WorldWideScience

Sample records for hormone-nuclear receptor genes

  1. Effect of acute exposure to cadmium on the expression of heat-shock and hormone-nuclear receptor genes in the aquatic midge Chironomus riparius

    Energy Technology Data Exchange (ETDEWEB)

    Planello, R.; Martinez-Guitarte, J.L. [Grupo de Biologia y Toxicologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, UNED, Senda del Rey 9, 28040 Madrid (Spain); Morcillo, G., E-mail: gmorcillo@ccia.uned.es [Grupo de Biologia y Toxicologia Ambiental, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-03-01

    Cadmium is a widespread and highly toxic pollutant of particular ecotoxicological relevance for aquatic ecosystems where it accumulates. To identify biomarkers for ecotoxicity monitoring, the effect of cadmium on the expression of different genes related to the stress response as well as to the ecdysone hormone-signalling pathway was studied in the aquatic larvae of Chironomus riparius (Diptera, Chironomidae), a standard test organism in aquatic toxicology testing. Reverse Transcription Polymerase Chain Reaction (RT-PCR) was used to evaluate the effects of acute and short-term cadmium exposures (10 mM CdCl{sub 2}, 12 h and 24 h) on the expression of hsp70, hsc70, hsp90 and hsp40 genes, as well as on that of the ecdysone hormonal-receptor genes (EcR and usp). A significant 3-fold increase in the level of hsp70 gene transcripts was induced by the treatment, whereas neither the other stress genes tested (hsp90 and hsp40) nor the constitutive form of hsp70, hsc70, was affected in the larvae exposed to cadmium. These results show that hsp70 is differentially activated to other environmentally regulated heat-shock genes, and constitutes a biomarker of exposure to this toxic metal. In addition, we also found that cadmium is able to alter the expression of the ecdysone receptor gene (EcR), whose mRNA level is significantly increased whereas usp levels remained unaltered. This finding, evidenced for the first time in invertebrates, supports the view that cadmium has the ability to mimic the effect of the hormone by the activation of the ecdysone nuclear receptor, which may partly explain the endocrine disruption capability that has been previously suggested for this toxic metal. Our research adds to the growing evidence implicating heavy metals, and cadmium in particular, as potential endocrine disruptive agents and may have significant implications for ecological risk assessment of endocrine-disrupting compounds in invertebrates.

  2. Synthesis of Analogues of Thyroid Hormones: Nuclear Receptor Modulators

    Directory of Open Access Journals (Sweden)

    Guilherme Vieira de Castro

    2015-09-01

    Full Text Available Thyroid hormones are essential for the development and differentiation of all cells of the human body. This work reports the synthesis of some synthetic structural analogues of thyroid hormones, which may be modulators of the thyroid hormone receptor. The known compounds GC-1 (Sobetirome and CG-24 were successfully prepared and two novel analogous molecules were also synthesized by a new and efficient synthetic methodology. DOI: http://dx.doi.org/10.17807/orbital.v7i3.739  

  3. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  4. Polymorphisms in human muscarinic receptor subtype genes

    NARCIS (Netherlands)

    Michel, Martin C.; Teitsma, Christine A.

    2012-01-01

    A wide range of polymorphisms have been reported in muscarinic receptor subtype genes, mostly in M₁ and M₂ and, to a lesser extent, M₃ receptors. Most studies linking such genetic variability to phenotype have been performed for brain functions, but a more limited amount of information is also

  5. Chemokine and Chemokine Receptor Gene Polymorphism in ...

    African Journals Online (AJOL)

    Introduction: Our aim was to investigate the possibility of a significant relationship between chemokines and chemokine receptor genes polymorphisms and the spontaneous clearance or the persistence of HCV infection. Methods: A total of 96 hemodialysis (HD) patients infected with HCV were classified into two groups: G1 ...

  6. Engineering AAV receptor footprints for gene therapy.

    Science.gov (United States)

    Madigan, Victoria J; Asokan, Aravind

    2016-06-01

    Adeno-associated viruses (AAV) are currently at the forefront of human gene therapy clinical trials as recombinant vectors. Significant progress has been made in elucidating the structure, biology and tropisms of different naturally occurring AAV isolates in the past decade. In particular, a spectrum of AAV capsid interactions with host receptors have been identified and characterized. These studies have enabled a better understanding of key determinants of AAV cell recognition and entry in different hosts. This knowledge is now being applied toward engineering new, lab-derived AAV capsids with favorable transduction profiles. The current review conveys a structural perspective of capsid-glycan interactions and provides a roadmap for generating synthetic strains by engineering AAV receptor footprints. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca).

  8. The Androgen Receptor Gene Mutations Database.

    Science.gov (United States)

    Gottlieb, B; Lehvaslaiho, H; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1998-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 272 to 309 in the past year. We have expanded the database: (i) by giving each entry an accession number; (ii) by adding information on the length of polymorphic polyglutamine (polyGln) and polyglycine (polyGly) tracts in exon 1; (iii) by adding information on large gene deletions; (iv) by providing a direct link with a completely searchable database (courtesy EMBL-European Bioinformatics Institute). The addition of the exon 1 polymorphisms is discussed in light of their possible relevance as markers for predisposition to prostate or breast cancer. The database is also available on the internet (http://www.mcgill. ca/androgendb/ ), from EMBL-European Bioinformatics Institute (ftp. ebi.ac.uk/pub/databases/androgen ), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). PMID:9399843

  9. Growth hormone receptor gene expression in puberty.

    Science.gov (United States)

    Pagani, S; Meazza, C; Gertosio, C; Bozzola, E; Bozzola, M

    2015-07-01

    The mechanisms regulating the synergic effect of growth hormone and other hormones during pubertal spurt are not completely clarified. We enrolled 64 females of Caucasian origin and normal height including 22 prepubertal girls, 26 pubertal girls, and 16 adults to evaluate the role of Growth Hormone/Insulin-like growth factor-I axis (GH/IGF-I) during the pubertal period. In these subjects both serum IGF-I and growth hormone binding protein levels, as well as quantitative growth hormone receptor (GHR) gene expression were evaluated in peripheral lymphocytes of all individuals by real-time PCR. Our results showed significantly lower IGF-I levels in women (148±10 ng/ml) and prepubertal girls (166.34±18.85 ng/ml) compared to pubertal girls (441.95±29.42 ng/ml; p<0.0001). Serum GHBP levels were significantly higher in prepubertal (127.02±20.76 ng/ml) compared to pubertal girls (16.63±2.97 ng/ml; p=0.0001) and adult women (19.95±6.65 ng/ml; p=0.0003). We also found higher GHR gene expression levels in pubertal girls [174.73±80.22 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)] compared with other groups of subjects [women: 42.52±7.66 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase); prepubertal girls: 58.45±0.18.12 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)], but the difference did not reach statistical significance. These results suggest that sexual hormones could positively influence GHR action, during the pubertal period, in a dual mode, that is, increasing GHR mRNA production and reducing GHR cleavage leading to GHBP variations. © Georg Thieme Verlag KG Stuttgart · New York.

  10. FGF receptor genes and breast cancer susceptibility

    DEFF Research Database (Denmark)

    Agarwal, D; Pineda, S; Michailidou, K

    2014-01-01

    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying...... genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry......, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.Results:Little evidence of association with breast cancer risk...

  11. Association between steroid hormone receptors and PSA gene ...

    African Journals Online (AJOL)

    associated with presence of steroid hormone receptors. The aim of this research was to show differential expression and association between steroid hormone receptors and PSA gene expression in breast cancer cell lines. The cell lines investigated were steroid receptor-negative breast carcinoma cell lines BT-20 and ...

  12. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter taste receptor genes (Tas2rs) in chicken, here, we sequenced Tas2rs of 30 Sichuan domestic chickens and 30 Tibetan chickens.

  13. Correlation between an oestrogen receptor gene and reproductive ...

    African Journals Online (AJOL)

    Correlation between an oestrogen receptor gene and reproductive traits in purebred and crossbred pig populations. ... South African Journal of Animal Science ... The relationship between an oestrogen receptor (ESR) gene and reproductive traits in 11 Large White (LW), 19 Landrace (L), 22 Meishan (MS), 22 Meishan ...

  14. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  15. Update on the olfactory receptor (OR gene superfamily

    Directory of Open Access Journals (Sweden)

    Olender Tsviya

    2008-09-01

    Full Text Available Abstract The olfactory receptor gene (OR superfamily is the largest in the human genome. The superfamily contains 390 putatively functional genes and 465 pseudogenes arranged into 18 gene families and 300 subfamilies. Even members within the same subfamily are often located on different chromosomes. OR genes are located on all autosomes except chromosome 20, plus the X chromosome but not the Y chromosome. The gene:pseudogene ratio is lowest in human, higher in chimpanzee and highest in rat and mouse -- most likely reflecting the greater need of olfaction for survival in the rodent than in the human. The OR genes undergo allelic exclusion, each sensory neurone expressing usually only one odourant receptor allele; the mechanism by which this phenomenon is regulated is not yet understood. The nomenclature system (based on evolutionary divergence of genes into families and subfamilies of the OR gene superfamily has been designed similarly to that originally used for the CYP gene superfamily.

  16. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    BALACHANDRAN SARANYA

    Three novel and two known androgen receptor gene mutations associated with androgen insensitivity syndrome in sex-reversed XY female patients. BALACHANDRAN SARANYA1, GUNASEKARAN BHAVANI1, BRINDHA ARUMUGAM1,. MEENA JAYASHANKAR2 and SATHIYAVEDU THYAGARAJAN SANTHIYA1∗.

  17. ORIGINAL ARTICLE A Study of the androgen receptor gene ...

    African Journals Online (AJOL)

    salah

    The aim of the work is to study the genotype of the androgen receptor gene. (StuI polymorphism) and its relationship to AGA in a case control study and to determine the level of androgen receptor expression (AR) in the balding scalp relative to the non-balding scalp area. Subjects and Methods: This study was conducted on ...

  18. Polymorphism in leptin receptor gene was associated with obesity in ...

    African Journals Online (AJOL)

    Background: Leptin is a hormone that regulates homeostasis energy through the central– peripheral mechanism as well as regulates hunger and satiety. Leptin receptor is important in leptin signal transduction that is located mainly in the hypothalamus. The mutation in leptin receptor (LEPR) gene causes splicing ...

  19. Interleukin 18 receptor 1 gene polymorphisms are associated with asthma

    DEFF Research Database (Denmark)

    Zhu, Guohua; Whyte, Moira K B; Vestbo, Jørgen

    2008-01-01

    The interleukin 18 receptor (IL18R1) gene is a strong candidate gene for asthma. It has been implicated in the pathophysiology of asthma and maps to an asthma susceptibility locus on chromosome 2q12. The possibility of association between polymorphisms in IL18R1 and asthma was examined by genotyp......The interleukin 18 receptor (IL18R1) gene is a strong candidate gene for asthma. It has been implicated in the pathophysiology of asthma and maps to an asthma susceptibility locus on chromosome 2q12. The possibility of association between polymorphisms in IL18R1 and asthma was examined...

  20. Regulation of gonadotropin receptor gene expression

    NARCIS (Netherlands)

    A.P.N. Themmen (Axel); R. Kraaij (Robert); J.A. Grootegoed (Anton)

    1994-01-01

    textabstractThe receptors for the gonadotropins differ from the other G protein-coupled receptors by having a large extracellular hormone-binding domain, encoded by nine or ten exons. Alternative splicing of the large pre-mRNA of approximately 100 kb can result in mRNA species that encode truncated

  1. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality

    Directory of Open Access Journals (Sweden)

    Anastasia K Armeni

    2017-02-01

    Full Text Available Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA gene polymorphism (rs2234693-PvuII (T→C substitution and oxytocin receptor gene polymorphism (rs53576 (G→A substitution with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20–25 years of age, sexually active, with normal menstrual cycles (28–35 days, were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs, polycystic ovary syndrome (PCOS, thyroid diseases as well as drugs that are implicated in hypothalamus–pituitary–gonadal axis. T allele (wildtype of rs2234693 (PvuII polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic of rs53576 (OXTR polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII and A allele of rs53576 (OXTR polymorphisms (T + A group was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  2. New members of the chemokine receptor gene family.

    Science.gov (United States)

    Raport, C J; Schweickart, V L; Chantry, D; Eddy, R L; Shows, T B; Godiska, R; Gray, P W

    1996-01-01

    Chemokines are relatively small peptides with potent chemoattractant and activation activities for leukocytes. Several chemokine receptors have been cloned and characterized and all are members of the G protein-coupled receptor superfamily. Using degenerate oligonucleotides and polymerase chain reaction, we have identified seven novel receptors. Two of these sequences are presented here for the first time. We have shown, with gene mapping studies, that receptors with the highest sequence similarity are closely linked on human chromosomes. This close genetic association suggests a functional relationship as well.

  3. The genomic organization of the human GLP-1 receptor gene.

    Science.gov (United States)

    Wilmen, A; Walkenbach, A; Füller, P; Lankat-Buttgereit, B; Göke, R; Göke, B

    1998-01-01

    The genomic organization of the human gene encoding the receptor for glucagon-like peptide-1 (GLP-1 (7-37)/(7-36) amide) was analyzed to reveal the relationship to other G-protein-coupled receptors. The coding sequence of the GLP-1 receptor is interrupted by 12 introns. These introns are uniformly distributed within the open reading frame. The length of the introns varies between 6.6 kb and 100 bp, in contrast to the relative constant length of 100 bp of the exons. All of the exon/intron splice junctions characterized followed the consensus GT-AG rule. A comparison of the genomic structure with other related receptor genes indicates that the exon/intron organization is well-conserved among the VIP/ glucagon/secretin receptor family.

  4. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...

  5. Association between vitamin D receptor gene polymorphisms and ...

    African Journals Online (AJOL)

    2015-03-19

    Mar 19, 2015 ... Background: Chronic periodontitis (CP) is a common oral disease characterized by inflammation in the supporting tissue of the ... Keywords: chronic periodontitis; vitamin D receptor; gene; polymorphisms; variations; SNP. Responsible Editor: ..... TLR4 and IL-18 gene variants in aggressive periodontitis.

  6. Vitamin D receptor gene variants in Parkinson's disease patients ...

    African Journals Online (AJOL)

    Background: Vitamin D plays an important role in neurodegenerative disorders as a crucial neuro-immunomodulator. Accumulating data provide evidences that vitamin D receptor (VDR) gene is a candidate gene for susceptibility to Parkinson's disease (PD). Aim: To find out whether the risk of the development of sporadic ...

  7. Gene transfer of MHC-restricted receptors

    NARCIS (Netherlands)

    Kessels, Helmut W. H. G.; Wolkers, Monika C.; Schumacher, Ton N. M.

    2005-01-01

    Adoptive therapy with allogeneic or tumor-specific T-cells has shown substantial clinical effects for several human tumors, but the widespread application of this strategy remains a daunting task. The antigen specificity of T-lymphocytes is solely determined by the T-cell receptor (TCR) alpha and

  8. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice.

    Directory of Open Access Journals (Sweden)

    Andrea Degl'Innocenti

    Full Text Available In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice.Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice.Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J, and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections.In the mouse genome there are eight intact solitary genes: Olfr19 (M12, Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings

  9. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E

    2005-06-01

    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  10. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  11. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Science.gov (United States)

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well. PMID:20936127

  12. Study of polymorphism of leptin gene receptor in Mazandaran fowls ...

    African Journals Online (AJOL)

    In this study, in order to identify allelic polymorphism in leptin gene receptor, a restriction fragment length polymorphism (RFLP) method was used. Blood samples were collected randomly from 100 individuals. The DNA extraction was based on a salting-out method, while an amplified polymerase chain reaction technique ...

  13. Association between vitamin D receptor gene polymorphism (TaqI ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 94; Issue 3. Association between vitamin D receptor gene polymorphism (TaqI) and obesity in Chinese population. Hui-Ru Fan Li-Qun Lin Hao Ma Ying Li Chang-Hao Sun. Research Note Volume 94 Issue 3 September 2015 pp 473-478 ...

  14. Designing exons for human olfactory receptor gene subfamilies ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 35; Issue 3. Designing exons for human olfactory receptor gene subfamilies using a mathematical paradigm. Sk Sarif Hassan Pabitra Pal Choudhury Amita Pal R L Brahmachary Arunava Goswami. Articles Volume 35 Issue 3 September 2010 pp 389-393 ...

  15. Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 26; Issue 1. Clipboard: Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene, MERTK. Arun Kumar. Volume 26 Issue 1 March 2001 pp 3-5. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jbsc/026/01/0003-0005 ...

  16. Vitamin D Receptor Gene Variants in Parkinson's Disease Patients

    African Journals Online (AJOL)

    Rokhsareh Meamar

    2016-09-22

    Sep 22, 2016 ... ORIGINAL ARTICLE. Vitamin D receptor gene variants in Parkinson's disease patients. Rokhsareh Meamar a,b. , Seyed Morteza Javadirad ... b Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran .... the length of protein would be three amino acids shorter in.

  17. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Abstract. The sense of bitter taste plays a critical role in animals as it can help them to avoid intake of toxic and harmful substances. Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, Tas2r2 and Tas2r7). To better understand the genetic polymorphisms and importance of bitter ...

  18. Association of Dopamine D2 Receptor Gene with Creative Ideation

    Science.gov (United States)

    Yu, Qi; Zhang, Shun; Zhang, Jinghuan H.

    2017-01-01

    Although several studies suggest that dopamine D2 receptor (DRD2) gene may contribute to creativity, the relationship between DRD2 and creativity still needs to be further validated. To further test the relevance of DRD2 and creativity, this study explored the association between DRD2 and creative ideation in 483 unrelated healthy Chinese…

  19. Three novel and two known androgen receptor gene mutations ...

    Indian Academy of Sciences (India)

    male breast cancer (Wooster et al. 1992) and prostate cancer. (Tilley et al. 1996). The two most important androgens are testosterone and. 5α-dihydrotestosterone, whose actions are mediated by func- tional androgen receptor, which upon receipt of signal acti- vate transcription of specific genes in target tissues (Melo et al.

  20. ORIGINAL ARTICLE A Study of the androgen receptor gene ...

    African Journals Online (AJOL)

    salah

    Background: Androgenetic alopecia (AGA) occurs in men and women. The nature of the genetic predisposition to androgenetic alopecia is still unresolved. The aim of the work is to study the genotype of the androgen receptor gene. (StuI polymorphism) and its relationship to AGA in a case control study and to determine the ...

  1. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  2. Interspecies variations in Bordetella catecholamine receptor gene regulation and function.

    Science.gov (United States)

    Brickman, Timothy J; Suhadolc, Ryan J; Armstrong, Sandra K

    2015-12-01

    Bordetella bronchiseptica can use catecholamines to obtain iron from transferrin and lactoferrin via uptake pathways involving the BfrA, BfrD, and BfrE outer membrane receptor proteins, and although Bordetella pertussis has the bfrD and bfrE genes, the role of these genes in iron uptake has not been demonstrated. In this study, the bfrD and bfrE genes of B. pertussis were shown to be functional in B. bronchiseptica, but neither B. bronchiseptica bfrD nor bfrE imparted catecholamine utilization to B. pertussis. Gene fusion analyses found that expression of B. bronchiseptica bfrA was increased during iron starvation, as is common for iron receptor genes, but that expression of the bfrD and bfrE genes of both species was decreased during iron limitation. As shown previously for B. pertussis, bfrD expression in B. bronchiseptica was also dependent on the BvgAS virulence regulatory system; however, in contrast to the case in B. pertussis, the known modulators nicotinic acid and sulfate, which silence Bvg-activated genes, did not silence expression of bfrD in B. bronchiseptica. Further studies using a B. bronchiseptica bvgAS mutant expressing the B. pertussis bvgAS genes revealed that the interspecies differences in bfrD modulation are partly due to BvgAS differences. Mouse respiratory infection experiments determined that catecholamine utilization contributes to the in vivo fitness of B. bronchiseptica and B. pertussis. Additional evidence of the in vivo importance of the B. pertussis receptors was obtained from serologic studies demonstrating pertussis patient serum reactivity with the B. pertussis BfrD and BfrE proteins. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. The oxytocin receptor gene and social perception.

    Science.gov (United States)

    Melchers, Martin; Montag, Christian; Felten, Andrea; Reuter, Martin

    2015-08-01

    Social perception is an important prerequisite for successful social interaction, because it helps to gain information about behaviors, thoughts, and feelings of interaction partners. Previous pharmacological studies have emphasized the relevance of the oxytocin system for social perception abilities, while knowledge on genetic contributions is still scarce. In the endeavor to fill this gap in the literature, the current study searches for associations between participants' social perception abilities as measured by the interpersonal perception task (IPT) and the rs2268498 polymorphism on the OXTR-gene, which has repeatedly been linked to processes relevant to social functioning. N = 105 healthy participants were experimentally tested with the IPT and genotyped for the rs2268498 polymorphism. T-allele carriers (TT and TC genotypes) exhibited significantly better performance in the IPT than carriers of the CC-genotype. This difference was also significant for the subscales measuring the strength of social bonding (kinship and intimacy). As in previous studies, T-allele carriers exhibited better performance in measures of social processing indicating that the rs2268498 polymorphism is an important candidate for understanding the genetic basis of social functioning.

  4. Studies in nuclear receptor Nurr1 : Identification of Nurr1-regulated genes

    OpenAIRE

    Hermanson, Elisabet

    2004-01-01

    The nuclear receptor family comprises more than sixty members, including receptors for steroids, thyroid hormone and retinoids. Many nuclear receptors function as ligand- activated transcription factors that regulate the expression of specific target genes. The family also includes nuclear receptors that lack identified ligands, and these receptors are therefore referred to as orphan receptors. It has recently been shown that some of these orphan receptors are ligand- indepe...

  5. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  6. Dynamic evolution of bitter taste receptor genes in vertebrates

    Directory of Open Access Journals (Sweden)

    Jones Gareth

    2009-01-01

    Full Text Available Abstract Background Sensing bitter tastes is crucial for many animals because it can prevent them from ingesting harmful foods. This process is mainly mediated by the bitter taste receptors (T2R, which are largely expressed in the taste buds. Previous studies have identified some T2R gene repertoires, and marked variation in repertoire size has been noted among species. However, the mechanisms underlying the evolution of vertebrate T2R genes remain poorly understood. Results To better understand the evolutionary pattern of these genes, we identified 16 T2R gene repertoires based on the high coverage genome sequences of vertebrates and studied the evolutionary changes in the number of T2R genes during birth-and-death evolution using the reconciled-tree method. We found that the number of T2R genes and the fraction of pseudogenes vary extensively among species. Based on the results of phylogenetic analysis, we showed that T2R gene families in teleost fishes are more diverse than those in tetrapods. In addition to the independent gene expansions in teleost fishes, frogs and mammals, lineage-specific gene duplications were also detected in lizards. Furthermore, extensive gains and losses of T2R genes were detected in each lineage during their evolution, resulting in widely differing T2R gene repertoires. Conclusion These results further support the hypotheses that T2R gene repertoires are closely related to the dietary habits of different species and that birth-and-death evolution is associated with adaptations to dietary changes.

  7. Estrogenic receptors a and p gene polymorphisms in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    K A Maslova

    2008-01-01

    Full Text Available Objective. To assess frequency distribution of estrogenic receptor (ERa and ERfl gene polymorphisms and their influence on bone mineral density (BMD in groups of postmenopausal women with and without osteoporosis (OP. Material and methods. 200 residents of Moscow and Moscow region were divided into two groups considering BMD values according to WHO criteria; OP group and healthy control group Results. Differences of genotype and their combinations frequency distribution between OP and control groups show presence OP risk and protector genotypes. ER gene important role in pathogenesis of postmenopausal osteoporosis and possibility to use these genetic markers for assessment of risk of OP development in Russian population was confirmed.

  8. AT1 Receptor Gene Polymorphisms in relation to Postprandial Lipemia

    OpenAIRE

    Klop, B.; van den Berg, T. M.; Rietveld, A.P.; Chaves, J.; Real, J. T.; Ascaso, J. F.; Carmena, R.; Elte, J W F; Manuel Castro Cabezas

    2012-01-01

    Background. Recent data suggest that the renin-angiotensin system may be involved in triglyceride (TG) metabolism. We explored the effect of the common A1166C and C573T polymorphisms of the angiotensin II type 1 receptor (AT1R) gene on postprandial lipemia. Methods. Eighty-two subjects measured daytime capillary TG, and postprandial lipemia was estimated as incremental area under the TG curve. The C573T and A1166C polymorphisms of the AT1R gene were determined. Results. Postprandial lipemia w...

  9. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    Science.gov (United States)

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  10. Associations between Vocal Symptoms and Genetic Variants in the Oxytocin Receptor and Arginine Vasopressin 1A Receptor Gene

    Science.gov (United States)

    Jämsen, Sofia Holmqvist; Johansson, Ada; Westberg, Lars; Santtila, Pekka; von der Pahlen, Bettina; Simberg, Susanna

    2017-01-01

    Purpose: Oxytocin and arginine vasopressin are associated with different aspects of the stress response. As stress is regarded as a risk factor for vocal symptoms, we wanted to explore the association between the oxytocin receptor gene ("OXTR") and arginine vasopressin 1A receptor gene ("AVPR1A") single-nucleotide polymorphisms…

  11. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  12. Carbon dioxide receptor genes in cotton bollworm Helicoverpa armigera

    Science.gov (United States)

    Xu, Wei; Anderson, Alisha

    2015-04-01

    Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.

  13. Somatostatin receptor gene transfer inhibits established pancreatic cancer xenografts.

    Science.gov (United States)

    Celinski, Scott A; Fisher, William E; Amaya, Felipe; Wu, Yuan Qing; Yao, Q; Youker, Keith A; Li, Min

    2003-11-01

    Most human pancreatic adenocarcinoma cells do not express somatostatin receptors, and somatostatin does not inhibit the growth of these cancers. We have demonstrated previously that somatostatin inhibits the growth of pancreatic cancers expressing somatostatin receptor subtype-2 (SSTR2), but not receptor-negative cancers. SSTR2 expression may be an important tumor-suppressor pathway that is lost in human pancreatic cancer. We hypothesized that SSTR2 gene transfer would restore the growth-inhibitory response of human pancreatic cancer to somatostatin. Palpable human pancreatic adenocarcinoma tumors were established on the backs of nude mice by subcutaneous injection of cultured cells (Panc-1). The animals were divided into 5 groups (n = 10/group). Group I served as an untreated control. Group II received an intramuscular injection of the long-acting somatostatin analogue Sandostatin LAR. Group III received Lac-Z expressing adenovirus via intraperitoneal injection. Group IV received SSTR2 expressing adenovirus via intraperitoneal injection. Group V received SSTR2 expressing adenovirus via intraperitoneal injection and an intramuscular injection of Sandostatin LAR. The rate of tumor growth was assessed with calipers. After 28 days, the animals were anesthetized and exsanguanated, and the tumors were excised and weighed. Plasma somatostatin and octreotide levels were measured by radioimmunoassay. Expression of cell-surface somatostatin-receptor protein and known tumor-suppressor proteins was determined by reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemistry. Systemic delivery of SSTR2-expressing adenovirus by intraperitoneal injection resulted in expression of SSTR2 protein in the subcutaneous human pancreatic cancers. Final tumor weight was significantly decreased in the groups expressing SSTR2 receptors compared to the other 3 groups. Treatment with Sandostatin LAR increased plasma octreotide levels as determined by radioimmunoassay

  14. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  15. Unliganded estrogen receptor α stimulates bone sialoprotein gene expression.

    Science.gov (United States)

    Takai, Hideki; Matsumura, Hiroyoshi; Matsui, Sari; Kim, Kyung Mi; Mezawa, Masaru; Nakayama, Yohei; Ogata, Yorimasa

    2014-04-10

    Estrogen is one of the steroid hormones essential for skeletal development. The estrogen receptor (ER) is a transcription factor and a member of the steroid receptor superfamily. There are two different forms of the ER, usually referred to as α and β, each encoded by a separate gene. Hormone-activated ERs form dimers, since the two forms are coexpressed in many cell types. Bone sialoprotein (BSP) is a tissue-specific acidic glycoprotein that is expressed by differentiated osteoblasts, odontoblasts and cementoblasts during the initial formation of mineralized tissue. To determine the molecular basis of the tissue-specific expression of BSP and its regulation by estrogen and the ER, we have analyzed the effects of β-estradiol and ERα on BSP gene transcription. ERα protein levels were increased after ERα overexpression in ROS17/2.8 cells. While BSP mRNA levels were increased by ERα overexpression, the endogenous and overexpressed BSP mRNA levels were not changed by β-estradiol (10(-8)M, 24 h). Luciferase activities of different sized BSP promoter constructs (pLUC3~6) were increased by ERα overexpression, whereas basal and induced luciferase activities by ERα overexpression were not influenced by β-estradiol. Effects of ERα overexpression were abrogated by 2 bp mutations in either the cAMP response element (CRE) or activator protein 1 (AP1)/glucocorticoid response element (GRE). Gel shift analyses showed that ERα overexpression increased binding to the CRE and AP1/GRE elements. Notably, the CRE-protein complexes were disrupted by ERα, CREB and phospho-CREB antibodies. The AP1/GRE-protein complexes were supershifted by the c-Fos antibody. These studies demonstrate that ERα stimulates BSP gene transcription in a ligand-independent manner by targeting the CRE and AP1/GRE elements in the rat BSP gene promoter. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Observations on the evolution of the melanocortin receptor gene family: distinctive features of the melanocortin-2 receptor

    Directory of Open Access Journals (Sweden)

    Robert Michael Dores

    2013-04-01

    Full Text Available The melanocortin receptors are a gene family in the rhodopsin class of G protein-coupled receptors. Based on the analysis of several metazoan genome databases it appears that the melanocortin receptors are only found in chordates. The presence of five genes in the family (i.e., MC1R, MC2R, MC3R, MC4R, MC5R in representatives of the tetrapods indicates that the gene family is the result of two genome duplication events and one local gene duplication event during the evolution of the chordates. The melanocortin receptors are activated by melanocortin ligands (i.e., ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH which are all derived from the polypeptide hormone/neuropeptide precursor, POMC, and as a result the functional evolution of the melanocortin receptors is intimately associated with the co-evolution of POMC endocrine and neuronal circuits. This review will consider the origin of the melanocortin receptors, and discuss the evolutionary relationship between MC2R, MC5R, and MC4R. In addition, this review will analyze the functional evolution of the mc2r gene in light of the co-evolution of the MRAP (Melanocortin-2 Receptor Accessory Protein gene family.

