF Research Database (Denmark)

    Enevoldsen, L H; Stallknecht, B; Langfort, J

    2001-01-01

    1. Adrenaline-stimulated lipolysis in adipose tissue may increase with training. The rate-limiting step in adipose tissue lipolysis is catalysed by the enzyme hormone-sensitive lipase (HSL). We studied the effect of exercise training on the activity of the total and the activated form of HSL...

  8. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Biba, Taus O; Galbo, Henrik

    2006-01-01

    During exercise, triacylglycerol (TG) is recruited in skeletal muscles. We hypothesized that both muscle hormone-sensitive lipase (HSL) activity and TG recruitment would be higher in trained than in untrained subjects in response to prolonged exercise. Healthy male subjects (26 +/- 1 years, body ...

  9. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle.

    Science.gov (United States)

    Alsted, Thomas J; Ploug, Thorkil; Prats, Clara; Serup, Annette K; Høeg, Louise; Schjerling, Peter; Holm, Cecilia; Zimmermann, Robert; Fledelius, Christian; Galbo, Henrik; Kiens, Bente

    2013-10-15

    In skeletal muscle hormone-sensitive lipase (HSL) has long been accepted to be the principal enzyme responsible for lipolysis of intramyocellular triacylglycerol (IMTG) during contractions. However, this notion is based on in vitro lipase activity data, which may not reflect the in vivo lipolytic activity. We investigated lipolysis of IMTG in soleus muscles electrically stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL knockout (HSL-KO) mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibres. To circumvent the problem with this contamination we analysed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (P contractions IMTG staining decreased significantly in both HSL-KO and WT muscles (P skeletal muscle, other TG lipases accordingly being of negligible importance for lipolysis of IMTG. The present study is the first to demonstrate that contraction-induced lipolysis of IMTG occurs in the absence of HSL activity in rat and mouse skeletal muscle. Furthermore, the results suggest that ATGL is activated and plays a major role in lipolysis of IMTG during muscle contractions.

  10. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lepob/ob mice

    International Nuclear Information System (INIS)

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro

    2009-01-01

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep ob/ob /HSL -/- ) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lep ob/ob /HSL -/- developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep ob/ob /HSL +/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep +/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep ob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep ob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  11. Contractions induce phosphorylation of the AMPK site Ser565 in hormone-sensitive lipase in muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    Intramyocellular triglyceride is an important energy store which is related to insulin resistance. Mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by epinephrine via PKA...

  12. Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise

    DEFF Research Database (Denmark)

    Roepstorff, Carsten; Donsmark, Morten; Thiele, Maja

    2006-01-01

    significantly (r = 0.72, P = 0.001). Muscle HSL mRNA (80%, P = 0.11) and protein content (50%, P differ between sexes. Accordingly, HSL specific activity (HSL activity per HSL protein content......Women have been shown to use more intramuscular triacylglycerol (IMTG) during exercise than men. To investigate whether this could be due to sex-specific regulation of hormone-sensitive lipase (HSL) and to use sex comparison as a model to gain further insight into HSL regulation, nine women...... than in women during the end of the exercise bout (P sex specific, total muscle HSL activity measured in vitro was similar between sexes. The higher basal IMTG content in women compared...

  13. Fasting and post-prandial adipose tissue lipoprotein lipase and hormone-sensitive lipase in obesity and type 2 diabetes.

    Science.gov (United States)

    Costabile, G; Annuzzi, G; Di Marino, L; De Natale, C; Giacco, R; Bozzetto, L; Cipriano, P; Santangelo, C; Masella, R; Rivellese, A A

    2011-05-01

    Fasting and post-prandial abnormalities of adipose tissue (AT) lipoprotein lipase (LPL) and hormone- sensitive lipase (HSL) activities may have pathophysiological relevance in insulin-resistant conditions. The aim of this study was to evaluate activity and gene expression of AT LPL and HSL at fasting and 6 h after meal in two insulin-resistant groups - obese with Type 2 diabetes and obese without diabetes - and in non-diabetic normal-weight controls. Nine obese subjects with diabetes, 10 with obesity alone, and 9 controls underwent measurements of plasma levels of glucose, insulin, and triglycerides before and after a standard fat-rich meal. Fasting and post-prandial (6 h) LPL and HSL activities and gene expressions were determined in abdominal subcutaneous AT needle biopsies. The diabetic obese subjects had significantly lower fasting and post-prandial AT heparin-releasable LPL activity than only obese and control subjects (pobese subjects compared to controls in both fasting condition and 6 h after the meal (pfasting and 6 h after meal measurements in either LPL or HSL activities and gene expressions. Lipolytic activities in AT are differently altered in obesity and Type 2 diabetes being HSL alteration associated with both insulin-resistant conditions and LPL with diabetes per se. These abnormalities are similarly observed in the fasting condition and after a fat-rich meal.

  14. Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates

    DEFF Research Database (Denmark)

    Krintel, Christian; Osmark, Peter; Larsen, Martin Røssel

    2008-01-01

    Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. Its activity is regulated by reversible protein phosphorylation. In rat HSL Ser563, Ser659 and Ser660 have been shown to be phosphorylated by protein kinase A (PKA) in vitro as well...

  15. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  16. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area

    DEFF Research Database (Denmark)

    Krintel, Christian; Mörgelin, Matthias; Logan, Derek T

    2009-01-01

    Hormone-sensitive lipase (EC 3.1.1.79; HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. HSL activity is controlled by phosphorylation of at least four serines. In rat HSL, Ser563, Ser659 and Ser660 are phosphorylated by protein kinase A (PKA) in vitro as well......, the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) was found to inhibit the hydrolysis of triolein by purified recombinant rat adipocyte HSL, with a decrease in the effect of bis-ANS upon PKA phosphorylation of HSL. The interaction of HSL with bis-ANS was found to have...... a Kd of 1 microM in binding assays. Upon PKA phosphorylation, the interactions of HSL with both bis-ANS and the alternative probe SYPRO Orange were increased. By negative stain transmission electron microscopy, phosphorylated HSL was found to have a closer interaction with phospholipid vesicles than...

  17. Regulation and role of hormone-sensitive lipase in rat skeletal muscle

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2004-01-01

    the effects of contractions and adrenaline on HSL activity are partially additive. In line with the view that the two stimuli act by different mechanisms, training increases contraction-mediated HSL activation but diminishes adrenaline-mediated HSL activation in muscle. In conclusion, HSL is present...... fibre types, being higher in oxidative fibres than in glycolytic fibres. When analysed under conditions optimal for HSL, neutral lipase activity in muscle can be stimulated by adrenaline as well as by contractions. These increases are abolished by the presence of anti-HSL antibody during analysis....... Moreover, immunoprecipitation with affinity-purified anti-HSL antibody causes similar reductions in muscle HSL protein concentration and in measured neutral lipase responses to contractions. The immunoreactive HSL in muscle is stimulated by adrenaline via beta-adrenergic activation of c...

  18. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  19. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  20. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact

    DEFF Research Database (Denmark)

    Mulder, Hindrik; Sörhede-Winzell, Maria; Contreras, Juan Antonio

    2003-01-01

    of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin......-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance....... Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia....

  1. Hormone-sensitive lipase (HSL) expression and regulation by epinephrine and exercise in skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, Thorkil; Stallknecht, Bente Merete; Donsmark, Morten

    2002-01-01

    Abstract Triacylglycerol (TG) is stored in lipid droplets in the cytoplasm of skeletal muscle. The energy content of the TG depot is higher than the energy content of the muscle glycogen depot. The enzymatic regulation of intracellular TG hydrolysis in skeletal muscle has not been elucidated...... in the presence of an anti-HSL antibody. The effect of epinephrine could be blocked by propanolol and mimicked by incubation of a crude supernatant from control muscle with the catalytic subunit of cAMP-dependent protein kinase. The effect of contractions was transient as TO activity declined to basal levels...... and contractions were partially additive. In rats training increased epinephrine-stimulated TO activity and HSL concentration in adipose tissue but not in muscle. In humans, at the end of 60 min of exercise muscle, TO activity was increased in healthy, but not in adrenalectomized, subjects. In conclusion, HSL...

  2. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase

    DEFF Research Database (Denmark)

    Winzell, Maria Sörhede; Svensson, Håkan; Enerbäck, Sven

    2003-01-01

    Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic...... mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed glucose intolerance and severely blunted glucose-stimulated insulin secretion when challenged with a high-fat diet. As expected, both lipase activity and forskolin-stimulated lipolysis was increased...

  3. Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects

    DEFF Research Database (Denmark)

    Jocken, Johan We; Roepstorff, Carsten; Goossens, Gijs H.

    2008-01-01

    from the vastus lateralis muscle before and during ISO to investigate hormone-sensitive lipase (HSL) protein expression and serine phosphorylation. Results: Baseline total glycerol release across the forearm was significantly blunted in obese compared with lean subjects (P=0.045). This was accompanied......Objective: Increased intramuscular triacylglycerol (IMTG) storage is a characteristic of the obese insulin resistant state. We aimed to investigate whether a blunted fasting or beta-adrenergically mediated lipolysis contributes to this increased IMTG storage in obesity. Research design and Methods......: Forearm skeletal muscle (SM) lipolysis was investigated in thirteen lean and ten obese men using [(2)H(5)]-glycerol combined with the measurement of arterio-venous differences before and during beta-adrenergic stimulation using the non-selective beta-agonist isoprenaline (ISO). Muscle biopsies were taken...

  4. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue.

    Science.gov (United States)

    Anderson, L A; McTernan, P G; Harte, A L; Barnett, A H; Kumar, S

    2002-05-01

    Clinical observations suggest a role for testosterone in the accumulation of central adiposity and with an associated increased risk of disease. To date, no human study has analysed the role of dihydrotestosterone (DHT) on adipose tissue mass regulation in vitro. This study investigated the role of DHT and androgen receptors (AR) in the regulation of lipolysis and lipogenesis by examining the key enzymes hormone sensitive lipase (HSL) and lipoprotein lipase (LPL) respectively. Isolated abdominal subcutaneous adipocytes (Scad) (n = 15) were treated with either DHT (10(-7)-10(-9) m), an antiandrogen, flutamide (FLT: 10(-7)-10(-9) m) or a combination of DHT (10(-7)-10(-9) m) with FLT (10(-8) m). Relative protein expression of HSL, LPL and AR was determined. In Scad, DHT inhibited HSL expression maximally at 10(-9) m (0.7 +/- 0.4**; p DHT10(-9) m (2.22 +/- 0.48*; p DHT + FLT compared with DHT alone. Androgen receptor expression studies showed an inverse correlation with DHT, whereas DHT + FLT reduced AR expression. These studies indicate that DHT may alter HSL and LPL expression, whereas only LPL expression appears mediated by AR. These findings suggest a physiological role for DHT in the control of adipose tissue mass in women, and indicate that androgens may also play an important role in regulating lipid metabolism.

  5. New member of the hormone-sensitive lipase family from the permafrost microbial community.

    Science.gov (United States)

    Petrovskaya, Lada E; Novototskaya-Vlasova, Ksenia A; Gapizov, Sultan Sh; Spirina, Elena V; Durdenko, Ekaterina V; Rivkina, Elizaveta M

    2017-07-04

    Siberian permafrost is a unique environment inhabited with diverse groups of microorganisms. Among them, there are numerous producers of biotechnologically relevant enzymes including lipases and esterases. Recently, we have constructed a metagenomic library from a permafrost sample and identified in it several genes coding for potential lipolytic enzymes. In the current work, properties of the recombinant esterases obtained from this library are compared with the previously characterized lipase from Psychrobacter cryohalolentis and other representatives of the hormone-sensitive lipase family.

  6. Partial disruption of lipolysis increases postexercise insulin sensitivity in skeletal muscle despite accumulation of DAG

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck; Alsted, Thomas Junker; Jordy, Andreas Børsting

    2016-01-01

    reactivity in vitro, we investigated if the described function of DAGs as mediators of lipid-induced insulin resistance was depending on the different DAG-isomers. We measured insulin stimulated glucose uptake in hormone sensitive lipase (HSL) knock out (KO) mice after treadmill exercise to stimulate...

  7. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases.

    Science.gov (United States)

    Eichmann, Thomas O; Kumari, Manju; Haas, Joel T; Farese, Robert V; Zimmermann, Robert; Lass, Achim; Zechner, Rudolf

    2012-11-30

    Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization.

  8. Michelangelo, the Sistine Chapel and the “secret” of cancer cachexia

    African Journals Online (AJOL)

    irrespective of the relative contribution of anorexia and metabolic changes. Cancer anorexia ... component of the homoeostatic circuit that regulates energy balance by mediating .... hormone-sensitive lipase (HSL), a rate-limiting enzyme of the.

  9. Purification, crystallization and preliminary crystallographic analysis of Est25: a ketoprofen-specific hormone-sensitive lipase

    International Nuclear Information System (INIS)

    Kim, SeungBum; Joo, Sangbum; Yoon, Hyun C.; Ryu, Yeonwoo; Kim, Kyeong Kyu; Kim, T. Doohun

    2007-01-01

    Est25, a ketoprofen-specific hormone-sensitive lipase from a metagenomic library, was crystallized and diffraction data were collected to 1.49 Å resolution. Ketoprofen, a nonsteroidal anti-inflammatory drug, inhibits the synthesis of prostaglandin. A novel hydrolase (Est25) with high ketoprofen specificity has previously been identified using a metagenomic library from environmental samples. Recombinant Est25 protein with a histidine tag at the N-terminus was expressed in Escherichia coli and purified in a homogenous form. Est25 was crystallized from 2.4 M sodium malonate pH 7.0 and X-ray diffraction data were collected to 1.49 Å using synchrotron radiation. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 197.8, b = 95.2, c = 99.4 Å, β = 97.1°

  10. Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle

    DEFF Research Database (Denmark)

    Alsted, Thomas Junker; Ploug, Thorkil; Prats Gavalda, Clara

    2013-01-01

    activity. We investigated lipolysis of IMTG in soleus muscles electrically-stimulated to contract ex vivo during acute pharmacological inhibition of HSL in rat muscles and in muscles from HSL-KO mice. Measurements of IMTG are complicated by the presence of adipocytes located between the muscle fibers....... To circumvent the problem with this contamination we analyzed intramyocellular lipid droplet content histochemically. At maximal inhibition of HSL in rat muscles, contraction-induced breakdown of IMTG was identical to that seen in control muscles (p...

  11. Primary defects in lipolysis and insulin action in skeletal muscle cells from type 2 diabetic individuals

    DEFF Research Database (Denmark)

    Kase, E. T.; Feng, Y. Z.; Badin, P. M.

    2015-01-01

    A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic...

  12. Growth hormone-mediated breakdown of body fat

    DEFF Research Database (Denmark)

    Johansen, T.; Malmlöf, K.; Richelsen, Bjørn

    2003-01-01

    regimen. Twelve-month-old rats fed first a high-fat diet or a low-fat diet for 14 weeks were injected with saline or growth hormone (4 mg/kg/d) for four days or three weeks in different combinations with either high- or low-fat diets. In adipose tissue, growth hormone generally inhibited lipoprotein...... lipase and also attenuated the inhibiting effect of insulin on hormone-sensitive lipase activity. Growth hormone treatment combined with restricted high-fat feeding reduced the activity of both lipases in adipose tissue and stimulated hormone-sensitive lipase in muscle. Generally, plasma levels of free...... fatty acids, glycerol and cholesterol were reduced by growth hormone, and in combination with restricted high-fat feeding, triglyceride levels improved too. We conclude that growth hormone inhibits lipid storage in adipose tissue by reducing both lipoprotein lipase activity and insulin's inhibitory...

  13. Effects of dietary dihydropyridine on laying performance and lipid ...

    African Journals Online (AJOL)

    Effects of dietary dihydropyridine on laying performance and lipid metabolism of broiler breeder hens. ... A level of 100 mg dihydropyridine/kg had no effect on the hormone-sensitive triglyceride lipase (HSL) activity in the liver or abdominal fat, though higher levels of dietary dihydropyridine (200 mg/kg or 300 mg/kg) ...

  14. Protein phosphorylation in isolated human adipocytes - Adrenergic control of the phosphorylation of hormone-sensitive lipase

    International Nuclear Information System (INIS)

    Smiley, R.M.; Paul, S.; Browning, M.D.; Leibel, R.L.; Hirsch, J.

    1990-01-01

    The effect of adrenergic agents on protein phosphorylation in human adipocytes was examined. Freshly isolated human fat cells were incubated with 32 PO 4 in order to label intracellular ATP, then treated with a variety of adrenergic and other pharmacologic agents. Treatment with the β-adrenergic agonist isoproterenol led to a significant increase in phosphate content of at least five protein bands (M r 52, 53, 63, 67, 84 kDa). The increase in phosphorylation was partially inhibited by the α-2 agonist clonidine. Epinephrine, a combined α and β agonist, was less effective at increasing phosphate content of the proteins than was isoproterenol. Neither insulin nor the α-1 agonist phenylephrine had any discernible effect on the pattern of protein phosphorylation. The 84 kDa phosphorylated peptide band appears to contain hormone-sensitive lipase, a key enzyme in the lipolytic pathway which is activated by phosphorylation. These results are somewhat different than previously reported results for rat adipocytes, and represent the first report of overall pattern and adrenergic modulation of protein phosphorylation in human adipocytes

  15. Leu452His mutation in lipoprotein lipase gene transfer associated with hypertriglyceridemia in mice in vivo.

    Directory of Open Access Journals (Sweden)

    Kaiyue Sun

    Full Text Available Mutated mouse lipoprotein lipase (LPL containing a leucine (L to histidine (H substitution at position 452 was transferred into mouse liver by hydrodynamics-based gene delivery (HD. Mutated-LPL (MLPL gene transfer significantly increased the concentrations of plasma MLPL and triglyceride (TG but significantly decreased the activity of plasma LPL. Moreover, the gene transfer caused adiposis hepatica and significantly increased TG content in mouse liver. To understand the effects of MLPL gene transfer on energy metabolism, we investigated the expression of key functional genes related to energy metabolism in the liver, epididymal fat, and leg muscles. The mRNA contents of hormone-sensitive lipase (HSL, adipose triglyceride lipase (ATGL, fatty acid-binding protein (FABP, and uncoupling protein (UCP were found to be significantly reduced. Furthermore, we investigated the mechanism by which MLPL gene transfer affected fat deposition in the liver, fat tissue, and muscle. The gene expression and protein levels of forkhead Box O3 (FOXO3, AMP-activated protein kinase (AMPK, and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α were found to be remarkably decreased in the liver, fat and muscle. These results suggest that the Leu452His mutation caused LPL dysfunction and gene transfer of MLPL in vivo produced resistance to the AMPK/PGC-1α signaling pathway in mice.

  16. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast

    DEFF Research Database (Denmark)

    Bak, Ann Mosegaard; Møller, Andreas Buch; Vendelbo, Mikkel Holm

    2016-01-01

    release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together...... with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced...... in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2...

  17. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease

    DEFF Research Database (Denmark)

    Nielsen, Thomas Svava; Jessen, Niels; Jørgensen, Jens Otto Lunde

    2014-01-01

    is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue. This response is crucial in order to provide the organism with a sufficient supply......Lipolysis is the process by which triglycerides are hydrolyzed to free fatty acids (FFA) and glycerol. In adipocytes, this is achieved by the sequential action of Adipose Triglyceride Lipase (ATGL), Hormone Sensitive Lipase (HSL) and Monoglyceride Lipase (MGL). The activity in the lipolytic pathway...... of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. Since the discovery of ATGL in 2004, substantial progress has been...

  18. Adipose triglyceride lipase in human skeletal muscle is upregulated by exercise training

    DEFF Research Database (Denmark)

    Alsted, Thomas J; Schweiger, Martina; Nybo, Lars

    2009-01-01

    altogether, indicating an enhanced basal activity of this lipase. No change was found in the expression of diacylglycerol acyl transferase 1 (DGAT1) after training. Inhibition of HSL with a monospecific, small molecule inhibitor (76-0079) and stimulation of ATGL with CGI-58 revealed that significant ATGL...

  19. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    International Nuclear Information System (INIS)

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko; Mikami, Toshiyuki; Murayama, Katsuhisa; Arai, Satoko; Miyazaki, Toru

    2012-01-01

    Highlights: ► AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. ► AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. ► AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPARγ), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPARγ-agonist or forced expression of FSP27, while it was synergized by a PPARγ-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological situations; one is a supportive response against nutritional deprivation achieved by

  20. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma.

    Science.gov (United States)

    Cha, Yoon Jin; Kim, Hye Min; Koo, Ja Seung

    2017-01-23

    We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) of the breast. A total of 584 breast cancers (108 ILC and 476 IDC) were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL), perilipin A, fatty acid binding protein (FABP)4, carnitine palmitoyltransferase (CPT)-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN). HSL, perilipin A, and FABP4 expression (all p invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC ( p cancers, HSL and FABP4 were more highly expressed in ILC ( p < 0.001). Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity ( p = 0.004) and acyl-CoA oxidase 1 positivity ( p = 0.032) and of shorter overall survival with acyl-CoA oxidase 1 positivity ( p = 0.027). In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  1. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mikami, Toshiyuki; Murayama, Katsuhisa [Genomic Science Laboratories, Dainippon Sumitomo Pharma Co. Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022 (Japan); Arai, Satoko [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Miyazaki, Toru, E-mail: tm@m.u-tokyo.ac.jp [Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. Black-Right-Pointing-Pointer AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. Black-Right-Pointing-Pointer AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPAR{gamma}), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPAR{gamma}-agonist or forced expression of FSP27, while it was synergized by a PPAR{gamma}-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological

  2. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.

    Science.gov (United States)

    Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A

    2017-07-14

    In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.

  3. Lipase inhibition and hormonal status, body composition and gastrointestinal processing of a liquid high-fat mixed meal in moderately obese subjects.

    NARCIS (Netherlands)

    Drent, M.L.; Popp-Snijders, C.; Adèr, H.J.; Jansen, J.B.M.J.; van der Veen, E.A.

    1995-01-01

    DRENT, MADELEINE L, CORRIE POPP‐SNIJDERS, HERMAN J ADER, JAN BMJ JANSEN AND EDUARD A VAN DER VEEN. Lipase inhibition and hormonal status, body composition and gastrointestinal processing of a liquid high‐fat mixed meal in moderately obese subjects. Obes Res. The effect of Orlistat, a lipase

  4. PDHK-2 deficiency is associated with attenuation of lipase-mediated fat consumption for the increased survival of Caenorhabditis elegans dauers.

    Directory of Open Access Journals (Sweden)

    Sunhee Kim

    Full Text Available In Caenorhabditis elegans, slow fat consumption has been suggested to contribute to the extension of the survival rate during nutritionally adverse conditions. Here, we investigated the potential role of pyruvate dehydrogenase kinase (PDHK-2, the C. elegans homolog of mammalian PDK, effects on fat metabolism under nutritional conditions. PDHK-2 was expressed at low levels under well-fed conditions but was highly induced during long-term starvation and in the dauer state. This increase in pdhk-2 expression was regulated by both DAF-16 and NHR-49. Dauer-specific induction of PDHK-2 was abolished upon entry into the post-dauer stage. Interestingly, in the long-term dauer state, stored fat levels were higher in daf-2(e1370;pdhk-2 double mutants than in daf-2(e1370, suggesting a positive relationship between PDHK-2 activity and fat consumption. PDHK-2 deficiency has been shown to lead to greater preservation of residual fats, which would be predicted to contribute to survival during the dauer state. A test of this prediction showed that the survival rates of daf-2(e1370;pdhk-2(tm3075 and daf-2(e1370;pdhk-2(tm3086 double mutants were higher than that of daf-2(e1370, suggesting that loss of either the ATP-binding domain (tm3075 or branched chain keto-acid dehydrogenase kinase domain (tm3086 of PDHK-2 leads to reduced fat consumption and thus favors increased dauer survival. This attenuated fat consumption in the long-term dauer state of C. elegans daf-2 (e1370;pdhk-2 mutants was associated with concomitant down-regulation of the lipases ATGL (adipose triglyceride lipase, HSL (hormone-sensitive lipase, and C07E3.9 (phospholipase. In contrast, PDHK-2 overexpression in wild-type starved worms induced lipase expression and promoted abnormal dauer formation. Thus, we propose that PDHK-2 serves as a molecular bridge, connecting fat metabolism and survival under nutritionally adverse conditions in C. elegans.

  5. Expression of Lipid Metabolism-Related Proteins Differs between Invasive Lobular Carcinoma and Invasive Ductal Carcinoma

    Directory of Open Access Journals (Sweden)

    Yoon Jin Cha

    2017-01-01

    Full Text Available We comparatively investigated the expression and clinical implications of lipid metabolism-related proteins in invasive lobular carcinoma (ILC and invasive ductal carcinoma (IDC of the breast. A total of 584 breast cancers (108 ILC and 476 IDC were subjected to tissue microarray and immunohistochemical analysis for lipid metabolism-related proteins including hormone-sensitive lipase (HSL, perilipin A, fatty acid binding protein (FABP4, carnitine palmitoyltransferase (CPT-1, acyl-CoA oxidase 1, and fatty acid synthetase (FASN. HSL, perilipin A, and FABP4 expression (all p < 0.001 differed significantly: HSL and FABP4 were more frequently present in ILC, whereas perilipin A was more frequently detected in IDC. Among all invasive cancers, HSL and FABP4 were highly expressed in luminal A-type ILC (p < 0.001 and perilipin A in luminal A-type IDC (p = 0.007. Among luminal B-type cancers, HSL and FABP4 were more highly expressed in ILC (p < 0.001. Univariate analysis found associations of shorter disease-free survival with CPT-1 positivity (p = 0.004 and acyl-CoA oxidase 1 positivity (p = 0.032 and of shorter overall survival with acyl-CoA oxidase 1 positivity (p = 0.027. In conclusion, ILC and IDC exhibited different immunohistochemical lipid metabolism-related protein expression profiles. Notably, ILC exhibited high HSL and FABP4 and low perilipin A expression.

  6. Lipolytic actions of secretin in mouse adipocytes[S

    Science.gov (United States)

    Sekar, Revathi; Chow, Billy K. C.

    2014-01-01

    Secretin (Sct), a classical gut hormone, is now known to play pleiotropic functions in the body including osmoregulation, digestion, and feeding control. As Sct has long been implicated to regulate metabolism, in this report, we have investigated a potential lipolytic action of Sct. In our preliminary studies, both Sct levels in circulation and Sct receptor (SctR) transcripts in adipose tissue were upregulated during fasting, suggesting a potential physiological relevance of Sct in regulating lipolysis. Using SctR knockout and Sct knockout mice as controls, we show that Sct is able to stimulate lipolysis in vitro in isolated adipocytes dose- and time-dependently, as well as acute lipolysis in vivo. H-89, a protein kinase A (PKA) inhibitor, was found to attenuate lipolytic effects of 1 μM Sct in vitro, while a significant increase in PKA activity upon Sct injection was observed in the adipose tissue in vivo. Sct was also found to stimulate phosphorylation at 660ser of hormone sensitive lipase (HSL) and to bring about the translocation of HSL from cytosol to the lipid droplet. In summary, our data demonstrate for the first time the in vivo and in vitro lipolytic effects of Sct, and that this function is mediated by PKA and HSL. PMID:24273196

  7. Fatty Acid Signaling: The New Function of Intracellular Lipases

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    2015-02-01

    Full Text Available Until recently, intracellular triacylglycerols (TAG stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed.

  8. Combination of Garcinia cambogia Extract and Pear Pomace Extract Additively Suppresses Adipogenesis and Enhances Lipolysis in 3T3-L1 Cells.

    Science.gov (United States)

    Sharma, Kushal; Kang, Siwon; Gong, Dalseong; Oh, Sung-Hwa; Park, Eun-Young; Oak, Min-Ho; Yi, Eunyoung

    2018-01-01

    Inhibition of adipogenesis has been a therapeutic target for reducing obesity and obesity-related disorders such as diabetes, hypertension, atherosclerosis, and cancer. For decades, anti-adipogenic potential of many herbal extracts has been investigated. One example is Garcinia cambogia extract (GE) containing (-)-hydroxycitric acid as an active ingredient. GE is currently marketed as a weight loss supplement, used alone or with other ingredients. Pear pomace extract (PE), another natural product, has been also shown to have anti-adipogenic activity in a recent report. It was tested if the mixture of PE and GE (MIX) would produce more effective anti-adipogenic activity than PE or GE alone. Differentiation of 3T3-L1 preadipocyte was induced by adding insulin, dexamethasone, and isobutylmethylxanthine and lipid accumulation was measured by Oil Red O staining. Cellular markers for adipogenesis and lipolysis such as CCAAT/enhancer binding protein (C/EBP-α), peroxisome proliferator-activated receptor gamma (PPAR-γ), fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) was measured using immunocytochemistry. MIX, compared to PE or GE alone, showed greater inhibition of lipid accumulation. Furthermore, MIX reduced the expression of adipogenesis-related factors C/EBP-α, PPAR-γ, and FAS more than PE or GE alone did. In contrast, the expression of HSL the enzyme required for lipolysis was further enhanced in MIX-treated adipocytes compared to the PE or GE alone treated groups. Anti-adipogenic effect of PE and GE appears synergistic, and the MIX may be a useful therapeutic combination for the treatment of obesity and obesity-related diseases. PE and GE efficiently inhibited adipocyte differentiation by suppressing the expression of adipogenic transcription factor CEBP-α and PPAR-γ.PE and GE significantly decreased the expression of adipogenic enzyme FAS.PE and GE increased the expression of lipid degrading enzyme HSL.Mixture of PE and GE exhibited additive or

  9. Brain insulin controls adipose tissue lipolysis and lipogenesis

    Science.gov (United States)

    Scherer, Thomas; O’Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J.; Previs, Stephen F.; Buettner, Christoph

    2011-01-01

    SUMMARY White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin sensitizing fatty acid species like palmitoleate. Here we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague Dawley rats increases WAT lipogenic protein expression, and inactivates hormone sensitive lipase (Hsl) and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and in particular hypothalamic insulin action play a pivotal role in WAT functionality. PMID:21284985

  10. Sex-dependent expression of caveolin 1 in response to sex steroid hormones is closely associated with development of obesity in rats.

    Directory of Open Access Journals (Sweden)

    Rajib Mukherjee

    Full Text Available Caveolin-1 (CAV1 is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2 and androgen (dihydrotestosterone, DHT had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL and uncoupling protein 1 (UCP1 in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1.

  11. Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development

    Science.gov (United States)

    The gibberellin (GA) hormone signal is perceived by a receptor with homology to hormone sensitive lipases, GID1 (GA-INSENSITIVE DWARF1). This leads to GA-stimulated responses including stem elongation, seed germination, and the transition to flowering. GA-binding enables GID1 to interact with and ...

  12. HSL Attenuates the Follicular Oxidative Stress and Enhances the Hair Growth in ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Takeo Minematsu, PhD

    2013-10-01

    Full Text Available Summary: We demonstrated enhanced hair regeneration following topical administration of N-(3-oxododecanoyl-L-homoserine lactone (HSL in ob/ob mice. The ob/ob mice showed delayed hair regeneration (more than 6 wk after depilation, which rapidly induced transition to anagen in the hair cycle in wild-type mice. Vehicle and HSL solutions were applied to the depilated dorsal skin of ob/ob mice. The depilated skin of the HSL-treated mice was fully covered with hair, whereas no macroscopic alteration was observed in vehicle-treated group by the fourth week after depilation. Oxidative stress was drastically decreased and the expression of the antioxidative enzymes PON1 and PON3 was increased in the HSL-treated skin with highly proliferative anagen follicles. These results suggest that HSL is a candidate therapeutic agent for alopecia in metabolic syndrome.

  13. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sang-Youel, E-mail: sypark@chonbuk.ac.kr [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  14. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    Science.gov (United States)

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  15. Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation

    Science.gov (United States)

    MacPherson, Rebecca E K; Vandenboom, Rene; Roy, Brian D; Peters, Sandra J

    2013-01-01

    In adipose tissue, access of adipose triglyceride and hormone-sensitive lipases (ATGL and HSL) to the lipid droplet depends on PLIN1 phosphorylation, however, PLIN1 is not expressed in skeletal muscle and the phosphorylation of the expressed PLINs has yet to be investigated. Further, direct interactions between skeletal muscle PLINs and HSL are unknown. We investigated the isolated and combined effects of epinephrine and contraction on PLIN-to-lipase interactions as well as phosphorylation. Isolated rat solei were assigned to one of four 30 min in vitro conditions (25°C): (1) rest; (2) intermittent tetanic stimulation (60 Hz for 150 msec; train rate 20/min); (3) 5 nmol/L epinephrine; (4) intermittent tetanic stimulation and 5 nmol/L epinephrine. Immunoprecipitation of serine phosphorylated proteins followed by Western blotting for PLIN2, PLIN3, PLIN5, revealed that only PLIN2 is not phosphorylated under any of the experimental conditions. This is the first study to show that in whole rat skeletal muscle PLIN3 and PLIN5 are serine phosphorylated. The degree of serine phosphorylation remained unchanged following adrenergic and/or contractile stimulation. Oil red O staining of muscle sections for lipid content shows a significant decrease following each condition, confirming lipolysis occurred (P < 0.05). PLIN2, 3, and 5 all interact with HSL and ATGL, but these interactions were unchanged following treatments. Our results show that in skeletal muscle, PLIN2 is not serine phosphorylated at rest or with lipolytic stimulation and that while PLIN3, PLIN5 are serine phosphorylated at rest, the degree of phosphorylation does not change with lipolytic stimulation. PMID:24303154

  16. Application of a sensitive collection heuristic for very large protein families: Evolutionary relationship between adipose triglyceride lipase (ATGL and classic mammalian lipases

    Directory of Open Access Journals (Sweden)

    Berezovsky Igor

    2006-03-01

    Full Text Available Abstract Background Manually finding subtle yet statistically significant links to distantly related homologues becomes practically impossible for very populated protein families due to the sheer number of similarity searches to be invoked and analyzed. The unclear evolutionary relationship between classical mammalian lipases and the recently discovered human adipose triglyceride lipase (ATGL; a patatin family member is an exemplary case for such a problem. Results We describe an unsupervised, sensitive sequence segment collection heuristic suitable for assembling very large protein families. It is based on fan-like expanding, iterative database searches. To prevent inclusion of unrelated hits, additional criteria are introduced: minimal alignment length and overlap with starting sequence segments, finding starting sequences in reciprocal searches, automated filtering for compositional bias and repetitive patterns. This heuristic was implemented as FAMILYSEARCHER in the ANNIE sequence analysis environment and applied to search for protein links between the classical lipase family and the patatin-like group. Conclusion The FAMILYSEARCHER is an efficient tool for tracing distant evolutionary relationships involving large protein families. Although classical lipases and ATGL have no obvious sequence similarity and differ with regard to fold and catalytic mechanism, homology links detected with FAMILYSEARCHER show that they are evolutionarily related. The conserved sequence parts can be narrowed down to an ancestral core module consisting of three β-strands, one α-helix and a turn containing the typical nucleophilic serine. Moreover, this ancestral module also appears in numerous enzymes with various substrate specificities, but that critically rely on nucleophilic attack mechanisms.

  17. Adrenaline and glycogenolysis in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Kjaer, M; Howlett, K; Langfort, J

    2000-01-01

    The role of adrenaline in regulating muscle glycogenolysis and hormone-sensitive lipase (HSL) activity during exercise was examined in six adrenaline-deficient bilaterally adrenalectomised, adrenocortico-hormonal-substituted humans (Adr) and in six healthy control individuals (Con). Subjects cycled...... for 45 min at approximately 70% maximal pulmonary O2 uptake (VO2,max) followed by 15 min at approximately 86% VO2,max either without (-Adr and Con) or with (+Adr) adrenaline infusion that elevated plasma adrenaline levels (45 min, 4.49+/-0.69 nmol l(-1); 60 min, 12.41+/-1.80 nmol l(-1)). Muscle samples...... were obtained at 0, 45 and 60 min of exercise. In -Adr and Con, muscle glycogen was similar at rest (-Adr, 409+/-19 mmol (kg dry wt)(-1); Con, 453+/-24 mmol (kg dry wt)(-1)) and following exercise (-Adr, 237+/-52 mmol (kg dry wt)(-1); Con, 227+/-50 mmol (kg dry wt)(-1)). Muscle lactate, glucose-6...

  18. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression

    DEFF Research Database (Denmark)

    Lindegaard, Marie Louise Skakkebæk; Damm, Peter; Mathiesen, Elisabeth R

    2006-01-01

    Maternal diabetes can cause fetal macrosomia and increased risk of obesity, diabetes, and cardiovascular disease in adulthood of the offspring. Although increased transplacental lipid transport could be involved, the impact of maternal type 1 diabetes on molecular mechanisms for lipid transport...... in placenta is largely unknown. To examine whether maternal type 1 diabetes affects placental lipid metabolism, we measured lipids and mRNA expression of lipase-encoding genes in placentas from women with type 1 diabetes (n = 27) and a control group (n = 21). The placental triglyceride (TG) concentration....... These results suggest that maternal type 1 diabetes is associated with TG accumulation and increased EL and HSL gene expression in placenta and that optimal metabolic control reduces these effects....

  19. Lipase in milk, curd and cheese

    NARCIS (Netherlands)

    Geurts, T.J.; Lettink, F.J.; Wouters, J.T.M.

    2003-01-01

    Presence of lipase in milk, curd, whey and cheese was studied. A small amount of the product was added to a large volume of lipase-free whole milk that had been made sensitive to lipolysis by homogenization. Increase of the acidity of the fat in the mixture, determined after incubation, was

  20. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    Directory of Open Access Journals (Sweden)

    Ida M. Stø

    2015-10-01

    Full Text Available The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA, which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE and HAESA-LIKE2 (HSL2, controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step towards testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologues of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2 and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot - eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales and grasses (Poales. IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications. We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species.

  1. Lipase or amylase for the diagnosis of acute pancreatitis?

    Science.gov (United States)

    Ismail, Ola Z; Bhayana, Vipin

    2017-12-01

    Acute pancreatitis is a rapid onset of inflammation of the pancreas causing mild to severe life threatening conditions [1, 2]. In Canada, acute pancreatitis is the 5th most expensive digestive disease in Canada with a considerable economic burden on the health care system [3]. The diagnosis of acute pancreatitis is usually based on the presence of abdominal pain and elevated levels of serum amylase and/or lipase. Many health care centers use either serum amylase, lipase or both to diagnose acute pancreatitis without considering which one could provide a better diagnostic accuracy. The aim of this review is to investigate whether serum lipase alone is a sufficient biomarker for the diagnosis of acute pancreatitis. We have examined various studies looking at the utilization, sensitivity, specificity and cost associated savings of lipase and amylase in the diagnosis of acute pancreatitis. When comparing different studies, serum lipase offers a higher sensitivity than serum amylase in diagnosing acute pancreatitis. Lipase also offers a larger diagnostic window than amylase since it is elevated for a longer time, thus allowing it to be a useful diagnostic biomarker in early and late stages of acute pancreatitis. Several recent evidence-based guidelines recommend the use of lipase over amylase. Nevertheless, both lipase and amylase alone lack the ability to determine the severity and etiology of acute pancreatitis. The co-ordering of both tests has shown little to no increase in the diagnostic sensitivity and specificity. Thus, unnecessary testing and laboratory expenditures can be reduced by testing lipase alone. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    Directory of Open Access Journals (Sweden)

    Jaeger Karl E

    2011-02-01

    Full Text Available Abstract Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the

  3. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  4. The action of D-dopachrome tautomerase as an adipokine in adipocyte lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Takeo Iwata

    Full Text Available Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiation-dependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormone-sensitive lipase (HSL and acetyl-CoA carboxylase (ACC, in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT, suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA, which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through

  5. Biochemical Characterization of Lipases Obtained from Acinetobacter psychrotolerans Strains

    Directory of Open Access Journals (Sweden)

    Şule SEREN

    2017-12-01

    Full Text Available In this study, extracellular lipases obtained from Acinetobacter psychrotolerans strains (Xg1 and Xg2 were characterized. The effects of varying pH values (3.0-10.0 and various temperatures (10-90 °C on lipase activities were examined. Also the effects of different metal ions, organic solvents and detergents on lipases were studied. The extracellular crude lipases were concentrated using ultrafiltration. Zymogram analysis of these lipases was performed. Lipases exhibited maximum activity at pH 8 and 30 °C.  While lipase obtained from the Xg1 strain exhibited the highest stability in the presence of various organic solvents, including hexane, ethyl acetate, chloroform and N,N dietil formamide, lipase obtained from the Xg2 strain was sensitive in the presence of isopropanol, acetonitrile, and butan-1-ol. The lipases of the Xg1 and Xg2 strains were inhibited in the presence of Cu2+ and Zn2+. Also, the lipase of the Xg1 strain was inhibited in the presence of Fe3+. In the presence of EDTA, the lipase activities of the Xg1 and Xg2 strains were partially inhibited. In presence of SDS, they were exactly inhibited. According to the zymogram results, the molecular weights of the lipases obtained from the Acinetobacter psychrotolerans Xg1 and Xg2 strains have been found approximately 37 and 30 kDa, respectively.

  6. Comparative analyses of lipoprotein lipase, hepatic lipase, and endothelial lipase, and their binding properties with known inhibitors.

    Directory of Open Access Journals (Sweden)

    Ziyun Wang

    Full Text Available The triglyceride lipase gene subfamily plays a central role in lipid and lipoprotein metabolism. There are three members of this subfamily: lipoprotein lipase, hepatic lipase, and endothelial lipase. Although these lipases are implicated in the pathophysiology of hyperlipidemia and atherosclerosis, their structures have not been fully solved. In the current study, we established homology models of these three lipases, and carried out analysis of their activity sites. In addition, we investigated the kinetic characteristics for the catalytic residues using a molecular dynamics simulation strategy. To elucidate the molecular interactions and determine potential key residues involved in the binding to lipase inhibitors, we analyzed the binding pockets and binding poses of known inhibitors of the three lipases. We identified the spatial consensus catalytic triad "Ser-Asp-His", a characteristic motif in all three lipases. Furthermore, we found that the spatial characteristics of the binding pockets of the lipase molecules play a key role in ligand recognition, binding poses, and affinities. To the best of our knowledge, this is the first report that systematically builds homology models of all the triglyceride lipase gene subfamily members. Our data provide novel insights into the molecular structures of lipases and their structure-function relationship, and thus provides groundwork for functional probe design towards lipase-based therapeutic inhibitors for the treatment of hyperlipidemia and atherosclerosis.

  7. Download this PDF file

    African Journals Online (AJOL)

    huis

    triglyceride lipase (HSL) activity in the liver or abdominal fat, though higher levels .... for the assay of HSL activity, based on the standard assay procedure of ... hydrolyzes 1 μmol of olive oil in one minute at 37 °C. Concentrations of .... Type of fatty acids, lipoprotein secretion from liver and fatty liver syndrome in laying hens.

  8. Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast.

    Science.gov (United States)

    Bak, Ann Mosegaard; Møller, Andreas Buch; Vendelbo, Mikkel Holm; Nielsen, Thomas Svava; Viggers, Rikke; Rungby, Jørgen; Pedersen, Steen Bønløkke; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2016-07-01

    Increased availability of lipids may conserve muscle protein during catabolic stress. Our study was designed to define 1) intracellular mechanisms leading to increased lipolysis and 2) whether this scenario is associated with decreased amino acid and urea fluxes, and decreased muscle amino acid release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2. Muscle protein expressions of mammalian target of rapamycin (mTOR) and 4EBP1 were lower in obese subjects, and MuRf1 mRNA was higher with fasting in lean but not obese subjects. Phosphorylation and signaling of mTOR decreased with fasting in both groups, whereas ULK1 protein and mRNA levels increased. In summary, obese subjects exhibit increased lipolysis due to a large fat mass with blunted prolipolytic signaling, together with decreased urea and amino acid fluxes both in the basal and 72-h fasted state; this is compatible with preservation of muscle and whole body protein. Copyright © 2016 the American Physiological Society.

  9. Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance.

    Science.gov (United States)

    Liew, Chong Wee; Boucher, Jeremie; Cheong, Jit Kong; Vernochet, Cecile; Koh, Ho-Jin; Mallol, Cristina; Townsend, Kristy; Langin, Dominique; Kawamori, Dan; Hu, Jiang; Tseng, Yu-Hua; Hellerstein, Marc K; Farmer, Stephen R; Goodyear, Laurie; Doria, Alessandro; Blüher, Matthias; Hsu, Stephen I-Hong; Kulkarni, Rohit N

    2013-02-01

    Obesity develops as a result of altered energy homeostasis favoring fat storage. Here we describe a new transcription co-regulator for adiposity and energy metabolism, SERTA domain containing 2 (TRIP-Br2, also called SERTAD2). TRIP-Br2-null mice are resistant to obesity and obesity-related insulin resistance. Adipocytes of these knockout mice showed greater stimulated lipolysis secondary to enhanced expression of hormone sensitive lipase (HSL) and β3-adrenergic (Adrb3) receptors. The knockout mice also have higher energy expenditure because of increased adipocyte thermogenesis and oxidative metabolism caused by upregulating key enzymes in their respective processes. Our data show that a cell-cycle transcriptional co-regulator, TRIP-Br2, modulates fat storage through simultaneous regulation of lipolysis, thermogenesis and oxidative metabolism. These data, together with the observation that TRIP-Br2 expression is selectively elevated in visceral fat in obese humans, suggests that this transcriptional co-regulator is a new therapeutic target for counteracting the development of obesity, insulin resistance and hyperlipidemia.

  10. Ablation of TRIP-Br2, a novel regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance

    Science.gov (United States)

    Liew, Chong Wee; Boucher, Jeremie; Cheong, Jit Kong; Vernochet, Cecile; Koh, Ho-Jin; Mallol, Cristina; Townsend, Kristy; Langin, Dominique; Kawamori, Dan; Hu, Jiang; Tseng, Yu-Hua; Hellerstein, Marc K; Farmer, Stephen R; Goodyear, Laurie; Doria, Alessandro; Blüher, Matthias; Hsu, Stephen I-Hong; Kulkarni, Rohit N

    2012-01-01

    SUMMARY Obesity develops due to altered energy homeostasis favoring fat storage. Here we describe a novel transcription co-regulator for adiposity and energy metabolism, TRIP-Br2 (also called SERTAD2). TRIP-Br2 null mice are resistant to obesity and obesity-related insulin resistance. Adipocytes of the knockout (KO) mice exhibited greater stimulated lipolysis secondary to enhanced expression of hormone sensitive lipase (HSL) and β3-adrenergic (Adrb3) receptors. The KOs also exhibit higher energy expenditure due to increased adipocyte thermogenesis and oxidative metabolism by up-regulating key enzymes in respective processes. Our data show for the first time that a cell cycle transcriptional co-regulator, TRIP-Br2, modulates fat storage through simultaneous regulation of lipolysis, thermogenesis and oxidative metabolism. These data together with the observation that TRIP-BR2 expression is selectively elevated in visceral fat in obese humans suggests that this transcriptional co-regulator is a novel therapeutic target for counteracting the development of obesity, insulin resistance and hyperlipidemia. PMID:23291629

  11. Effect of immobilized lipase supplementation of diets on the performance of the Japanese quails

    International Nuclear Information System (INIS)

    Abu-Taleb, A.M.; Ezzat, I.E.; Saleh, M.

    2004-01-01

    In the present study, lipase was immobilized onto two different supports, agarose and gelatin. Some physico-chemical properties of the free and immobilized lipase such as optimum temperature, optimum ph and storage stability were studied. Storage of the enzymes for 2 months showed that the free enzyme lost its activity, while the immobilized on the gelatin showed better resistance towards ph and temperature variations than that immobilized onto agarose. Four experiments were conducted to test the effect of the immobilized lipase supplementation on the productive performance of the Japanese quails. During the first 3 weeks, the addition of lipase to poultry diets caused an increase in the body weight gain of birds than the enzyme-free diet. An obvious improvement in quail day egg production during the laying period was observed with the groups fed on a diet supplemented with 3000 and 2000 I U of immobilized lipase per kilogram feed. Blood cholesterol was not affected with lipase addition, while total lipids were significantly increased. Significant reduction was also observed in thyroid hormones (T 3 and T 4 ) as compared with the control group

  12. Beta-Glucan-Rich Extract from Pleurotus sajor-caju (Fr. Singer Prevents Obesity and Oxidative Stress in C57BL/6J Mice Fed on a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    G. Kanagasabapathy

    2013-01-01

    Full Text Available Mushrooms have been used in folk medicine for thousands of years. In this study, the effect of β-glucan-rich extract of P. sajor-caju (GE on lipid lowering and antioxidant potential was assessed in C57BL/6J mice fed on a high-fat diet. Obesity was induced in C57BL/6J mice by feeding a high-fat diet. The control groups in this study were ND (for normal diet and HFD (for high-fat diet. The treated groups were ND240 (for normal diet (240 mg/kg b.w and HFD60, HFD120, and HFD240 (for high-fat diet, where the mice were administrated with three dosages of GE (60, 120, and 240 mg GE/kg b.w. Metformin (2 mg/kg b.w served as positive control. GE-treated groups showed significantly reduced body weight, serum lipid, and liver enzymes levels. GE also attenuated protein carbonyl and lipid hydroperoxide levels by increasing the enzymic antioxidants (SOD, CAT, and GPx activities in the mice. GE-treated groups induced the expression of hormone sensitive lipase (HSL and adipose triglyceride lipase (ATGL while downregulated the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ, sterol regulatory binding protein-1c (SREBP-1c, and lipoprotein lipase (LPL. Hence, GE prevented weight gain in the mice by inducing lipolysis and may be valuable in the formulation of adjuvant therapy for obesity.

  13. Inositol metabolism in WRK-1 cells. Relationship of hormone-sensitive to -insensitive pools of phosphoinositides

    International Nuclear Information System (INIS)

    Monaco, M.E.

    1987-01-01

    Previous studies have indicated the existence of two separate pools of phosphoinositides in WRK-1 cells; one is labile and hormone-sensitive with respect to turnover, while the other is stable. Hormonal stimulation results in a rapid increase in 32 Pi incorporation into the sensitive pool, while in the absence of hormone, incorporation of 32 Pi into this pool is slow. Results are quite different when [ 3 H]inositol is the precursor utilized. Incorporation of [ 3 H]inositol into hormone-sensitive phosphoinositides is not stimulated in the presence of hormone, suggesting entry of this exogenous precursor into the cycle by a route other than the resynthetic phase of the cycle. Furthermore, failure of hormone to induce loss of [ 3 H]phosphoinositide in pulse-chase experiments in the absence of lithium suggests reutilization of the [ 3 H]inositol moiety generated by phosphodiesteratic cleavage of hormone-sensitive phosphoinositide. Time course studies indicate that the relative rates of incorporation of [ 3 H]inositol into sensitive and insensitive phosphoinositide remain constant from 2 to 24 h. Several factors are capable of increasing [ 3 H]inositol incorporation into hormone-insensitive phosphoinositide including vasopressin, calcium ionophores, and manganese. On the other hand, vasopressin treatment appears to decrease incorporation of [ 3 H]inositol into the hormone-sensitive pool, probably by shifting the equilibrium between phosphoinositides and inositol phosphates, since the decrease in radioactivity observed in the phosphoinositides is equaled by the increase observed in that in the inositol phosphates

  14. Structural studies on lipoprotein lipase

    International Nuclear Information System (INIS)

    Socorro, L.

    1985-01-01

    The structure of lipoprotein lipase is not known. The lack of information on its primary sequence has been due to the inability of preparing it in homogeneous and stable form. This research has focused on the structural characterization of lipoprotein lipase. The first approach taken was to develop a purification method using bovine milk and affinity chromatography on heparin-Sepharose. The protein obtained was a heterogeneous peak with the activity shifted towards the trailing edge fractions. These fractions only presented a 55 Kdalton band on polyacrylamide gel electrophoresis. Monoclonal antibodies against this band detected an endogenous, phenyl methane sulfonyl fluoride-sensitive protease responsible for the presence of lower molecular weight fragments. The second approach was to label the lipoprotein lipase with a radioactive, active site, directed probe. After incubation and affinity chromatography a complex [ 3 H]inhibitor enzyme was isolated with a stoichiometry of 1.00 +/- 0.2. The complex was digested with CNBr and the insoluble peptides at low ionic strength (>90% [ 3 H]dpm) were used for further purification. Differential extraction of the [ 3 H]-peptide, digestion with S. aureus V8 protease, and high performance liquid chromatography yielded a hexapeptide with a composition consistent with the consensus sequence of the active site peptides of many serine-esterase. This and the kinetic data imply this being the mechanism of action for lipoprotein lipase

  15. Triiodothyronine enhances accumulation of intracellular lipids in adipocytes through thyroid hormone receptor α via direct and indirect mechanisms.

    Science.gov (United States)

    Gambo, Yurina; Matsumura, Miki; Fujimori, Ko

    2016-08-15

    Triiodothyronine (T3) enhanced the expression of adipogenic and lipogenic genes with elevation of the intracellular lipids through thyroid hormone receptor (TR) α in mouse 3T3-L1 cells. However, the transcription of the SREBP-1c and HSL genes was decreased by T3. Such T3-mediated alterations were negated by TRα siRNA. Chromatin immunoprecipitation assay showed that the binding of TRα to the TR-responsive element (TRE) of the FAS promoter was elevated by T3. In contrast, the ability of TRα to bind to the TRE of the SREBP-1c promoter was decreased by T3. In addition, the binding of SREBP-1c to the SRE of the HSL promoter was lowered by T3. These results indicate that T3 increased the accumulation of intracellular lipids by enhancing the expression of the FAS gene through direct binding of TRα to the FAS promoter and simultaneously lowered the amount of lipolysis via reduced binding of T3-decreased SREBP-1c to the HSL promoter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Development of a high-throughput assay for measuring lipase activity using natural triacylglycerols coated on microtiter plates.

    Science.gov (United States)

    Serveau-Avesque, Carole; Verger, Robert; Rodriguez, Jorge A; Abousalham, Abdelkarim

    2013-09-21

    We have designed a convenient, specific, sensitive and continuous lipase assay based on the use of natural triacylglycerols (TAGs) from the Aleurites fordii seed oil which contains α-eleostearic acid (9,11,13,cis,trans,trans-octadecatrienoic acid) and which was coated in the wells of microtiter plates. The coated TAG film cannot be desorbed by the various buffers used during the lipase assay. Upon lipase action, α-eleostearic acid is liberated and desorbed from the interface and then solubilized into the micellar phase. Consequently, the UV absorbance of the α-eleostearic acid is considerably enhanced due to the transformation from an adsorbed to a water soluble state. The lipase activity can be measured continuously by recording the variations with time of the UV absorption spectra. The rate of lipolysis was monitored by measuring the increase of OD at 272 nm, which was found to be linear with time and directly proportional to the amount of added lipase. This microtiter plate lipase assay, based on coated TAGs, presents various advantages as compared to the classical systems: (i) coated TAGs on the microtiter plates could be stored for a long-time at 4 °C, (ii) higher sensitivity in lipase detection, (iii) good reproducibility, and (iv) increase of signal to noise ratio due to high UV absorption after transfer of α-eleostearic acid from an adsorbed to a soluble state. Low concentrations, down to 1 pg mL(-1) of pure Thermomyces lanuginosus or human pancreatic lipase, could be detected under standard assay conditions. The detection sensitivity of this coated method is around 1000 times higher as compared to those obtained with the classical emulsified systems. This continuous high throughput lipase assay could be used to screen new lipases and/or lipase inhibitors present in various biological samples.