  17. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  18. Variability of the Transferrin Receptor 2 Gene in AMD

    Directory of Open Access Journals (Sweden)

    Daniel Wysokinski

    2014-01-01

    Full Text Available Oxidative stress is a major factor in the pathogenesis of age-related macular degeneration (AMD. Iron may catalyze the Fenton reaction resulting in overproduction of reactive oxygen species. Transferrin receptor 2 plays a critical role in iron homeostasis and variability in its gene may influence oxidative stress and AMD occurrence. To verify this hypothesis we assessed the association between polymorphisms of the TFR2 gene and AMD. A total of 493 AMD patients and 171 matched controls were genotyped for the two polymorphisms of the TFR2 gene: c.1892C>T (rs2075674 and c.−258+123T>C (rs4434553. We also assessed the modulation of some AMD risk factors by these polymorphisms. The CC and TT genotypes of the c.1892C>T were associated with AMD occurrence but the latter only in obese patients. The other polymorphism was not associated with AMD occurrence, but the CC genotype was correlated with an increasing AMD frequency in subjects with BMIT and c.−258+123T>C polymorphisms of the TRF2 gene may be associated with AMD occurrence, either directly or by modulation of risk factors.

  19. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    Science.gov (United States)

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  20. CALCIUM-SENSING RECEPTOR GENE: REGULATION OF EXPRESSION

    Directory of Open Access Journals (Sweden)

    Geoffrey Noel Hendy

    2016-09-01

    Full Text Available The human calcium-sensing receptor gene (CASR has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5’-untranslated regions (UTRs that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1A transcripts from the P1 promoter are reduced in parathyroid tumors and colon carcinomas. Studies of colon carcinomas and neuroblastomas have emphasized the importance of epigenetic changes – promoter methylation of the GC-rich P2 promoter, histone acetylation – as well as involvement of microRNAs in bringing about CASR gene silencing and reduced CaSR expression. Functional cis-elements in the CASR promoters responsive to 1,25-dihydroxyvitamin D [1,25(OH2D], proinflammatory cytokines, and the transcription factor glial cells missing-2 (GCM2 have been characterized. Reduced levels of CaSR and reduced responsiveness to active vitamin D in parathyroid neoplasia and colon carcinoma may blunt the tumor suppressor activity of the CaSR. The hypocalcemia of critically ill patients with burn injury or sepsis is associated with CASR gene upregulation by TNF-alpha and IL-1beta via kappaB elements, and by IL-6 via Stat1/3 and Sp1/3 elements in the CASR gene promoters, respectively. The CASR is transactivated by GCM2 – the expression of which is essential for parathyroid gland development. Hyperactive forms of GCM2 may contribute to later parathyroid hyperactivity or tumorigenesis. The expression of the CaSR––the calciostat––is regulated physiologically and pathophysiologically at the gene level.

  1. AT1 Receptor Gene Polymorphisms in relation to Postprandial Lipemia

    Directory of Open Access Journals (Sweden)

    B. Klop

    2012-01-01

    Full Text Available Background. Recent data suggest that the renin-angiotensin system may be involved in triglyceride (TG metabolism. We explored the effect of the common A1166C and C573T polymorphisms of the angiotensin II type 1 receptor (AT1R gene on postprandial lipemia. Methods. Eighty-two subjects measured daytime capillary TG, and postprandial lipemia was estimated as incremental area under the TG curve. The C573T and A1166C polymorphisms of the AT1R gene were determined. Results. Postprandial lipemia was significantly higher in homozygous carriers of the 1166-C allele (9.39±8.36 mM*h/L compared to homozygous carriers of the 1166-A allele (2.02±6.20 mM*h/L (P<0.05. Postprandial lipemia was similar for the different C573T polymorphisms. Conclusion. The 1166-C allele of the AT1R gene seems to be associated with increased postprandial lipemia. These data confirm the earlier described relationships between the renin-angiotensin axis and triglyceride metabolism.

  2. Angiotensin II type 1 receptor (A1166C) gene polymorphism in ...

    African Journals Online (AJOL)

    angiotensin system (RAS) is likely to contribute for its heterogenous association in renal diseased patients. Among the candidate genes of RAS, angiotensin II type 1 receptor gene polymorphism (AT1R A1166C) seems to be particularly ...

  3. The orphan G-protein-coupled receptor-encoding gene V28 is closely related to genes for chemokine receptors and is expressed in lymphoid and neural tissues.

    Science.gov (United States)

    Raport, C J; Schweickart, V L; Eddy, R L; Shows, T B; Gray, P W

    1995-10-03

    A polymerase chain reaction (PCR) strategy with degenerate primers was used to identify novel G-protein-coupled receptor-encoding genes from human genomic DNA. One of the isolated clones, termed V28, showed high sequence similarity to the genes encoding human chemokine receptors for monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1 alpha (MIP-1 alpha)/RANTES, and to the rat orphan receptor-encoding gene RBS11. When RNA was analyzed by Northern blot, V28 was found to be most highly expressed in neural and lymphoid tissues. Myeloid cell lines, particularly THP.1 cells, showed especially high expression of V28. We have mapped V28 to human chromosome 3p21-3pter, near the MIP-1 alpha/RANTES receptor-encoding gene.

  4. Nicotinic acetylcholine receptor gene expression is altered in burn patients.

    Science.gov (United States)

    Osta, Walid A; El-Osta, Mohamed A; Pezhman, Eric A; Raad, Robert A; Ferguson, Kris; McKelvey, George M; Marsh, Harold M; White, Michael; Perov, Samuel

    2010-05-01

    Burn patients have been observed to be more susceptible to the hyperkalemic effect of the depolarizing muscle relaxant succinylcholine. Changes in nicotinic acetylcholine receptor (nAChR) subunit composition may alter electrophysiologic, pharmacologic, and metabolic characteristics of the receptor inducing hyperkalemia on exposure to succinylcholine. No studies have been performed that show the upregulation and/or alteration of nAChR subunit composition in human burn patients. The scarcity of studies performed on humans with burn injury is mainly attributable to the technical and ethical difficulties in obtaining muscle biopsies at different time frames of illness in these acutely injured patients. nAChRs are expressed in oral keratinocytes and are upregulated or altered in smokers. However, no studies have addressed the expression of nAChRs in the oral mucosa of burn patients. Buccal mucosal scrapings were collected from 9 burn patients and 6 control nonburn surgical intensive care unit patients. For burn and control patients, tissues were collected upon presentation (time: 0 hour) and at time points 12, 24, and 48 hours, 1 week, and 2 weeks. Gene expression of the nAChR subunits alpha1, alpha7, gamma, and epsilon were performed using real-time reverse transcriptase polymerase chain reaction. alpha7 and gamma nAChR genes were significantly upregulated in burn patients, whereas alpha1 and epsilon nAChR genes were minimally affected, showing no significant changes over time. Over the 2 weeks of measurement, an upregulation of the alpha7 and gamma genes occurred in both burn and control patients; however, the proportion of alpha7 and gamma subunit increases was significantly higher in burn patients than in control surgical intensive care unit patients. The relationship between the thermal injury and the observed alteration in gene expression suggests a possible cause/effect relationship. This effect was observed at a site not affected by the burn injury and in

  5. Variants in the vitamin D receptor gene and asthma

    Directory of Open Access Journals (Sweden)

    Wjst Matthias

    2005-01-01

    Full Text Available Abstract Background Early lifetime exposure to dietary or supplementary vitamin D has been predicted to be a risk factor for later allergy. Twin studies suggest that response to vitamin D exposure might be influenced by genetic factors. As these effects are primarily mediated through the vitamin D receptor (VDR, single base variants in this gene may be risk factors for asthma or allergy. Results 951 individuals from 224 pedigrees with at least 2 asthmatic children were analyzed for 13 SNPs in the VDR. There was no preferential transmission to children with asthma. In their unaffected sibs, however, one allele in the 5' region was 0.5-fold undertransmitted (p = 0.049, while two other alleles in the 3' terminal region were 2-fold over-transmitted (p = 0.013 and 0.018. An association was also seen with bronchial hyperreactivity against methacholine and with specific immunoglobulin E serum levels. Conclusion The transmission disequilibrium in unaffected sibs of otherwise multiple-affected families seem to be a powerful statistical test. A preferential transmission of vitamin D receptor variants to children with asthma could not be confirmed but raises the possibility of a protective effect for unaffected children.

  6. Liver X Receptor Genes Variants Modulate ALS Phenotype.

    Science.gov (United States)

    Mouzat, Kevin; Molinari, Nicolas; Kantar, Jovana; Polge, Anne; Corcia, Philippe; Couratier, Philippe; Clavelou, Pierre; Juntas-Morales, Raul; Pageot, Nicolas; Lobaccaro, Jean -Marc A; Raoul, Cedric; Lumbroso, Serge; Camu, William

    2017-02-27

    Amyotrophic lateral sclerosis (ALS) is one of the most severe motor neuron (MN) disorders in adults. Phenotype of ALS patients is highly variable and may be influenced by modulators of energy metabolism. Recent works have implicated the liver X receptors α and β (LXRs), either in the propagation process of ALS or in the maintenance of MN survival. LXRs are nuclear receptors activated by oxysterols, modulating cholesterol levels, a suspected modulator of ALS severity. In a cohort of 438 ALS patients and 330 healthy controls, the influence of LXR genes on ALS risk and phenotype was studied using single nucleotide polymorphisms (SNPs). The two LXRα SNPs rs2279238 and rs7120118 were shown to be associated with age at onset in ALS patients. Consistently, homozygotes were twice more correlated than were heterozygotes to delayed onset. The onset was thus delayed by 3.9 years for rs2279238 C/T carriers and 7.8 years for T/T carriers. Similar results were obtained for rs7120118 (+2.1 years and +6.7 years for T/C and C/C genotypes, respectively). The LXRβ SNP rs2695121 was also shown to be associated with a 30% increase of ALS duration (p = 0.0055, FDR = 0.044). The tested genotypes were not associated with ALS risk. These findings add further evidence to the suspected implication of LXR genes in the disease process of ALS and might open new perspectives in ALS therapeutics.

  7. Dynamic evolution of the GnRH receptor gene family in vertebrates.

    Science.gov (United States)

    Williams, Barry L; Akazome, Yasuhisa; Oka, Yoshitaka; Eisthen, Heather L

    2014-10-25

    Elucidating the mechanisms underlying coevolution of ligands and receptors is an important challenge in molecular evolutionary biology. Peptide hormones and their receptors are excellent models for such efforts, given the relative ease of examining evolutionary changes in genes encoding for both molecules. Most vertebrates possess multiple genes for both the decapeptide gonadotropin releasing hormone (GnRH) and for the GnRH receptor. The evolutionary history of the receptor family, including ancestral copy number and timing of duplications and deletions, has been the subject of controversy. We report here for the first time sequences of three distinct GnRH receptor genes in salamanders (axolotls, Ambystoma mexicanum), which are orthologous to three GnRH receptors from ranid frogs. To understand the origin of these genes within the larger evolutionary context of the gene family, we performed phylogenetic analyses and probabilistic protein homology searches of GnRH receptor genes in vertebrates and their near relatives. Our analyses revealed four points that alter previous views about the evolution of the GnRH receptor gene family. First, the "mammalian" pituitary type GnRH receptor, which is the sole GnRH receptor in humans and previously presumed to be highly derived because it lacks the cytoplasmic C-terminal domain typical of most G-protein coupled receptors, is actually an ancient gene that originated in the common ancestor of jawed vertebrates (Gnathostomata). Second, unlike previous studies, we classify vertebrate GnRH receptors into five subfamilies. Third, the order of subfamily origins is the inverse of previous proposed models. Fourth, the number of GnRH receptor genes has been dynamic in vertebrates and their ancestors, with multiple duplications and losses. Our results provide a novel evolutionary framework for generating hypotheses concerning the functional importance of structural characteristics of vertebrate GnRH receptors. We show that five

  8. The dopamine D2 receptor gene, perceived parental support, and adolescent loneliness : longitudinal evidence for gene-environment interactions

    NARCIS (Netherlands)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods:

  9. The Dopamine D2 Receptor Gene, Perceived Parental Support, and Adolescent Loneliness: Longitudinal Evidence for Gene-Environment Interactions

    Science.gov (United States)

    van Roekel, Eeske; Goossens, Luc; Scholte, Ron H. J.; Engels, Rutger C. M. E.; Verhagen, Maaike

    2011-01-01

    Background: Loneliness is a common problem in adolescence. Earlier research focused on genes within the serotonin and oxytocin systems, but no studies have examined the role of dopamine-related genes in loneliness. In the present study, we focused on the dopamine D2 receptor gene (DRD2). Methods: Associations among the DRD2, sex, parental support,…

  10. Identifying polymorphisms in the Rattus norvegicus D3 dopamine receptor gene and regulatory region

    NARCIS (Netherlands)

    Smits, B.M.; D'Souza, U.M.; Berezikov, E.; Cuppen, E.; Sluyter, F.

    2004-01-01

    The D(3) dopamine receptor has been implicated in several neuropsychiatric disorders, including schizophrenia, Parkinson's disease and addiction. Sequence variation in the D(3) gene can lead to subtle alteration in receptor structure or gene expression and thus to a different phenotype. In this

  11. Interleukin VII Receptor Gene Polymorphism in Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    M Ahmadzadeh Raji

    2011-10-01

    Full Text Available Introduction: Multiple Sclerosis is a chronic disease of central nervous system. Disease is more common in young adults and females and causes neurologic symptoms and signs. Cytokine IL-7 is a 25– kDa glycoprotein that has an important role in Lymphopoiesis. Interleukin VII receptor gene has been identified to be associated with multiple sclerosis, so its assessment is important. Methods: We investigated 60 Iranian patients with clinically definite MS and 60 normal healthy controls with negative family history for MS. After blood sampling, DNA was extracted from the whole blood, then we used 2 sets of primers for promoter and exon 4 of IL-VII gene. These fragments were amplified by PCR technique and early screening was performed by SSCP technic in the presence of control samples. Then different patterns with control samples were sent for DNA sequencing. Results: We observed one SNP in promoter. Most of the alleles of the patients were homozygote. There were two 2 SNPs and two sequence variations in exon 4 as P.H165H and P.V138I, which has been submitted in European Bioinformatics Institute under the access number of FR863587. Conclusion: Further studies on control group will be required to reveal the effects of these SNPs on the ILVII-R α protein and they can probably be useed as a biomarker for early diagnosis of MS.

  12. Association of Interleukin-4 Receptor Gene Polymorphism with Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    M. Khoshhal

    2011-10-01

    Full Text Available Introduction & Objective: Periodontitis is a multifactorial disease in which host immune system and genetic factors have an important role in its pathogenesis. Genetic polymorphisms in cytokines and their receptors have been proposed as potential markers for periodontal diseases. The aim of the present study was to evaluate whether IL-4R gene polymorphism is associated with chronic periodontitis (CP or not? Materials & Methods: In this cross sectional study ninety non smoker patients (61 women and 29 men with chronic periodontitis were selected according to established criteria. They were categorized into three groups according to their clinical attachment level (CAL. Mutation at position 375(alanine/glutamine, 411(leucine/serine, 478(serine/proline, 406 (arginine/ cysteine in the IL-4R gene was detected by a polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP method.Results: The distribution of mutations for IL-4 polymorphism at amino acids 375 (P=0.41, 411(P=0.22, 478(P=0.17, 406(P=0.77 were not significantly different among mild, moderate and sever chronic periodontitis patients. Conclusion: This study suggests that there is no correlation between IL-4R polymorphism of chronic periodontitis.(Sci J Hamadan Univ Med Sci 2011;18(3:63-69

  13. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  14. Update of the androgen receptor gene mutations database.

    Science.gov (United States)

    Gottlieb, B; Beitel, L K; Lumbroso, R; Pinsky, L; Trifiro, M

    1999-01-01

    The current version of the androgen receptor (AR) gene mutations database is described. The total number of reported mutations has risen from 309 to 374 during the past year. We have expanded the database by adding information on AR-interacting proteins; and we have improved the database by identifying those mutation entries that have been updated. Mutations of unknown significance have now been reported in both the 5' and 3' untranslated regions of the AR gene, and in individuals who are somatic mosaics constitutionally. In addition, single nucleotide polymorphisms, including silent mutations, have been discovered in normal individuals and in individuals with male infertility. A mutation hotspot associated with prostatic cancer has been identified in exon 5. The database is available on the internet (http://www.mcgill.ca/androgendb/), from EMBL-European Bioinformatics Institute (ftp.ebi.ac.uk/pub/databases/androgen), or as a Macintosh FilemakerPro or Word file (MC33@musica.mcgill.ca). Copyright 1999 Wiley-Liss, Inc.

  15. Expression of the human ABCC6 gene is induced by retinoids through the retinoid X receptor.

    Science.gov (United States)

    Ratajewski, Marcin; Bartosz, Grzegorz; Pulaski, Lukasz

    2006-12-01

    Mutations in the human ABCC6 gene are responsible for the disease pseudoxanthoma elasticum, although the physiological function or substrate of the gene product (an ABC transporter known also as MRP6) is not known. We found that the expression of this gene in cells of hepatic origin (where this gene is predominantly expressed in the body) is significantly upregulated by retinoids, acting as agonists of the retinoid X receptor (RXR) rather than the retinoid A receptor (RAR). The direct involvement of this nuclear receptor in the transcriptional regulation of ABCC6 gene expression was confirmed by transient transfection and chromatin immunoprecipitation assays. This constitutes the first direct proof of previously suggested involvement of nuclear hormone receptors in ABCC6 gene expression and the first identification of a transcription factor which may be relevant to regulation of ABCC6 level in tissues and in some PXE patients.

  16. Ghrelin axis genes, peptides and receptors: recent findings and future challenges.

    Science.gov (United States)

    Seim, Inge; Josh, Peter; Cunningham, Peter; Herington, Adrian; Chopin, Lisa

    2011-06-20

    The ghrelin axis consists of the gene products of the ghrelin gene (GHRL), and their receptors, including the classical ghrelin receptor GHSR. While it is well-known that the ghrelin gene encodes the 28 amino acid ghrelin peptide hormone, it is now also clear that the locus encodes a range of other bioactive molecules, including novel peptides and non-coding RNAs. For many of these molecules, the physiological functions and cognate receptor(s) remain to be determined. Emerging research techniques, including proteogenomics, are likely to reveal further ghrelin axis-derived molecules. Studies of the role of ghrelin axis genes, peptides and receptors, therefore, promises to be a fruitful area of basic and clinical research in years to come. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Dopamine receptor-mediated regulation of neuronal “clock” gene expression

    Science.gov (United States)

    Imbesi, Marta; Yildiz, Sevim; Arslan, Ahmet Dirim; Sharma, Rajiv; Manev, Hari; Uz, Tolga

    2009-01-01

    Using transgenic mice model (i.e., “clock” knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulate the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e., D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2, and mBmal1 with the D1-class (i.e., D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e., rhythm shift). Collectively, our results indicate that the DA receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e., intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  18. From "junk" to gene: curriculum vitae of a primate receptor isoform gene.

    Science.gov (United States)

    Singer, Silke S; Männel, Daniela N; Hehlgans, Thomas; Brosius, Jürgen; Schmitz, Jürgen

    2004-08-20

    Exonization of Alu retroposons awakens public opinion, particularly when causing genetic diseases. However, often neglected, alternative "Alu-exons" also carry the potential to greatly enhance genetic diversity by increasing the transcriptome of primates chiefly via alternative splicing.Here, we report a 5' exon generated from one of the two alternative transcripts in human tumor necrosis factor receptor gene type 2 (p75TNFR) that contains an ancient Alu-SINE, which provides an alternative N-terminal protein-coding domain. We follow the primate evolution over the past 63 million years to reconstruct the key events that gave rise to a novel receptor isoform. The Alu integration and start codon formation occurred between 58 and 40 million years ago (MYA) in the common ancestor of anthropoid primates. Yet a functional gene product could not be generated until a novel splice site and an open reading frame were introduced between 40 and 25 MYA on the catarrhine lineage (Old World monkeys including apes). Copyright 2004 Elsevier Ltd.

  19. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    Science.gov (United States)

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  20. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes

    NARCIS (Netherlands)

    Arrighi, J.F.; Barre, A.; Amor, Ben B.; Bersoult, A.; Campos Soriano, L.; Mirabella, R.; Carvalho-Niebel, de F.; Journet, E.P.; Ghérardi, M.; Huguet, T.; Geurts, R.; Dénarié, J.; Rougé, P.; Gough, C.

    2006-01-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide

  1. Profiling of olfactory receptor gene expression in whole human olfactory mucosa.

    Directory of Open Access Journals (Sweden)

    Christophe Verbeurgt

    Full Text Available Olfactory perception is mediated by a large array of olfactory receptor genes. The human genome contains 851 olfactory receptor gene loci. More than 50% of the loci are annotated as nonfunctional due to frame-disrupting mutations. Furthermore haplotypic missense alleles can be nonfunctional resulting from substitution of key amino acids governing protein folding or interactions with signal transduction components. Beyond their role in odor recognition, functional olfactory receptors are also required for a proper targeting of olfactory neuron axons to their corresponding glomeruli in the olfactory bulb. Therefore, we anticipate that profiling of olfactory receptor gene expression in whole human olfactory mucosa and analysis in the human population of their expression should provide an opportunity to select the frequently expressed and potentially functional olfactory receptors in view of a systematic deorphanization. To address this issue, we designed a TaqMan Low Density Array (Applied Biosystems, containing probes for 356 predicted human olfactory receptor loci to investigate their expression in whole human olfactory mucosa tissues from 26 individuals (13 women, 13 men; aged from 39 to 81 years, with an average of 67±11 years for women and 63±12 years for men. Total RNA isolation, DNase treatment, RNA integrity evaluation and reverse transcription were performed for these 26 samples. Then 384 targeted genes (including endogenous control genes and reference genes specifically expressed in olfactory epithelium for normalization purpose were analyzed using the same real-time reverse transcription PCR platform. On average, the expression of 273 human olfactory receptor genes was observed in the 26 selected whole human olfactory mucosa analyzed, of which 90 were expressed in all 26 individuals. Most of the olfactory receptors deorphanized to date on the basis of sensitivity to known odorant molecules, which are described in the literature, were

  2. Family structure and phylogenetic analysis of odorant receptor genes in the large yellow croaker (Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Zhu Peng

    2011-08-01

    Full Text Available Abstract Background Chemosensory receptors, which are all G-protein-coupled receptors (GPCRs, come in four types: odorant receptors (ORs, vomeronasal receptors, trace-amine associated receptors and formyl peptide receptor-like proteins. The ORs are the most important receptors for detecting a wide range of environmental chemicals in daily life. Most fish OR genes have been identified from genome databases following the completion of the genome sequencing projects of many fishes. However, it remains unclear whether these OR genes from the genome databases are actually expressed in the fish olfactory epithelium. Thus, it is necessary to clone the OR mRNAs directly from the olfactory epithelium and to examine their expression status. Results Eighty-nine full-length and 22 partial OR cDNA sequences were isolated from the olfactory epithelium of the large yellow croaker, Larimichthys crocea. Bayesian phylogenetic analysis classified the vertebrate OR genes into two types, with several clades within each type, and showed that the L. crocea OR genes of each type are more closely related to those of fugu, pufferfish and stickleback than they are to those of medaka, zebrafish and frog. The reconciled tree showed 178 duplications and 129 losses. The evolutionary relationships among OR genes in these fishes accords with their evolutionary history. The fish OR genes have experienced functional divergence, and the different clades of OR genes have evolved different functions. The result of real-time PCR shows that different clades of ORs have distinct expression levels. Conclusion We have shown about 100 OR genes to be expressed in the olfactory epithelial tissues of L. crocea. The OR genes of modern fishes duplicated from their common ancestor, and were expanded over evolutionary time. The OR genes of L. crocea are closely related to those of fugu, pufferfish and stickleback, which is consistent with its evolutionary position. The different expression

  3. A novel human gene encoding a G-protein-coupled receptor (GPR15) is located on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Heiber, M.; Marchese, A.; O`Dowd, B.F. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-03-05

    We used sequence similarities among G-protein-coupled receptor genes to discover a novel receptor gene. Using primers based on conserved regions of the opioid-related receptors, we isolated a PCR product that was used to locate the full-length coding region of a novel human receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor gene, which we have named GPR15. A comparison of the amino acid sequence of the receptor encoded by GPR15 with other receptors revealed that it shared sequence identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b receptor, and the orphan receptors GPR1 and AGTL1. GPR15 was mapped to human chromosome 3q11.2-q13.1. 12 refs., 2 figs.

  4. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function.

    Science.gov (United States)

    Gao, Feng; Ihn, Hansel E; Medina, Marisa W; Krauss, Ronald M

    2013-04-01

    A common synonymous single nucleotide polymorphism in exon 12 of the low-density lipoprotein receptor (LDLR) gene, rs688, has been associated with increased plasma total and LDL cholesterol in several populations. Using immortalized lymphoblastoid cell lines from a healthy study population, we confirmed an earlier report that the minor allele of rs688 is associated with increased exon 12 alternative splicing (P structure and function of the encoded proteins by co-translational effects, we sought to test whether rs688 was also functional in the full-length mRNA. In HepG2 cells expressing LDLR cDNA constructs engineered to contain the major or minor allele of rs688, the latter was associated with a smaller amount of LDLR protein at the cell surface (-21.8 ± 0.6%, P = 0.012), a higher amount in the lysosome fraction (+25.7 ± 0.3%, P = 0.037) and reduced uptake of fluorescently labeled LDL (-24.3 ± 0.7%, P lysosomal degradation of LDLR, the minor allele resulted in reduced capacity of a PCSK9 monoclonal antibody to increase LDL uptake. These findings are consistent with the hypothesis that rs688, which is located in the β-propeller region of LDLR, has effects on LDLR activity beyond its role in alternative splicing due to impairment of LDLR endosomal recycling and/or PCSK9 binding, processes in which the β-propeller is critically involved.

  5. Interaction of 5-HTTLPR and a variation on the oxytocin receptor gene influences negative emotionality

    NARCIS (Netherlands)

    Montag, C.; Fiebach, C.J.; Kirsch, P.; Reuter, M.

    2011-01-01

    Background Pharmacological studies indicate a functional interaction between the serotonergic and oxytocinergic system. Methods This study tested for an interaction of the prominent serotonin transporter polymorphism (SLC6A4) and an oxytocin receptor gene variation on individual differences in

  6. Common variants in the gene for the serotonin receptor 6 (HTR6) do ...

    Indian Academy of Sciences (India)

    We selected HTR6 (serotonin receptor 6) as a candidate gene to test for associations with obesity since earlier studies have shown that mice with a disrupted serotonin receptor are less prone to become obese on a high-fat diet. We genotyped three tagSNPs (rs6658108, rs6699866 and rs9659997) and included one ...

  7. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas Toft

    2012-01-01

    on kainate-induced motor seizures in rats. However, combined overexpression of Y5 receptors and neuropeptide Y exerted prominent suppression of seizures. This seizure-suppressant effect of combination gene therapy with Y5 receptors and neuropeptide Y was significantly stronger as compared to neuropeptide Y...

  8. Polymorphisms in gene encoding TRPV1-receptor involved in pain perception are unrelated to chronic pancreatitis

    NARCIS (Netherlands)

    van Esch, Aura A. J.; Lamberts, Mark P.; te Morsche, René H. M.; van Oijen, Martijn G. H.; Jansen, Jan B. M. J.; Drenth, Joost P. H.