  17. Sensitivity of T-Lymphocytes to Hormones of the Anterior Pituitary Gland.

    Science.gov (United States)

    Tishevskaya, N V; Gevorkyan, N M; Kozlova, N I

    2017-01-01

    The review provides information about the features of the sensitivity of thymocytes, lymphoid organs' cells and T-lymphocytes of peripheral blood to the hormones secreted by anterior pituitary gland's cells: growth hormone, thyrotropin, adrenocorticotropic hormone, prolactin and β-endorphin. Some aspects of the T-lymphocytes's response to humoral signals from the hypophysis are shown in the article. Also the pituitary hormones' role in the regulation of proliferation, differentiation, and cytokine production of T-lymphocytes in normal and pathological conditions of the organism being discussed.

  18. Electrochemical DNA sandwich assay with a lipase label for attomole detection of DNA

    DEFF Research Database (Denmark)

    Ferapontova, Elena; Hansen, Majken Nørgaard; Saunders, Aaron Marc

    2010-01-01

    A fast and sensitive electrochemical lipase-based sandwich hybridization assay for detection of attomole levels of DNA has been developed. A combination of magnetic beads, used for pre-concentration and bioseparation of the analyte with a lipase catalyst label allowed detection of DNA with a limi...

  19. Evaluation of cellulose-binding domain fused to a lipase for the lipase immobilization.

    Science.gov (United States)

    Hwang, Sangpill; Ahn, Jungoh; Lee, Sumin; Lee, Tai Gyu; Haam, Seungjoo; Lee, Kangtaek; Ahn, Ik-Sung; Jung, Joon-Ki

    2004-04-01

    A cellulose-binding domain (CBD) fragment of a cellulase gene of Trichoderma hazianum was fused to a lipase gene of Bacillus stearothermophilus L1 to make a gene cluster for CBD-BSL lipase. The specific activity of CBD-BSL lipase for oil hydrolysis increased by 33% after being immobilized on Avicel (microcrystalline cellulose), whereas those of CBD-BSL lipase and BSL lipase decreased by 16% and 54%, respectively, after being immobilized on silica gel. Although the loss of activity of an enzyme immobilized by adsorption has been reported previously, the loss of activity of the CBD-BSL lipase immobilized on Avicel was less than 3% after 12 h due to the irreversible binding of CBD to Avicel.

  20. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  1. Bacterial lipases for biotechnological applications

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Schneidinger, Bernd; Rosenau, Frank; Werner, Michael; Lang, Dietmar; Dijkstra, Bauke W.; Schimossek, Klaus; Zonta, Albin; Reetz, Manfred T.

    1997-01-01

    Lipase genes originating from the Gram-negative bacteria Serrutiu marcescens and Pseudomonus urruginosa were cloned. S. marcescens lipase was overexpressed in Escherichia coli yielding inclusion bodies which were purified and finally refolded to give enzymatically active lipase. The lipase operon of

  2. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial.

    Directory of Open Access Journals (Sweden)

    Nikolaj Rittig

    Full Text Available Lipolysis is accelerated during the acute phase of inflammation, a process being regulated by pro-inflammatory cytokines (e.g. TNF-α, stress-hormones, and insulin. The intracellular mechanisms remain elusive and we therefore measured pro- and anti-lipolytic signaling pathways in adipocytes after in vivo endotoxin exposure.Eight healthy, lean, male subjects were investigated using a randomized cross over trial with two interventions: i bolus injection of saline (Placebo and ii bolus injection of lipopolysaccharide endotoxin (LPS. A 3H-palmitate tracer was used to measure palmitate rate of appearance (Rapalmitate and indirect calorimetry was performed to measure energy expenditures and lipid oxidation rates. A subcutaneous abdominal fat biopsy was obtained during both interventions and subjected to western blotting and qPCR quantifications.LPS caused a mean increase in serum free fatty acids (FFA concentrations of 90% (CI-95%: 37-142, p = 0.005, a median increase in Rapalmitate of 117% (CI-95%: 77-166, p<0.001, a mean increase in lipid oxidation of 49% (CI-95%: 1-96, p = 0.047, and a median increase in energy expenditure of 28% (CI-95%: 16-42, p = 0.001 compared with Placebo. These effects were associated with increased phosphorylation of hormone sensitive lipase (pHSL at ser650 in adipose tissue (p = 0.03, a trend towards elevated pHSL at ser552 (p = 0.09 and cAMP-dependent protein kinase A (PKA phosphorylation of perilipin 1 (PLIN1 (p = 0.09. Phosphatase and tensin homolog (PTEN also tended to increase (p = 0.08 while phosphorylation of Akt at Thr308 tended to decrease (p = 0.09 during LPS compared with Placebo. There was no difference between protein or mRNA expression of ATGL, G0S2, and CGI-58.LPS stimulated lipolysis in adipose tissue and is associated with increased pHSL and signs of increased PLIN1 phosphorylation combined with a trend toward decreased insulin signaling. The combination of these mechanisms appear to be the driving forces

  3. Glycerol Monolaurate Inhibits Lipase Production by Clinical Ocular Isolates Without Affecting Bacterial Cell Viability.

    Science.gov (United States)

    Flanagan, Judith Louise; Khandekar, Neeta; Zhu, Hua; Watanabe, Keizo; Markoulli, Maria; Flanagan, John Terence; Papas, Eric

    2016-02-01

    We sought to determine the relative lipase production of a range of ocular bacterial isolates and to assess the efficacy of glycerol monolaurate (GML) in inhibiting this lipase production in high lipase-producing bacteria without affecting bacterial cell growth. Staphylococcus aureus,Staphylococcus epidermidis,Propionibacterium acnes, and Corynebacterium spp. were inoculated at a density of 10(6)/mL in varying concentrations of GML up to 25 μg/mL for 24 hours at 37 °C with constant shaking. Bacterial suspensions were centrifuged, bacterial cell density was determined, and production of bacterial lipase was quantified using a commercial lipase assay kit. Staphylococcus spp. produced high levels of lipase activity compared with P. acnes and Corynebacterium spp. GML inhibited lipase production by Staphylococcal spp. in a dose-dependent manner, with S. epidermidis lipase production consistently more sensitive to GML than S. aureus. Glycerol monolaurate showed significant (P < 0.05) lipase inhibition above concentrations of 15 μg/mL in S. aureus and was not cytotoxic up to 25 μg/mL. For S. epidermidis, GML showed significant (P < 0.05) lipase inhibition above 7.5 μg/mL. Lipase activity varied between species and between strains. Staphylococcal spp. produced higher lipase activity compared with P. acnes and Corynebacterium spp. Glycerol monolaurate inhibited lipase production by S. aureus and S. epidermidis at concentrations that did not adversely affect bacterial cell growth. GML can be used to inhibit ocular bacterial lipase production without proving detrimental to commensal bacteria viability.

  4. Lipase assay in soils by copper soap colorimetry.

    Science.gov (United States)

    Saisuburamaniyan, N; Krithika, L; Dileena, K P; Sivasubramanian, S; Puvanakrishnan, R

    2004-07-01

    A simple and sensitive method for the estimation of lipase activity in soils is reported. In this method, 50mg of soil is incubated with emulsified substrate, the fatty acids liberated are treated with cupric acetate-pyridine reagent, and the color developed is measured at 715 nm. Use of olive oil in this protocol leads to an estimation of true lipase activity in soils. The problem of released fatty acids getting adsorbed onto the soil colloids is obviated by the use of isooctane, and separate standards for different soils need not be developed. Among the various surfactants used for emulsification, polyvinyl alcohol is found to be the most effective. Incubation time of 20 min, soil concentration of 50 mg, pH 6.5, and incubation temperature of 37 degrees C were found to be the most suitable conditions for this assay. During the process of enrichment of the soils with oil, interference by the added oil is avoided by the maintenance of a suitable control, wherein 50 mg of soil is added after stopping the reaction. This assay is sensitive and it could be adopted to screen for lipase producers from enriched soils and oil-contaminated soils before resorting to isolation of the microbes by classical screening methods.

  5. THE ROLE OF GROWTH HORMONE IN LIPID METABOLISM

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Dewi Ratnayanti

    2013-04-01

    Full Text Available Growth hormone (GH is one of the hormones that regulate metabolism, including lipid metabolism. GH can regulate the amount of fat in the tissue and also the level of lipid profile. Growth hormone affects the lipid in the tissue and blood by modulating the lipid metabolism, especially through the regulation of synthesis, excretion and breakdown of internal lipids. Research showed that GH could consistently lower the level of total cholesterol and LDL, whereas its effect on triglyceride and HDL level showed varying results. Growth hormone induces lypolisis by stimulating the activity of HSL and LPL and thereby influenced the triglyceride level and tissue fat storage. Cholesterol and lipoprotein levels are controlled by regulating the synthesis of cholesterol by lowering the activity of HMGCoA reductase. The excretion of cholesterol through the bile is also enhanced by stimulating the activity of enzymes C7?OH. The breakdown of VLDL and LDL are enhanced by increasing the expression of LDL receptor and ApoE as well as affecting the editing of mRNA ApoB100. Increase activity of LPL is also known to be the important factor in the HDL metabolism

  6. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    Energy Technology Data Exchange (ETDEWEB)

    Maradonna, F.; Nozzi, V. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); Santangeli, S. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Traversi, I. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Gallo, P. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Napoli (Italy); Fattore, E. [Dipartimento Ambiente e Salute, IRCCS–Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano (Italy); Mita, D.G. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Mandich, A. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Carnevali, O., E-mail: o.carnevali@univpm.it [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy)

    2015-10-15

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  7. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    International Nuclear Information System (INIS)

    Maradonna, F.; Nozzi, V.; Santangeli, S.; Traversi, I.; Gallo, P.; Fattore, E.; Mita, D.G.; Mandich, A.; Carnevali, O.

    2015-01-01

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  8. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    Science.gov (United States)

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  9. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence.

    Science.gov (United States)

    Kumpf, Robert P; Shi, Chun-Lin; Larrieu, Antoine; Stø, Ida Myhrer; Butenko, Melinka A; Péret, Benjamin; Riiser, Even Sannes; Bennett, Malcolm J; Aalen, Reidunn B

    2013-03-26

    Throughout their life cycle, plants produce new organs, such as leaves, flowers, and lateral roots. Organs that have served their purpose may be shed after breakdown of primary cell walls between adjacent cell files at the site of detachment. In Arabidopsis, floral organs abscise after pollination, and this cell separation event is controlled by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Emergence of new lateral root primordia, initiated deep inside the root under the influence of auxin, is similarly dependent on cell wall dissolution between cells in the overlaying endodermal, cortical, and epidermal tissues. Here we show that this process requires IDA, HAE, and HSL2. Mutation in these genes constrains the passage of the growing lateral root primordia through the overlaying layers, resulting in altered shapes of the lateral root primordia and of the overlaying cells. The HAE and HSL2 receptors are redundant in function during floral organ abscission, but during lateral root emergence they are differentially involved in regulating cell wall remodeling genes. In the root, IDA is strongly auxin-inducible and dependent on key regulators of lateral root emergence--the auxin influx carrier LIKE AUX1-3 and AUXIN RESPONSE FACTOR7. The expression levels of the receptor genes are only transiently induced by auxin, suggesting they are limiting factors for cell separation. We conclude that elements of the same cell separation signaling module have been adapted to function in different developmental programs.

  10. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    International Nuclear Information System (INIS)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via β-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents

  11. Acid Lipase Disease

    Science.gov (United States)

    ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ... of Neurological Disorders and Stroke conducts and supports research to understand lipid storage diseases such as acid lipase deficiency and ...

  12. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel.

    Science.gov (United States)

    Lotti, Marina; Pleiss, Jürgen; Valero, Francisco; Ferrer, Pau

    2015-01-01

    The biotechnological production of biodiesel is based on transesterification/esterification reactions between a source of fatty acids and a short-chain alcohol, usually methanol, catalysed by enzymes belonging to the class known as lipases. Several lipases used in industrial processes, although stable in the presence of other organic solvents, are inactivated by methanol at or below the concentration optimal for biodiesel production, making it necessary to use stepwise methanol feeding or pre-treatment of the enzyme. In this review article we focus on what is currently know about methanol inactivation of lipases, a phenomenon which is not common to all lipase enzymes, with the goal of improving the biocatalytic process. We suggest that different mechanisms can lead to inactivation of different lipases, in particular substrate inhibition and protein unfolding. Attempts to improve the performances of methanol sensitive lipases by mutagenesis as well as process engineering approaches are also summarized. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The Effect of Tallow As Lipase Inducer on Total of Aspergillus Niger, Lipolitic Activity and Lipase Yield

    Directory of Open Access Journals (Sweden)

    Manik Eirry Sawitri

    2012-02-01

    Full Text Available The objectives of this research was to determined of tallow addition with different concentration as lipase Aspergillus niger inducer to total of A. niger, lipolitic activity and lipase yield. The result showed that tallow addition as inducer in the lipase A. niger production gave no significant effect on total of A. niger (5.3 x 107 – 1.7 x 108 cfu/gram in the medium. Tallow addition gave a highly significant effect on lipolytic activity and yield of lipase A. niger. Lipolytic activity ranged between 32.0354 – 53.1197 U/mg protein, while the yield of lipase was 6.6418–7.8941 µg/ml. The conclusion of this research was the addition of tallow for 8% as the lipase inducer of A. niger on lipase production was  more effective to obtain the optimal result. Keywords : Tallow, lipase, inducer, Aspergillus niger

  14. Molecular and vibrational structure of the extracellular bacterial signal compound N-butyryl-homoserine lactone (C4-HSL)

    DEFF Research Database (Denmark)

    Bak, Jimmy; Spanget-Larsen, Jens

    2009-01-01

    contributions from suspended micro-crystalline aggregates and dissolved monomeric species. The key vibrational bands of the monomeric form of C4-HSL are reported here for the first time: 3425cm−1 (ν(N-H)), 1784cm−1 (ν(C&dbnd;O), lactone), 1688cm−1 (amide I), and 1494cm−1 (amide II) (CCl4)....

  15. Lipase H, a new member of the triglyceride lipase family synthesized by the intestine

    NARCIS (Netherlands)

    Jin, Weijun; Broedl, Uli C.; Monajemi, Houshang; Glick, Jane M.; Rader, Daniel J.

    2002-01-01

    We report here the molecular cloning of a novel member of the triglyceride lipase family, a 2.4-kb cDNA encoding human lipase H (LIPH) and the mouse ortholog (Liph). The human LIPH cDNA encodes a 451-amino-acid protein with a lipase domain. Mouse Liph shows 85% amino acid identity and 75% nucleotide

  16. Comparison of immunoreactive serum trypsinogen and lipase in Cystic Fibrosis

    International Nuclear Information System (INIS)

    Lloyd-Still, J.D.; Weiss, S.; Wessel, H.; Fong, L.; Conway, J.J.

    1984-01-01

    The incidence of Cystic Fibrosis (CF) is 1 in 2,000. Early detection and treatment of CF may necessitate newborn screening with a reliable and cost-effective test. Serum immunoreactive trypsinogen (IRT) an enzyme produced by the pancreas, is detectable by radioimmunoassay (RIA) techniques. Recently, it has been shown that IRT is elevated in CF infants for the first few months of life and levels become subnormal as pancreatic insufficiency progresses. Other enzymes produced by the pancreas, such as lipase, are also elevated during this time. The author's earlier work confirmed previous reports of elevated IRT levels in CF infants. The development of a new RIA for lipase (nuclipase) has enabled comparison of these 2 pancreatic enzymes in C.F. Serum IRT and lipase determinations were performed on 2 groups of CF patients; infants under 1 year of age, and children between 1 and 18 years of age. Control populations of the same age groups were included. The results showed that both trypsin (161 +- 92 ng/ml, range 20 to 400) and lipase (167 +- 151 ng/ml, range 29 to 500) are elevated in CF in the majority of infants. Control infants had values of IRT ranging from 20 to 29.5 ng/ml and lipase values ranging from 23 to 34 ng/ml. IRT becomes subnormal in most CF patients by 8 years of age as pancreatic function insufficiency increases. Lipase levels and IRT levels correlate well in infancy, but IRT is a more sensitive indicator of pancreatic insufficiency in older patients with CF

  17. Increased insulin sensitivity in intrauterine growth retarded newborns--do thyroid hormones play a role?

    Science.gov (United States)

    Setia, Sajita; Sridhar, M G; Koner, B C; Bobby, Zachariah; Bhat, Vishnu; Chaturvedula, Lata

    2007-02-01

    Thyroid hormones are necessary for normal brain development. We studied thyroid hormone profile and insulin sensitivity in intrauterine growth retarded (IUGR) newborns to find correlation between insulin sensitivity and thyroid status in IUGR newborns. Fifty IUGR and fifty healthy control infants were studied at birth. Cord blood was collected for determination of T(3), T(4), TSH, glucose and insulin levels. IUGR newborns had significantly lower insulin, mean+/-S.D., 5.25+/-2.81 vs. 11.02+/-1.85microU/ml, but significantly higher insulin sensitivity measured as glucose to insulin ratio (G/I), 9.80+/-2.91 vs. 6.93+/-1.08 compared to healthy newborns. TSH was also significantly higher 6.0+/-2.70 vs. 2.99+/-1.05microU/ml with significantly lower T(4), 8.65+/-1.95 vs. 9.77+/-2.18microg/dl, but similar T(3) levels, 100.8+/-24.36 vs. 101.45+/-23.45ng/dl. On stepwise linear regression analysis in IUGR infants, insulin sensitivity was found to have a significant negative association with T(4) and significant positive association with TSH. Thyroid hormones may play a role in increased insulin sensitivity at birth in IUGR.

  18. Activity and stability of immobilized lipases in lipase-catalyzed modification of peanut oil

    OpenAIRE

    Soumanou Mohamed M.; Edorh Aleodjrodo P.; Bornscheuer Uwe T.

    2004-01-01

    Fatty acid release during lipolysis of peanut oil using microbial free and immobilized lipases in aqueous media was developed. Immobilized lipase from Rhizomucor miehei (RML) gave the best result from its ability to clive different fatty acids from peanut oil in such media. In organic solvent, interesterification of peanut oil with tricaprylin using immobilized lipases from RML, Chromobacterium viscosum (CVL) and Candida rugosa (CRL) was performed. The best substrate molar ratio of tricapryli...

  19. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  1. FRAKSINASI ENZIM LIPASE DARI ENDOSPERM KELAPA DENGAN METODE SALTING OUT (Lipase fractionation of Coconut Endosperm by Salting out Method

    Directory of Open Access Journals (Sweden)

    Moh. Su'i

    2014-02-01

    Full Text Available This research learns about fractionation of lipases activity from coconut endosperm by using ammonium sulphate of 0–15%; 15-30 %, 30–45 %, 45–60 %, 60–75 % and 75–90 %. The results showed that the fractions of 0–15% ; 30–45 %, 45–60 % and 60–75 % have lipase activity. Meanwhile, the highest activity was fractions of 60-75%. fractions of 15-30% and 75-90%  have no lipase enzym activity. Molecule weigh of lipase enzyme was 72 kDa. Keywords: Lipases, endosperm, coconut, fractionation, ammonium sulphate   ABSTRAK Penelitian ini mempelajari fraksinasi enzim lipase dari endosperm kelapa menggunakan ammonium sulfat. fraksinasi dilakukan dengan variasi konsentrasi ammonium sulfat 0–15% ; 15-30%; 30–45 %, 45–60 %, 60–75 % dan 75–90 %. Hasil penelitian menunjukkan bahwa enzim lipase terdapat pada fraksi 0–15% ; 30–45 %, 45–60 % dan fraksi 60–75 % dengan aktivitas enzim tertinggi pada fraksi 60-75%. Sedangkan fraksi 15-30% dan 75-90% tidak ada enzim lipase. Berat molekul enzim lipase pada semua fraksi 72 kDa. Kata kunci: Lipase, endosperm, fraksinasi, ammonium sulfat

  2. Loss of ABHD15 Impairs the Anti-lipolytic Action of Insulin by Altering PDE3B Stability and Contributes to Insulin Resistance.

    Science.gov (United States)

    Xia, Wenmin; Pessentheiner, Ariane R; Hofer, Dina C; Amor, Melina; Schreiber, Renate; Schoiswohl, Gabriele; Eichmann, Thomas O; Walenta, Evelyn; Itariu, Bianca; Prager, Gerhard; Hackl, Hubert; Stulnig, Thomas; Kratky, Dagmar; Rülicke, Thomas; Bogner-Strauss, Juliane G

    2018-05-15

    Elevated circulating fatty acids (FAs) contribute to obesity-associated metabolic complications, but the mechanisms by which insulin suppresses lipolysis are poorly understood. We show that α/β-hydrolase domain-containing 15 (ABHD15) is required for the anti-lipolytic action of insulin in white adipose tissue (WAT). Neither insulin nor glucose treatments can suppress FA mobilization in global and conditional Abhd15-knockout (KO) mice. Accordingly, insulin signaling is impaired in Abhd15-KO adipocytes, as indicated by reduced AKT phosphorylation, glucose uptake, and de novo lipogenesis. In vitro data reveal that ABHD15 associates with and stabilizes phosphodiesterase 3B (PDE3B). Accordingly, PDE3B expression is decreased in the WAT of Abhd15-KO mice, mechanistically explaining increased protein kinase A (PKA) activity, hormone-sensitive lipase (HSL) phosphorylation, and undiminished FA release upon insulin signaling. Ultimately, Abhd15-KO mice develop insulin resistance. Notably, ABHD15 expression is decreased in humans with obesity and diabetes compared to humans with obesity and normal glucose tolerance, identifying ABHD15 as a potential therapeutic target to mitigate insulin resistance. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Lipase kinetics: hydrolysis of triacetin by lipase from Candida cylindracea in a hollow-fiber membrane reactor

    NARCIS (Netherlands)

    Guit, R.P.M.; Kloosterman, M.; Meindersma, G.W.; Mayer, M.; Meijer, E.M.

    1991-01-01

    The aptitude of a hollow-fiber membrane reactor to det. lipase kinetics was investigated using the hydrolysis of triacetin catalyzed by lipase from C. cylindracea as a model system. The binding of the lipase to the membrane appears not to be very specific (surface adsorption), and probably its

  4. OPTIMASI ISOLASI LIPASE INDIGENOUS BIJI KAKAO (Theobroma cacao L. The Optimizing of Isolation of Cocoa Bean Indogenous Lipase (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    I D. G. Mayun Permana

    2012-05-01

    Full Text Available The aim of the research is to optimize the isolation method of cocoa bean lipase. The research is held by determining the position of lipase on cocoa bean, varying extraction medium and isolation process. The result shows that the lipase of cocoa bean is   cytosolic enzyme. The defatting process do not increase the lipase activity. Polyphenols inhibit the lipase activity, so that removal of the polyphenol will increase the activity. Blocking the polyphenol with polyvinilpolypirrolidone (PVPP will also increase the activity.The optimum consentration of PVPP is 8 %. The lipase activity will reach the highest when homogenized for 10 menit at 10,000 rpm. The best medium extraction for lipase isolation is 0.15 M phosphate buffer pH 7.5 containing sucrose 0.6 M and CaCl  1.0 mM.   ABSTRAK Penelitian ini bertujuan untuk mengoptimasi isolasi lipase indigenous biji kakao. Optimasi diawali dengan menentukan keberadaan lipase kemudian optimasi medium ekstraksi dan proses ekstraksi. Hasil penelitian menunjukkan bahwa lipase berada dalam sitosol. Penghilangan lemak tidak meningkatkan aktivitas lipase. Senyawa polifenol menghambat aktivitas lipase dan penghilangan polifenol dapat meningkatkan aktivitas lipase. Polyvinilpolypirrolidone (PVPP dapat menghambat polifenol sehingga dapat meningkatkan aktivitas lipase. Konsentrasi PVPP optimum adalah 8 % dari berat biji kakao. Proses homogenisasi optimum diperoleh dalam waktu 10 menit pada kecepatan 10.000 rpm. Medium ekstraksi untuk isolasi lipase biji kakao terbaik adalah bufer fosfat 0,15 M  dan pH 7,5 yang mengandung sukrosa 0,6 M dan 1,0 mM CaCl .

  5. Sensitive double-antibody method for simultaneous determination of insulin and growth hormone

    International Nuclear Information System (INIS)

    Koparanova, O.; Sotirov, G.; Tyrkolev, N.

    1982-01-01

    A method is described for simultaneous determination of insulin and growth hormone in one sample, using double-antibody technique. The method is characterized by appreciable sensitivity (2.5 μE/ml for insulin and a.2 ng/ml for growth hormone), exactness (variation quotient 6-16 per cent) and reproducibility (96.9-117 per cent). There was no statistically significant difference in the insulin and growth hormone values of the same sera, determined by the here suggested and the standard methods. The necessary test material for examination of either hormone is minimal (0.2 ml). One may thus extend the possibilities for radioimmunologic determination of insulin and growth hormone, when only minor amounts of serum or other biological fluid are available. The method is also less time consuming. Results are reported of statistical processing of an experimental model and different sera determined by the standard method and the one described by the authors. (author)

  6. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... lack an enzyme called lipoprotein lipase. Without this enzyme, the body cannot break down fat from digested food. Fat particles called chylomicrons build up in the blood. Risk factors include a family history of lipoprotein lipase deficiency. The condition is usually ...

  7. Effect of weight reduction on insulin sensitivity, sex hormone-binding globulin, sex hormones and gonadotrophins in obese children

    DEFF Research Database (Denmark)

    Birkebaek, N H; Lange, Aksel; Holland-Fischer, P

    2010-01-01

    Obesity in men is associated with reduced insulin sensitivity and hypoandrogenism, while obesity in women is associated with reduced insulin sensitivity and hyperandrogenism. In children, the effect of obesity and weight reduction on the hypothalamo-pituitary-gonadal axis is rarely investigated. ....... The aim of the present study was to investigate the effect of weight reduction in obese Caucasian children on insulin sensitivity, sex hormone-binding globulin (SHBG), DHEAS and the hypothalamo-pituitary-gonadal axis.......Obesity in men is associated with reduced insulin sensitivity and hypoandrogenism, while obesity in women is associated with reduced insulin sensitivity and hyperandrogenism. In children, the effect of obesity and weight reduction on the hypothalamo-pituitary-gonadal axis is rarely investigated...

  8. Potencial de biocatálise enantiosseletiva de lipases microbianas Potential of enantioselective biocatalysis by microbial lipases

    Directory of Open Access Journals (Sweden)

    Patrícia de O. Carvalho

    2005-08-01

    Full Text Available Microbial lipases have a great potential for commercial applications due to their stability, selectivity and broad substrate specificity because many non-natural acids, alcohols or amines can be used as the substrate. Three microbial lipases isolated from Brazilian soil samples (Aspergillus niger; Geotrichum candidum; Penicillium solitum were compared in terms of their stability and as biocatalysts in the enantioselective esterification using racemic substrates in organic medium. The lipase from Aspergillus niger showed the highest activity (18.2 U/mL and was highly thermostable, retaining 90% and 60% activity at 50 ºC and 60 ºC after 1 hour, respectively. In organic medium, this lipase provided the best results in terms of enantiomeric excess of the (S-active acid (ee = 6.1% and conversion value (c = 20% in the esterification of (R,S-ibuprofen with 1-propanol in isooctane. The esterification reaction of the racemic mixture of (R,S-2-octanol with decanoic acid proceeded with high enantioselectivity when lipase from Aspergillus niger (E = 13.2 and commercial lipase from Candida antarctica (E = 20 were employed.

  9. Platyphylloside Isolated From Betula platyphylla Inhibit Adipocyte Differentiation and Induce Lipolysis Via Regulating Adipokines Including PPARγ in 3T3-L1 Cells

    Science.gov (United States)

    Lee, Mina; Sung, Sang Hyun

    2016-01-01

    -regulation of HSL, perilipin, PPARγ, PDE3B, and Gia1.BPP is a novel potential agent in the prevention and treatment of obesity through its anti-adipogenic activities and lipolysis. Abbreviations used: DMEM: Dulbecco's modified Eagle's medium, FBS: fetal bovine serum, ORO: Oil Red O, PBS: phosphate buffered saline, RT: room temperature, PPAR: peroxisome proliferator-activated receptor, C/EBP: CCAAT/enhancer-binding protein, SREBP1: sterol regulatory element binding protein 1, SCD-1: steroyl-coenzyme A desaturase 1, LPL: lipoprotein lipase, aP2: adipocyte fatty acid binding protein, FAS: fatty acid synthase, HSL: hormone sensitive lipase, Giα1: GPT binding protein, PDE3B: phosphodiesterase 3B, TNFα: tumor necrosis factor α, GAPDH: glyceraldehyde 3-phosphate dehydrogenase, SD: standard deviation, EGCG: epigallocatechin-3-gallate, TZD: thiazolidinediones PMID:27867269

  10. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running.

    Science.gov (United States)

    Holland, Angelia Maleah; Kephart, Wesley C; Mumford, Petey W; Mobley, Christopher Brooks; Lowery, Ryan P; Shake, Joshua J; Patel, Romil K; Healy, James C; McCullough, Danielle J; Kluess, Heidi A; Huggins, Kevin W; Kavazis, Andreas N; Wilson, Jacob M; Roberts, Michael D

    2016-08-01

    We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum β-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss. Copyright © 2016 the American Physiological Society.

  11. Application of alkaline thermo-stable lipase(s) enzyme produced from irradiated microbial isolate in the field of detergent technology

    International Nuclear Information System (INIS)

    Ahmed, O.E.A.M.S

    2010-01-01

    Due to continuous demand for manufacture of high quality, low coast industrial detergents containing lipolytic enzymes and due to continuous accumulation of enviro-agro-industrial wastes which are good and suitable conditions for growth and reproduction of pathogenic microorganisms, our study aims at isolating thermoalkalophilic lipase producer microorganisms from enviro-agro-industrial wastes and selection of the most potent isolate for studying physiological conditions controlling enzyme formation also purification characterization and some applications on purified and crude enzyme as bio-detergent. Some environmental and industrial wastes were collected from different places. The industrial wastes include, cotton seed, soyabean, sun flower, lin seed and olive oil wastes. Environmental wastes include poultry and fish wastes, all these wastes were dried at 70 degree C, grounded and used for isolation of microorganisms and lipase(s) production.Nine thermoalkalophilic bacterial isolates were isolated from enviro-agro-industrial wastes at ph 11.5 and 70 degree C. They were purified and screening for their ability of thermoalkalo-stable lipase(s) formation, this is followed by examining the effect of different nutritional media and exposure of bacterial isolates to different doses of gamma irradiation and the influence of these radiation on lipase(s) productivity by these isolates. From the results it was found that.1- The most potent lipase(s) forming bacterial isolates were isolates number B 2 and B 3 which cultivated on medium A amended with fish-wastes as being the best nutritional medium for enzyme formation. 2-Bacterial isolate B 2 finally was selected as being the most potent lipase(s) forming bacterial isolate cultivated on fish-wastes and yeast extract (in tap water) and identified according to key's of Bergey Manual of Systematic Bacteriology (1984) as being Bacillus brevis B 2 .The optimum culture conditions for maximum biosynthesis of extracellular lipase(s

  12. Activity and stability of immobilized lipases in lipase-catalyzed modification of peanut oil

    Directory of Open Access Journals (Sweden)

    Soumanou Mohamed M.

    2004-11-01

    Full Text Available Fatty acid release during lipolysis of peanut oil using microbial free and immobilized lipases in aqueous media was developed. Immobilized lipase from Rhizomucor miehei (RML gave the best result from its ability to clive different fatty acids from peanut oil in such media. In organic solvent, interesterification of peanut oil with tricaprylin using immobilized lipases from RML, Chromobacterium viscosum (CVL and Candida rugosa (CRL was performed. The best substrate molar ratio of tricaprylin to peanut oil found was in the range 0.7 to 0.8. Using substrate molar ratio 0.7, high amount of structured triglyceride ST (about 35% MLM, 44% LML triglyceride fractions was obtained with lipase from RML in n-hexane. The results found in solvent free system were in some cases quite similar to that obtained in organic solvent. In nine successive batch interesterification in solvent free medium using immobilized RML and CRL, no significant loss of amount of both produced triacylglycerol fractions until batch 7 was observed with RML.

  13. Lipase Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/lipasetest.html Lipase Test To use the sharing features on this page, please enable JavaScript. What is a lipase test? Lipase is a type of protein made by ...

  14. 21 CFR 184.1415 - Animal lipase.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Animal lipase. 184.1415 Section 184.1415 Food and... Substances Affirmed as GRAS § 184.1415 Animal lipase. (a) Animal lipase (CAS Reg. No. 9001-62-1) is an enzyme preparation obtained from edible forestomach tissue of calves, kids, or lambs, or from animal pancreatic...

  15. Thiazolopyridines Improve Adipocyte Function by Inhibiting 11 Beta-HSD1 Oxoreductase Activity

    Directory of Open Access Journals (Sweden)

    Thirumurugan Rathinasabapathy

    2017-01-01

    Full Text Available Background. Glucocorticoid excess has been linked to clinical observations associated with the pathophysiology of metabolic syndrome. The intracellular glucocorticoid levels are primarily modulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 enzyme that is highly expressed in key metabolic tissues including fat, liver, and the central nervous system. Methods. In this study we synthesized a set of novel tetrahydrothiazolopyridine derivatives, TR-01–4, that specifically target 11β-HSD1 and studied their ability to interfere with the glucocorticoid and lipid metabolism in the 3T3-L1 adipocytes. Results. Based on the docking model and structure-activity relationships, tetrahydrothiazolopyridine derivatives TR-02 and TR-04 showed the highest potency against 11β-HSD1 by dose-dependently inhibiting conversion of cortisone to cortisol (IC50 values of 1.8 μM and 0.095 μM, resp.. Incubation of fat cells with 0.1–10 μM TR-01–4 significantly decreased cortisone-induced lipid accumulation in adipocytes and suppressed 11β-HSD1 mRNA expression. Observed reduction in adipocyte fat stores could be partially explained by decreased expression levels of adipogenic markers (PPAR-γ, aP2 and key enzymes of lipid metabolism, including fatty acid synthase (FAS, hormone sensitive lipase (HSL, and lipoprotein lipase (LPL. Conclusions. The tetrahydrothiazolopyridine moiety served as an active pharmacophore for inhibiting 11β-HSD1 and offered a novel therapeutic strategy to ameliorate metabolic alterations found in obesity and diabetes.

  16. Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes

    DEFF Research Database (Denmark)

    Hu, Liping; Deeney, Jude T; Nolan, Christopher J

    2005-01-01

    -cells. The mechanisms by which lipolysis is regulated in different tissues is, therefore, of considerable interest. Here, the effects of long-chain acyl-CoA esters (LC-CoA) on lipase activity in islets and adipocytes were compared. Palmitoyl-CoA (Pal-CoA, 1-10 microM) stimulated lipase activity in islets from both....... The inhibitory effect of LC-CoA on adipocyte HSL was dependent on phosphorylation and enhanced by acyl-CoA-binding protein (ACBP). In contrast, the stimulatory effect on islet lipase activity was blocked by ACBP, presumably due to binding and sequestration of LC-CoA. These data suggest the following intertissue...

  17. ISOLATION AND IDENTIFICATION OF LIPASE-PRODUCING FUNGI FROM LOCAL OLIVE OIL MANUFACTURE IN EAST OF ALGERIA

    Directory of Open Access Journals (Sweden)

    ALIMA RIHANI

    2018-03-01

    Full Text Available The main objective of this work was primary screening and isolation of lipase-producing microorganisms from oil-mill waste. For the screening of fungal strains with lipolytic activity, we employed a sensitive agar plate method, using a medium supplemented with CaCl2 and Tween 80. Another Tributyrin lipase activity was detected from clearing zones due to the hydrolysis of the triacylglycerols. The evolution of biomass and enzyme production has been assayed. A quantitative analysis of lipase activity was performed by the titration method using olive oil as a substrate supplemented with glucose or Tween 80. We have isolated some lipolytic strains from oil-mill effluent. Three of them were found to be excellent lipase producers that were identified as Penicillium sp, Aspergillus fumigatus and Aspergillus terreus. Lipolytic activity and biomass were enhanced in the medium supplemented by glucose. Tween 80 is also considered as a best inducer at the concentration of 1 %. In this condition, these isolates showed maximum lipase production within 24 h; achieved (3.91 IU‧mL-1 ± 0.12 for Penicillium sp.

  18. Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein-Mediated Reverse Cholesterol Transport

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall

  19. Maximization of Intracellular Lipase Production in a Lipase-Overproducing Mutant Derivative of Rhizopus oligosporus DGM 31: A Kinetic Study

    Directory of Open Access Journals (Sweden)

    Tehreema Iftikhar

    2008-01-01

    Full Text Available Regulation and maximization of lipase production in a mutant derivative of R. oligosporus has been investigated using different substrates, inoculum sizes, pH of the medium, temperature, and nitrogen sources in shake flask experiments and batch fermentation in a fermentor. The production of intracellular lipase was improved 3 times following medium optimization involving one-at-a-time approach and aeration in the fermentor. Interestingly, intracellular lipase was poorly induced by oils, instead its production was induced by sugars, mainly starch, lactose, sucrose, xylose, glucose and glycerol. Dependent variables studied were cell mass, lipase activity, lipase yield, lipase specific and volumetric rate of formation. It was confirmed that lipase production in the derepressed mutant is sufficiently uncoupled from catabolite repression. The results of average specific productivities at various temperatures worked out according to the Arrhenius equation revealed that mutation decreased the magnitude of enthalpy and entropy demand in the inactivation equilibrium during product formation, suggesting that mutation made the metabolic network of the organism thermally more stable. The highest magnitudes of volumetric productivity (QP=490 IU/(L·h and other product attributes of lipase formation occurring on optimized medium in the fermentor are greater than the values reported by other workers. The purified enzyme is monomeric in nature and exhibits stability up to 80 °C and pH=6.0–8.0. Activation energy, enthalpy and entropy of catalysis at 50 °C, and magnitudes of Gibbs free energy for substrate binding, transition state stabilization and melting point indicated that this lipase is highly thermostable.

  20. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi

    2004-01-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different...... shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall....

  1. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae

    Directory of Open Access Journals (Sweden)

    Seniwati Dali

    2011-01-01

    Full Text Available Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum temperature, thermal stability and reusability were carried out. The results showed that free lipase had optimum pH 8,2 and optimum temperature 35 °C while the immobilized lipase had optimum 8,2 and optimum temperature 45 °C. The thermal stability of the immobilized lipase, relative to that of the free lipase, was markedly increased. The immobilized lipase can be reused for at least six times.

  2. Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity

    Science.gov (United States)

    Chen, Yu-Lei; Zhu, Sha; Zhang, Lei; Feng, Pei-Jian; Yao, Xi-Kuang; Qian, Cheng-Gen; Zhang, Can; Jiang, Xi-Qun; Shen, Qun-Dong

    2016-02-01

    Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution.Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution

  3. Metabolic and hormonal alterations in cats with hepatic lipidosis.

    Science.gov (United States)

    Brown, B; Mauldin, G E; Armstrong, J; Moroff, S D; Mauldin, G N

    2000-01-01

    Hepatic lipidosis in cats is a commonly diagnosed hepatobiliary disease of unknown cause. The purpose of this prospective study was to characterize the blood hormone and lipid status of cats with hepatic lipidosis, and to compare this status to that of cats with other types of liver disease and to control cats. Twenty-three cats with hepatic disease were assigned to 1 of 2 groups on the basis of cytopathologic or histopathologic examination of the liver: group 1, hepatic lipidosis (n = 18); or group 2, cholangiohepatitis (n = 5). Ten healthy young adult cats were used as controls. Food was withheld from control animals for 24 hours before blood collection. Concentrations of plasma glucagon and serum insulin, cortisol, thyroxine, triglycerides, cholesterol, phospholipids, and nonesterified fatty acids (NEFAs) were determined in all cats, in addition to routine hematologic and serum biochemical testing. Cats with hepatic lipidosis had higher serum NEFA concentrations than cats with cholangiohepatitis or control cats (P lipidosis or control cats (P hepatic lipidosis. Serum insulin concentrations were significantly higher in control cats than in diseased cats (P hepatic disease. The high concentration of NEFAs in cats with hepatic lipidosis suggests that at least 1 factor in the pathogenesis of this syndrome may involve the regulation of hormone-sensitive lipase.

  4. Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase

    International Nuclear Information System (INIS)

    Yuecel, Yasin; Demir, Cevdet; Dizge, Nadir; Keskinler, Buelent

    2011-01-01

    Lipase enzyme from Aspergillus oryzae (EC 3.1.1.3) was immobilized onto a micro porous polymeric matrix which contains aldehyde functional groups and methyl esters of long chain fatty acids (biodiesel) were synthesized by transesterification of crude canola oil using immobilized lipase. Micro porous polymeric matrix was synthesized from styrene-divinylbenzene (STY-DVB) copolymers by using high internal phase emulsion technique and two different lipases, Lipozyme TL-100L ® and Novozym 388 ® , were used for immobilization by both physical adsorption and covalent attachment. Biodiesel production was carried out with semi-continuous operation. Methanol was added into the reactor by three successive additions of 1:4 M equivalent of methanol to avoid enzyme inhibition. The transesterification reaction conditions were as follows: oil/alcohol molar ratio 1:4; temperature 40 o C and total reaction time 6 h. Lipozyme TL-100L ® lipase provided the highest yield of fatty acid methyl esters as 92%. Operational stability was determined with immobilized lipase and it indicated that a small enzyme deactivation occurred after used repeatedly for 10 consecutive batches with each of 24 h. Since the process is yet effective and enzyme does not leak out from the polymer, the method can be proposed for industrial applications. -- Research highlights: → Lipozyme TL-100L and Novozym 388 were immobilized onto micro porous polymeric matrix by both physical adsorption and covalent linking. → Immobilized enzymes were used for synthesis of fatty acid methyl esters by transesterification of canola oil and methanol using semi-continuous operation system. → According to chromatographic analysis, Lipase Lipozyme TL-100L resulted in the highest yield of methyl ester as 92%.

  5. Effect of Nelumbo nucifera Petal Extracts on Lipase, Adipogenesis, Adipolysis, and Central Receptors of Obesity

    Directory of Open Access Journals (Sweden)

    Chandrasekaran Chinampudur Velusami

    2013-01-01

    Full Text Available N. nucifera is one among the important medicinal plants assessed for its antiobesity action in various preclinical models. The present study was aimed at investigating the antiobesity effect of methanol and successive water extracts of petals of N. nucifera by studying its effect on adipogenesis, adipolysis, lipase, serotonin (5-HT2C, cannabinoid (CNR2, melanocyte concentrating hormone (MCHR1, and melanocortin (MC4R receptors. Both methanol and successive water extracts of N. nucifera petals had an effect on inhibition of lipid storage in adipocytes and on increasing lipolysis. N. nucifera petal methanol extract exhibited the concentration-dependent inhibitory effect on lipase activity with an IC50 value of 47 µg/mL. N. nucifera petal extracts showed evident agonist and antagonist activity towards 5-HT2C and CNR2 receptors, respectively, while it showed no effect towards MCHR1 and MC4R receptors. Overall, methanol extract of N. nucifera petals showed better activity than successive water extract.

  6. Biodegradable products by lipase biocatalysis.

    Science.gov (United States)

    Linko, Y Y; Lämsä, M; Wu, X; Uosukainen, E; Seppälä, J; Linko, P

    1998-11-18

    The interest in the applications of biocatalysis in organic syntheses has rapidly increased. In this context, lipases have recently become one of the most studied groups of enzymes. We have demonstrated that lipases can be used as biocatalyst in the production of useful biodegradable compounds. A number of examples are given. 1-Butyl oleate was produced by direct esterification of butanol and oleic acid to decrease the viscosity of biodiesel in winter use. Enzymic alcoholysis of vegetable oils without additional organic solvent has been little investigated. We have shown that a mixture of 2-ethyl-1-hexyl esters can be obtained in a good yield by enzymic transesterification from rapeseed oil fatty acids for use as a solvent. Trimethylolpropane esters were also similarly synthesized as lubricants. Finally, the discovery that lipases can also catalyze ester syntheses and transesterification reactions in organic solvent systems has opened up the possibility of enzyme catalyzed production of biodegradable polyesters. In direct polyesterification of 1,4-butanediol and sebacic acid, polyesters with a mass average molar mass of the order of 56,000 g mol-1 or higher, and a maximum molar mass of about 130,000 g mol-1 were also obtained by using lipase as biocatalyst. Finally, we have demonstrated that also aromatic polyesters can be synthesized by lipase biocatalysis, a higher than 50,000 g mol-1 mass average molar mass of poly(1,6-hexanediyl isophthalate) as an example.

  7. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Karla A. [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Lopes, Flavio Marques [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil); Unidade Universitária de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO (Brazil); Yamashita, Fabio [Departamento de Tecnologia de Alimentos e Medicamentos, Laboratório de Tecnologia, Universidade Estadual de Londrina, Cx. Postal 6001, CEP 86051-990, Londrina, PR (Brazil); Fernandes, Kátia Flávia, E-mail: katia@icb.ufg.br [Departamento de Bioquímica e Biologia Molecular, Laboratório de Química de Proteínas, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO (Brazil)

    2013-04-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film.

  8. Lipase entrapment in PVA/Chitosan biodegradable film for reactor coatings

    International Nuclear Information System (INIS)

    Batista, Karla A.; Lopes, Flavio Marques; Yamashita, Fabio; Fernandes, Kátia Flávia

    2013-01-01

    This study reports the development and characterization of novel biodegradable film, based on chitosan and polyvinyl alcohol containing lipase entrapped. The films showed a thickness of 70.4 and 79 μm to PVA/Chitosan and PVA/Chitosan/Lipase, respectively. The entrapment of lipase in PVA/Chitosan film resulted in increasing of 69.4% tensile strength (TS), and 52.4% of elongation. SEM images showed the formation of a continuous film, without pores or cracks. The lipase entrapment efficiency was estimated in 92% and the films were repeatedly used for 25 hydrolytic cycles, maintaining 62% of initial activity. The PVA/Chitosan/Lipase film was used for olive oil hydrolysis of high performance. These results indicate that PVA/Chitosan/Lipase is a promising material for biotechnology applications such as triacylglycerol hydrolysis and biodiesel production. - Highlights: ► Development and characterization of PVA/Chitosan biodegradable film ► Lipase immobilization onto PVA/Chitosan film ► PVA/Chitosan/Lipase film for reactor coating ► Olive oil hydrolysis using PVA/Chitosan/Lipase film

  9. Rat lingual lipase: partial purification, hydrolytic properties, and comparison with pancreatic lipase.

    Science.gov (United States)

    Roberts, I M; Montgomery, R K; Carey, M C

    1984-10-01

    We have partially purified lingual lipase from the serous glands of rat tongue. With a combination of Triton X-100 extraction or Triton X-114 phase-separation techniques, Bio-Bead SM-2 treatment, dialysis, and gel filtration on Sephadex G-200 or Sephacryl S-300, we obtained a sparingly soluble lipid-free protein demonstrating hydrolytic activity against triglycerides and negligible phospholipase or cholesteryl esterase activities. Compared with homogenate, specific activities of the enzyme were enriched 3- to 5-fold prior to gel filtration and 10-fold after gel filtration. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration under denaturing conditions (6 M guanidine X HCl or 0.1% sodium dodecyl sulfate) revealed one major glycoprotein band with Mr approximately 50,000. Gel filtration of the active enzyme in 0.1% Triton X-100 gave an Mr approximately 270,000-300,000, suggesting extensive self-aggregation. With both tributyrin and triolein, the pH optimum of the purified enzyme was 4.0 and activity extended from pH 2.0 to 8.0. In contrast to purified human pancreatic lipase, lingual lipase hydrolyzed triglyceride emulsions and mixed micelles stabilized with both short-chain (dihexanoyl) and long-chain (egg) lecithin and were inhibited only slightly (18-25%) by micellar concentrations of two common bile salts, taurodeoxycholate and taurocholate. Our results suggest that the hydrolysis of dietary fat by lingual lipase may extend from the pharynx through the esophagus and stomach and into the upper small intestine.

  10. Endothelial lipase is a major determinant of HDL level

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tatsuro; Choi, Sungshin; Kundu, Ramendra K.; Hirata, Ken-Ichi; Rubin, Edward M.; Cooper, Allen D.; Quertermous, Thomas

    2003-01-30

    For the past three decades, epidemiologic studies have consistently demonstrated an inverse relationship between plasma HDL cholesterol (HDL-C) concentrations and coronary heart disease (CHD). Population-based studies have provided compelling evidence that low HDL-C levels are a risk factor for CHD, and several clinical interventions that increased plasma levels of HDL-C were associated with a reduction in CHD risk. These findings have stimulated extensive investigation into the determinants of plasma HDL-C levels. Turnover studies using radiolabeled apolipoprotein A-I, the major protein component of HDL, suggest that plasma HDL-C concentrations are highly correlated with the rate of clearance of apolipoprotein AI. However, the metabolic mechanisms by which HDL are catabolized have not been fully defined. Previous studies in humans with genetic deficiency of cholesteryl ester transfer protein, and in mice lacking the scavenger receptor BI (SR-BI), have demonstrated that these proteins participate in the removal of cholesterol from HDL, while observations in individuals with mutations in hepatic lipase indicate that this enzyme hydrolyzes HDL triglycerides. In this issue of the JCI, reports from laboratories of Tom Quertermous and Dan Rader now indicate that endothelial lipase (LIPG), a newly identified member of the lipase family, catalyzes the hydrolysis of HDL phospholipids and facilitates the clearance of HDL from the circulation. Endothelial lipase was initially cloned by both of these laboratories using entirely different strategies. Quertermous and his colleagues identified endothelial lipase as a transcript that was upregulated in cultured human umbilical vein endothelial cells undergoing tube formation, whereas the Rader group cloned endothelial lipase as a transcript that was upregulated in the human macrophage-like cell line THP-1 exposed to oxidized LDL. Database searches revealed that endothelial lipase shows strong sequence similarity to lipoprotein

  11. Catalytic Properties of Lipase Extracts from Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Cintia M. Romero

    2006-01-01

    Full Text Available Screening of lipolytic strains using Rhodamine-B/olive oil plate technique allowed the selection of Aspergillus niger MYA 135. Lipase production in submerged culture containing 2 % olive oil was enhanced by more than 50 % compared to basal cultural conditions. Optimal catalytic conditions for olive oil-induced lipase were pH=6.5 and 30–35 °C. These values were shifted to the acid region (4.0–6.5 and 35–37 °C when lipase extract was produced under basal conditions. Slight changes of the residual lipase activity against the pH were found. However, preincubation at either 37 or 40 °C caused an increase in the olive oil-inducible lipolytic activity. On the contrary, lipase residual activity decreases in the 30–55 °C range when it was produced in basal medium. Lipolytic extracts were almost not deactivated in presence of 50 % water-miscible organic solvents. However, water-immiscible aliphatic solvents reduced the lipase activity between 20 and 80 %.

  12. Isolation and analysis of lipase-overproducing mutants of Serratia marcescens.

    Science.gov (United States)

    Kawai, E; Akatsuka, H; Sakurai, N; Idei, A; Matsumae, H; Shibatani, T; Komatsubara, S; Omori, K

    2001-01-01

    We have isolated a lipase-overproducing mutant, GE14, from Serratia marcescens 8000 after three rounds of N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The mutant GE14 produced 95 kU/ml of extracellular lipase in the lipase medium, which was about threefold higher than that of produced by the original strain 8000. Enzymatic characteristics including specific activity of purified lipases from culture supernatants of GE14 and 8000 were almost same. The lipase gene (lipA) of GE14 contained two base substitutions; one in the promoter region and another in the N-terminal region of the lipA gene without an amino acid substitution. Promoter analysis using lipA-lacZ fusion plasmids revealed that these substitutions were responsible for the increase in the lipA expression level, independently. In contrast, no base substitution was found in the genes encoding the lipase secretion device, the Lip system. In addition, the genes coding for metalloprotease and the cell surface layer protein which are both secreted through the Lip system and associated with extracellular lipase production, also contained no base substitution. The strain GE14 carrying a high-copy-number lipA plasmid produced a larger amount of the extracellular lipase than the recombinant strains of 8000 and other mutants also did, indicating that GE14 was not only a lipase-overproducing strain, but also an advantageous host strain for overproducing the lipase by a recombinant DNA technique. These results suggest that the lipase-overproducing mutant GE14 and its recombinant strains are promising candidates for the industrial production of the S. marcescens lipase.

  13. Stability of immobilized candida sp. 99-125 Lipase for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China); Bioengineering Department, Zhengzhou University, Zhengzhou (China); Deng, L.; Nie, K.; Wang, F.; Tan, T. [Beijing Bioprocess Key Laboratory, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing (China)

    2012-12-15

    The stability of the immobilized lipase from Candida sp. 99-125 during biodiesel production was investigated. The lipase was separately incubated in the presence of various reaction components such as soybean oil, oleic acid methyl ester, n-hexane, water, methanol, and glycerol, or the lipase was stored at 60, 80, 100 and 120 C. Thereafter the residual lipase activity was determined by methanolysis reaction. The results showed that the lipase was rather stable in the reaction media, except for methanol and glycerol. The stability study performed in a reciprocal shaker indicated that enzyme desorption from the immobilized lipase mainly contributed to the lipase inactivation in the water system. So the methanol and glycerol contents should be controlled more precisely to avoid lipase inactivation, and the immobilization method should be improved with regard to lipase desorption. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference.

    Science.gov (United States)

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Queneau, Yves; Abousalham, Abdelkarim

    2017-08-01

    Lipases are essentially described as sn-1 and sn-3 regio-selective. Actually few methods are available to measure this lipase regio-selectivity, moreover they require chiral chromatography analysis or specific derivations which are discontinuous and time consuming. In this study we describe a new, convenient, sensitive and continuous spectrophotometric method to screen lipases regio-selectivity using synthetic triglycerides (TG) containing α-eleostearic acid (9Z, 11E, 13E-octadecatrienoic acid) either at the sn-1 position [1-α-eleostearoyl-2,3-octadecyl-sn-glycerol (sn-EOO)] or at the sn-3 position [1,2-octadecyl-3-α-eleostearoyl-sn-glycerol (sn-OOE)] and coated onto the wells of microtiter plates. A non-hydrolysable ether bond, with a non UV-absorbing alkyl chain, was introduced at the other sn positions to prevent acyl chain migration during TG synthesis or lipolysis. The synthesis of TG containing α-eleostearic acid was performed from S-glycidol in six steps to obtain sn-EOO and in five steps to sn-OOE. The α-eleostearic acid conjugated triene constitutes an intrinsic chromophore and, consequently, confers the strong UV absorption properties of this free fatty acid as well as of the TG harboring it. The lipase activity on coated sn-EOO or sn-OOE was measured by the increase in the absorbance at 272nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. Human and porcine pancreatic lipases, guinea pig pancreatic lipase related protein 2, Thermomyces lanuginosus lipase, Candida antarctica lipase A and Candida antarctica lipase B were all used to validate the assay. This continuous high-throughput screening method could determine directly without any processes after lipolysis the regio-selectivity of various lipases. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2

    Directory of Open Access Journals (Sweden)

    R. Sangeetha

    2014-06-01

    Full Text Available Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.