    2009-01-01

    Background: The major clinical feature in chronic pancreatitis is pain, but the genetic basis of pancreatic pain in chronic pancreatitis is poorly understood. The transient receptor potential vanilloid receptor 1 (TRPV1) gene has been associated with pain perception, and genetic variations in TRPV1

  9. Molecular genetic testing for familial hypercholesterolemia: spectrum of LDL receptor gene mutations in The Netherlands

    NARCIS (Netherlands)

    Lombardi, M. P.; Redeker, E. J.; Defesche, J. C.; Kamerling, S. W.; Trip, M. D.; Mannens, M. M.; Havekes, L. M.; Kastelein, J. J.

    2000-01-01

    Mutations in the LDL receptor are responsible for familial hypercholesterolemia (FH). At present, more than 600 mutations of the LDL receptor gene are known to underlie FH. However, the array of mutations varies considerably in different populations. Therefore, the delineation of essentially all LDL

  10. Histamine H1 Receptor Gene Expression and Drug Action of Antihistamines.

    Science.gov (United States)

    Fukui, Hiroyuki; Mizuguchi, Hiroyuki; Nemoto, Hisao; Kitamura, Yoshiaki; Kashiwada, Yoshiki; Takeda, Noriaki

    2017-01-01

    The upregulation mechanism of histamine H1 receptor through the activation of protein kinase C-δ (PKCδ) and the receptor gene expression was discovered. Levels of histamine H1 receptor mRNA and IL-4 mRNA in nasal mucosa were elevated by the provocation of nasal hypersensitivity model rats. Pretreatment with antihistamines suppressed the elevation of mRNA levels. Scores of nasal symptoms were correlatively alleviated to the suppression level of mRNAs above. A correlation between scores of nasal symptoms and levels of histamine H1 receptor mRNA in the nasal mucosa was observed in patients with pollinosis. Both scores of nasal symptoms and the level of histamine H1 receptor mRNA were improved by prophylactic treatment of antihistamines. Similar to the antihistamines, pretreatment with antiallergic natural medicines showed alleviation of nasal symptoms with correlative suppression of gene expression in nasal hypersensitivity model rats through the suppression of PKCδ. Similar effects of antihistamines and antiallergic natural medicines support that histamine H1 receptor-mediated activation of histamine H1 receptor gene expression is an important signaling pathway for the symptoms of allergic diseases. Antihistamines with inverse agonist activity showed the suppression of constitutive histamine H1 receptor gene expression, suggesting the advantage of therapeutic effect.

  11. Impact of cytokine and cytokine receptor gene polymorphisms on cellular immunity after smallpox vaccination.

    Science.gov (United States)

    Ovsyannikova, Inna G; Haralambieva, Iana H; Kennedy, Richard B; Pankratz, V Shane; Vierkant, Robert A; Jacobson, Robert M; Poland, Gregory A

    2012-11-15

    We explored associations between SNPs in cytokine/cytokine receptor genes and cellular immunity in subjects following primary smallpox vaccination. We also analyzed the genotype-phenotype associations discovered in the Caucasian subjects among a cohort of African-Americans. In Caucasians we found 277 associations (psmallpox vaccine-induced cytokine responses are modulated by genetic polymorphisms in cytokine and cytokine receptor genes. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Computational characterization of modes of transcriptional regulation of nuclear receptor genes.

    Science.gov (United States)

    Sharma, Yogita; Chilamakuri, Chandra Sekhar Reddy; Bakke, Marit; Lenhard, Boris

    2014-01-01

    Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq) and histone modification (ChIP-seq) data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We further examine the combinatorial patterns of histone maps

  13. Computational characterization of modes of transcriptional regulation of nuclear receptor genes.

    Directory of Open Access Journals (Sweden)

    Yogita Sharma

    Full Text Available Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent.In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq and histone modification (ChIP-seq data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We further examine the combinatorial patterns of

  14. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  15. Interleukin 4/13 receptors: An overview of genes, expression and functional role in teleost fish.

    Science.gov (United States)

    Sequeida, A; Maisey, K; Imarai, M

    2017-12-01

    In superior vertebrates, Interleukin 4 (IL-4) and Interleukin 13 (IL-13) play key and diverse roles to support immune responses acting on cell surface receptors. When stimulated, receptors activate intracellular signalling cascades switching cell phenotypes according to stimuli. In teleost fish, Interleukin 4/13 (IL-4/13) is the ancestral family cytokine related to both IL-4 and IL-13. Every private and common receptor subunit for IL-4/13 have in fish at least two paralogues and, as in mammals, soluble forms are also part of the receptor system. Reports for findings of fish IL-4/13 receptors have covered comparative analysis, transcriptomic profiles and to a lesser extent, functional analysis regarding ligand-receptor interactions and their biological effects. This review addresses available information from fish IL-4/13 receptors and discusses overall implications on teleost immunity, summarized gene induction strategies and pathogen-induced gene modulation, which may be useful tools to enhance immune response. Additionally, we present novel coding sequences for Atlantic salmon (Salmo salar) common gamma chain receptor (γC), Interleukin 13 receptor alpha 1A chain (IL-13Rα1A) and Interleukin 13 receptor alpha 1B chain (IL-13Rα1B). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Gene Interaction Network Suggests Dioxin Induces a Significant Linkage between Aryl Hydrocarbon Receptor and Retinoic Acid Receptor Beta

    Science.gov (United States)

    Toyoshiba, Hiroyoshi; Yamanaka, Takeharu; Sone, Hideko; Parham, Frederick M.; Walker, Nigel J.; Martinez, Jeanelle; Portier, Christopher J.

    2004-01-01

    Gene expression arrays (gene chips) have enabled researchers to roughly quantify the level of mRNA expression for a large number of genes in a single sample. Several methods have been developed for the analysis of gene array data including clustering, outlier detection, and correlation studies. Most of these analyses are aimed at a qualitative identification of what is different between two samples and/or the relationship between two genes. We propose a quantitative, statistically sound methodology for the analysis of gene regulatory networks using gene expression data sets. The method is based on Bayesian networks for direct quantification of gene expression networks. Using the gene expression changes in HPL1A lung airway epithelial cells after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin at levels of 0.1, 1.0, and 10.0 nM for 24 hr, a gene expression network was hypothesized and analyzed. The method clearly demonstrates support for the assumed network and the hypothesis linking the usual dioxin expression changes to the retinoic acid receptor system. Simulation studies demonstrated the method works well, even for small samples. PMID:15345368

  17. Bioassay of estrogenic compounds in transgenic Arabidopsis plants carrying a recombinant human estrogen receptor gene and a GFP reporter gene.

    Science.gov (United States)

    Inui, Hideyuki; Sasaki, Hideaki; Chua, Nam-Hai; Ohkawa, Hideo

    2009-12-01

    Transgenic Arabidopsis plants carrying a recombinant human estrogen receptor gene and a green fluorescent protein reporter gene were used to bioassay estrogenic compounds. We constructed four recombinant human estrogen receptor genes by combining the DNA-binding domain of LexA, a synthetic nuclear localization signal, a ligand-binding domain of the human estrogen receptor, and a transactivation domain of VP16 in different orders; the XEV plants were the most sensitive, and were able to detect 0.001 ng ml(-1) of 17ss-estradiol (E(2)). The transgenic plants absorbed E(2) and 4-nonylphenol present in the nutrient solution, whereas most of the other compounds seemed to be retained in, or on, the roots. Estrone, methoxychlor, bisphenol A, 4-nonylphenol, and 4-t-octylphenol in the medium were clearly detected by RT-PCR and PCR of the genomic DNA. The transgenic Arabidopsis XEV plants thus have potential for the bioassay of estrogenic compounds.

  18. Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density.

    Science.gov (United States)

    Ketcherside, Ariel; Noble, Lindsey J; McIntyre, Christa K; Filbey, Francesca M

    2017-01-01

    Background: Because delta-9-tetrahydrocannabinol (THC), the primary psychoactive ingredient in cannabis, binds to cannabinoid 1 (CB1) receptors, levels of CB1 protein could serve as a potential biomarker for response to THC. To date, available techniques to characterize CB1 expression and function in vivo are limited. In this study, we developed an assay to quantify CB1 in lymphocytes to determine how it relates to cannabis use in 58 daily cannabis users compared with 47 nonusers. Furthermore, we tested whether CB1 levels are associated with mutations in a single nucleotide polymorphism known to regulate CB1 functioning (i.e., rs2023239). Methods: Total protein concentration was analyzed through the Pierce BCA Protein assay kit. CB1 protein was quantified through CNR1 enzyme-linked immunosorbent assay (ELISA) kit from MyBioSource. CB1 concentration and total protein concentration were quantified and used to calculate a ratio of CB1 to total protein. Results: Inherent levels of peripheral lymphocyte CB1 were sufficient for quantification through ELISA without protein amplification. We found a group×genotype interaction such that users with the G allele had greater CB1 concentration than users with the A/A genotype, and a trend-level difference between genotypes in nonusers. Conclusions: This study demonstrates a minimally invasive technique of CB1 quantification that holds promise for the use of CB1 protein concentration, along with rs2023239 genotype, as a potential biomarker for susceptibility to cannabis use. These results suggest a gene (rs2023239 G)×environment (cannabis use) effect on CB1 density.

  19. Functional polymorphisms in the P2X7 receptor gene are associated with osteoporosis

    DEFF Research Database (Denmark)

    Husted, L B; Harsløf, T; Stenkjær, L

    2013-01-01

    to investigate the effect of these polymorphisms on BMD and risk of vertebral fractures in a case-control study including 798 individuals. METHODS: Genotyping was carried out using TaqMan assays. BMD was measured using dual energy X-ray absorptiometry, and vertebral fractures were assessed by lateral spinal X......UNLABELLED: The P2X(7) receptor is an ATP-gated cation channel. We investigated the effect of both loss-of-function and gain-of-function polymorphisms in the P2X(7) receptor gene on BMD and risk of vertebral fractures and found that five polymorphisms and haplotypes containing three...... of these polymorphisms were associated with BMD and fracture risk. INTRODUCTION: The P2X(7) receptor is an ATP-gated cation channel. P2X(7) receptor knockout mice have reduced total bone mineral content, and because several functional polymorphisms have been identified in the human P2X(7) receptor gene, we wanted...

  20. Prolactin receptor gene polymorphism and the risk of recurrent pregnancy loss: a case-control study.

    Science.gov (United States)

    Kim, Jin Ju; Choi, Young Min; Lee, Sung Ki; Yang, Kwang Moon; Paik, Eun Chan; Jeong, Hyeon Jeong; Jun, Jong Kwan; Han, Ae Ra; Hwang, Kyu Ri; Hong, Min A

    2017-10-05

    Since the first study was published reporting the candidate association between the prolactin receptor gene intron C/T polymorphism (rs37389) and recurrent miscarriage, no replication study has been performed. In this study, we investigated the role of the prolactin receptor gene C/T polymorphism in 311 Korean women with recurrent pregnancy loss and 314 controls. Genotyping for prolactin receptor gene intron C/T polymorphism was performed using a TaqMan assay. The significance of difference in the genotype distribution was assessed using a chi-square test, and continuous variables were compared using a Student's t-test. The genotype distribution of the prolactin receptor gene C/T polymorphism in the recurrent pregnancy loss group did not differ from that in the control group (CC/CT/TT rates were 49.8%/41.5%/8.7% and 52.5%/37.6%/9.9% for the recurrent pregnancy loss patient and control groups, respectively, p = .587). When the analysis was restricted to patients with three or more consecutive spontaneous miscarriages or patients without prior live birth, there were also no differences in the genotype distribution between these subgroups and controls. In conclusion, the findings of the current study suggest that the prolactin receptor gene intron C/T polymorphism is not a major determinant of the development of recurrent pregnancy loss. Impact statement What is already known: Many studies have investigated whether there is a genetic component for the risk of recurrent pregnancy loss. Recently, one study investigated whether genetic polymorphisms involved in the regulation of the hypothalamic-pituitary-ovarian axis would be associated with recurrent miscarriage. Among 35 polymorphisms in 20 candidate genes, genotype distribution with regard to the prolactin receptor gene intron C/T polymorphism (rs37389) differed between the recurrent miscarriage and the control groups. Since this study reporting the candidate association between the prolactin receptor gene and

  1. Insulin induces upregulation of vascular AT1 receptor gene expression by posttranscriptional mechanisms.

    Science.gov (United States)

    Nickenig, G; Röling, J; Strehlow, K; Schnabel, P; Böhm, M

    1998-12-01

    An interaction of insulin with angiotensin II effects could be pathophysiologically important for the pathogenesis of atherosclerosis and hypertension. We examined the effect of insulin on AT1 receptor gene expression in cultured vascular smooth muscle cells (VSMCs). A 24-hour incubation with insulin (100 nmol/L) produced a 2-fold increase in AT1 receptor density on VSMCs, as assessed by radioligand binding assays. This enhanced AT1 receptor expression was caused by a time- and concentration-dependent upregulation of the AT1 receptor mRNA levels, as assessed by Northern analysis. The maximal effect was detected after a 24-hour incubation of cells with 100 nmol/L insulin (270+/-20%). AT1 receptor upregulation was caused by a stabilization of the AT1 receptor mRNA, because the AT1 receptor mRNA half-life was prolonged from 5 hours under basal conditions to 10 hours after insulin stimulation. In contrast, insulin had no influence on AT1 receptor gene transcription, as assessed by nuclear run-on assays. The insulin-induced AT1 receptor upregulation was followed by an increased functional response, because angiotensin II evoked a significantly elevated intracellular release of calcium in cells that were preincubated with 100 nmol/L insulin for 24 hours. The insulin-induced AT1 receptor upregulation was dependent on tyrosine kinases, as assessed by experiments with the tyrosine kinase inhibitor genistein. Furthermore, experiments using the intracellular calcium chelator bis(2-amino-5-methylphenoxy)ethane-N, N,N',N'-tetraacetic acid tetraacetoxymethyl ester suggest that intracellular calcium release may be involved in AT1 receptor regulation. Insulin-induced upregulation of the AT1 receptor by posttranscriptional mechanisms may explain the association of hyperinsulinemia with hypertension and arteriosclerosis, because activation of the AT1 receptor plays a key role in the regulation of blood pressure and fluid homeostasis.

  2. The Axon Guidance Receptor Gene ROBO1 Is a Candidate Gene for Developmental Dyslexia.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  3. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia.

    Directory of Open Access Journals (Sweden)

    Katariina Hannula-Jouppi

    2005-10-01

    Full Text Available Dyslexia, or specific reading disability, is the most common learning disorder with a complex, partially genetic basis, but its biochemical mechanisms remain poorly understood. A locus on Chromosome 3, DYX5, has been linked to dyslexia in one large family and speech-sound disorder in a subset of small families. We found that the axon guidance receptor gene ROBO1, orthologous to the Drosophila roundabout gene, is disrupted by a chromosome translocation in a dyslexic individual. In a large pedigree with 21 dyslexic individuals genetically linked to a specific haplotype of ROBO1 (not found in any other chromosomes in our samples, the expression of ROBO1 from this haplotype was absent or attenuated in affected individuals. Sequencing of ROBO1 in apes revealed multiple coding differences, and the selection pressure was significantly different between the human, chimpanzee, and gorilla branch as compared to orangutan. We also identified novel exons and splice variants of ROBO1 that may explain the apparent phenotypic differences between human and mouse in heterozygous loss of ROBO1. We conclude that dyslexia may be caused by partial haplo-insufficiency for ROBO1 in rare families. Thus, our data suggest that a slight disturbance in neuronal axon crossing across the midline between brain hemispheres, dendrite guidance, or another function of ROBO1 may manifest as a specific reading disability in humans.

  4. Genetic polymorphism of exon 9-11 of the leptin gene receptor in ...

    African Journals Online (AJOL)

    Genomic DNA was extracted using modified salting-out method and amplified polymerase chain reaction technique. Exon and intron 9-11 of the fowl leptin gene ... Further association analysis is required to clarify the effects of these marker genotypes on production traits in this breeder flock. Key words: Leptin gene receptor, ...

  5. The DAF-7 TGF-β signaling pathway regulates chemosensory receptor gene expression in C. elegans

    OpenAIRE

    Nolan, Katherine M.; Sarafi-Reinach, Trina R.; Horne, Jennifer G.; Saffer, Adam M.; Sengupta, Piali

    2002-01-01

    Regulation of chemoreceptor gene expression in response to environmental or developmental cues provides a mechanism by which animals can alter their sensory responses. Here we demonstrate a role for the daf-7 TGF-β pathway in the regulation of expression of a subset of chemoreceptor genes in Caenorhabditis elegans. We describe a novel role of this pathway in maintaining receptor gene expression in the adult and show that the DAF-4 type II TGF-β receptor functions cell-autonomously to modulate...

  6. Receptor Ck-dependent signaling regulates hTERT gene transcription

    Directory of Open Access Journals (Sweden)

    Varma Neelam

    2006-01-01

    Full Text Available Abstract Background Available evidence suggests that the regulation of telomerase activity primarily depends on the transcriptional control of the human telomerase reverse transcriptase (hTERT gene. Although several activators and repressors of hTERT gene transcription have been identified, the exact mechanism by which hTERT transcription is repressed in normal cells and activated in cancer cells remains largely unknown. In an attempt to identify possible novel mechanisms involved in the regulation of hTERT transcription, the present study examined the role of Receptor Ck, a cell surface receptor specific for cholesterol, in the transcription of hTERT gene in normal human peripheral blood mononuclear cells. Results Activated Receptor Ck was found to down-regulate hTERT mRNA expression by repressing the transcription of c-myc gene. Receptor Ck-dependent signaling was also found to down-regulate the mRNA expression of the gene coding for the ligand inducible transcription factor, peroxisome proliferator-activated receptor γ (PPARγ. The ligand activation of PPARγ resulted in the down-regulation of c-myc and hTERT mRNA expression. By using specific activator and inhibitor of protein kinase C (PKC, it was demonstrated that Receptor Ck dependent down-regulation of hTERT gene transcription involved inhibition of PKC. In addition, 25-hydroxycholesterol was found to contribute to the transcriptional regulation of hTERT gene. Conclusion Taken together, the findings of this study present evidence for a molecular link between cholesterol-activated Receptor Ck and hTERT transcription, and provide new insights into the regulation of hTERT expression in normal human peripheral blood mononuclear cells.

  7. Gene number determination and genetic polymorphism of the gamma delta T cell co-receptor WC1 genes

    Directory of Open Access Journals (Sweden)

    Chen Chuang

    2012-10-01

    Full Text Available Abstract Background WC1 co-receptors belong to the scavenger receptor cysteine-rich (SRCR superfamily and are encoded by a multi-gene family. Expression of particular WC1 genes defines functional subpopulations of WC1+ γδ T cells. We have previously identified partial or complete genomic sequences for thirteen different WC1 genes through annotation of the bovine genome Btau_3.1 build. We also identified two WC1 cDNA sequences from other cattle that did not correspond to sequences in the Btau_3.1 build. Their absence in the Btau_3.1 build may have reflected gaps in the genome assembly or polymorphisms among animals. Since the response of γδ T cells to bacterial challenge is determined by WC1 gene expression, it was critical to understand whether individual cattle or breeds differ in the number of WC1 genes or display polymorphisms. Results Real-time quantitative PCR using DNA from the animal whose genome was sequenced (“Dominette” and sixteen other animals representing ten breeds of cattle, showed that the number of genes coding for WC1 co-receptors is thirteen. The complete coding sequences of those thirteen WC1 genes is presented, including the correction of an error in the WC1-2 gene due to mis-assembly in the Btau_3.1 build. All other cDNA sequences were found to agree with the previous annotation of complete or partial WC1 genes. PCR amplification and sequencing of the most variable N-terminal SRCR domain (domain 1 which has the SRCR “a” pattern of each of the thirteen WC1 genes showed that the sequences are highly conserved among individuals and breeds. Of 160 sequences of domain 1 from three breeds of cattle, no additional sequences beyond the thirteen described WC1 genes were found. Analysis of the complete WC1 cDNA sequences indicated that the thirteen WC1 genes code for three distinct WC1 molecular forms. Conclusion The bovine WC1 multi-gene family is composed of thirteen genes coding for three structural forms whose

  8. Molecular characterization of the Aphis gossypii olfactory receptor gene families.

    Directory of Open Access Journals (Sweden)

    Depan Cao

    Full Text Available The cotton aphid, Aphis gossypii Glover, is a polyphagous pest that inflicts great damage to cotton yields worldwide. Antennal olfaction, which is extremely important for insect survival, mediates key behaviors such as host preference, mate choice, and oviposition site selection. In insects, odor detection is mediated by odorant receptors (ORs and ionotropic receptors (IRs, which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim is to identify chemosensory receptors in the cotton aphid genome, as a means to uncover olfactory encoding of the polyphagous feeding habits as well as to aid the discovery of new targets for behavioral interference. We identified a total of 45 candidate ORs and 14 IRs in the cotton aphid genome. Among the candidate AgoORs, 9 are apparent pseudogenes, while 19 can be clustered with ORs from the pea aphid, forming 16 AgoOR/ApOR orthologous subgroups. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a; no AgoIR retain the complete glutamic acid binding domain, suggesting that putative AgoIRs bind different ligands. Our results provide the necessary information for functional characterization of the chemosensory receptors of A. gossypii, with potential for new or refined applications of semiochemicals-based control of this pest insect.

  9. Transsynaptic Tracing from Taste Receptor Cells Reveals Local Taste Receptor Gene Expression in Gustatory Ganglia and Brain.

    Science.gov (United States)

    Voigt, Anja; Bojahr, Juliane; Narukawa, Masataka; Hübner, Sandra; Boehm, Ulrich; Meyerhof, Wolfgang

    2015-07-01

    Taste perception begins in the oral cavity by interactions of taste stimuli with specific receptors. Specific subsets of taste receptor cells (TRCs) are activated upon tastant stimulation and transmit taste signals to afferent nerve fibers and ultimately to the brain. How specific TRCs impinge on the innervating nerves and how the activation of a subset of TRCs leads to the discrimination of tastants of different qualities and intensities is incompletely understood. To investigate the organization of taste circuits, we used gene targeting to express the transsynaptic tracer barley lectin (BL) in the gustatory system of mice. Because TRCs are not synaptically connected with the afferent nerve fibers, we first analyzed tracer production and transfer within the taste buds (TBs). Surprisingly, we found that BL is laterally transferred across all cell types in TBs of mice expressing the tracer under control of the endogenous Tas1r1 and Tas2r131 promotor, respectively. Furthermore, although we detected the BL tracer in both ganglia and brain, we also found local low-level Tas1r1 and Tas2r131 gene, and thus tracer expression in these tissues. Finally, we identified the Tas1r1 and Tas2r131-expressing cells in the peripheral and CNS using a binary genetic approach. Together, our data demonstrate that genetic transsynaptic tracing from bitter and umami receptor cells does not selectively label taste-specific neuronal circuits and reveal local taste receptor gene expression in the gustatory ganglia and the brain. Previous papers described the organization of taste pathways in mice expressing a transsynaptic tracer from transgenes in bitter or sweet/umami-sensing taste receptor cells. However, reported results differ dramatically regarding the numbers of synapses crossed and the reduction of signal intensity after each transfer step. Nevertheless, all groups claimed this approach appropriate for quality-specific visualization of taste pathways. In the present study, we

  10. Investigation of Gamma-aminobutyric acid (GABA A receptors genes and migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Ciccodicola Alfredo

    2008-12-01

    Full Text Available Abstract Background Migraine is a neurological disorder characterized by recurrent attacks of severe headache, affecting around 12% of Caucasian populations. It is well known that migraine has a strong genetic component, although the number and type of genes involved is still unclear. Prior linkage studies have reported mapping of a migraine gene to chromosome Xq 24–28, a region containing a cluster of genes for GABA A receptors (GABRE, GABRA3, GABRQ, which are potential candidate genes for migraine. The GABA neurotransmitter has been implicated in migraine pathophysiology previously; however its exact role has not yet been established, although GABA receptors agonists have been the target of therapeutic developments. The aim of the present research is to investigate the role of the potential candidate genes reported on chromosome Xq 24–28 region in migraine susceptibility. In this study, we have focused on the subunit GABA A receptors type ε (GABRE and type θ (GABRQ genes and their involvement in migraine. Methods We have performed an association analysis in a large population of case-controls (275 unrelated Caucasian migraineurs versus 275 controls examining a set of 3 single nucleotide polymorphisms (SNPs in the coding region (exons 3, 5 and 9 of the GABRE gene and also the I478F coding variant of the GABRQ gene. Results Our study did not show any association between the examined SNPs in our test population (P > 0.05. Conclusion Although these particular GABA receptor genes did not show positive association, further studies are necessary to consider the role of other GABA receptor genes in migraine susceptibility.

  11. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus.

    Science.gov (United States)

    O'Shea, S F; Chaure, P T; Halsall, J R; Olesnicky, N S; Leibbrandt, A; Connerton, I F; Casselton, L A

    1998-01-01

    Pheromone signaling plays an essential role in the mating and sexual development of mushroom fungi. Multiallelic genes encoding the peptide pheromones and their cognate 7-transmembrane helix (7-TM) receptors are sequestered in the B mating type locus. Here we describe the isolation of the B6 mating type locus of Coprinus cinereus. DNA sequencing and transformation analysis identified nine genes encoding three 7-TM receptors and six peptide pheromone precursors embedded within 17 kb of mating type-specific sequence. The arrangement of the nine genes suggests that there may be three functionally independent subfamilies of genes each comprising two pheromone genes and one receptor gene. None of the nine B6 genes showed detectable homology to corresponding B gene sequences in the genomic DNA from a B3 strain, and each of the B6 genes independently alter B mating specificity when introduced into a B3 host strain. However, only genes in two of the B6 groups were able to activate B-regulated development in a B42 host. Southern blot analysis showed that these genes failed to cross-hybridize to corresponding genes in the B42 host, whereas the three genes of the third subfamily, which could not activate development in the B42 host, did cross-hybridize. We conclude that cross-hybridization identifies the same alleles of a particular subfamily of genes in different B loci and that B6 and B42 share alleles of one subfamily. There are an estimated 79 B mating specificities: we suggest that it is the different allele combinations of gene subfamilies that generate these large numbers. PMID:9539426

  12. Nicotinic acetylcholine receptor β2 subunit gene implicated in a systems-based candidate gene study of smoking cessation

    OpenAIRE

    Conti, DV; Lee, W.; D. Li; Liu, J.; Van Den Berg, D.; Thomas, PD; Bergen, AW; Swan, GE; Tyndale, RF; Benowitz, NL; Lerman, C

    2008-01-01

    Although the efficacy of pharmacotherapy for tobacco dependence has been previously demonstrated, there is substantial variability among individuals in treatment response. We performed a systems-based candidate gene study of 1295 single nucleotide polymorphisms (SNPs) in 58 genes within the neuronal nicotinic receptor and dopamine systems to investigate their role in smoking cessation in a bupropion placebo-controlled randomized clinical trial. Putative functional variants were supplemented w...

  13. Endogenous hepatic glucocorticoid receptor signaling coordinates sex-biased inflammatory gene expression.

    Science.gov (United States)

    Quinn, Matthew A; Cidlowski, John A

    2016-02-01

    An individual's sex affects gene expression and many inflammatory diseases present in a sex-biased manner. Glucocorticoid receptors (GRs) are regulators of inflammatory genes, but their role in sex-specific responses is unclear. Our goal was to evaluate whether GR differentially regulates inflammatory gene expression in male and female mouse liver. Twenty-five percent of the 251 genes assayed by nanostring analysis were influenced by sex. Of these baseline sexually dimorphic inflammatory genes, 82% was expressed higher in female liver. Pathway analyses defined pattern-recognition receptors as the most sexually dimorphic pathway. We next exposed male and female mice to the proinflammatory stimulus LPS. Female mice had 177 genes regulated by treatment with LPS, whereas males had 149, with only 66% of LPS-regulated genes common between the sexes. To determine the contribution of GR to sexually dimorphic inflammatory genes we performed nanostring analysis on liver-specific GR knockout (LGRKO) mice in the presence or absence of LPS. Comparing LGRKO to GR(flox/flox) revealed that 36 genes required GR for sexually dimorphic expression, whereas 24 genes became sexually dimorphic in LGRKO. Fifteen percent of LPS-regulated genes in GR(flox/flox) were not regulated in male and female LGRKO mice treated with LPS. Thus, GR action is influenced by sex to regulate inflammatory gene expression. © FASEB.