  16. Applications of immobilized Thermomyces lanuginosa lipase in interesterification

    DEFF Research Database (Denmark)

    Yang, Tiankui; Fruekilde, Maj-Britt; Xu, Xuebing

    2003-01-01

    (RSM). Thermomyces lanuginosa lipase had an activity similar to that of immobilized Rhizomucor miehei lipase (Lipozyme RM IM) in the glycerolysis of sunflower oil, but the former had higher activity at a low reaction temperature (5degreesC). Thermomyces lanuginosa lipase was found to have much lower...... catalytic activity than Lipozyme RM IM in the acidolysis of sunflower oil with caprylic acid. However, the activity of T. lanuginosa lipase was only slightly lower than that of Lipozyme RM IM in the ester-ester exchange between tripalmitin (PPP) and the ethyl esters of EPA and DHA (EE). For this reason...

  17. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue.

    Science.gov (United States)

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-08-28

    Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFalpha) values showed overexpression (198%). Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  18. Altering the activation mechanism in Thermomyces lanuginosus lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob; Vind, Jesper; Svendsen, Allan

    2014-01-01

    It is shown by rational site-directed mutagenesis of the lid region in Thermomyces lanuginosus lipase that it is possible to generate lipase variants with attractive features, e.g., high lipase activity, fast activation at the lipid interface, ability to act on water-soluble substrates......, and enhanced calcium independence. The rational design was based on the lid residue composition in Aspergillus niger ferulic acid esterase (FAEA). Five constructs included lipase variants containing the full FAEA lid, a FAEA-like lid, an intermediate lid of FAEA and TlL character, and the entire lid region...... from Aspergillus terreus lipase (AtL). To investigate an altered activation mechanism for each variant compared to that of TlL, a combination of activity- and spectroscopic-based measurements were applied. The engineered variant with a lid from AtL displayed interfacial activation comparable...

  19. Butyl acetate synthesis using immobilized lipase in calcium alginate beads

    International Nuclear Information System (INIS)

    Mohd Zulkhairi Abdul Rahim; Lee, Pat M.; Lee, Kong H.

    2008-01-01

    The esterification reaction of acetic acid and n-butanol using immobilized lipase encapsulated in calcium alginate beads (Lipase - CAB) and in chitosan coated calcium alginate beads (Lipase-CCAB) in n-hexane under mild reaction conditions were studied. Effects of temperature and substrate concentration (acetic acid and n-butanol) using Lipase - CAB, Lipase - CCAB and free lipase on the esterification reaction and their thermal stability towards esterification reaction were investigated. Results of temperature studies showed that the butyl acetate conversion increased with increase of temperature and reached the highest yield of about 70% around 50 degree Celsius for both immobilized systems but the yield of product catalyzed by free enzyme decreased as temperature was increased. Thermal stabilities studies showed that the Lipase-CCAB and Lipase-CAB were stable throughout the temperature range of 30-60 degree Celsius. However, free lipase became less stable at temperatures higher than 50 degree Celsius. The substrates, n-butanol and acetic acid exerted different effects on the esterification reaction and the reaction was favoured by higher acetic acid concentration than butanol. Kinetics parameters, Km and Vmax values for both substrates and the specific activities of the three enzyme system were also determined. The beads morphology was examined using SEM. Batch-wise operational stability studies for both immobilized systems demonstrated that the immobilized lipase performed better in the batch wise reactor system than the continuous bioreactor system and that the immobilized lipase remained active for at least 5 cycles of batch wise esterification reactions. (author)

  20. Gastric lipase: localization of the enzyme in the stomach

    International Nuclear Information System (INIS)

    DeNigris, S.J.; Hamosh, M.; Hamosh, P.; Kasbekar, D.K.

    1986-01-01

    Isolated gastric glands prepared from human and rabbit stomach secrete lipase in response to secretagogues. They have investigated the localization of this enzyme in three species (rabbit, baboon, guinea pig). Gastric mucosa was sampled from the cardia (C), fundus-smooth (FS), fundus-ruggae (FR) and the antral area (A). Lipase activity was measured in mucosal homogenates using 3 H-triolein as substrate and is expressed in units (U) = nmols free fatty acid released/min/mg wet weight. The localization of lipase is compared with that of pepsin (measured by hydrolysis of 2% hemoglobin at pH 1.8 and expressed in I.U.). Lipase is localized in a well defined area in the rabbit and is diffusely distributed in both guinea pig and baboon. The distribution of lipase and pepsin containing cells differs in all three species. The cellular origin of gastric lipase remains to be determined

  1. Differential effect of combined lipase deficiency (cld/cld) on human hepatic lipase and lipoprotein lipase secretion.

    Science.gov (United States)

    Boedeker, J C; Doolittle, M H; White, A L

    2001-11-01

    Combined lipase deficiency (cld) is a recessively inherited disorder in mice associated with a deficiency of LPL and hepatic lipase (HL) activity. LPL is synthesized in cld tissues but is retained in the endoplasmic reticulum (ER), whereas mouse HL (mHL) is secreted but inactive. In this study we investigated the effect of cld on the secretion of human HL (hHL) protein mass and activity. Differentiated liver cell lines were derived from cld mice and their normal heterozygous (het) littermates by transformation of hepatocytes with SV40 large T antigen. After transient transfection with lipase expression constructs, secretion of hLPL activity from cld cells was only 12% of that from het cells. In contrast, the rate of secretion of hHL activity and protein mass per unit of expressed hHL mRNA was identical for the two cell lines. An intermediate effect was observed for mHL, with a 46% reduction in secretion of activity from cld cells. The ER glucosidase inhibitor, castanospermine, decreased secretion of both hLPL and hHL from het cells by approximately 70%, but by only approximately 45% from cld cells. This is consistent with data suggesting that cld may result from a reduced concentration of the ER chaperone calnexin. In conclusion, our results demonstrate a differential effect of cld on hLPL, mHL, and hHL secretion, suggesting differential requirements for activation and exit of the enzymes from the ER.

  2. Lipase - Catalyzed glycerolysis of sunflower oil to produce partial glycerides.

    Directory of Open Access Journals (Sweden)

    Zaher, F. A.

    1998-12-01

    Full Text Available Partial glycerides were prepared by glycerolysis of sunflower oil in presence of lipase enzyme as catalyst. Six lipases of different origins were used and compared for their catalytic activity. These include Chromobacterium lipase, pancreatic lipase, Rhizopus arrhizus lipase, lyophilized lipase (plant lipase in addition to two lipase preparations derived from Rhizopus japonicas; Lilipase A-10 and Lilipase B-2. Chromobacterium lipase was found to be the most active as glycerolysis catalyst whereas lyophilized lipase; a plant preparation from wheat germ was the least active. The results have also shown that the lipase type affects also the product polarity and hence its field of application as a food emulsifier. Less polar products can be obtained using Chromobacterium lipase whereas the more polar ones using a fungal lipase preparation «Lipase A-10». The product polarity is also influenced by the process temperature but the mode of its effect is different for different lipases.

    Se prepararon glicéridos parciales mediante glicerolisis de aceite de girasol en presencia de lipasa como catalizador. Seis lipasas de orígenes diferentes se utilizaron y compararon en función de su actividad catalítica. Estas incluyeron lipasa de Chromobacterium, lipasa pancreática, lipasa de Rhizopus arrhizus, lipasa liofilizada (lipasa vegetal además de dos preparaciones de lipasa derivadas de Rhizopus japonicus: lilipase A-10 y lilipase B-2. Se encontró que la lipasa de Chromobacterium fue la más activa como catalizador en la glicerolisis mientras que la lipasa liofilizada, preparación vegetal a partir de germen de trigo, fue la menos activa. Los resultados mostraron que los tipos de lipasa afectan también a la polaridad de los productos y por tanto a los rendimientos en su aplicación como emulsificantes alimentarios. Los productos menos polares pueden obtenerse usando lipasa de

  3. Seed lipases: sources, applications and properties - a review

    Directory of Open Access Journals (Sweden)

    M. Barros

    2010-03-01

    Full Text Available This paper provides an overview regarding the main aspects of seed lipases, such as the reactions catalyzed, physiological functions, specificities, sources and applications. Lipases are ubiquitous in nature and are produced by several plants, animals and microorganisms. These enzymes exhibit several very interesting features, such as low cost and easy purification, which make their commercial exploitation as industrial enzymes a potentially attractive alternative. The applications of lipases in food, detergents, oils and fats, medicines and fine chemistry, effluent treatment, biodiesel production and in the cellulose pulp industry, as well as the main sources of oilseed and cereal seed lipases, are reviewed.

  4. Structural characterization of MAPLE deposited lipase biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Ausanio, Giovanni; Bloisi, Francesco [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Calabria, Raffaela [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Califano, Valeria, E-mail: v.califano@im.cnr.it [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy); Massoli, Patrizio [Istituto Motori-CNR, via G. Marconi 8, 80125 Napoli (Italy); Vicari, Luciano R.M. [CNR-SPIN and Department of Physics, Università degli Studi di Napoli Federico II, Piazzale V. Tecchio 80, 80125 Napoli (Italy)

    2014-11-30

    Highlights: • Lipase from Candida Rugosa was deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on KBr pellets, mica and glass substrate. • The deposited film was characterized morphologically and structurally by optical microscopy, SEM and FTIR analysis. • Results of characterization underlined a phenomenon of aggregation taking place. • The aggregation phenomenon was reversible since lipase showed activity in the transesterification reaction between soybean oil and isopropyl alcohol once detached from the substrate. - Abstract: Lipases (triacylglycerol ester hydrolases) are enzymes used in several industrial applications. Enzymes immobilization can be used to address key issues limiting widespread application at industrial level. Immobilization efficiency is related to the ability to preserve the native conformation of the enzyme. MAPLE (Matrix Assisted Pulsed Laser Evaporation) technique, a laser deposition procedure for treating organic/polymeric/biomaterials, was applied for the deposition of lipase enzyme in an ice matrix, using near infrared laser radiation. Microscopy analysis showed that the deposition occurred in micrometric and submicrometric clusters with a wide size distribution. AFM imaging showed that inter-cluster regions are uniformly covered with smaller aggregates of nanometric size. Fourier transform infrared spectroscopy was used for both recognizing the deposited material and analyzing its secondary structure. Results showed that the protein underwent reversible self-association during the deposition process. Actually, preliminary tests of MAPLE deposited lipase used for soybean oil transesterification with isopropyl alcohol followed by gas chromatography–mass spectrometry gave results consistent with undamaged deposition of lipase.

  5. Growth hormone insensitivity syndrome: A sensitive approach

    Directory of Open Access Journals (Sweden)

    Soumik Goswami

    2012-01-01

    Full Text Available Patients with Growth Hormone Insensitivity have characteristic phenotypic features and severe short stature. The underlying basis are mutations in the growth hormone receptor gene which gives rise to a characteristic hormonal profile. Although a scoring system has been devised for the diagnosis of this disorder, it has not been indisputably validated. The massive expense incurred in the diagnosis and treatment of this condition with suboptimal therapeutic response necessitates a judicious approach in this regard in our country.

  6. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.

    Science.gov (United States)

    Potthoff, A P; Haalck, L; Spener, F

    1998-01-15

    Tetrahydrolipstatin is known as an inhibitor for pancreatic lipase but not for microbial lipases. In this paper we demonstrate that in the presence of water-insoluble substrates like tributyrin or olive oil, tetrahydrolipstatin inhibits the lipases of Chromobacterium viscosum and Rhizopus oryzae, although with different potency. In contrast to porcine pancreatic lipase, which forms an irreversible and covalent enzyme-inhibitor complex with tetrahydrolipstatin, the inhibition of the microbial lipases is reversible as the inhibitor can be removed from the enzyme-inhibitor complex by solvent extraction. Moreover, after inhibition of Chromobacterium viscosum lipase tetrahydrolipstatin remains chemically unchanged.

  7. 21 CFR 184.1420 - Lipase enzyme preparation derived from Rhizopus niveus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Lipase enzyme preparation derived from Rhizopus... GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1420 Lipase enzyme preparation derived from Rhizopus niveus. (a) Lipase enzyme preparation contains lipase enzyme (CAS Reg. No...

  8. Production of lipase free of citrinin by Penicillium citrinum.

    Science.gov (United States)

    Pimentel, M C; Melo, E H; Lima Filho, J L; Durán, N

    1996-02-01

    Lipase (Glycerol ester hydrolase E.G. 3.1.1.3) from a Brazilian strain of Penicillium citrinum free of the mycotoxin citrinin has been investigated. Citrinin production was inhibited by using culture medium containing olive oil, soybean oil and corn oil as carbon sources. Potassium concentration and pH play an important role in citrinin production. Potassium concentration lower than 30 mM and pH below 4.5 inhibited the mycotoxin production. P. citrinum produced lipase free of extraneous proteins and citrinin when cultured using, as nitrogen source, ammonium sulphate (lipase activity of 7.88 U/mg) and yeast extract (lipase activity of 4.95 U/mg) with olive oil as carbon source. This data is relevant to the larger scale production of lipases for food technology applications, from Penicillium citrinum.

  9. Engineering Lipases: walking the fine line between activity and stability

    Science.gov (United States)

    Dasetty, Siva; Blenner, Mark A.; Sarupria, Sapna

    2017-11-01

    Lipases are enzymes that hydrolyze lipids and have several industrial applications. There is a tremendous effort in engineering the activity, specificity and stability of lipases to render them functional in a variety of environmental conditions. In this review, we discuss the recent experimental and simulation studies focused on engineering lipases. Experimentally, mutagenesis studies have demonstrated that the activity, stability, and specificity of lipases can be modulated by mutations. It has been particularly challenging however, to elucidate the underlying mechanisms through which these mutations affect the lipase properties. We summarize results from experiments and molecular simulations highlighting the emerging picture to this end. We end the review with suggestions for future research which underscores the delicate balance of various facets in the lipase that affect their activity and stability necessitating the consideration of the enzyme as a network of interactions.

  10. Study of enzymatic reactors with microencapsulated lipase. Doctoral thesis. Estudo de reactores enzimaticos com lipase microencapsulada

    Energy Technology Data Exchange (ETDEWEB)

    de Franca Teixeira dos Prazeres, D.M.

    1992-10-01

    The work reports the development of a membrane reactor for the hydrolysis of triglycerides catalyzed by lipase B from Chromobacterium viscosum in AOT/isooctane reversed miceller system. In a preliminary phase the potential of the organic system was evaluated with comparative studies on the activity and stability of lipase B in aqueous media (emulsion) and in the alternative miceller media. A tubular ceramic membrane reactor with recirculation was selected for the olive oil hydrolysis in a reversed miceller system. The influence of the hydration degree, recirculation rate, AOT, olive oil and lipase concentration in the operation of the reactor were investigated in a batch mode. The hydration degree was identified as a critical parameter due to its influence in the separation process and in the kinetics of the reaction.

  11. Genetics Home Reference: lysosomal acid lipase deficiency

    Science.gov (United States)

    ... lipase deficiency develop multi-organ failure and severe malnutrition and generally do not survive past 1 year. In the later-onset form of lysosomal acid lipase deficiency , signs and symptoms vary and usually begin in mid-childhood, although they can appear anytime up to late ...

  12. Lipase from a Brazilian strain of Penicillium citrinum.

    Science.gov (United States)

    Pimentel, M C; Krieger, N; Coelho, L C; Fontana, J O; Melo, E H; Ledingham, W M; Lima Filho, J L

    1994-10-01

    A lipases (glycerol ester hydrolases E. C. 3.1.1.3) from a brazilian strain of Penicillium citrinum has been investigated. When the microorganism was cultured in the simple medium (1.0% olive oil and 0.5% yeast extract), using olive oil in as carbon source in the inocula, the enzyme extracted showed maximum activity (409 IU/mL). In addition, decrease of yeast extract concentration also reduces the lipase activity. Nevertheless, when yeast extract was replaced by ammonium sulfate, no activity was detected. Purification by precipitation with ammonium sulfate showed best activity in the 40-60% fraction. The optimum temperature for enzyme activity was found in the range of 34-37 degrees C. However, after 30 min at 60 degrees C, the enzyme was completely inactivated. The enzyme showed optimum at pH 8.0. The dried concentrated fraction (after dialysis and lyophilization) maintained its lipase activity at room temperature (28 degrees C) for 8 mo. This result in lipase stability suggests an application of lipases from P. citrinum in detergents and other products that require a high stability at room temperature.

  13. Dependency of water concentration on ethanolysis of trioleoylglycerol by lipases

    DEFF Research Database (Denmark)

    Piyatheerawong, W.; Iwasaki, Y; Xu, Xuebing

    2004-01-01

    tested (Rhizomucor miehei lipase, Burkholderia cepacia lipase and Thermomyces lanuginosus lipase) required larger amounts of free water (ca. 7-9 wt.%) for their best performance and exhibited no ethanolysis reaction at low free water concentrations. The CALB's anomalous behavior was also observed...

  14. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    Science.gov (United States)

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  15. Bioremediation of cooking oil waste using lipases from wastes.

    Directory of Open Access Journals (Sweden)

    Clarissa Hamaio Okino-Delgado

    Full Text Available Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  16. Screening of thermophilic neutral lipase-producing Pseudomonas ...

    African Journals Online (AJOL)

    From oil-contaminated soil, three lipase-producing microorganisms were selected as good lipase producers using rhodamine B-olive oil plate agar and they were identified as from Pseudomonas, Burkholderia and Klebsiella genera by morphology, biochemical characterization and 16S rRNA gene sequencing. Among the ...

  17. Sensitivity of anterior pituitary hormones to graded levels of psychological stress.

    Science.gov (United States)

    Armario, A; Lopez-Calderón, A; Jolin, T; Castellanos, J M

    1986-08-04

    The effect of graded levels of stressor intensity on anterior pituitary hormones was studied in adult male rats. Corticosterone, considered as a reflection of ACTH release, and prolactin responses showed a good correlation with the intensity of the stressors. On the contrary, neither LH, GH nor TSH release showed a parallelism with the intensity of the stressors in spite of the fact that they clearly responded to all the stimuli. It appears that the hormones of the anterior pituitary might be divided into two groups: those whose response is sensitive to the levels of emotional arousal elicited by stress, and those displaying a clear but stereotyped response during stress. However, other alternative explanations might exist to justify the present results. The neural mechanisms underlying the two types of response are at present unknown. These data indicate that only the pituitary-adrenal axis and prolactin have some potential utilities as quantitative indices of emotional arousal elicited by currently applied stressors in the rat.

  18. Frozen Microemulsions for MAPLE Immobilization of Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2017-12-01

    Full Text Available Candida rugosa lipase (CRL was deposited by matrix assisted pulsed laser evaporation (MAPLE in order to immobilize the enzyme with a preserved native conformation, which ensures its catalytic functionality. For this purpose, the composition of the MAPLE target was optimized by adding the oil phase pentane to a water solution of the amino acid 3-(3,4-dihydroxyphenyl-2-methyl-l-alanine (m-DOPA, giving a target formed by a frozen water-lipase-pentane microemulsion. Fourier transform infrared (FTIR spectroscopy and atomic force microscopy (AFM were used to investigate the structure of MAPLE deposited lipase films. FTIR deconvolution of amide I band indicated a reduction of unfolding and aggregation, i.e., a better preserved lipase secondary structure in the sample deposited from the frozen microemulsion target. AFM images highlighted the absence of big aggregates on the surface of the sample. The functionality of the immobilized enzyme to promote transesterification was determined by thin layer chromatography, resulting in a modified specificity.

  19. Microbial lipases: Production, properties and biotechnological applications

    Directory of Open Access Journals (Sweden)

    Josana Maria Messias

    2011-09-01

    Full Text Available Lipases belong to the group of hydrolases that catalyze the hydrolysis of triacylglycerol lipids to free fatty acids and glycerol. They have significant potential biotechnological applications in catalyzing organic synthesis reactions in non-aqueous solvents using simplified procedures resulting in conversions of high yields. Lipase production has conventionally been performed by submerged fermentation; however, solid-state fermentation processes have been prominent when residues are used as substrates because they serve as low-cost nutrient sources. Microbial lipases can be used as additives in foods to modify and enhance organoleptic properties, as well as in detergents to hydrolyse fats in the treatment of oily effluents, and also have value for pharmaceutical, cosmetic, agrochemical, and oil chemical industries. More recently, they are used in transesterification reactions to convert plant seed oils into biodiesel. The objective of this work was to review the published literature on the production, properties and applications of microbial lipases, and its biotechnological role in producing biodiesel.

  20. Structure of product-bound SMG1 lipase: active site gating implications.

    Science.gov (United States)

    Guo, Shaohua; Xu, Jinxin; Pavlidis, Ioannis V; Lan, Dongming; Bornscheuer, Uwe T; Liu, Jinsong; Wang, Yonghua

    2015-12-01

    Monoacylglycerol and diacylglycerol lipases are industrially interesting enzymes, due to the health benefits that arise from the consumption of diglycerides compared to the traditional triglyceride oils. Most lipases possess an α-helix (lid) directly over the catalytic pocket which regulates the activity of the enzyme. Generally, lipases exist in active and inactive conformations, depending on the positioning of this lid subdomain. However, lipase SMG1, a monoacylglycerol and diacylglycerol specific lipase, has an atypical activation mechanism. In the present study we were able to prove by crystallography, in silico analysis and activity tests that only two positions, residues 102 and 278, are responsible for a gating mechanism that regulates the active and inactive states of the lipase, and that no significant structural changes take place during activation except for oxyanion hole formation. The elucidation of the gating effect provided data enabling the rational design of improved lipases with 6-fold increase in the hydrolytic activity toward diacylglycerols, just by providing additional substrate stabilization with a single mutation (F278N or F278T). Due to the conservation of F278 among the monoacylglycerol and diacylglycerol lipases in the Rhizomucor miehei lipase-like family, the gating mechanism described herein might represent a general mechanism applicable to other monoacylglycerol and diacylglycerol lipases as well. Database: Structural data are available in the Protein Data Bank under the accession numbers 4ZRE (F278D mutant) and 4ZRD (F278N mutant). © 2015 FEBS.

  1. Karakterisasi ekstrak kasar lipase Rhizopus stolonifer UICC 137

    Directory of Open Access Journals (Sweden)

    Sri Sumiarsih

    2001-12-01

    Full Text Available There is an increasing commercial interest in enzymatic production of biologically active component, because there are a number of well-known advantages compared to chemical synthesis. One of the most valuable synthetic features of enzyme is their ability to discriminate between enantiomers of racemic substrates. Lipase have become of great interest to the chemical industries wing their usefulness in both hydrolytic and synthesis reactions. The aim of this work was to study the production of lipase by Rhizopus stolonifer UICC 137, and determine the crude lipase preparation characteristics. The lipolytic activity was determined by titrimetric method toward oil-arabic gum emultion as a substrate. The strain produced lipase at appreciable lipolytic when cultivated for 72 hours in medium containing 3% glucose and 1% olive oil. Our data suggest that the strain produced lipase since the exponential phase of its growth. Lipase with optimum lipolytic activity was obtained at late stationary phase. The optimum condition for lipolytic activity measurement were pH of 7.5 and temperature 37oC, the crude enzyme had a specific activity 20.2 unit/ mg protein, the Vmax was 15.1 mol/ min and KM was 12.5 mg/ ml. The crude enzyme retained 79.9%, 68.0% and 52.6% of its lipolytic activity, when incubated for 90 minutes at temperature of 40, 50, and 60oC respectively.

  2. The specificity of Several Kinds Lipases on n-3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jenny Elisabeth, T Yuliani, P M Tambunan, J M Purba

    2001-04-01

    Full Text Available Several lipases from microbial and plant, i.e Rhizomucor miehei, Pseudomonas sp., Candida antartica, rice bran, and Carica papaya latex (CPL were examined for synthesis of omega-3 (n-3 PUFA-rich glyceride by hydrolysis and acidolysis reaction. Tuna oil was used in hydrolysis reaction, whereas tuna and palm oils were used as source of triglyceride (TAG molecules and n-3 PUFA concentrate from tuna oil as source of EPA and DHA in acidolysis reaction.For hydrolysis reaction, the rice bran and CPL lipases showed the lowest hydrolytic activity of the tuna oil, whereas the R. miehei lipase showed the highest hydrolytic activity but was unable to hydrolyze EPA and DHA. On the contrary, the C. antartica and Pseudomonas sp. lipases acted stronger on hydrolysis of DHA ester bond than EPA.For acidolysis reaction, all the lipases showed ability to incorporate n-3 PUFA into tuna and palm oils. C. antartica lipase had the maximum DHA incorporation into tuna and palm oils, rice bran lipase had relatively similar ability with R. miehei lipase, and the CPL lipase had the lowest ability. This study proved that rice bran and CPL lipases also had transesterification activity and showed the feasibility of the rice bran lipase to be a biocatalyst for n-3 PUFA-rich glyceride production. Increasing the substrate ratio, of n-3 PUFA concentrate and tuna or palm oil, could increase the EPA and DHA incorporation. The R. miehei, rice bran, and CPL lipases unabled to incorporate DHA into DHA-containing glyceride molecule, whereas C. antartica lipase had the capability in high ratio of n-3 PUFA concentrate to oil. Therefore, the lipases were easier to incorporate n-3 PUFA into palm oil than tuna oil, since the TAG molecules of palm oil was not as complex as tuna oil. It could be suggested that the lipases did not only have acyl chain and positional specificity, but also the whole glyceride structure specificity.

  3. Mutation induced enhanced biosynthesis of lipase | Bapiraju ...

    African Journals Online (AJOL)

    The purpose of the present investigation is to enhance production of biomedically important enzyme lipase by subjecting the indigenous lipase producing strain Rhizopus sp. BTS-24 to improvement by natural selection and random mutagenesis (UV and N-methyl-N'-nitro-N-nitroso guanidine, NTG). The isolation of mutants ...

  4. Lipase and esterase: to what extent can this classification be applied accurately?

    Directory of Open Access Journals (Sweden)

    Danielle Branta Lopes

    2011-09-01

    Full Text Available Enzyme technology is an ever-growing field of knowledge and, in recent years, this technology has raised renewed interest, due to the search for new paradigms in several productive processes. Lipases, esterases and cutinases are enzymes used in a wide range of processes involving synthesis and hydrolysis reactions. The objective of this work was to investigate and compare the specific lipase and esterase activities of five enzymes - four already classified as lipases and one classified as cutinase - in the presence of natural and synthetic substrates. All tested enzymes presented both esterase and lipase specific activities. The highest specific esterase activity was observed for Aspergillus 1068 lipase in natural substrate and for F. oxysporum cutinase in synthetic substrate, while the highest specific lipase activity was observed for Geotrichum sp. lipase in natural substrate and for F. oxysporum cutinase in synthetic substrate. These results display some interface-independent lipolytic activity for all lipases tested. This is in accordance with the rationale that a new and broader definition of lipases may be necessary.

  5. Lipase inactivation in wheat germ by gamma irradiation

    International Nuclear Information System (INIS)

    Jha, Pankaj Kumar; Kudachikar, V.B.; Kumar, Sourav

    2013-01-01

    An attempt was made to improve the shelf life of wheat germ by optimizing processing conditions involving γ-irradiation. Studies were carried out to investigate the effect of γ-irradiation (0–30 kGy doses) on the chemical composition of wheat germ with respect to variation in moisture, total ash, crude fat, free fatty acid, protein and lipase activity. The results demonstrate that shelf stability of wheat germ was achieved by inactivation of lipase at doses of γ-irradiation greater than 12 kGy. - Highlights: Ø γ-irradiation was found to inactivate Lipase present in Wheat Germ. Ø The treatment did not result in significant changes in Total Ash, Moisture and Protein Content of Wheat Germ. Ø The irradiation at 30 kGy resulted in 31.2 % inactivation of Lipase in Wheat Germ

  6. Production of Cold Active Lipase from Bacillus sp.

    OpenAIRE

    Yasemin, Sara; Arabacı, Nihan; Korkmaz Güvenmez, Hatice

    2018-01-01

    A cold active lipase producing Bacillus sp. strains were isolated from sewage of oil. Bacillus sp. strain SY-7 was determined as the best lipase producing isolate. The highest enzyme production was found at 20°C and pH 8.0 on tributyrin media. Analyses of molecular mass of the partial purified lipase was carried out by SDS-PAGE which revealed a single band as 110.5 kDa. The enzyme activity and stability were determined by spectrophotometric and titrimetric methods. The enzyme was active betwe...

  7. Zymography Detection of a Bacterial Extracellular Thermoalkaline Esterase/Lipase Activity.

    Science.gov (United States)

    Tapizquent, María; Fernández, Marleny; Barreto, Georgina; Hernández, Zully; Contreras, Lellys M; Kurz, Liliana; Wilkesman, Jeff

    2017-01-01

    Lipases are esterases that occur widely in nature, yet those with commercial relevance are exclusively from microbial origin. Glycerol and long-chain fatty acids are the products after hydrolysis of esters bonds in saponifiable lipids catalyzed by lipases. In this work, we describe lipase/esterase activity contained in cell-free fractions from thermophilic bacteria, cultured in medium containing olive oil. Analysis of the cell-free fractions by electrotransference zymography, using tributyrin as substrate, revealed bands corresponding to lipase activity. The method is simple, fast, and inexpensive.

  8. Purification and characterization of a new cold active lipase, EnL A ...

    African Journals Online (AJOL)

    Search of lipase engineering data base (LED) revealed that this protein belongs to a newly introduced super family of Candida antarctica lipase A like and to the homologous family of Aspergillus lipase like. Key words: Cold active lipase, Emericella nidulans, hydrophobic interaction chromatography, Candida antarctica ...

  9. Realm of Thermoalkaline Lipases in Bioprocess Commodities

    Directory of Open Access Journals (Sweden)

    Ahmad Firdaus B. Lajis

    2018-01-01

    Full Text Available For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network, and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT, and aeration rate. Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization are also highlighted in this article.

  10. Realm of Thermoalkaline Lipases in Bioprocess Commodities.

    Science.gov (United States)

    Lajis, Ahmad Firdaus B

    2018-01-01

    For decades, microbial lipases are notably used as biocatalysts and efficiently catalyze various processes in many important industries. Biocatalysts are less corrosive to industrial equipment and due to their substrate specificity and regioselectivity they produced less harmful waste which promotes environmental sustainability. At present, thermostable and alkaline tolerant lipases have gained enormous interest as biocatalyst due to their stability and robustness under high temperature and alkaline environment operation. Several characteristics of the thermostable and alkaline tolerant lipases are discussed. Their molecular weight and resistance towards a range of temperature, pH, metal, and surfactants are compared. Their industrial applications in biodiesel, biodetergents, biodegreasing, and other types of bioconversions are also described. This review also discusses the advance of fermentation process for thermostable and alkaline tolerant lipases production focusing on the process development in microorganism selection and strain improvement, culture medium optimization via several optimization techniques (i.e., one-factor-at-a-time, surface response methodology, and artificial neural network), and other fermentation parameters (i.e., inoculums size, temperature, pH, agitation rate, dissolved oxygen tension (DOT), and aeration rate). Two common fermentation techniques for thermostable and alkaline tolerant lipases production which are solid-state and submerged fermentation methods are compared and discussed. Recent optimization approaches using evolutionary algorithms (i.e., Genetic Algorithm, Differential Evolution, and Particle Swarm Optimization) are also highlighted in this article.

  11. Liver lipase and high-density lipoprotein. Lipoprotein changes after incubation of human serum with rat liver lipase.

    Science.gov (United States)

    Groot, P H; Scheek, L M; Jansen, H

    1983-05-16

    Human sera were incubated with rat liver lipase after inactivation of lecithin:cholesterol acyltransferase, and the changes in serum lipoprotein composition were measured. In the presence of liver lipase serum triacylglycerol and phosphatidylcholine were hydrolyzed. The main changes in the concentrations of these lipids were found in the high-density lipoprotein fraction. Subfractionation of high-density lipoprotein by rate-zonal ultracentrifugation showed a prominent decrease in all constituents of high-density lipoprotein2, a smaller decrease in the 'light' high-density lipoprotein3 and an increase in the 'heavy' high-density lipoprotein3. These data support a concept in which liver lipase is involved in high-density lipoprotein2 phospholipid and triacylglycerol catabolism and suggest that as a result of this action high-density lipoprotein2 is converted into high-density lipoprotein3.

  12. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Esterase-lipase derived from Mucor miehei. 173.140... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by...

  13. Beneficial effects of adding lipase enzyme to broiler diet

    International Nuclear Information System (INIS)

    Elbarkouky, E.M.A.

    2005-01-01

    A total number of 300 Ross broiler chicks were obtained from commercial hatchery at one day of age. The chicks were divided into three groups (50 males and 50 females in each). The first and second groups were supplemented with 3000 and 2000 lU/kg diet of lipase enzyme, respectively, while the third group served as control and fed on basal diet. Birds fed on diets that supplemented with lipase enzyme showed significant increase in body weight and dry matter intake, as well as fats and protein content dry matters. The serum lipase activity showed significant increase in treated groups compared to the control. Non-significant changes were determined in serum total lipids, T3, T4 and ash content. Birds supplemented with lipase showed significant decrease in cholesterol concentration. It could be concluded that birds fed diets containing 2000 or 3000 lU/kg diet of lipase enzyme exhibited improvement in broiler performance

  14. Anti- and pro-lipase activity of selected medicinal, herbal and aquatic plants, and structure elucidation of an anti-lipase compound.

    Science.gov (United States)

    Ado, Muhammad Abubakar; Abas, Faridah; Mohammed, Abdulkarim Sabo; Ghazali, Hasanah M

    2013-11-26

    Plants that help in slowing down the digestion of triacylglycerols (TAGs) in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98) medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL) activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents). Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4%) exhibited moderate inhibition (41%-80%) and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack) I.C Nielsen L. (jering), Cynometra cauliflora (nam-nam) and Aleurites moluccana (L.) Willd (candle nut/buah keras) had the highest (100%) anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis), activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.

  15. ENZYMATIC BIODIESEL SYNTHESIS FROM ACID OIL USING A LIPASE MIXTURE

    Directory of Open Access Journals (Sweden)

    Kelly C. N. R. Pedro

    Full Text Available The conventional biodiesel production process has some disadvantages. It is necessary to use refined vegetable oils with low free fatty acids (FFAs content. An alternative route is to use low-cost acid oils in an enzymatic process. The use of lipases allows simultaneous esterification of FFAs and transesterification of triglycerides present in raw material forming alkyl esters. The aim of this work was to study the production of biodiesel using soybean oils with different acid contents (Acid Value of 8.5, 50, 90 and ethanol catalyzed by commercial immobilized lipases (Novozym 435, Lipozyme RM IM and Lipozyme TL IM. A significant decrease of acid value was observed mainly with Novozym 435 and Lipozyme RM IM. The use of a mixture of two immobilized lipases was also investigated to decrease catalyst cost and increase the amount of ester produced. The three commercial immobilized lipases were mixed in a dual system and tested for biodiesel synthesis from acid oil (AV of 8.5, 50 and 90. A positive synergistic effect occurred mainly for Lipozyme TL IM (1,3-specific lipase and Novozym 435 (non-specific lipase blend. The ester content doubled when this lipase mixture was used in ethanolysis of acid oil with AV of 90.

  16. Prognostic Factors for Hormone Sensitive Metastatic Prostate Cancer: Impact of Disease Volume

    Science.gov (United States)

    Alhanafy, Alshimaa Mahmoud; Zanaty, Fouad; Ibrahem, Reda; Omar, Suzan

    2018-04-27

    Background and Aim: The optimal management of metastatic hormone-sensitive prostate cancer has been controversial in recent years with introduction of upfront chemohormonal treatment based on results of several Western studies. This changing landscape has renewed interest in the concept “disease volume”, the focus of the present study is the Egyptian patients. Methods: Patients with hormone sensitive metastatic prostate cancer presenting at Menoufia University Hospital, Egypt, during the period from June 2013 to May 2016, were enrolled. All received hormonal treatment. Radiologic images were evaluated and patients were stratified according to their disease volume into high or low, other clinical and pathological data that could affect survival also being collected and analyzed. Results: A total of 128 patients were included, with a median age of 70 years (53.9% ≥70). About 46% had co-morbidities, 62% having high volume disease. During the median follow up period of 28 months about half of the patients progressed and one third received chemotherapy. On univariate analysis, disease volume, performance status (PS), prostate specific antigen level (PSA) and presence of pain at presentation were identified as factors influencing overall survival. Multivariate analysis revealed the independent predictor factors for survival to be PS, PSA and disease volume. The median overall survival with 27 months was high volume versus 49 with low volume disease (hazard ratio 2.1; 95% CI 1.2 - 4.4; P=0.02). Median progression free survival was 19 months in the high volume, as compared with 48 months in the low volume disease patients (hazard ratio, 2.44; 95% CI, 1.42 – 7.4; P=0.009). Conclusions: Disease volume is a reliable predictor of survival which should be incorporated with other important factors as; patient performance status and comorbidities in treatment decision-making. Creative Commons Attribution License

  17. Resistin in Dairy Cows: Plasma Concentrations during Early Lactation, Expression and Potential Role in Adipose Tissue

    Science.gov (United States)

    Reverchon, Maxime; Ramé, Christelle; Cognié, Juliette; Briant, Eric; Elis, Sébastien; Guillaume, Daniel; Dupont, Joëlle

    2014-01-01

    Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP) and at five months of gestation (5 MG). We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA) levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6) in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase) and HSL (hormone-sensitive lipase) in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro. PMID:24675707

  18. Resistin in dairy cows: plasma concentrations during early lactation, expression and potential role in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Maxime Reverchon

    Full Text Available Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP and at five months of gestation (5 MG. We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6 in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase and HSL (hormone-sensitive lipase in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro.

  19. Investigation of Lipid Metabolism by a New Structured Lipid with Medium- and Long-Chain Triacylglycerols from Cinnamomum camphora Seed Oil in Healthy C57BL/6J Mice.

    Science.gov (United States)

    Hu, Jiang-Ning; Shen, Jin-Rong; Xiong, Chao-Yue; Zhu, Xue-Mei; Deng, Ze-Yuan

    2018-02-28

    In the present study, a new structured lipid with medium- and long-chain triacylglycerols (MLCTs) was synthesized from camellia oil (CO) and Cinnamomum camphora seed oil (CCSO) by enzymatic interesterification. Meanwhile, the antiobesity effects of structured lipid were investigated through observing the changes of enzymes related to lipid mobilization in healthy C57BL/6J mice. Results showed that after synthesis, the major triacylgeride (TAG) species of intesterificated product changed to LaCC/CLaC (12.6 ± 0.46%), LaCO/LCL (21.7 ± 0.76%), CCO/LaCL (14.2 ± 0.55%), COO/OCO (10.8 ± 0.43%), and OOO (18.6 ± 0.64%). Through second-stage molecular distillation, the purity of interesterified product (MLCT) achieved 95.6%. Later, male C57BL/6J mice were applied to study whether the new structured lipid with MLCT has the efficacy of preventing the formation of obesity or not. After feeding with different diets for 6 weeks, MLCTs could reduce body weight and fat deposition in adipose tissue, lower plasma triacylglycerols (TG) (0.89 ± 0.16 mmol/L), plasma total cholesterol (TC) (4.03 ± 0.08 mmol/L), and hepatic lipids (382 ± 34.2 mg/mice) by 28.8%, 16.0%, and 30.5%, respectively, when compared to the control 2 group. This was also accompanied by increasing fecal lipids (113%) and the level of enzymes including cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), hormone-sensitive lipase (HSL), and adipose triglyceride lipase (ATGL) related to lipid mobilization in MLCT group. From the results, it can be concluded that MLCT reduced body fat deposition probably by modulating enzymes related to lipid mobilization in C57BL/6J mice.

  20. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    Science.gov (United States)

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  1. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    Directory of Open Access Journals (Sweden)

    Shiqi Zhang

    2018-03-01

    Full Text Available Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1, an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c and its target genes, diacylglycerol acyltransferase (DGAT 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL and CGI-58 for adipose triglyceride lipase (ATGL, thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α, interleukin 1 beta (IL-1β, and interleukin 6 (IL-6 induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  2. Biotechnological applications of halophilic lipases and thioesterases.

    Science.gov (United States)

    Schreck, Steven D; Grunden, Amy M

    2014-02-01

    Lipases and esterases are enzymes which hydrolyze ester bonds between a fatty acid moiety and an esterified conjugate, such as a glycerol or phosphate. These enzymes have a wide spectrum of use in industrial applications where their high activity, broad substrate specificity, and stability under harsh conditions have made them integral in biofuel production, textile processing, waste treatment, and as detergent additives. To date, these industrial applications have mainly leveraged enzymes from mesophilic and thermophilic organisms. However, increasingly, attention has turned to halophilic enzymes as catalysts in environments where high salt stability is desired. This review provides a brief overview of lipases and esterases and examines specific structural motifs and evolutionary adaptations of halophilic lipases. Finally, we examine the state of research involving these enzymes and provide an in-depth look at an exciting algal-based biofuel production system. This system uses a recombinant halophilic lipase to increase oil production efficiency by cleaving algal fatty acids from the acyl carrier protein, which eliminates feedback inhibition of fatty acid synthesis.

  3. Immobilization of Isolated Lipase From Moldy Copra (Aspergillus Oryzae)

    OpenAIRE

    Dali, Seniwati; Patong, A. B. D. Rauf; Jalaluddin, M. Noor; Pirman; Hamzah, Baharuddin

    2011-01-01

    Enzyme immobilization is a recovery technique that has been studied in several years, using support as a media to help enzyme dissolutions to the reaction substrate. Immobilization method used in this study was adsorption method, using specific lipase from Aspergillus oryzae. Lipase was partially purified from the culture supernatant of Aspergillus oryzae. Enzyme was immobilized by adsorbed on silica gel. Studies on free and immobilized lipase systems for determination of optimum pH, optimum ...

  4. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    International Nuclear Information System (INIS)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio; Fukusaki, Eiichiro

    2009-01-01

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R 2 values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  5. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshihiro; Okazawa, Atsushi; Bamba, Takeshi; Kobayashi, Akio [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukusaki, Eiichiro, E-mail: fukusaki@bio.eng.osaka-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2009-08-26

    In recent plant hormone research, there is an increased demand for a highly sensitive and comprehensive analytical approach to elucidate the hormonal signaling networks, functions, and dynamics. We have demonstrated the high sensitivity of a comprehensive and quantitative analytical method developed with nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry (LC-ESI-IT-MS/MS) under multiple-reaction monitoring (MRM) in plant hormone profiling. Unlabeled and deuterium-labeled isotopomers of four classes of plant hormones and their derivatives, auxins, cytokinins (CK), abscisic acid (ABA), and gibberellins (GA), were analyzed by this method. The optimized nanoflow-LC-ESI-IT-MS/MS method showed ca. 5-10-fold greater sensitivity than capillary-LC-ESI-IT-MS/MS, and the detection limits (S/N = 3) of several plant hormones were in the sub-fmol range. The results showed excellent linearity (R{sup 2} values of 0.9937-1.0000) and reproducibility of elution times (relative standard deviations, RSDs, <1.1%) and peak areas (RSDs, <10.7%) for all target compounds. Further, sample purification using Oasis HLB and Oasis MCX cartridges significantly decreased the ion-suppressing effects of biological matrix as compared to the purification using only Oasis HLB cartridge. The optimized nanoflow-LC-ESI-IT-MS/MS method was successfully used to analyze endogenous plant hormones in Arabidopsis and tobacco samples. The samples used in this analysis were extracted from only 17 tobacco dry seeds (1 mg DW), indicating that the efficiency of analysis of endogenous plant hormones strongly depends on the detection sensitivity of the method. Our analytical approach will be useful for in-depth studies on complex plant hormonal metabolism.

  6. KARAKTERISASI SIFAT-SIFAT BIOKIMIA EKSTRAK KASAR LIPASE EKSTRASELULER BAKTERI Azospirillum sp.PRD1

    Directory of Open Access Journals (Sweden)

    Santi Nur Handayani

    2011-11-01

    Full Text Available Enzim lipase mempunyai peranan penting dalam katalis berbagai reaksi industri satu diantaranya pembuatan flavor melalui reaksi esterifikasi. Lipase adalah biokatalis yang berperan besar dalam aplikasi bioteknologi, seperti dalam sintesis biopolimer, biodiesel, produksi obat, dan produksi flavor. Peningkatan penggunaan lipase untuk industri mendorong dilakukan penelitian untuk mendapatkan sumber-sumber lipase baru. Sumber lipase yang potensial salah satunya adalah bakteri Azospirillum sp.PRD1 dari isolat lokal Laboratorium Mikrobiologi, Fakultas Biologi Universitas Jenderal Soedirman. Tujuan penelitian adalah untuk mendapatkan ekstrak kasar lipase dan menentukan karakteristik sifat-sifat biokimiawinya. Metode yang digunakan antara lain peremajaan bakteri Azospirillum sp.PRD1, dan produksi inokulum, penentuan waktu produksi optimum dan fase pertumbuhan bakteri, ekstraksi dan produksi ekstrak kasar lipase dan penentuan karakteristik sifat-sifat biokimiawinya. Hasil penelitian diperoleh ekstrak kasar lipase dari inokulum berumur 7 jam dan medium produksi dengan induser minyak zaitun yang diinkubasi selama 3 jam memiliki aktivitas spesifik 7,0547 Unit/mg. Lipase ekstrak kasar optimum pada pH 7, suhu 40 oC dan waktu inkubasi selama 25 menit. Lipase merupakan metaloenzim dengan kofaktor Zn2+ , Mn2+, Hg2+, Ca2+, Co2+ and Mg2+.

  7. Epinephrine as a metabolic regulatory hormone in irradiated rats

    International Nuclear Information System (INIS)

    Mohamed, M.A.; Saada, H.N.; Roushdy, H.M.; Awad, O.M.; El-Sayed, M.M.; Azab, Kh.Sh.

    1997-01-01

    The role of epinephrine as a regulatory hormone was examined in normal and irradiated rats. Epinephrine was intraperitoneally injected into rats at a concentration of 200 Mg/kg body weight. Epinephrine was injected either 15 minutes before or just after whole body gamma irradiation 6 Gy 9 single dose). The variations in serum epinephrine,norepinephrine, triglycerides,lipase activity, glucose and lactic acid were selected as biochemical markers in this study. Biochemical estimations were undertaken at 1 hr, 4 hrs. 1,3 and 7 days treatment (after irradiation). The data obtained revealed that the treatment of normal rats with epinephrine induced a significant increase in serum epinephrine level 1 hr after injection, while the level of norepinephrine significantly increased at 4 hrs. Lipase activity significantly increased on the 1 ST hr post treatment. A significant decrease in the level of triglycerides was recorded 1 and 4 hrs post treatment. Serum glucose significantly increased at 1 and 4 hrs post treatment, while no significant changes were recorded for lactic acid. In gamma irradiated rats, the level of serum epinephrine significantly decreased at 1 hr followed by significant increases recorded at 1,3, and 7 days after irradiation. Norepinephrine levels significantly decreased after irradiation during all the experimental time periods. The levels of triglycerides show significant increases accompanied by decrease in lipase activity

  8. Yeast Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp.

    Science.gov (United States)

    Šiekštelė, Rimantas; Veteikytė, Aušra; Tvaska, Bronius; Matijošytė, Inga

    2015-10-01

    Many microbial lipases have been successfully expressed in yeasts, but not in industrially attractive Kluyveromyces lactis, which among other benefits can be cultivated on a medium supplemented with whey--cheap and easily available industrial waste. A new bacterial lipase from Serratia sp. was isolated and for the first time expressed into the yeast Kluyveromyces lactis by heterologous protein expression system based on a strong promoter of Kluyveromyces marxianus triosephosphate isomerase gene and signal peptide of Kluyveromyces marxianus endopolygalacturonase gene. In addition, the bacterial lipase gene was synthesized de novo by taking into account a codon usage bias optimal for K. lactis and was expressed into the yeast K. lactis also. Both resulting strains were characterized by high output level of the target protein secreted extracellularly. Secreted lipases were characterized for activity and stability.

  9. Anti- and Pro-Lipase Activity of Selected Medicinal, Herbal and Aquatic Plants, and Structure Elucidation of an Anti-Lipase Compound

    Directory of Open Access Journals (Sweden)

    Muhammad Abubakar Ado

    2013-11-01

    Full Text Available Plants that help in slowing down the digestion of triacylglycerols (TAGs in the pancreas and small intestine of humans play an important role in the reduction of obesity. On the other hand, there may be plants or plant parts that stimulate intestinal lipolytic activity, thus contributing to greater TAG assimilation. The aim of this study was to evaluate the aqueous methanolic extracts of ninety eight (98 medicinal, herbal and aquatic plant materials from Malaysia for their effect on porcine pancreatic lipase (PPL activity and to identify the structure of an anti-lipase compound from one of the sources. The degree of inhibition was also quantified as relative to orlistat activity against PPL (orlistat equivalents. Results revealed that while 19.4% of the extracts were found to have anti-lipase activity ≥80%, 12% were actually found to promote PPL activity. Twenty two percent (22.4% exhibited moderate inhibition (41%–80% and 2% were neutral toward PPL activity. The ripe fruit of Averrhoa carambola and the leaves of Archidendron jiringa (Jack I.C Nielsen L. (jering, Cynometra cauliflora (nam-nam and Aleurites moluccana (L. Willd (candle nut/buah keras had the highest (100% anti-lipase activity and are equivalent to 0.11 µg orlistat/mL. Plants that stimulated lipase activity included Pimpinella anisum L. (aniseed/jintan manis, activating the enzyme by 186.5%. Kaempferol 3-O-rhamnoside was isolated from the ethyl acetate fraction of C. cauliflora leaves and found to be an active lipase inhibitor. The structure was elucidated using 1H-NMR, 13C-NMR and 2D-NMR analyses.

  10. Serum Lipase as Clinical Laboratory Index for Chronic Renal Failure Diagnosis.

    Science.gov (United States)

    Zhu, Ying; Dong, Jing; Wang, Ping; Huang, Huifang; Jin, Xiaohua; Zhou, Jingou; Shi, Jingfang; Gu, Guohao; Chen, Jun; Xu, Jun; Song, Yanhui

    2016-07-01

    Measuring the level of serum lipase has been used for the clinical diagnosis of acute pancreatitis. Reports showed that the serum lipase level increased in patients of clinical renal failure. In this study, we aimed to measure the change of serum lipase levels in chronic kidney diseases and determine whether it could serve as a clinical laboratory index for clinical renal failure diagnosis. Materials: The OLYMPUS AU5400 automatic biochemical analyzer was used to determine the serum levels of lipase and creatinine. The study included 120 cases in the clinical renal failure group, 76 cases in the nephrotic syndrome group, 81 cases in the chronic nephritis group, and 80 healthy controls from our hospital volunteers in the same period. We then compared the lipase levels and conducted statistical analyses among these groups. The serum lipase levels were 15.3 U/L, 79.8 U/L, 45.1 U/L, and 51.0 U/L in the normal control, clinical renal failure, nephrotic syndrome, and chronic nephritis groups, respectively. The lipase levels in the groups with diseases were significantly different compared with that of the normal control group (p renal failure group was significantly higher than that of the nephrotic syndrome group and chronic nephritis group (p chronic nephritis group (p > 0.05) was observed. Moreover, an association of the serum lipase with disease progression was observed in the study. Serum lipase is an effective serological index which can reflect the clinical changes in the clinical renal failure and tends to increase through the progression of renal dysfunction.

  11. Enhancement of lipase catalyzed-fatty acid methyl esters production from waste activated bleaching earth by nullification of lipase inhibitors.

    Science.gov (United States)

    Dwiarti, Lies; Ali, Ehsan; Park, Enoch Y

    2010-01-01

    This study sought to identify inhibitory factors of lipase catalyzed-fatty acid methyl esters (FAME) production from waste activated bleaching earth (wABE). During the vegetable oil refinery process, activated bleaching earth (ABE) is used for removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted from the wABE with methanol and evaluated by infra-red (IR) spectroscopy, which revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the lipase during FAME conversion from wABE. The inhibition by a mixture of chlorophyll a and b was found to be competitive. The inhibition of the enzymatic hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was competitive, while the inhibition by chlorophyll b alone was non-competitive. Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum FAME production rate improved 120-fold, as compared to that without the addition of KOH. The alkali-combined lipase significantly enhanced the FAME production rate from wABE, in spite of the presence of the plant pigments, and even when a lower amount of lipase was used as a catalyst.

  12. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    Directory of Open Access Journals (Sweden)

    Remesar Xavier

    2007-08-01

    Full Text Available Abstract Background Short-term OE (oleoyl-estrone treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL were decreased by 52%, those of Fatty Acid Synthase (FAS by 95%, those of Hormone Sensible Lipase (HSL by 32%, those of Acetyl CoA Carboxylase (ACC by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b by 45%, and those of Fatty Acid Transport Protein 1 (FATP1 and Adipocyte Fatty Acid Binding Protein (FABP4 by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα values showed overexpression (198%. Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  13. Lipase catalyzed ester synthesis for food processing industries

    Directory of Open Access Journals (Sweden)

    Aravindan Rajendran

    2009-02-01

    Full Text Available Lipases are one of the most important industrial biocatalyst which catalyzes the hydrolysis of lipids. It can also reverse the reaction at minimum water activity. Because of this pliable nature, it is widely exploited to catalyze the diverse bioconversion reactions, such as hydrolysis, esterification, interesterification, alcoholysis, acidolysis and aminolysis. The property to synthesize the esters from the fatty acids and glycerol promotes its use in various ester synthesis. The esters synthesized by lipase finds applications in numerous fields such as biodiesel production, resolution of the recemic drugs, fat and lipid modification, flavour synthesis, synthesis of enantiopure pharmaceuticals and nutraceuticals. It plays a crucial role in the food processing industries since the process is unaffected by the unwanted side products. Lipase modifications such as the surfactant coating, molecular imprinting to suit for the non-aqueous ester synthesis have also been reported. This review deals with lipase catalyzed ester synthesis, esterification strategies, optimum conditions and their applications in food processing industries.Lipases são catalizadores industriais dos mais importantes, os quais catalizam a hidrólise de lipídeos. Também podem reverter a reação a um mínimo de atividade de água. Devido sua natureza flexível, é amplamente explorada para catalizar uma diversidade de reações de bioconversão como hidrólise, esterificação, interesterificação, alcoólise, acidólise e aminólise. A propriedade de síntese de esteres a partir de ácidos graxos e glicerol promoveu seu uso em várias sínteses de esteres. Os esteres sintetizados por lipases encontram aplicação em numerosos campos como a produção de biodiesel, resolução de drogas racêmicas, modificação de gorduras e lipídios, sintese de aromas, síntese de produtos farmacêuticos enantiopuro e nutracêuticos. As lipases possuem um papel crucial nas indústrias de

  14. Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity

    DEFF Research Database (Denmark)

    Mathiassen, Jakob Hovalt; Nejrup, Rikke Guldhammer; Frøkiær, Hanne

    2015-01-01

    in particular to limit fatty acid absorption in babies given infant formulas. Since interaction between the lipid droplet and the gastric and duodenal lipases occur through the hydrophobic/hydrophilic interface, the composition of the emulsifier may be crucial for efficient hydrolysis. We therefore determined...... hydrolytic rate of gastric lipase and pancreatic lipase, on their own or pancreatic lipase after gastric lipase on TAG droplets of similar size emulsified in either soy lecithin (SL) or in bovine milk phospholipids (MPL), more similar to human milk globule membrane lipids than soy lecithin. Gastric lipase...... for formulas for term-born infants....

  15. Study the effect of F17S mutation on the chimeric Bacillus thermocatenulatus lipase

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Khaleghinejad

    2016-06-01

    Full Text Available Lipases (triacylglycerol acylhydrolase, EC 3.1.1.3 are one of the highest value commercial enzymes as they have potential applications in biotechnology for detergents, food, pharmaceuticals, leather, textiles, cosmetics, and paper industries; and are currently receiving considerable attention because of their potential applications in biotechnology. Bacillus thermocatenulatus Lipase 2 (BTL2 is one of the most important research targets, because of its potential industrial applications. In this study, the effect of substitution Phe17 with Ser in mutated BTL2 lipase, which conserved pentapeptide (112Ala-His-Ser-Gln-Gly116 was replaced with similar sequences (207Gly-Glu-Ser-Ala-Gly211 of Candida rugosa lipase (CLR at the nucleophilic elbow region. Docking results confirmed the mutated lipase to be better than the chimeric lipase. So, cloning was conducted, and the mutated and chimeric btl2 genes were expressed in Escherichia coli, and then the enzymes were purified by anion exchange chromatography. The mutation increased lipase lipolytic activity against most of the applied substrates, with the exception of tributyrin when compared with chimeric lipase. Further, the mutated lipase exhibited higher activity than the chimeric lipase at all temperatures. Optimum pH of the mutated lipase was obtained at pH 9.5, which was more than the chimeric one. Enzyme activity of the mutated lipase in the presence of organic solvents, detergents, and metal ions was also improved than the chimeric lipase.

  16. A lipase with broad temperature range from an alkaliphilic gamma-proteobacterium isolated in Greenland

    DEFF Research Database (Denmark)

    Schmidt, Mariane; Larsen, Dorte Møller; Stougaard, Peter

    2010-01-01

    A gamma-proteobacterium related to the genera Alteromonadales and Pseudomonadales , isolated from a cold and alkaline environment in Greenland, has been shown to produce a lipase active between 5 ° C and 80 ° C, with optimal activity at 55 ° C and pH 8. PCR-based screening of genomic DNA from...... the isolated bacterium, followed by genome walking, resulted in two complete open reading frames, which were predicted to encode a lipase and its helper protein, a lipase foldase. The amino acid sequence derived for the lipase showed resemblance to lipases from Pseudomonas , Rhodoferax, Aeromonas and Vibrio...... . The two genes were cloned into different expression systems in E. coli with or without a putative secretion sequence, but despite the fact that both recombinant lipase and lipase foldase were observed on SDS–PAGE, no recombinant lipase activity was detected. Attempts to refold the recombinant lipase...

  17. Desempenho de diferentes lipases imobilizadas na síntese de biodiesel de óleo de palma = Performance of different immobilized lipases in palm oil biodiesel synthesis

    Directory of Open Access Journals (Sweden)

    Grazielle dos Santos Silva

    2011-04-01

    Full Text Available O presente trabalho teve como objetivo determinar as condicoes otimizadas da sintese enzimatica de biodiesel, a partir do oleo de palma e etanol, empregando diferentes lipases imobilizadas (lipase de Pseudomonas fluorescens imobilizada em SiO2-PVA e lipase de Candida antartica imobilizada em resina acrilica - Novozym„µ 435 em meio isento de solvente. Uma matriz de planejamento fatorial foi utilizada para avaliar a influencia da temperatura (42 ¡V 58„aC e a razao molar entre etanol e oleo de palma (6:1 ¡V 18:1 no rendimento detransesterificacao alcancado para cada preparacao de lipase. Os efeitos principais foram ajustados por analise de regressao multipla a modelos lineares e o rendimento maximo foi obtido quando o sistema operacional foi operado a 42„aC com substratos contendo etanol eoleo de palma na razao molar de 18:1. Os modelos matematicos que representam o rendimento global da reacao para cada lipase imobilizada foram considerados adequados para descrever os resultados experimentais.Optimized conditions for palm oil and ethanol enzymatic biodiesel synthesis were determined with different immobilized lipases SiO2-PVA-immobilized lipase from Pseudomonas fluorescens and acrylic resin-immobilized lipase, NovozymR435, from Candida antartica, in solvent-free medium. A full factorial design assessed the influence oftemperature (42 ¡V 58¢XC and ethanol: palm oil (6:1 ¡V 18:1 molar ratio on the transesterification yield. Main effects were adjusted by multiple regression analysis to linear models and the maximum transesterification yield was obtained at 42¢XC and 18:1 ethanol:palm oil molar ratio. Mathematical models featuring total yield for each immobilized lipase were suitable to describe the experimental results.

  18. AKTIVITAS HIDROLISIS ENZIM LIPASE DARI KENTOS KELAPA TERHADAP MINYAK KELAPA Hidrolysis Activity of Lipase Enzyme from Coconut Houstorium for Coconut Oil

    Directory of Open Access Journals (Sweden)

    Mohammad Su’i

    2012-05-01

    Full Text Available This research was aimed to study hydrolysis conditions of houstorium lipases enzyme using coconut oil as substrate. Hydrolysis conditions studied were substrate (coconut oil concentration, enzyme substrate ratio, duration of hydro- lysis and effect of stirring to hydrolysis. The results show  that lipase of coconut houstorium may be optimally used at a coconut oil concentration of 10 %, enzyme to substrate ratio of 3 : 10 (v/v and hydrolysis for 60 minutes with stirring. ABSTRAK Penelitian ini mempelajari kondisi hidrolisis minyak kelapa yang optimum menggunakan enzim lipase dari kentos kelapa. Kondisi hidrolisis yang dipelajari meliputi konsentrasi substrat optium, perbandingan enzim : substrat dan lama hidrolisis yang optimum serta pengaruh pengadukan selama hidrolisis. Hasil penelitian menunjukkan bahwa, hidrolisis minyak kelapa menggunakan enzim lipase kentos kelapa menghasilkan asam lemak bebas paling banyak pada kon- sentrasi substrat (minyak kelapa 10 %, perbandingan enzim : substrat yaitu 3 : 10 (v/v, lama hidroloisa 60 menit dan dilakukan pengadukan selama hidrolisis.

  19. Streptomyces rimosus GDS(L Lipase: Production, Heterologous Overexpression and Structure-Stability Relationship

    Directory of Open Access Journals (Sweden)

    Marija Abramić

    2003-01-01

    Full Text Available Streptomyces rimosus lipase gene has been overexpressed in a heterologous host, S. lividans TK23. The maximal lipase activity was determined in the culture filtrates of the late stationary phase. Time course of lipase production was monitored by a modified plate assay. S. rimosus lipase gene has been located on the AseI B fragment approximately 2 Mb far from the left end of the S. rimosus linear chromosome. Out of eight examined streptomycetes, the presence of this rare type of bacterial lipase gene was detected in two belonging to the S. rimosus taxonomic cluster, and in one non-related species. Comparison of protein sequences of the Streptomyces lipolytic enzymes was performed. The result indicated the best structural stability of the putative S. coelicolor lipase-2.

  20. A Quantitative Fluorescence-Based Lipase Assay

    Directory of Open Access Journals (Sweden)

    Giovanna Lomolino

    2012-01-01

    Full Text Available An easy and fast gel diffusion assay for detecting and monitoring lipase activity by quantification of fluorescein is described. By measuring the intensity of fluorescein, it is possible to obtain a calibration curve with a regression coefficient better than by using the radius of fluorescent haloes. Through the quantification of fluorescence intensity of fluorescein released after the hydrolysis of a fluorescent ester, fluorescein dibutyrate, used as substrate in agar plates, commercial and skimmed milk lipase activity were studied. Moreover, with this method, lipase activity can be monitored in reaction medium that contains compounds which are affected by turbidity or cause measurement interference for UV-spectrophotometer and fluorimeter. In this experiment, boiled skimmed milk was dispersed in the agar gel with fluorescein dibutyrate, and it was used as a reaction medium to mimic natural conditions. The development of such an assay has a potential for applications in industries ranging from pharmaceuticals to food production and monitoring.

  1. Gamma-irradiation sterilization of lipases for cheese making

    Energy Technology Data Exchange (ETDEWEB)

    Umanskij, M S; Borovkova, Yu A; Odegov, N I [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Maslodel' noj i Syrodel' noj Promyshlennosti, Uglich (USSR)

    1979-03-01

    The possibility of sterilizing the enzyme compounds of lipases from Oospora fragrans strains by gamma irradiation was studied. The enzyme compounds were exposed to gamma irradiation at the doses from 0.1 to 0.8 Mrad with the discreteness of 0.1 Mrad and at the dose of 2.0 Mrad. After the radiation treatment the lipases were investigated for bacterial invasion by the cultivation method and for the lipolytic activity by the titrometrical method. It is shown that the sterilization effect is achieved without losses of lipase activity and the radiation dose necessary for sterilization depends on initial invasion levels in the enzyme compounds.

  2. Selection and optimization of extracellular lipase production using ...

    African Journals Online (AJOL)

    The aim of this study was to isolate and select lipase-producing microorganisms originated from different substrates, as well as to optimize the production of microbial lipase by submerged fermentation under different nutrient conditions. Of the 40 microorganisms isolated, 39 showed a halo around the colonies and 4 were ...

  3. Optimization of lipase production by Staphylococcus sp. Lp12

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... an enormous attention because of their biotechnological applications. Lipases remain ... selective transformations. The exponential increase in .... mass) lipase production and pH at regular intervals of time 24, 48 and 72 h on ...

  4. New lipases by mining of Pleurotus ostreatus genome.

    Directory of Open Access Journals (Sweden)

    Alessandra Piscitelli

    Full Text Available The analysis of Pleurotus ostreatus genome reveals the presence of automatically annotated 53 lipase and 34 carboxylesterase putative coding-genes. Since no biochemical or physiological data are available so far, a functional approach was applied to identify lipases from P. ostreatus. In the tested growth conditions, four lipases were found expressed, with different patterns depending on the used C source. Two of the four identified proteins (PleoLip241 and PleoLip369, expressed in both analysed conditions, were chosen for further studies, such as an in silico analysis and their molecular characterization. To overcome limits linked to native production, a recombinant expression approach in the yeast Pichia pastoris was applied. Different expression levels were obtained: PleoLip241 reached a maximum activity of 4000 U/L, whereas PleoLip369 reached a maximum activity of 700 U/L. Despite their sequence similarity, these enzymes exhibited different substrate specificity and diverse stability at pH, temperature, and presence of metals, detergents and organic solvents. The obtained data allowed classifying PleoLip241 as belonging to the "true lipase" family. Indeed, by phylogenetic analysis the two proteins fall in different clusters. PleoLip241 was used to remove the hydrophobic layer from wool surface in order to improve its dyeability. The encouraging results obtained with lipase treated wool led to forecast PleoLip241 applicability in this field.

  5. Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae.

    Science.gov (United States)

    Huge-Jensen, B; Andreasen, F; Christensen, T; Christensen, M; Thim, L; Boel, E

    1989-09-01

    The cDNA encoding the precursor of the Rhizomucor miehei triglyceride lipase was inserted in an Aspergillus oryzae expression vector. In this vector the expression of the lipase cDNA is under control of the Aspergillus oryzae alpha-amylase gene promoter and the Aspergillus niger glucoamylase gene terminator. The recombinant plasmid was introduced into Aspergillus oryzae, and transformed colonies were selected and screened for lipase expression. Lipase-positive transformants were grown in a small fermentor, and recombinant triglyceride lipase was purified from the culture broth. The purified enzymatically active recombinant lipase (rRML) secreted from A. oryzae was shown to have the same characteristics with respect to mobility on reducing SDS-gels and amino acid composition as the native enzyme. N-terminal amino acid sequencing indicated that approximately 70% of the secreted rRML had the same N-terminal sequence as the native Rhizomucor miehei enzyme, whereas 30% of the secreted rRML was one amino acid residue shorter in the N-terminal. The recombinant lipase precursor, which has a 70 amino acid propeptide, is thus processed in and secreted from Aspergillus oryzae. We have hereby demonstrated the utility of this organism as a host for the production of recombinant triglyceride lipases.

  6. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  7. Lipase polystyrene giant amphiphiles.

    Science.gov (United States)

    Velonia, Kelly; Rowan, Alan E; Nolte, Roeland J M

    2002-04-24

    A new type of giant amphiphilic molecule has been synthesized by covalently connecting a lipase enzyme headgroup to a maleimide-functionalized polystyrene tail (40 repeat units). The resulting biohybrid forms catalytic micellar rods in water.

  8. Plant latex lipase as biocatalysts for biodiesel production | Mazou ...

    African Journals Online (AJOL)

    Plant latex lipase as biocatalysts for biodiesel production. ... This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications. Keywords: Plant latex, lipase, Transesterification, purification, biodiesel ...

  9. Isolation and characterization of lipase-producing Bacillus strains ...

    African Journals Online (AJOL)

    Bacillus strains (B1 - B5) producing extra cellular lipase were isolated from the soil sample of coconut oil industry. The strains were identified by morphological and biochemical characters. Growth of the organisms and lipase production were measured with varying pH (4 - 9) temperature (27, 37 and 47ºC) and various ...

  10. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1 Produção de lipase extracelular pelo fungo fitopatogênico Fusarium solani FS1

    Directory of Open Access Journals (Sweden)

    Maria de Mascena Diniz Maia

    1999-12-01

    Full Text Available A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v peptone plus 0.5% (v/v olive oil. Glucose (1% w/v was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v resulted in a reduced lipase production while increased olive oil concentration (above 0.5% did not further stimulate lipase production. The optimum lipase activity was achieved at pH 8.6 and 30oC and a good enzyme stability (80% activity retention was observed at pH ranging from 7.6 to 8.6, and the activity rapidly dropped at temperatures above 50oC. Lipase activity was stimulated by the addition of n-hexane to the culture medium supernatants, in contrast to incubation with water-soluble solvents.

  11. Rat liver contains a limited number of binding sites for hepatic lipase

    NARCIS (Netherlands)

    G.C. Schoonderwoerd (Kees); A.J.M. Verhoeven (Adrie); H. Jansen (Hans)

    1994-01-01

    textabstractThe binding of hepatic lipase to rat liver was studied in an ex vivo perfusion model. The livers were perfused with media containing partially purified rat hepatic lipase or bovine milk lipoprotein lipase. The activity of the enzymes was determined in the

  12. Lipase inhibition and antiobesity effect of Atractylodes lancea.

    Science.gov (United States)

    Jiao, Ping; Tseng-Crank, Julie; Corneliusen, Brandon; Yimam, Mesfin; Hodges, Mandee; Hong, Mei; Maurseth, Catherine; Oh, Misun; Kim, Hyunjin; Chu, Min; Jia, Qi

    2014-05-01

    The ethanol extract of Atractylodes lancea rhizome displayed significant lipase inhibition with an IC50 value of 9.06 µg/mL in a human pancreatic lipase assay from high-throughput screening. Bioassay-guided isolation led to the identification of one new polyacetylene, syn-(5E,11E)-3-acetoxy-4-O-(3-methylbutanoyl)-1,5,11-tridecatriene-7,9-diyne-3,4-diol (7), along with six known compounds (1-6). The structure of compound 7 was determined based on the analysis of NMR and MS data. Among these seven lipase inhibitors, the major compound atractylodin (1) showed the highest lipase inhibitory activity (IC50 = 39.12 µM). The antiobesity effect of the ethanol extract of Atractylodes lancea rhizome was evaluated in a high-fat diet-induced obesity mice model at daily dosages of 250 mg/kg and 500 mg/kg body weight for 4 weeks, and treatment with this extract demonstrated a moderate efficacy at the 500 mg/kg dose level. Georg Thieme Verlag KG Stuttgart · New York.

  13. Comparative performance of microbial lipases immobilized on magnetic polysiloxane polyvinyl alcohol particles

    Directory of Open Access Journals (Sweden)

    Laura Maria Bruno

    2008-10-01

    Full Text Available Microbial lipase from Mucor miehei and Candida rugosa were immobilized by covalent binding onto magnetized polysiloxane polyvinyl alcohol particles (POS-PVA. The resulting immobilized derivatives were evaluated in aqueous solution (olive oil hydrolysis and organic solvent (butyl butyrate synthesis. Higher catalytic activities were found when the coupling procedure was made with M. miehei lipase. Immobilized M. miehei lipase also showed a better operational stability and a higher half-life than C. rugosa lipase after the successive batches of esterification. The performance of C. rugosa immobilized derivative was constrained by the low lipase loading used in the immobilizing step. Further information regarding the both immobilized derivatives was also obtained through chemical composition (FTIR.Lipases microbianas de Mucor miehei e Candida rugosa foram imobilizadas por ligação covalente em partículas magnetizadas de polisiloxano-álcool polivinílico (POS-PVA. Os derivados imobilizados resultantes foram avaliados em solução aquosa (hidrólise de azeite de oliva e em solvente orgânico (síntese de butirato de butila. As maiores atividades catalíticas foram encontradas quando o procedimento de ligação foi realizado com lipase de M. miehei. O derivado imobilizado de lipase de M. miehei também apresentou melhores resultados de estabilidade operacional e tempo de meia-vida do que o de lipase de C. rugosa, após sucessivas bateladas de esterificação. O desempenho do derivado imobilizado de C. rugosa foi restringido pelo baixo carregamento de lipase usado na etapa de imobilização. Informações adicionais a respeito de ambos derivados imobilizados também foram obtidas através da composição química (FTIR.

  14. Post-heparin plasma lipoprotein lipase, but not hepatic lipase activity, is related to plasma adiponectin in type 2 diabetic patients and healthy subjects

    NARCIS (Netherlands)

    De Vries, R; Wolffenbuttel, BHR; Sluiter, WJ; Van Tol, A; Dullaart, RPF

    2005-01-01

    The aim of this study was to determine the relationships of plasma adiponectin with post-heparin plasma lipoprotein lipase (LPL) and hepatic lipase (HL) activities, and to evaluate whether plasma adiponectin contributes to diabetes-associated dyslipidaemia. Plasma adiponectin, post-heparin plasma

  15. Lipases de látex vegetais: propriedades e aplicações industriais

    Directory of Open Access Journals (Sweden)

    Paques Fernanda Wiermann

    2006-01-01

    Full Text Available Biocatalysts have innumerous advantages with respect to classical chemical processes, such as high specificity. Lipases (EC 3.1.1.3 are biocatalysts with large application in synthesis and hydrolysis reactions of triacylglycerols. The search for new sources of lipases has been intensified in the last years due to the high cost of microbial and animal lipases, wich restricts their use on an industrial scale. Lipases obtained from the latex of Carica papaya, Carica pentagona, Euphorbia characias, E. wulfenii, known for their proteolytic properties, are a good alternative source. In this review, we describe the well-known sources of vegetal lipases extracted from the latex and present some of their industrial applications.

  16. Structural investigations of the regio- and enantioselectivity of lipases

    NARCIS (Netherlands)

    Lang, Dietmar A.; Dijkstra, Bauke W.

    Although lipases are widely applied for the stereospecific resolution of racemic mixtures of esters, the atomic details of the factors that are responsible for their stereospecificity are largely obscure. We determined the X-ray structures of Pseudomonas cepacia lipase in complex with two

  17. Endothelial and lipoprotein lipases in human and mouse placenta

    DEFF Research Database (Denmark)

    Lindegaard, Marie L S; Olivecrona, Gunilla; Christoffersen, Christina

    2005-01-01

    Placenta expresses various lipase activities. However, a detailed characterization of the involved genes and proteins is lacking. In this study, we compared the expression of endothelial lipase (EL) and LPL in human term placenta. When placental protein extracts were separated by heparin-Sepharos...

  18. Purification and Characterization of Lipase from Aspergillus flavus ...

    African Journals Online (AJOL)

    USER

    Abstract. Lipase from Aspergillus flavus was purified in a single step purification using MnFeO4 magnetic nano particles to achieve a 20.53- fold purification with specific activity of. 11.29 U/mg and a 59% recovery yield. SDS-PAGE of lipase showed a single pure band with corresponding molecular weight of 35 kDa.

  19. Purification and Characterization of Lipase from Aspergillus flavus ...

    African Journals Online (AJOL)

    Lipase from Aspergillus flavus was purified in a single step purification using MnFeO4 magnetic nano particles to achieve a 20.53- fold purification with specific activity of 11.29 U/mg and a 59% recovery yield. SDS-PAGE of lipase showed a single pure band with corresponding molecular weight of 35 kDa. The optimal ...

  20. Lipase applications in oil hydrolysis with a case study on castor oil: a review.

    Science.gov (United States)

    Goswami, Debajyoti; Basu, Jayanta Kumar; De, Sirshendu

    2013-03-01

    Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

  1. Covalent immobilization of lipase from Candida rugosa on Eupergit®

    Directory of Open Access Journals (Sweden)

    Bezbradica Dejan I.

    2005-01-01

    Full Text Available An approach is presented for the stable covalent immobilization of Upase from Candida rugosa on Eupergit® with a high retention of hydrolytic activity. It comprises covalent bonding via lipase carbohydrate moiety previously modified by periodate oxidation, allowing a reduction in the involvement of the enzyme functional groups that are probably important in the catalytic mechanism. The hydrolytic activities of the lipase immobilized on Eupergif1 by two conventional methods (via oxirane group and via glutaralde-hyde and with periodate method were compared. Results of lipase assays suggest that periodate method is superior for lipase immobilization on Eupergit® among methods applied in this study with respect to both, yield of immobilization and hydrolytic activity of the immobilized enzyme.

  2. Iodine-125-labeled lipoprotein lipase as a tool to detect and study spontaneous lipolysis in bovine milk

    International Nuclear Information System (INIS)

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1986-01-01

    The distribution of lipoprotein lipase among cream, casein, and milk serum can be evaluated by addition of a trace amount of 125 I-labeled lipoprotein lipase to milk. Radioactive lipase was distributed in parallel to endogenous lipase under several conditions. In some milk samples, binding of lipase to cream increased when the milk was cooled. Correlation was good between bound labeled lipase and degree of cold-induced lipolysis in corresponding milk samples. Binding of lipase to cream or to casein was not saturable by addition of two-to threefold more lipase than is normally present in milk. In milk with a relatively high fraction of lipase bound to cream, a correspondingly lower fraction was associated with casein, whereas the fraction of lipase in milk serum was similar in all milk samples. Cold-induced binding of lipoprotein lipase to cream was not fully reversed when the milk was warmed again. Heparin released lipase from casein and increased the amount of lipase bound to cream after cooling

  3. Effect of fermentation conditions on lipase production by Candida utilis

    Directory of Open Access Journals (Sweden)

    SANJA Z. GRBAVCIC

    2007-08-01

    Full Text Available A wild yeast strain isolated from spoiled soybean oil and identified as Candida utilis initially presented rather low lipase activity (approximately 4 IU dm-3 in submerged culture in a universal yeast medium containing 2 % malt extract. Stu­dies were undertaken to improve the lipase production. The best yields of lipase were obtained with a medium supplemented with caprylic and oleic acids as indu­cers, but higher concentrations of the former (> 0.5 % had a negative effect on the lipase production and cell growth. The type of nitrogen source seemed also to be very important. The highest lipolytic activity of 284 IU dm-3 was achieved after 5 days of fermentation in a medium containing oleic acid and hydrolyzed casein as carbon and nitrogen sources, respectively, and supplemented with Tween 80®. It was shown that optimization of the fermentation conditions can lead to a significant improvement in the lipase production (more than 70-fold higher compared to the initial value obtained in the non-optimized medium.

  4. Characteristics of lipase isolated from coconut (Cocos nucifera linn ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Lipase from coconut plant grown under complete nutrient conditions showed ... 35°C and had a broad optimum pH of 7.5 – 8.5. Key words: Lipase .... inhibited by the ex- cess of substrate concentration or change of physio-.

  5. Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China); Zhang, Yimei [Suzhou Research Academy of North China Electric Power University (China); Hou, Chen; Pan, Duo; He, Jianjun; Zhu, Hao, E-mail: zhuhao07@lzu.edu.cn [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2016-02-15

    This paper reported an immobilization of Candida rugosa lipase (CRL) onto PAMAM-dendrimer-grafted magnetic nanoparticles synthesized by a modified solvothermal reduction method. The dendritic magnetic nanoparticles were amply characterized by several instrumental measurements, and the CRL was covalently anchored on the three generation supports with glutaraldehyde as coupling reagent. The amount of immobilized enzyme was up to 150 mg/g support and the factors related with the enzyme activity were investigated. The immobilization of lipase improved their performance in wider ranges of pH and temperature. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with free enzyme and can be reused 10 cycles with the enzymatic activity remained above 90 %. The properties of lipase improved obviously after being immobilized on the dendritic supports. The inactive immobilized lipase could be regenerated with glutaraldehyde and Cu{sup 2+}, respectively. This synthetic strategy was facile and eco-friendly for applications in lipase immobilization.

  6. Síntese do butirato de n-butila empregando lipase microbiana imobilizada em copolímero de estireno-divinilbenzeno Synthesis of butyl butyrate by microbial lipase immobilized onto styrene-divinylbenzene copolymer

    Directory of Open Access Journals (Sweden)

    Pedro Carlos de Oliveira

    2000-10-01

    Full Text Available This work investigates the reaction parameters of an immobilized lipase in the esterification reaction of n-butanol and butyric acid. Microbial lipase from Candida rugosa was immobilized onto styrene-divinylbenzene copolymer (STY-DVB and subsequently introduced in an organic medium containing substrates in appropriate concentrations. Heptane was selected as solvent on the basis of its compatibility with the resin and the enzyme. The influence of molar ratio of acid to alcohol, amount of immobilized lipase and temperature on the butyl butyrate formation was determined. The results were compared with those achieved with free lipase and Lipozyme (commercially immobilized lipase under the same operational conditions.

  7. Influences of apolipoprotein E on soluble and heparin-immobilized hepatic lipase

    International Nuclear Information System (INIS)

    Landis, B.A.; Rotolo, F.S.; Meyers, W.C.; Clark, A.B.; Quarfordt, S.H.

    1987-01-01

    The effect of human apolipoprotein E (apoE), either alone or in combination with apoC, on the lipolysis of a radiolabeled triglyceride emulsion was studied with hepatic lipase in solution and immobilized on heparin-Sepharose. The soluble hepatic lipase was inhibited, whereas the heparin-immobilized lipase was stimulated by apoE. This stimulation was attenuated by combining apoE with either apoC-II or C-III. The heparin-immobilized lipase demonstrated much less lipolysis of the zwitterionic phosphatidylcholine-stabilized triglyceride emulsion than did the soluble enzyme. This difference was less when the emulsion was stabilized by a nonionic detergent. apoE inhibited lipase activity when assayed under conditions (0.4 M NaCl) of bound enzyme and unbound substrate. Increasing the emulsion apoE content beyond optimum inhibited lipolysis by the immobilized enzyme. Kinetic analysis of phosphatidylcholine-stabilized triglyceride emulsions revealed a significant decrease in immobilized enzyme K/sub m/ and an increase in V/sub max/ when the emulsion was supplemented with apoE. Distributing the immobilized lipase in clustered aggregates produced more lipolysis than when the same enzyme content was uniformly bound

  8. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity.

    Science.gov (United States)

    Ahn, Jong Hoon; Shin, Eunjin; Liu, Qing; Kim, Seon Beom; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-01-01

    Pancreatic lipase digests dietary fats by hydrolysis, which is a key enzyme for lipid absorption. Therefore, reduction of fat absorption by the inhibition of pancreatic lipase is suggested to be a therapeutic strategy for obesity. From the EtOAc-soluble fraction of the stem barks of Fraxinus rhynchophylla (Oleaceae), four secoiridoids such as ligstroside (1), oleuropein (2), 2"-hydroxyoleuropein (3) and hydroxyframoside B (4) were isolated. The inhibitory activity of these compounds on pancreatic lipase was assessed using porcine pancreatic lipase as an in vitro assay system. Compound 4 showed the strongest inhibition on pancreatic lipase, which followed by compounds 1-3. In addition, compound 4 exerted inhibitory effect on pancreatic lipase in a mixed mechanism of competitive and noncompetitive manner. Taken together, F. rhynchophylla and its constituents might be beneficial to obesity.

  9. Improvement of lipase production at different stirring speeds and oxygen levels

    Directory of Open Access Journals (Sweden)

    F.O.M. Alonso

    2005-03-01

    Full Text Available Lipase production by a Brazilian wild strain of Yarrowia lipolytica at different stirring speeds and air flow rates was studied. The relationship among lipid consumption, cell growth and lipase production by this microorganism is presented. The most pronounced effect of oxygen on lipase production was determined by stirring speed. Maximum lipase activity was detected in the late stationary phase at 200 rpm and an air flow rate of 1-2 dm³/min (0.8-1.7 vvm when the lipid source had been fully consumed. Higher stirring speeds resulted in mechanical and/or oxidative stress, while lower stirring speeds seemed to limit oxygen levels. An increase in the availability of oxygen at higher air flow rates led to faster lipid uptake and anticipation of enzyme release into the culture medium. The highest lipase production was obtained at 200 rpm and 1 dm³/min (0.8 vvm.

  10. Statistical optimization for lipase production from solid waste of vegetable oil industry.

    Science.gov (United States)

    Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara

    2018-04-21

    The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.

  11. Enzymes used in detergents: Lipases | Hasan | African Journal of ...

    African Journals Online (AJOL)

    This review describes the applications of microbial lipases in detergents. Enzymes can reduce the environmental load of detergent products as the chemicals used in conventional detergents are reduced; they are biodegradable, non-toxic and leave no harmful residues. Besides lipases, other enzymes are widely used in ...

  12. Optimization of lipase production by Staphylococcus sp. Lp12

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... of the genera Pseudomonas, Bacillus, Staphylococcus,. Achromobacter have been cloned and characterized. Bacterial lipases are mostly inducible enzymes and require some form of oil, fatty acid, fatty acid alcohol or fatty acid ester and surfactants for induction (Immanuel et al., 2008). Lipase biosynthesis ...

  13. Highly Sensitive and High-Throughput Analysis of Plant Hormones Using MS-Probe Modification and Liquid Chromatography–Tandem Mass Spectrometry: An Application for Hormone Profiling in Oryza sativa

    Science.gov (United States)

    Kojima, Mikiko; Kamada-Nobusada, Tomoe; Komatsu, Hirokazu; Takei, Kentaro; Kuroha, Takeshi; Mizutani, Masaharu; Ashikari, Motoyuki; Ueguchi-Tanaka, Miyako; Matsuoka, Makoto; Suzuki, Koji; Sakakibara, Hitoshi

    2009-01-01

    We have developed a highly sensitive and high-throughput method for the simultaneous analysis of 43 molecular species of cytokinins, auxins, ABA and gibberellins. This method consists of an automatic liquid handling system for solid phase extraction and ultra-performance liquid chromatography (UPLC) coupled with a tandem quadrupole mass spectrometer (qMS/MS) equipped with an electrospray interface (ESI; UPLC-ESI-qMS/MS). In order to improve the detection limit of negatively charged compounds, such as gibberellins, we chemically derivatized fractions containing auxin, ABA and gibberellins with bromocholine that has a quaternary ammonium functional group. This modification, that we call ‘MS-probe’, makes these hormone derivatives have a positive ion charge and permits all compounds to be measured in the positive ion mode with UPLC-ESI-qMS/MS in a single run. Consequently, quantification limits of gibberellins increased up to 50-fold. Our current method needs 180 plant samples simultaneously. Application of this method to plant hormone profiling enabled us to draw organ distribution maps of hormone species in rice and also to identify interactions among the four major hormones in the rice gibberellin signaling mutants, gid1-3, gid2-1 and slr1. Combining the results of hormone profiling data with transcriptome data in the gibberellin signaling mutants allows us to analyze relationships between changes in gene expression and hormone metabolism. PMID:19369275

  14. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10

    Directory of Open Access Journals (Sweden)

    Bijay Kumar Sethi

    2016-03-01

    Full Text Available Abstract Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.

  15. Production of extracellular lipase by a new strain Staphylococcus ...

    African Journals Online (AJOL)

    Based on morphological, biochemical and 16S rRNA sequence analysis, the potent isolate was identified as Staphylococcus aureus. The lipase production of the isolate was increased by improving the conditions of production medium. Maximum lipase production (8.11 U/ml) was achieved when 2% punnakka oil was ...

  16. Purification and Characterization of a Thermostable Lipase from Geobacillus thermodenitrificans IBRL-nra

    Directory of Open Access Journals (Sweden)

    Anuradha Balan

    2012-01-01

    Full Text Available Thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was purified and characterized. The production of thermostable lipase from Geobacillus thermodenitrificans IBRL-nra was carried out in a shake-flask system at 65°C in cultivation medium containing; glucose 1.0% (w/v; yeast extract 1.25% (w/v; NaCl 0.45% (w/v olive oil 0.1% (v/v with agitation of 200 rpm for 24 hours. The extracted extracellular crude thermostable lipase was purified to homogeneity by using ultrafiltration, Heparin-affinity chromatography, and Sephadex G-100 gel-filtration chromatography by 34 times with a final yield of 9%. The molecular weight of the purified enzyme was estimated to be 30 kDa after SDS-PAGE analysis. The optimal temperature for thermostable lipase was 65°C and it retained its initial activity for 3 hours. Thermostable lipase activity was highest at pH 7.0 and stable for 16 hours at this pH at 65°C. Thermostable lipase showed elevated activity when pretreated with BaCl2, CaCl2, and KCl with 112%, 108%, and 106%, respectively. Lipase hydrolyzed tripalmitin (C16 and olive oil with optimal activity (100% compared to other substrates.

  17. IDENTIFIKASI POTENSI ENZIM LIPASE DAN SELULASE PADA SAMPAH KULIT BUAH HASIL FERMENTASI

    Directory of Open Access Journals (Sweden)

    La Ode Sumarlin

    2013-12-01

    Full Text Available Fermentation is one of bioconversion to produce profitable anaerobic microbes and to produce various enzymes. Lipases and cellulases are widely used enzymes so far. Cellulases play an important role in bioconversion of organic waste cellulosic materials to glucose, single cell proteins, animal feed, and ethanol. Lipases can also degrade fatty ester bond. Therefore, both enzymes are potential to be used in industry as well as in households. Fermentation of fruit peel waste is an attempt to produce cellulase and lipase that can be carried out in a simple way. Cellulase as says was performed using DNS (3.5-dinitrosalicylic acid and acid-base titration for analysis of lipase using cooking oil as the substrate. The results showed that the highest cellulase activity was obtained from watermelon rind mixed with citrus fruit peel of 0.036 U/mL, and mixed of banana peel and citrus fruit, which was 0.035 U/mL. The optimum lipase activity was at 30 oC, pH 7, and reaction time of 60 minutes. The highest lipase activity (1.36 U/mL was obtained from mixture of watermelon and orange rind. Thus, the fruit peel waste is potential to produce cellulase and lipase by fermentation .

  18. Adrenal and liver in normal and cld/cld mice synthesize and secrete hepatic lipase, but the lipase is inactive in cld/cld mice.

    Science.gov (United States)

    Schultz, C J; Blanchette-Mackie, E J; Scow, R O

    2000-02-01

    Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.

  19. Strategies to Characterize Fungal Lipases for Applications in Medicine and Dairy Industry

    Science.gov (United States)

    Gopinath, Subash C. B.; Anbu, Periasamy; Lakshmipriya, Thangavel; Hilda, Azariah

    2013-01-01

    Lipases are water-soluble enzymes that act on insoluble substrates and catalyze the hydrolysis of long-chain triglycerides. Lipases play a vital role in the food, detergent, chemical, and pharmaceutical industries. In the past, fungal lipases gained significant attention in the industries due to their substrate specificity and stability under varied chemical and physical conditions. Fungal enzymes are extracellular in nature, and they can be extracted easily, which significantly reduces the cost and makes this source preferable over bacteria. Soil contaminated with spillage from the products of oil and dairy harbors fungal species, which have the potential to secrete lipases to degrade fats and oils. Herein, the strategies involved in the characterization of fungal lipases, capable of degrading fatty substances, are narrated with a focus on further applications. PMID:23865040

  20. MALDI imaging of enzymatic degradation of glycerides by lipase on textile surface

    DEFF Research Database (Denmark)

    Hall-Andersen, Jonatan; Kaasgaard, Svend G; Janfelt, Christian

    2018-01-01

    Most modern laundry detergents contain enzymes such as proteases, amylases, and lipases for more efficient removal of stains containing proteins, carbohydrates, and lipids during wash at low temperature. The function of the lipases is to hydrolyse the hydrophobic triglycerides from fats and oils...... stain and simulating washing cycles using well-defined detergents with lipase concentrations ranging between 0 and 0.5ppm. After washing, the textile swatches as well as cryo-sections of the swatches were imaged using MALDI imaging in positive ion mode at pixel sizes of 15-75μm. Similar samples were...... an inhomogeneous presence of diglycerides after lipase treatment both in planar images of the textile surface as well as in cross-sections suggesting a non-uniform enzyme effect or extraction of the lipase reaction products from the textile....

  1. Anaerobic biodegradability of dairy wastewater pretreated with porcine pancreas lipase

    Directory of Open Access Journals (Sweden)

    Adriano Aguiar Mendes

    2010-12-01

    Full Text Available Lipids-rich wastewater was partial hydrolyzed with porcine pancreas lipase and the efficiency of the enzymatic pretreatment was verified by the comparative biodegradability tests (crude and treated wastewater. Alternatively, simultaneous run was carried out in which hydrolysis and digestion was performed in the same reactor. Wastewater from dairy industries and low cost lipase preparation at two concentrations (0.05 and 0.5% w.v-1 were used. All the samples pretreated with enzyme showed a positive effect on organic matter removal (Chemical Oxygen Demand-COD and formation of methane. The best results were obtained when hydrolysis and biodegradation were performed simultaneously, attaining high COD and color removal independent of the lipase concentration. The enzymatic treatment considerably improved the anaerobic operational conditions and the effluent quality (lower content of suspended solids and less turbidity. Thus, the use of enzymes such as lipase seemed to be a very promising alternative for treating the wastewaters having high fat and grease contents, such as those from the dairy industry.O presente trabalho teve como objetivo o pré-tratamento de efluente da indústria de laticínios na hidrólise de lipídeos, empregando lipase de fonte de células animais de baixo custo disponível comercialmente (pâncreas de porco na formação de gás metano por biodegradabilidade anaeróbia empregando diferentes concentrações de lipase (0,05 e 0,5 % w.v-1. A utilização de lipase no pré-tratamento do efluente acelerou a hidrólise de lipídeos e, conseqüentemente, auxiliou o tratamento biológico resultando na redução da matéria orgânica em termos de Demanda Química de Oxigênio (DQO, cor e sólidos em suspensão como lipídeos. Os melhores resultados em termos de remoção de DQO e cor foram obtidos quando a hidrólise e biodigestão foram realizadas simultaneamente, independente da concentração de lipase empregada. Estes resultados

  2. Lipase Activity in Fermented Oil Seeds of Africa Locust Bean ...

    African Journals Online (AJOL)

    acer

    was determined. The peak lipase activity for fermented Africa locust bean, Castor seed, and African ..... Lipase by Penicillium restrictum in solid state ... sp. Rev. Microbiol. 28(2): 90-95. Martinek, G.H. (1969). Microbiology and amino acid ...

  3. Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols

    DEFF Research Database (Denmark)

    Li, Deng; Xu, Xuebing; Gudmundur G, Haraldsson

    2005-01-01

    This paper focuses on a detailed evaluation of commercially available immobilized lipases and simple monohydric alcohols for the production of alkyl esters from sunflower oil by enzymatic alcoholysis. Six lipases were tested with seven alcohols, including straight and branched-chain primary...... in an increased degree of conversion for all lipases except Novozym 435. The secondary alcohol 2-propanol significantly reduced the alcoholysis reaction with all lipases; however, the branch-chain isobutanol was more advantageous than linear 1-butanol for Novozym 435, Lipozyme RM IM, and Lipase PS-C. Many...

  4. Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides.

    Science.gov (United States)

    Wu, Chao; Liu, Xueying; Li, Yufei; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2014-03-15

    For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is suitable for enzyme immobilization. In cyclic voltammetry experiments, the lipase/NPG/GCE bioelectrode displayed surface-confined reaction in a phosphate buffer solution. Linear responses were obtained for tributyrin concentrations ranging from 50 to 250 mg dl(-1) and olive oil concentrations ranging from 10 to 200 mg dl(-1). The value of apparent Michaelis-Menten constant for tributyrin was 10.67 mg dl(-1) and the detection limit was 2.68 mg dl(-1). Further, the lipase/NPG/GCE bioelectrode had strong anti-interference ability against urea, glucose, cholesterol, and uric acid as well as a long shelf-life. For the detection of triglycerides in human serum, the values given by the lipase/NPG/GCE bioelectrode were in good agreement with those of an automatic biochemical analyzer. These properties along with a long self-life make the lipase/NPG/GCE bioelectrode an excellent choice for the construction of triglycerides biosensor. © 2013 Elsevier B.V. All rights reserved.

  5. Relação lipase/amilase nas pancreatites agudas de causa biliar e nas pancreatites agudas/crônicas agudizadas de causa alcoólica Lipase/amylase ratio in biliary acute pancreatitis and alcoholic acute/acutized chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Ricardo Custódio Pacheco

    2007-03-01

    with alcoholic acute pancreatitis/acutized chronic pancreatitis (group I and 29 patients, 8 male and 21 female (mean age: 43.6 ± 19.9 years, with biliary acute pancreatitis (group II were evaluated. Serum lipase and amylase levels were measured in patients with symptoms for no more than 48 hours. The lipase/amylase ratio was calculated based on serum lipase and amylase levels and expressed as multiples of their respective superior reference values. RESULTS: Mean levels of serum lipase (4,814 ± 3,670 U/L and amylase (1,282 ± 777 U/L in patients of group I were comparable to group II (2,697 ± 2,391 and 1,878 ± 1,319 U/L, respectively, but the mean lipase/amylase ratio was significantly higher in group I (4.4 ± 3.6 than in group II (2.2 ± 2.2. Lipase/amylase ratio >3 occurred at significantly higher proportions in patients of group I (66.7% than of group II (24.1%, differentiating the two groups with sensitivity of 67% and specificity of 76%. CONCLUSIONS: 1 Amylase and lipase serum levels did not differ in the two groups evaluated; 2 the lipase/amylase ratio >3 was more often seen in alcoholic acute pancreatitis/acutized chronic pancreatitis than biliary acute pancreatitis, and it may be useful in differentiating these two causes of pancreatitis.

  6. Biodiesel production by transesterification using immobilized lipase.

    Science.gov (United States)

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  7. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    OpenAIRE

    Borrelli, Grazia M.; Trono, Daniela

    2015-01-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile bioc...

  8. Enzymatic interesterification of palm stearin and coconut oil by a dual lipase system

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Guo, Zheng; Xu, Xuebing

    2008-01-01

    greater than 100% over the theoretical value when the reaction proceeds for 2 h. The co-immobilization action of the carrier of the immobilized lipases towards the free lipase was proposed as being one of the reasons leading to the synergistic effect and this has been experimentally verified by a reaction......Enzymatic interesterification of palm stearin with coconut oil was conducted by applying a dual lipase system in comparison with individual lipase-catalyzed reactions. The results indicated that a synergistic effect occurred for many lipase combinations, but largely depending on the lipase species...... mixed and their ratios. The combination of Lipozyme TL IM and RM IM was found to generate a positive synergistic action at all test mixing ratios. Only equivalent amount mixtures of Lipozyme TL IM with Novozym 435 or Lipozyme RM IM with Novozym 435 produced a significant synergistic effect as well...

  9. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain

    Science.gov (United States)

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  10. Developmental Thyroid Hormone (TH) Disruption: In Search of Sensitive Bioindicators of Altered TH-Dependent Signaling in Brain###

    Science.gov (United States)

    Thyroid hormones (TH) are essential for brain development, yet clear indicators of disruption at low levels of TH insufficiency have yet to be identified. Brain TH is difficult to measure, but TH-responsive genes can serve as sensitive indicators of TH action in brain. A large nu...

  11. A model for hormonal control of the menstrual cycle: structural consistency but sensitivity with regard to data.

    Science.gov (United States)

    Selgrade, J F; Harris, L A; Pasteur, R D

    2009-10-21

    This study presents a 13-dimensional system of delayed differential equations which predicts serum concentrations of five hormones important for regulation of the menstrual cycle. Parameters for the system are fit to two different data sets for normally cycling women. For these best fit parameter sets, model simulations agree well with the two different data sets but one model also has an abnormal stable periodic solution, which may represent polycystic ovarian syndrome. This abnormal cycle occurs for the model in which the normal cycle has estradiol levels at the high end of the normal range. Differences in model behavior are explained by studying hysteresis curves in bifurcation diagrams with respect to sensitive model parameters. For instance, one sensitive parameter is indicative of the estradiol concentration that promotes pituitary synthesis of a large amount of luteinizing hormone, which is required for ovulation. Also, it is observed that models with greater early follicular growth rates may have a greater risk of cycling abnormally.

  12. Effect of atrial natriuretic peptide on lipolysis in the mouse heart

    DEFF Research Database (Denmark)

    Bartels, Emil Daniel; Bisgaard, Line Stattau; Christoffersen, Christina

    2014-01-01

    -A (NPR-A), leading to cGMP-dependent phosphorylation of hormone-sensitive lipase. Cardiac myocytes express NPR-A and hormone-sensitive lipase. In the present study, we investigated whether ANP affects triglyceride stores in the heart. Subcutaneously implanted osmotic minipumps were used to administer ANP...... (125 or 500 ng/kg/min) or saline to obese leptin-deficient (ob/ob) mice or lean control mice (ob/+) for a week. ANP (500 ng/kg/min) reduced blood pressure but did not affect the cardiac triglyceride stores or mRNA expression of NPR-A and NPR-C. Also, deficiency of NPR-A did not affect the cardiac...... triglyceride content. Finally, addition of ANP to the culture medium (10−7 mol/l) increased cellular cGMP content (P=0.009) but did not affect triglyceride stores in HL-1 cardiac myocyte cultures. Hence, ANP does not affect triglyceride stores in the murine heart....

  13. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y Y; Wang, Zhuo Lin; Uosukainen, E; Seppaelae, J [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M [Raisio Group Oil Milling Industry, Raisio (Finland)

    1997-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  14. Lipase biocatalysis for useful biodegradable products

    Energy Technology Data Exchange (ETDEWEB)

    Linko, Y.Y.; Wang, Zhuo Lin; Uosukainen, E.; Seppaelae, J. [Helsinki Univ. of Technology, Espoo (Finland); Laemsae, M. [Raisio Group Oil Milling Industry, Raisio (Finland)

    1996-12-31

    It was shown that lipases can be used as biocatalysts in the production of useful biodegradable compounds such as 1-butyl oleate by direct esterification of butanol and oleic acid to decrease viscosity of biodiesel in winter use. By enzymic transesterification, a mixture of 2-ethyl-1-hexyl esters from rapeseed oil fatty acids can be obtained in good yields for use as a solvent, and of trimethylolpropane esters for use as a lubricant. Finally, it was demonstrated that polyesters with a mass average molar mass in excess of 75,000 g mol{sup -}1 can be obtained by esterification or transesterification by using lipase as biocatalyst. (author) (3 refs.)

  15. Structural basis of the chiral selectivity of Pseudomonas cepacia lipase

    NARCIS (Netherlands)

    Lang, Dietmar A.; Mannesse, Maurice L.M.; Haas, Gerard H. de; Verheij, Hubertus M.; Dijkstra, Bauke W.

    1998-01-01

    To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with S(c)-and R(c)-(R(p),S(p))-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by

  16. Early pharmacological inhibition of angiotensin-I converting enzyme activity induces obesity in adulthood

    Directory of Open Access Journals (Sweden)

    Kely ede Picoli Souza

    2015-04-01

    Full Text Available We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system is expressed and functional in the white adipose tissue (WAT and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass or saline, starting at the first day of life until the age of 16 days. Between days 90th and 180th, a group of these animals received high fat diet (HFD. Molecular, biochemical, histological and physiological data were collected. Enalapril treated animals presented hyperphagia, overweight and increased serum level of triglycerides, total cholesterol and leptin, in adult life. Body composition analyses revealed higher fat mass with increased adipocyte size in these animals. Molecular analyses revealed that enalapril treatment increases neuropeptide Y (NPY and cocaine- and amphetamine-regulated transcript (CART gene expression in hypothalamus, fatty acid synthase (FAS and hormone-sensitive lipase (HSL gene expression in retroperitoneal WAT and decreases peroxixome proliferators-activated receptor (PPAR γ, PPARα, uncoupling protein (UCP 2 and UCP3 gene expression in WAT. The results of the current study indicate that enalapril administration during early postnatal development increases body mass, adiposity and serum lipids in adulthood associated with enhanced food intake and decreased metabolic activity in WAT, predisposing to obesity in adulthood.

  17. Metabolic fate of rat heart endothelial lipoprotein lipase

    International Nuclear Information System (INIS)

    Chajek-Shaul, T.; Bengtsson-Olivecrona, G.; Peterson, J.; Olivecrona, T.

    1988-01-01

    When isolated rat hearts were perfused with medium containing 125I-labeled bovine lipoprotein lipase (LPL), they bound both lipase activity and radioactivity. More than 80% of the bound lipase could be rapidly released by heparin. Low concentrations of bovine LPL displaced 50-60% of the endogeneous, endothelial-bound LPL. Higher concentrations caused additional binding. Both binding and exchange were rapid processes. The hearts continuously released endogenous LPL into the medium. An antiserum that inhibited bovine but not rat LPL was used to differentiate endogeneous and exogeneous LPL activity. When the pool of endothelial LPL was labeled with bovine 125I-labeled LPL and then chased with unlabeled bovine LPL, approximately 50% of the labeled lipase was rapidly displaced. During chase perfusion with medium only, catalytically active bovine LPL appeared in the perfusate. The rate of release was similar to that observed for endogeneous LPL activity and amounted to 10-13% of the heparin-releasable fraction in the first 5 min of perfusion. There was little or no degradation of bovine 125I-labeled LPL to fragments or acid-soluble products. These results indicate that endothelial LPL is accessible for exchange with exogeneous LPL and that detachment rather than degradation may be the pathway for catabolism of endothelial LPL

  18. Structure and Function of Lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob

    .e. the waterlipidinterface. For Thermomyces lanuginosus lipase (TlL) and related lipases, activation of the enzymeinvolves a rearrangement of a structural domain, called the “lid”, which covers the active site inhomogenous aqueous solution. At the water-lipid interface, the lid is displaced from the active site andmoves...... the water-lipid interface, structural movements occurring during activation have been difficult to probeexperimentally. In this work, novel variants of TlL were constructed based on rational design with amutated lid-region in order to elucidate the impact of the lid-residue composition and characteristics...... onthe activation mechanism. From characterization studies of these variants we have shown (Paper I) thatthe lid-region plays a crucial role in governing interfacial activation and enzymatic activity. Specifically,using a combination of spectroscopic and enzymatic activity-based methods we have...

  19. The genotypic diversity and lipase production of some thermophilic bacilli from different genera

    Directory of Open Access Journals (Sweden)

    Melih Koc

    2015-12-01

    Full Text Available Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributyrin and olive oil broths at 60 °C and pH 7.0. During the 24, 48 and 72-h period of incubation, the changes in the lipase activities, culture absorbance, wet weight of biomass and pH were all measured. The activity was determined by using pNPB in 50 mM phosphate buffer at pH 7.0 at 60 °C. The lipase production of the isolates in olive oil broths varied between 0.008 and 0.052, whereas these values were found to be 0.002-0.019 (U/mL in the case of tyributyrin. For comparison, an index was established by dividing the lipase activities to cell biomass (U/mg. The maximum thermostable lipase production was achieved by the isolates F84a, F84b, and G. thermodenitrificans DSM 465T (0.009, 0.008 and 0.008 U/mg within olive oil broth, whereas G. stearothermophilus A113 displayed the highest lipase activity than its type strain in tyributyrin. Therefore, as some of these isolates displayed higher activities in comparison to references, new lipase producing bacilli were determined by presenting their genotypic diversity with DNA fingerprinting techniques.

  20. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  1. Mycelium-Bound Lipase from a Locally Isolated Strain of Geotrichum candidum

    Directory of Open Access Journals (Sweden)

    Joo Ling Loo

    2014-06-01

    Full Text Available Mycelium-bound lipase (MBL, from a locally isolated Geotrichum candidum strain, was produced and characterized as a natural immobilized lipase. A time course study of its lipolytic activity in 1 L liquid broth revealed the maximum MBL activity at 4 h for mycelium cells harvested after 54 h. The yield and specific activity of MBL were 3.87 g/L dry weight and 508.33 U/g protein, respectively, while less than 0.2 U/mL lipase activity was detected in the culture supernatant. Prolonged incubation caused release of the bound lipase into the growth medium. The growth pattern of G. candidum, and production and properties of MBL were not affected by the scale. The stability of mycelia harboring lipase (MBL, harvested and lyophilized after 54 h, studied at 4 °C depicted a loss of 4.3% and 30% in MBL activity after 1 and 8 months, while the activity of free lipase was totally lost after 14 days of storage. The MBL from G. candidum displayed high substrate selectivity for unsaturated fatty acids containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.

  2. Immobilization of lipases in PSS/PEO blends and applications in esters synthesis

    International Nuclear Information System (INIS)

    Vecchia, Roberto D.; Nascimento, Maria G.; Soldi, Valdir

    2001-01-01

    Various lipases were immobilized in PSS/PEO blends and used as bio catalysts in the esterification reaction of lauric acid with n-pentanol, in hexane as a solvent for 24 h at 35 deg C. The best results in the ester conversion, were obtained by using lipase from Rhryzopus oryzae immobilized in PSS/PEO 80:20 blend. The data are in agreement with DSC and TGA values, which showed that these systems (blend/lipase) were very stable with low mass loss. No product was obtained by using lipase FAP-15 immobilized in PSS film , showing the strong influence of the polymer on enzyme activity. (author)

  3. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rubens A.; Souza, Michele L.; Bloisi, Georgia D.; Corio, Paolo; Petri, Denise F. S., E-mail: dfsp@iq.usp.br [Universidade de São Paulo, Instituto de Química (Brazil)

    2015-04-15

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (V{sub max}) values and turnover numbers (k{sub cat}) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l{sup −1}) or ChOx (at 0.03 g l{sup −1}) and G (0.012 g l{sup −1}) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l{sup −1}), bioconjugates of lipases with GO led to V{sub max} and k{sub cat} values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (K{sub m}) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared.