  14. Variation in umami perception and in candidate genes for the umami receptor in mice and humans.

    Science.gov (United States)

    Shigemura, Noriatsu; Shirosaki, Shinya; Ohkuri, Tadahiro; Sanematsu, Keisuke; Islam, A A Shahidul; Ogiwara, Yoko; Kawai, Misako; Yoshida, Ryusuke; Ninomiya, Yuzo

    2009-09-01

    The unique taste induced by monosodium glutamate is referred to as umami taste. The umami taste is also elicited by the purine nucleotides inosine 5'-monophosphate and guanosine 5'-monophosphate. There is evidence that a heterodimeric G protein-coupled receptor, which consists of the T1R1 (taste receptor type 1, member 1, Tas1r1) and the T1R3 (taste receptor type 1, member 3, Tas1r3) proteins, functions as an umami taste receptor for rodents and humans. Splice variants of metabotropic glutamate receptors, mGluR(1) (glutamate receptor, metabotropic 1, Grm1) and mGluR(4) (glutamate receptor, metabotropic 4, Grm4), also have been proposed as taste receptors for glutamate. The taste sensitivity to umami substances varies in inbred mouse strains and in individual humans. However, little is known about the relation of umami taste sensitivity to variations in candidate umami receptor genes in rodents or in humans. In this article, we summarize current knowledge of the diversity of umami perception in mice and humans. Furthermore, we combine previously published data and new information from the single nucleotide polymorphism databases regarding variation in the mouse and human candidate umami receptor genes: mouse Tas1r1 (TAS1R1 for human), mouse Tas1r3 (TAS1R3 for human), mouse Grm1 (GRM1 for human), and mouse Grm4 (GRM4 for human). Finally, we discuss prospective associations between variation of these genes and umami taste perception in both species.

  15. Changes in GABA(A) receptor gene expression associated with selective alterations in receptor function and pharmacology after ethanol withdrawal.

    Science.gov (United States)

    Sanna, Enrico; Mostallino, Maria Cristina; Busonero, Fabio; Talani, Giuseppe; Tranquilli, Stefania; Mameli, Manuel; Spiga, Saturnino; Follesa, Paolo; Biggio, Giovanni

    2003-12-17

    Changes in the expression of subunits of the GABA type A (GABA(A)) receptor are implicated in the development of ethanol tolerance and dependence as well as in the central hyperexcitability associated with ethanol withdrawal. The impact of such changes on GABA(A) receptor function and pharmacological sensitivity was investigated with cultured rat hippocampal neurons exposed to ethanol for 5 d and then subjected to ethanol withdrawal. Both ethanol treatment and withdrawal were associated with a marked decrease in the maximal density of GABA-evoked Cl- currents, whereas the potency of GABA was unaffected. Ethanol exposure also reduced the modulatory efficacy of the benzodiazepine receptor agonists lorazepam, zolpidem, and zaleplon as well as that of the inverse agonists Ro 15-4513 and FG 7142, effects that were associated with a reduced abundance of mRNAs encoding the receptor subunits alpha1, alpha3, gamma2L, and gamma2S. Ethanol withdrawal restored the efficacy of lorazepam, but not that of low concentrations of zolpidem or zaleplon, to control values. Flumazenil, which was ineffective in control neurons, and Ro 15-4513 each potentiated the GABA response after ethanol withdrawal. These effects of withdrawal were accompanied by upregulation of the alpha2, alpha3, and alpha4 subunit mRNAs as well as of the alpha4 protein. Diazepam or gamma-hydroxybutyrate, but not baclofen, prevented the changes in both GABA(A) receptor pharmacology and subunit mRNA levels induced by ethanol withdrawal. Changes in GABA(A) receptor gene expression induced by prolonged exposure to and withdrawal of ethanol are thus associated with altered GABA(A) receptor function and pharmacological sensitivity.

  16. Massive Losses of Taste Receptor Genes in Toothed and Baleen Whales

    Science.gov (United States)

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J.; Wang, Ding; Zhao, Huabin

    2014-01-01

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. PMID:24803572

  17. Massive losses of taste receptor genes in toothed and baleen whales.

    Science.gov (United States)

    Feng, Ping; Zheng, Jinsong; Rossiter, Stephen J; Wang, Ding; Zhao, Huabin

    2014-05-06

    Taste receptor genes are functionally important in animals, with a surprising exception in the bottlenose dolphin, which shows extensive losses of sweet, umami, and bitter taste receptor genes. To examine the generality of taste gene loss, we examined seven toothed whales and five baleen whales and sequenced the complete repertoire of three sweet/umami (T1Rs) and ten bitter (T2Rs) taste receptor genes. We found all amplified T1Rs and T2Rs to be pseudogenes in all 12 whales, with a shared premature stop codon in 10 of the 13 genes, which demonstrated massive losses of taste receptor genes in the common ancestor of whales. Furthermore, we analyzed three genome sequences from two toothed whales and one baleen whale and found that the sour taste marker gene Pkd2l1 is a pseudogene, whereas the candidate salty taste receptor genes are intact and putatively functional. Additionally, we examined three genes that are responsible for taste signal transduction and found the relaxation of functional constraints on taste signaling pathways along the ancestral branch leading to whales. Together, our results strongly suggest extensive losses of sweet, umami, bitter, and sour tastes in whales, and the relaxation of taste function most likely arose in the common ancestor of whales between 36 and 53 Ma. Therefore, whales represent the first animal group to lack four of five primary tastes, probably driven by the marine environment with high concentration of sodium, the feeding behavior of swallowing prey whole, and the dietary switch from plants to meat in the whale ancestor. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Prospects and limitations of T cell receptor gene therapy

    NARCIS (Netherlands)

    Jorritsma, Annelies; Schotte, Remko; Coccoris, Miriam; de Witte, Moniek A.; Schumacher, Ton N. M.

    2011-01-01

    Adoptive transfer of antigen-specific T cells is an attractive means to provide cancer patients with immune cells of a desired specificity and the efficacy of such adoptive transfers has been demonstrated in several clinical trials. Because the T cell receptor is the single specificity-determining

  19. EGF receptor activation stimulates endogenous gastrin gene expression in canine G cells and human gastric cell cultures.

    OpenAIRE

    Ford, M G; Valle, J D; Soroka, C J; Merchant, J L

    1997-01-01

    Gastrin release from the antral gastrin-expressing cell (G cell) is regulated by bombesin and luminal factors. Yet, these same extracellular regulators do not stimulate expression of the gene. Since the gastric mucosa expresses large quantities of EGF receptor ligands such as TGFalpha, we examined whether EGF receptor ligands stimulate gastrin gene expression in gastrin-expressing cell cultures. EGF receptor activation of primary cultures stimulated gastrin gene expression about twofold; wher...

  20. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    Science.gov (United States)

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  1. The Drosophila gene CG9918 codes for a pyrokinin-1 receptor

    DEFF Research Database (Denmark)

    Cazzamali, Giuseppe; Torp, Malene; Hauser, Frank

    2005-01-01

    The database from the Drosophila Genome Project contains a gene, CG9918, annotated to code for a G protein-coupled receptor. We cloned the cDNA of this gene and functionally expressed it in Chinese hamster ovary cells. We tested a library of about 25 Drosophila and other insect neuropeptides......, and seven insect biogenic amines on the expressed receptor and found that it was activated by low concentrations of the Drosophila neuropeptide, pyrokinin-1 (TGPSASSGLWFGPRLamide; EC50, 5 x 10(-8) M). The receptor was also activated by other Drosophila neuropeptides, terminating with the sequence PRLamide...... (Hug-gamma, ecdysis-triggering-hormone-1, pyrokinin-2), but in these cases about six to eight times higher concentrations were needed. The receptor was not activated by Drosophila neuropeptides, containing a C-terminal PRIamide sequence (such as ecdysis-triggering-hormone-2), or PRVamide (such as capa...

  2. Gene Variant of the Bradykinin B2 Receptor Influences Pulmonary Arterial Pressures in Heart Failure Patients.

    Science.gov (United States)

    Olson, Thomas P; Frantz, Robert P; Turner, Stephen T; Bailey, Kent R; Wood, Christina M; Johnson, Bruce D

    2009-01-01

    Pulmonary arterial pressure (PAP) varies considerably in heart failure (HF) despite similar degrees of left ventricular (LV) dysfunction. Bradykinin alters vascular tone and common variations in the kinin B2 receptor (BDKRB2) gene exists. We hypothesized that genetic variation in this receptor would influence PAP in HF. 131 HF patients (>1yr history systolic HF), without COPD, not currently smoking, BMI tone in stable HF.

  3. Disruption of the 37-kDa/67-kDa laminin receptor gene in bovine ...

    African Journals Online (AJOL)

    The 37-kDa/67-kDa laminin receptor (LRP/LR), also known as ribosomal protein SA (RPSA), acts as a cell surface receptor for prions and plays an important role in internalization of cellular prion protein. In this study, we knocked out the part of prion binding sites (aa 161-205) by gene targeting in the bovine fetal fibroblasts ...

  4. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  5. [On the role of gene of SER-4 serotonin receptor in thermotolerance of Caenorhabditis elegans behavior].

    Science.gov (United States)

    Kalinnikova, T B; Kolsanova, R R; Shagidullin, R R; Osipova, E B; Gaĭnutdinov, M Kh

    2013-03-01

    Serotonin reduces the behavior tolerance of Caenorhabditis elegans of the N2 wild-type strain (swimming induced by the mechanical stimulus) to a temperature of 36 degrees C. The sensitivity to the serotonin influence on the behavior thermotolerance remains intact in strains with null mutations of mod-1 (ok103) and ser-1 (ok345) serotonin receptor genes, and is almost completely lost in the ser-4 (ok512) strain with null mutation in the gene of the SER-4 serotonin receptor, which is a homologue of 5-HT1 mammalian serotonin receptor. In addition, nematodes of the ser-4 (ok512) strain have high behavior thermotolerance in the absence of the exogenous serotonin compared to the N2 strain. These data indicate the involvement of the ser-4 gene in the serotonin regulation of the tolerance of C. elegance nervous system functions to hyperthermia.

  6. Mineralocorticoid receptor interaction with SP1 generates a new response element for pathophysiologically relevant gene expression.

    Science.gov (United States)

    Meinel, Sandra; Ruhs, Stefanie; Schumann, Katja; Strätz, Nicole; Trenkmann, Kay; Schreier, Barbara; Grosse, Ivo; Keilwagen, Jens; Gekle, Michael; Grossmann, Claudia

    2013-09-01

    The mineralocorticoid receptor (MR) is a ligand-induced transcription factor belonging to the steroid receptor family and involved in water-electrolyte homeostasis, blood pressure regulation, inflammation and fibrosis in the renocardiovascular system. The MR shares a common hormone-response-element with the glucocorticoid receptor but nevertheless elicits MR-specific effects including enhanced epidermal growth factor receptor (EGFR) expression via unknown mechanisms. The EGFR is a receptor tyrosine kinase that leads to activation of MAP kinases, but that can also function as a signal transducer for other signaling pathways. In the present study, we mechanistically investigate the interaction between a newly discovered MR- but not glucocorticoid receptor- responsive-element (=MRE1) of the EGFR promoter, specificity protein 1 (SP1) and MR to gain general insights into MR-specificity. Biological relevance of the interaction for EGFR expression and consequently for different signaling pathways in general is demonstrated in human, rat and murine vascular smooth muscle cells and cells of EGFR knockout mice. A genome-wide promoter search for identical binding regions followed by quantitative PCR validation suggests that the identified MR-SP1-MRE1 interaction might be applicable to other genes. Overall, a novel principle of MR-specific gene expression is explored that applies to the pathophysiologically relevant expression of the EGFR and potentially also to other genes.

  7. Adhesion Receptors Mediate Efficient Non-viral Gene Delivery

    NARCIS (Netherlands)

    Zuhorn, Inge S.; Kalicharan, Dharamdajal; Robillard, George T.; Hoekstra, Dick

    2007-01-01

    For a variety of reasons, including production limitations, potential unanticipated side effects, and an immunological response upon repeated systemic administration, virus-based vectors are as yet not ideal gene delivery vehicles, justifying further research into alternatives. Unlike viral vectors,

  8. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  9. Sequence variation in the androgen receptor gene is not a common determinant of male sexual orientation

    Energy Technology Data Exchange (ETDEWEB)

    Macke, J.P.; Nathans, J.; King, V.L. (Johns Hopkins Univ., Baltimore, MD (United States)); Hu, N.; Hu, S.; Hamer, D.; Bailey, M. (Northwestern Univ., Evanston, IL (United States)); Brown, T. (Johns Hopkins Univ. School of Hygiene and Public Health, Baltimore, MD (United States))

    1993-10-01

    To test the hypothesis that DNA sequence variation in the androgen receptor gene plays a causal role in the development of male sexual orientation, the authors have (1) measured the degree of concordance of androgen receptor alleles in 36 pairs of homosexual brothers, (2) compared the lengths of polyglutamine and polyglycine tracts in the amino-terminal domain of the androgen receptor in a sample of 197 homosexual males and 213 unselected subjects, and (3) screened the entire androgen receptor coding region for sequence variation by PCR and denaturing gradient-gel electrophoresis (DGGE) and/or single-strand conformation polymorphism analysis in 20 homosexual males with homosexual or bisexual brothers and one homosexual male with no homosexual brothers, and screened the amino-terminal domain of the receptor for sequence variation in an additional 44 homosexual males, 37 of whom had one or more first- or second-degree male relatives who were either homosexual or bisexual. These analyses show that (1) homosexual brothers are as likely to be discordant as concordant for androgen receptor alleles; (2) there are no large-scale differences between the distributions of polyglycine or polyglutamine tract lengths in the homosexual and control groups; and (3) coding region sequence variation is not commonly found within the androgen receptor gene of homosexual men. The DGGE screen identified two rare amino acid substitutions, ser[sup 205] -to-arg and glu[sup 793]-to-asp, the biological significance of which is unknown. 32 refs., 2 figs., 2 tabs.

  10. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine.

    Science.gov (United States)

    Becnel, Lauren B; Ochsner, Scott A; Darlington, Yolanda F; McOwiti, Apollo; Kankanamge, Wasula H; Dehart, Michael; Naumov, Alexey; McKenna, Neil J

    2017-04-25

    We previously developed a web tool, Transcriptomine, to explore expression profiling data sets involving small-molecule or genetic manipulations of nuclear receptor signaling pathways. We describe advances in biocuration, query interface design, and data visualization that enhance the discovery of uncharacterized biology in these pathways using this tool. Transcriptomine currently contains about 45 million data points encompassing more than 2000 experiments in a reference library of nearly 550 data sets retrieved from public archives and systematically curated. To make the underlying data points more accessible to bench biologists, we classified experimental small molecules and gene manipulations into signaling pathways and experimental tissues and cell lines into physiological systems and organs. Incorporation of these mappings into Transcriptomine enables the user to readily evaluate tissue-specific regulation of gene expression by nuclear receptor signaling pathways. Data points from animal and cell model experiments and from clinical data sets elucidate the roles of nuclear receptor pathways in gene expression events accompanying various normal and pathological cellular processes. In addition, data sets targeting non-nuclear receptor signaling pathways highlight transcriptional cross-talk between nuclear receptors and other signaling pathways. We demonstrate with specific examples how data points that exist in isolation in individual data sets validate each other when connected and made accessible to the user in a single interface. In summary, Transcriptomine allows bench biologists to routinely develop research hypotheses, validate experimental data, or model relationships between signaling pathways, genes, and tissues. Copyright © 2017, American Association for the Advancement of Science.

  11. Relevance of estrogen-related receptor gene and ecdysone receptor gene in adult testis of the cricket Teleogryllus emma (Orthoptera: Gryllidae)

    Science.gov (United States)

    Jin, Wenjie; Jia, Yishu; Tan, E.; Xi, Gengsi

    2017-12-01

    Estrogen-related receptor gene ( ERR) and ecdysone receptor gene ( EcR) belong to the nuclear receptor gene superfamily, both of which are associated with the regulation of insect reproductive development. However, the relationship between ERR and EcR and whether ERR participates in the 20E signal pathway during male reproduction are unclear. In this paper, adult male crickets Teleogryllus emma Ohmschi & Matsumura were divided into the experimental group, negative group, and control group. Crickets of the experimental group were injected with TeERR or TeEcR-dsRNA, and those in the negative group received EGFP-dsRNA. The efficiency of TeERR and TeEcR-RNAi was detected in the experimental group. Furthermore, the transcription level, morphological characteristics as well as weight were analyzed in the TeERR or TeEcR knocked-down testis. Results showed that the expression level of TeERR or TeEcR was significantly down-regulated ( P 0.05). These results indicate that TeERR and TeEcR are intimately related to each other. In addition, TeERR may be involved in the 20E signal pathway and maintain the function of adult cricket testis.

  12. Allelic variants of melanocortin 3 receptor gene (MC3R) and weight loss in obesity

    DEFF Research Database (Denmark)

    L. Santos, José; De la Cruz, Rolando; Holst, Claus

    2011-01-01

    The melanocortin system plays an important role in energy homeostasis. Mice genetically deficient in the melanocortin-3 receptor gene have a normal body weight with increased body fat, mild hypophagia compared to wild-type mice. In humans, Thr6Lys and Val81Ile variants of the melanocortin-3...... receptor gene (MC3R) have been associated with childhood obesity, higher BMI Z-score and elevated body fat percentage compared to non-carriers. The aim of this study is to assess the association in adults between allelic variants of MC3R with weight loss induced by energy-restricted diets....

  13. Potential Influence of Interleukin-1 Receptor Antagonist Gene Polymorphism on Knee Osteoarthritis Risk

    Directory of Open Access Journals (Sweden)

    Menha Swellam

    2010-01-01

    Full Text Available Objectives: Genes encoding for cytokines have been associated with susceptibility for joint osteoarthritis (OA and interleukin (IL-1 gene is supposed to be involved in the cartilage destruction process. In this regard, interleukin-1 receptor antagonist (IL-1RA competing with IL-1 for binding to its receptor may act as an inhibitor of cartilage breakdown. We assessed the association of primary knee OA with IL-1RA region as a putative factor of susceptibility to knee OA in Egyptian patients.

  14. Orphan nuclear receptor ERRγ is a key regulator of human fibrinogen gene expression

    Science.gov (United States)

    Zhang, Yaochen; Kim, Don-Kyu; Lu, Yan; Jung, Yoon Seok; Lee, Ji-min; Kim, Young-Hoon; Lee, Yong Soo; Kim, Jina; Dewidar, Bedair; Jeong, Won-IL; Lee, In-Kyu; Cho, Sung Jin; Dooley, Steven; Lee, Chul-Ho; Li, Xiaoying

    2017-01-01

    Fibrinogen, 1 of 13 coagulation factors responsible for normal blood clotting, is synthesized by hepatocytes. Detailed roles of the orphan nuclear receptors regulating fibrinogen gene expression have not yet been fully elucidated. Here, we identified estrogen-related receptor gamma (ERRγ) as a novel transcriptional regulator of human fibrinogen gene expression. Overexpression of ERRγ specially increased fibrinogen expression in human hepatoma cell line. Cannabinoid receptor types 1(CB1R) agonist arachidonyl-2'-chloroethylamide (ACEA) up-regulated transcription of fibrinogen via induction of ERRγ, whereas knockdown of ERRγ attenuated fibrinogen expression. Deletion analyses of the fibrinogen γ (FGG) gene promoter and ChIP assays revealed binding sites of ERRγ on human fibrinogen γ gene promoter. Moreover, overexpression of ERRγ was sufficient to increase fibrinogen gene expression, whereas treatment with GSK5182, a selective inverse agonist of ERRγ led to its attenuation in cell culture. Finally, fibrinogen and ERRγ gene expression were elevated in liver tissue of obese patients suggesting a conservation of this mechanism. Overall, this study elucidates a molecular mechanism linking CB1R signaling, ERRγ expression and fibrinogen gene transcription. GSK5182 may have therapeutic potential to treat hyperfibrinogenemia. PMID:28750085

  15. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  16. Pattern recognition receptor genes expression profiling in indigenous chickens of India and White Leghorn.

    Science.gov (United States)

    Haunshi, S; Burramsetty, Arun Kumar; Kannaki, T R; Ravindra, K S Raja; Chatterjee, R N

    2017-09-01

    Pattern recognition receptors (PRR) such as Toll-like receptors, NOD-like receptors, RIG-I helicase receptors, and C-type lectin receptors play a critical role in innate immunity as a first line of defense against invading pathogens through recognition of pathogen and/or damage-associated molecular patterns. Genetic makeup of birds is known to play a role in resistance or susceptibility to various infectious diseases. Therefore, the present study was carried out to elucidate the differential expression of PRR and some of the cytokine genes in peripheral blood mononuclear cells of indigenous chicken breeds such as Ghagus and Nicobari and an exotic chicken breed, White Leghorn (WLH). The stability of expression of reference genes in peripheral blood mononuclear cells of 3 breeds was first determined using NormFinder and BestKeeper programs. NormFinder determined B2M and G6PDH reference genes as the best combination with stability value of 0.38. Out of total 14 genes studied, expression of ten genes was found to be significantly different among 3 breeds after normalization with these reference genes. Ghagus breed showed higher level of expression of TLR1LB, TLR7, NOD1, NOD5, B-Lec, IFNβ, IL1β, and IL8 genes when compared to Nicobari breed. Further, Ghagus showed higher expression of TLR1LB, MDA5, LGP2, B-Lec, IL1β, and IL8 genes as compared to WLH breed. Higher expression of LGP2 and MDA5 genes was observed in Nicobari compared to the WLH breed while higher expression of TLR7, NOD1, NOD5, and IFNβ genes was observed in WLH as compared to Nicobari breed. No difference was observed in the expression of TLR1LA, TLR3, B-NK, and IFNα genes among 3 breeds. Study revealed significant breed effect in expression profile of PRR and some of the cytokine genes and Ghagus breed seems to have better expression profile of these genes linked to the innate immunity when compared to the WLH and Nicobar breeds. © 2017 Poultry Science Association Inc.

  17. Leptin gene, leptin gene receptor polymorphisms and body weight in pregnant women with type 1 diabetes mellitus.

    Science.gov (United States)

    Iciek, Rafał; Wender-Ozegowska, Ewa; Seremak-Mrozikiewicz, Agnieszka; Drews, Krzysztof; Brazert, Jacek; Pietryga, Marek

    2008-09-01

    Leptin, as well as many other hormones, may play an important role in the pathogenesis of obesity. Several genetic variants of both leptin and its receptor genes may influence human body weight To investigate the role of leptin gene polymorphism promotion region (-2548G/A) and leptin gene receptor polymorphism (668 A/G) in regulation of body weight in the group of women with type 1 diabetes (PGDM-1). 78 PGDM-1 first trimester pregnant women were qualified for the study group (SG). They were divided into normal and overweight subgroups, based on pre-pregnancy BMI. Control group (CG) consisted of first trimester healthy pregnant women with normal pre-pregnancy body weight Genetic variants of leptin gene and its receptor were analyzed with the help of PCR-RFLP assays. In the SG, the following metabolic parameters were estimated: MBG, HbA1c, insulin dose, LDL, HDL, T-CHOL, triglycerids, creatinine, creatinine clearance and blood pressure. A tendency for the majority of homozygous A and G variants in LEP -2548 G/A and LEPR 668 A/G was found in overweight and obese patients, in comparison to normal-weight subjects. No specific differences in selected first trimester metabolic parameters were found in relation to patients' genotypes in the diabetic group.

  18. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes.

    Science.gov (United States)

    Arrighi, Jean-François; Barre, Annick; Ben Amor, Besma; Bersoult, Anne; Soriano, Lidia Campos; Mirabella, Rossana; de Carvalho-Niebel, Fernanda; Journet, Etienne-Pascal; Ghérardi, Michèle; Huguet, Thierry; Geurts, René; Dénarié, Jean; Rougé, Pierre; Gough, Clare

    2006-09-01

    Rhizobial Nod factors are key symbiotic signals responsible for starting the nodulation process in host legume plants. Of the six Medicago truncatula genes controlling a Nod factor signaling pathway, Nod Factor Perception (NFP) was reported as a candidate Nod factor receptor gene. Here, we provide further evidence for this by showing that NFP is a lysin [corrected] motif (LysM)-receptor-like kinase (RLK). NFP was shown both to be expressed in association with infection thread development and to be involved in the infection process. Consistent with deviations from conserved kinase domain sequences, NFP did not show autophosphorylation activity, suggesting that NFP needs to associate with an active kinase or has unusual functional characteristics different from classical kinases. Identification of nine new M. truncatula LysM-RLK genes revealed a larger family than in the nonlegumes Arabidopsis (Arabidopsis thaliana) or rice (Oryza sativa) of at least 17 members that can be divided into three subfamilies. Three LysM domains could be structurally predicted for all M. truncatula LysM-RLK proteins, whereas one subfamily, which includes NFP, was characterized by deviations from conserved kinase sequences. Most of the newly identified genes were found to be expressed in roots and nodules, suggesting this class of receptors may be more extensively involved in nodulation than was previously known.

  19. Selection on the Major Color Gene Melanocortin-1-Receptor Shaped the Evolution of the Melanocortin System Genes

    Directory of Open Access Journals (Sweden)

    Linda Dib

    2017-12-01

    Full Text Available Modular genetic systems and networks have complex evolutionary histories shaped by selection acting on single genes as well as on their integrated function within the network. However, uncovering molecular coevolution requires the detection of coevolving sites in sequences. Detailed knowledge of the functions of each gene in the system is also necessary to identify the selective agents driving coevolution. Using recently developed computational tools, we investigated the effect of positive selection on the coevolution of ten major genes in the melanocortin system, responsible for multiple physiological functions and human diseases. Substitutions driven by positive selection at the melanocortin-1-receptor (MC1R induced more coevolutionary changes on the system than positive selection on other genes in the system. Contrarily, selection on the highly pleiotropic POMC gene, which orchestrates the activation of the different melanocortin receptors, had the lowest coevolutionary influence. MC1R and possibly its main function, melanin pigmentation, seems to have influenced the evolution of the melanocortin system more than functions regulated by MC2-5Rs such as energy homeostasis, glucocorticoid-dependent stress and anti-inflammatory responses. Although replication in other regulatory systems is needed, this suggests that single functional aspects of a genetic network or system can be of higher importance than others in shaping coevolution among the genes that integrate it.

  20. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits

    Science.gov (United States)

    Aspé-Sánchez, Mauricio; Moreno, Macarena; Rivera, Maria Ignacia; Rossi, Alejandra; Ewer, John

    2016-01-01

    Oxytocin (OXT) and arginine-vasopressin (AVP) are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies. This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (such as those of dopamine, serotonin, and reelin), as well as research that has shed some light on the impact of gene polymorphisms on the volume, connectivity, and activation of specific neural structures, differential receptor expression, and plasma levels of the OXT and AVP peptides. We hope that this effort will be helpful for understanding the studies performed so far, and for encouraging the inclusion of other candidate genes not explored to date. PMID:26858594

  1. Investigation of the vitamin D receptor gene (VDR) and its interaction with protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2) on risk of islet autoimmunity and type 1 diabetes : The Diabetes Autoimmunity Study in the Young (DAISY)

    NARCIS (Netherlands)

    Frederiksen, B.; Liu, E.; Romanos, J.; Steck, A. K.; Yin, X.; Kroehl, M.; Fingerlin, T. E.; Erlich, H.; Eisenbarth, G. S.; Rewers, M.; Norris, J. M.

    The present study investigated the association between variants in the vitamin D receptor gene (VDR) and protein tyrosine phosphatase, non-receptor type 2 gene (PTPN2), as well as an interaction between VDR and PTPN2 and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D).

  2. Designing exons for human olfactory receptor gene subfamilies ...

    Indian Academy of Sciences (India)

    Prakash

    occur in clusters ranging from ~51 to 105 and are unevenly spread over 21 chromosomes (Malnic et al. 2004; Young et al. 2008). A conservative estimate suggests that 339 full- length OR genes and 297 OR pseudogenes are present in these clusters (Malnic et al. 2004). ... The aroma and electronic nose industry.

  3. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full estrogen receptor alpha transcriptional activity.

    Science.gov (United States)

    Peterson, Theresa J; Karmakar, Sudipan; Pace, Margaret C; Gao, Tong; Smith, Carolyn L

    2007-09-01

    Multiple factors influence estrogen receptor alpha (ERalpha) transcriptional activity. Current models suggest that the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor functions within a histone deactylase-containing protein complex that binds to antiestrogen-bound ERalpha and contributes to negative regulation of gene expression. In this report, we demonstrate that SMRT is required for full agonist-dependent ERalpha activation. Chromatin immunoprecipitation assays demonstrate that SMRT, like ERalpha and the SRC-3 coactivator, is recruited to an estrogen-responsive promoter in estrogen-treated MCF-7 cells. Depletion of SMRT, but not histone deacetylases 1 or 3, negatively impacts estradiol-stimulated ERalpha transcriptional activity, while exogenous expression of SMRT's receptor interaction domains blocks ERalpha activity, indicating a functional interaction between this corepressor and agonist-bound ERalpha. Stimulation of estradiol-induced ERalpha activity by SMRT overexpression occurred in HeLa and MCF-7 cells, but not HepG2 cells, indicating that these positive effects are cell type specific. Similarly, the ability of SMRT depletion to promote the agonist activity of tamoxifen was observed for HeLa but not MCF-7 cells. Furthermore, impairment of agonist-stimulated activity by SMRT depletion is specific to ERalpha and not observed for receptors for vitamin D, androgen, or thyroid hormone. Nuclear receptor corepressor (N-CoR) depletion increased the transcriptional activity of all four tested receptors. SMRT is required for full expression of the ERalpha target genes cyclin D1, BCL-2, and progesterone receptor but not pS2, and its depletion significantly attenuated estrogen-dependent proliferation of MCF-7 cells. Taken together, these data indicate that SMRT, in conjunction with gene-specific and cell-dependent factors, is required for positively regulating agonist-dependent ERalpha transcriptional activity.