  4. Bioconjugation of lipase and cholesterol oxidase with graphene or graphene oxide

    International Nuclear Information System (INIS)

    Silva, Rubens A.; Souza, Michele L.; Bloisi, Georgia D.; Corio, Paolo; Petri, Denise F. S.

    2015-01-01

    The catalytic behavior of lipase and cholesterol oxidase (ChOx) in the absence and in the presence of graphene (G) or graphene oxide (GO) was investigated at 24 ± 1 °C and pH 6.5. GO flat sheets (0.5–2 μm) were ∼2-nm thick, while G formed aggregates. The maximum reaction velocity (V max ) values and turnover numbers (k cat ) determined for reactions catalyzed by physical mixtures of lipase (at 0.01 g l −1 ) or ChOx (at 0.03 g l −1 ) and G (0.012 g l −1 ) increased six-fold or doubled, respectively, in comparison to neat enzymes. Circular dichroism (CD) and photoluminescence (PL) spectroscopic measurements revealed the preservation of native secondary structures of enzymes and bioconjugation driven by hydrophobic interaction and energy transfer (redshift) between lipase or ChOx and G, corroborating with the enhanced catalytic behavior. On the other hand, the interactions between GO, which has hydrophilic moieties on the basal plane, and ChOx caused enzyme deactivation, as evidenced by the absence of typical CD signal. At low GO concentration (<0.012 g l −1 ), bioconjugates of lipases with GO led to V max and k cat values four-fold lower than their counterparts with G, but the GO hydrophilic groups probably favored the affinity for the substrate, because the Michaelis constant (K m ) values decreased in comparison to that of neat lipase. Upon increasing the GO concentration, lipases lost secondary structure and the typical lipase PL bands disappeared

  5. Characterization of an extracellular lipase by Pseudomonas koreensis BK-L07 isolated from soil.

    Science.gov (United States)

    Anbu, Periasamy

    2014-01-01

    Screening using spirit blue agar revealed that strain BK-L07 had the highest lipase activity. Furthermore, the isolated strain was identified as Pseudomonas sp. based on morphological, physiological, biochemical, and molecular analyses. The 16S rRNA gene sequence of strain BK-L07 shared a high similarity with that of Pseudomonas koreensis (99%). The nutritional conditions and physicochemical properties were influenced by P. koreensis BK-L07. The maximum lipase production was obtained in tryptic soy broth medium at pH 8.0 and a temperature of 25°C after 36 hr of incubation. In addition, the lipase activity was determined using different carbon sources and lipase inducers. The lipase production was greatest when 1% maltose was used as the carbon source and olive oil was used as the lipase inducer. The lipase production was significantly increased approximately threefold in the optimized medium when compared with the original medium. Further, the lipase was purified by ammonium sulfate precipitation and gel filtration chromatography with a purification yield of 10.8%. The molecular mass of lipase was 45 kDa. The optimum temperature and pH were 40°C and 8.0, respectively. The enzyme was stable up to 50°C and at pH from 7 to 9. In addition, the enzyme activity was stimulated by MgSO4 and completely inhibited by ethylenediamine tetraacetic acid (EDTA), indicating the metalloenzyme type. The lipase activity was toward medium to long chain length of fatty acids (C10 to C18). Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  6. Overexpression of Fusarium solani lipase in Pichia pastoris and its application in lipid degradation

    Directory of Open Access Journals (Sweden)

    Jinaporn Wongwatanapaiboon

    2016-09-01

    Full Text Available Fusarium solani NAN103 lipase was successfully overexpressed in Pichia pastoris using inducible expression system and constitutive expression system under the control of alcohol oxidase 1 promoter (pAOX1 and glyceraldehyde-3-phosphate dehydrogenase promoter (pGAP, respectively. Lipase obtained using the constitutive promoter showed the highest activity of 18.8 U/mg in 3 days of cultivation time. Optimal lipase activity was observed at pH 7.0 and 35 °C using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mn2+, Ba2+, Li+, Ca2+, Ni2+, CHAPS and Triton X-100 but was inhibited by Hg2+, Ag+ and SDS. The addition of 10% v/v of octanol, p-xylene, hexane and isopropanol increased lipase activity. Cultivation of lipase-expressing P. pastoris under pGAP in synthetic wastewater containing 1% w/v palm oil resulted in degradation of 87% of the oil within 72 h. P. pastoris expressing F. solani lipase from constitutive expression system has the potential to be used as an alternative microorganism for lipid degradation.

  7. The G-250A polymorphism in the hepatic lipase gene promoter is associated with changes in hepatic lipase activity and LDL cholesterol: The KANWU Study

    DEFF Research Database (Denmark)

    Lindi, Virpi; Schwab, Ursula; Louheranta, Anne

    2007-01-01

    BACKGROUND AND AIMS: Hepatic lipase (HL) catalyzes the hydrolysis of triglycerides and phospholipids from lipoproteins, and promotes the hepatic uptake of lipoproteins. A common G-250A polymorphism in the promoter of the hepatic lipase gene (LIPC) has been described. The aim was to study...

  8. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B.

    Science.gov (United States)

    Zottig, Ximena; Meddeb-Mouelhi, Fatma; Beauregard, Marc

    2016-03-01

    A fluorescence-based assay for the determination of lipase activity using rhodamine B as an indicator, and natural substrates such as olive oil, is described. It is based on the use of a rhodamine B-natural substrate emulsion in liquid state, which is advantageous over agar plate assays. This high-throughput method is simple and rapid and can be automated, making it suitable for screening and metagenomics application. Reaction conditions such as pH and temperature can be varied and controlled. Using triolein or olive oil as a natural substrate allows monitoring of lipase activity in reaction conditions that are closer to those used in industrial settings. The described method is sensitive over a wide range of product concentrations and offers good reproducibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dual bioimprinting of Thermomyces lanuginosus lipase for synthesis of biodiesel

    Directory of Open Access Journals (Sweden)

    Joyeeta Mukherjee

    2016-06-01

    Full Text Available Use of biodiesel as an alternative to non-renewable sources of energy has become an attractive option in recent years. The enzymatic synthesis of biodiesel by transesterification of fats/oils with an alcohol is a much more sustainable route than the chemical method. However, cost effectiveness of the enzymatic route is a major barrier in its commercialization. In this work, a high activity biocatalyst design of Thermomyces lanuginosus lipase is made by dually bioimprinting it with substrate and a surfactant (which is believed to open up the lid covering the active site of the lipase during precipitation of the lipase in organic solvent. When the lipase was bioimprinted with only the surfactants, 28 U of the enzyme/g of oil could yield 99% biodiesel from soybean oil in about 4 h. However, when dually bioimprinted even very low enzyme load 1.4 U/g of oil, yielded 99% biodiesel within 48 h.

  10. Lipoprotein lipase and endothelial lipase in human testis and in germ cell neoplasms

    DEFF Research Database (Denmark)

    Nielsen, J E; Lindegaard, M L; Friis-Hansen, L

    2009-01-01

    . The results suggest that both EL and LPL participate in the supply of nutrients and steroidogenesis in the testes, and that especially EL may be important for the supply of cholesterol for testosterone production in the Leydig cells. The partial cellular separation of the expression of the two lipases...

  11. Fat digestion by lingual lipase: mechanism of lipolysis in the stomach and upper small intestine.

    Science.gov (United States)

    Liao, T H; Hamosh, P; Hamosh, M

    1984-05-01

    Ten to 30% of dietary fat is hydrolyzed in the stomach by lingual lipase, an enzyme secreted from lingual serous glands. We investigated the substrate specificity of this enzyme as well as the potential of lingual lipase to act in the upper small intestine i.e., in the presence of bile salts and lecithin. The data presented show that partially purified preparations of rat lingual lipase and the lipase in gastric aspirates of newborn infants have identical substrate specificity: medium-chain triglycerides were hydrolyzed at rates 5-8-fold higher than long-chain triglycerides; the rat and human enzymes do not hydrolyze the ester bond of lecithin or cholesteryl-ester. In contrast to pancreatic lipase, the hydrolysis of triglycerides by lingual lipase is not inhibited by lecithin. But, similar to pancreatic lipase the activity of lingual lipase is inhibited by bile salts, the extent of inhibition varying with its nature and concentration. This inactivation is not prevented by colipase but is partially averted by lipids and protein, suggesting that lingual lipase can remain active in the duodenum. The pH optimum of the enzyme (2.2-6.5 in the rat and 3.5-6.0 in human gastric aspirates) is compatible with continued activity in the upper small intestine, especially during the neonatal period, when the luminal pH is under 6.5. The marked variation in lipase activity levels in gastric aspirates of newborn infants is probably due to individual variations in enzyme amounts. The characteristics of the lipase are however identical in infants with low, intermediate or high activity levels.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    Science.gov (United States)

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  13. Chicken fat and inorganic nitrogen source for lipase production by ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... for lipase production, the production cost was $US 518.00/million Units of lipase. Key words: ... energetics, fine chemicals and pulp and paper industries. ... for enzyme production is extremely important in dictating ... fat is waste product of poultry processing industry ... Economic Research Service,” 2013).

  14. In silico modeling of lipase H | Jabeen | African Journal of ...

    African Journals Online (AJOL)

    LAH 2 is a type of autosomal recessive hypotrichosis that affect hairs, eyebrows, scalp and eyelashes. Mutations in Lipase H gene result in LAH 2. Changes that result from mutation on physiochemical properties, post-translational modifications, functional sites, secondary structure and tertiary structure lipase H gene (LIPH) ...

  15. Effect of culture conditions on lipase production by Fusarium solani in batch fermentation.

    Science.gov (United States)

    Maia, M M; Heasley, A; Camargo de Morais, M M; Melo, E H; Morais, M A; Ledingham, W M; Lima Filho, J L

    2001-01-01

    Lipase (Glycerol ester hydrolase EC 3.1.1.3.) from a Brazilian strain of Fusarium solani FSI has been investigated. The effect of different carbon sources and trace elements added to basal medium was observed with the aim of improving enzyme production. Lipase specific activity was highest (0.45 U mg(-1)) for sesame oil. When this medium was supplemented with trace elements using olive oil, corn oil and sesame oil the lipase specific activity increased to 0.86, 1.89 and 1.64 U mg(-1), respectively, after 96 h cultivation without any considerable biomass increase. The Km of this lipase using pNPP (p-nitrophenylpalmitate) as substrate, was 1.8 mM with a Vmax of 1.7 micromol min(-1) mg protein(-1). Lipase activity increased in the presence of increasing concentrations of hexane and toluene. In contrast, incubation of this enzyme with water-soluble solvents decreased its activity after 10% concentration (v/v) of the solvent. The lipase activity was stable below 35 degrees C but above this temperature activity losses were observed.

  16. Lipase From Thermoalkalophilic Pseudomonas species as an Additive in Potential Laundry Detergent Formulations

    Directory of Open Access Journals (Sweden)

    Ibrahim, C. O.

    2009-01-01

    Full Text Available Lipase isolated from a thermoalkalophilic Pseudomonas species was used as additive to improve the degree of olive oil removal from cotton fabric in the presence of surfactants. The lipase used in this study was found to be more effective with non ionic surfactants as compared to ionic surfactants. In terms of stability, there was no decrease in activity found in the presence of Tween 85, Span 80 and Span 20. Lipase from Pseudomonas species was most active in the presence of Tween 85, Span 80 and Span 20. The application of lipase from Pseudomonas species as an additive in the formulation containing Span 80 has improved oil removal by 36% using the washing system consisting 5 U/mL lipase, at 70 °C for 20 min and 0.8% of Span 80 as surfactant. Considering that lipase from Pseudomonas species is stable in high pH and temperatures in the presence of various surfactants, therefore it is suitable to be incorporated as additives in potential detergent formulations.

  17. Characterization and spray drying of lipase produced by the endophytic fungus Cercospora kikuchii

    Directory of Open Access Journals (Sweden)

    T. A. Costa-Silva

    2014-12-01

    Full Text Available A lipase from the endophytic fungus Cercospora kikuchii was purified, biochemically characterized and the effects of spray drying on stabilization of the purified enzyme were studied. The lipase was purified 9.31-fold with recovery of 26.6% and specific activity of 223.6 U/mg. The optimum pH and temperature were 4.6 and 35 ºC, respectively, while the Vmax was 10.28 µmol/min.mg-1 protein and Km 0.0324 mM. All the metal ions tested enhanced the enzyme activity. The lipase retained almost 100% activity in the presence of strong oxidants and was also resistant to Triton X, Tween 80 and 20 and SDS, as well as to proteases. The purified lipase was spray dried and kept until 85.2% of enzymatic activity. At least 70% of the enzymatic activity was maintained for spray dried purified lipase during the storage period. The lipase produced by Cercospora kikuchii has properties useful for industrial application and showed adequate stabilization and retention of its enzymatic activity after spray drying.

  18. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  19. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  20. Dependence of PERT endpoint on endogenous lipase activity.

    Science.gov (United States)

    Gao, Wen-Yi; Mulberg, Andrew E

    2014-11-01

    To clarify and to understand the potential for misinterpretation of change in fecal fat quantitation during pancreatic enzyme replacement therapy (PERT) trials for treatment of exocrine pancreatic insufficiency. Analysis of clinical trials submitted to the U.S. Food and Drug Administration (FDA) for approval of PERT that enrolled 123 cystic fibrosis adult and pediatric patients treated with Creon, Pertzye, Ultresa, and Zenpep. The CFA% defines lipase activity as a percentage of converting substrate of "Total Daily Dietary Fat Intake." PERT trials performed to date have modified the definition to converting the "Shared Daily Fat Intake," generating "Partial CFA" for the exogenous lipase: the higher the activity of coexisting endogenous lipase, the lower the "Partial CFA" of exogenous measured. This review shows that "Partial CFA" is not CFA. Enrollment of patients with low HPLA during treatment may improve the interpretability of "Partial CFA" measured by PERT trials.

  1. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    Science.gov (United States)

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates. © 2014 Wiley Periodicals, Inc.

  2. Novel One-Pot Green Synthesis of Indolizines Biocatalysed by Candida antarctica Lipases

    Directory of Open Access Journals (Sweden)

    Simon Bonte

    2013-02-01

    Full Text Available Marine microorganisms are of considerable interest as a promising source of enzymes with unsuspected potentials as catalysts for chemical synthesis. We describe here an efficient method for one-pot indolizine synthesis that has been developed using lipase A and lipase B from Candida antarctica as biocatalysts. As showed by HPLC/MS analysis, the yield in indolizines was higher in the presence of the biocatalyst than in absence of enzyme. Lipase A, from Candida antarctica, showed high catalytic activity and selectivity for the cycloaddition reactions. When the reactions were performed under ultrasound irradiation, the Candida antarctica lipase catalyzed reactions yielded pure indolozines, in good yields and in very short time.

  3. Synthesis activity-based zymography for detection of lipases and esterases.

    Science.gov (United States)

    Kwon, Min-A; Kim, Hyun Suk; Hahm, Dae-Hyun; Song, Jae Kwang

    2011-04-01

    A new zymography method for lipases and esterases was developed on the basis of the esterification reaction between fatty acids and alcohols. The enzymes were separated by SDS-PAGE and native PAGE. The gel was washed and then incubated in an aqueous solution containing fatty acids (oleic acid 18:1 or caprylic acid 8:0) and dodecanol. Synthesis was visualized by in situ precipitation of water-insoluble and non-diffusible fatty acid esters, such as dodecyl oleate and dodecyl octanoate. The synthesis activity-based zymography was confirmed with different enzyme samples, including commercial lipase preparations, purified recombinant lipase and cutinase, and crude culture supernatants of lipolytic enzyme-producing soil bacteria.

  4. Transesterification Synthesis of Chloramphenicol Esters with the Lipase from Bacillus amyloliquefaciens

    Directory of Open Access Journals (Sweden)

    Fengying Dong

    2017-09-01

    Full Text Available This work presents a synthetic route to produce chloramphenicol esters by taking advantage the high enantio- and regio-selectivity of lipases. A series of chloramphenicol esters were synthesized using chloramphenicol, acyl donors of different carbon chain length and lipase LipBA (lipase cloned from Bacillus amyloliquefaciens. Among acyl donors with different carbon chain lengths, vinyl propionate was found to be the best. The influences of different organic solvents, reaction temperature, reaction time, enzyme loading and water content on the synthesis of the chloramphenicol esters were studied. The synthesis of chloramphenicol propionate (0.25 M with 4.0 g L−1 of LipBA loading gave a conversion of ~98% and a purity of ~99% within 8 h at 50 °C in 1,4-dioxane as solvent. The optimum mole ratio of vinyl propionate to chloramphenicol was increased to 5:1. This is the first report of B. amyloliquefaciens lipase being used in chloramphenicol ester synthesis and a detailed study of the synthesis of chloramphenicol propionate using this reaction. The high enzyme activity and selectivity make lipase LipBA an attractive catalyst for green chemical synthesis of molecules with complex structures.

  5. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Science.gov (United States)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  6. Structure of the human hepatic triglyceride lipase gene

    International Nuclear Information System (INIS)

    Cai, Shengjian; Wong, D.M.; Chen, Sanhwan; Chan, L.

    1989-01-01

    The structure of the human hepatic triglyceride lipase gene was determined from multiple cosmid clones. All the exons, exon-intron junctions, and 845 bp of the 5' and 254 bp of the 3' flanking DNA were sequenced. Comparison of the exon sequences to three previously published cDNA sequences revealed differences in the sequence of the codons for residue 133, 193, 202, and 234 that may represent sequence polymorphisms. By primer extension, hepatic lipase mRNA initiates at an adenine 77 bases upstream of the translation initiation site. The hepatic lipase gene spans over 60 kb containing 9 exons and 8 introns, the latter being all located within the region encoding the mature protein. The exons are all of average size (118-234 bp). Exon 1 encodes the signal peptide, exon 4, a region that binds to the lipoprotein substrate, and exon 5, an evolutionarily highly conserved region of potential catalytic function, and exons 6 and 9 encode sequences rich in basic amino acids thought to be important in anchoring the enzyme to the endothelial surface by interacting with acidic domains of the surface glycosaminoglycans. The human lipoprotein lipase gene has been recently reported to have an identical exon-intron organization containing the analogous structural domains. The observations strongly support the common evolutionary origin of these two lipolytic enzymes

  7. Cloning and characterization of newly isolated lipase from Enterobacter sp. Bn12.

    Science.gov (United States)

    Farrokh, Parisa; Yakhchali, Bagher; Karkhane, Ali Asghar

    2014-01-01

    A mesophilic Enterobacter sp. Bn12 producing an alkaline thermostable lipase was isolated from soil in Tehran, Iran. The lipase gene (ELBn12) was identified from a genomic library. Sequence analysis of the DNA fragment revealed an open reading frame of 879 bp encoding a lipase with a molecular mass of 31.3 kDa. The deduced amino acid sequence showed 96% identity with a lipase of Enterobacter sp. Ag1 and the identity of their DNA sequences was 88.9%. ELBn12 belongs to the lipase subfamily I.1 and its catalytic triad consists of Ser82, Asp237 and His259. The lipase was expressed in Escherichia coli (BL21) pLysS and partially purified by anion exchange chromatography. The maximum activity of ELBn12 was obtained at temperature of 60 °C and pH 8.0 towards tricaprylin (C8) and its specific activity was around 2900 U/mg. ELBn12 was stable within a broad pH range from 6.0 to 11.0. The enzyme showed high stability in both polar and nonpolar organic solvents at 50% (v/v). The lipase activity was enhanced in the presence of 10 mM of Ca(2+), Mg(2+) and K(+), while heavy metals (Fe(3+) and Zn(2+)) had strong inhibitory effect. ELBn12 showed high activity in the presence of 1% (w/v) nonionic surfactants, however ionic surfactants inhibited the lipolytic activity. ELBn12 characteristics show that it has a potential to be used in various industrial processes.

  8. Circadian hormone profiles and insulin sensitivity in patients with Addison's disease: a comparison of continuous subcutaneous hydrocortisone infusion with conventional glucocorticoid replacement therapy.

    Science.gov (United States)

    Björnsdottir, Sigridur; Øksnes, Marianne; Isaksson, Magnus; Methlie, Paal; Nilsen, Roy M; Hustad, Steinar; Kämpe, Olle; Hulting, Anna-Lena; Husebye, Eystein S; Løvås, Kristian; Nyström, Thomas; Bensing, Sophie

    2015-07-01

    Conventional glucocorticoid replacement therapy in patients with Addison's disease (AD) is unphysiological with possible adverse effects on mortality, morbidity and quality of life. The diurnal cortisol profile can likely be restored by continuous subcutaneous hydrocortisone infusion (CSHI). The aim of this study was to compare circadian hormone rhythms and insulin sensitivity in conventional thrice-daily regimen of glucocorticoid replacement therapy with CSHI treatment in patients with AD. An open, randomized, two-period, 12-week crossover multicentre trial in Norway and Sweden. Ten Norwegian patients were admitted for 24-h sampling of hormone profiles. Fifteen Swedish patients underwent euglycaemic-hyperinsulinaemic clamp. Thrice-daily regimen of oral hydrocortisone (OHC) and CSHI treatment. We measured the circadian rhythm of cortisol, adrenocorticotropic hormone (ACTH), growth hormone (GH), insulin-like growth factor-1, (IGF-1), IGF-binding protein-3 (IGFBP-3), glucose, insulin and triglycerides during OHC and CSHI treatment. Euglycaemic-hyperinsulinaemic clamp was used to assess insulin sensitivity. Continuous subcutaneous hydrocortisone infusion provided a more physiological circadian cortisol curve including a late-night cortisol surge. ACTH levels showed a near normal circadian variation for CSHI. CSHI prevented a continuous decrease in glucose during the night. No difference in insulin sensitivity was observed between the two treatment arms. Continuous subcutaneous hydrocortisone infusion replacement re-established a circadian cortisol rhythm and normalized the ACTH levels. Patients with CSHI replacement had a more stable night-time glucose level compared with OHC without compromising insulin sensitivity. Thus, restoring night-time cortisol levels might be advantageous for patients with AD. © 2015 John Wiley & Sons Ltd.

  9. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    Directory of Open Access Journals (Sweden)

    Cherif Slim

    2011-11-01

    Full Text Available Abstract Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature.... Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1 were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations.

  10. Improved Performance of Pseudomonas fluorescens lipase by covalent immobilization onto Amberzyme

    NARCIS (Netherlands)

    Aslan, Yakup; Handayani, Nurrahmi; Stavila, Erythrina; Loos, Katja

    2013-01-01

    Objective: In this study, the conditions of covalent immobilization of Pseudomonas fluorescens lipase onto an oxirane-activated support (Amberzyme) were optimized to obtain a high activity yield. Furthermore, the operational and storage stabilities of immobilized lipase were tested. Methods: Optimum

  11. Hormone Therapy for Breast Cancer

    Science.gov (United States)

    ... Common Cancer Types Recurrent Cancer Common Cancer Types Bladder Cancer Breast Cancer Colorectal Cancer Kidney (Renal Cell) Cancer ... sensitive breast cancer cells contain proteins called hormone receptors that become activated when hormones bind to them. ...

  12. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1 Produção de lipase extracelular pelo fungo fitopatogênico Fusarium solani FS1

    OpenAIRE

    Maria de Mascena Diniz Maia; Marcia Maria Camargo de Morais; Marcos Antonio de Morais Jr.; Eduardo Henrique Magalhães Melo; José Luiz de Lima Filho

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  13. Direct solid phase radioimmunoassay for chicken lipoprotein lipase

    International Nuclear Information System (INIS)

    Cheung, A.H.; Bensadoun, A.; Cheng, C.

    1979-01-01

    A direct, noncompetitive immunoassay for chicken lipoprotein lipase (LPL) was developed. Antibodies to LPL were purified by immunoadsorption chromatography of goat antisera on an LPL-Sepharose column. Purified anti-LPL immunoglobulins were coupled covalently to hydrophilic polyacrylamide beads by a carbodiimide reagent. An excess amount of these beads was incubated with the sample on the standard to be assayed. The amount of LPL immobilized by the heads was then detected by an excess amount of 125 I-labeled anti-LPL immunoglobulin. A linear relationship was obtained between the radioactivity bound and the amount of highly purified LPL used as a standard. The range of the assay was from 0.1 to 1.1 ng PLP. The assay was specific for chicken LPL and showed no cross-reactivity with liver lipase. It does not distinguish heat-inactivated from catalytically active enzyme species. This assay should be useful in studies of lipoprotein lipase where both catalytic activity and enzyme mass need to be quantitated

  14. Effect of Ascorbic Acid on Lipoprotein Lipase Activity | Kotze | South ...

    African Journals Online (AJOL)

    Baboons kept on hypovitaminotic C diets, but without clinical signs of scurvy, had significantly higher heart muscle lipoprotein lipase activity than baboons on vitamin C 34 mg/kg body mass/day. When the serum vitamin C levels were above 0,35 mg/100 ml the heart muscle lipoprotein lipase was repressed. Serum vitamin C ...

  15. Oral lipase activities and fat-taste receptors for fat-taste sensing in chickens.

    Science.gov (United States)

    Kawabata, Yuko; Kawabata, Fuminori; Nishimura, Shotaro; Tabata, Shoji

    2018-01-01

    It has been reported that a functional fat-taste receptor, GPR120, is present in chicken oral tissues, and that chickens can detect fat taste in a behavioral test. However, although triglycerides need to be digested to free fatty acids to be recognized by fat-taste receptors such as GPR120, it remains unknown whether lipase activities exist in chicken oral tissues. To examine this question, we first cloned another fat-taste receptor candidate gene, CD36, from the chicken palate. Then, using RT-PCR, we determined that GPR120 and CD36 were broadly expressed in chicken oral and gastrointestinal tissues. Also by RT-PCR, we confirmed that several lipase genes were expressed in both oral and gastrointestinal tissues. Finally, we analyzed the lipase activities of oral tissues by using a fluorogenic triglyceride analog as a lipase substrate. We found there are functional lipases in oral tissues as well as in the stomach and pancreas. These results suggested that chickens have a basic fat-taste reception system that incorporates a triglycerides/oral-lipases/free fatty acids/GPR120 axis and CD36 axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Improvement of lipase production from Geotrichum sp. in shaken flasks

    Directory of Open Access Journals (Sweden)

    Maldonadoa Resende Rafael

    2012-01-01

    Full Text Available This work is focused on the study of different variables on inoculum build-up aiming to improve the lipase production by Geotrichum sp. by means a sequential strategy of experimental design. The effects of inoculum size, corn steep liquor concentration, volume of inoculum, pH of medium, age of inoculum and soybean oil concentration on lipase activity were assessed by means of two factorial experimental designs. A maximum lipase activity of 35.20±0.8 U/mL was obtained with a inoculum composed of one circular area of 0.78cm2 containing spores, 50 mL of inoculum volume medium, 12 hours of inoculum age, 15% w/v of corn steep liquor concentration, 1.0%w/v of soybean oil concentration and initial pH 5.0 at 30°C and 150 rpm in flasks. This work showed that an enhancement of lipase activity can be obtained using a sequential statistical factorial approach to define the variables for inoculum build-up.

  17. Lipase-Secreting Bacillus Species in an Oil-Contaminated Habitat: Promising Strains to Alleviate Oil Pollution

    Directory of Open Access Journals (Sweden)

    Li Pin Lee

    2015-01-01

    Full Text Available Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.

  18. Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application

    International Nuclear Information System (INIS)

    Khoobi, Mehdi; Motevalizadeh, Seyed Farshad; Asadgol, Zahra; Forootanfar, Hamid; Shafiee, Abbas; Faramarzi, Mohammad Ali

    2015-01-01

    Magnetically separable nanospheres consisting of polyethyleneimine (PEI) and succinated PEI grafted on silica coated magnetite (Fe 3 O 4 ) were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy and transmission electron microscopy. The prepared magnetic nanoparticles were then applied for physical adsorption or covalent attachment of Thermomyces lanuginosa lipase (TLL) via glutaraldehyde or hexamethylene diisocyanate. The reusability, storage, pH and thermal stabilities of the immobilized enzymes compared to that of free lipase were examined. The obtained results showed that the immobilized lipase on MNPs@PEI-GLU was the best biocatalyst which retained 80% of its initial activity after 12 cycles of application. The immobilized lipase on the selected support (MNPs@PEI-GLU) was also applied for the synthesis of ethyl valerate. Following 24 h incubation of the immobilized lipase on the selected support in n-hexane and solvent free media, the esterification percentages were 72.9% and 28.9%, respectively. - Graphical abstract: A schematic of the preparation of PEI- and succinated PEI-grafted Fe 3 O 4 MNPs (MNPs@PEI) and the immobilization of lipase by covalent bonding and adsorption. - Highlights: • Functionalized polyethylenimine-grafted magnetic nanoparticles were synthesized. • The prepared supports were fully characterized by various analysis methods. • Lipase was immobilized on the nanostructures by adsorption and covalent attachment. • Immobilized lipase produced ethyl valerate in solvent free medium

  19. Aplicação de lipase e monoglicerídeo em pão de forma enriquecido com fibras Application of lipase and monoglyceride in fiber enriched pan bread

    Directory of Open Access Journals (Sweden)

    Kelly Moreira Gandra

    2008-03-01

    Full Text Available Neste trabalho, estudou-se a aplicação da enzima lipase e do emulsificante monoglicerídeo em pão de forma enriquecido com fibras, com o objetivo de verificar a possibilidade de substituição do emulsificante pela enzima. Inicialmente, foi realizada a caracterização das matérias-primas principais (farinha e farelo de trigo. Os pães de forma foram elaborados pelo método de massa direta. Foi utilizado um planejamento experimental do tipo composto central rotacional com duas variáveis independentes: i dosagem de lipase; e ii dosagem de monoglicerídeo e, paralelamente, realizou-se um teste controle (sem adição de lipase e monoglicerídeo para comparação. As variáveis dependentes foram as características de qualidade dos pães: i volume específico; ii aceitação sensorial (aparência, textura, aroma e sabor; e iii vida de prateleira avaliada pela umidade do miolo e firmeza dos pães após 1, 4 e 7 dias do forneamento. Dentro das faixas estudadas, foi possível verificar que somente a umidade dos pães no quarto e sétimo dia após o processamento foi influenciada pela variação das dosagens de lipase e monoglicerídeo. Na avaliação sensorial, verificou-se que as notas médias atribuídas aos pães do teste controle foram inferiores à menor nota média dos ensaios do planejamento experimental, com exceção do sabor e aroma. Como não foi possível obter modelos matemáticos para todas as respostas, foram selecionados os ensaios 5 (1% monoglicerídeo, 7 (25 ppm lipase e 9 (25 ppm lipase e 1% monoglicerídeo do planejamento experimental, e o teste controle, para a avaliação dos resultados por análise de variância. Nas condições em que os ensaios foram conduzidos e para as faixas de lipase (0 a 50 ppm e monoglicerídeo (0 a 2% estudadas, verificou-se a possibilidade de substituir o monoglicerídeo por lipase em formulação de pão de forma enriquecido com fibras.In this work, the application of lipase and monoglyceride in

  20. Enzymatic Production of FAME Biodiesel with Soluble Lipases

    DEFF Research Database (Denmark)

    T. Gundersen, Maria; Heltborg, Carsten Kirstejn; Yang, V

    Biodiesel is a viable alternative to fossil fuels, and biocatalysis is gaining interest as a greener process. We focus on converting oils to Fatty Acid Methyl Ester (FAME) using soluble lipases, which offer an advantage compared to immobilized enzymes by cost efficiency and ease of implementation...... the defined operating space concerning: temperature, water content, initial methanol concentration and enzyme content. The identified optimum range was experimentally evaluated, and model findings were confirmed. Another barrier in lipase use in biodiesel production is the higher melting point (m...

  1. New ether-functionalized ionic liquids for lipase-catalyzed synthesis of biodiesel.

    Science.gov (United States)

    Zhao, Hua; Song, Zhiyan; Olubajo, Olarongbe; Cowins, Janet V

    2010-09-01

    Ionic liquids (ILs) are being explored as solvents for the enzymatic methanolysis of triglycerides. However, most available ILs (especially hydrophobic ones) have poor capability in dissolving lipids, while hydrophilic ILs tend to cause enzyme inactivation. Recently, we synthesized a new type of ether-functionalized ionic liquids (ILs) carrying anions of acetate or formate; they are capable of dissolving a variety of substrates and are also lipase-compatible (Green Chem., 2008, 10, 696-705). In the present study, we carried out the lipase-catalyzed transesterifications of Miglyol oil 812 and soybean oil in these novel ILs. These ILs are capable of dissolving oils at the reaction temperature (50 degrees C); meanwhile, lipases maintained high catalytic activities in these media even in high concentrations of methanol (up to 50% v/v). High conversions of Miglyol oil were observed in mixtures of IL and methanol (70/30, v/v) when the reaction was catalyzed by a variety of lipases and different enzyme preparations (free and immobilized), especially with the use of two alkylammonium ILs 2 and 3. The preliminary study on the transesterification of soybean oil in IL/methanol mixtures further confirms the potential of using oil-dissolving and lipase-stabilizing ILs in the efficient production of biodiesels.

  2. A quantitative assay measuring the function of lipase maturation factor 1

    Science.gov (United States)

    Yin, Fen; Doolittle, Mark H.; Péterfy, Miklós

    2009-01-01

    Newly synthesized lipoprotein lipase (LPL) and related members of the lipase gene family require an endoplasmic reticulum maturation factor for attainment of enzyme activity. This factor has been identified as lipase maturation factor 1 (Lmf1), and mutations affecting its function and/or expression result in combined lipase deficiency (cld) and hypertriglyceridemia. To assess the functional impact of Lmf1 sequence variations, both naturally occurring and induced, we report the development of a cell-based assay using LPL activity as a quantitative reporter of Lmf1 function. The assay uses a cell line homozygous for the cld mutation, which renders endogenous Lmf1 nonfunctional. LPL transfected into the mutant cld cell line fails to attain activity; however, cotransfection of LPL with wild-type Lmf1 restores its ability to support normal lipase maturation. In this report, we describe optimized conditions that ensure the detection of a complete range of Lmf1 function (full, partial, or complete loss of function) using LPL activity as the quantitative reporter. To illustrate the dynamic range of the assay, we tested several novel mutations in mouse Lmf1. Our results demonstrate the ability of the assay to detect and analyze Lmf1 mutations having a wide range of effects on Lmf1 function and protein expression. PMID:19471043

  3. Stereoselectivity of Mucorales lipases toward triradylglycerols--a simple solution to a complex problem.

    Science.gov (United States)

    Scheib, H.; Pleiss, J.; Kovac, A.; Paltauf, F.; Schmid, R. D.

    1999-01-01

    The lipases from Rhizopus and Rhizomucor are members of the family of Mucorales lipases. Although they display high sequence homology, their stereoselectivity toward triradylglycerols (sn-2 substituted triacylglycerols) varies. Four different triradylglycerols were investigated, which were classified into two groups: flexible substrates with rotatable O'-C1' ether or ester bonds adjacent to C2 of glycerol and rigid substrates with a rigid N'-C1' amide bond or a phenyl ring in sn-2. Although Rhizopus lipase shows opposite stereopreference for flexible and rigid substrates (hydrolysis in sn-1 and sn-3, respectively), Rhizomucor lipase hydrolyzes both groups of triradylglycerols preferably in sn-1. To explain these experimental observations, computer-aided molecular modeling was applied to study the molecular basis of stereoselectivity. A generalized model for both lipases of the Mucorales family highlights the residues mediating stereoselectivity: (1) L258, the C-terminal neighbor of the catalytic histidine, and (2) G266, which is located in a loop contacting the glycerol backbone of a bound substrate. Interactions with triradylglycerol substrates are dominated by van der Waals contacts. Stereoselectivity can be predicted by analyzing the value of a single substrate torsion angle that discriminates between sn-1 and sn-3 stereopreference for all substrates and lipases investigated here. This simple model can be easily applied in enzyme and substrate engineering to predict Mucorales lipase variants and synthetic substrates with desired stereoselectivity. PMID:10210199

  4. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production.

    Science.gov (United States)

    Yu, Xiao-Wei; Sha, Chong; Guo, Yong-Liang; Xiao, Rong; Xu, Yan

    2013-02-21

    Production of biodiesel from non-edible oils is receiving increasing attention. Tung oil, called "China wood oil" is one kind of promising non-edible biodiesel oil in China. To our knowledge, tung oil has not been used to produce biodiesel by enzymatic method. The enzymatic production of biodiesel has been investigated extensively by using Rhizopus oryzae lipase as catalyst. However, the high cost of R. oryzae lipase remains a barrier for its industrial applications. Through different heterologous expression strategies and fermentation techniques, the highest expression level of the lipase from R. oryzae reached 1334 U/mL in Pichia pastoris, which is still not optimistic for industry applications. The prosequence of lipases from Rhizopus sp. is very important for the folding and secretion of an active lipase. A chimeric lipase from R. oryzae was constructed by replacing the prosequence with that from the R. chinensis lipase and expressed in P. pastoris. The maximum activity of the chimera reached 4050 U/mL, which was 11 fold higher than that of the parent. The properties of the chimera were studied. The immobilized chimera was used successfully for biodiesel production from tung oil, which achieved higher FAME yield compared with the free chimeric lipase, non-chimeric lipase and mature lipase. By response surface methodology, three variables, water content, methanol to tung oil molar ratio and enzyme dosage were proved to be crucial parameters for biosynthesis of FAME and the FAME yield reached 91.9±2.5% at the optimized conditions by adding 5.66 wt.% of the initial water based on oil weight, 3.88 of methanol to tung oil molar ratio and 13.24 wt.% of enzyme concentration based on oil weight at 40°C. This is the first report on improving the expression level of the lipase from R. oryzae by replacing prosequences. The immobilized chimera was used successfully for biodiesel production from tung oil. Using tung oil as non-edible raw material and a chimeric lipase

  5. Inhibition of pancreatic lipase and amylase by extracts of different spices and plants.

    Science.gov (United States)

    Sellami, Mohamed; Louati, Hanen; Kamoun, Jannet; Kchaou, Ali; Damak, Mohamed; Gargouri, Youssef

    2017-05-01

    The aim of this study is to search new anti-obesity and anti-diabetic agents from plant and spices crude extracts as alternative to synthetic drugs. The inhibitory effect of 72 extracts was evaluated, in vitro, on lipase and amylase activities. Aqueous extracts of cinnamon and black tea exhibited an appreciable inhibitory effect on pancreatic amylase with IC 50 values of 18 and 87 μg, respectively. Aqueous extracts of cinnamon and mint showed strong inhibitory effects against pancreatic lipase with IC 50 of 45 and 62 μg, respectively. The presence of bile salts and colipase or an excess of interface failed to restore the lipase activity. Therefore, the inhibition of pancreatic lipase, by extracts of spices and plants, belongs to an irreversible inhibition. Crude extract of cinnamon showed the strongest anti-lipase and anti-amylase activities which offer a prospective therapeutic approach for the management of diabetes and obesity.

  6. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    Directory of Open Access Journals (Sweden)

    Malihe Masomian

    Full Text Available Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents.

  7. Fat digestion in the stomach: stability of lingual lipase in the gastric environment.

    Science.gov (United States)

    Fink, C S; Hamosh, P; Hamosh, M

    1984-03-01

    Digestion of dietary fat starts in the stomach, where lingual lipase hydrolyzes triglycerides to free fatty acids and partial glycerides at pH 3.0-6.0. Lingual lipase is secreted continuously from lingual serous glands and accumulates in the stomach between meals, when gastric pH is less than 3.0. We have, therefore, examined the resistance of lingual lipase to low pH and its possible protection by dietary components present in the stomach contents. Partially purified rat lingual lipase (7-15 micrograms enzyme protein) was preincubated at 37 degrees C for 10-60 min at pH 1.0-6.0 before incubation for assay of lipolytic activity, hydrolysis of tri-[3H]olein at pH 5.4. The data show that partially purified rat lingual lipase preparations are stable at 37 degrees C in the pH range of 2.5-6.0. Enzyme activity, however, is rapidly and irreversibly lost during preincubation at pH 1.0-2.4 for 10-30 min. Protein (gelatin 1% or albumin 1% or 2.5%) cannot prevent the inactivation of lingual lipase at low pH. The large molecular species (molecular weight greater than 500,000) of lingual lipase (thought to be an aggregate of enzyme with lipids) is slightly more resistant to inactivation than the 46,000 dalton preparation, suggesting that lipids might protect the enzyme from inactivation. Indeed, about 60% of the initial lipase activity is preserved during incubation at pH 2.0 in the presence of 50 mM lecithin or 10 mM triolein. The data indicate that triglycerides which are hydrolyzed by this enzyme as well as phospholipids that are not hydrolyzed can prevent the inactivation of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. LIPASES PRODUZIDAS POR LEVEDURAS: CATALISADORES PODEROSOS PARA APLICAÇÕES INDUSTRIAIS

    Directory of Open Access Journals (Sweden)

    Luiza Lux Lock

    2007-12-01

    Full Text Available O termo “enzimas lipolíticas” refere-se a lípases e hidrolases éster carboxílico. A produção de lipase é ampla entre as leveduras, mas poucas são capazes de produzir lipases com características interessantes e em quantidades suficientes para serem industrialmente úteis. A literatura relativa a lipases produzidas por Candida rugosa, Yarrowia (Candida lipolytica, Candida antarctica e outras leveduras produtoras de lípases é revisada. O uso de lípases recombinantes é discutido, com ênfase na utilização de sistemas de expressão heteróloga e desenho de quimeras. Finalmente, as três abordagens que visam à melhora da produção de lipase ou a modificação da seletividade do substrato da enzima (engenharia do meio, do biocatalisador e da proteína são discutidos.

  9. m-DOPA addition in MAPLE immobilization of lipase for biosensor applications

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2015-12-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique which uses a pulsed laser beam impinging, inside a high vacuum chamber, on a frozen target containing the guest molecules in a volatile matrix to induce fast “evaporation” of the matrix, and ejection of the guest molecules. Lipase, an enzyme acting as a catalyst in hydrolysis of lipids, is widely used in biosensors for detection of triglycerides in blood serum. A key action to this purpose is lipase immobilization on a substrate. In a recent paper, we have shown that MAPLE technique is able to deposit lipase on a substrate in an active form. Here we show that addition to the guest/matrix target of a small amount of m-DOPA (3-(3,4-dihydroxyphenyl-2-methyl-l-alanine in order to improve adhesion and protect lipase secondary structure, also allows the lowering the laser pulse energy required for matrix evaporation and therefore the risk of damaging the enzyme.

  10. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    Science.gov (United States)

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  11. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jane E.S.; Jesus, Paulo C. [Universidade Regional de Blumenau, SC (Brazil). Dept. de Quimica]. E-mail: pcj@furb.rct-sc.br

    2003-06-01

    In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa) were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25 deg C in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester. (author)

  12. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    International Nuclear Information System (INIS)

    Silva, Jane E.S.; Jesus, Paulo C.

    2003-01-01

    In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa) were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25 deg C in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester. (author)

  13. Characterization of neutral lipase BT-1 isolated from the labial gland of Bombus terrestris males.

    Directory of Open Access Journals (Sweden)

    Jana Brabcová

    Full Text Available BACKGROUND: In addition to their general role in the hydrolysis of storage lipids, bumblebee lipases can participate in the biosynthesis of fatty acids that serve as precursors of pheromones used for sexual communication. RESULTS: We studied the temporal dynamics of lipolytic activity in crude extracts from the cephalic part of Bombus terrestris labial glands. Extracts from 3-day-old males displayed the highest lipolytic activity. The highest lipase gene expression level was observed in freshly emerged bumblebees, and both gene expression and lipase activity were lower in bumblebees older than 3 days. Lipase was purified from labial glands, further characterized and named as BT-1. The B. terrestris orthologue shares 88% sequence identity with B. impatiens lipase HA. The molecular weight of B. terrestris lipase BT-1 was approximately 30 kDa, the pH optimum was 8.3, and the temperature optimum was 50°C. Lipase BT-1 showed a notable preference for C8-C10 p-nitrophenyl esters, with the highest activity toward p-nitrophenyl caprylate (C8. The Michaelis constant (Km and maximum reaction rate (Vmax for p-nitrophenyl laurate hydrolysis were Km = 0.0011 mM and Vmax = 0.15 U/mg. CONCLUSION: This is the first report describing neutral lipase from the labial gland of B. terrestris. Our findings help increase understanding of its possible function in the labial gland.

  14. Elevação da lipase e amilase no doente crítico: estudo retrospectivo Increased lipase and amilase levels in critically ill patients: retrospective study

    Directory of Open Access Journals (Sweden)

    Margarida Ferreira

    2008-12-01

    Full Text Available OBJETIVOS: A elevação da lipase e amilase séricas são frequentemente encontradas em doentes internados em unidade de terapia intensiva sem que exista doença pancreática prévia, constituindo um desafio diagnóstico e terapêutico. Baseados nesta evidência os autores propuseram-se a determinar a incidência de hiperlipasemia assintomática nos doentes críticos, fatores desencadeantes e evolução clínica destes doentes. MÉTODOS: Estudo retrospectivo dos doentes internados na unidade de terapia intensiva de 1 de janeiro a 31 de dezembro de 2006, excluídas internações por pancreatite aguda, história de patologia pancreática, insuficiência renal ou falta de dados. Pacientes foram distribuídos em dois grupos (com e sem hiperlipasemia e feita comparação considerando diversas variáveis clínicas, laboratoriais, imagiológicas. Análise estatística: SPSS 13; testes t de Student e qui² (IC 95%, com significância estatística se p38 ºC (pOBJECTIVES: Elevated lipase and amylase are commonly found in patients in intensive care unit without a previously recognized pancreatic illness, constituting a diagnostic and therapeutic challenge. The authors therefore proposed to determine the frequency of asymptomatic high serum lipase in critically ill patients, involved risk factors and outcome. METHODS: Retrospective study of patients admitted in an intensive care unit from January 1 to December 31, 2006, excluding admissions for acute pancreatitis, history of pancreatic disease, renal insufficiency or lacking of data. Patients were divided in two groups (with and without high serum lipase that were compared for clinical, laboratory and radiological variables. Statistical analysis: SPSS 13; Student's t test and Chi-square test (CI 95% with statistical significance if p< 0.05. RESULTS: 102 patients were included with high serum lipase was present in 39.2% of patients, mean lipase of 797U/L. Patients with high serum lipase had longer hospital

  15. Lipopolysaccharide significantly influences the hepatic triglyceride metabolism in growing pigs.

    Science.gov (United States)

    Liu, Zhiqing; Liu, Weifeng; Huang, Yanping; Guo, Jun; Zhao, Ruqian; Yang, Xiaojing

    2015-06-30

    In the practical commercial pig farms, inflammation is a perennial problem, yet most of studies on inflammation are focused on immune response. Actually, inflammation can induce body metabolism disorder which will finally influence animals' growth. In this study, we investigated the effect of acute inflammation on the triglyceride (TG) metabolism in the liver of growing pigs and the possible underlying mechanisms. Twelve male growing pigs were randomly divided into two groups, a control group (received saline) and a LPS group (intramuscular injected with 15 μg/kg LPS). Six hours after LPS injection, the pigs were euthanized and sampled. Biochemical indexes, inflammation factors, lipid metabolism related parameters and mitochondrial function were evaluated. The relationship between glucocorticoid receptor (GR) and the key enzymes of de novo lipogenesis were also investigated by chromatin immunoprecipitation assay (ChIP). LPS induced a serious inflammation in the liver of growing pigs proved by liver morphologic changes, the up-regulated plasma cortisol, tumor necrosis factor-α (TNF-α) content and gene expression of inflammation related genes in liver. For de novo lipogenesis, LPS significantly decreased the gene expression of fatty acid synthase (FAS), Acetyl-CoA carboxylase-1 (ACC-1) and Stearoyl-CoA desaturase-1 (SCD-1), and the protein expression of ACC-1 and SCD-1. For lipolysis, only the gene expression of adipose triglyceride lipase (ATGL) was decreased. LPS did nothing to the gene expression of hormone-sensitive lipase (HSL) and the lipolytic enzymes activities. For β-oxidation, LPS significantly increased the protein expression of CPT-1α, but the gene expression of mitochondrial DNA-encoded genes and the activities of mitochondrial complex IV and V demonstrated no obviously changes. Furthermore, ChIP results showed that LPS significantly decreased the level of GR binding to ACC-1 promoter. LPS infection has a profound impact on hepatic TG metabolism

  16. Purification and characterization of a new cold active lipase, EnL A ...

    African Journals Online (AJOL)

    SONU

    2015-06-03

    Jun 3, 2015 ... palm oil mill effluent dump sites, Pedavegi, West Godavari Dist, A.P. India and was ... carried out with the lipase production medium optimized using ..... Non edible Castor Oil by Immobilized Lipase from Bacillus aerius.

  17. Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2

    Directory of Open Access Journals (Sweden)

    Ozgen Melis

    2016-06-01

    Full Text Available A strain of Haloarcula hispanica isolated from Tuzkoy salt mine, Turkey exhibited extracellular lipolytic activity. Important parameters such as carbon sources and salt concentration for lipase production were investigated. Optimal conditions for the enzyme production from Haloarcula hispanica 2TK2 were determined. It was observed that the lipolytic activity of Haloarcula hispanica was stimulated by some of the carbon sources. The high lipase acitivity values were obtained in the presence of 2% (v/v walnut oil (6.16 U/ml, 1% (v/v fish oil (5.07 U/ml, 1% (v/v olive oil (4.52 U/ml and 1% (w/v stearic acid (4.88 U/ml at 4M NaCl concentration. Lipase was partially purified by ammonium sulfate precipitation and ultrafiltration. Optimal temperature and pH values were determined as 45°C and 8.0, respectively. Lipase activity decreased with the increasing salt concentration, but 85% activity of the enzyme was maintained at 5M NaCl concentration. The enzyme preserved 41% of its relative activity at 90°C. The partially purified lipase maintained its activity in the presence of surfactants such as Triton X-100 and SDS. Therefore, the lipase which is an extremozyme may have potential applications especially in detergent industry.

  18. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions.

    Science.gov (United States)

    Jeong, Ji Yeon; Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Mo, Eun Jin; Lee, Ki Yong; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-06-01

    The leaves of Morus alba (Moraceae) have been traditionally used for the treatment of metabolic diseases including diabetes and hyperlipidemia. Thus, inhibitory effect of M. alba leaves on pancreatic lipase and their active constituents were investigated in this study. Twenty phenolic compounds including ten flavonoids, eight benzofurans, one stilbene and one chalcones were isolated from the leaves of M. alba. Among the isolated compounds, morachalcone A (20) exerted strong pancreatic lipase inhibition with IC50 value of 6.2 μM. Other phenolic compounds containing a prenyl group showed moderate pancreatic lipase inhibition with IC50 value of <50 μM. Next, extraction conditions with maximum pancreatic lipase inhibition and phenolic content were optimized using response surface methodology with three-level-three-factor Box-Behnken design. Our results suggested the optimized extraction condition for maximum pancreatic lipase inhibition and phenolic content as ethanol concentration of 74.9%; temperature 57.4 °C and sample/solvent ratio, 1/10. The pancreatic lipase inhibition and total phenolic content under optimized condition were found to be 58.5% and 26.2 μg GAE (gallic acid equivalent)/mg extract, respectively, which were well matched with the predicted value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The effect of interaction between Lipoprotein Lipase and ApoVLDL-II ...

    African Journals Online (AJOL)

    Body weight, abdominal fat weight and serum biochemical levels were determined from lean and fat chicken breeds at 12 weeks of age. Single nucleotide polymorphism (SNP) in apoVLDL-II and lipoprotein lipase genes was screened by PCR-SSCP and detected by direct sequencing. Lipoprotein lipase gene frequency ...

  20. Significantly Elevated Serum Lipase in Pregnancy with Nausea and Vomiting: Acute Pancreatitis or Hyperemesis Gravidarum?

    Directory of Open Access Journals (Sweden)

    Amanda Johnson

    2015-01-01

    Full Text Available Hyperemesis gravidarum is a severe manifestation of nausea and vomiting of pregnancy and it is associated with weight loss and metabolic abnormalities. It is known that abnormal laboratory values, including mildly elevated serum lipase level, could be associated with hyperemesis gravidarum. However, in this case report details of two women with hyperemesis gravidarum but with significantly elevated serum lipase levels were discussed. These patients presented with severe nausea and vomiting but without abdominal pain. They were found to have severely elevated lipase levels over 1,000 units/liter. In the absence of other findings of pancreatitis, they were treated with conservative measures for hyperemesis gravidarum, with eventual resolution to normal lipase levels. Although significantly elevated lipase level in pregnant patients with nausea and vomiting is a concern for acute pancreatitis, these two cases of significantly elevated serum lipase without other clinical findings of pancreatitis led to this report that serum lipase could be quite elevated in hyperemesis gravidarum and that it might not be an accurate biochemical marker for acute pancreatitis. Imaging studies are thus necessary to establish the diagnosis of acute pancreatitis.

  1. Controlled lid-opening in Thermomyces lanuginosus lipase- An engineered switch for studying lipase function

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob; Vind, Jesper; Moroz, Olga V.

    2017-01-01

    Here, we present a lipase mutant containing a biochemical switch allowing a controlled opening and closing of the lid independent of the environment. The closed form of the TlL mutant shows low binding to hydrophobic surfaces compared to the binding observed after activating the controlled switch...... inducing lid-opening. We directly show that lipid binding of this mutant is connected to an open lid conformation demonstrating the impact of the exposed amino acid residues and their participation in binding at the water-lipid interface. The switch was created by introducing two cysteine residues......-D measurements revealed a seven-fold increase in binding rate for the unlocked lipase. The TlL_locked mutant shows structural changes across the protein important for understanding the mechanism of lid-opening and closing. Our experimental results reveal sites of interest for future mutagenesis studies aimed...

  2. Relevant pH and lipase for in vitro models of gastric digestion.

    Science.gov (United States)

    Sams, Laura; Paume, Julie; Giallo, Jacqueline; Carrière, Frédéric

    2016-01-01

    The development of in vitro digestion models relies on the availability of in vivo data such as digestive enzyme levels and pH values recorded in the course of meal digestion. The variations of these parameters along the GI tract are important for designing dynamic digestion models but also static models for which the choice of representative conditions of the gastric and intestinal conditions is critical. Simulating gastric digestion with a static model and a single set of parameters is particularly challenging because the variations in pH and enzyme concentration occurring in the stomach are much broader than those occurring in the small intestine. A review of the literature on this topic reveals that most models of gastric digestion use very low pH values that are not representative of the fed conditions. This is illustrated here by showing the variations in gastric pH as a function of meal gastric emptying instead of time. This representation highlights those pH values that are the most relevant for testing meal digestion in the stomach. Gastric lipolysis is still largely ignored or is performed with microbial lipases. In vivo data on gastric lipase and lipolysis have however been collected in humans and dogs during test meals. The biochemical characterization of gastric lipase has shown that this enzyme is rather unique among lipases: (i) stability and activity in the pH range 2 to 7 with an optimum at pH 4-5.4; (ii) high tensioactivity that allows resistance to bile salts and penetration into phospholipid layers covering TAG droplets; (iii) sn-3 stereospecificity for TAG hydrolysis; and (iv) resistance to pepsin. Most of these properties have been known for more than two decades and should provide a rational basis for the replacement of gastric lipase by other lipases when gastric lipase is not available.

  3. The genotypic diversity and lipase production of some thermophilic bacilli from different genera

    OpenAIRE

    Koc, Melih; Cokmus, Cumhur; Cihan, Arzu Coleri

    2015-01-01

    Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR fingerprinting for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributy...

  4. Preparation of Biodiesel with Liquid Synergetic Lipases from Rapeseed Oil Deodorizer Distillate.

    Science.gov (United States)

    Zeng, Leping; He, Yaojia; Jiao, Liangcheng; Li, Kai; Yan, Yunjun

    2017-11-01

    To reduce industrial production cost, cheap and easily available rapeseed oil deodorizer distillates were used as feedstock to prepare biodiesel in this study. As a result, liquid forms of Candida rugosa lipase and Rhizopus oryzae lipase (ROL) were functioned as new and effective catalysts with biodiesel yield of 92.63% for 30 h and 94.36% for 9 h, respectively. Furthermore, the synergetic effect between the two lipases was employed to enhance biodiesel yield with a result of 98.16% in 6 h under optimized conditions via response surface methodology. The obtained conversion rate surpassed both yields of the individual two lipases and markedly shortened the reaction time. The resultant optimal conditions were ROL ratio 0.84, water content 46 wt% (w/w), reaction temperature 34 °C, and reaction time 6 h.

  5. Production of extracellular lipase by the phytopathogenic fungus Fusarium solani FS1

    OpenAIRE

    Maia, Maria de Mascena Diniz; Morais, Marcia Maria Camargo de; Morais Jr., Marcos Antonio de; Melo, Eduardo Henrique Magalhães; Lima Filho, José Luiz de

    1999-01-01

    A Brazilian strain of Fusarium solani was tested for extracellular lipase production in peptone-olive oil medium. The fungus produced 10,500 U.l-1 of lipase after 72 hours of cultivation at 25oC in shake-flask at 120 rpm in a medium containing 3% (w/v) peptone plus 0.5% (v/v) olive oil. Glucose (1% w/v) was found to inhibit the inductive effect of olive oil. Peptone concentrations below 3% (w/v) resulted in a reduced lipase production while increased olive oil concentration (above 0.5%) did n...

  6. Evaluation of the catalytic activity of lipases immobilized on chrysotile for esterification

    Directory of Open Access Journals (Sweden)

    Silva Jane E. S.

    2003-01-01

    Full Text Available In the present work, the ester synthesis in organic media catalyzed by lipases immobilized on chrysotile was studied. Lipases of different sources (Mucor javanicus, Pseudomonas cepacia, Rhizopus oryzae, Aspergillus niger and Candida rugosa were immobilized on chrysotile, an inexpensive magnesium silicate, and used for esterification of hexanoic, octanoic and lauric acid with methanol, ethanol, 1-butanol and 1-octanol at 25ºC in hexane as solvent. The best results were obtained with Mucor javanicus lipase and lauric acid giving yields of 62-97% of ester.

  7. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.

    Science.gov (United States)

    Sivalingam, G; Madras, Giridhar

    2004-01-01

    Enzymatic ring-opening polymerization of epsilon-caprolactone by various lipases was investigated in toluene at various temperatures. The determination of molecular weight and structural identification was carried out with gel permeation chromatography and proton NMR, respectively. Among the various lipases employed, an immobilized lipase from Candida antartica B (Novozym 435) showed the highest catalytic activity. The polymerization of epsilon-caprolactone by Novozym 435 showed an optimal temperature of 65 degrees C and an optimum toluene content of 50/50 v/v of toluene and epsilon-caprolactone. As lipases can degrade polyesters, a maximum in the molecular weight with time was obtained due to the competition of ring opening polymerization and degradation by specific chain end scission. The optimum temperature, toluene content, and the variation of molecular weight with time are consistent with earlier observations. A comprehensive model based on continuous distribution kinetics was developed to model these phenomena. The model accounts for simultaneous polymerization, degradation and enzyme deactivation and provides a technique to determine the rate coefficients for these processes. The dependence of these rate coefficients with temperature and monomer concentration is also discussed.

  8. Diagnostic value of post-heparin lipase testing in detecting common genetic variants in the LPL and LIPC genes

    NARCIS (Netherlands)

    van Hoek, Mandy; Dallinga-Thie, Geesje M.; Steyerberg, Ewout W.; Sijbrands, Eric J. G.

    2009-01-01

    Post-heparin lipoprotein lipase and hepatic lipase activities are used to identify primary disorders of triglyceride and HDL-cholesterol metabolism. Their ability to identify common variants in the lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes is unclear. To investigate the ability of

  9. Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii

    Directory of Open Access Journals (Sweden)

    Marita G. Pereira

    2017-09-01

    Full Text Available Enzyme immobilization can promote several advantages for their industrial application. In this work, a lipase from Hypocrea pseudokoningii was efficiently linked to four chemical supports: agarose activated with cyanogen bromide (CNBr, glyoxyl-agarose (GX, MANAE-agarose activated with glutaraldehyde (GA and GA-crosslinked with glutaraldehyde. Results showed a more stable lipase with both the GA-crosslinked and GA derivatives, compared to the control (CNBr, at 50 °C, 60 °C and 70 °C. Moreover, all derivatives were stabilized when incubated with organic solvents at 50%, such as ethanol, methanol, n-propanol and cyclohexane. Furthermore, lipase was highly activated (4-fold in the presence of cyclohexane. GA-crosslinked and GA derivatives were more stable than the CNBr one in the presence of organic solvents. All derivatives were able to hydrolyze sardine, açaí (Euterpe oleracea, cotton seed and grape seed oils. However, during the hydrolysis of sardine oil, GX derivative showed to be 2.3-fold more selectivity (eicosapentaenoic acid (EPA/docosahexaenoic acid (DHA ratio than the control. Additionally, the types of immobilization interfered with the lipase enantiomeric preference. Unlike the control, the other three derivatives preferably hydrolyzed the R-isomer of 2-hydroxy-4-phenylbutanoic acid ethyl ester and the S-isomer of 1-phenylethanol acetate racemic mixtures. On the other hand, GX and CNBr derivatives preferably hydrolyzed the S-isomer of butyryl-2-phenylacetic acid racemic mixture while the GA and GA-crosslink derivatives preferably hydrolyzed the R-isomer. However, all derivatives, including the control, preferably hydrolyzed the methyl mandelate S-isomer. Moreover, the derivatives could be used for eight consecutive cycles retaining more than 50% of their residual activity. This work shows the importance of immobilization as a tool to increase the lipase stability to temperature and organic solvents, thus enabling the possibility of

  10. GDSL lipases modulate immunity through lipid homeostasis in rice.

    Science.gov (United States)

    Gao, Mingjun; Yin, Xin; Yang, Weibing; Lam, Sin Man; Tong, Xiaohong; Liu, Jiyun; Wang, Xin; Li, Qun; Shui, Guanghou; He, Zuhua

    2017-11-01

    Lipids and lipid metabolites play important roles in plant-microbe interactions. Despite the extensive studies of lipases in lipid homeostasis and seed oil biosynthesis, the involvement of lipases in plant immunity remains largely unknown. In particular, GDSL esterases/lipases, characterized by the conserved GDSL motif, are a subfamily of lipolytic enzymes with broad substrate specificity. Here, we functionally identified two GDSL lipases, OsGLIP1 and OsGLIP2, in rice immune responses. Expression of OsGLIP1 and OsGLIP2 was suppressed by pathogen infection and salicylic acid (SA) treatment. OsGLIP1 was mainly expressed in leaf and leaf sheath, while OsGLIP2 showed high expression in elongating internodes. Biochemical assay demonstrated that OsGLIP1 and OsGLIP2 are functional lipases that could hydrolyze lipid substrates. Simultaneous down-regulation of OsGLIP1 and OsGLIP2 increased plant resistance to both bacterial and fungal pathogens, whereas disease resistance in OsGLIP1 and OsGLIP2 overexpression plants was significantly compromised, suggesting that both genes act as negative regulators of disease resistance. OsGLIP1 and OsGLIP2 proteins mainly localize to lipid droplets and the endoplasmic reticulum (ER) membrane. The proper cellular localization of OsGLIP proteins is indispensable for their functions in immunity. Comprehensive lipid profiling analysis indicated that the alteration of OsGLIP gene expression was associated with substantial changes of the levels of lipid species including monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG). We show that MGDG and DGDG feeding could attenuate disease resistance. Taken together, our study indicates that OsGLIP1 and OsGLIP2 negatively regulate rice defense by modulating lipid metabolism, thus providing new insights into the function of lipids in plant immunity.

  11. Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization.

    Science.gov (United States)

    He, Yongjin; Li, Jingbo; Kodali, Sitharam; Balle, Thomas; Chen, Bilian; Guo, Zheng

    2017-01-01

    This work examined catalytic specificity and fatty acid selectivity of five liquid lipases C. antarctica lipase A and B (CAL-A/B), and lipase TL (T. lanuginosus), Eversa Transfrom and NS in ethanolysis of fish oil with the aim to concentrate n-3 PUFAs into monoacylglycerols (MAGs) products. Lipase TL, Eversa Transform & NS entail a much faster reaction and produce higher MAGs yield (>30%); whereas CAL-A obtains the highest concentration of n-3 PUFAs/DHA/EPA into MAGs products (88.30%); followed by lipase NS (81.02%). 13 C NMR analysis indicates that CAL-B and lipase TL are sn-1,3 specific; but CAL-A and lipase Eversa Transform are non-regiospecific or weak sn-2 specific; which plausibly explains high enrichment effect of the latter two lipases. All liquid lipases are observed reusable for a certain times (lipase Eversa Transform up to 12 times), demonstrating their competitive advantage over immobilized form for industrial application because of their higher activity and cheaper operation cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Microbial lipase mediated by health beneficial modification of cholesterol and flavors in food products: A review.

    Science.gov (United States)

    Sharma, Ranjana; Sharma, Nivedita

    2017-06-14

    The tremendous need of lipase in varied applications in biotechnological increases its economical value in food and allied industries. Lipase has an impressive number of applications viz. enhancements of flavor in food products (Cheese, butter, alcoholic beverages, milk chocolate and diet control food stuffs), detergent industry in removing oil, grease stain, organic chemical processing, textile industry, oleochemical industry, cosmetic industry and also as therapeutic agents in pharmaceutical industries. This communication extends the frontier of lipase catalyzed benefits to human body by lowering serum cholesterol and enhancement of flavor in different food products. Among all, multiple innovations going on in the field of lipase applications are widening its scope in food industries consistently. Therefore in the present work an effort has been made to explore the utilization of lipase in the field of food product enhancement. Supplementation of food products with lipase results in modification of its physical, chemical and biochemical properties by enhancing its therapeutic activity. Lipases are the most important enzymes used in food industries. They are utilized as industrial catalysts for lipid hydrolysis. Because of lipases hydrolysis nature it is widely exploited to catalyze lipids or fats in different food products and enhancement of food flavors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. PPARγ regulates exocrine pancreas lipase.

    Science.gov (United States)

    Danino, Hila; Naor, Ronny Peri-; Fogel, Chen; Ben-Harosh, Yael; Kadir, Rotem; Salem, Hagit; Birk, Ruth

    2016-12-01

    Pancreatic lipase (triacylglycerol lipase EC 3.1.1.3) is an essential enzyme in hydrolysis of dietary fat. Dietary fat, especially polyunsaturated fatty acids (PUFA), regulate pancreatic lipase (PNLIP); however, the molecular mechanism underlying this regulation is mostly unknown. As PUFA are known to regulate expression of proliferator-activated receptor gamma (PPARγ), and as we identified in-silico putative PPARγ binding sites within the putative PNLIP promoter sequence, we hypothesized that PUFA regulation of PNLIP might be mediated by PPARγ. We used in silico bioinformatics tools, reporter luciferase assay, PPARγ agonists and antagonists, PPARγ overexpression in exocrine pancreas AR42J and primary cells to study PPARγ regulation of PNLIP. Using in silico bioinformatics tools we mapped PPARγ binding sites (PPRE) to the putative promoter region of PNLIP. Reporter luciferase assay in AR42J rat exocrine pancreas acinar cells transfected with various constructs of the putative PNLIP promoter showed that PNLIP transcription is significantly enhanced by PPARγ dose-dependently, reaching maximal levels with multi PPRE sites. This effect was significantly augmented in the presence of PPARγ agonists and reduced by PPARγ antagonists or mutagenesis abrogating PPRE sites. Over-expression of PPARγ significantly elevated PNLIP transcript and protein levels in AR42J cells and in primary pancreas cells. Moreover, PNLIP expression was up-regulated by PPARγ agonists (pioglitazone and 15dPGJ2) and significantly down-regulated by PPARγ antagonists in non-transfected rat exocrine pancreas AR42J cell line cells. PPARγ transcriptionally regulates PNLIP gene expression. This transcript regulation resolves part of the missing link between dietary PUFA direct regulation of PNLIP. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Novel Lipases: Expression and Improvement for Applied Biocatalysis = Nuevas lipasas: expresión y mejoras para biocatálisis aplicadatalysi Novel Lipases: Expression and Improvement for Applied Biocatalysis = Nuevas lipasas: expresión y mejoras para biocatálisis aplicada

    OpenAIRE

    Infanzón Ramos, Belén

    2017-01-01

    [eng] This thesis is focused in the identification and improvement of lipases for biotechnological application. The importance of lipases is increasing in several industries. However, the commercial use of lipases is still a drawback in the economics of the lipase-based industrial applications. There are many tools for improving and adapting the enzyme properties to the desired requirements of a process that could lead lipase catalysis through a cost-effective process. In this context, the m...

  15. Influence of dietary recombinant microbial lipase on performance and quality characteristics of rainbow trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Samuelsen, Troels; Isaksen, Mai; McLean, Ewen

    2001-01-01

    In order to assess whether supplementary lipase affected growth and body composition of trout, four diets were produced, consisting of (A) feed containing high (2083 mg kg(-1)), (B) low (208.3 mg kg(-1)) concentrations of lipase, (C) heat-treated (inactivated) lipase (2083 mg kg(-1)), and (D......) a basal control diet. Rainbow trout (n = 40/tank; initial wt. 23.22 +/- 4.81 g; length 124.7 +/- 6.35 mm) were fed, according to commercial feed tables, 6 days/week for 202 days. Retained activity of supplemental lipase was verified by monitoring free fatty acid appearance (FAA), which was significantly...... higher(P Lipase addition had no effect(P > 0.05) on growth, fillet proximate composition, hepatosomatic, cardiac, or gut indices, and carcass percentage. However, lipase supplementation influenced the mono-unsaturated fatty acid profiles of the fillet (P

  16. Quantitative approach to track lipase producing Pseudomonas sp. S1 in nonsterilized solid state fermentation.

    Science.gov (United States)

    Sahoo, R K; Subudhi, E; Kumar, M

    2014-06-01

    Proliferation of the inoculated Pseudomonas sp. S1 is quantitatively evaluated using ERIC-PCR during the production of lipase in nonsterile solid state fermentation an approach to reduce the cost of enzyme production. Under nonsterile solid state fermentation with olive oil cake, Pseudomonas sp. S1 produced 57·9 IU g(-1) of lipase. DNA fingerprints of unknown bacterial isolates obtained on Bushnell Haas agar (BHA) + tributyrin exactly matched with that of Pseudomonas sp. S1. Using PCR-based enumeration, population of Pseudomonas sp. S1 was proliferated from 7·6 × 10(4) CFU g(-1) after 24 h to 4·6 × 10(8) CFU g(-1) after 96 h, which tallied with the maximum lipase activity as compared to control. Under submerged fermentation (SmF), Pseudomonas sp. S1 produced maximum lipase (49 IU ml(-1) ) using olive oil as substrate, while lipase production was 9·754 IU ml(-1) when Pseudomonas sp. S1 was grown on tributyrin. Optimum pH and temperature of the crude lipase was 7·0 and 50°C. Crude enzyme activity was 71·2% stable at 50°C for 360 min. Pseudomonas sp. S1 lipase was also stable in methanol showing 91·6% activity in the presence of 15% methanol, whereas 75·5 and 51·1% of activity were retained in the presence of 20 and 30% methanol, respectively. Thus, lipase produced by Pseudomonas sp. S1 is suitable for the production of biodiesel as well as treatment of oily waste water. This study presents the first report on the production of thermophilic organic solvent tolerant lipase using agro-industry waste in nonsterile solid state fermentation. Positive correlation between survival of Pseudomonas sp. S1 and lipase production under nonsterile solid state fermentation was established, which may emphasize the need to combine molecular tools and solid state fermentation in future studies. Our study brings new insights into the lipase production in cost-effective manner, which is an industrially relevant approach. © 2014 The Society for Applied Microbiology.

  17. Sequential Detection of Thermophilic Lipase and Protease by Zymography.

    Science.gov (United States)

    Kurz, Liliana; Hernández, Zully; Contreras, Lellys M; Wilkesman, Jeff

    2017-01-01

    Lipase and protease present in cell-free fractions of thermophilic Bacillus sp. cultures were analyzed by polyacrylamide gel (PAG) electrophoresis. After run, the gel is electrotransferred to another PAG copolymerized with glycerol tributyrate, olive oil, and gelatin. This multi-substrate gel was incubated first for lipase detection, until bands appeared, and then stained with Coomassie for protease detection. Advantages of this sequential procedure are the detection of two different enzyme activities on a single PAG, beside time and resource saving.

  18. Lipases: particularly effective biocatalysts for cosmetic active ingredients

    Directory of Open Access Journals (Sweden)

    Yvergnaux Florent

    2017-07-01

    Full Text Available Enzymes are the tools of choice in the on-going quest for non-pollutant processes to discover molecules for use in skin products. Amongst these biocatalysts, lipases offer considerable potential in terms of ingredient development and are of interest in skin dermocosmetic formulations possessing sensory or biological activities. Lipases have been studied for around thirty years and, in most cases, these enzymes function under what are deemed to be mild conditions, displaying remarkable efficacy particularly in terms of selectivity. This particularly effective strategy will be illustrated through typical synthesis, demonstrating how ester or amide active ingredients are obtained.

  19. Improvement in biodiesel production from soapstock oil by one-stage lipase catalyzed methanolysis

    International Nuclear Information System (INIS)

    Su, Erzheng; Wei, Dongzhi

    2014-01-01

    Highlights: • Soapstock is a less expensive feedstock reservoir for biodiesel production. • Addition of tert-alcohol can enhance the yield of fatty acid methyl ester significantly. • One-stage lipase catalyzed methanolysis of soapstock oil was successfully developed. • FAME yield of 95.2% was obtained with low lipase loading in a shorter reaction time. - Abstract: A major obstacle in the commercialization of biodiesel is its cost of manufacturing, primarily the raw material cost. In order to decrease the cost of biodiesel, soapstock oil was investigated as the feedstock for biodiesel production. Because the soapstock oil containing large amounts of free fatty acids (FFAs) cannot be effectively converted to biodiesel, complicated two-stage process (esterification followed by transesterification) was generally adopted. In this study, simple one-stage lipase catalyzed methanolysis of soapstock oil was developed via one-pot esterification and transesterification. Water produced by lipase catalyzed esterification of FFAs affected the lipase catalyzed transesterification of glycerides in the soapstock oil severely. Addition of tert-alcohol could overcome this problem and enhance the fatty acid methyl ester (FAME) yield from 42.8% to 76.4%. The FAME yield was further elevated to 95.2% by optimizing the methanol/oil molar ratio, lipase amount, and water absorbent. The developed process enables the simple, efficient, and green production of biodiesel from soapstock oil, providing with a potential industrial application

  20. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications.

    Science.gov (United States)

    Borrelli, Grazia M; Trono, Daniela

    2015-09-01

    Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  1. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Grazia M. Borrelli

    2015-09-01

    Full Text Available Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.

  2. Properties of a membrane-bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons.

    Science.gov (United States)

    Rosnitschek, I; Theimer, R R

    1980-04-01

    The properties of the alkaline lipase activity (EC 3.1.1.3) that was recovered almost completely from a microsomal membrane fraction of 4-d-old rapeseed (Brassica napus L.) cotyledons were studied employing a titrimetric test procedure. The apparent KM was 6.5 mmol l(-1), with emulgated sunflower oil as the substrate. The products of triglyceride hydrolysis in vitro were glycerol, free fatty acids, and minor amounts of mono- and diglycerides. Maximum lipase activity depended on the preincubation of the lipolytic membrane fraction in 0.15 mol l(-1) NaCl and on the presence of at least 0.1 mol l(-1) NaCl in the test mixture. Desoxycholate and up to 0.1 mol l(-1) CaCl2 also activated the enzyme while EDTA and detergents such as trito x-100, digitonin, tween 85, and sodium dodecylsulfate were inhibitory. The rapeseed lipase displayed a conspicuous substrate selectivity among different plant triglycerides; the activity was inversely correlated with the oleic acid content of the oils. Water-soluble triacetin and the phospholipid lecithin were not hydrolyzed. Increasing amounts of free fatty acids reduced lipase activity; erucic acid, a major component of rapeseed oil, exhibited the strongest effect, suggesting a possible role in the regulation of lipase activity in vivo. The data demonstrate that the lipolytic membrane fraction houses a triglyceride lipase with properties similar to other plant and animal lipases. It can both qualitatively and quantitatively account for the fat degradation in rapeseed cotyledons. The evidence that provides further reason to acknowledge the membranous appendices of the spherosomes as the intracellular site of lipolysis is discussed.

  3. Hydrolysis of mixed monomolecular films of triglyceride/lecithin by pancreatic lipase.

    Science.gov (United States)

    Pieroni, G; Verger, R

    1979-10-25

    The main purpose of this study was to describe the influence of lecithin upon lipolysis of mixed monomolecular films of trioctanoylglycerol/didodecanoylphosphatidycholine by pancreatic lipase in order to mimic some physiological situations. The quantity of enzyme adsorbed to the interface was simultaneously determined using 5-thio-2-nitro[14C]benzoyl lipase. Lipolytic activity was enhanced 3- to 4-fold in the presence of colipase, an effect which is attributed to increased enzyme turnover number. When a pure triglyceride film was progressively diluted with lecithin, the minimum specific activity of lipase exhibited a bell-shaped curve: a mixed film containing only 20% trioctanoylglycerol was hydrolyzed at the same rate as a monolayer of pure triglyceride.

  4. From Structure to Catalysis: Recent Developments in the Biotechnological Applications of Lipases

    Directory of Open Access Journals (Sweden)

    Cristiane D. Anobom

    2014-01-01

    Full Text Available Microbial lipases are highly appreciated as biocatalysts due to their peculiar characteristics such as the ability to utilize a wide range of substrates, high activity and stability in organic solvents, and regio- and/or enantioselectivity. These enzymes are currently being applied in a variety of biotechnological processes, including detergent preparation, cosmetics and paper production, food processing, biodiesel and biopolymer synthesis, and the biocatalytic resolution of pharmaceutical derivatives, esters, and amino acids. However, in certain segments of industry, the use of lipases is still limited by their high cost. Thus, there is a great interest in obtaining low-cost, highly active, and stable lipases that can be applied in several different industrial branches. Currently, the design of specific enzymes for each type of process has been used as an important tool to address the limitations of natural enzymes. Nowadays, it is possible to “order” a “customized” enzyme that has ideal properties for the development of the desired bioprocess. This review aims to compile recent advances in the biotechnological application of lipases focusing on various methods of enzyme improvement, such as protein engineering (directed evolution and rational design, as well as the use of structural data for rational modification of lipases in order to create higher active and selective biocatalysts.

  5. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    Science.gov (United States)

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  6. Mathematical modeling of lipase and protease production by Penicillium restrictum in a batch fermenter.

    Science.gov (United States)

    Freire, D M; Sant'Anna, G L; Alves, T L

    1999-01-01

    This work presents a mathematical model that describes time course variations of extracellular lipase and protease activities for the batch fermentation of the fungus Penicillium restrictum, a new and promising strain isolated from soil and wastes of a Brazilian babassu coconut oil industry. The fermentation process was modeled by an unstructured model, which considered the following dependent variables: cells, fat acid, dissolved oxygen concentrations, lipase and protease activities, and cell lysate concentration. The last variable represents the amount of cells that has been lysed by the shear stress and natural cell death. Proteases released to the medium, as consequence of this process, enhance lipase inactivation. The model is able to predict the effects of some operation variables such as air flow rate and agitation speed. The mathematical model was validated against batch-fermentation data obtained under several operating conditions. Because substrate concentration has antagonistic effects on lipase activity, a typical optimization scheme should be developed in order to minimize these deleterious effects while maximizing lipase activity.

  7. Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins.

    Science.gov (United States)

    Wang, Dan; Zhang, Lin; Hu, JunFeng; Gao, Dianshuai; Liu, Xin; Sha, Yan

    2018-04-01

    Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.

  8. Binding orientation and interaction of bile salt in its ternary complex with pancreatic lipase-colipase system.

    Science.gov (United States)

    Haque, Neshatul; Prakash Prabhu, N

    2018-05-23

    The interfacial activity of pancreatic lipases (PL) depends on the presence of colipase and bile salt. The activity of PL is inhibited by micellar concentrations of bile salt which can be restored by the addition of colipase. Though the formation of 1:1:1 tertiary complex by lipase-colipase-bile salt micelle is well accepted, the residue-level interactions between lipase-colipase and bile salt are yet to be clearly understood. Molecular dynamic simulations of lipase-colipase complex, lipase and colipase were performed in the presence of a model bile salt, sodium taurocholate (NaTC), at its near-CMC and supra-micellar concentrations. From the interactions obtained from the molecular dynamic simulations, the ternary complex was modelled and compared with earlier reports. The analysis suggested that a micelle of NaTC consisting of nine monomers was formed at the concave groove between lipase and colipase chain and it mainly interacted with the fourth finger of colipase. This complex was mainly stabilized by van der Waals interactions. Interestingly, the C-terminal domain of lipase which holds the colipase did not show any significant role in formation or stabilization of NaTC micelle. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Biochemical Properties of a New Cold-Active Mono- and Diacylglycerol Lipase from Marine Member Janibacter sp. Strain HTCC2649

    Directory of Open Access Journals (Sweden)

    Dongjuan Yuan

    2014-06-01

    Full Text Available Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1 from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1, Penicillium camembertii lipase U-150 (PCL, and Aspergillus oryzae lipase (AOL. Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity.

  10. Properties of Immobilized Candida antarctica Lipase B on Highly Macroporous Copolymer

    International Nuclear Information System (INIS)

    Handayani, N.; Achmad, S.; Wahyuningrum, D.

    2011-01-01

    In spite of their excellent catalytic properties, enzymes should be improved before their implementation both in industrial and laboratorium scales. Immobilization of enzyme is one of the ways to improve their properties. Candida antarctica lipase B (Cal-B) has been reported in numerous publications to be a particularly useful enzyme catalizing in many type of reaction including regio- and enantio- synthesis. For this case, cross-linking of immobilized Cal-B with 1,2,7,8 diepoxy octane is one of methods that proved significantly more stable from denaturation by heat, organic solvents, and proteolysis than lyophilized powder or soluble enzymes. More over, the aim of this procedure is to improve the activity and reusability of lipase. Enzyme kinetics test was carried out by transesterification reaction between 4-nitrophenyl acetate (pNPA) and methanol by varying substrate concentrations, and the result is immobilized enzymes follows the Michaelis-Menten models and their activity is match with previous experiment. Based on the V max values, the immobilized enzymes showed higher activity than the free enzyme. Cross-linking of immobilized lipase indicate that cross-linking by lower concentration of cross-linker, FIC (immobilized lipase that was incubated for 24 h) gave the highest activity and cross-linking by higher concentration of cross-linker, PIC (immobilized lipase that was incubated for 2 h) gives the highest activity. However, pore size and saturation level influenced their activity. (author)

  11. Radioimmunoassay of thyroid hormones

    International Nuclear Information System (INIS)

    Bartalena, L.; Mariotti, S.; Pinchera, A.

    1987-01-01

    For many years, methods based on iodine content determination have represented the only techniques available for the estimation of total thyroid hormone concentrations in serum. Subsequently, simple, sensitive, and specific radioligand assays for thyroid hormones have replaced these chemical methods. For the purpose of this chapter, iodometric techniques are only briefly summarized for their historical importance, whereas attention is focused on radioligand assays

  12. A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ

    Science.gov (United States)

    Tang, Yan; Zhang, Wei; Liu, Jia; Zhang, Lei; Huang, Wei; Huo, Fengwei; Tian, Danbi

    2015-03-01

    A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response ranging from 0.025 to 4 mg mL-1 and a detection limit of the lipase as low as 3.47 μg mL-1 were achieved. This strategy circumvents the problems encountered by general enzyme assays that require sophisticated instruments and complicated assembling steps. The methodology can benefit the assays of heterogeneous-catalyzed enzymes.A plasmonic nanosensor for lipase activity was developed based on one-pot nanoparticle growth. Tween 80 was selected not only as the substrate for lipase recognition but also as the reducing and stabilizing agent for the sensor fabrication. The different molecular groups in Tween 80 could have different roles in the fabrication procedure; the H2O2 produced by the autoxidation of the ethylene oxide subunits in Tween 80 could reduce the AuCl4- ions to Au atoms, meanwhile, the lipase could hydrolyze its carboxyl ester bond, which could, in turn, control the rate of nucleation of the gold nanoparticles (AuNPs) and tailor the localized surface plasmon resonance (LSPR) of the AuNP transducers. The color changes, which depend on the absence or presence of the lipase, could be used to sense the lipase activity. A linear response

  13. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    Science.gov (United States)

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  14. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry

    OpenAIRE

    Abol Fotouh, Deyaa M.; Bayoumi, Reda A.; Hassan, Mohamed A.

    2016-01-01

    Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase pr...

  15. Classification of EC 3.1.1.3 bacterial true lipases using phylogenetic ...

    African Journals Online (AJOL)

    To obtain an overview of this industrially and very important class of enzymes and their characteristics, we collected and classified bacterial lipases sequences available from protein databases. Here we proposed an updated and revised classification of family I bacterial "true" lipases based mainly on a comparison of their ...

  16. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    Science.gov (United States)

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  17. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.

    Science.gov (United States)

    Mohammadi, Mohsen; Sepehrizadeh, Zargham; Ebrahim-Habibi, Azadeh; Shahverdi, Ahmad Reza; Faramarzi, Mohammad Ali; Setayesh, Neda

    2016-11-01

    Lipases as significant biocatalysts had been widely employed to catalyze various chemical reactions such as ester hydrolysis, ester synthesis, and transesterification. Improving the activity and thermostability of enzymes is desirable for industrial applications. The lipase of Serratia marcescens belonging to family I.3 lipase has a very important pharmaceutical application in production of chiral precursors. In the present study, to achieve improved lipase activity and thermostability, using computational predictions of protein, four mutant lipases of SML (MutG2P, MutG59P, Mut H279K and MutL613WA614P) were constructed by site-directed mutagenesis. The recombinant mutant proteins were over-expressed in E. coli and purified by affinity chromatography on the Ni-NTA system. Circular dichroism spectroscopy, differential scanning calorimetry and kinetic parameters (Km and kcat) were determined. Our results have shown that the secondary structure of all lipases was approximately similar to one another. The MutG2P and MutG59P were more stable than wild type by approximately 2.3 and 2.9 in T 1/2 , respectively. The catalytic efficiency (kcat/Km) of MutH279K was enhanced by 2-fold as compared with the wild type (p<0.05). These results indicate that using protein modeling program and creating mutation, can enhance lipase activity and/or thermostability of SML and it also could be used for improving other properties of enzyme to the desired requirements as well as further mutations. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Lipase catalyzed transesterification of castor oil by straight chain higher alcohols.

    Science.gov (United States)

    Malhotra, Deepika; Mukherjee, Joyeeta; Gupta, Munishwar N

    2015-03-01

    Biolubricants from Castor oil were produced enzymatically by transesterification with higher alcohols using a lipase mixture of immobilized Mucor miehei (RMIM) and immobilized Candida antarctica lipase B (Novozym 435) under low water conditions. The conversions were in the range of 80-95% under the optimized conditions. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Production of Biodiesel Using Immobilized Lipase and the Characterization of Different Co-Immobilizing Agents and Immobilization Methods

    Directory of Open Access Journals (Sweden)

    Kang Zhao

    2016-08-01

    Full Text Available Lipase from Candida sp. 99–125 is widely employed to catalyzed transesterification and can be used for biodiesel production. In this study, the lipase was immobilized by combined adsorption and entrapment to catalyze biodiesel production from waste cooking oil (WCO via transesterification, and investigating co-immobilizing agents as additives according to the enzyme activity. The addition of the mixed co-immobilizing agents has positive effects on the activities of the immobilized lipase. Three different immobilizing methods were compared by the conversion ratio of biodiesel and structured by Atom Force Microscopy (AFM and Scanning Electron Microscopy (SEM, respectively. It was found that entrapment followed by adsorption was the best method. The effect of the co-immobilizing agent amount, lipase dosage, water content, and reuse ability of the immobilized lipase was investigated. By comparison with previous research, this immobilized lipase showed good reuse ability: the conversion ratio excesses 70% after 10 subsequent reactions, in particular, was better than Novozym435 and TLIM on waste cooking oil for one unit of lipase.

  20. Immobilised lipases in the cosmetics industry.

    Science.gov (United States)

    Ansorge-Schumacher, Marion B; Thum, Oliver

    2013-08-07

    Commercial products for personal care, generally perceived as cosmetics, have an important impact on everyday life worldwide. Accordingly, the market for both consumer products and specialty chemicals comprising their ingredients is considerable. Lipases have started to play a minor role as active ingredients in so-called 'functional cosmetics' as well as a major role as catalysts for the industrial production of various specialty esters, aroma compounds and active agents. Interestingly, both applications almost always require preparation by appropriate immobilisation techniques. In addition, for catalytic use special reactor concepts often have to be employed due to the mostly limited stability of these preparations. Nevertheless, these processes show distinct advantages based on process simplification, product quality and environmental footprint and are therefore apt to more and more replace traditional chemical processes. Here, for the first time a review on the various aspects of using immobilised lipases in the cosmetics industry is given.

  1. Cell-bound lipases from Burkholderia sp. ZYB002: gene sequence analysis, expression, enzymatic characterization, and 3D structural model.

    Science.gov (United States)

    Shu, Zhengyu; Lin, Hong; Shi, Shaolei; Mu, Xiangduo; Liu, Yanru; Huang, Jianzhong

    2016-05-03

    The whole-cell lipase from Burkholderia cepacia has been used as a biocatalyst in organic synthesis. However, there is no report in the literature on the component or the gene sequence of the cell-bound lipase from this species. Qualitative analysis of the cell-bound lipase would help to illuminate the regulation mechanism of gene expression and further improve the yield of the cell-bound lipase by gene engineering. Three predictive cell-bound lipases, lipA, lipC21 and lipC24, from Burkholderia sp. ZYB002 were cloned and expressed in E. coli. Both LipA and LipC24 displayed the lipase activity. LipC24 was a novel mesophilic enzyme and displayed preference for medium-chain-length acyl groups (C10-C14). The 3D structural model of LipC24 revealed the open Y-type active site. LipA displayed 96 % amino acid sequence identity with the known extracellular lipase. lipA-inactivation and lipC24-inactivation decreased the total cell-bound lipase activity of Burkholderia sp. ZYB002 by 42 % and 14 %, respectively. The cell-bound lipase activity from Burkholderia sp. ZYB002 originated from a multi-enzyme mixture with LipA as the main component. LipC24 was a novel lipase and displayed different enzymatic characteristics and structural model with LipA. Besides LipA and LipC24, other type of the cell-bound lipases (or esterases) should exist.

  2. Polyethyleneimine-modified superparamagnetic Fe{sub 3}O{sub 4} nanoparticles for lipase immobilization: Characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Khoobi, Mehdi; Motevalizadeh, Seyed Farshad [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); Asadgol, Zahra [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411 (Iran, Islamic Republic of); Forootanfar, Hamid [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Shafiee, Abbas, E-mail: ashafiee@ams.ac.ir [Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); Faramarzi, Mohammad Ali, E-mail: faramarz@tums.ac.ir [Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411 (Iran, Islamic Republic of)

    2015-01-15

    Magnetically separable nanospheres consisting of polyethyleneimine (PEI) and succinated PEI grafted on silica coated magnetite (Fe{sub 3}O{sub 4}) were prepared and characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, vibrating sample magnetometer, scanning electron microscopy and transmission electron microscopy. The prepared magnetic nanoparticles were then applied for physical adsorption or covalent attachment of Thermomyces lanuginosa lipase (TLL) via glutaraldehyde or hexamethylene diisocyanate. The reusability, storage, pH and thermal stabilities of the immobilized enzymes compared to that of free lipase were examined. The obtained results showed that the immobilized lipase on MNPs@PEI-GLU was the best biocatalyst which retained 80% of its initial activity after 12 cycles of application. The immobilized lipase on the selected support (MNPs@PEI-GLU) was also applied for the synthesis of ethyl valerate. Following 24 h incubation of the immobilized lipase on the selected support in n-hexane and solvent free media, the esterification percentages were 72.9% and 28.9%, respectively. - Graphical abstract: A schematic of the preparation of PEI- and succinated PEI-grafted Fe{sub 3}O{sub 4} MNPs (MNPs@PEI) and the immobilization of lipase by covalent bonding and adsorption. - Highlights: • Functionalized polyethylenimine-grafted magnetic nanoparticles were synthesized. • The prepared supports were fully characterized by various analysis methods. • Lipase was immobilized on the nanostructures by adsorption and covalent attachment. • Immobilized lipase produced ethyl valerate in solvent free medium.

  3. Coconut oil induced production of a surfactant-compatible lipase from Aspergillus tamarii under submerged fermentation.

    Science.gov (United States)

    Das, Arijit; Bhattacharya, Sourav; Shivakumar, Srividya; Shakya, Sujina; Sogane, Swathi Shankar

    2017-02-01

    Filamentous fungi are efficient producers of lipases. The present study focuses on identification of a potent lipolytic fungus and enhancement of lipase production through optimization of nutritional and cultural conditions under submerged fermentation. Molecular characterization of the fungus by 18S rDNA sequencing revealed its identity as Aspergillus tamarii with 98% homology. Maximum lipase production was noted in mineral salts medium supplemented with coconut oil (2.5%, v/v). A combination of ammonium chloride (2%, w/v) and tryptone (2%, w/v) facilitated maximum lipase production at pH 5 of the production medium. A carbon: nitrogen ratio of 1:4 led to significant (p oil stain removal activity of a commercially available detergent by 2.2-fold. The current findings suggest the potentiality of this fungal lipase to be used in detergent formulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Immobilization of Beauveria bassiana Lipase on Silica Gel by Physical Adsorption

    Directory of Open Access Journals (Sweden)

    Vanessa Hitomi Sugahara

    2014-12-01

    Full Text Available Extracellular lipase from Beauveria bassianastrain CG481 was immobilized by using thirteen different immobilization protocols. Silica gel was chosen as the most suitable adsorbent with 94.8% of activity yield. The adsorption on silica gel did not change the optimum pH (8.5 and temperature (45ºC values of the free lipase (FL for lipolytic activity, and it showed higher activities in extreme conditions (pH 9.0 to 10.5, 60ºC. The lipase immobilized on silica gel (ILS showed enhanced stability at pH 7.0 after 120 h incubation (69.0% when compared to FL (33.3%. The thermal stability was also enhanced by immobilization at 60ºC in aqueous (64.6% and organic medium (95.1%, while FL showed only 40.6% of residual activity in aqueous medium and exhibited no activity for esterification reaction in n-heptane. The treatment of ILS with 0.8 M NaCl prevented lipase desorption while Triton X-100 (0.1% resulted the enzyme leakage. The ILS was reused for four times for esterification reaction with 80.8% of initial activity.

  5. Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review

    Directory of Open Access Journals (Sweden)

    Atefehalsadat Seyedan

    2015-01-01

    Full Text Available Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.

  6. Production of extracellular lipases by Rhizopus oligosporus in a stirred fermentor

    Directory of Open Access Journals (Sweden)

    Tehreema Iftikhar

    2010-12-01

    Full Text Available The present investigation deals with the kinetics of submerged extracellular lipases fermentation by both wild and mutant strains of Rhizopus oligosporus var. microsporus in a laboratory scale stirred fermentor. Other parameters studied were inoculum size, pH, agitation and rate of aeration. It was found that the growth and lipases production was increased gradually and reached its maximum 9.07± 0.42ª U mL-1 (W and 42.49 ± 3.91ª U mL-1 (M after 30h of fermentation for both wild and mutant strain. There is overall increase of 109% (W and 124% (M in the production of extracellular lipases as compared to shake flask. Another significant finding of the present study is that the fermentation period is reduced to 30 h in case of wild and 23 h in case of mutant from 48 h in shake flask studies. The specific productivity of mutant strain (qp = 377.3 U/g cells/h was several folds higher than wild strain. The specific production rate and growth coefficient revealed the hyperproducibility of extracellular lipases using mutant IIB-63NTG-7.

  7. Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials

    Science.gov (United States)

    Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

    2013-12-01

    SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

  8. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    Science.gov (United States)

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses.

  9. Screening Brazilian Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases.

    Science.gov (United States)

    Schinke, Claudia; Germani, José C

    2012-03-01

    Macrophomina phaseolina, phylum Ascomycota, is a phytopathogenic fungus distributed worldwide in hot dry areas. There are few studies on its secreted lipases and none on its colony radial growth rate, an indicator of fungal ability to use nutrients for growth, on media other than potato-dextrose agar. In this study, 13 M. phaseolina isolates collected in different Brazilian regions were screened for fast-growth and the production of hydrolases of industrial interest, especially alkaline lipases. Hydrolase detection and growth rate determination were done on citric pectin, gelatin, casein, soluble starch, and olive oil as substrates. Ten isolates were found to be active on all substrates tested. The most commonly detected enzymes were pectinases, amylases, and lipases. The growth rate on pectin was significantly higher (P media identified CMM 2105, CMM 1091, and PEL as the fastest-growing isolates. The lipase activity of four isolates grown on olive oil was followed for 4 days by measuring the activity in the cultivation broth. The specific lipolytic activity of isolate PEL was significantly higher at 96 h (130 mU mg protein(-1)). The broth was active at 37 °C, pH 8, indicating the potential utility of the lipases of this isolate in mild alkaline detergents. There was a strong and positive correlation (0.86) between radial growth rate and specific lipolytic activity.

  10. Efficient utilization of xylanase and lipase producing thermophilic ...

    African Journals Online (AJOL)

    Efficient utilization of xylanase and lipase producing thermophilic marine actinomycetes ( Streptomyces albus and Streptomyces hygroscopicus ) in the production of ecofriendly alternative energy from waste.

  11. Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations

    Directory of Open Access Journals (Sweden)

    Abir Ben Bacha

    2018-03-01

    Full Text Available An extracellular lipase of a newly isolated S. aureus strain ALA1 (SAL4 was purified from the optimized culture medium. The SAL4 specific activity determined at 60 °C and pH 12 by using olive oil emulsion or TC4, reached 7215 U/mg and 2484 U/mg, respectively. The 38 NH2-terminal amino acid sequence of the purified enzyme starting with two extra amino acid residues (LK was similar to known staphylococcal lipase sequences. This novel lipase maintained almost 100% and 75% of its full activity in a pH range of 4.0–12 after a 24 h incubation or after 0.5 h treatment at 70 °C, respectively. Interestingly, SAL4 displayed appreciable stability toward oxidizing agents, anionic and non-ionic surfactants in addition to its compatibility with several commercial detergents. Overall, these interesting characteristics make this new lipase promising for its application in detergent industry. Keywords: Staphylococcus aureus lipase, Purification, Characterization, Thermo-alkaline, Detergent-stable

  12. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanlong [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Chunhong [Second Hospital, Jilin University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Wang, Yuhua [College of Food Science and Engineering, Jilin Agricultural University, Changchun (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Ma, Zhenhua [First Hospital, Xi' an Jiaotong University, Xi' an (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Xiao, Jian [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); McClain, Craig [Department of Medicine, University of Louisville, Louisville, KY (United States); Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States); Robley Rex Veterans Affairs Medical Center, Louisville, KY (United States); Li, Xiaokun [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Feng, Wenke, E-mail: wenke.feng@louisville.edu [School of Pharmacy, Wenzhou Medical College, Wenzhou (China); Department of Medicine, University of Louisville, Louisville, KY (United States); Alcohol Research Center, University of Louisville, Louisville, KY (United States)

    2012-10-15

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and

  13. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    International Nuclear Information System (INIS)

    Liu, Yanlong; Wang, Chunhong; Wang, Yuhua; Ma, Zhenhua; Xiao, Jian; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2012-01-01

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl 2 ), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl 2 treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl 2 administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl 2 -induced reactive oxygen species (ROS) formation and completely negated CoCl 2 -induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl 2 administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl 2 increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl 2 -induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and absorption. -- Graphical abstract: Physical

  14. Lipase production by solid-state fermentation in fixed-bed bioreactors

    Directory of Open Access Journals (Sweden)

    Elisa d'Avila Costa Cavalcanti

    2005-06-01

    Full Text Available In the present work, packed bed bioreactors were employed with the aim of increasing productivity and scaling up of lipase production using Penicillium simplicissimum in solid-state fermentation. The influence of temperature and air flow rate on enzyme production was evaluated employing statistical experimental design, and an empirical model was adjusted to the experimental data. It was shown that higher lipase activities could be achieved at lower temperatures and higher air flow rates. The maximum lipase activity (26.4 U/g was obtained at the temperature of 27°C and air flow rate of 0.8 L/min.O fungo Penicillium simplicissimum se mostrou, em trabalhos anteriores, um ótimo produtor de lipase por fermentação no estado sólido, quando cultivado em biorreatores do tipo bandeja, utilizando a torta de babaçu como meio de cultura. Com o objetivo de aumentar a produtividade e possibilitar uma ampliação de escala, foi investigado, no presente trabalho, o emprego de biorreatores de leito fixo com aeração forçada. Os biorreatores utilizados tinham 4 cm de diâmetro interno e 14 cm de altura útil. Empregando-se planejamento estatístico de experimentos como ferramenta, foram avaliadas as influências da temperatura e da vazão de ar sobre a produção de lipase nestes biorreatores. Os resultados obtidos permitiram ajustar um modelo empírico, o qual indicou que maiores atividades lipásicas são alcançadas para temperaturas mais baixas e vazões de ar mais altas. A atividade lipásica máxima (26,4 U/g foi obtida para temperatura de 27°C e vazão de ar de 0,8 L/min.

  15. Serum amylase and lipase activities after exploratory laparotomy in dogs.

    Science.gov (United States)

    Bellah, J R; Bell, G

    1989-09-01

    Serum amylase and lipase activities and creatinine concentration were determined before surgery, and at 1 and 2 days after exploratory laparotomy in 24 dogs. Examination of all viscera was done during each laparotomy, but a surgical procedure was not performed. The mean serum activities for lipase were: before surgery, 0.71 (0.0 to 2.0) Cherry Crandall units (CCU)/L; 1 day after surgery, 2.1 (0.0 to 4.5) CCU/L; and 2 days after surgery, 1.19 (0.0 to 3.9) CCU/L. The mean serum activities for amylase were: before surgery, 1,958 (1,027 to 3,426) IU/L; 1 day after surgery, 1,538 (937 to 2,659) IU/L; and 2 days after surgery, 1,663 (1,066 to 2,274) IU/L. Serum creatinine concentrations before surgery, 1 day after surgery, and 2 days after surgery were 0.88 (0.2 to 1.7) mg/dl, 0.78 (0.4 to 1.3) mg/dl, and 0.78 (0.3 to 1.3) mg/dl, respectively. Mean preoperative, day-1, and day-2 serum amylase activities and serum creatinine concentrations did not differ significantly from each other. Mean preoperative and day-2 serum lipase activities did not differ significantly; however, mean serum lipase activity was significantly greater when day 1 activities were compared with preoperative activities (P = 0.0002). Post-mortem examinations revealed no gross or histologic evidence of pancreatitis in any dog. The results of this study show that a 3 or more fold increase in serum lipase activity may occur after routine exploratory laparotomy in dogs without clinical signs or gross evidence of pancreatitis. Histologic evidence of pancreatitis was not found in the right pancreatic lobes in any dog.

  16. PRELIMINARY STUDIES FOR PRODUCING CRUDE LIPASE FROM TEMPE’S MOULD CULTIVATED IN RICE-HUSK-BASED SOLID MEDIA

    Directory of Open Access Journals (Sweden)

    Teuku Beuna Bardant

    2010-06-01

    Full Text Available The goal of these preliminary studies is to support Indonesian program for increasing palm oil added value through independent production technology based on Indonesian natural resources. Various palm oil derivatives could be synthesized enzymatically using lipase from microbes that available in Indonesia. Tempe's mould is available in abundance in Indonesia and had already been proved for producing lipase. This paper provides information about producing crude lipase from Tempe's mould cultivated in rice-husk-based solid media using palm oil as carbon source. Observed variables include solid media composition, optimum fermentation time, extraction and enriching process of crude lipase. The crude lipase was analyzed its hydrolysis activity on coconut oil and palm oil. The result of these preliminary studies shows that this production process is a simple and tough process and very potential to be developed.   Keywords: lipase, Tempe's mould, palm oil, solid fermentation, rice husk

  17. Production of structured lipids in a packed-bed reactor with Thermomyces lanuginosa lipase

    DEFF Research Database (Denmark)

    Xu, Xuebing; Porsgaard, Trine; Zhang, Hong

    2002-01-01

    Lipase-catalyzed interesterification between fish oil and medium-chain TAG has been investigated in a packed-bed reactor with a commercially immobilized enzyme. The enzyme, a Thermomyces lanuginosa lipase immobilized on silica by granulation (Lipozyme TL IM; Novozymes A/S, Bagsvaerd, Denmark), ha...

  18. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry.

    Science.gov (United States)

    Abol Fotouh, Deyaa M; Bayoumi, Reda A; Hassan, Mohamed A

    2016-01-01

    Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v), respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v), 4% (v/v), and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5%) or the sole crude enzyme (8.9%). It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards.

  19. Production of Thermoalkaliphilic Lipase from Geobacillus thermoleovorans DA2 and Application in Leather Industry

    Directory of Open Access Journals (Sweden)

    Deyaa M. Abol Fotouh

    2016-01-01

    Full Text Available Thermophilic and alkaliphilic lipases are meeting a growing global attention as their increased importance in several industrial fields. Over 23 bacterial strains, novel strain with high lipolytic activity was isolated from Southern Sinai, Egypt, and it was identified as Geobacillus thermoleovorans DA2 using 16S rRNA as well as morphological and biochemical features. The lipase was produced in presence of fatty restaurant wastes as an inducing substrate. The optimized conditions for lipase production were recorded to be temperature 60°C, pH 10, and incubation time for 48 hrs. Enzymatic production increased when the organism was grown in a medium containing galactose as carbon source and ammonium phosphate as nitrogen source at concentrations of 1 and 0.5% (w/v, respectively. Moreover, the optimum conditions for lipase production such as substrate concentration, inoculum size, and agitation rate were found to be 10% (w/v, 4% (v/v, and 120 rpm, respectively. The TA lipase with Triton X-100 had the best degreasing agent by lowering the total lipid content to 2.6% as compared to kerosene (7.5% or the sole crude enzyme (8.9%. It can be concluded that the chemical leather process can be substituted with TA lipase for boosting the quality of leather and reducing the environmental hazards.

  20. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli

    Directory of Open Access Journals (Sweden)

    Wu Xiangping

    2012-09-01

    Full Text Available Abstract Background Microbial lipases particularly Pseudomonas lipases are widely used for biotechnological applications. It is a meaningful work to design experiments to obtain high-level active lipase. There is a limiting factor for functional overexpression of the Pseudomonas lipase that a chaperone is necessary for effective folding. As previously reported, several methods had been used to resolve the problem. In this work, the lipase (LipA and its chaperone (LipB from a screened strain named AB which belongs to Pseudomonas aeruginosa were overexpressed in E. coli with two dual expression plasmid systems to enhance the production of the active lipase LipA without in vitro refolding process. Results In this work, we screened a lipase-produced strain named AB through the screening procedure, which was identified as P. aeruginosa on the basis of 16S rDNA. Genomic DNA obtained from the strain was used to isolate the gene lipA (936 bp and lipase specific foldase gene lipB (1023 bp. One single expression plasmid system E. coli BL21/pET28a-lipAB and two dual expression plasmid systems E. coli BL21/pETDuet-lipA-lipB and E. coli BL21/pACYCDuet-lipA-lipB were successfully constructed. The lipase activities of the three expression systems were compared to choose the optimal expression method. Under the same cultured condition, the activities of the lipases expressed by E. coli BL21/pET28a-lipAB and E. coli BL21/pETDuet-lipA-lipB were 1300 U/L and 3200 U/L, respectively, while the activity of the lipase expressed by E. coli BL21/pACYCDuet-lipA-lipB was up to 8500 U/L. The lipase LipA had an optimal temperature of 30°C and an optimal pH of 9 with a strong pH tolerance. The active LipA could catalyze the reaction between fatty alcohols and fatty acids to generate fatty acid alkyl esters, which meant that LipA was able to catalyze esterification reaction. The most suitable fatty acid and alcohol substrates for esterification were octylic acid and hexanol

  1. Pseudomonas sp. BUP6 produces a thermotolerant alkaline lipase with trans-esterification efficiency in producing biodiesel.