  4. Molecular Approach to Hypothalamic Rhythms: Isolation of Novel Indoleamine Receptor Genes

    Science.gov (United States)

    1993-03-14

    novel. The sites of expression within the brain have been determined for each of the genes. Expression in mammalian cells demonstrates that each new...novel. The sites of expression within the brain have been determined for each of the genes. Expression in mammalian cells demonstrates that each new...these four putative receptors empirically, we subcloned their cDNAs into a eucaryotic expression vector and transiently expressed the encoded protein is

  5. Significance of Vitamin D Receptor Gene Polymorphisms for Risk of Hepatocellular Carcinoma in Chronic Hepatitis C

    OpenAIRE

    Hung, Chao-Hung; Chiu, Yi-Chun; Hu, Tsung-Hui; Chen, Chien-Hung; Lu, Sheng-Nan; Huang, Chao-Min; Wang, Jing-Houng; Lee, Chuan-Mo

    2014-01-01

    BACKGROUND/AIMS: Biological and epidemiological data suggest that vitamin D levels may influence cancer development. Several single nucleotide polymorphisms have been described in the vitamin D receptor (VDR) gene in association with cancer risk. We aimed to investigate the association of VDR gene polymorphisms with hepatocellular carcinoma (HCC) development in chronic hepatitis C patients. METHODS: In a cross-sectional, hospital-based setting, 340 patients (201 chronic hepatitis, 47 cirrh...

  6. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents

    OpenAIRE

    Niimura, Yoshihito

    2009-01-01

    Abstract Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs), which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most specie...

  7. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene.

    Science.gov (United States)

    Kuang, Jiangying; Hou, Xiaoming; Zhang, Jinlong; Chen, Yulong; Su, Zhiguang

    2014-03-18

    Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Cannabinoid Receptor 1 Gene by Cannabis Use Interaction on CB1 Receptor Density

    OpenAIRE

    Ketcherside, Ariel; Noble, Lindsey J.; McIntyre, Christa K.; Filbey, Francesca M.

    2017-01-01

    Abstract Background: Because delta-9-tetrahydrocannabinol (THC), the primary psychoactive ingredient in cannabis, binds to cannabinoid 1 (CB1) receptors, levels of CB1 protein could serve as a potential biomarker for response to THC. To date, available techniques to characterize CB1 expression and function in vivo are limited. In this study, we developed an assay to quantify CB1 in lymphocytes to determine how it relates to cannabis use in 58 daily cannabis users compared with 47 nonusers. Fu...

  9. Oxytocin and vasopressin receptor gene polymorphisms: role in social and psychiatric traits.

    Directory of Open Access Journals (Sweden)

    Mauricio eAspé Sánchez

    2016-01-01

    Full Text Available Oxytocin (OXT and arginine-vasopressin (AVP are two phylogenetically conserved neuropeptides that have been implicated in a wide range of social behaviors. Although a large body of research, ranging from rodents to humans, has reported on the effects of OXT and AVP administration on affiliative and trust behaviors, and has highlighted the genetic contributions of OXT and AVP receptor polymorphisms to both social behaviors and to diseases related to social deficits, the consequences of peptide administration on psychiatric symptoms, and the impact of receptor polymorphisms on receptor function, are still unclear. Despite the exciting advances that these reports have brought to social neuroscience, they remain preliminary and suffer from the problems that are inherent to monogenetic linkage and association studies. As an alternative, some studies are using polygenic approaches, and consider the contributions of other genes and pathways, including those involving DA, 5-HT, and reelin, in addition to OXT and AVP; a handful of report are also using genome-wide association studies.This review summarizes findings on the associations between OXT and AVP receptor polymorphism, social behavior, and psychiatric diseases. In addition, we discuss reports on the interactions of OXT and AVP receptor genes and genes involved in other pathways (like those

  10. Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin.

    Science.gov (United States)

    Pronin, Alexey N; Xu, Hong; Tang, Huixian; Zhang, Lan; Li, Qing; Li, Xiaodong

    2007-08-21

    Variation in human taste is a well-known phenomenon. However, little is known about the molecular basis for it. Bitter taste in humans is believed to be mediated by a family of 25 G protein-coupled receptors (hT2Rs, or TAS2Rs). Despite recent progress in the functional expression of hT2Rs in vitro, up until now, hT2R38, a receptor for phenylthiocarbamide (PTC), was the only gene directly linked to variations in human bitter taste. Here we report that polymorphism in two hT2R genes results in different receptor activities and different taste sensitivities to three bitter molecules. The hT2R43 gene allele, which encodes a protein with tryptophan in position 35, makes people very sensitive to the bitterness of the natural plant compounds aloin and aristolochic acid. People who do not possess this allele do not taste these compounds at low concentrations. The same hT2R43 gene allele makes people more sensitive to the bitterness of an artificial sweetener, saccharin. In addition, a closely related gene's (hT2R44's) allele also makes people more sensitive to the bitterness of saccharin. We also demonstrated that some people do not possess certain hT2R genes, contributing to taste variation between individuals. Our findings thus reveal new examples of variations in human taste and provide a molecular basis for them.

  11. Pyruvate Kinase and Fcγ Receptor Gene Copy Numbers Associated With Malaria Phenotypes.

    Science.gov (United States)

    Faik, Imad; van Tong, Hoang; Lell, Bertrand; Meyer, Christian G; Kremsner, Peter G; Velavan, Thirumalaisamy P

    2017-07-15

    Genetic factors are associated with susceptibility to many infectious diseases and may be determinants of clinical progression. Gene copy number variation (CNV) has been shown to be associated with phenotypes of numerous diseases, including malaria. We quantified gene copy numbers of the pyruvate kinase, liver, and red blood cell (PKLR) gene as well as of the Fcγ receptor 2A and Fcγ receptor 2C (FCGR2A, FCGR2C) and Fcγ receptor 3 (FCGR3) genes using real-time quantitative polymerase chain reaction (RT-qPCR) assays in Gabonese children with severe (n = 184) or and mild (n = 189) malaria and in healthy Gabonese and white individuals (n = 76 each). The means of PKLR, FCGR2A, FCGR2C, and FCGR3 copy numbers were significantly higher among children with severe malaria compared to those with mild malaria (P malaria severity. Copy numbers of the FCGR2A and FCGR2C genes were significantly lower (P = .005) in Gabonese individuals compared with white individuals. In conclusion, CNV of the PKLR, FCGR2A, FCGR2C, and FCGR3 genes is associated with malaria severity, and our results provide evidence for a role of CNV in host responses to malaria. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  12. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Science.gov (United States)

    Field, Anne-Christine; Vink, Conrad; Gabriel, Richard; Al-Subki, Roua; Schmidt, Manfred; Goulden, Nicholas; Stauss, Hans; Thrasher, Adrian; Morris, Emma; Qasim, Waseem

    2013-01-01

    Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  13. Comparison of lentiviral and sleeping beauty mediated αβ T cell receptor gene transfer.

    Directory of Open Access Journals (Sweden)

    Anne-Christine Field

    Full Text Available Transfer of tumour antigen-specific receptors to T cells requires efficient delivery and integration of transgenes, and currently most clinical studies are using gamma retroviral or lentiviral systems. Whilst important proof-of-principle data has been generated for both chimeric antigen receptors and αβ T cell receptors, the current platforms are costly, time-consuming and relatively inflexible. Alternative, more cost-effective, Sleeping Beauty transposon-based plasmid systems could offer a pathway to accelerated clinical testing of a more diverse repertoire of recombinant high affinity T cell receptors. Nucleofection of hyperactive SB100X transposase-mediated stable transposition of an optimised murine-human chimeric T cell receptor specific for Wilm's tumour antigen from a Sleeping Beauty transposon plasmid. Whilst transfer efficiency was lower than that mediated by lentiviral transduction, cells could be readily enriched and expanded, and mediated effective target cells lysis in vitro and in vivo. Integration sites of transposed TCR genes in primary T cells were almost randomly distributed, contrasting the predilection of lentiviral vectors for transcriptionally active sites. The results support exploitation of the Sleeping Beauty plasmid based system as a flexible and adaptable platform for accelerated, early-phase assessment of T cell receptor gene therapies.

  14. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    Science.gov (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  15. Hypoxia attenuates purinergic P2X receptor-induced inflammatory gene expression in brainstem microglia

    Directory of Open Access Journals (Sweden)

    Smith SMC

    2013-08-01

    Full Text Available Stephanie MC Smith,1,2 Gordon S Mitchell,1,2 Scott A Friedle,3 Christine M Sibigtroth,1 Stéphane Vinit,1 Jyoti J Watters1–31Department of Comparative Biosciences, 2Comparative Biomedical Sciences Training Program, 3Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI, USAAbstract: Hypoxia and increased extracellular nucleotides are frequently coincident in the brainstem. Extracellular nucleotides are potent modulators of microglial inflammatory gene expression via P2X purinergic receptor activation. Although hypoxia is also known to modulate inflammatory gene expression, little is known about how hypoxia or P2X receptor activation alone affects inflammatory molecule production in brainstem microglia, nor how hypoxia and P2X receptor signaling interact when they occur together. In the study reported here, we investigated the ability of a brief episode of hypoxia (2 hours in the presence and absence of the nonselective P2X receptor agonist 2′(3′-O-(4-benzoylbenzoyladenosine-5′-triphosphate (BzATP to promote inflammatory gene expression in brainstem microglia in adult rats. We evaluated inducible nitric oxide synthase (iNOS, tumor necrosis factor alpha (TNFα, and interleukin (IL-6 messenger RNA levels in immunomagnetically isolated brainstem microglia. While iNOS and IL-6 gene expression increased with hypoxia and BzATP alone, TNFα expression was unaffected. Surprisingly, BzATP-induced inflammatory effects were lost after hypoxia, suggesting that hypoxia impairs proinflammatory P2X-receptor signaling. We also evaluated the expression of key P2X receptors activated by BzATP, namely P2X1, P2X4, and P2X7. While hypoxia did not alter their expression, BzATP upregulated P2X4 and P2X7 mRNAs; these effects were ablated in hypoxia. Although both P2X4 and P2X7 receptor expression correlated with increased microglial iNOS and IL-6 levels in microglia from normoxic rats, in hypoxia, P2X7 only correlated with IL-6, and P2X

  16. Mutations in the Human Ca{sup 2+}-sensing-receptor gene that cause familial hypocalciuric hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Yah-Huei Wu Chou [Chang Gung Memorial Hospital, Taoyuan (Taiwan, Province of China); Pollak, M.R.; Brown, E.M.; Seidman, J.G.; Seidman, C.E. [Harvard Univ., Boston, MA (United States); Brandi, M.L. [Univ. Florence (Italy); Toss, G.; Arnqvist, H. [Linkoping Univ. (Sweden)

    1995-05-01

    We report five novel mutations in the human Ca{sup 2+}-sensing-receptor gene that cause familial hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism. Each gene defect is a missense mutation that encodes a nonconservative amino acid alteration. These mutations are each predicted to be in the Ca{sup 2+}-sensing receptor`s large extracellular domain. In three families with FHH linked to the Ca{sup 2+}-sensing-receptor gene on chromosome 3 and in unrelated individuals probands with FHH, mutations were not detected in protein-coding sequences. On the basis of these data and previous analyses, we suggest that there are a wide range of mutations that cause FHH. Mutations that perturb the structure and function of the extracellular or transmembrane domains of the receptor and those that affect noncoding sequences of the Ca{sup 2+}-sensing-receptor gene can cause FHH. 23 refs., 2 figs., 1 tab.

  17. Pseudogenization of a sweet-receptor gene accounts for cats' indifference toward sugar.

    Directory of Open Access Journals (Sweden)

    Xia Li

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  18. Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Although domestic cats (Felis silvestris catus possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3, we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer

  19. Angiotensin-II type 1 receptor gene polymorphism and diabetic microangiopathy

    DEFF Research Database (Denmark)

    Tarnow, L; Cambien, Francois; Rossing, P

    1996-01-01

    BACKGROUND: Genotypic abnormalities of the renin-angiotensin system have been suggested as risk factors for the development of hypertension, diabetic nephropathy and proliferative retinopathy. Most of the known actions of angiotensin-II are exerted through the angiotensin-II type 1 receptor, which...... is present particularly in vascular smooth muscle cells, myocardium and the kidney. A transversion of adenine to cytosine at nucleotide position 1166 in the gene coding for the angiotensin-II type 1 receptor has been associated with hypertension in the non-diabetic population. METHODS: We studied...... the relationship between the A1166-->C polymorphism in the angiotensin-II type 1 receptor gene in patients with insulin dependent diabetes mellitus (IDDM) and diabetic nephropathy (121 men, 77 women, age 41 +/- 10 years, diabetes duration 27 +/- 8 years) and in IDDM patients with normoalbuminuria (116 men, 74...

  20. Suicide Gene Therapy to Increase the Safety of Chimeric Antigen Receptor-Redirected T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Monica Casucci, Attilio Bondanza

    2011-01-01

    Full Text Available Chimeric antigen receptors (CARs are generated by fusing the antigen-binding motif of a monoclonal antibody (mAb with the signal transduction machinery of the T-cell receptor (TCR. The genetic modification of T lymphocytes with chimeric receptors specific for tumor-associated antigens (TAAs allows for the redirection towards tumor cells. Clinical experience with CAR-redirected T cells suggests that antitumor efficacy associates with some degree of toxicity, especially when TAA expression is shared with healthy tissues. This situation closely resembles the case of allogeneic hematopoietic stem cell transplantation (HSCT, wherein allorecognition causes both the graft-versus-leukemia (GVL effect and graft-versus-host disease (GVHD. Suicide gene therapy, i.e. the genetic induction of a conditional suicide phenotype into donor T cells, enables dissociating the GVL effect from GVHD. Applying suicide gene modification to CAR-redirected T cells may therefore greatly increase their safety profile and facilitate their clinical development.

  1. T-cell receptor gene rearrangement in Epstein-Barr virus infectious mononucleosis.

    Science.gov (United States)

    Marbello, L; Riva, M; Veronese, S; Nosari, A M; Ravano, E; Colosimo, A; Paris, L; Morra, E

    2012-09-01

    This report describes the case of a previously healthy young man who presented with fever, pharyngitis, cervical lymphadenopathy, lymphocytosis, and severe thrombocytopenia. Serological tests for Epstein-Barr virus were diagnostic of a primary Epstein-Barr virus infectious mononucleosis but severe thrombocytopenia aroused the suspicion of a lymphoproliferative disease. T-cell receptor gene analysis performed on peripheral and bone marrow blood revealed a T-cell receptor γ-chain rearrangement without the evidence of malignancy using standard histologic and immunophenotype studies. Signs and symptoms of the infectious disease, blood count, and T-cell receptor gene rearrangement resolved with observation without the evidence of emergence of a lymphoproliferative disease. In the contest of a suspected lymphoproliferative disease, molecular results should be integrated with all available data for an appropriate diagnosis.

  2. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  3. Association of polymorphism in Exon 3 of toll-like receptor 4 gene ...

    African Journals Online (AJOL)

    Sahand Rayaneh

    2013-12-21

    Dec 21, 2013 ... Gene expression patterns indicate the innate immune response of the mammary gland, which is characterized by production of a large amount of important mediators of innate immunity following activation of the TLR4. Toll- like receptor 4 has evolved with its accessory proteins (LBP, CD14, and MD-2/Ly96) ...

  4. Comparative study of leptin and leptin receptor gene expression in different swine breeds.

    Science.gov (United States)

    Georgescu, S E; Manea, M A; Dinescu, S; Costache, M

    2014-02-14

    Leptin is an important regulator of appetite, energy metabolism, and reproduction and is mainly synthesized in the adipocytes and then secreted into the bloodstream. The leptin receptor was classified as type I cytokine receptor due to its structural homology with IL-6 receptors and the signaling pathways in which they are both involved. The aim of our study is to comparatively assess the gene expression levels of leptin (lep) and leptin receptor (lepr) in different swine breeds specialized either in meat production (Duroc, Belgian Landrace, Large White, Synthetic Lines LS-345, and LSP-2000) or fat production (Mangalitsa) in order to correlate them with morphological and productivity characteristics. Additionally, lepr pattern of expression was evaluated comparatively between different tissue types in the Mangalitsa breed. Our results revealed high expression of the lep gene in Mangalitsa compared to those of all the other breeds, while for the lepr gene, average/medium levels were registered in Mangalitsa and increased pattern of expression was found in the synthetic lines LS-345 and LSP-2000. Regarding the comparative analysis of lepr gene expression in various tissues in the Mangalitsa breed, elevated levels were found in the liver and kidney, while the lowest expression was identified in the brain and muscles. Our results suggest that the Mangalitsa population exhibits leptin resistance, which might be correlated with atypical morpho-productive characteristics for this breed, such as below-average prolificacy and a strong tendency to accumulate fat.

  5. Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia

    NARCIS (Netherlands)

    Pozhidaev, Ivan V; Alifirova, V. M.; Freidin, Maxim B.; Zhukova, I.A.; Fedorenko, Olga Yu; Osmanova, Diana Z; Mironova, Y.S.; Wilffert, Berend; Ivanova, Svetlana A.; Loonen, Antonius

    2017-01-01

    Dopamine receptors genes polymorphisms in Parkinson patients with levodopa-induced dyskinesia I. Pozhidaev(1), V.M. Alifirova(2), M.B. Freidin(3), I.A. Zhukova(2), O.Y. Fedorenko(1), D.Z. Osmanova(1), Y.S. Mironova(2), B. Wilffert(4), S.A. Ivanova(1), A.J.M. Loonen(5) (1)Mental Health Research

  6. Transient receptor potential genes, smoking, occupational exposures and cough in adults

    NARCIS (Netherlands)

    Smit, L.A.|info:eu-repo/dai/nl/311470882; Kogevinas, M.; Antó, J.; Bouzigon, E.; González, J.R.; Le Moual, N.; Kromhout, J.|info:eu-repo/dai/nl/074385224; Carsin, A.; Pin, I.; Jarvis, D.; Vermeulen, R.C.H.|info:eu-repo/dai/nl/216532620; Janson, C.; Heinrich, J.; Gut, I.; Lathrop, M.; Valverde, M.A.; Demenais, F.; Kauffmann, F.

    2012-01-01

    BACKGROUND: Transient receptor potential (TRP) vanilloid and ankyrin cation channels are activated by various noxious chemicals and may play an important role in the pathogenesis of cough. The aim was to study the influence of single nucleotide polymorphisms (SNPs) in TRP genes and irritant

  7. Genetic Variation in the Leptin Receptor Gene, Leptin, and Weight Gain in Young Dutch Adults

    NARCIS (Netherlands)

    Rossum, van C.T.M.; Hoebee, B.; Baak, van M.A.; Mars, M.; Saris, W.H.M.; Seidell, J.C.

    2003-01-01

    Objective: To investigate the association between leptin levels, polymorphisms in the leptin receptor (LEPR) gene, and weight gain. Research Methods and Procedures: From two large prospective cohorts in The Netherlands (n = 17, 500), we compared the baseline leptin of 259 subjects who had gained an

  8. Association of polymorphism in the dopamine receptors and transporter genes with hyperprolactinemia in patients with schizophrenia

    NARCIS (Netherlands)

    Osmanova, Diana Z; Boiko, Anastasia S; Fedorenko, Olga Yu; Pozhidaev, Ivan V; Freidin, Maxim B.; Kornetova, Elena G; Ivanova, Svetlana A.; Wilffert, Berend; Loonen, Antonius

    2017-01-01

    Association of polymorphism in the dopamine receptors and transporter genes with hyperprolactinemia in patients with schizophrenia D. Osmanova(1), A.S. Boiko(1), O.Y. Fedorenko(1), I.V. Pozhidaev(1), M.B. Freidin(2), E.G. Kornetova(3), S.A. Ivanova(1), B. Wilffert(4), A.J.M. Loonen(5) (1)Mental

  9. Polymorphism of glucagon-like peptide-1 receptor gene (rs1042044 ...

    African Journals Online (AJOL)

    patience

    2015-02-16

    Feb 16, 2015 ... turnover via GLP-1 receptors (GLP1Rs) in postmenopausal state. Furthermore, polymorphisms in. GLP1R gene were suggested to affect the function of GLP1Rs and be associated with many diseases. However, the relationships between GLP1R polymorphisms and osteoporosis susceptibility and bone.

  10. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    Harper, Peter; El-Hariry, Iman; Powles, Thomas

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  11. A Study of the androgen receptor gene polymorphism and the level ...

    African Journals Online (AJOL)

    Background: Androgenetic alopecia (AGA) occurs in men and women. The nature of the genetic predisposition to androgenetic alopecia is still unresolved. The aim of the work is to study the genotype of the androgen receptor gene (StuI polymorphism) and its relationship to AGA in a case control study and to determine the ...

  12. Novel mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infections

    DEFF Research Database (Denmark)

    Storgaard, M; Varming, K; Herlin, T

    2006-01-01

    In 1981 we presented a patient with Mycobacterium intracellulare osteomyelitis and depressed monocyte cytotoxicity. It is now demonstrated that the molecular defect was a never-before-described nucleotide deletion at position 794 (794delT) in the interferon-gamma-receptor alpha-1 gene. The geneti...

  13. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay

    NARCIS (Netherlands)

    Freitas, de J.; Cano, P.; Craig-Veit, C.; Goodson, M.L.; Furlow, J.D.; Murk, A.J.

    2011-01-01

    A stable luciferase reporter gene assay was developed based on the thyroid hormone responsive rat pituitary tumor GH3 cell line that constitutively expresses both thyroid hormone receptor isoforms. Stable transfection of the pGL4CP-SV40-2xtaDR4 construct into the GH3 cells resulted in a highly

  14. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition

    NARCIS (Netherlands)

    S.W.J. Lamberts (Steven); E.F.C. van Rossum (Liesbeth)

    2004-01-01

    textabstractMost actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding

  15. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    NARCIS (Netherlands)

    L. Edvinsson (Lars); K.Y. Chan (Kayi); S. Eftekhari; E. Nilsson (Elisabeth); R. de Vries (René); H. Säveland (Hans); C.M.F. Dirven (Clemens); A.H.J. Danser (Jan)

    2010-01-01

    textabstractIntroduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on

  16. Specific amplification of iron receptor genes in Xylella fastidiosa strains from different hosts

    Directory of Open Access Journals (Sweden)

    Flávia Teresa Hansen Pacheco

    2006-01-01

    Full Text Available Bacterial production of siderophores may involve specific genes related to nonribosomal peptide and polyketide biosynthesis, which have not been fully identified in the genome of Xylella fastidiosa strain 9a5c. However, a search for siderophore-related genes in strain 9a5c indicated five membrane receptors, including siderophore, ferrichrome-iron and hemin receptors. All these biomolecules are thought to be associated with iron transport and utilization. Eighty isolates obtained from citrus orchards containing trees that developed citrus variegated chlorosis (CVC were screened for siderophore production. The results demonstrated that only 10 of the isolates did not produce siderophores. Additional strains obtained from coffee, almond, mulberry, elm, ragweed, periwinkle and grape also infected by X. fastidiosa were also shown by the chromeazurol bioassay to produce siderophores. In order to correlate siderophore production with the presence of siderophore-related genes, a polymerase chain reaction (PCR was developed using specific primers for the catechol-type ferric enterobactin receptor (pfeA and the hydroxamate-type ferrisiderophore receptor (fiuA genes of strain 9a5c. The PCR results confirmed our hypothesis by demonstrating that amplification products were detected in all strains except for those isolates that did not produce siderophores.

  17. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer

    DEFF Research Database (Denmark)

    Svensson, Charlotte; Ceder, Jens; Iglesias Gato, Diego

    2014-01-01

    The androgen receptor (AR) is a key regulator of prostate tumorgenesis through actions that are not fully understood. We identified the repressor element (RE)-1 silencing transcription factor (REST) as a mediator of AR actions on gene repression. Chromatin immunoprecipitation showed that AR binds...

  18. Common variants in the gene for the serotonin receptor 6 (HTR6) do ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 89; Issue 4. Common variants in the gene for the serotonin receptor 6 (HTR6) do not contribute to obesity. Armand V. Peeters Sigri Beckers An Verrijken Peter Roevens Pieter J. Peeters Luc F. Van Gaal Wim Van Hul. Research Note Volume 89 Issue 4 December 2010 pp 469- ...

  19. Structure and chromosomal localization of the human anti-mullerian hormone type II receptor gene

    NARCIS (Netherlands)

    J.A. Visser (Jenny); A. McLuskey; T. van Beers (T.); D.O. Weghuis (D. Olde); A.H.M. Geurts van Kessel (Ad); J.A. Grootegoed (Anton); A.P.N. Themmen (Axel)

    1995-01-01

    textabstractUsing the rat anti-müllerian hormone type II receptor (AMHRII) cDNA as a probe, two overlapping lambda phage clones containing the AMHRII gene were isolated from a human genomic library. Sequence analysis of the exons was performed and the exon/intron boundaries were determined. The

  20. Interleukin 17 receptor gene polymorphism in periimplantitis and chronic periodontitis.

    Science.gov (United States)

    Kadkhodazadeh, Mahdi; Ebadian, Ahmad Reza; Amid, Reza; Youssefi, Navid; Mehdizadeh, Amir Reza

    2013-07-13

    Gene polymorphism of cytokines influencing their function has been known as a contributing factor in the pathogenesis of inflammatory diseases of the tooth and implant supporting tissues. The aim of this study was to investigate the association of IL-17R gene polymorphism (rs879576) with chronic periodontitis and periimplantitis in an Iranian population. 73 patients with chronic periodontitis, 37 patients with periimplantitis and 83 periodontally healthy patients were enrolled in this study. 5cc blood was obtained from each subject's arm vein and transferred to tubes containing EDTA. Genomic DNA was extracted using Miller's Salting Out technique. The DNA was transferred into 96 division plates, transported to Kbioscience Institute in United Kingdom and analyzed using the Kbioscience Competitive Allele Specific PCR (KASP) technique. Chi-square and Kruskal Wallis tests were used to analyze differences in the expression of genotypes and frequency of alleles in disease and control groups (P-Value less than 0.05 was considered statistically significant). There were no significant differences between periodontitis, periimplantitis with AA, GG, GA genotype of IL-17R gene (P=0.8239). Also comparison of frequency of alleles in SNP rs879576 of IL-17R gene between the chronic periodontitis group and periimplantitis group did not revealed statistically significant differences (P=0.8239). The enigma of IL-17 and its polymorphism-role in periodontitis and periimplantitis is yet to be investigated more carefully throughout further research but this article demonstrates that polymorphism of IL-17R plays no significant role in incidence of chronic periodontitis and Periimplantitis.

  1. GABA{sub A} receptor beta 3 subunit gene is possibly paternally imprinted in humans

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-15

    As the gene for GABA{sub A} receptor beta 3 subunit (GABRB3) is encompassed by a small molecular deletion in chromosome 15q11-q13, which is the critical region for Angelman syndrome(AS), the GABRB3 gene could be a candidate gene for AS. The abnormal phenotype of AS is manifested only when the deletion is inherited from the mother, not from the father. Therefore, a candidate gene for AS should be paternally imprinted. Although it was reported that the GABRB3 gene was expressed equally from either the maternal or paternal chromosome in mouse brain (i.e., not imprinted), it is well known that imprinting shows tissue specificity, and it remains to be determined if all genes imprinted in the mouse are also imprinted in humans. 4 refs., 1 fig.

  2. Development of gene diagnosis for diabetes and cholecystitis based on gene analysis of CCK-A receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Akira [National Kyushu Cancer Center, Fukuoka (Japan)

    1999-02-01

    Base sequence analysis of CCKAR gene (a gene of A-type receptor for cholecystokinin) from OLETF rat, a model rat for insulin-independent diabetes was made based on the base sequence of wild CCKAR gene, which had been clarified in the previous year. From the pancreas of OLETF rat, DNA was extracted and transduced into {lambda}phage after fragmentation to construct the gene library of OLETF. Then, {lambda}phage DNA clone bound with labelled cDNA of CCKAR gene was analyzed and the gene structure was compared with that of the wild gene. It was demonstrated that CCKAR gene of OLETF had a deletion (6800 b.p.) ranging from the promoter region to the Exon 2, suggesting that CCKAR gene is not functional in OLETF rat. The whole sequence of this mutant gene was registered into Japan DNA Bank (D 50610). Then, F{sub 2} offspring rats were obtained through crossing OLETF (female) and F344 (male) and the time course-changes in the blood glucose level after glucose loading were compared among them. The blood glucose level after glucose loading was significantly higher in the homo-mutant F{sub 2} (CCKAR,-/-) as well as the parent OLETF rat than hetero-mutant F{sub 2} (CCKARm-/+) or the wild rat (CCKAR,+/+). This suggests that CCKAR gene might be involved in the control of blood glucose level and an alteration of the expression level or the functions of CCKAR gene might affect the blood glucose level. (M.N.)

  3. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1.

    Directory of Open Access Journals (Sweden)

    Ling Pan

    Full Text Available The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3' or 5' splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1, providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function.

  4. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Yoshitaka; Arnold, A. [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Pollak, M.R.; Brown, E.M. [Brigham and Women`s Hospital, Boston, MA (United States)

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  5. Evolution of olfactory receptor genes in primates dominated by birth-and-death process.

    Science.gov (United States)

    Dong, Dong; He, Guimei; Zhang, Shuyi; Zhang, Zhaolei

    2009-08-04

    Olfactory receptor (OR) is a large family of G protein-coupled receptors that can detect odorant in order to generate the sense of smell. They constitute one of the largest multiple gene families in animals including primates. To better understand the variation in odor perception and evolution of OR genes among primates, we computationally identified OR gene repertoires in orangutans, marmosets, and mouse lemurs and investigated the birth-and-death process of OR genes in the primate lineage. The results showed that 1) all the primate species studied have no more than 400 intact OR genes, fewer than rodents and canine; 2) Despite the similar number of OR genes in the genome, the makeup of the OR gene repertoires between different primate species is quite different as they had undergone dramatic birth-and-death evolution with extensive gene losses in the lineages leading to current species; 3) Apes and Old World monkey (OWM) have similar fraction of pseudogenes, whereas New World monkey (NWM) have fewer pseudogenes. To measure the selective pressure that had affected the OR gene repertoires in primates, we compared the ratio of nonsynonymous with synonymous substitution rates by using 70 one-to-one orthologous quintets among five primate species. We found that OR genes showed relaxed selective constraints in apes (humans, chimpanzees, and orangutans) than in OWMs (macaques) and NWMs (marmosets). We concluded that OR gene repertoires in primates have evolved in such a way to adapt to their respective living environments. Differential selective constraints might play important role in the primate OR gene evolution in each primate species.

  6. Calcitonin gene-related peptide (CGRP receptors are important to maintain cerebrovascular reactivity in chronic hypertension.

    Directory of Open Access Journals (Sweden)

    Zhenghui Wang

    Full Text Available Cerebral blood flow autoregulation (CA shifts to higher blood pressures in chronic hypertensive patients, which increases their risk for brain damage. Although cerebral vascular smooth muscle cells express the potent vasodilatatory peptides calcitonin gene-related peptide (CGRP and adrenomedullin (AM and their receptors (calcitonin receptor-like receptor (Calclr, receptor-modifying proteins (RAMP 1 and 2, their contribution to CA during chronic hypertension is poorly understood. Here we report that chronic (10 weeks hypertensive (one-kidney-one-clip-method mice overexpressing the Calclr in smooth muscle cells (CLR-tg, which increases the natural sensitivity of the brain vasculature to CGRP and AM show significantly better blood pressure drop-induced cerebrovascular reactivity than wt controls. Compared to sham mice, this was paralleled by increased cerebral CGRP-binding sites (receptor autoradiography, significantly in CLR-tg but not wt mice. AM-binding sites remained unchanged. Whereas hypertension did not alter RAMP-1 expression (droplet digital (dd PCR in either mouse line, RAMP-2 expression dropped significantly in both mouse lines by about 65%. Moreover, in wt only Calclr expression was reduced by about 70% parallel to an increase of smooth muscle actin (Acta2 expression. Thus, chronic hypertension induces a stoichiometric shift between CGRP and AM receptors in favor of the CGRP receptor. However, the parallel reduction of Calclr expression observed in wt mice but not CLR-tg mice appears to be a key mechanism in chronic hypertension impairing cerebrovascular reactivity.

  7. [The correlations between polymorphism of growth hormone receptor gene and butcher traits in rabbit].

    Science.gov (United States)

    Deng, Xiao-Song; Wan, Jie; Chen, Shi-Yi; Wang, Yan; Lai, Song-Jia; Jiang, Mei-Shan; Xu, Min

    2008-11-01

    Five rabbit populations (Belgian hare, Tianfu black rabbit, Great line of Zika rabbit, Harbin white rabbit, and California rabbit) were used to analyze the polymorphism of growth hormone receptor (GHR) gene by PCR-SSCP. Results indicated that there were two mutation sites (C705T and C810T) in the 5 populations. The least square analyses showed that the live weight, visceraste weight, and slaughter percentage of AA and MM genotypes were significantly lower than BB and NN genotypes (P0.05). It suggested that GHR gene may be a candidate gene responsible for butcher trait in rabbit.

  8. Atypical expression of Drosophila gustatory receptor genes in sensory and central neurons.

    Science.gov (United States)

    Thorne, Natasha; Amrein, Hubert

    2008-02-01

    Members of the Drosophila gustatory receptor (Gr) gene family are generally expressed in chemosensory neurons and are known to mediate the perception of sugars, bitter substrates, CO(2), and pheromones. The Gr gene family consists of 68 members, many of which are organized in gene clusters of up to six genes, yet only expression of about 15 Gr genes has been characterized in detail prior to this study. Here we describe the first comprehensive expression analysis of six highly conserved Gr genes, Gr28a and Gr28b.a to Gr28b.e. Four of these Gr genes are not only expressed in the characteristic pattern associated with previously analyzed Gr genes-chemosensory neurons of the gustatory and olfactory system-but several other types of sensory neurons and neurons in the brain. Specifically, we show that several of the Gr28 genes are expressed in abdominal multidendritic neurons, putative hygroreceptive neurons of the arista, neurons associated with the Johnston's organ, peripheral proprioceptive neurons in the legs, neurons in the larval and adult brain, and oenocytes. Thus, our findings suggest that some Gr genes are utilized in nongustatory roles in the nervous system and tissues involved in proprioception, hygroreception, and other sensory modalities. It is also possible that the Gr28 genes have chemosensory roles in the detection of internal ligands. (c) 2007 Wiley-Liss, Inc.

  9. A Matter of Taste: Lineage-Specific Loss of Function of Taste Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Marco Antinucci

    2017-11-01

    Full Text Available Vertebrates can perceive at least five different taste qualities, each of which is thought to have a specific role in the evolution of different species. The avoidance of potentially poisonous foods, which are generally bitter or sour tasting, and the search for more nutritious ones, those with high-fat and high-sugar content, are two of the most well-known examples. The study of taste genes encoding receptors that recognize ligands triggering taste sensations has helped to reconstruct several evolutionary adaptations to dietary changes. In addition, an increasing number of studies have focused on pseudogenes, genomic DNA sequences that have traditionally been considered defunct relatives of functional genes mostly because of the presence of deleterious mutations interrupting their open reading frames. The study of taste receptor pseudogenes has helped to shed light on how the evolutionary history of taste in vertebrates has been the result of a succession of gene gain and loss processes. This dynamic role in evolution has been explained by the “less-is-more” hypothesis, suggesting gene loss as a mechanism of evolutionary change in response to a dietary shift. This mini-review aims at depicting the major lineage-specific loss of function of taste receptor genes in vertebrates, stressing their evolutionary importance and recapitulating signatures of natural selection and their correlations with food habits.

  10. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  11. Tyrosine Kinase Domain Gene Polymorphism of Epidermal Growth Factor Receptor in Gastric Cancer in Northern Iran

    Directory of Open Access Journals (Sweden)

    Jeivad F

    2012-01-01

    Full Text Available Background: Gastric cancer is one of the most common diseases of digestive system with a low 5-year survival rate and metastasis is the main cause of death. Multi-factors, such as changes in molecular pathways and deregulation of cells are involved in the disease development. Epidermal growth factor receptor pathway (EGFR which is associated with cell proliferation and survival can influence cancer development. EGFR function is governed by its genetic polymorphism; thus, we aimed to study the tyrosine kinase domain gene mutations of the receptor in patients with gastric cancer.Methods : In this experimental study, 123 subjects (83 patients with gastric cancer and 40 normal subjects were investigated in north of Iran for EGFR gene polymorphisms during 1 year. Genomic DNA was extracted by DNA extraction kit according to the manufacture's protocol. Polymerase chain reaction single-stranded conformation polymorphism (PCR-SSCP and silver staining were performed for investigating EGFR gene polymorphisms. Results : The participants included 72 men and 44 women. Gene polymorphism in exon 18 was present in 10% of the study population but SSCP pattern in exon 19 did not show different migrate bands neither in patients nor in normal subjects.Conclusion: It seems that screening for tyrosine kinas gene polymorphism of epidermal growth factor receptor in patients with gastric cancer and use of tyrosine kinas inhibitors could be useful in the prevention of disease progress and improvement of treatment process for a better quality of life in these patients.

  12. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes

    Science.gov (United States)

    Auboeuf, Didier; Dowhan, Dennis H.; Kang, Yun Kyoung; Larkin, Kimberly; Lee, Jae Woon; Berget, Susan M.; O'Malley, Bert W.

    2004-01-01

    The biological consequences of steroid hormone-mediated transcriptional activation of target genes might be difficult to predict because alternative splicing of a single neosynthesized precursor RNA can result in production of different protein isoforms with opposite biological activities. Therefore, an important question to address is the manner in which steroid hormones affect the splicing of their target gene transcripts. In this report, we demonstrate that individual steroid hormones had different and opposite effects on alternative splicing decisions, stimulating the production of different spliced variants produced from genes driven by steroid hormone-dependent promoters. Steroid hormone transcriptional effects are mediated by steroid hormone receptor coregulators that also modify alternative splicing decisions. Our data suggest that activated steroid hormone receptors recruit coregulators to the target promoter that participate in both the production and the splicing of the target gene transcripts. Because different coregulators activating transcription can have opposite effects on alternative splicing decisions, we conclude that the precise nature of the transcriptional coregulators recruited by activated steroid receptors, depending on the promoter and cellular contexts, may play a major role in regulating the nature of the spliced variants produced from certain target genes in response to steroid hormones. PMID:14982999

  13. A Matter of Taste: Lineage-Specific Loss of Function of Taste Receptor Genes in Vertebrates

    Science.gov (United States)

    Antinucci, Marco; Risso, Davide

    2017-01-01

    Vertebrates can perceive at least five different taste qualities, each of which is thought to have a specific role in the evolution of different species. The avoidance of potentially poisonous foods, which are generally bitter or sour tasting, and the search for more nutritious ones, those with high-fat and high-sugar content, are two of the most well-known examples. The study of taste genes encoding receptors that recognize ligands triggering taste sensations has helped to reconstruct several evolutionary adaptations to dietary changes. In addition, an increasing number of studies have focused on pseudogenes, genomic DNA sequences that have traditionally been considered defunct relatives of functional genes mostly because of the presence of deleterious mutations interrupting their open reading frames. The study of taste receptor pseudogenes has helped to shed light on how the evolutionary history of taste in vertebrates has been the result of a succession of gene gain and loss processes. This dynamic role in evolution has been explained by the “less-is-more” hypothesis, suggesting gene loss as a mechanism of evolutionary change in response to a dietary shift. This mini-review aims at depicting the major lineage-specific loss of function of taste receptor genes in vertebrates, stressing their evolutionary importance and recapitulating signatures of natural selection and their correlations with food habits. PMID:29234667

  14. Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity.

    Science.gov (United States)

    Nöthen, M M; Cichon, S; Hemmer, S; Hebebrand, J; Remschmidt, H; Lehmkuhl, G; Poustka, F; Schmidt, M; Catalano, M; Fimmers, R

    1994-12-01

    We report a null mutation in the first exon of the human dopamine D4 receptor (DRD4) gene. The mutation is predicted to result in a truncated non-functional protein and is the first natural nonsense mutation found in a human dopamine receptor gene. It occurs with a frequency of about 2% in the general population. The distribution of the mutation was found to be similar in healthy controls and patients suffering from psychiatric diseases which included schizophrenia, bipolar affective disorder and Tourette's syndrome, indicating that heterozygosity for this mutation in the DRD4 gene is not causally related to major psychiatric diseases. We also identified an adult male who is homozygous for this mutation. He shows no symptoms of major psychiatric illness, but he displays somatic ailments including acousticous neurinoma, obesity and some disturbances of the autonomic nervous system. Some of these symptoms might be related to the absence of functional DRD4 protein.

  15. Serotonin 2c receptor gene expression in the rhesus amygdala predicts anxious temperament

    Directory of Open Access Journals (Sweden)

    Patrick H. Roseboom

    2012-09-01

    Full Text Available Rationale/statement of the problem : In the central nervous system, the serotonin (5HT neurotransmitter system plays a key role in the regulation of mood and emotion. Alterations in the 5HT system are thought to contribute to psychopathologies. In addition, drugs targeting the 5HT system are effective in the treatment of depression and anxiety disorders. Children with anxious temperament (AT are characterized by excessive shyness, worrying, and avoidant behavior. This temperament, when stable across development, increases the risk of later developing depression and anxiety disorders. Using a well-established, nonhuman primate model of AT, we tested whether variations in the 5HT system predict individual differences in AT. We focused on the central nucleus region of the amygdala (CeA because we have established that metabolic activity in this region is predictive of AT. Methods : Using Affymetrix GeneChip® rhesus macaque genome arrays, we assessed gene expression from CeA tissue in 24 young male rhesus monkeys phenotyped for AT. Robust regression analysis was performed with correction for multiple comparisons across all annotated transcripts that are part of the neuroactive ligand pathway (KO04080 in the Kyoto Encyclopedia of Genes and Genomes (KEGG database. Results : As hypothesized, variation in gene expression predicted individual differences in AT. Specifically, of the thirteen 5HT receptors assessed, only the 5HT2C receptor (5HT2C; r= − 0.57, p<0.01 was identified in the microarray analysis as significantly negatively correlated with AT. Quantitative real-time polymerase chain reaction analysis using the same CeA RNA samples confirmed this association (r = −0.65, p<0.001. Underscoring the anatomical specificity of this effect, the significant relationship between 5HT2C receptor mRNA levels and AT was not observed in the motor cortex, a brain region not associated with AT (r=0.10, p=0.64. Conclusions : Previous work by others

  16. Characterization of the human Glvr-1 phosphate transporter/retrovirus receptor gene and promoter region.

    Science.gov (United States)

    Palmer, G; Manen, D; Bonjour, J P; Caverzasio, J

    1999-01-08

    The cell surface receptor for gibbon ape leukemia virus (Glvr-1) belongs to the type III sodium-dependent phosphate transporter/retrovirus receptor gene family. Several observations have suggested an important role for Glvr-1 in regulated Pi handling in bone forming cells and prompted us to investigate further the molecular mechanisms regulating Glvr-1 gene expression. In addition, the regulation of Glvr-1 gene expression also has potential applications to gene therapy, since retroviral vectors carrying gibbon ape leukemia virus envelope proteins are used for gene delivery into different cell types. The aim of this study was thus to clone the human Glvr-1 gene in order to describe its structure and its promoter region. Our results indicate that the Glvr-1 gene consists of 11 exons and 10 introns spread over 18kb of genomic DNA. The translation initiation site is located within exon II and the translation stop codon within exon XI. Rapid amplification of cDNA ends (5'-RACE) suggests that, in human SaOS-2 osteoblast-like cells, transcription of Glvr-1 is initiated at multiple sites, mostly located between bp 32 and 50 of the published cDNA sequence, which was initially obtained from HL-60 cells. The 5'-flanking region of the gene is characterized by a very high GC content. Reporter gene assays demonstrate the presence of a functional promoter upstream of exon I and indicate that a GC-rich region, containing two potential SP1 binding sites, is required for high promoter activity in transiently transfected SaOS-2 cells. The description of the human Glvr-1 gene structure, as well as the analysis of some structural and functional characteristics of its promoter region, provide a basis for more detailed investigation of the molecular mechanisms controlling expression of the Glvr-1 gene in bone forming cells and in other cell types.

  17. Identification of the minimal melanocyte-specific promoter in the melanocortin receptor 1 gene

    Directory of Open Access Journals (Sweden)

    Natali Pier

    2008-11-01

    Full Text Available Abstract Background The understanding of cutaneous pigmentation biology is relevant from the biologic and clinical point of view. The binding of α-melanocortin and its specific receptor, on the plasma membrane of melanin synthesising cells, plays a crucial role in melanins biosynthesis. Furthermore, loss of MC1R function is associated with an increased incidence of melanoma and non-melanoma skin cancer. The expression of the α-melanocortin receptor gene is highly controlled but, at the present, region responsible for tissue-specific activity of the gene promoter has not been identified. Methods We have cloned the genomic sequences upstream the human MC1R coding gene. A DNA fragment of 5 kilobases upstream the human MC1R encoding sequence was placed in front of a reporter gene and several deletion mutants of such fragment have been prepared. These constructs have been tested for the ability to drive the melanocyte-specific gene expression of the reporter gene using transfection experiments in melanocyte and non-melanocyte cell lines. From these experiments we identified a DNA fragment with the ability to drive the gene transcription in a tissue-specific way and we used this small DNA fragment in DNA-protein interaction assays. Results We show that the 150 base pairs upstream the MC1R gene initiation codon are able to drive the melanocyte-specific gene transcription. Furthermore, we provide experimental evidences suggesting that on such minimal melanocyte-specific gene promoter can assemble tissue-specific complexes. Conclusion The present results strongly imply that the transcriptional regulation of the melanocyte-specific MC1R gene requires an internal promoter located in the 150 base pairs upstream the initiation codon.

  18. Gene Expression Regulation by Agonist-Independent Constitutive Signaling of Melanocortin-1 Receptor

    Directory of Open Access Journals (Sweden)

    Ikjoo Seong

    2014-06-01

    Full Text Available BackgroundMelanocortin-1 receptor (Mc1r, a key signaling receptor for melanogenesis, has been reported to mediate migration of B16F10 melanoma cells. Interestingly, this activity appears to be a part of the constitutive signaling of Mc1r.MethodsWe carried out small interfering RNA-mediated knock-down of Mc1r on murine melanoma B16F10 cells and performed microarray analysis to characterize changes in the gene expression profile.ResultsWe isolated 22 and four genes whose expression decreased and increased, respectively, by 2.5-fold or higher as the result of Mc1r knock-down. Several down-regulated genes have been proposed to be involved in cell migration. Among these genes are several members of the chemokine gene family.ConclusionWe provide a gene set for further functional analyses of Mc1r. The Mc1r target genes we present may be particularly relevant for understanding the ligand-independent activity of Mc1r. Further examination of the mode of action may lead to novel strategies in regulating the migration and metastasis of melanoma cells.

  19. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    Science.gov (United States)

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  20. Expression of thromboxane A2 receptor gene and thromboxane A2 synthase in bovine corpora lutea.

    Science.gov (United States)

    Lei, Z M; Rao, C V; Chakraborty, C

    1992-08-01

    Studies were undertaken to investigate the expression of thromboxane (TXA2) receptor gene, from mRNA to functional receptor protein in terms of ligand binding, along with the cellular and subcellular distribution of the enzyme that catalyzes the formation of the ligand for the receptors. Bovine corpora lutea contained a single TXA2 receptor mRNA transcript of 2.8 kb. All the cell types in bovine corpora lutea contained immunoreactive TXA2 synthase, TXB2, TXA2 receptor transcripts, and receptor protein that bound the TXA2 antagonist 9,11-dimethylmethano-11,12-methano-16 (3-iodo-4-hydroxyphenyl)-13-14-dihydro-13-aza-15 alpha beta-omega-tetranor TXA2. The large luteal cells (20-35 microns) contained more receptor transcripts, receptor protein, and immunoreactive TXA2 synthase than did the small luteal cells (12-19 microns), luteal blood vessels, and nonluteal cells (7-12 microns). After correction for the cellular area differences, small luteal cells were seen to contain more receptor protein than did large luteal cells and nonluteal cells. All the cells showed an increase of TXA2 receptors and catalytically active TXA2 synthase from mid-luteal phase to early pregnancy, suggesting the possibility that TXA2 could be a luteotropic eicosanoid. Bovine lung homogenates (a positive control), bovine luteal plasma membranes-mitochondria-lysosomes fraction, rough-smooth endoplasmic reticulum-Golgi fraction, and highly purified nuclei contained 65-kDa immunoreactive protein, presumably representing TXA2 synthase. In addition, the luteal fractions, but not bovine lung, contained other small and large molecular-size immunoreactive proteins. Immunogold electron microscopy showed that immunoreactive TXA2 synthase was present primarily in plasma membranes, rough endoplasmic reticulum, nuclear membranes, and chromatin; and immunoreactive TXB2 was present primarily in different-size vesicles and nuclear chromatin. In summary, the present studies demonstrate for the first time that

  1. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    Science.gov (United States)

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. [Phenotype-genotype correlation in mutations of the gonadotrophin receptor gene in women].

    Science.gov (United States)

    Touraine, P

    2010-05-01

    Different mutations have been described in LH and FSH genes as well as in their receptors. These mutations are either activating (gain of function), or inhibiting (loss of function). Activating mutations are expressed as a dominant trait, thus in the heterozygous state, whereas inhibiting mutations are only expressed when both alleles bear the mutation. Inactivating mutations of FSH receptor gene, in women, are associated with primary ovarian insufficiency. Inactivating mutations of LH receptor gene have also been described, most often in XX patients whose families also include cases of male pseudohermaphrodism. Clinically, these women suffer from primary amenorrhea but with normal development of breasts and the hair system. Infertility is constant. LH blood levels are increased, estradiol blood levels are those encountered at the beginning of the follicular phase (50-70 pg/ml). The discovery of these mutations allows a better understanding of some genotypes and is helpful in advancing our knowledge of these receptors. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  3. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents

    Directory of Open Access Journals (Sweden)

    Niimura Yoshihito

    2009-12-01

    Full Text Available Abstract Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs, which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most species have a considerable fraction of pseudogenes. Extensive phylogenetic analyses have suggested that the numbers of gene gains and losses are extremely large in the OR gene family, which is a striking example of the birth-and-death evolution. It appears that OR gene repertoires change dynamically, depending on each organism's living environment. For example, higher primates equipped with a well-developed vision system have lost a large number of OR genes. Moreover, two groups of OR genes for detecting airborne odorants greatly expanded after the time of terrestrial adaption in the tetrapod lineage, whereas fishes retain diverse repertoires of genes that were present in aquatic ancestral species. The origin of vertebrate OR genes can be traced back to the common ancestor of all chordate species, but insects, nematodes and echinoderms utilise distinctive families of chemoreceptors, suggesting that chemoreceptor genes have evolved many times independently in animal evolution.

  4. Molecular cloning and characterization of a Toll receptor gene from Macrobrachium rosenbergii.

    Science.gov (United States)

    Srisuk, Chutima; Longyant, Siwaporn; Senapin, Saengchan; Sithigorngul, Paisarn; Chaivisuthangkura, Parin

    2014-02-01

    Toll receptors are cell surface molecules acting as pattern recognition receptors (PRRs) that have been implicated in the signaling pathway of innate immune responses. In this study, the full-length cDNA of a Toll receptor gene of Macrobrachium rosenbergii, designated MrToll, was successfully isolated using designed degenerate primers and the rapid amplification of cDNA ends (RACE). The MrToll gene sequence contained an open reading frame (ORF) of 2799 nucleotides encoding a protein of 932 amino acid residues. The protein contained distinct structural motifs of the Toll-like receptor (TLR) family, including an extracellular domain containing 15 leucine-rich repeats (LRRs), a transmembrane segment of 23 amino acids, and a cytoplasmic Toll/interleukin-1R (TIR) domain of 139 residues. Phylogenetic analysis revealed that MrToll and Toll receptor of Marsupenaeus japonicus (MjToll) evolved closely. However, the MrToll ORF demonstrated only 48-49% identity with shrimp Toll1, suggesting that MrToll isolated from a palaemonid shrimp might belong to a novel class of Toll receptors in shrimp. The transcripts of the MrToll gene were constitutively expressed in various tissues, with high levels in hemocytes, the stomach and muscle. A reverse transcriptase PCR assay demonstrated that the expression patterns of MrToll were distinctly modulated after Aeromonas caviae stimulation, with significant enhancement at 3-12 h post-challenge and a decline to basal levels at 24 h post-challenge. In addition, when MrToll-silenced shrimp were challenged with A. caviae, there was a significant increase in mortality and bacterial CFU counts. These results suggest that MrToll might be involved in host innate defense, especially against the pathogen A. caviae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Circulating leptin, soluble leptin receptor, free leptin index, visfatin and selected leptin and leptin receptor gene polymorphisms in sporadic breast cancer.

    Science.gov (United States)

    Rodrigo, Chrishani; Tennekoon, Kamani Hemamala; Karunanayake, Eric Hamilton; De Silva, Kanishka; Amarasinghe, Indrani; Wijayasiri, Ananda

    2017-04-29

    Leptin and visfatin are implicated in breast cancer risk but studies accounting for bioavailability of leptin are sparse. Reports on the association of leptin gene (LEP) and leptin receptor gene (LEPR) polymorphisms with breast cancer are also inconsistent. Only a very few studies have examined biochemical and genetic variables concomitantly in the same cohort. A matched pairs study was carried out to ascertain whether plasma leptin, soluble leptin receptor, free leptin index (leptin/soluble leptin receptor), serum visfatin and selected LEP and LEPR polymorphisms are risk factors for sporadic breast cancer. Newly diagnosed sporadic breast cancer patients (N=80) were matched for age, body mass index (BMI) and menopausal status with healthy controls. Plasma leptin, soluble leptin receptor and serum visfatin were measured by enzyme-immunoassay. LEP -2548 A/G and LEPR K109R, LEPR Q223R polymorphisms were determined by genotyping. Leptin (p=0.0234), leptin/BMI (p=0.0468), free leptin index (psoluble leptin receptor (psoluble leptin receptor, free leptin index and G109 (R109) allele of the LEPR gene K109R polymorphism are risk factors for breast cancer. When stratified by menopausal status free leptin index and soluble leptin receptor remained as risk factors irrespective of menopausal status while LEPR gene K109R A/G polymorphism remained as a risk factor only in the postmenopausal group.

  6. A missense mutation in the Ca-sensing receptor gene causes familial autosomal dominant hypoparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Y.M.; Finegold, D.N.; Armitage, M.M. [Univ. of Pittsburgh, PA (United States)] [and others

    1994-09-01

    A large family was identified in which hypoparathyroidism was observed to segregate as an autosomal dominant trait in 3 generations. Linkage analysis using short tandem repeat polymorphisms linked the disease phenotype to chromosomal region 3q13. This region contains a newly identified Ca-sensing receptor (PCAR1) gene. This receptor regulates the secretion of parathyroid hormone from parathyroid cells in response to extracellular ionized Ca concentration ([Ca{sup +2}]). PCR-based single stranded conformational analysis of exonic sequences of the PCAR1 gene revealed an abnormal conformer in exon 3 in affected individuals. Direct sequencing of the amplification product from an affected and an unaffected family member showed an A {yields} G transition at nucleotide 770 of the PCAR1 gene [numbering based on the bovine sequence (Genbank accession number S67307)]. This substitution created a Msp1 restriction site which cosegregated with hypoparathyroidism in this family. This substitution was not observed in unaffected family members, unrelated spouses, or unrelated population controls. This substitution is predicted to result in the replacement of a glutamine residue at amino acid 246 by an arginine residue. The Ca-sensing receptor appears to be a member of the family of seven membrane spanning G-protein linked receptors. The extracellular location of this amino acid substitution appears to produce a gain of function mutation increasing the receptor sensitivity to [Ca{sup +2}] and decreasing the calcium {open_quotes}set point{close_quotes}. This is in contrast to the loss of function mutations observed in the PCAR1 gene in pedigrees with familial hypercalcemic hypocalciuria.

  7. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available BACKGROUND: The receptor tyrosine kinase like orphan receptor (ROR-1 gene is overexpressed in chronic lymphocytic leukemia (CLL. Because Stat3 is constitutively activated in CLL and sequence analysis revealed that the ROR1 promoter harbors gamma-interferon activation sequence-like elements typically activated by Stat3, we hypothesized that Stat3 activates ROR1. METHODOLOGY/PRINCIPAL FINDINGS: Because IL-6 induced Stat3 phosphorylation and upregulated Ror1 protein levels in MM1 cells, we used these cells as a model. We transfected MM1 cells with truncated ROR1 promoter luciferase reporter constructs and found that IL-6 induced luciferase activity of ROR1-195 and upstream constructs. Co-transfection with Stat3 siRNA reduced the IL-6-induced luciferase activity, suggesting that IL-6 induced luciferase activity by activating Stat3. EMSA and the ChIP assay confirmed that Stat3 binds ROR1, and EMSA studies identified two Stat3 binding sites. In CLL cells, EMSA and ChIP studies determined that phosphorylated Stat3 bound to the ROR1 promoter at those two ROR1 promoter sites, and ChIP analysis showed that Stat3 co-immunoprecipitated DNA of STAT3, ROR1, and several Stat3-regulated genes. Finally, like STAT3-siRNA in MM1 cells, STAT3-shRNA downregulated STAT3, ROR1, and STAT3-regulated genes and Stat3 and Ror1 protein levels in CLL cells. CONCLUSION/SIGNIFICANCE: Our data suggest that constitutively activated Stat3 binds to the ROR1 promoter and activates ROR1 in CLL cells.