    Science.gov (United States)

    Priji, Prakasan; Sajith, Sreedharan; Faisal, Panichikkal Abdul; Benjamin, Sailas

    2017-12-01

    The present study describes the characteristics of a thermotolerant and alkaline lipase secreted by Pseudomonas sp. BUP6, a novel rumen bacterium isolated from Malabari goat, and its trans -esterification efficiency in producing biodiesel from used cooking oil (UCO). The extracellular lipase was purified to homogeneity (35.8 times purified with 14.8% yield) employing (NH 4 ) 2 SO 4 salt precipitation and Sephadex G-100 chromatography. The apparent molecular weight of this lipase on SDS-PAGE was 35 kDa, the identity of which was further confirmed by MALDI-TOF/MS. The purified lipase was found stable at a pH range of 7-9 with the maximum activity (707 U/ml) at pH 8.2; and was active at the temperature ranging from 35 to 50 °C with the optimum at 45 °C (891 U/ml). Triton X-100 and EDTA had no effect on the activity of lipase; whereas SDS, Tween-80 and β-mercaptoethanol inhibited its activity significantly. Moreover, Ca 2+ (1.0 mM) enhanced the activity of lipase (1428 U/ml) by 206% vis-à-vis initial activity; while Zn 2+ , Fe 2+ and Cu 2+ decreased the activity significantly. Using para -nitrophenyl palmitate as substrate, the K m (11.6 mM) and V max [668.9 μmol/(min/mg)] of the purified lipase were also determined. Crude lipase was used for analyzing its trans -esterification efficiency with used cooking oil and methanol which resulted in the worthy yield of fatty acid methyl esters, FAME (45%) at 37 °C, indicating its prospects in biodiesel industry. Thus, the lipase secreted by the rumen bacterium, Pseudomonas sp. BUP6, offers great potentials to be used in various industries including the production of biodiesel by trans -esterification.

  2. Ultrasound-Assisted Esterification of Valeric Acid to Alkyl Valerates Promoted by Biosilicified Lipases

    Directory of Open Access Journals (Sweden)

    Soledad Cebrián-García

    2018-06-01

    Full Text Available A novel, environmentally friendly, and sustainable ultrasound-assisted methodology in the valorization of valeric acid to alkyl valerate using a biosilicified lipase from Candida antarctica is reported. This one-pot room temperature methodology of enzyme biosilicification leads to biosilicified lipases with improved activity and reaction efficiency as compared to free enzymes. Yields in the ultrasound-promoted esterification of valeric acid was ca. 90% in 2 h with 15% m/v of biosilicified lipase (Bio-lipase; 616 U/g biocatalyst enzymatic activity and a molar ratio 1:2 (valeric acid:ethanol, slightly superior to that observed by the free enzyme (75% conversion, 583U/g biocatalyst enzymatic activity. The reuse of enzymes in these conditions was tested and the results show a relatively good reusability of these biosilicified enzymes under the investigated conditions, particularly preserving fairly stable specific activities (616 vs. 430 U/g biocatalyst after four reuses.

  3. State of the art and prospective of lipase-catalyzed transesterification reaction for biodiesel production

    International Nuclear Information System (INIS)

    Amini, Zeynab; Ilham, Zul; Ong, Hwai Chyuan; Mazaheri, Hoora; Chen, Wei-Hsin

    2017-01-01

    Highlights: • Enzymatic transesterification process is less energy intensive and robust. • Nano-materials are promising immobilization supports for lipase. • Packed-bed reactors are appropriate for scale-up use. • Potential recombinant, whole cell and recombinant whole cell lipases were enlisted. • Genetic engineering is a promising prospect in biodiesel area. - Abstract: The world demand for fuel as energy sources have arisen the need for generating alternatives such as biofuel. Biodiesel is a renewable fuel used particularly in diesel engines. Currently, biodiesel is mainly produced through transesterification reactions catalyzed by chemical catalysts, which produces higher fatty acid alkyl esters in shorter reaction time. Although extensive investigations on enzymatic transesterification by downstream processing were carried out, enzymatic transesterification has yet to be used in scale-up since commercial lipases are chiefly limited to the cost as well as long reaction time. While numerous lipases were studied and proven to have the high catalytic capacity, still enzymatic reaction requires more investigation. To fill this gap, finding optimal conditions for the reaction such as alcohol and oil choice, water content, reaction time and temperature through proper reaction modelling and simulations as well as the appropriate design and use of reactors for large scale production are crucial issues that need to be accurately addressed. Furthermore, lipase concentration, alternative lipase resources through whole cell technology and genetic engineering, recent immobilizing materials including nanoparticles, and the capacity of enzyme to be reused are important criteria to be neatly investigated. The present work reviews the current biodiesel feedstock, catalysis, general and novel immobilizing materials, bioreactors for enzymatic transesterification, potential lipase resources, intensification technics, and process modelling for enzymatic

  4. Metabolic clues regarding the enhanced performance of elite endurance athletes from orchiectomy-induced hormonal changes.

    Science.gov (United States)

    Atwood, Craig S; Bowen, Richard L

    2007-01-01

    This article examines the metabolic performance of an elite cyclist, Lance Armstrong, before and after his diagnosis with testicular cancer. Although a champion cyclist in 1-day events prior to his diagnosis of testicular cancer at age 25, he was not a contender in multi-day endurance cycle races such as the 3-week Tour de France. His genetic makeup and physiology (high VO2max, long femur, strong heavy build) coupled with his ambition and motivation enabled him at an early age to become one of the best 1-day cyclists in the world. Following his cancer diagnosis, he underwent a unilateral orchiectomy, brain surgery and four cycles of chemotherapy. After recovering, he returned to cycling and surprisingly excelled in the Tour de France, winning this hardest of endurance events 7 years running. This dramatic transformation from a 1-day to a 3-week endurance champion has led many to query how this is possible, and under the current climate, has led to suggestions of doping as to the answer to this metamorphosis. Physiological tests following his recovery indicated that physiological parameters such as VO2max were not affected by the unilateral orchiectomy and chemotherapy. We propose that his dramatic improvement in recovery between stages, the most important factor in winning multi-day stage races, is due to his unilateral orchiectomy, a procedure that results in permanent changes in serum hormones. These hormonal changes, specifically an increase in gonadotropins (and prolactin) required to maintain serum testosterone levels, alter fuel metabolism; increasing hormone sensitive lipase expression and activity, promoting increased free fatty acid (FFA) mobilization to, and utilization by, muscles, thereby decreasing the requirement to expend limiting glycogen stores before, during and after exercise. Such hormonal changes also have been associated with ketone body production, improvements in muscle repair and haematocrit levels and may facilitate the loss of body weight

  5. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    International Nuclear Information System (INIS)

    Aronne, Antonio; Bloisi, Francesco; Calabria, Raffaela; Califano, Valeria; Depero, Laura E.; Fanelli, Esther; Federici, Stefania; Massoli, Patrizio; Vicari, Luciano R.M.

    2015-01-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence

  6. Lipase biofilm deposited by Matrix Assisted Pulsed Laser Evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Aronne, Antonio [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Bloisi, Francesco, E-mail: bloisi@na.infn.it [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy); Calabria, Raffaela; Califano, Valeria [Istituto Motori – CNR, Naples (Italy); Depero, Laura E. [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Fanelli, Esther [Department of Chemical Engineering, Materials and Industrial Production, University of Naples “Federico II”, Napoli (Italy); Federici, Stefania [Department of Mechanical and Industrial Engineering, University of Brescia, Brescia (Italy); Massoli, Patrizio [Istituto Motori – CNR, Naples (Italy); Vicari, Luciano R.M. [SPIN – CNR, Naples (Italy); Department of Physics, University of Naples “Federico II”, Napoli (Italy)

    2015-05-01

    Highlights: • A lipase film was deposited with Matrix Assisted Pulsed Laser Evaporation technique. • FTIR spectra show that laser irradiation do not damage lipase molecule. • Laser fluence controls the characteristics of complex structure generated by MAPLE. - Abstract: Lipase is an enzyme that finds application in biodiesel production and for detection of esters and triglycerides in biosensors. Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique derived from Pulsed Laser Deposition (PLD) for deposition of undamaged biomolecules or polymers, is characterized by the use of a frozen target obtained from a solution/suspension of the guest material (to be deposited) in a volatile matrix (solvent). The presence of the solvent avoids or at least reduces the potential damage of guest molecules by laser radiation but only the guest material reaches the substrate in an essentially solvent-free deposition. MAPLE can be used for enzymes immobilization, essential for industrial application, allowing the development of continuous processes, an easier separation of products, the reuse of the catalyst and, in some cases, enhancing enzyme properties (pH, temperature stability, etc.) and catalytic activity in non-aqueous media. Here we show that MAPLE technique can be used to deposit undamaged lipase and that the complex structure (due to droplets generated during extraction from target) of the deposited material can be controlled by changing the laser beam fluence.

  7. A simplified method for active-site titration of lipases immobilised on hydrophobic supports.

    Science.gov (United States)

    Nalder, Tim D; Kurtovic, Ivan; Barrow, Colin J; Marshall, Susan N

    2018-06-01

    The aim of this work was to develop a simple and accurate protocol to measure the functional active site concentration of lipases immobilised on highly hydrophobic supports. We used the potent lipase inhibitor methyl 4-methylumbelliferyl hexylphosphonate to titrate the active sites of Candida rugosa lipase (CrL) bound to three highly hydrophobic supports: octadecyl methacrylate (C18), divinylbenzene crosslinked methacrylate (DVB) and styrene. The method uses correction curves to take into account the binding of the fluorophore (4-methylumbelliferone, 4-MU) by the support materials. We showed that the uptake of the detection agent by the three supports is not linear relative to the weight of the resin, and that the uptake occurs in an equilibrium that is independent of the total fluorophore concentration. Furthermore, the percentage of bound fluorophore varied among the supports, with 50 mg of C18 and styrene resins binding approximately 64 and 94%, respectively. When the uptake of 4-MU was calculated and corrected for, the total 4-MU released via inhibition (i.e. the concentration of functional lipase active sites) could be determined via a linear relationship between immobilised lipase weight and total inhibition. It was found that the functional active site concentration of immobilised CrL varied greatly among different hydrophobic supports, with 56% for C18, compared with 14% for DVB. The described method is a simple and robust approach to measuring functional active site concentration in immobilised lipase samples. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Evaluation of inorganic matrixes as supports for immobilization of microbial lipase

    Directory of Open Access Journals (Sweden)

    Castro H.F.

    2000-01-01

    Full Text Available Candida rugosa was immobilized by physical adsorption on several inorganic supports using hexane as coupling medium. The enzymatic activities of the different derivatives were determined by both hydrolysis of olive oil and esterification of n-butanol with butyric acid. The results were compared to previous data obtained by using a controlled porous silica matrix. The goal was to contribute in searching inexpensive supports for optimum lipase performance. All supports examined exhibited good properties for binding the enzyme lipase. Zirconium phosphate was the best support, giving the highest percentage of protein fixation (86% and the highest retention of lipase activity after immobilization (34%. The operational stability performance for niobium oxide derivative was improved by previously activated the support with silane and glutaraldehyde. Thermal stabilities were also examined by thermal gravimetric analysis (TG.

  9. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses.

    Science.gov (United States)

    Colla, Luciane Maria; Rizzardi, Juliana; Pinto, Marta Heidtmann; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-11-01

    Lipases and biosurfactants are compounds produced by microorganisms generally involved in the metabolization of oil substrates. However, the relationship between the production of lipases and biosurfactants has not been established yet. Therefore, this study aimed to evaluate the correlation between production of lipases and biosurfactants by submerged (SmgB) and solid-state bioprocess (SSB) using Aspergillus spp., which were isolated from a soil contaminated by diesel oil. SSB had the highest production of lipases, with lipolytic activities of 25.22U, while SmgB had 4.52U. The production of biosurfactants was not observed in the SSB. In the SmgB, correlation coefficients of 91% and 87% were obtained between lipolytic activity and oil in water and water in oil emulsifying activities, respectively. A correlation of 84% was obtained between lipolytic activity and reduction of surface tension in the culture medium. The surface tension decreased from 50 to 28mNm(-1) indicating that biosurfactants were produced in the culture medium. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Production of lipase from Geotrichum sp and adsorption studies on affinity resin

    Directory of Open Access Journals (Sweden)

    E. S. KAMIMURA

    1999-06-01

    Full Text Available There is a growing interest in microbial lipase production due to its great potential for industrial applications such as food additives, industrial reagents and stain removers, as well as for medical applications. Specially for medical applications a high degree of purity is required, which is accomplished with high resolution chromatographic techniques. Affinity chromatography is considered a very high resolution chromatographic technique. In this work the adsorption isotherms and kinetics of the adsorption of lipase from Geotrichum sp on biospecific resin were determined. The resin was prepared using EAH sepharose 4B gel (Pharmacia, made to react with oleic acid as the specific ligand.The lipase was produced in a five-liter fermenter, with both complex and synthetic media. Fermentation conditions were a temperature of 30°C, an aeration of 1VVM and an agitation of 400 rpm. Maximum lipase activity was around 28 U/ml after 10 hours of fermentation for the complex medium. The kinetic model and parameters were determined by dynamic fitting to experimental results using the fourth-order Runge-Kutta method.

  11. Lipase immobilized on the hydrophobic polytetrafluoroethene membrane with nonwoven fabric and its application in intensifying synthesis of butyl oleate.

    Science.gov (United States)

    Wang, Shu-Guang; Zhang, Wei-Dong; Li, Zheng; Ren, Zhong-Qi; Liu, Hong-Xia

    2010-11-01

    The synthesis of butyl oleate was studied in this paper with immobilized lipase. Five types of membrane were used as support to immobilize Rhizopus arrhizus lipase by following a procedure combining filtration and protein cross-linking. Results showed that hydrophobic polytetrafluoroethene membrane with nonwoven fabric (HO-PTFE-NF) was the favorite choice in terms of higher protein loading, activity, and specific activity of immobilized lipase. The factors including solvent polarity, lipase dosage, concentration, and molar ratio of substrate and temperature were found to have significant influence on conversion. Results showed that hexane (logP = 3.53) was a favorable solvent for the biosynthesis of butyl oleate in our studies. The optimal conditions were experimentally determined of 50 U immobilized lipase, molar ratio of oleic acid to butanol of 1.0, substrate concentration of 0.12 mol/L, temperature of 37 °C, and reaction time of 2 h. The conversion was beyond 91% and decreased slightly after 18 cycles. Lipase immobilization can improve the conversion and the repeated use of immobilized lipase relative to free lipase.

  12. Biosensor Applications of MAPLE Deposited Lipase

    Directory of Open Access Journals (Sweden)

    Valeria Califano

    2014-10-01

    Full Text Available Matrix Assisted Pulsed Laser Evaporation (MAPLE is a thin film deposition technique derived from Pulsed Laser Deposition (PLD for deposition of delicate (polymers, complex biological molecules, etc. materials in undamaged form. The main difference of MAPLE technique with respect to PLD is the target: it is a frozen solution or suspension of the (guest molecules to be deposited in a volatile substance (matrix. Since laser beam energy is mainly absorbed by the matrix, damages to the delicate guest molecules are avoided, or at least reduced. Lipase, an enzyme catalyzing reactions borne by triglycerides, has been used in biosensors for detection of β-hydroxyacid esters and triglycerides in blood serum. Enzymes immobilization on a substrate is therefore required. In this paper we show that it is possible, using MAPLE technique, to deposit lipase on a substrate, as shown by AFM observation, preserving its conformational structure, as shown by FTIR analysis.

  13. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. ENZYMATIC PRODUCTION OF ETHYL OLEATE ESTER USING A LIPASE FROM CANDIDA ANTARCTICA B

    Directory of Open Access Journals (Sweden)

    N. Sampaio Neta

    2012-05-01

    Full Text Available Lipases are biocatalysts of great importance in different areas, being able to catalyze reactions in aqueous or organic media. Furthermore, these enzymes are capable of using several substrates being stable in a wide range of pH and temperatures. Lipases promote the esterification between fatty acids and ethanol producing oleate esters. The aim of this work is to produce ethyl oleate ester by enzymatic esterification of oleic acid with ethanol. A lipase from Candida antarctica type B was used at a temperature of 55 °C. The reaction was conducted using oleic acid, sodium sulfate anhydrous, lipase and ethanol, with a ratio of oleic acid (0.03 mol or 10 ml, lipase (0.1 mol or 0.01 g, sodium sulfate anhydrous (5 g and ethanol 99 % (100 ml. Several reaction times were studied, namely 48, 72, 96 and 120 hours. Nuclear Magnetic Resonance (1H and 13C and Infrared spectra confirmed the production of ethyl oleate ester for the studied conditions. The highest ethyl oleate production yield was obtained for 96 hours reaction time. Ethyl oleate esters have been reported to possess interesting applications in several industrial fields, such as food, aromatics, cosmetics, detergents, flavors and pharmaceuticals.

  15. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium

    Directory of Open Access Journals (Sweden)

    Aliyu Salihu

    2014-12-01

    Full Text Available The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investigated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different conversion yields were observed according to the affinity of the produced lipase toward the substrates. The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase possesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.

  16. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    Science.gov (United States)

    Colla, Luciane Maria; Ficanha, Aline M. M.; Rizzardi, Juliana; Bertolin, Telma Elita; Reinehr, Christian Oliveira; Costa, Jorge Alberto Vieira

    2015-01-01

    Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH. PMID:26180809

  17. Production and Characterization of Lipases by Two New Isolates of Aspergillus through Solid-State and Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Luciane Maria Colla

    2015-01-01

    Full Text Available Due to the numerous applications of lipases in industry, there is a need to study their characteristics, because lipases obtained from different sources may present different properties. The aim of this work was to accomplish the partial characterization of lipases obtained through submerged fermentation and solid-state fermentation by two species of Aspergillus. Fungal strains were isolated from a diesel-contaminated soil and selected as good lipases producers. Lipases obtained through submerged fermentation presented optimal activities at 37°C and pH 7.2 and those obtained through solid-state fermentation at 35°C and pH 6.0. The enzymes produced by submerged fermentation were more temperature-stable than those obtained by solid-state fermentation, presenting 72% of residual activity after one hour of exposition at 90°C. Lipases obtained through submerged fermentation had 80% of stability in acidic pH and those obtained through solid-state fermentation had stability greater than 60% in alkaline pH.

  18. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Directory of Open Access Journals (Sweden)

    Eva Vavříková

    2015-05-01

    Full Text Available A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22 of silychristin was accomplished by lipase PS (Pseudomonas cepacia immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule.

  19. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  20. MOLECULAR CLONING AND CHARACTERIZATION OF NOVEL THERMOSTABLE LIPASE FROM SHEWANELLA PUTREFACIENS AND USING ENZYMATIC BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Fahri Akbas

    2015-02-01

    Full Text Available A novel thermostable lipase from Shewanella putrefaciens was identified, expressed in Escherichia coli, characterized and used in biodiesel production. Enzyme characterization was carried out by enzyme assay, SDS-PAGE and other biochemical reactions. The recombinant lipase was found to have a molecular mass of 29 kDa and exhibited lipase activity when Tween 80 was used as the substrate. The purified enzyme showed maximum activity at pH 5.0 and at 80°C. The recombinant lipase was used for the transesterification of canola oil and waste oil. The enzyme retains 50% of its activity at 90°C for 30 minutes. It is also able to retain 20% of its activity even at 100 °C for 20 minutes. These properties of the obtained new recombinant thermostable lipase make it promising as a biocatalyst for industrial processes.

  1. Circulating adrenal hormones are not necessary for the development of sensitization to the psychomotor activating effects of amphetamine.

    Science.gov (United States)

    Badiani, A; Morano, M I; Akil, H; Robinson, T E

    1995-02-27

    We reported previously that when amphetamine is given in NOVEL test cages both its acute psychomotor activating effects (rotational behaviour and locomotor activity) and the degree of sensitization are greater than when amphetamine is given in HOME cages that are physically identical to the NOVEL test cages. Since exposure to the NOVEL environment increases plasma corticosterone levels (Experiment 1) it is possible that the enhancement in the effects of amphetamine in the NOVEL condition is mediated by corticosterone. If this hypothesis is correct adrenalectomy (ADX) should abolish the difference between the HOME and NOVEL groups. This was tested in three independent experiments, in which the response (rotational behavior in Experiments 2 and 3; locomotor activity and rearing behavior in Experiment 4) to repeated injections of amphetamine was assessed in rats that underwent adrenalectomy (ADX) or a sham operation (SHAM). ADX animals received either no corticosterone replacement or one of two corticosterone replacement treatments. Adrenalectomy, with or without corticosterone replacement treatment, had no significant effect on the development of amphetamine sensitization, either in the HOME or the NOVEL environment. By contrast, the effects of adrenalectomy on the acute response to amphetamine varied depending on the behavioral measure and possibly on the dose of amphetamine (2.0 mg/kg, 3.0 mg/kg and 1.5 mg/kg IP, in Experiments 2, 3 and 4, respectively). We conclude that: (i) a stress-induced secretion of adrenal hormones is not responsible for the enhancement in sensitization to amphetamine seen in animals tested in a NOVEL environment; (ii) circulating adrenal hormones are not necessary for development of sensitization to the psychomotor activating effects of amphetamine.

  2. Lipase production from a wild (LPF-5) and a mutant (HN1) strain of ...

    African Journals Online (AJOL)

    Lipase production from a wild (LPF-5) and a mutant (HN1) strain of Aspergillus niger. ... Several physical parameters (carbon source, nitrogen source, pH, ... for the development of industrial biotechnology for production of extracellular lipase.

  3. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production.

    Science.gov (United States)

    García-Silvera, Edgar Edurman; Martínez-Morales, Fernando; Bertrand, Brandt; Morales-Guzmán, Daniel; Rosas-Galván, Nashbly Sarela; León-Rodríguez, Renato; Trejo-Hernández, María R

    2018-03-01

    In this study, extracellular lipase was produced by Serratia marcescens wild type and three mutant strains. The maximum lipase activity (80 U/mL) was obtained with the SMRG4 mutant strain using soybean oil. Using a 2 2 factorial design, the lipase production increased 1.55-fold (124 U/mL) with 4% and 0.05% of soybean oil and Triton X-100, respectively. The optimum conditions for maximum lipase activity were 50 °C and pH 8. However, the enzyme was active in a broad range of pH (6-10) and temperatures (5-55 °C). This lipase was stable in organic solvents and in the presence of oxidizing agents. The enzyme also proved to be efficient for the removal of triacylglycerol from olive oil in cotton cloth. A Box-Behnken experimental design was used to evaluate the effects of the interactions between total lipase activity, buffer pH, and wash temperatures on oil removal. The model obtained suggested that all selected factors had a significant impact on oil removal, with optimum conditions of 550 U lipase, 45 °C, pH 9.5, with 79.45% removal. Biotransformation of waste frying oil using the enzyme and in presence of methanol resulted in the synthesis of methyl esters such as methyl oleate, methyl palmitate, and methyl stearate. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  4. Screening of supports for immobilization of commercial porcine pancreatic lipase

    Directory of Open Access Journals (Sweden)

    Robison Scherer

    2011-12-01

    Full Text Available The aim of this work is to report the performance of different supports for the immobilization of commercial porcine pancreatic lipase. The immobilization tests were carried out in several types of Accurel, activated alumina, kaolin, montmorillonite, ion exchange resins and zeolites. The characterization of the supports showed differences in terms of specific area and morphology. The characteristics of the supports influenced the amount of enzyme adsorbed, yield of immobilization and esterification activity of the resulting immobilized catalyst. The clays KSF and natural and pillared montmorillonites presented potential for use as support for lipase immobilization in terms of yield and esterification activity. Yields of immobilization of 76.32 and 52.01% were achieved for clays KSF and natural montmorillonite, respectively. Esterification activities of 754.03, 595.51, 591.88 and 515.71 U.g-1 were obtained for lipases immobilized in Accurel MP-100, Amberlite XAD-2, mordenite and pillared montmorillonite, respectively.

  5. Lipase-catalyzed esterification of lactic acid with straight-chain alcohols

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Xu, Xuebing; Tan, Tianwei

    2005-01-01

    Enzymatic synthesis of esters of lactic acid and straight-chain alcohols with different chain lengths (C6–C18) were investigated in batch reactions with hexadecanol (C16) as the model alcohol. Cyclohexane was the best solvent for higher ester yields, and the best biocatalyst was the immobilized...... Candida antarctica lipase B (Novozym 435) as well as the textile-immobilized Candida sp. lipase. A method was established to obtain ester yields in the range of 71 to 82% for the different alcohols, and the most favorable conditions for the esterification reaction using Novozym 435 were an equimolar ratio...... of lactic acid to alcohol, each at a concentration of 120 mM each; a 50°C reaction temperature; 190 rpm shaking speed; and the addition of 100 mg molecular sieves (4 Å) for drying. The ester yield increased with increasing lipase load, and a yield of 79.2% could be obtained after 24 h of reaction at 20 wt...

  6. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain

    NARCIS (Netherlands)

    Gerritse, G; Hommes, R.W J; Quax, Wim

    Pseudomonas alcaligenes M-l secretes an alkaline lipase, which has excellent characteristics for the removal of fatty stains under modern washing conditions. A fed-batch fermentation process based on the secretion of the alkaline lipase from P. alcaligenes was developed. Due to the inability of P.

  7. Enzymatic resolution of (R,S-ibuprofen and (R,S-ketoprofen by microbial lipases from native and commercial sources Resolução enzimática do (R,S-ibuprofeno e (R,S-cetoprofeno por lipases microbianas de fontes nativas e comerciais

    Directory of Open Access Journals (Sweden)

    Patrícia de Oliveira Carvalho

    2006-09-01

    Full Text Available The enantioselectivity (E of native lipases from Aspergillus niger, Aspergillus terreus, Fusarium oxysporum, Mucor javanicus, Penicillium solitum and Rhizopus javanicus in the resolution of (R,S-ibuprofen and (R,S-ketoprofenenantiomers by esterification reaction with 1-propanol in isooctane was compared with known commercial Candida rugosa (Sigma and Candida antarctica (Novozym®435 lipases. In the resolution of (R,S-ibuprofen, C. rugosa lipase showed good selectivity (E = 12 while Novozym®435 (E = 6.7 and A. niger (E = 4.8 lipases had intermediate selectivities. Other enzymes were much less selective (E around 2.3 and 1.5, under tested conditions. After preliminary optimization of reaction conditions (water content, enzyme concentration and presence of additives the enantioselectivity of native A. niger lipase could be enhanced substantially (E = 15. All tested lipases showed low selectivity in the resolution of (R,S-ketoprofen because poor ester yields and low enantiomeric excess of the acid remaining were achieved.A enantioseletividade (E das lipases nativas de Aspergillus niger, Aspergillus terreus, Fusarium oxysporum, Mucor javanicus, Penicillium solitum e Rhizopus javanicus na resolução dos enantiômeros do (R,S-ibuprofeno e (R,S-cetoprofeno na reação de esterificação com 1-propanol em isoctano foi comparada com as lipases comerciais de Candida rugosa (Sigma e Candida antarctica (Novozym®435. A lipase de C. rugosa mostrou boa enantioseletividade (E = 12 comparada com as da Novozym®435 (E = 6.7, de A. niger (E=4.8 e com as outras lipases que foram muito menos seletivas (E por volta de 2.3 e 1.5 na resolução do (R,S-ibuprofeno, dentro das condições testadas. Após uma otimização preliminar das condições da reação (conteúdo de água, concentração da enzima e presença de aditivos a enantioseletividade da lipase de A. niger pôde ser substancialmente aumentada (E = 15. Todas as lipases testadas mostraram baixa

  8. The Purification and Characterization of Lipases from Lasiodiplodia theobromae, and Their Immobilization and Use for Biodiesel Production from Coconut Oil.

    Science.gov (United States)

    Venkatesagowda, Balaji; Ponugupaty, Ebenezer; Barbosa-Dekker, Aneli M; Dekker, Robert F H

    2017-12-18

    The coconut kernel-associated fungus, Lasiodiplodia theobromae VBE1, was grown on coconut cake with added coconut oil as lipase inducer under solid-state fermentation conditions. The extracellular-produced lipases were purified and resulted in two enzymes: lipase A (68,000 Da)-purified 25.41-fold, recovery of 47.1%-and lipase B (32,000 Da)-purified 18.47-fold, recovery of 8.2%. Both lipases showed optimal activity at pH 8.0 and 35 °C, were activated by Ca 2+ , exhibited highest specificity towards coconut oil and p-nitrophenyl palmitate, and were stable in iso-octane and hexane. Ethanol supported higher lipase activity than methanol, and n-butanol inactivated both lipases. Crude lipase immobilized by entrapment within 4% (w/v) calcium alginate beads was more stable than the crude-free lipase preparation within the range pH 2.5-10.0 and 20-80 °C. The immobilized lipase preparation was used to catalyze the transesterification/methanolysis of coconut oil to biodiesel (fatty acyl methyl esters (FAMEs)) and was quantified by gas chromatography. The principal FAMEs were laurate (46.1%), myristate (22.3%), palmitate (9.9%), and oleate (7.2%), with minor amounts of caprylate, caprate, and stearate also present. The FAME profile was comparatively similar to NaOH-mediated transesterified biodiesel from coconut oil, but distinctly different to petroleum-derived diesel. This study concluded that Lasiodiplodia theobromae VBE1 lipases have potential for biodiesel production from coconut oil.

  9. The interactions between lipase and pyridinium ligands investigated by electrochemical and spectrophotometric methods

    Directory of Open Access Journals (Sweden)

    Simona Patriche

    2016-04-01

    Full Text Available The interaction between pyridinium ligands derived from 4,4’-bipyridine (N,N’-bis(p-bromophenacyl-4,4’-bipyridinium dibromide – Lr and (N,N’-bis(p-bromophenacyl-1,2-bis (4-pyridyl ethane dibromide – Lm with lipase enzyme was evaluated. The stability of the pyridinium ligands, having an essential role in biological systems, in 0.1 M KNO3 as supporting electrolyte is influenced by the lipase concentration added. The pH and conductometry measurements in aqueous solution suggest a rapid ionic exchange process. The behavior of pyridinium ligands in the presence of lipase is investigated by cyclic voltammetry and UV/Vis spectroscopy, which indicated bindings and changes from the interaction between them. The voltammograms recorded on the glassy carbon electrode showed a more intense electronic transfer for the Lr interaction with lipase compared to Lm, which is due to the absence of mobile ethylene groups from Lr structure.

  10. Pancreatitis with normal lipase and amylase in setting of end-stage renal disease.

    Science.gov (United States)

    Sharma, Anuj; Masood, Umair; Khan, Babar; Chawla, Kunal; Manocha, Divey

    2017-09-01

    Pancreatitis with normal lipase and amylase level is a rare phenomenon. This is especially true in patient with end-stage renal disease as lipase and amylase are renally excreted. Literature review reveals previous case report of pancreatitis with normal lipase and amylase level, however, none of them occurred in the setting of end-stage renal disease. Our case is the first such reported case of pancreatitis in such setting. Here we report a 30year old male with past medical history of end-stage renal disease who presented in emergency department with acute abdominal pain. Laboratory work up revealed normal lipase and amylase level. However, radiological work up was consistent with pancreatitis. This case report highlight the importance of taking the overall clinical picture rather than laboratory work up to rule in or rule out the diagnosis of pancreatitis. Furthermore, this should also serve an important reminder for clinicians to further investigate where clinical suspicion for pancreatitis is high. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Biodiesel production from Nannochloropsis gaditana lipids through transesterification catalyzed by Rhizopus oryzae lipase.

    Science.gov (United States)

    Navarro López, Elvira; Robles Medina, Alfonso; González Moreno, Pedro Antonio; Esteban Cerdán, Luis; Martín Valverde, Lorena; Molina Grima, Emilio

    2016-03-01

    Biodiesel (fatty acid methyl esters, FAMEs) was produced from saponifiable lipids (SLs) extracted from wet Nannochloropsis gaditana biomass using methanolysis catalyzed by Rhizopus oryzae intracellular lipase. SLs were firstly extracted with ethanol to obtain 31 wt% pure SLs. But this low SL purity also gave a low biodiesel conversion (58%). This conversion increased up to 80% using SLs purified by crystallization in acetone (95 wt% purity). Polar lipids play an important role in decreasing the reaction velocity - using SLs extracted with hexane, which have lower polar lipid content (37.4% versus 49.0% using ethanol), we obtained higher reaction velocities and less FAME conversion decrease when the same lipase batch was reused. 83% of SLs were transformed to biodiesel using a 70 wt% lipase/SL ratio, 11:1 methanol/SL molar ratio, 10 mL t-butanol/g SLs after 72 h. The FAME conversion decreased to 71% after catalyzing three reactions with the same lipase batch. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation.

    Science.gov (United States)

    Oliveira, Felisbela; Moreira, Cláudia; Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Belo, Isabel

    2016-08-01

    Pollution by olive mill wastes is an important problem in the Mediterranean area and novel solutions for their proper management and valorization are needed. The aim of this work was to optimize a solid-state fermentation (SSF) process to produce lipase using olive pomace (OP) as the main source of nutrients by several Aspergillus spp. Optimized variables in two different designs were: ratio between olive pomace and wheat bran (OP:WB), NaNO3 , Czapek nutrients, fermentation time, moisture content (MC) and temperature. Results showed that the mixture OP:WB and MC were the most significant factors affecting lipase production for all fungi strains tested. With MC and temperature optimization, a 4.4-fold increase in A. ibericus lipase was achieved (90.5 ± 1.5 U g(-1) ), using a mixture of OP and WB at 1:1 ratio, 0.02 g NaNO3 g(-1) dry substrate, absence of Czapek nutrients, 60% of MC and incubation at 30 °C for 7 days. For A. niger and A. tubingensis, highest lipase activity obtained was 56.6 ± 5.4 and 7.6 ± 0.6 U g(-1) , respectively. Aspergillus ibericus was found to be the most promising microorganism for lipase production using mixtures of OP and WB. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Novel Lipases: Expression and Improvement for Applied Biocatalysis = Nuevas lipasas: expresión y mejoras para biocatálisis aplicada

    OpenAIRE

    Infanzón Ramos, Belén

    2017-01-01

    This thesis is focused in the identification and improvement of lipases for biotechnological application. The importance of lipases is increasing in several industries. However, the commercial use of lipases is still a drawback in the economics of the lipase-based industrial applications. There are many tools for improving and adapting the enzyme properties to the desired requirements of a process that could lead lipase catalysis through a cost-effective process. In this context, the main obj...

  14. Lipase activity in vesiclular systems: characterization of candida cylindracea lipase and its activity in polymerizable dialkylammonium surfactant vesicles

    NARCIS (Netherlands)

    Mosmuller, E.W.J.; Franssen, M.C.R.; Engbersen, Johannes F.J.

    1993-01-01

    Lipase from Candida cylindracea (CCL) was incorporated into polymerizable positively charged dialkylammonium bromide surfactant vesicles. The enzyme was incorporated by the use of the dehydration-rehydration method or by incubation. In the latter case, trapping efficiencies of up to 100% could be

  15. Yarrowia lipolytica Lipase 2 Is Stable and Highly Active in Test Meals and Increases Fat Absorption in an Animal Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Aloulou, Ahmed; Schué, Mathieu; Puccinelli, Delphine; Milano, Stéphane; Delchambre, Chantal; Leblond, Yves; Laugier, René; Carrière, Frédéric

    2015-12-01

    Pancreatic exocrine insufficiency (PEI) reduces pancreatic secretion of digestive enzymes, including lipases. Oral pancreatic enzyme replacement therapy (PERT) with pancreatin produces unsatisfactory results. The lipase 2 produced by the yeast Yarrowia lipolytica (YLLIP2; GenBank: AJ012632) might be used in PERT. We investigated its ability to digest triglycerides in a test meal and its efficacy in reducing fecal fat in an animal model of PEI. YLLIP2 was produced by genetically engineered Y lipolytica and purified from culture media. YLLIP2 or other gastric (LIPF) and pancreatic (PNLIPD) lipases were added to a meal paste containing dietary triglycerides, at a range of pH values (pH 2-7), with and without pepsin or human bile and incubated at 37°C. We collected samples at various time points and measured lipase activities and stabilities. To create an animal model of PEI, steatorrhea was induced by embolization of the exocrine pancreas gland and pancreatic duct ligation in minipigs. The animals were given YLLIP2 (1, 4, 8, 40, or 80 mg/d) or pancreatin (100,000 US Pharmacopeia lipase units/d, controls) for 9 days. We then collected stool samples, measured fat levels, and calculated coefficient of fat absorption (CFA) values. YLLIP2 was highly stable and poorly degraded by pepsin, and had the highest activity of all lipases tested on meal triglyceride at pH 4-7 (pH 6 with bile: 94 ± 34 U/mg; pH 4 without bile: 43 ± 13 U/mg). Only gastric lipase was active and stable at pH 3, whereas YLLIP2 was sensitive to pepsin hydrolysis after pH inactivation. From in vitro test meal experiments, the lipase activity of YLLIP2 (10 mg) was estimated to be equivalent to that of pancreatin (1200 mg; 100,000 US Pharmacopeia units) at pH 6. In PEI minipigs, CFA values increased from 60.1% ± 9.3% before surgery to 90.5% ± 3.2% after administration of 1200 mg pancreatin (P meal triglycerides in a large pH range, with and without bile. Oral administration of milligram amounts of

  16. Thermostable, alkaline and detergent-tolerant lipase from a newly isolated thermophilic Bacillus stearothermophilus.

    Science.gov (United States)

    Ben Bacha, Abir; Moubayed, Nadine M S; Abid, Islam

    2015-04-01

    Lipases are the enzymes of choice for laundry detergent industries, owing to their triglyceride removing ability from the soiled fabric, which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In this study, a novel thermo-alkaline lipase-producing strain identified as Bacillus stearothermophilus was isolated from the soil samples of olive oil mill. Enhanced lipase production was observed at 55 degrees C, pH 11 and after 48 h of incubation. Among the substrates tested, xylose (a carbon source), peptone (a nitrogen source) and olive oil at a concentration of 1% were suitable substrates for enhancing lipase production. MgSO4 and Tween-80 were suitable substrates for maximizing lipase production. The enzyme was purified to homogeneity by a single CM-Sephadex column chromatography and revealed molecular mass of 67 kDa. The enzyme (BL1) was active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 11.0, exhibited maximal activity at 55 degreesC and retained more than 70% of its activity after incubation at 70 degrees C or pH 13 for 0.5 h or 24 h, respectively. The enzyme hydrolyzed both short and long-chain triacylglycerols at comparable rates. BL1 was studied in a preliminary evaluation for use in detergent formulation solutions. This novel lipase showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40 degrees C, and good stability towards oxidizing agents. Additionally, the enzyme showed excellent stability and compatibility with various commercial detergents, suggesting its potential as an additive in detergent formulations.

  17. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    chemical structure of DAG. We took advantage of the fact that insulin sensitivity is increased after exercise, and that mice knocked out (KO) of HSL accumulate DAG after exercise, and measured insulin stimulated glucose uptake after treadmill running in skeletal muscle from HSL KO mice and wildtype control...

  18. Production and characterization of lipase from Bacillus ...

    African Journals Online (AJOL)

    Jane

    2011-10-10

    Oct 10, 2011 ... properties of fats at high temperature and increased ..... Effect of growth medium pH on lipase activity, protein concentration and B. stearothermophilus growth. .... inactivation after 30 min of incubation in 10 mM Cu+2 ions.

  19. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  20. Rheology, microstructure and baking characteristics of frozen dough containing Rhizopus chinensis lipase and transglutaminase

    Science.gov (United States)

    The beneficial effects of a new recombinant lipase (Rhizopus chinensis lipase, RCL) and transglutaminase (TG) were investigated on frozen dough systems and their breadmaking quality. Rheological properties and microstructure of doughs were measured using a dynamic rheometer, rheofermentometer F3, an...

  1. Active-site titration analysis of surface influence on immobilized Candida antarctica Lipase B activity

    Science.gov (United States)

    Matrix morphology and surface polarity effects were investigated for Candida antarctica lipase B immobilization. Measurements of the amount of lipase immobilized (bicinchoninic acid method) and the catalyst’s tributyrin hydrolysis activity, coupled with a determination of the lipase’s functional fr...

  2. Nanogold–polyaniline–nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone

    International Nuclear Information System (INIS)

    Cui Yuling; Chen Huafeng; Hou Li; Zhang Bing; Liu Bingqian; Chen Guonan; Tang Dianping

    2012-01-01

    Highlights: ► A novel immunosensing strategy was designed for detection of thyroid-stimulating hormone. ► Using nanogold–polyaniline–nanogold microspheres as molecular tags. ► Improvement of electrochemical activity of nanolabels. ► Combination enzyme labels with nanolabels for signal amplification. - Abstract: Methods based on nanomaterial labels have been developed for electrochemical immunosensors and immunoassays, but most involved low sensitivity. Herein a novel class of molecular tags, nanogold–polyaniline–nanogold microspheres (GPGs), was first synthesized and functionalized with horseradish peroxidase-conjugated thyroid-stimulating hormone antibody (HRP-Ab 2 ) for sensitive electrochemical immunoassay of thyroid-stimulating hormone (TSH). X-ray diffraction, confocal Raman spectroscopy, scanning electron microscope and transmission electron microscope were employed to characterize the prepared GPGs. Based on a sandwich-type immunoassay format, the assay was performed in pH 5.0 acetate buffer containing 6.0 mmol L −1 H 2 O 2 by using GPG-labeled HRP-Ab 2 as molecular tags. Compared with pure polyaniline nanospheres and gold nanoparticles alone, the GPG hybrid nanostructures increased the surface area of the nanomaterials, and enhanced the immobilized amount of HRP-Ab 2 . Several labeling protocols comprising HRP-Ab 2 , nanogold particle-labeled HRP-Ab 2 , and polyaniline nanospheres-labeled HRP-Ab 2 , were also investigated for determination of TSH and improved analytical features were obtained by using the GPG-labeled HRP-Ab 2 . With the GPG labeling method, the effects of incubation time and pH of acetate buffer on the current responses of the immunosensors were also studied. The strong attachment of HRP-Ab 2 to the GPGs resulted in a good repeatability and intermediate precision down to 7%. The dynamic concentration range spanned from 0.01 to 20 μIU mL −1 with a detection limit (LOD) of 0.005 μIU mL −1 TSH at the 3s B criterion

  3. Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation.

    Science.gov (United States)

    Dittmer, W U; de Kievit, P; Prins, M W J; Vissers, J L M; Mersch, M E C; Martens, M F W C

    2008-09-30

    A rapid method for the sensitive detection of proteins using actuated magnetic particle labels, which are measured with a giant magneto-resistive (GMR) biosensor, is described. The technique involves a 1-step sandwich immunoassay with no fluid replacement steps. The various assay binding reactions as well as the bound/free separation are entirely controlled by magnetic forces induced by electromagnets above and below the sensor chip. During the assay, particles conjugated with tracer antibodies are actuated through the sample for target capture, and rapidly brought to the sensor surface where they bind to immobilized capture antibodies. Weakly or unbound labels are removed with a magnetic force oriented away from the GMR sensor surface. For the measurement of parathyroid hormone (PTH), a detection limit in the 10 pM range is obtained with a total assay time of 15 min when 300 nm particles are used. The same sensitivity can be achieved in 5 min when 500 nm particles are used. If 500 nm particles are employed in a 15-minute assay, then 0.8 pM of PTH is detectable. The low sample volume, high analytical performance and high speed of the test coupled with the compact GMR biosensor make the system especially suitable for sensitive testing outside of laboratory environments.

  4. Nanoparticles of poly(hydroxybutyrate-co-hydroxyvalerate) as support for the immobilization of Candida antarctica lipase (fraction B); Nanoparticulas de poli-hidroxibutirato-co-valerato como suporte para a imobilizacao da lipase de Candida antarctica fracao B

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ilizandra A.; Nyari, Nadia L.D. [Universidade Regional Integrada, Erechim, RS (Brazil). Departamento de Ciencias Agrarias; Oliveira, Jose Vladimir de; Oliveira, Debora de, E-mail: debora@enq.ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Engenharia Quimica e Engenharia de Alimentos; Rigo, Elisandra [Universidade do Estado de Santa Catarina (UDESC), Pinhalzinho, SC (Brazil). Departamento de Engenharia de Alimentos; Souza, Maria Cristiane M. de; Goncalves, Luciana R.B. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Engenharia Quimica; Pergher, Sibele Berenice C. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil). Instituto de Quimica

    2014-04-15

    This work evaluates the immobilization of Candida antarctica lipase (Fraction B) using poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanoparticles as support. The effects of immobilization time (30-150 min) and pH (5-10) on lipase loading were evaluated. The stability of the immobilized enzyme towards temperature (40, 60, and 80 deg C), reuse and storage (at 4 deg C) were also determined. Furthermore, to assess its potential application in a system of interest, the immobilized lipase was used as a catalyst in the esterification of geraniol with oleic acid. The results indicated a time of 120 minutes and pH of 7 as optimal for immobilization. A 21 hour exposure of the PHBV-lipase derivative to 60 deg C showed a 33% reduction of the initial activity while storage at 4 deg C led to a residual activity (5% of the original activity). The derivative was used without significant loss of activity for 4 successive cycles. The use of the immobilized lipase as a catalyst in the production of geranyl oleate led to about 88% conversion of the initial reactants to products. (author)

  5. Properties Of Lipase (Ec 3.1.1.3) From Different Varieties Of Maize ...

    African Journals Online (AJOL)

    This highactivity was correlated with high speciicity of corn lipase on linoleic acid. Thermal inactivation studies showed that the enzyme was stable up to 50oC and showed rapid inactivation above this temperature. Its optimum temperature was 50oC and the optimum pH, 8. Keywords: Lipase, Enzymes, Maize, Thermal ...

  6. Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations.

    Science.gov (United States)

    Khoramnia, Anahita; Ebrahimpour, Afshin; Beh, Boon Kee; Lai, Oi Ming

    2011-01-01

    The lipase production ability of a newly isolated Acinetobacter sp. in submerged (SmF) and solid-state (SSF) fermentations was evaluated. The results demonstrated this strain as one of the rare bacterium, which is able to grow and produce lipase in SSF even more than SmF. Coconut oil cake as a cheap agroindustrial residue was employed as the solid substrate. The lipase production was optimized in both media using artificial neural network. Multilayer normal and full feed forward backpropagation networks were selected to build predictive models to optimize the culture parameters for lipase production in SmF and SSF systems, respectively. The produced models for both systems showed high predictive accuracy where the obtained conditions were close together. The produced enzyme was characterized as a thermotolerant lipase, although the organism was mesophile. The optimum temperature for the enzyme activity was 45°C where 63% of its activity remained at 70°C after 2 h. This lipase remained active after 24 h in a broad range of pH (6-11). The lipase demonstrated strong solvent and detergent tolerance potentials. Therefore, this inexpensive lipase production for such a potent and industrially valuable lipase is promising and of considerable commercial interest for biotechnological applications.

  7. Triglyceride selectivity of immobilized Thermomyces lanuginosa lipase in interesterification

    DEFF Research Database (Denmark)

    Rønne, Torben Harald; Pedersen, Lars S.; Xu, Xuebing

    2005-01-01

    from tri-C4:0 to tri-C20:0, except for tri-C6:0, and in a series of unsaturated FA from tri-C18:1 to tri-C18:3. The quantification was performed by HPLC, and different methods of selectivity evaluation were used. None of the methods used showed any significant differences between the performances......The triglyceride (fatty acid) selectivity of an immobilized lipase from Thermomyces lanuginosa (Lipozyme TL IM) was investigated in lipase-catalyzed interesterification reactions between two mono-acid TG in n-hexane. Tristearin (tri-C18:0) was used as a reference in a series of TG with saturated FA...

  8. Characterization of Lipase from Bacillus subtilisI-4 and Its Potential Use in Oil Contaminated Wastewater

    Directory of Open Access Journals (Sweden)

    Syeda Abeer Iqbal

    2015-10-01

    Full Text Available ABSTRACTA lipase producing bacterium was isolated from oil contaminated effluents of various industries from Sheikhupura Road, Pakistan, and, on the basis of biochemical and 16S rRNA ribotyping, was identified asBacillus subtilis. The optimum temperature and pH for the growth of the culture were 37ºC and 7.0, respectively.B. subtilis I-4 had a lag phase of 4 h in LB medium while this phase prolonged to 6 h in oil containing medium. The optimum temperature and pH for the enzyme activity were 50ºC and 7.0, respectively. Maximum lipase activity was found in the presence of Ca ions. Olive oil and Tween 80 induced lipase gene in the bacterium while concentration of oil greater than 2% retarded the growth of the organism. In addition to lipaseB. subtilis I-4 also produced alkane hydroxylase and biosurfactant which could make this bacterium potential candidate for lipase production as well as bioremediation of oil-contaminated wastewater.

  9. Rapid and sensitive analysis of phthalate metabolites, bisphenol A, and endogenous steroid hormones in human urine by mixed-mode solid-phase extraction, dansylation, and ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry.

    Science.gov (United States)

    Wang, He-xing; Wang, Bin; Zhou, Ying; Jiang, Qing-wu

    2013-05-01

    Steroid hormone levels in human urine are convenient and sensitive indicators for the impact of phthalates and/or bisphenol A (BPA) exposure on the human steroid hormone endocrine system. In this study, a rapid and sensitive method for determination of 14 phthalate metabolites, BPA, and ten endogenous steroid hormones in urine was developed and validated on the basis of ultra-performance liquid chromatography coupled with electrospray ionization triple quadrupole mass spectrometry. The optimized mixed-mode solid phase-extraction separated the weakly acidic or neutral BPA and steroid hormones from acidic phthalate metabolites in urine: the former were determined in positive ion mode with a methanol/water mobile phase containing 10 mM ammonium formate; the latter were determined in negative ion mode with a acetonitrile/water mobile phase containing 0.1 % acetic acid, which significantly alleviated matrix effects for the analysis of BPA and steroid hormones. Dansylation of estrogens and BPA realized simultaneous and sensitive analysis of the endogenous steroid hormones and BPA in a single chromatographic run. The limits of detection were less than 0.84 ng/mL for phthalate metabolites and less than 0.22 ng/mL for endogenous steroid hormones and BPA. This proposed method had satisfactory precision and accuracy, and was successfully applied to the analyses of human urine samples. This method could be valuable when investigating the associations among endocrine-disrupting chemicals, endogenous steroid hormones, and relevant adverse outcomes in epidemiological studies.

  10. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Energy Technology Data Exchange (ETDEWEB)

    I-Ching Kuan; Chia-Chi Lee; Bing-Hong Tsai; Shiow-Ling Lee; Wei-Ting Lee; Chi-Yang Yu [Department of Bioengineering, Tatung Univ., Taipei, Taiwan (China)

    2013-04-15

    We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil) and n-hexane content (w/w of oil) were evaluated using response surface methodology (RSM) combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 deg C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 deg C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 deg C or room temperature.

  11. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1.

    Science.gov (United States)

    Gowthami, Palanisamy; Muthukumar, Karuppan; Velan, Manickam

    2015-01-01

    The overproduction of enzymes was performed by manipulating the medium components. In our study, solvent-tolerant thermophilic lipase-producing Bacillus coagulans was isolated from soil samples and a stepwise optimization strategy was employed to increase the lipase production using coconut oil cake basal medium. In the first step, the influence of pH, temperature, carbon source, nitrogen source and inducers on lipase activity was investigated by the One-Factor-At-A-Time (OFAT) method. In the second step, the three significant factors resulted from OFAT were optimized by the statistical approach (CCD).The optimum values of olive oil (0.5%), Tween 80 (0.6%) and FeSO4 (0.05%) was found to be responsible for a 3.2-fold increase in the lipase production identified by Central Composite Design.

  12. Lipase and phospholipase activities of Hymenoptera venoms ...

    African Journals Online (AJOL)

    native gel), Polistes flavis venom has four major protein bands, one of which has lipase activity; with sodium dodecyl sulfate (SDS-PAGE), the venom had eighteen bands with molecular weights ranging from a maximum of 94 kD and a minimum of ...

  13. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9 Purificação e caracterização de uma lipase extracelular produzida por uma nova cepa: Pseudomonas aeruginosa SRT9

    Directory of Open Access Journals (Sweden)

    Prita S. Borkar

    2009-06-01

    Full Text Available An extra cellular lipase was isolated and purified from the culture broth of Pseudomonas aeruginosa SRT 9 to apparent homogeneity using ammonium sulfate precipitation followed by chromatographic techniques on phenyl Sepharose CL- 4B and Mono Q HR 5/5 column, resulting in a purification factor of 98 fold with specific activity of 12307.8 U/mg. The molecular weight of the purified lipase was estimated by SDS-PAGE to be 29 kDa with isoelectric point of 4.5. Maximum lipase activity was observed in a wide range of temperature and pH values with optimum temperature of 55ºC and pH 6.9. The lipase preferably acted on triacylglycerols of long chain (C14-C16 fatty acids. The lipase was inhibited strongly by EDTA suggesting the enzyme might be metalloprotein. SDS and metal ions such as Hg2+, Zn2+, Cu2+, Ag2+ and Fe2+ decreased the lipase activity remarkedly. Its marked stability and activity in organic solvents suggest that this lipase is highly suitable as a biotechnological tool with a variety of applications including organo synthetic reactions and preparation of enantiomerically pure pharmaceuticals. The Km and Vmax value of the purified enzyme for triolein hydrolysis were calculated to be 1.11 mmol/L and 0.05 mmol/L/minrespectively.Uma lipase extracelular foi isolada e purificada a partir de um caldo de cultura de Pseudomonas aeruginosa SRT9 até homogeneidade visível empregando-se precipitação com sulfato de amônia, seguida de técnicas cromatográficas em colunas de fenil sefarose CL-4B e Mono Q HR 5/5, obtendo-se um fator de purificação de 98 vezes, e atividade especifica de 12307,8 U/mg. Por SDS_PAGE, estimou-se que o peso molecular da lipase purificada é 29kDa, com um ponto isoelétrico de 4,5. A lipase apresentou atividade máxima em uma ampla faixa de temperatura e pH, com ótimos a 55ºC e pH 6,9. A lípase foi mais ativa sobre triacilglicerois de cadeia longa (C14-C16. A lipase foi fortemente inibida por EDTA, o que sugere que a

  14. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor.

    Science.gov (United States)

    Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel

    2017-07-01

    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.

  15. Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity

    Directory of Open Access Journals (Sweden)

    T.S. de Melo

    Full Text Available Previous studies have reported on the glucose and lipid-lowering effects of ferulic acid (FA but its anti-obesity potential has not yet been firmly established. This study investigated the possible anti-obesitogenic effects of FA in mice fed a high-fat diet (HFD for 15 weeks. To assess the antiobesity potential of FA, 32 male Swiss mice, weighing 20–25 g (n=6–8 per group were fed a normal diet (ND or HFD, treated orally or not with either FA (10 mg/kg or sibutramine (10 mg/kg for 15 weeks and at the end of this period, the body weights of animals, visceral fat accumulation, plasma levels of glucose and insulin hormone, amylase and lipase activities, the satiety hormones ghrelin and leptin, and tumor necrosis factor-α (TNF-α and monocyte chemoattractant protein-1 (MCH-1 were analyzed. Results revealed that FA could effectively suppress the HFD-associated increase in visceral fat accumulation, adipocyte size and body weight gain, similar to sibutramine, the positive control. FA also significantly (P<0.05 decreased the HFD-induced elevations in serum lipid profiles, amylase and lipase activities, and the levels of blood glucose and insulin hormone. The markedly elevated leptin and decreased ghrelin levels seen in HFD-fed control mice were significantly (P<0.05 reversed by FA treatment, almost reaching the values seen in ND-fed mice. Furthermore, FA demonstrated significant (P<0.05 inhibition of serum levels of inflammatory mediators TNF-α, and MCH-1. These results suggest that FA could be beneficial in lowering the risk of HFD-induced obesity via modulation of enzymatic, hormonal and inflammatory responses.

  16. Synthesis of naringin 6"-ricinoleate using immobilized lipase

    Directory of Open Access Journals (Sweden)

    Almeida Verônica M

    2012-05-01

    Full Text Available Abstract Background Naringin is an important flavanone with several biological activities, including antioxidant action. However, this compound shows low solubility in lipophilic preparations, such as is used in the cosmetic and food industries. One way to solve this problem is to add fatty acids to the flavonoid sugar unit using immobilized lipase. However, there is limited research regarding hydroxylation of unsaturated fatty acids as an answer to the low solubility challenge. In this work, we describe the reaction of naringin with castor oil containing ricinoleic acid, castor oil's major fatty acid component, using immobilized lipase from Candida antarctica. Analysis of the 1H and 13 C NMR (1D and 2D spectra and literature comparison were used to characterise the obtained acyl derivative. Results After allowing the reaction to continue for 120 hours (in acetone media, 50°C, the major product obtained was naringin 6″-ricinoleate. In this reaction, either castor oil or pure ricinoleic acid was used as the acylating agent, providing a 33% or 24% yield, respectively. The chemical structure of naringin 6″-ricinoleate was determined using NMR analysis, including bidimensional (2D experiments. Conclusion Using immobilized lipase from C. antarctica, the best conversion reaction was observed using castor oil containing ricinoleic acid as the acylating agent rather than an isolated fatty acid. Graphical abstract

  17. Purification and substrate specificity of Staphylococcus hyicus lipase.

    Science.gov (United States)

    van Oort, M G; Deveer, A M; Dijkman, R; Tjeenk, M L; Verheij, H M; de Haas, G H; Wenzig, E; Götz, F

    1989-11-28

    The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.

  18. 'Synthetic lipase' production from a newly isolated Sporidiobolus pararoseus strain by submerged fermentation

    Directory of Open Access Journals (Sweden)

    Alessandra Smaniotto

    2012-12-01

    Full Text Available The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1, yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v of peptone, yeast extract, NaCl and olive oil, respectively, representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.

  19. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis.

    Science.gov (United States)

    Vici, Ana C; da Cruz, Andrezza F; Facchini, Fernanda D A; de Carvalho, Caio C; Pereira, Marita G; Fonseca-Maldonado, Raquel; Ward, Richard J; Pessela, Benevides C; Fernandez-Lorente, Gloria; Torres, Fernando A G; Jorge, João A; Polizeli, Maria L T M

    2015-01-01

    Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction.

  20. Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2.

    Science.gov (United States)

    Hu, Lizhi; Llibin, Sun; Li, Jun; Qi, Liangjun; Zhang, Xu; Yu, Dianyu; Walid, Elfalleh; Jiang, Lianzhou

    2015-12-01

    The transesterification of phytosterol and soybean oil was performed using Novozym 435 in supercritical carbon dioxide (SC-CO2). The transesterification reaction was conducted in soybean oil containing 5-25% phytosterol at 55-95 °C and free-water solvent. The effects of temperature, reaction time, phytosterol concentration, lipase dosage and reaction pressure on the conversion rate of transesterification were investigated. The optimal reaction conditions were the reaction temperature (85 °C), reaction time (1 h), phytosterol concentration (5%), reaction pressure (8 Mpa) and lipase dosage (1%). The highest conversion rate of 92% could be achieved under the optimum conditions. Compared with the method of lipase-catalyzed transesterification of phytosterol and soybean oil at normal pressure, the transesterification in SC-CO2 reduced significantly the reaction temperature and reaction time.

  1. Hydrolysis of diacylglycerols by lipoprotein lipase.

    Science.gov (United States)

    Morley, N H; Kuksis, A; Buchnea, D; Myher, J J

    1975-05-10

    Enantiomeric diacylglycerols were emulsified, mole for mole, with lyso(1-acyl) lecithin and were hydrolyzed with lipoprotein lipase in NH4Cl-beef serum albumin buffer at pH 8.6 after a brief incubation with delipidated rat serum. The enzyme was prepared from lyophilized and dialyzed bovine skim milk in a 4 percent solution. The course of hydrolysis for each set of enantiomers was determined by gas-liquid chromatography of the masses of the diacylglycerols remaining or monoacylglycerols released in the medium between 0 and 15 min. The majority of sets of sn-1,2- and 2,3-diacylglycerols, including an isotope-labeled true enantiomeric set which was assessed by mass spectrometry, demonstrated preference by the enzyme for lipolysis at position 1 but with less specificity than previously was shown in sn-triacylglycerol hydrolysis. The results preclude the possibility that the predominance of sn-2,3-diacylglycerol intermediates during triacylglycerol hydrolysis is due solely to a preferential breakdown of the 1,2-isomers and reinforce the conclusion that lipoprotein lipase is specific for position 1.

  2. Cyclic resolution of racemic ibuprofen via coupled efficient lipase and acid-base catalysis.

    Science.gov (United States)

    Liu, Ying; Wang, Fang; Tan, Tianwei

    2009-03-01

    Extracellular lipase LIP prepared in our lab from the yeast Yarrowia lipolytica was used for the resolution of racemic ibuprofen. The (S)-enantiomer was preferred by lipase LIP, and the unreacted (R)-enantiomer was extracted and racemized in basic solvent-water medium to be re-resolved. Solvent, content of solvent, base concentration, and temperature have a strong effect on racemization. The (S)-ester was separated and hydrolyzed to (S)-ibuprofen in acidic dimethyl sulfoxide-water mixture containing 70% dimethyl sulfoxide. The high purity (S)-ibuprofen (ee = 0.98) was obtained using lipase LIP to catalyze hydrolysis of (S)-ester in 0.1 M phosphate buffer (pH = 8). (c) 2008 Wiley-Liss, Inc.

  3. Mutation induced enhanced biosynthesis of lipases by Rhizopus oligosporus var. microsporus

    International Nuclear Information System (INIS)

    Iftikhar, T.; Ikram-ul-Haq; Niaz, M.; Abbas, S.Q.; Zia, M.A.; Ashraf, I.; Lee, K.J.

    2010-01-01

    The present study describes the isolation, identification and screening of fugal strain Rhizopus oligosporus (var. microsporus) for the production of extracellular lipases. One hundred and sixty seven cultures of fungi were isolated from different environments such as soil, air, milk, pickle, oily bread, decayed fruits and vegetables by serial dilution method. The strains were initially selected qualitatively on Tween 80-Agar plates and were shifted to the slants of PDA for maintenance and storage at 4 deg. C. Quantitative screening for extracellular lipase production by isolated strains was carried out in shake flasks and the most potent strain producing 3.20 +- 0.003 U mL/sup -1/ of enzyme was selected. The strain was then identified on the basis of standard morphological measurements and was assigned the code IIB-63. The selected strain was then subjected to physical (UV and Gamma radiations) and chemical mutagenic (MNNG/NTG, NA, EtBr) treatments in order to improve its lipolytic potential. During the treatment, mutants were qualitatively and quantitatively selected and IIB-63 NTG-7 was found to be the mutant showing highest lipases production (10.37 +- 0.06a U mL/sup -1/) with a zone size of 12.3 mm on Luria-Bertani-tributyrin agar plates. This mutant showed an overall 325% increase in activity over its parent strain for the production of extracellular lipase. (author)

  4. Integration process of fermentation and liquid biphasic flotation for lipase separation from Burkholderia cepacia.

    Science.gov (United States)

    Sankaran, Revathy; Show, Pau Loke; Lee, Sze Ying; Yap, Yee Jiun; Ling, Tau Chuan

    2018-02-01

    Liquid Biphasic Flotation (LBF) is an advanced recovery method that has been effectively applied for biomolecules extraction. The objective of this investigation is to incorporate the fermentation and extraction process of lipase from Burkholderia cepacia using flotation system. Initial study was conducted to compare the performance of bacteria growth and lipase production using flotation and shaker system. From the results obtained, bacteria shows quicker growth and high lipase yield via flotation system. Integration process for lipase separation was investigated and the result showed high efficiency reaching 92.29% and yield of 95.73%. Upscaling of the flotation system exhibited consistent result with the lab-scale which are 89.53% efficiency and 93.82% yield. The combination of upstream and downstream processes in a single system enables the acceleration of product formation, improves the product yield and facilitates downstream processing. This integration system demonstrated its potential for biomolecules fermentation and separation that possibly open new opportunities for industrial production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Solvent free lipase catalyzed synthesis of butyl caprylate

    Indian Academy of Sciences (India)

    MEERA T SOSE

    2017-11-10

    Nov 10, 2017 ... Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), ... study for the synthesis of butyl caprylate in presence of bio-catalyst. ..... −1 with Thermomyces lanuginosus lipase.26 The relation.

  6. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  7. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  8. Imobilização de lipases em filme de caseinato de sódio/glicerol: aplicação na síntese de ésteres Lipase immobilization in sodium caseinate/glycerol film: application in ester synthesis

    OpenAIRE

    Damianni Sebrão; Vanessa Dutra Silva; Maria da Graça Nascimento; Marcelo Alves Moreira

    2007-01-01

    Lipases from different sources were immobilized in sodium caseinate/glycerol film and used in the esterification reactions of aliphatic acids with alcohols in the presence of organic solvents. Lipases from Pseudomonas sp and Rhizopus oryzae were selected and the influence of several parameters was analyzed, including: lipase loading, organic solvent polarity, reaction temperature, chain length of alcohol and acid and enzyme/support reuse. For comparison, free enzymes were used under similar e...

  9. The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases.

    Directory of Open Access Journals (Sweden)

    Jennifer Chow

    Full Text Available Triacylglycerol lipases (EC 3.1.1.3 catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75 °C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70 °C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70 °C. LipS had an optimum temperature at 70 °C and LipT at 75 °C. Both enzymes catalyzed hydrolysis of long-chain (C(12 and C(14 fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R-ibuprofen-phenyl ester with an enantiomeric excess (ee of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70 °C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 Å revealing an unusually compact lid structure.

  10. Effect of bacterial or porcine lipase with low- or high-fat diets on nutrient absorption in pancreatic-insufficient dogs.

    Science.gov (United States)

    Suzuki, A; Mizumoto, A; Rerknimitr, R; Sarr, M G; DiMango, E P

    1999-02-01

    Treatment of human exocrine pancreatic insufficiency is suboptimal. This study assessed the effects of bacterial lipase, porcine lipase, and diets on carbohydrate, fat, and protein absorption in pancreatic-insufficient dogs. Dogs were given bacterial or porcine lipase and 3 diets: a 48% carbohydrate, 27% fat, and 25% protein standard diet; a high-carbohydrate, low-fat, and low-protein diet; or a low-carbohydrate, high-fat, and high-protein diet (66%/18%/16% and 21%/43%/36% calories). With the standard diet, coefficient of fat absorption increased dose-dependently with both lipases (P vs. low-fat and -protein diet). There were no interactions among carbohydrate, fat, and protein absorption. Correcting steatorrhea requires 75 times more porcine than bacterial lipase (18 vs. 240 mg). High-fat and high-protein diets optimize fat absorption with both enzymes. High-fat diets with bacterial or porcine lipase should be evaluated in humans with pancreatic steatorrhea.

  11. Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting.

    Science.gov (United States)

    Daiha, Karina de Godoy; Angeli, Renata; de Oliveira, Sabrina Dias; Almeida, Rodrigo Volcan

    2015-01-01

    The great potential of lipases is known since 1930 when the work of J. B. S. Haldane was published. After eighty-five years of studies and developments, are lipases still important biocatalysts? For answering this question the present work investigated the technological development of four important industrial sectors where lipases are applied: production of detergent formulations; organic synthesis, focusing on kinetic resolution, production of biodiesel, and production of food and feed products. The analysis was made based on research publications and patent applications, working as scientific and technological indicators, respectively. Their evolution, interaction, the major players of each sector and the main subject matters disclosed in patent documents were discussed. Applying the concept of technology life cycle, S-curves were built by plotting cumulative patent data over time to monitor the attractiveness of each technology for investment. The results lead to a conclusion that the use of lipases as biocatalysts is still a relevant topic for the industrial sector, but developments are still needed for lipase biocatalysis to reach its full potential, which are expected to be achieved within the third, and present, wave of biocatalysis.

  12. Menstrual cycle hormones, food intake, and cravings

    Science.gov (United States)

    Objective: Food craving and intake are affected by steroid hormones during the menstrual cycle, especially in the luteal phase, when craving for certain foods has been reported to increase. However, satiety hormones such as leptin have also been shown to affect taste sensitivity, and therefore food ...

  13. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Directory of Open Access Journals (Sweden)

    Chi-Yang Yu

    2013-04-01

    Full Text Available We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil and n-hexane content (w/w of oil were evaluated using response surface methodology (RSM combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 °C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 °C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 °C or room temperature.

  14. Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene

    NARCIS (Netherlands)

    Cox, M; Gerritse, G; Dankmeyer, L; Quax, W.J.

    2001-01-01

    Pseudomonas alcaligenes secretes a lipase with a high pH optimum, which has interesting properties for application in detergents. The expression of the lipase is strongly dependent on the presence of lipids in the growth medium such as soybean oil. The promoter of the gene was characterized and

  15. Isolation of lipase producing fungi from palm oil Mill effluent (POME dump sites at Nsukka

    Directory of Open Access Journals (Sweden)

    Charles Ogugua Nwuche

    2011-02-01

    Full Text Available In this study, twelve fungal lipase producing strains belonging to Aspergillus, Penicillium, Trichoderma and Mucor genera were isolated from palm oil mill effluent composts. The Aspergillus spp. were more frequent (42% and was present in all the samples assayed. Mucor sp. was the least encountered (8.3%.The lipase producing profile showed that Trichoderma (8.07-8.24 u/mL and Aspergillus (6.25 -7.54 u/mL spp. were the highest lipase producers while Mucor (5.72 u/mL was the least.

  16. Characterization of Lipoprotein Lipases interactions with Sortilin and SorLA

    DEFF Research Database (Denmark)

    Klinger, Stine Christensen

    and regulation of both ligands, as well as to increase the understanding of SorLA’s and sortilin’s functions. Sortilin and SorLA were both shown to bind apolipoprotein A-V at the cell surface and mediate endocytosis. Apolipoprotein A-V trafficking could subsequently be followed through early endosomes, the trans-Golgi......LA might be involved in regulation or transport of brain lipoprotein lipase. In summary, this work adds new details to the current knowledge about the functions of SorLA and sortilin. Moreover, it increases our understanding of lipoprotein lipase and apolipoprotein A-V processing and regulation....

  17. Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases

    Science.gov (United States)

    Vavříková, Eva; Gavezzotti, Paolo; Purchartová, Kateřina; Fuksová, Kateřina; Biedermann, David; Kuzma, Marek; Riva, Sergio; Křen, Vladimír

    2015-01-01

    A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/n-butanol. Both of these reactions occurred without diastereomeric discrimination of silychristin A and B. Both of these enzymes were found to be capable to regioselective deacetylation of hexaacetyl silychristin to afford penta-, tetra- and tri-acetyl derivatives, which could be obtained as pure synthons for further selective modifications of the parent molecule. PMID:26016503

  18. High-Level Expression of Pro-Form Lipase from Rhizopus oryzae in Pichia pastoris and Its Purification and Characterization

    Directory of Open Access Journals (Sweden)

    Jian-Rong Wang

    2013-12-01

    Full Text Available A gene encoding Rhizopus oryzae lipase containing prosequence (ProROL was cloned into the pPICZαA and electrotransformed into the Pichia pastoris X-33 strain. The lipase was functionally expressed and secreted in Pichia pastoris with a molecular weight of 35 kDa. The maximum lipase activity of recombinant lipase (rProROL was 21,000 U/mL, which was obtained in a fed-batch cultivation after 168 h induction with methanol in a 50-L bioreactor. After fermentation, the supernatant was concentrated by ultrafiltration with a 10 kDa cut off membrane and purified with ion exchange chromatography using SP Sepharose Fast Flow chromatography. The optimum pH and temperature of the rProROL were pH 9.0 and 40 °C, respectively. The lipase was stable from pH 4.0 to 9.0 and from 25 to 55 °C. The enzyme activity was enhanced by Ca2+ and inhibited by Hg2+ and Ag+. The lipase showed high activity toward triglyceride-Tripalmitin (C16:0 and triglyceride-Trilaurin (C12:0.

  19. Benefits of Using Stereotactic Body Radiotherapy in Patients With Metachronous Oligometastases of Hormone-Sensitive Prostate Cancer Detected by [18F]fluoromethylcholine PET/CT

    NARCIS (Netherlands)

    Bouman-Wammes, Esther W.; van Dodewaard-de Jong, Joyce M.; Dahele, Max; Cysouw, Matthijs C. F.; Hoekstra, Otto S.; van Moorselaar, R. Jeroen A.; Piet, Maartje A. H.; Verberne, Hein J.; Bins, Adriaan D.; Verheul, Henk M. W.; Slotman, Ben J.; Oprea-Lager, Daniela E.; van den Eertwegh, Alfons J. M.

    2017-01-01

    Stereotactic body radiation therapy (SBRT) might postpone the start of androgen deprivation therapy (ADT) in patients with oligometastatic recurrence of hormone-sensitive prostate cancer. We included 43 SBRT-treated patients, and a control cohort of 20 noneSBRT-treated patients, in this

  20. Clinical Features of Lysosomal Acid Lipase Deficiency

    NARCIS (Netherlands)

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living

  1. Lipase from liver of seabass (Lates calcarifer): Characteristics and the use for defatting of fish skin.

    Science.gov (United States)

    Sae-Leaw, Thanasak; Benjakul, Soottawat

    2018-02-01

    Lipase from liver of seabass (Lates calcarifer), with a molecular weight of 60kDa, was purified to homogeneity using ammonium sulfate precipitation and a series of chromatographies, including diethylaminoethyl sepharose (DEAE) and Sephadex G-75 size exclusion columns. The optimal pH and temperature were 8.0 and 50°C, respectively. Purified lipase had Michaelis-Menten constant (K m ) and catalytic constant (k cat ) of 0.30mM and 2.16s -1 , respectively, when p-nitrophenyl palmitate (p-NPP) was used as the substrate. When seabass skin was treated with crude lipase from seabass liver at various levels (0.15 and 0.30units/g dry skin) for 1-3h at 30°C, the skin treated with lipase at 0.30 units/g dry skin for 3h had the highest lipid removal (84.57%) with lower lipid distribution in skin. Efficacy in defatting was higher than when isopropanol was used. Thus, lipase from liver of seabass could be used to remove fat in fish skin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of amylase and lipase levels in blunt trauma abdomen patients.

    Science.gov (United States)

    Kumar, Subodh; Sagar, Sushma; Subramanian, Arulselvi; Albert, Venencia; Pandey, Ravindra Mohan; Kapoor, Nitika

    2012-04-01

    There are studies to prove the role of amylase and lipase estimation as a screening diagnostic tool to detect diseases apart from acute pancreatitis. However, there is sparse literature on the role of serum and urine amylase, lipase levels, etc to help predict the specific intra-abdominal injury after blunt trauma abdomen (BTA). To elucidate the significance of elevation in the levels of amylase and lipase in serum and urine samples as reliable parameters for accurate diagnosis and management of blunt trauma to the abdomen. A prospective analysis was done on the trauma patients admitted in Jai Prakash Narayan Apex Trauma Center, AIIMS, with blunt abdomen trauma injuries over a period of six months. Blood and urine samples were collected on days 1, 3, and 5 of admission for the estimation of amylase and lipase, liver function tests, serum bicarbonates, urine routine microscopy for red blood cells, and complete hemogram. Clinical details such as time elapsed from injury to admission, type of injury, trauma score, and hypotension were noted. Patients were divided into groups according to the single or multiple organs injured and according to their hospital outcome (dead/discharged). Wilcoxon's Rank sum or Kruskal-Wallis tests were used to compare median values in two/three groups. Data analysis was performed using STATA 11.0 statistical software. A total of 55 patients with median age 26 (range, 6-80) years, were enrolled in the study. Of these, 80% were males. Surgery was required for 20% of the patients. Out of 55 patients, 42 had isolated single organ injury [liver or spleen or gastrointestinal tract (GIT) or kidney]. Patients with pancreatic injury were excluded. In patients who suffered liver injuries, urine lipase levels on day 1, urine lipase/amylase ratio along with aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) on days 1, 3, and 5, were found to be significant. Day 1 serum amylase, AST, ALT, hemoglobin, and

  3. Imobilização de lipases em filme de caseinato de sódio/glicerol: aplicação na síntese de ésteres Lipase immobilization in sodium caseinate/glycerol film: application in ester synthesis

    Directory of Open Access Journals (Sweden)

    Damianni Sebrão

    2007-10-01

    Full Text Available Lipases from different sources were immobilized in sodium caseinate/glycerol film and used in the esterification reactions of aliphatic acids with alcohols in the presence of organic solvents. Lipases from Pseudomonas sp and Rhizopus oryzae were selected and the influence of several parameters was analyzed, including: lipase loading, organic solvent polarity, reaction temperature, chain length of alcohol and acid and enzyme/support reuse. For comparison, free enzymes were used under similar experimental conditions.

  4. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    International Nuclear Information System (INIS)

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A.

    1990-01-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  5. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  6. Utilization of agroindustrial residues for lipase production by solid-state fermentation

    OpenAIRE

    Damaso, M?nica Caramez Triches; Passianoto, Mois?s Augusto; de Freitas, Sidin?a Cordeiro; Freire, Denise Maria Guimar?es; Lago, Regina Celi Araujo; Couri, Sonia

    2008-01-01

    The aim of this work was to produce lipases by solid-state fermentation (SSF) using, as substrate, agroindustrial residue supplemented with by-products from corn oil refining process or olive oil. For a group of ten fungi strains selected in the first steps, the lipase activity obtained by SSF varied from 7.7 to 58.6 U/g of dry substrate (gds). Among the evaluated strains, the Aspergillus niger mutant 11T53A14 was selected by presenting the best enzymatic production. For the fermentation test...

  7. Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Brask, Jesper; Pedersen, Anders K.

    2013-01-01

    We have designed a kinetic model of biodiesel production using Novozym 435 (Nz435) with immobilized Candida antarctica lipase B (CALB) as a catalyst. The scheme assumed reversibility of all reaction steps and imitated phase effects by introducing various molecular species of water and methanol....... Residual enzymatic activity in biodiesel of standard quality causes increase of D above its specification level because of the reaction 2M↔D+G. Filtration or alkaline treatment of the product prior to storage resolves this problem. The optimal field of Nz435 application appears to be decrease of F, M, D...

  8. Facile fabrication of a stable and recyclable lipase@amine-functionalized ZIF-8 nanoparticles for esters hydrolysis and transesterification

    Science.gov (United States)

    Cheong, Ling-Zhi; Wei, Yayu; Wang, Hongbin; Wang, Zhiying; Su, Xiurong; Shen, Cai

    2017-08-01

    Zeolitic imidazolate frameworks (ZIF) represent one of the metal organic frameworks (MOF) with high potential for enzyme immobilization due to their exceptional chemical and thermal stability, negligible cytotoxicity, and easy synthesis under mild biocompatible conditions. Amine-functionalized ZIF-8 (An-ZIF-8) are capable of forming multipoint attachment via hydrogen bonding with lipase which will immobilize and further enhance stabilization of lipase. In addition, increased hydrophilicity of An-ZIF-8 will increase partitioning of An-ZIF-8 immobilized lipase at the aqueous/organic interface which enable lipase to expose its active site and retain its catalytic activity at its highest. Present study reports the use of ZIF-8 and An-ZIF-8 nanoparticles as carrier for Burkholderia cepacia lipase (BCL), compares the ester hydrolysis and transesterification activities of immobilized lipase with those of free lipase, and evaluates the reusability and recovery rate of the immobilized lipase. An-ZIF-8 nanoparticles (average 130.42 ± 0.55 nm) were facilely synthesized via mixing ZIF-8 nanoparticles with ammonia hydroxide solution. Despite having similar characteristics of high crystallinity and forming cuboid-like particles, An-ZIF-8 demonstrated significantly ( P hydrolysis and transesterification activities with those of free BCL. BCL@An-ZIF-8 demonstrated superior catalytic stability in comparison to BCL@ZIF-8 with retainment of more than 80% of its initial hydrolysis and transesterification activity for at least 10 repeated runs. In addition, more than 80% of the BCL@An-ZIF-8 can be easily recovered during each cycle of the reusability test through simple centrifugation.

  9. MOLECULAR DYNAMICS SIMULATION OF KINETIC RESOLUTION OF RACEMIC ALCOHOL USING BURKHOLDERIA CEPACIA LIPASE IN ORGANIC SOLVENTS

    Directory of Open Access Journals (Sweden)

    A. C. Mathpati

    2018-03-01

    Full Text Available Lipases, a subclass of hydrolases, have gained a lot of importance as they can catalyze esterification, transesterification and hydrolysis reaction in non-aqueous media. Lipases are also widely used for kinetic resolution of racemic alcohols into enantiopure compounds. The lipase activity is affected by organic solvents due to changes in the conformational rigidity of enzymes, the active site, or altering the solvation of the transition state. The activity of lipases strongly depends on the logP value of solvents. Molecular dynamics (MD can help to understand the effect of solvents on lipase conformation as well as protein-ligand complex. In this work, MD simulations of Burkholderia cepacia lipase (BCL and complex between R and S conformation of acetylated form of 1-phenylethanol with BCL using gromacs have been carried in various organic solvents. The RMSD values were within the range of 0.15 to 0.20 nm and radius of gyration was found to be with 1.65 to 1.9 nm. Major changes in the B factor compared to reference structure were observed between residues 60 to 80, 120 to 150 and 240 to 260. Higher unfolding was observed in toluene and diethyl ether compared to hexane and acetonitrile. R acetylated complex was found to favorably bind BCL compared to S form. The predicted enantioselectivity were in good agreement with the experimental data.

  10. Crystallization and preliminary crystallographic analysis of LipC12, a true lipase isolated through a metagenomics approach

    International Nuclear Information System (INIS)

    Martini, V. P.; Glogauer, A.; Iulek, J.; Souza, E. M.; Pedrosa, F. O.; Krieger, N.

    2012-01-01

    The preliminary X-ray analysis of LipC12, the first lipase isolated through a metagenomics approach to be crystallized, is reported. LipC12, a true lipase from family I.1 of bacterial lipases which was previously isolated through a metagenomics approach, contains 293 amino acids. Among lipases of known three-dimensional structure, it has a sequence identity of 47% to the lipase from Pseudomonas aeruginosa PAO1. Recombinant N-terminally His 6 -tagged LipC12 protein was expressed in Escherichia coli, purified in a homogenous form and crystallized in several conditions, with the best crystals being obtained using 2.0 M sodium formate and 0.1 M bis-tris propane pH 7.0. X-ray diffraction data were collected to 2.70 Å resolution. The crystals belonged to the tetragonal space group P4 1 22, with unit-cell parameters a = b = 58.62, c = 192.60 Å

  11. Beauveria bassiana Lipase A expressed in Komagataella (Pichia pastoris with potential for biodiesel catalysis

    Directory of Open Access Journals (Sweden)

    Ana Claudia Vici

    2015-10-01

    Full Text Available Lipases (EC 3.1.1.3 comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting application of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA was produced in Komagataella pastoris in Buffered Methanol Medium (BMM induced with 1% methanol at 30 °C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in Komagataella pastoris and shows potential use for biodiesel production by the ethanolysis reaction.

  12. Fabrication and functionalization of magnesium nanoparticle for lipase immobilization in n-propyl gallate synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Sharma

    2017-10-01

    Full Text Available An extracellular lipase partially purified from Bacillus thermoamylovorans BHK67 was effectively immobilized onto modified magnetic MgFe2O4 nanoparticles (NPs. NPs were prepared by the sol-gel auto-combustion method and characterized by Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD, Ultra-Violet–Visible Spectroscopy (UV–vis and atomic force microscopy (AFM. Protein loading reached a saturated amount of about 0.20 mg lipase per milligram of MgFe2O4 NPs with 78.9% binding efficiency. The NPs-bound lipase also showed stability following exposure to n-propanol and iso-propanol or FeCl2 and MgCl2 metal ions at (1 mM at 55 °C. NPs-bound lipase also retained 50% of its original hydrolytic activity even after 8th cycle, as well as after 12 h of incubation at 55 °C. NPs-bound lipase in an esterification reaction of n-propanol and gallic acid (25 mM performed for 12 h at 55 °C produced n-propyl gallate with a conversion rate of 82%. Synthesized n-propyl gallate possessed strong antioxidant activity, which was confirmed by DPPH assay, and in addition has anticancerous activity which was tested on a human L132 cell line.

  13. Hepatic lipase: a pro- or anti-atherogenic protein?

    NARCIS (Netherlands)

    H. Jansen (Hans); A.J.M. Verhoeven (Adrie); E.J.G. Sijbrands (Eric)

    2002-01-01

    textabstractHepatic lipase (HL) plays a role in the metabolism of pro- and anti-atherogenic lipoproteins affecting their plasma level and composition. However, there is controversy regarding whether HL accelerates or retards atherosclerosis. Its effects on different

  14. PRELIMINARY STUDIES FOR PRODUCING CRUDE LIPASE FROM TEMPE’S MOULD CULTIVATED IN RICE-HUSK-BASED SOLID MEDIA

    OpenAIRE

    Bardant, Teuku Beuna; Sembiring, Kiky Corneliasari; Setiawan, Achmad Hanafi

    2010-01-01

    The goal of these preliminary studies is to support Indonesian program for increasing palm oil added value through independent production technology based on Indonesian natural resources. Various palm oil derivatives could be synthesized enzymatically using lipase from microbes that available in Indonesia. Tempe's mould is available in abundance in Indonesia and had already been proved for producing lipase. This paper provides information about producing crude lipase from Tempe's mould cultiv...

  15. Ecological screening of lipolytic cultures and process optimization for extracellular lipase production from fungal hyperproducer

    International Nuclear Information System (INIS)

    Iftikhar, T.; Niaz, M.; Anwer, M.; Abbas, S.Q.; Saleem, M.; Jabeen, R.

    2011-01-01

    Present investigation describes the biosynthesis of extracellular lipases by various local fungal strains isolated from various lipid rich habitats of Faisalabad. The isolated cultures of Aspergillus niger, Penicillium chrysogenum, Rhizopus microsporus, Mucor mucedo, Alternaria alternata, Trichophyton sp., Fusarium semitectum, E (un-identified), Curvularia sp., Aspergillus flavus, G (un-identified), F (Mucor sp.) and H (Synnematous) were identified and screened for the extracelluler lipases production. Different environmental parameters such as pH, temperature, inoculum size, amount of substrate and incubation time were optimized for the selected hyper producer. It was found that maximum production of lipases by Trichophyton sp., was obtained after 48 h of batch fermentation. Similarly, the diluent pH of 7.0 and incubation temperature of 30 deg. C were found optimum for enzyme production by the microorganism. The maximum production of lipases during the course of present studies was 65.20 +- 1.13a U/g. (author)

  16. Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions.

    Science.gov (United States)

    Poppe, Jakeline Kathiele; Matte, Carla Roberta; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Ayub, Marco Antônio Záchia

    2018-04-21

    This work describes the use of an ultrasound system for the enzymatic transesterification of oils using combi-lipases as biocatalyst. The reactions were carried out evaluating the individual use of waste oil and fresh soybean oil, and the immobilized lipases CALB, TLL, and RML were used as biocatalysts. It was performed in a mixture design of three factors to obtain the ideal mixture of lipases according to the composition of fatty acids present in each oil, and the main reaction variables were optimized. After 18 h of reaction, ultrasound provided a biodiesel yield of about 90% when using soybean oil and 70% using the waste oil. The results showed that ultrasound technology, in combination with the application of enzyme mixtures, known as combi-lipases, and the use of waste oil, could be a promising route to reduce the overall process costs of enzymatic production of biodiesel.

  17. Lipase and protease extraction from activated sludge

    DEFF Research Database (Denmark)

    Gessesse, Amare; Dueholm, Thomas; Petersen, Steffen B.

    2003-01-01

    of gentle and efficient enzyme extraction methods from environmental samples is very important. In this study we present a method for the extraction of lipases and proteases from activated sludge using the non-ionic detergent Triton X-100, EDTA, and cation exchange resin (CER), alone or in combination...

  18. Hormone therapy and different ovarian cancers

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2012-01-01

    Postmenopausal hormone therapy use increases the risk of ovarian cancer. In the present study, the authors examined the risks of different histologic types of ovarian cancer associated with hormone therapy. Using Danish national registers, the authors identified 909,946 women who were followed from...... 1995-2005. The women were 50-79 years of age and had no prior hormone-sensitive cancers or bilateral oophorectomy. Hormone therapy prescription data were obtained from the National Register of Medicinal Product Statistics. The National Cancer and Pathology Register provided data on ovarian cancers......, including information about tumor histology. The authors performed Poisson regression analyses that included hormone exposures and confounders as time-dependent covariates. In an average of 8.0 years of follow up, 2,681 cases of epithelial ovarian cancer were detected. Compared with never users, women...

  19. Selection and optimization of extracellular lipase production using ...

    African Journals Online (AJOL)

    Pedro

    2014-01-22

    Jan 22, 2014 ... Erlenmeyer flasks containing 50 ml medium cultive solution of (g L-1 of distilled water): yeast ..... screening of alkaline lipase-production fungi from Brazil savanna soil. World J. Microb. Biot. ... rhamnosus. Int. J. Food Microbiol.

  20. Transesterification of waste cooking oil by an organic solvent-tolerant alkaline lipase from Streptomyces sp. CS273.

    Science.gov (United States)

    Mander, Poonam; Yoo, Hah-Young; Kim, Seung Wook; Choi, Yun Hee; Cho, Seung Sik; Yoo, Jin Cheol

    2014-02-01

    The aim of this present study was to produce a microbial enzyme that can potentially be utilized for the enzymatic transesterification of waste cooking oil. To that end, an extracellular lipase was isolated and purified from the culture broth of Streptomyces sp. CS273. The molecular mass of purified lipase was estimated to be 36.55 kDa by SDS PAGE. The optimum lipolytic activity was obtained at alkaline pH 8.0 to 8.5 and temperature 40 °C, while the enzyme was stable in the pH range 7.0 ∼ 9.0 and at temperature ≤40 °C. The lipase showed highest hydrolytic activity towards p-nitrophenyl myristate (C14). The lipase activity was enhanced by several salts and detergents including NaCl, MnSo₄, and deoxy cholic acid, while phenylmethylsulfonyl fluoride at concentration 10 mM inhibited the activity. The lipase showed tolerance towards different organic solvents including ethanol and methanol which are commonly used in transesterification reactions to displace alcohol from triglycerides (ester) contained in renewable resources to yield fatty acid alkyl esters known as biodiesel. Applicability of the lipase in transesterification of waste cooking oil was confirmed by gas chromatography mass spectrometry analysis.

  1. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii).

    Science.gov (United States)

    Jin, Min; Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.

  2. Screening for Anti-lipase Properties of 37 Traditional Chinese Medicinal Herbs

    Directory of Open Access Journals (Sweden)

    Cheng-Dong Zheng

    2010-06-01

    Conclusion: The results support the view that herbs represent a rich source of anti-lipase compounds. The screening of the methanolic extracts of 37 Chinese medicinal plants in vitro led to the identification of several extracts with potential activity against PPL, in particular, P. vulgaris and R. palmatum. We also found that several monomeric chemicals in these herbs exhibited good or moderate activity against PPL. To the best of our knowledge, these traditional Chinese herbal medicines or phytochemicals have not been previously screened for their lipase inhibitory activity.

  3. Production of extracellular lipases by Rhizopus oligosporus in a stirred fermentor

    OpenAIRE

    Iftikhar, Tehreema; Niaz, Mubashir; Zia, Muhammad Anjum; Haq, Ikram ul

    2010-01-01

    The present investigation deals with the kinetics of submerged extracellular lipases fermentation by both wild and mutant strains of Rhizopus oligosporus var. microsporus in a laboratory scale stirred fermentor. Other parameters studied were inoculum size, pH, agitation and rate of aeration. It was found that the growth and lipases production was increased gradually and reached its maximum 9.07± 0.42ª U mL-1 (W) and 42.49 ± 3.91ª U mL-1 (M) after 30h of fermentation for both wild and mutant s...

  4. Production and Characterization of Biodiesel Using Nonedible Castor Oil by Immobilized Lipase from Bacillus aerius

    Science.gov (United States)

    Narwal, Sunil Kumar; Saun, Nitin Kumar; Dogra, Priyanka; Chauhan, Ghanshyam

    2015-01-01

    A novel thermotolerant lipase from Bacillus aerius was immobilized on inexpensive silica gel matrix. The immobilized lipase was used for the synthesis of biodiesel using castor oil as a substrate in a solvent free system at 55°C under shaking in a chemical reactor. Several crucial parameters affecting biodiesel yield such as incubation time, temperature, substrate molar ratio, and amount of lipase were optimized. Under the optimized conditions, the highest biodiesel yield was up to 78.13%. The characterization of synthesized biodiesel was done through FTIR spectroscopy, 1H NMR spectra, and gas chromatography. PMID:25874205

  5. Improvement of Thermal Stability via Outer-Loop Ion Pair Interaction of Mutated T1 Lipase from Geobacillus zalihae Strain T1

    Directory of Open Access Journals (Sweden)

    Mahiran Basri

    2012-01-01

    Full Text Available Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The Tm for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher Tm as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.

  6. Modelling and Optimization Studies on a Novel Lipase Production by Staphylococcus arlettae through Submerged Fermentation

    Directory of Open Access Journals (Sweden)

    Mamta Chauhan

    2013-01-01

    Full Text Available Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable industrial enzymes. The present paper encompasses the modeling and optimization approach for production of halophilic, solvent, tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic algorithm. Response surface model based on central composite design has been developed by considering the individual and interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space of response surface model (with R2 value of 96.6% has been utilized for optimization through genetic algorithm. An optimum lipase yield of 6.5 U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8°C. This outcome could contribute to introducing this extremophilic lipase (halophilic, solvent, and tolerant to industrial biotechnology sector and will be a probable choice for different food, detergent, chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration with computational tools for optimization of fermentation conditions for maximum lipase production.

  7. Production and partial characterization of lipases from a newly isolated Penicillium sp. using experimental design.

    Science.gov (United States)

    Wolski, E; Rigo, E; Di Luccio, M; Oliveira, J V; de Oliveira, D; Treichel, H

    2009-07-01

    The objective of this work was to investigate the lipase production by a newly isolated Penicillium sp., using experimental design technique, in submerged fermentation using a medium based on peptone, yeast extract, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Lipase activity values of 9.5 U ml(-1) in 96 h of fermentation was obtained at the maximized operational conditions of peptone, yeast extract, NaCl and olive oil concentrations (g l(-1)) of 20.0, 5.0, 5.0 and of 10.0 respectively. The partial characterization of crude enzymatic extract obtained by submerged fermentation showed optimum activity at pH range from 4.9 to 5.5 and temperature from 37 degrees C to 42 degrees C. The crude extract maintained its initial activity at freezing temperatures up to 100 days. A newly isolated strain of Penicillium sp. used in this work yielded good lipase activities compared to the literature. The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. New lipase producers are relevant to finding enzymes with different catalytic properties of commercial interest could be obtained, without using genetically modified organisms (GMO).

  8. Crystallization and preliminary crystallographic analysis of Gibberella zeae extracellular lipase

    International Nuclear Information System (INIS)

    Sun, Yuna; Li, Ming; Zhang, Yan; Liu, Lifang; Liu, Ye; Liu, Zheng; Li, Xumei; Lou, Zhiyong

    2008-01-01

    G. zeae extracellular lipase has been overexpressed, purified and crystallized. Diffraction data were collected to 2.8 Å resolution. Fusarium head blight, one of the most destructive crop diseases, is mainly caused by Fusarium graminearum (known in its sexual stage as Gibberella zeae). F. graminearum secretes various extracellular enzymes that have been hypothesized to be involved in host infection. One of the extracellular enzymes secreted by this organism is the G. zeae extracellular lipase (GZEL), which is encoded by the FGL1 gene. In order to solve the crystal structure of GZEL and to gain a better understanding of the biological functions of the protein and of possible inhibitory mechanisms of lipase inhibitors, recombinant GZEL was crystallized at 291 K using PEG 3350 as a precipitant. A data set was collected to 2.8 Å resolution from a single flash-cooled crystal (100 K). The crystal belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 78.4, b = 91.0, c = 195.8 Å, α = β = γ = 90°. The presence of four molecules was assumed per asymmetric unit, which gave a Matthews coefficient of 2.6 Å 3 Da −1

  9. Effect of high-fat diets on body composition, lipid metabolism and insulin sensitivity, and the role of exercise on these parameters

    Directory of Open Access Journals (Sweden)

    D.F. Coelho

    2011-10-01

    Full Text Available Dietary fat composition can interfere in the development of obesity due to the specific roles of some fatty acids that have different metabolic activities, which can alter both fat oxidation and deposition rates, resulting in changes in body weight and/or composition. High-fat diets in general are associated with hyperphagia, but the type of dietary fat seems to be more important since saturated fats are linked to a positive fat balance and omental adipose tissue accumulation when compared to other types of fat, while polyunsaturated fats, omega-3 and omega-6, seem to increase energy expenditure and decrease energy intake by specific mechanisms involving hormone-sensitive lipase, activation of peroxisome proliferator-activated receptor α (PPARα and others. Saturated fat intake can also impair insulin sensitivity compared to omega-3 fat, which has the opposite effect due to alterations in cell membranes. Obesity is also associated with impaired mitochondrial function. Fat excess favors the production of malonyl-CoA, which reduces GLUT4 efficiency. The tricarboxylic acid cycle and beta-oxidation are temporarily uncoupled, forming metabolite byproducts that augment reactive oxygen species production. Exercise can restore mitochondrial function and insulin sensitivity, which may be crucial for a better prognosis in treating or preventing obesity.

  10. Radioimmunoassay of antidiuretic hormone. Application to rats and to man

    International Nuclear Information System (INIS)

    Fressinaud-Masdefeix, Philippe.

    1976-06-01

    The general principles of antidiuretic hormone secretion are known from kidney function explorations and the use of biological methods. Radioimmunoassay of the hormone should contribute towards a better understanding of this secretion in the fields of both physiology and pathology. After a review on antidiuretic hormone and the methods used so far for its investigation, part two of this work concentrates on the development of our own radioimmunological system applied to this hormone. The system is specific, though interference in the measurement from metabolite(s) of the hormone cannot be absolutely ruled out; reproducible, as witnessed by the 'inter-test' variation coefficient of 8%; and sensitive, since the hormone is easily measured in the urine, when secretion is slowed down. In spite of its sensitivity however the hormone determination in the plasma is not possible for a small sample volume because of the difficulty of obtaining high-affinity specific antibodies. To our knowledge only one plasma ADH determination is in common use to date. Part three is devoted to the application of this technique in rats and man, and the results obtained [fr

  11. Solvent-Free Lipase-Catalyzed Synthesis of Diacylgycerols as Low-Calorie Food Ingredients.

    Science.gov (United States)

    Vázquez, Luis; González, Noemí; Reglero, Guillermo; Torres, Carlos

    2016-01-01

    Problems derived from obesity and overweight have recently promoted the development of fat substitutes and other low-calorie foods. On the one hand, fats with short- and medium-chain fatty acids are a source of quick energy, easily hydrolyzable and hardly stored as fat. Furthermore, 1,3-diacylglycerols are not hydrolyzed to 2-monoacylglycerols in the gastrointestinal tract, reducing the formation of chylomicron and lowers the serum level of triacylglycerols by decreasing its resynthesis in the enterocyte. In this work, these two effects were combined to synthesize short- and medium-chain 1,3-diacylglycerols, leading to a product with great potential as for their low-calorie properties. Lipase-catalyzed transesterification reactions were performed between short- and medium-chain fatty acid ethyl esters and glycerol. Different variables were investigated, such as the type of biocatalyst, the molar ratio FAEE:glycerol, the adsorption of glycerol on silica gel, or the addition of lecithin. Best reaction conditions were evaluated considering the percentage of 1,3-DAG produced and the reaction rate. Except Novozym 435 (Candida antarctica), other lipases required the adsorption of glycerol on silica gel to form acylglycerols. Lipases that gave the best results with adsorption were Novozym 435 and Lipozyme RM IM (Rhizomucor miehei) with 52 and 60.7% DAG at 32 h, respectively. Because of its specificity for sn-1 and sn-3 positions, lipases leading to a higher proportion of 1,3-DAG vs. 1,2-DAG were Lipozyme RM IM (39.8 and 20.9%, respectively) and Lipase PLG (Alcaligenes sp.) (35.9 and 19.3%, respectively). By adding 1% (w/w) of lecithin to the reaction with Novozym 435 and raw glycerol, the reaction rate was considerably increased from 41.7 to 52.8% DAG at 24 h.

  12. Comparison of lipase-catalyzed synthesis of cyclopentadecanolide ...

    African Journals Online (AJOL)

    Methyl 15-hydroxy-pentadecanate, which is made from Malana oleifera chum oil, is an ideal material to synthesize cyclopentadecanolide, an important macrocycle musk, with wide applications in the fields of perfume, cosmetic, food and medicine, etc. One kind of screened lipase from Candida sp.GXU08 strain was used to ...

  13. Hormone therapy and ovarian cancer

    DEFF Research Database (Denmark)

    Mørch, Lina Steinrud; Løkkegaard, Ellen; Andreasen, Anne Helms

    2009-01-01

    CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal and postmenopau......CONTEXT: Studies have suggested an increased risk of ovarian cancer among women taking postmenopausal hormone therapy. Data are sparse on the differential effects of formulations, regimens, and routes of administration. OBJECTIVE: To assess risk of ovarian cancer in perimenopausal...... and postmenopausal women receiving different hormone therapies. DESIGN AND SETTING: Nationwide prospective cohort study including all Danish women aged 50 through 79 years from 1995 through 2005 through individual linkage to Danish national registers. Redeemed prescription data from the National Register...... bands included hormone exposures as time-dependent covariates. PARTICIPANTS: A total of 909,946 women without hormone-sensitive cancer or bilateral oophorectomy. MAIN OUTCOME MEASURE: Ovarian cancer. RESULTS: In an average of 8.0 years of follow-up (7.3 million women-years), 3068 incident ovarian...

  14. Microwave assisted synthesis and anti-lipase activity of some new fluorine-containing benzimidazoles.

    Science.gov (United States)

    Menteşe, E; Yilmaz, F; Ülker, S; Kahveci, B

    2015-01-01

    In this study, a new series of fluorine containing benzimidazoles (4a-l) and bisbenzimidazoles (6a-c, 8) were synthesized by the reaction of o-phenylenediamines with iminoester hydrochlorides (3a-l, 7) in methanol under microwave irradiation. The structures of these newly synthesized compounds were identified by IR, (1)H-NMR, (13)C-NMR, mass spectroscopy and elemental analysis data. The synthesized compounds were screened for their pancreatic lipase activities. Our results indicate that the compounds 6a, 6b and 6c can serve as an anti-lipase agent. The compounds 6b and 6c inhibited pancreatic lipase activity by 84.03% and 97.49% at a concentration of 3 µg/mL, respectively. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system

    NARCIS (Netherlands)

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H.; Quax, Wim J.

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set

  16. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry

    Directory of Open Access Journals (Sweden)

    Pushpinder Sharma

    2017-12-01

    Full Text Available Lipase production bacterial isolate was isolated from soil of service station and identified as Bacillus methylotrophicus PS3 by 16SrRNA with accession number |LN999829.1|. Lipase enzyme was purified by sequential methods of ammonium sulfate precipitation and Sephadex G-100 gel column chromatography. The molecular weight of purified enzyme was 31.40 kDa on SDS-PAGE. This purification procedure resulted in 2.90-fold purification of lipase with a 24.10% final yield. The purified lipase presented maximal hydrolytic activity at a temperature of 55 °C, and pH of 7.0. Lipase activity was stimulated by Triton X-100 and SDS with Mg2+ and Ca2+ metals employ a positive effect and outlast its stable in organic solvent i.e. methanol and ethanol.

  17. Efficacy of chemotherapy after hormone therapy for hormone receptor-positive metastatic breast cancer.

    Science.gov (United States)

    Mori, Ryutaro; Nagao, Yasuko

    2014-01-01

    According to the guidelines for metastatic breast cancer, hormone therapy for hormone receptor-positive metastatic breast cancer without life-threatening metastasis should be received prior to chemotherapy. Previous trials have investigated the sensitivity of chemotherapy for preoperative breast cancer based on the efficacy of neoadjuvant hormone therapy. In this retrospective study, we investigated the efficacy of chemotherapy for metastatic breast cancer in hormone therapy-effective and hormone therapy-ineffective cases. Patients who received chemotherapy after hormone therapy for metastatic breast cancer between 2006 and 2013 at our institution were investigated. A total of 32 patients received chemotherapy after hormone therapy for metastatic breast cancer. The median patient age was 59 years, and most of the primary tumors exhibited a T2 status. A total of 26 patients had an N(+) status, while 7 patients had human epidermal growth factor receptor 2-positive tumors. A total of 13 patients received clinical benefits from hormone therapy, with a rate of clinical benefit of subsequent chemotherapy of 30.8%, which was not significantly different from that observed in the hormone therapy-ineffective patients (52.6%). A total of 13 patients were able to continue the hormone therapy for more than 1 year, with a rate of clinical benefit of chemotherapy of 38.5%, which was not significantly different from that observed in the short-term hormone therapy patients (47.4%). The luminal A patients were able to continue hormone therapy for a significantly longer period than the non-luminal A patients (median survival time: 17.8 months vs 6.35 months, p = 0.0085). However, there were no significant differences in the response to or duration of chemotherapy. The efficacy of chemotherapy for metastatic breast cancer cannot be predicted based on the efficacy of prior hormone therapy or tumor subtype, and clinicians should administer chemotherapy in all cases of

  18. A Novel Cold-Active Lipase from Candida albicans: Cloning, Expression and Characterization of the Recombinant Enzyme

    Directory of Open Access Journals (Sweden)

    Dong-Ming Lan

    2011-06-01

    Full Text Available A novel lipase gene lip5 from the yeast Candida albicans was cloned and sequenced. Alignment of amino acid sequences revealed that 86–34% identity exists with lipases from other Candida species. The lipase and its mutants were expressed in the yeast Pichia pastoris, where alternative codon usage caused the mistranslation of 154-Ser and 293-Ser as leucine. 154-Ser to leucine resulted in loss of expression of Lip5, and 293-Ser to leucine caused a marked reduction in the lipase activity. Lip5-DM, which has double mutations that revert 154 and 293 to serine residues, showed good lipase activity, and was overexpressed and purified by (NH42SO4 precipitation and ion-exchange chromatography. The pure Lip5-DM was stable at low temperatures ranging from 15–35 °C and pH 5–9, with the optimal conditions being 15–25 °C and pH 5–6. The activation energy of recombinant lipase was 8.5 Kcal/mol between 5 and 25 °C, suggesting that Lip5-DM was a cold–active lipase. Its activity was found to increase in the presence of Zn2+, but it was strongly inhibited by Fe2+, Fe3+, Hg2+ and some surfactants. In addition, the Lip5-DM could not tolerate water-miscible organic solvents. Lip5-DM exhibited a preference for the short- and medium-chain length p-nitrophenyl (C4 and C8 acyl group esters rather than the long chain length p-nitrophenyl esters (C12, C16 and C18 acyl group with highest activity observed with the C8 derivatives. The recombinant enzyme displayed activity toward triacylglycerols, such as olive oil and safflower oil.

  19. Electrophoretic and zymographic techniques for production monitoring of two lipase forms from Candida antarctica DSM 70725

    Directory of Open Access Journals (Sweden)

    Dimitrijević Aleksandra S.

    2012-01-01

    Full Text Available Yeast Candida antarctica produces two lipase forms, which are widely used as catalysts in variety of organic reactions, many of which are applied on a large scale. In this work, production of two forms of lipase from C. antarctica DSM 70725 (CAL A and CAL B was monitored during seven days of cultivation in the optimal medium using different electrophoretic and zymographic techniques. According to electrophoresis after silver staining, C. antarctica lipase A (molecular mass 45 kDa was produced starting from the second day of cultivation. C. antarctica lipase B (CAL B was also produced starting from the second day, but protein was present in the fermentation broth predominantly as dimer (molecular weight 66 kDa, while presence of monomeric form of CAL B (molecular weight of 33 kDa was observed starting from the fourth day of cultivation. Both types of zymograms (based on hydrolysis and synthesis reactions were used for detection of lipase activity in the fermentation broth. C. antarctica lipase A showed activity only in hydrolytic zymogram, when α-naphtyl butyrate was used as substrate. In the same zymogram, with α-naphtyl acetate as substrate no CAL A activity was detected. Similarly, CAL A showed no activity in synthesis based zymograms towards oleic acid and octanol as substrates, indicating that CAL A is not active towards very short or long-chain substrates. As opposite of CAL A, both monomeric and dimeric form of CAL B were detected in the all zymograms, suggesting that CAL B is active towards wide range of substrates, regardless to the chain length. Thus, zymogram based on hydrolysis of α-naphtyl butyrate represents a simple method for monitoring the production of two forms of lipase from C. antarctica, that greatly differ in their characteristics.

  20. WAVELENGTH SELECTION OF HYPERSPECTRAL LIDAR BASED ON FEATURE WEIGHTING FOR ESTIMATION OF LEAF NITROGEN CONTENT IN RICE

    Directory of Open Access Journals (Sweden)

    L. Du

    2016-06-01

    Full Text Available Hyperspectral LiDAR (HSL is a novel tool in the field of active remote sensing, which has been widely used in many domains because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can improve the spectral resolution and receiving range, but maybe result in data redundancy, difficulty in system integration and high cost as well. Thus, it is necessary and urgent to pick out the nitrogen-sensitive feature wavelengths among the spectral range. The present study, aiming at solving this problem, assigns a feature weighting to each centre wavelength of HSL system by using matrix coefficient analysis and divergence threshold. The feature weighting is a criterion to amend the centre wavelength of the detector to accommodate different purpose, especially the estimation of leaf nitrogen content (LNC in rice. By this way, the wavelengths high-correlated to the LNC can be ranked in a descending order, which are used to estimate rice LNC sequentially. In this paper, a HSL system which works based on a wide spectrum emission and a 32-channel detector is conducted to collect the reflectance spectra of rice leaf. These spectra collected by HSL cover a range of 538 nm – 910 nm with a resolution of 12 nm. These 32 wavelengths are strong absorbed by chlorophyll in green plant among this range. The relationship between the rice LNC and reflectance-based spectra is modeled using partial least squares (PLS and support vector machines (SVMs based on calibration and validation datasets respectively. The results indicate that I wavelength selection method of HSL based on feature weighting is effective to choose the nitrogen-sensitive wavelengths, which can also be co-adapted with the hardware of HSL system friendly. II The chosen wavelength has a high correlation with rice LNC