  8. Concerted gene expression of hippocampal steroid receptors during spatial learning in male Wistar rats: a correlation analysis

    Directory of Open Access Journals (Sweden)

    Gert eLubec

    2016-05-01

    Full Text Available Adrenal and gonadal steroid receptor activities are significantly involved and interact in the regulation of learning, memory and stress. Thus, a coordinated expression of steroid receptor genes during a learning task can be expected. Although coexpression of steroid receptors in response to behavioral tasks has been reported the correlative connection is unclear. According to the inverted U-shape model of the impact of stress upon learning and memory we hypothesized that glucocorticoid receptor expression should be correlated to corticosterone levels in a linear or higher order manner. Other cognition modulating steroid receptors like estrogen receptors should be correlated to glucocorticoid receptors in a quadratic manner, which describes a parabola and thus a U-shaped connection. Therefore, we performed a correlational meta-analyis of data of a previous study (Meyer and Korz, 2013a of steroid receptor gene expressions during spatial learning, which provides a sufficient data basis in order to perform such correlational connections. In that study male rats of different ages were trained in a spatial holeboard or remained untrained and the hippocampal gene expression of different steroid receptors as well as serum corticosterone levels were measured. Expressions of mineralocorticoid (MR and glucocorticoid (GR receptors were positively and linearly correlated with blood serum corticosterone levels in spatially trained but not in untrained animals. Training induced a cubic (best fit relationship between mRNA levels of estrogen receptor α (ERα and androgen receptor (AR with MR mRNA. GR gene expression was linearly correlated with MR expression under both conditions. ERα m RNA levels were negatively and linearily and MR and GR gene expressions were cubicely correlated with reference memory errors (RME. Due to only three age classes correlations with age could not be performed. The findings support the U-shape theory of steroid receptor

  9. Polymorphism and genetic mapping of the human oxytocin receptor gene on chromosome 3

    Energy Technology Data Exchange (ETDEWEB)

    Michelini, S.; Urbanek, M.; Goldman, D. [National Institute of Health-National Institute of Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-06-19

    Centrally administered oxytocin has been reported to facilitate affiliative and social behaviors, in functional harmony with its well-known peripheral effects on uterine contraction and milk ejection. The biological effects of oxytocin could be perturbed by mutations occurring in the sequence of the oxytocin receptor gene, and it would be of interest to establish the position of this gene on the human linkage map. Therefore we identified a polymorphism at the human oxytocin receptor gene. A portion of the 3{prime} untranslated region containing a 30 bp CA repeat was amplified by polymerase chain reaction (PCR), revealing a polymorphism with two alleles occurring with frequencies of 0.77 and 0.23 in a sample of Caucasian CEPH parents (n = 70). The CA repeat polymorphism we detected was used to map the human oxytocin receptor to chromosome 3p25-3p26, in a region which contains several important genes, including loci for Von Hippel-Lindau disease (VHL) and renal cell carcinoma. 53 refs., 2 figs., 1 tab.

  10. A novel polymorphism in the coding region of the vasopressin type 2 receptor gene

    Directory of Open Access Journals (Sweden)

    J.L. Rocha

    1997-04-01

    Full Text Available Nephrogenic diabetes insipidus (NDI is a rare disease characterized by renal inability to respond properly to arginine vasopressin due to mutations in the vasopressin type 2 receptor (V2(R gene in affected kindreds. In most kindreds thus far reported, the mode of inheritance follows an X chromosome-linked recessive pattern although autosomal-dominant and autosomal-recessive modes of inheritance have also been described. Studies demonstrating mutations in the V2(R gene in affected kindreds that modify the receptor structure, resulting in a dys- or nonfunctional receptor have been described, but phenotypically indistinguishable NDI patients with a structurally normal V2(R gene have also been reported. In the present study, we analyzed exon 3 of the V2(R gene in 20 unrelated individuals by direct sequencing. A C®T alteration in the third position of codon 331 (AGC®AGT, which did not alter the encoded amino acid, was found in nine individuals, including two unrelated patients with NDI. Taken together, these observations emphasize the molecular heterogeneity of a phenotypically homogeneous syndrome

  11. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    Science.gov (United States)

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  12. Opioid receptor gene expression in human neuroblastoma SH-SY5Y cells following tapentadol exposure.

    Science.gov (United States)

    Caputi, Francesca Felicia; Carretta, Donatella; Tzschentke, Thomas M; Candeletti, Sanzio; Romualdi, Patrizia

    2014-08-01

    Recent studies showed that combination of mu opioid receptor (MOP) agonism and monoamine reuptake inhibition may improve the therapeutic effect of opioids by reducing requirement for MOP activation. Tapentadol, showing such a combined mechanism of action, exhibits delayed analgesic tolerance development compared to pure MOP agonists. Here we investigated how opioid receptors are regulated following different schedules (two ranges of concentrations for 24 and 48 h) of tapentadol exposure in vitro in SH-SY5Y cells. MOP and nociceptin/orphaninFQ (NOP) receptor gene expressions were quantified using qReal-Time PCR. Moreover, studies were performed in U2 cells to assess tapentadol effect on MOP internalization compared with morphine and DAMGO. Ten and 100 nM tapentadol for 48 h induced a significant increase of MOP gene expression; cells exposed to 100 μM tapentadol for 24 and 48 h showed a significant increase of MOP mRNA levels. NOP gene expression showed a significant decrease following tapentadol at all low concentrations used after 24 h and at high concentrations (45 and 60 μM) after 24 h and (60 μM) after 48 h. Differently from DAMGO, tapentadol or morphine showed no effects on MOP internalization. This study suggests that tapentadol affects MOP and NOP gene expression and MOP internalization showing a pattern distinct from classical MOP agonists. Whether these differences can explain the improved therapeutic profile of tapentadol remains to be investigated.

  13. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya [Niigata Univ. (Japan)] [and others

    1996-07-26

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allele or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.

  14. Polymorphisms at the Ligand Binding Site of the Vitamin D Receptor Gene and Osteomalacia

    Directory of Open Access Journals (Sweden)

    Duygu Gezen Ak

    2005-01-01

    Full Text Available Vitamin D receptor (VDR gene polymorphisms have been suggested as possible determinants of bone mineral density (BMD and calcium metabolism. In this study, our aim was to determine whether there is an association between VDR gene polymorphism and osteomalacia or not. We determined ApaI and TaqI polymorphisms in the vitamin D receptor gene in 24 patients with osteomalacia and 25 age-matched healthy controls. Serum calcium, phosphorus, ALP, PTH, 25OHD levels were also examined. We used PCR and RFLP methods to test for an association between osteomalacia and polymorphisms within, intron 8 and exon 9 of the VDR gene. When the control and patients were compared for their ApaI and TaqI genotypes there was no relationship between VDR gene allelic polymorphisms and osteomalacia. Whereas a nearly significant difference for A allele was found in the allellic distribution of the patients (p = 0.08. Also no association between biochemical data and VDR gene polymorphisms was observed.

  15. Effect of vitamin D receptor gene (VDR polymorphism on body height in children – own experience

    Directory of Open Access Journals (Sweden)

    Elżbieta Jakubowska-Pietkiewicz

    2013-08-01

    Full Text Available Genetic and environmental factors have an influence on the process of growth and development of the body. One of numerous genetic factors can be the vitamin D receptor gene (VDR. The study aimed at evaluating the relationship between VDR polymorphism and somatic parameters in children.Patients and methods: The study group consisted of 395 children, aged 6–18 years. All the patients underwent gene typing using the PCR-RFLP method within polymorphic loci BsmI (rs1544410, FokI (rs2228570, ApaI (rs7975232 and TaqI (rs731236 of the VDR receptor gene. 294 children made up the control group in the study on the incidence of particular genotypes; in 161 patients somatic measurements of body weight and height were made with standard methods and skeletal densitometry (total body and spine programmes examination was performed. Statistica 10.0 PL was used for statistical analysis.Results: In patients with low bone mass a relationship between body height and FokI VDR polymorphism was noted. The p-value was statistically significantly different in group I (p=0.002 and borderline significant in group III (p=0.09. None of the polymorphisms of the VDR receptor gene demonstrated any statistically significant differences in anthropometric values in the control group and in children with osteoporosis.Summary: The presence of the F allele of FokI polymorphism of the VDR receptor gene results in increased height, which is best observed in children with low bone mass. The FF genotype favours increased height in the study group of children from Łódź.

  16. Pattern of the divergence of olfactory receptor genes during tetrapod evolution.

    Directory of Open Access Journals (Sweden)

    Takushi Kishida

    Full Text Available The olfactory receptor (OR multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion.

  17. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    Science.gov (United States)

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  18. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    Science.gov (United States)

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  19. Vitamin D receptor gene polymorphisms in Alzheimer's disease patients.

    Science.gov (United States)

    Łaczmański, Łukasz; Jakubik, Marta; Bednarek-Tupikowska, Grażyna; Rymaszewska, Joanna; Słoka, Natalia; Lwow, Felicja

    2015-09-01

    The aim of this study was to determine whether polymorphisms of the VDR gene may increase the risk of Alzheimer disease (AD) development in Lower Silesian patients in comparison with other populations. 108 AD patients (aged 73.7±8.6) vs 77 healthy volunteers (aged 64.5±7.8) in the Lower Silesian population were studied. We investigated the frequency of the VDR polymorphisms rs731236 (TaqI), rs7975232 (ApaI), rs10735810 (FokI) and rs1544410 (BsmI) in the AD group vs the healthy group. Afterwards, MEDLINE and ResearchGate were studied to compare our investigation with other populations, due to the relatively small group size in our study. We did not observe any significant differences in frequency of genotypes of rs731236 (TaqI), rs10735810 (FokI) or rs1544410 (BsmI) VDR polymorphisms between the two Lower Silesian groups. Frequency of allele A of ApaI in the control group was significantly higher vs AD patients (p<0.0177) in the Lower Silesian population. Furthermore the difference in the occurrence of allele t in TaqI and allele A in ApaI between AD patients vs the control group was significant (respectively p<0.0056, p<0.0140) in British Europeans. This observation may suggest that allele "a" of the ApaI polymorphism is a risk allele in AD Lower Silesian patients. We compared our results with those obtained for the population of British Europeans. In multivariate stepwise regression, allele "A" of ApaI was associated with 30% lower risk of AD (OR=0.70, p=0.0009) in total treated Polish and British populations. We did not observe similar results in Turkish and Iranian populations. Our data suggest that the allele "A" VDR genotype of ApaI reduces AD risk, probably depending on ethnic origin and climatic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Regulation of AMPA receptor function by the human memory-associated gene KIBRA.

    Science.gov (United States)

    Makuch, Lauren; Volk, Lenora; Anggono, Victor; Johnson, Richard C; Yu, Yilin; Duning, Kerstin; Kremerskothen, Joachim; Xia, Jun; Takamiya, Kogo; Huganir, Richard L

    2011-09-22

    KIBRA has recently been identified as a gene associated with human memory performance. Despite the elucidation of the role of KIBRA in several diverse processes in nonneuronal cells, the molecular function of KIBRA in neurons is unknown. We found that KIBRA directly binds to the protein interacting with C-kinase 1 (PICK1) and forms a complex with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs), the major excitatory neurotransmitter receptors in the brain. KIBRA knockdown accelerates the rate of AMPAR recycling following N-methyl-D-aspartate receptor-induced internalization. Genetic deletion of KIBRA in mice impairs both long-term depression and long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, KIBRA knockout mice have severe deficits in contextual fear learning and memory. These results indicate that KIBRA regulates higher brain function by regulating AMPAR trafficking and synaptic plasticity. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Transferrin protein nanospheres: a nanoplatform for receptor-mediated cancer cell labeling and gene delivery

    Science.gov (United States)

    McDonald, Michael A.; Spurlin, Tighe A.; Tona, Alessandro; Elliott, John T.; Halter, Michael; Plant, Anne L.

    2010-02-01

    This paper presents preliminary results on the use of transferrin protein nanospheres (TfpNS) for targeting cancer cells in vitro. Protein nanospheres represent an easily prepared and modifiable nanoplatform for receptor-specific targeting, molecular imaging and gene delivery. Rhodamine B isothiocyanate conjugated TfpNS (RBITC-TfpNS) show significantly enhanced uptake in vitro in SK-MEL-28 human malignant melanoma cells known to overexpress transferrin receptors compared to controls. RBITCTfpNS labeling of the cancer cells is due to transferrin receptor-mediated uptake, as demonstrated by competitive inhibition with native transferrin. Initial fluorescence microscopy studies indicate GFP plasmid can be transfected into melanoma cells via GFP plasmid encapsulated by TfpNS.

  2. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori.

    Science.gov (United States)

    Guo, Huizhen; Cheng, Tingcai; Chen, Zhiwei; Jiang, Liang; Guo, Youbing; Liu, Jianqiu; Li, Shenglong; Taniai, Kiyoko; Asaoka, Kiyoshi; Kadono-Okuda, Keiko; Arunkumar, Kallare P; Wu, Jiaqi; Kishino, Hirohisa; Zhang, Huijie; Seth, Rakesh K; Gopinathan, Karumathil P; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei

    2017-03-01

    Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for

  3. Genetic Variations in the Human Cannabinoid Receptor Gene Are Associated with Happiness

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  4. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Yamakawa, Kaori; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2014-01-01

    Happiness has been viewed as a temporary emotional state (e.g., pleasure) and a relatively stable state of being happy (subjective happiness level). As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater magnitude

  5. Genetic variations in the human cannabinoid receptor gene are associated with happiness.

    Directory of Open Access Journals (Sweden)

    Masahiro Matsunaga

    Full Text Available Happiness has been viewed as a temporary emotional state (e.g., pleasure and a relatively stable state of being happy (subjective happiness level. As previous studies demonstrated that individuals with high subjective happiness level rated their current affective states more positively when they experience positive events, these two aspects of happiness are interrelated. According to a recent neuroimaging study, the cytosine to thymine single-nucleotide polymorphism of the human cannabinoid receptor 1 gene is associated with sensitivity to positive emotional stimuli. Thus, we hypothesized that our genetic traits, such as the human cannabinoid receptor 1 genotypes, are closely related to the two aspects of happiness. In Experiment 1, 198 healthy volunteers were used to compare the subjective happiness level between cytosine allele carriers and thymine-thymine carriers of the human cannabinoid receptor 1 gene. In Experiment 2, we used positron emission tomography with 20 healthy participants to compare the brain responses to positive emotional stimuli of cytosine allele carriers to that of thymine-thymine carriers. Compared to thymine-thymine carriers, cytosine allele carriers have a higher subjective happiness level. Regression analysis indicated that the cytosine allele is significantly associated with subjective happiness level. The positive mood after watching a positive film was significantly higher for the cytosine allele carriers compared to the thymine-thymine carriers. Positive emotion-related brain region such as the medial prefrontal cortex was significantly activated when the cytosine allele carriers watched the positive film compared to the thymine-thymine carriers. Thus, the human cannabinoid receptor 1 genotypes are closely related to two aspects of happiness. Compared to thymine-thymine carriers, the cytosine allele carriers of the human cannabinoid receptor 1 gene, who are sensitive to positive emotional stimuli, exhibited greater

  6. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    Directory of Open Access Journals (Sweden)

    Patak Eva

    2009-07-01

    Full Text Available Abstract Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h and late (24 h responses to estrogen were evaluated and the participation of the estrogen receptors (ER, ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4 and tachykinin receptors (Tacr1, Tacr2 and Tacr3 were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus.

  7. HindIII identifies a two allele DNA polymorphism of the human cannabinoid receptor gene (CNR)

    Energy Technology Data Exchange (ETDEWEB)

    Caenazzo, L.; Hoehe, M.R.; Hsieh, W.T.; Berrettini, W.H.; Bonner, T.I.; Gershon, E.S. (National Inst. of Health, Bethesda, MD (United States))

    1991-09-11

    HCNR p5, a 0.9 kb BamHI/EcoRI fragment from the human cannabinoid receptor gene inserted into pUC19, was used as probe. The fragment is located in an intron approximately 14 kb 5{prime} of the initiation codon. This fragment is a clean single copy sequence by genomic blotting. Hybridization of human genomic DNA digested with HindIII identified a two allele RFLP with bands at 5.5 (A1) and 3.3 kb (A2). The human cannabinoid receptor gene has been genetically mapped in CEPH reference pedigrees to the centromeric/q region of chromosome 6. In situ hybridization localizes it to 6q14-q15. Codominant segregation has been observed in 26 informative two- and three-generation CEPH pedigrees and in 14 medium-sized disease families.

  8. Association study of a cannabinoid receptor gene (CNR1) polymorphism and schizophrenia.

    Science.gov (United States)

    Tsai, S J; Wang, Y C; Hong, C J

    2000-09-01

    Cannabis can induce schizophrenic-like symptoms in healthy individuals. A principal active ingredient of cannabis, delta-9-tetrahydrocannabinol, acts in the brain on a specific receptor, termed the cannabinoid receptor 1 (CNR1). The human gene for CNR1 is mapped to chromosome 6q14-15, and linkage studies have produced evidence for a schizophrenia-susceptibility locus in this region. To explore a possible role for CNR1 in the pathogenesis of schizophrenic disorders, we used an association study to genotype the CNR1 polymorphism for 127 schizophrenic patients and 146 control subjects. The results demonstrate no association between CNR1 genotypes and schizophrenic disorders (P = 0.409), with these negative findings suggesting that, for Chinese populations, the (AAT)n triplet repeat in the promoter region of the CNR1 gene is not directly involved in the pathogenesis of schizophrenic disorders.

  9. Chromosomal localization of the human V3 pituitary vasopressin receptor gene (AVPR3) to 1q32

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau-Merck, M.F.; Derre, J.; Berger, R. [INSERM, Paris (France)] [and others

    1995-11-20

    Vasopressin exerts its physiological effects on liver metabolism, fluid osmolarity, and corticotrophic response to stress through a set of at least three receptors, V1a, V2, and V3 (also called V1b), respectively. These receptors constitute a distinct group of the superfamily of G-protein-coupled cell surface receptors. When bound to vasopressin, they couple to G proteins activating phospholipase C for the V1a and V3 types and adenylate cyclase for the V2. The vasopressin receptor subfamily also includes the receptor for oxytocin, a structurally related hormone that signals through the activation of phospholipase C. The chromosomal position of the V2 receptor gene has been assigned to Xq28-qter by PCR-based screening of somatic cell hybrids, whereas the oxytocin receptor gene has been mapped to chromosome 3q26.2 by fluorescence in situ hybridization (FISH). The chromosomal location of the V1a gene is currently unknown. We recently cloned the cDNA and the gene coding for the human pituitary-specific V3 receptor (HGMW-approved symbol AVPR3). We report here the chromosomal localization of this gene by two distinct in situ hybridization techniques using radioactive and fluorescent probes. 11 refs., 1 fig.

  10. Androgen Receptor Gene Polymorphism, Aggression, and Reproduction in Tanzanian Foragers and Pastoralists

    Science.gov (United States)

    Butovskaya, Marina L.; Lazebny, Oleg E.; Vasilyev, Vasiliy A.; Dronova, Daria A.; Karelin, Dmitri V.; Mabulla, Audax Z. P.; Shibalev, Dmitri V.; Shackelford, Todd K.; Fink, Bernhard; Ryskov, Alexey P.

    2015-01-01

    The androgen receptor (AR) gene polymorphism in humans is linked to aggression and may also be linked to reproduction. Here we report associations between AR gene polymorphism and aggression and reproduction in two small-scale societies in northern Tanzania (Africa)—the Hadza (monogamous foragers) and the Datoga (polygynous pastoralists). We secured self-reports of aggression and assessed genetic polymorphism of the number of CAG repeats for the AR gene for 210 Hadza men and 229 Datoga men (aged 17–70 years). We conducted structural equation modeling to identify links between AR gene polymorphism, aggression, and number of children born, and included age and ethnicity as covariates. Fewer AR CAG repeats predicted greater aggression, and Datoga men reported more aggression than did Hadza men. In addition, aggression mediated the identified negative relationship between CAG repeats and number of children born. PMID:26291982

  11. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene

    Energy Technology Data Exchange (ETDEWEB)

    Gromoll, J; Pekel, E.; Nieschlag, E. [Institute of Reproductive Medicine of the Univ., Muenster (Germany)

    1996-07-15

    The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene were determined by either screening a phage library of human genomic DNA or applying the long PCR technique to amplify different exon pairs with their corresponding introns. The FSHR gene spans a region of 54 kb and consists of 10 exons and 9 introns. Most of the extracellular domain is encoded by 9 exons, ranging in length between 69 and 251 bp; the C-terminal part of the extracellular domain, the transmembrane domain, and the intracellular domain are encoded by the large exon 10 (1234 bp). Overall the gene encodes 695 amino acids. The structure of the human FSHR displays a striking similarity to that of the previously characterized rat FSHR gene, with a high degree of conservation in exon sizes and exon/intron junctions. 20 refs., 2 tabs.

  12. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    Directory of Open Access Journals (Sweden)

    Uyen B. Chu

    2015-11-01

    Full Text Available The sigma-2 receptor (S2R is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1 a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG and haloperidol but not to the selective sigma-1 receptor ligand (+-pentazocine, and (2 a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF. Recently, the progesterone receptor membrane component 1 (PGRMC1, a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380. To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively, as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM. These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes.

  13. Cloning, mapping and molecular characterization of porcine progesterone receptor membrane component 2 (PGRMC2 gene

    Directory of Open Access Journals (Sweden)

    Congying Chen

    2010-01-01

    Full Text Available Progesterone plays an important role in sow reproduction by stimulating classic genomic pathways via nuclear receptors and non-genomic pathways via membrane receptors such a progesterone receptor membrane component 2 (PGRMC2. In this work, we used radiation hybrid mapping to assign PGRMC2 to pig chromosome 8 and observed that this receptor has two transcripts in pigs. The full-length cDNA of the large transcript is 1858 bp long and contains a 669-bp open reading frame (ORF encoding a protein of 223 amino acids. The shorter transcript encodes a protein of 170 amino acids. The porcine PGRMC2 gene consists of three exons 446 bp, 156 bp and 1259 bp in length. The promoter sequence is GC-rich and lacks a typical TATA box. Several putative cis-regulatory DNA motifs were identified in the 208-bp upstream genomic region. Five single nucleotide polymorphisms (SNPs were detected in introns* and the 3' UTR. RT-PCR indicated that the PGRMC2 gene is expressed ubiquitously in all pig tissues examined.

  14. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes.

    Directory of Open Access Journals (Sweden)

    Carlos C Barros

    Full Text Available The Kallikrein-Kinin System (KKS has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM, we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO. Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

  15. The relationship between vitamin D receptor gene polymorphism and deciduous tooth decay in Chinese children

    OpenAIRE

    Kong, Yuan-Yuan; Zheng, Jian-mao; Zhang, Wen-Juan; Jiang, Qian-zhou; Yang, Xue-chao; Yu, Miao; Zeng, Su-juan

    2017-01-01

    Background In the present study, we explored the link between vitamin D receptor (VDR) BsmI, TaqI, ApaI and FokI gene polymorphisms with deciduous tooth decay in Chinese children. Methods Our study included 380 Chinese children aged 4?7?years, whose DNA sample was collected from the buccal mucosa. VDR gene polymorphisms was determined by PCR-RFLP. Results The adjusted logistic regression analysis demonstrated that BsmI containing the Bb genotype was linked with the increased risk of deciduous...

  16. Localization of the gene for the ciliary neutrotrophic factor receptor (CNTFR) to human chromosome 9

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, D.H.; Jones, C.; Patterson, D. (Eleanor Roosevelt Institute, Denver, CO (United States) Univ. of Colorado Health Science Center, Denver, CO (United States)); Britt, D.E.; Jackson, C.L. (Brown Univ., Providence, RI (United States))

    1993-09-01

    Ciliary neurotrophic factor (CNTF) has recently been found to be important for the survival of motor neurons and has shown activity in animal models of amyotrophic lateral sclerosis (ALS). CNTF therefore holds promise as a treatment for ALS, and it and its receptor (CNTFR) are candidates for a gene involved in familial ALS. The CNTFR gene was mapped to chromosome 9 by PCR on a panel of human/CHO somatic cell hybrids and localized to 9p13 by PCR on a panel of radiation hybrids. 18 ref., 1 fig., 2 tabs.

  17. Vitamin D Receptor Gene Polymorphisms Influence T1D Susceptibility among Pakistanis

    OpenAIRE

    Mukhtar, Maryam; Batool, Andleeb; Wajid, Abdul; Qayyum, Iram

    2017-01-01

    Background. The vitamin D receptor (VDR) gene regulates insulin secretion from the pancreas and acts as a mediator of the immune response through vitamin D. Polymorphism in VDR causes alterations in the functioning of vitamin D, leading to type 1 diabetes (T1D) predisposition. The aim of the present study was to determine VDR gene polymorphism in association with T1D in Pakistanis. Methods. The association was evaluated by selecting rs2228570 (FokΙ), rs7975232 (ApaΙ), and rs731236 (TaqΙ) poly...

  18. An influence of androgen receptor (AR gene СAG-polymorphism on spermatogenesis in infertile men

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2015-01-01

    Full Text Available We analyzed the results of semen examination in 200 infertile men with various numbers of GAG-repeats in the exon 1 of the androgen receptor (AR gene. The number of repeats ranged from 7 to 31, the average number of repeats was 22.2 ± 1.6, with the most common variant (13 % present 21 repeats. Our findings confirm that of AR gene СAG-polymorphism can an effect on sperm parameters and male fertility. The spermatogenesis can be impaired in infertile men with “short” CAG-repeats not less than with “long” CAG-repeats.

  19. Association study of schizophrenia and IL-2 receptor {beta} chain gene

    Energy Technology Data Exchange (ETDEWEB)

    Nimgaonkar, V.L.; Yang, Z.W.; Zhang, X.R.; Brar, J.S. [Univ. of Pittsburgh School of Medicine, PA (United States)] [and others

    1995-10-09

    A case-control association study was conducted in Caucasian patients with schizophrenia (DSM-III-R, n = 42) and unaffected controls (n = 47) matched for ethnicity and area of residence. Serum interleukin-2 receptor (IL-2R) concentrations, as well as a dinucleotide repeat polymorphism in the IL-2RP chain gene, were examined in both groups. No significant differences in IL-2R concentrations or in the distribution of the polymorphism were noted. This study does not support an association between schizophrenia and the IL-2RP gene locus, contrary to the suggestive evidence from linkage analysis in multicase families. 17 refs., 2 tabs.

  20. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  1. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins.

    Science.gov (United States)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-07-21

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  2. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome.

    Science.gov (United States)

    Di Napoli, Agnese; Warrier, Varun; Baron-Cohen, Simon; Chakrabarti, Bhismadev

    2014-01-01

    Autism Spectrum Conditions (ASC) are a group of neurodevelopmental conditions characterized by impairments in communication and social interaction, alongside unusually repetitive behaviors and narrow interests. ASC are highly heritable and have complex patterns of inheritance where multiple genes are involved, alongside environmental and epigenetic factors. Asperger Syndrome (AS) is a subgroup of these conditions, where there is no history of language or cognitive delay. Animal models suggest a role for oxytocin (OXT) and oxytocin receptor (OXTR) genes in social-emotional behaviors, and several studies indicate that the oxytocin/oxytocin receptor system is altered in individuals with ASC. Previous studies have reported associations between genetic variations in the OXTR gene and ASC. The present study tested for an association between nine single nucleotide polymorphisms (SNPs) in the OXTR gene and AS in 530 individuals of Caucasian origin, using SNP association test and haplotype analysis. There was a significant association between rs2268493 in OXTR and AS. Multiple haplotypes that include this SNP (rs2268493-rs2254298, rs2268490-rs2268493-rs2254298, rs2268493-rs2254298-rs53576, rs237885-rs2268490-rs2268493-rs2254298, rs2268490-rs2268493-rs2254298-rs53576) were also associated with AS. rs2268493 has been previously associated with ASC and putatively alters several transcription factor-binding sites and regulates chromatin states, either directly or through other variants in linkage disequilibrium (LD). This study reports a significant association of the sequence variant rs2268493 in the OXTR gene and associated haplotypes with AS.

  3. Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress

    OpenAIRE

    Lucas-Thompson, RG; Holman, EA

    2013-01-01

    We examined whether the oxytocin receptor gene (OXTR) single nucleotide polymorphism (SNP) rs53576 genotype buffers the combined impact of negative social environments (e.g., interpersonal conflict/constraint) and economic stress on post-traumatic stress (PTS) symptoms and impaired daily functioning following collective stress (September 11th terrorist attacks). Saliva was collected by mail and used to genotype 704 respondents. Participants completed Web-based assessments of pre-9/11 mental h...

  4. The dopamine D3 receptor gene: no association with bipolar affective disorder.

    OpenAIRE

    Shaikh, S; Ball, D; Craddock, N; Castle, D; Hunt, N; Mant, R; Owen, M; Collier, D; Gill, M

    1993-01-01

    Bipolar affective disorder and schizophrenia share many clinical and genetic characteristics, and are thought by some to be different expressions of the same underlying disorder. A recent study showed an excess of homozygosity at a BalI polymorphism in the dopamine D3 receptor gene in schizophrenic patients compared with controls, from two independent centres. We have found no evidence of such an excess in a comparable sample of patients with bipolar affective disorder compared with matched c...

  5. Identification of chemical modulators of the constitutive activated receptor (CAR) in a gene expression compendium

    Science.gov (United States)

    Oshida, Keiyu; Vasani, Naresh; Jones, Carlton; Moore, Tanya; Hester, Susan; Nesnow, Stephen; Auerbach, Scott; Geter, David R.; Aleksunes, Lauren M.; Thomas, Russell S.; Applegate, Dawn; Klaassen, Curtis D.; Corton, J. Christopher

    2015-01-01

    The nuclear receptor family member constitutive activated receptor (CAR) is activated by structurally diverse drugs and environmentally-relevant chemicals leading to transcriptional regulation of genes involved in xenobiotic metabolism and transport. Chronic activation of CAR increases liver cancer incidence in rodents, whereas suppression of CAR can lead to steatosis and insulin insensitivity. Here, analytical methods were developed to screen for chemical treatments in a gene expression compendium that lead to alteration of CAR activity. A gene expression biomarker signature of 83 CAR-dependent genes was identified using microarray profiles from the livers of wild-type and CAR-null mice after exposure to three structurally-diverse CAR activators (CITCO, phenobarbital, TCPOBOP). A rank-based algorithm (Running Fisher’s algorithm (p-value ≤ 10-4)) was used to evaluate the similarity between the CAR biomarker signature and a test set of 28 and 32 comparisons positive or negative, respectively, for CAR activation; the test resulted in a balanced accuracy of 97%. The biomarker signature was used to identify chemicals that activate or suppress CAR in an annotated mouse liver/primary hepatocyte gene expression database of ~1850 comparisons. CAR was activated by 1) activators of the aryl hydrocarbon receptor (AhR) in wild-type but not AhR-null mice, 2) pregnane X receptor (PXR) activators in wild-type and to lesser extents in PXR-null mice, and 3) activators of PPARα in wild-type and PPARα-null mice. CAR was consistently activated by five conazole fungicides and four perfluorinated compounds. Comparison of effects in wild-type and CAR-null mice showed that the fungicide propiconazole increased liver weight and hepatocyte proliferation in a CAR-dependent manner, whereas the perfluorinated compound perfluorooctanoic acid (PFOA) increased these endpoints in a CAR-independent manner. A number of compounds suppressed CAR coincident with increases in markers of

  6. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    Science.gov (United States)

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Isolation and Characterization of the Brassinosteroid Receptor Gene (GmBRI1 from Glycine max

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2014-03-01

    Full Text Available Brassinosteroids (BRs constitute a group of steroidal phytohormones that contribute to a wide range of plant growth and development functions. The genetic modulation of BR receptor genes, which play major roles in the BR signaling pathway, can create semi-dwarf plants that have great advantages in crop production. In this study, a brassinosteroid insensitive gene homologous with AtBRI1 and other BRIs was isolated from Glycine max and designated as GmBRI1. A bioinformatic analysis revealed that GmBRI1 shares a conserved kinase domain and 25 tandem leucine-rich repeats (LRRs that are characteristic of a BR receptor for BR reception and reaction and bear a striking similarity in protein tertiary structure to AtBRI1. GmBRI1 transcripts were more abundant in soybean hypocotyls and could be upregulated in response to exogenous BR treatment. The transformation of GmBRI1 into the Arabidopsis dwarf mutant bri1-5 restored the phenotype, especially regarding pod size and plant height. Additionally, this complementation is a consequence of a restored BR signaling pathway demonstrated in the light/dark analysis, root inhibition assay and BR-response gene expression. Therefore, GmBRI1 functions as a BR receptor to alter BR-mediated signaling and is valuable for improving plant architecture and enhancing the yield of soybean.

  8. Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species

    Science.gov (United States)

    Monteiro Ferreira, Ana; Tomás Marques, Andreia; Bhide, Mangesh; Cubric-Curik, Vlatka; Hollung, Kristin; Knight, Christopher Harold; Raundrup, Katrine; Lippolis, John; Palmer, Mitchell; Sales-Baptista, Elvira; Araújo, Susana Sousa; de Almeida, André Martinho

    2015-01-01

    Bitter taste has been extensively studied in mammalian species and is associated with sensitivity to toxins and with food choices that avoid dangerous substances in the diet. At the molecular level, bitter compounds are sensed by bitter taste receptor proteins (T2R) present at the surface of taste receptor cells in the gustatory papillae. Our work aims at exploring the phylogenetic relationships of T2R gene sequences within different ruminant species. To accomplish this goal, we gathered a collection of ruminant species with different feeding behaviors and for which no genome data is available: American bison, chamois, elk, European bison, fallow deer, goat, moose, mouflon, muskox, red deer, reindeer and white tailed deer. The herbivores chosen for this study belong to different taxonomic families and habitats, and hence, exhibit distinct foraging behaviors and diet preferences. We describe the first partial repertoires of T2R gene sequences for these species obtained by direct sequencing. We then consider the homology and evolutionary history of these receptors within this ruminant group, and whether it relates to feeding type classification, using MEGA software. Our results suggest that phylogenetic proximity of T2R genes corresponds more to the traditional taxonomic groups of the species rather than reflecting a categorization by feeding strategy. PMID:26061084

  9. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation

    DEFF Research Database (Denmark)

    Fontaine, Coralie; Dubois, Guillaume; Duguay, Yannick

    2003-01-01

    Rev-Erbalpha (NR1D1) is an orphan nuclear receptor encoded on the opposite strand of the thyroid receptor alpha gene. Rev-Erbalpha mRNA is induced during adipocyte differentiation of 3T3-L1 cells, and its expression is abundant in rat adipose tissue. Peroxisome proliferator-activated receptor gamma...... (PPARgamma) (NR1C3) is a nuclear receptor controlling adipocyte differentiation and insulin sensitivity. Here we show that Rev-Erbalpha expression is induced by PPARgamma activation with rosiglitazone in rat epididymal and perirenal adipose tissues in vivo as well as in 3T3-L1 adipocytes in vitro...... of functional PPARgamma response element. Finally, ectopic expression of Rev-Erbalpha in 3T3-L1 preadipocytes potentiated adipocyte differentiation induced by the PPARgamma ligand rosiglitazone. These results identify Rev-Erbalpha as a target gene of PPARgamma in adipose tissue and demonstrate a role...

  10. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans

    National Research Council Canada - National Science Library

    Feng, C; Lori, A; Waldman, I. D; Binder, E. B; Haroon, E; Rilling, J. K

    2015-01-01

    .... However, OT effects are often heterogeneous across individuals. Here we explore individual differences in OT effects on the neural response to social cooperation as a function of the rs53576 polymorphism of the oxytocin receptor gene ( OXTR...

  11. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN......: In 30 cases of surgically resected sporadic thyroid cancer, the length of the THRA1 microsatellite was determined by DNA sequence analysis, and expression of thyroid hormone receptor-alpha1 was assessed immunohistochemically in thin sections cut from tumor blocks. The length of THRA1 and expression...... of thyroid hormone receptor-alpha1 were also assessed in seven cancer cell lines. Regression analysis was used to gauge the correlation between the size of THRA1 and receptor expression. Multivariate analysis was used to test for links to the clinical parameters of gender, age, histology, stage, nodal...

  12. Gene Expression Profiling of Chemokines and Their Receptors in Low and High Grade Astrocytoma

    Science.gov (United States)

    Sharma, Ira; Singh, Avninder; Sharma, Karam Chand; Saxena, Sunita

    2017-05-01

    Background: Despite intense interest in molecular characterization and searches for novel therapeutic targets, the glioblastoma remains a formidable clinical challenge. Among many contributors to gliomagenesis, chemokines have drawn special attention due to their involvement in a plethora of biological processes and pathological conditions. In the present study we aimed to elucidate any pro-gliomagenic chemokine axis and probable roles in development of glioblastoma multiforme (GBM). Method: An array of 84 chemokines, chemokine receptors and related genes were studied by real time PCR with comparison between low grade astrocytoma (diffuse astrocytoma – grade II) and high grade astrocytoma (glioblastoma multiforme – grade IV). Gene ontology analysis and database mining were performed to funnel down the important axis in GBM followed by validation at the protein level by immunohistochemistry on tissue microarrays. Results: Gene expression and gene ontology analysis identified CXCL8 as an important chemokine which was more frequently up-regulated in GBM as compared to diffuse astrocytoma. Further we demonstrated localization of CXCL8 and its receptors in glioblastoma possibly affecting autocrine and paracrine signalling that promotes tumor cell proliferation and neovascularisation with vascular mimicry. Conclusion: From these results CXCL8 appears to be an important gliomagenic chemokine which may be involved in GBM growth by promoting tumor cell proliferation and neovascularization via vascular mimicry. Further in vitro and in vivo investigations are required to explore its potential candidature in anti-GBM therapy. Creative Commons Attribution License

  13. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca{sup 2+}-sensing receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Kaoru; Koishi, Sawako; Inoue, Masaharu [Univ. of Yamanashi Medical School, Yamanashi (Japan)] [and others

    1995-09-01

    Familial hypocalciuric hypercalcemia (FHH) is generally characterized by lifelong hypercalcemia without hypercalciuria and is inherited in an autosomal dominant manner. Affected individuals show abnormal parathyroid and renal responses to changes in the extracellular calcium concentration. A Japanese FHH family was screened for mutations in the Ca{sup 2+} -sensing receptor gene by the polymerase chain reaction and single strand conformation polymorphism. The proband with hypercalcemia showed an abnormal pattern in exon 1 of the gene, whereas her two sisters with normocalcemia showed a normal pattern. The consanguineous parents with borderline serum calcium concentrations showed both patterns. Nucleotide sequence analysis identified a G{yields}C point mutation at nucleotide 118 that resulted in the conversion of the normal codon for proline into a codon for alanine at amino acid 40 (numbered according to the bovine complementary DNA). The proband was homozygous for the mutation, and the parents were heterozygous. These results imply that this mutation in the human Ca{sup 2+}-sensing receptor gene causes FHH and that the dosage of the gene defect determines disease phenotype. 33 refs., 4 figs., 1 tab.

  14. Gene Expression Profiling of Chemokines and Their Receptors in Low and High Grade Astrocytoma

    Science.gov (United States)

    Sharma, Ira; Singh, Avninder; Sharma, Karam Chand; Saxena, Sunita

    2017-01-01

    Background: Despite intense interest in molecular characterization and searches for novel therapeutic targets, the glioblastoma remains a formidable clinical challenge. Among many contributors to gliomagenesis, chemokines have drawn special attention due to their involvement in a plethora of biological processes and pathological conditions. In the present study we aimed to elucidate any pro-gliomagenic chemokine axis and probable roles in development of glioblastoma multiforme (GBM). Method: An array of 84 chemokines, chemokine receptors and related genes were studied by real time PCR with comparison between low grade astrocytoma (diffuse astrocytoma – grade II) and high grade astrocytoma (glioblastoma multiforme – grade IV). Gene ontology analysis and database mining were performed to funnel down the important axis in GBM followed by validation at the protein level by immunohistochemistry on tissue microarrays. Results: Gene expression and gene ontology analysis identified CXCL8 as an important chemokine which was more frequently up-regulated in GBM as compared to diffuse astrocytoma. Further we demonstrated localization of CXCL8 and its receptors in glioblastoma possibly affecting autocrine and paracrine signalling that promotes tumor cell proliferation and neovascularisation with vascular mimicry. Conclusion: From these results CXCL8 appears to be an important gliomagenic chemokine which may be involved in GBM growth by promoting tumor cell proliferation and neovascularization via vascular mimicry. Further in vitro and in vivo investigations are required to explore its potential candidature in anti-GBM therapy. PMID:28610419

  15. The dynamic nature of type 1 cannabinoid receptor (CB1) gene transcription

    Science.gov (United States)

    Laprairie, RB; Kelly, MEM; Denovan-Wright, EM

    2012-01-01

    The type 1 cannabinoid receptor (CB1) is an integral component of the endocannabinoid system that modulates several functions in the CNS and periphery. The majority of our knowledge of the endocannabinoid system involves ligand–receptor binding, mechanisms of signal transduction, and protein–protein interactions. In contrast, comparatively little is known about regulation of CB1 gene expression. The levels and anatomical distribution of CB1 mRNA and protein are developmental stage-specific and are dysregulated in several pathological conditions. Moreover, exposure to a variety of drugs, including cannabinoids themselves, alters CB1 gene expression and mRNA levels. As such, alterations in CB1 gene expression are likely to affect the optimal response to cannabinoid-based therapies, which are being developed to treat a growing number of conditions. Here, we will examine the regulation of CB1 mRNA levels and the therapeutic potential inherent in manipulating expression of this gene. Linked Articles This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8 PMID:22924606

  16. The μ-opioid receptor gene and smoking initiation and nicotine dependence

    Directory of Open Access Journals (Sweden)

    Kendler Kenneth S

    2006-08-01

    Full Text Available Abstract The gene encoding the mu-opioid receptor (OPRM1 is reported to be associated with a range of substance dependence. Experiments in knockout mice indicate that the mu-opioid receptor may mediate reinforcing effects of nicotine. In humans, opioid antagonist naltrexone may reduce the reinforcing effects of tobacco smoking. Additionally, the OPRM1 gene is located in a region showing linkage to nicotine dependence. The OPRM1 is thus a plausible candidate gene for smoking behavior. To investigate whether OPRM1 contributes to the susceptibility of smoking initiation and nicotine dependence, we genotyped 11 SNPs in the gene for 688 Caucasian subjects of lifetime smokers and nonsmokers. Three SNPs showed nominal significance for smoking initiation and one reached significance for nicotine dependence. The global test for three-marker (rs9479757-rs2075572-rs10485057 haplotypes was significant for smoking initiation (p = 0.0022. The same three-marker haplotype test was marginal (p = 0.0514 for nicotine dependence. These results suggest that OPRM1 may be involved in smoking initiation and nicotine dependence.

  17. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success.

    Science.gov (United States)

    Casarini, Livio; Santi, Daniele; Marino, Marco

    2015-12-01

    Gonadotropins and their receptors' genes carry several single-nucleotide polymorphisms resulting in endocrine genotypes modulating reproductive parameters, diseases, and lifespan leading to important implications for reproductive success and potential relevance during human evolution. Here we illustrate common genotypes of the gonadotropins and gonadotropin receptors' genes and their clinical implications in phenotypes relevant for reproduction such as ovarian cycle length, age of menopause, testosterone levels, polycystic ovary syndrome, and cancer. We then discuss their possible role in human reproduction and adaptation to the environment. Gonadotropins and their receptors' variants are differently distributed among human populations. Some hints suggest that they may be the result of natural selection that occurred in ancient times, increasing the individual chance of successful mating, pregnancy, and effective post-natal parental cares. The gender-related differences in the regulation of the reproductive endocrine systems imply that many of these genotypes may lead to sex-dependent effects, increasing the chance of mating and reproductive success in one sex at the expenses of the other sex. Also, we suggest that sexual conflicts within the FSH and LH-choriogonadotropin receptor genes contributed to maintain genotypes linked to subfertility among humans. Because the distribution of polymorphic markers results in a defined geographical pattern due to human migrations rather than natural selection, these polymorphisms may have had only a weak impact on reproductive success. On the contrary, such genotypes could acquire relevant consequences in the modern, developed societies in which parenthood attempts often occur at a later age, during a short, suboptimal reproductive window, making clinical fertility treatments necessary. © 2015 Society for Reproduction and Fertility.

  18. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  19. Metabotropic glutamate receptor 2 and corticotrophin-releasing factor receptor-1 gene expression is differently regulated by BDNF in rat primary cortical neurons

    DEFF Research Database (Denmark)

    Jørgensen, Christinna V; Klein, Anders B; El-Sayed, Mona

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and plasticity. Incorporation of matured receptor proteins is an integral part of synapse formation. However, whether BDNF increases synthesis and integration of receptors in functional synapses directly is unclear. We...... are particularly interested in the regulation of the 5-hydroxytryptamine receptor 2A (5-HT2A R). This receptor form a functional complex with the metabotropic glutamate receptor 2 (mGluR2) and is recruited to the cell membrane by the corticotrophin-releasing factor receptor 1 (CRF-R1). The effect of BDNF on gene...... expression for all these receptors, as well as a number of immediate-early genes, was pharmacologically characterized in primary neurons from rat frontal cortex. BDNF increased CRF-R1 mRNA levels up to fivefold, whereas mGluR2 mRNA levels were proportionally downregulated. No effect on 5-HT2A R mRNA was seen...

  20. Orthologs of Human Disease Associated Genes and RNAi Analysis of Silencing Insulin Receptor Gene in Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zan Zhang

    2014-10-01

    Full Text Available The silkworm, Bombyx mori L., is an important economic insect that has been domesticated for thousands of years to produce silk. It is our great interest to investigate the possibility of developing the B. mori as human disease model. We searched the orthologs of human disease associated genes in the B. mori by bi-directional best hits of BLAST and confirmed by searching the OrthoDB. In total, 5006 genes corresponding to 1612 kinds of human diseases had orthologs in the B. mori, among which, there are 25 genes associated with diabetes mellitus. Of these, we selected the insulin receptor gene of the B. mori (Bm-INSR to study its expression in different tissues and at different developmental stages and tissues. Quantitative PCR showed that Bm-INSR was highly expressed in the Malpighian tubules but expressed at low levels in the testis. It was highly expressed in the 3rd and 4th instar larvae, and adult. We knocked down Bm-INSR expression using RNA interference. The abundance of Bm-INSR transcripts were dramatically reduced to ~4% of the control level at 6 days after dsRNA injection and the RNAi-treated B. mori individuals showed apparent growth inhibition and malformation such as abnormal body color in black, which is the typical symptom of diabetic patients. Our results demonstrate that B. mori has potential use as an animal model for diabetic mellitus research.

  1. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) from...... affect metabolism and longevity. Thus, we produced adult-onset GHRKO (aGHRKO) mice by disrupting the Ghr gene at 6 weeks of age. We found that aGHRKO mice replicate many of the beneficial effects observed in long-lived GHRKO mice. For example, aGHRKO mice, like GHRKO animals, displayed retarded growth...... carry germline mutations. Importantly, the effect of a long-term suppression of the GH/IGF-1 axis during adulthood, as would be considered for human therapeutic purposes, has not been tested. The goal of this study was to determine whether temporally controlled Ghr gene deletion in adult mice would...

  2. Inverse agonistic activity of antihistamines and suppression of histamine H1 receptor gene expression.

    Science.gov (United States)

    Mizuguchi, Hiroyuki; Ono, Shohei; Hattori, Masashi; Fukui, Hiroyuki

    2012-01-01

    Histamine H(1) receptor (H1R) expression influences the severity of allergy symptoms. We examined the effect of inverse agonists on H1R gene expression. Two inverse agonists (carebastine and mepyramine), but not the neutral antagonist oxatomide, decreased inositol phosphate accumulation. The inverse agonists also decreased H1R gene expression and down-regulated H1R mRNA below basal expression, while basal H1R mRNA expression was maintained after oxatomide treatment. These results suggest that inverse agonists more potently alleviate allergy symptoms by not only inhibiting stimulus-induced up-regulation of H1R gene expression but also by suppressing basal histamine signaling through their inverse agonistic activity.

  3. Lack of Association between an Interleukin-I Receptor Antagonist Gene Polymorphism and Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Victor A. Danis

    1994-01-01

    Full Text Available Non-MHC linked genes may contribute to genetic predisposition to the development of systemic lupus erythematosus. The possibility that cytokine genes may be involved was raised by the observation of increased frequency in expression of an uncommon allele of an interleukin-I receptor antagonist gene polymorphism and SLE in a recent U.K. study. We have not been able to show any significant differences in expression of this allele in SLE patients as a whole or in any patient subgroups. Our results actually show a slight decrease in the expression of this allele in SLE patients compared with healthy controls and in SLE patients with malar rash compared with SLE patients without malar rash.

  4. IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Berchtold, L. A.; Larsen, C. M.; Vaag, A.

    2009-01-01

    Background. We have previously reported that systemic blockade of IL-1 beta in patients with type 2 diabetes with anakinra (a recombinant human interleukin-1-receptor antagonist, IL-1Ra), lowered glycated hemoglobin improved beta-cell function and reduced circulating levels of IL-6 and CRP (7......). To investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed. Methods. Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI>27) were determined before and after 13......RT-PCR, were significantly altered when comparing the number of transcripts before and after treatment for each individual. Conclusion. Treatment with IL-1Ra did not significantly affect gene expression levels in skeletal muscle in this limited and selected sample of obese patients with type 2 diabetes. Larger...

  5. Toll-like receptors and microbial exposure : gene-gene and gene-environment interaction in the development of atopy

    NARCIS (Netherlands)

    Reijmerink, N. E.; Kerkhof, M.; Bottema, R. W. B.; Gerritsen, J.; Stelma, F. F.; Thijs, C.; van Schayck, C. P.; Smit, H. A.; Brunekreef, B.; Postma, D. S.; Koppelman, G. H.

    2011-01-01

    Environmental and genetic factors contribute to atopy development. High microbial exposure may confer a protective effect on atopy. Toll-like receptors (TLRs) bind microbial products and are important in activating the immune system. To assess whether interactions between microbial exposures and

  6. Toll-like receptors and microbial exposure: gene-gene and gene-environment interaction in the development of atopy

    NARCIS (Netherlands)

    Reijmerink, N.E.; Kerkhof, M. van de; Bottema, R.W.; Gerritsen, J.; Stelma, F.F.; Thijs, C.; Schayck, C.P. van; Smit, H.A.; Brunekreef, B.; Postma, D.S.; Koppelman, G.H.

    2011-01-01

    Environmental and genetic factors contribute to atopy development. High microbial exposure may confer a protective effect on atopy. Toll-like receptors (TLRs) bind microbial products and are important in activating the immune system. To assess whether interactions between microbial exposures and

  7. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes1234

    Science.gov (United States)

    Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul AS

    2009-01-01

    Background: The TAS1R1 and TAS1R3 G protein–coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. Objective: We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. Design: In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. Results: A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5′-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. Conclusions: There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception. PMID:19587085

  8. Perceptual variation in umami taste and polymorphisms in TAS1R taste receptor genes.

    Science.gov (United States)

    Chen, Qing-Ying; Alarcon, Suzanne; Tharp, Anilet; Ahmed, Osama M; Estrella, Nelsa L; Greene, Tiffani A; Rucker, Joseph; Breslin, Paul A S

    2009-09-01

    The TAS1R1 and TAS1R3 G protein-coupled receptors are believed to function in combination as a heteromeric glutamate taste receptor in humans. We hypothesized that variations in the umami perception of glutamate would correlate with variations in the sequence of these 2 genes, if they contribute directly to umami taste. In this study, we first characterized the general sensitivity to glutamate in a sample population of 242 subjects. We performed these experiments by sequencing the coding regions of the genomic TAS1R1 and TAS1R3 genes in a separate set of 87 individuals who were tested repeatedly with monopotassium glutamate (MPG) solutions. Last, we tested the role of the candidate umami taste receptor hTAS1R1-hTAS1R3 in a functional expression assay. A subset of subjects displays extremes of sensitivity, and a battery of different psychophysical tests validated this observation. Statistical analysis showed that the rare T allele of single nucleotide polymorphism (SNP) R757C in TAS1R3 led to a doubling of umami ratings of 25 mmol MPG/L. Other suggestive SNPs of TAS1R3 include the A allele of A5T and the A allele of R247H, which both resulted in an approximate doubling of umami ratings of 200 mmol MPG/L. We confirmed the potential role of the human TAS1R1-TAS1R3 heteromer receptor in umami taste by recording responses, specifically to l-glutamate and inosine 5'-monophosphate (IMP) mixtures in a heterologous expression assay in HEK (human embryonic kidney) T cells. There is a reliable and valid variation in human umami taste of l-glutamate. Variations in perception of umami taste correlated with variations in the human TAS1R3 gene. The putative human taste receptor TAS1R1-TAS1R3 responds specifically to l-glutamate mixed with the ribonucleotide IMP. Thus, this receptor likely contributes to human umami taste perception.

  9. Polymorphisms of the low-density lipoprotein receptor gene in Brazilian individuals with heterozygous familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    L.A. Salazar

    2000-11-01

    Full Text Available Familial hypercholesterolemia (FH is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12, AvaII (exon 13 and PvuII (intron 15, in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII, H+H+ (HincII1773 and P1P1 (PvuII homozygous genotypes when compared to the control group (P<0.05. In addition, FH probands presented a high frequency of A+ (0.58, H+ (0.61 and P1 (0.78 alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively. The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.

  10. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice

    Directory of Open Access Journals (Sweden)

    Wynn Elizabeth H

    2012-08-01

    Full Text Available Abstract Background Vomeronasal receptors (VRs, expressed in sensory neurons of the vomeronasal organ, are thought to bind pheromones and mediate innate behaviours. The mouse reference genome has over 360 functional VRs arranged in highly homologous clusters, but the vast majority are of unknown function. Differences in these receptors within and between closely related species of mice are likely to underpin a range of behavioural responses. To investigate these differences, we interrogated the VR gene repertoire from 17 inbred strains of mice using massively parallel sequencing. Results Approximately half of the 6222 VR genes that we investigated could be successfully resolved, and those that were unambiguously mapped resulted in an extremely accurate dataset. Collectively VRs have over twice the coding sequence variation of the genome average; but we identify striking non-random distribution of these variants within and between genes, clusters, clades and functional classes of VRs. We show that functional VR gene repertoires differ considerably between different Mus subspecies and species, suggesting these receptors may play a role in mediating behavioural adaptations. Finally, we provide evidence that widely-used, highly inbred laboratory-derived strains have a greatly reduced, but not entirely redundant capacity for differential pheromone-mediated behaviours. Conclusions Together our results suggest that the unusually variable VR repertoires of mice have a significant role in encoding differences in olfactory-mediated responses and behaviours. Our dataset has expanded over nine fold the known number of mouse VR alleles, and will enable mechanistic analyses into the genetics of innate behavioural differences in mice.

  11. Oxytocin receptor gene polymorphisms are associated with human directed social behavior in dogs (Canis familiaris.

    Directory of Open Access Journals (Sweden)

    Anna Kis

    Full Text Available The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG and one known (rs8679684 single nucleotide polymorphisms (SNPs in the regulatory regions (5' and 3' UTR of the oxytocin receptor gene in German Shepherd (N = 104 and Border Collie (N = 103 dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i proximity seeking towards an unfamiliar person, as well as their owner, and on (ii how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.

  12. Association of vitamin D receptor gene variants with polycystic ovary syndrome: A case control study

    Directory of Open Access Journals (Sweden)

    Touraj Mahmoudi

    2015-12-01

    Full Text Available Background: Vitamin D and insulin play an important role in susceptibility to polycystic ovary syndrome (PCOS, and therefore vitamin D receptor (VDR, parathyroid hormone (PTH, and insulin receptor (INSR gene variants might be involved in the pathogenesis of PCOS. Objective: The present study was designed to investigate the possible associations between polymorphisms in VDR, PTH, and INSR genes and the risk of PCOS. Materials and Methods: VDR, PTH, and INSR gene variants were genotyped in 35 women with PCOS and 35 controls using Polymerase chain reaction – Restriction fragment length polymorphism method. Furthermore, serum levels of glucose and insulin were measured in all participants. Results: No significant differences were observed for the VDR FokI, VDR Tru9I, VDR TaqI, PTH DraII, INSR NsiI, and INSR PmlI gene polymorphisms between the women with PCOS and controls. However, after adjustment for confounding factors, the VDR BsmI “Bb” genotype and the VDR ApaI "Aa" genotype were significantly under transmitted to the patients (p= 0.016; OR= 0.250; 95% CI= 0.081-0.769, and p= 0.017; OR= 0.260; 95% CI= 0.086-0.788, respectively. Furthermore, in the women with PCOS, insulin levels were lower in the participants with the INSR NsiI "NN" genotype compared with those with the "Nn + nn" genotypes (P= 0.045. Conclusion: The results showed an association between the VDR gene BsmI and ApaI polymorphisms and PCOS risk. These data also indicated that the INSR "NN" genotype was a marker of decreased insulin in women with PCOS. Our findings, however, do not lend support to the hypothesis that PTH gene DraII variant plays a role in susceptibility to PCOS.

  13. Diversity of killer cell immunoglobulin-like receptor genes in Southern Turkey.

    Science.gov (United States)

    Ozturk, Ozlem Goruroglu; Polat, Gurbuz; Atik, Ugur

    2012-02-01

    Killer cell immunoglobulin-like receptors (KIRs) are a family of inhibitory and activating receptors expressed by natural killer (NK) cells and regulate NK cells' activity. KIR genes are highly polymorphic markers, characterized by a wide diversity, and can therefore be considered as good population genetic markers. The aim of this study was to determine KIR gene frequencies, ratios of haplotypes and genotypes in Southern Turkey and also to compare the data with other worldwide populations studied previously. The study group consisted of 200 non-related individuals from Southern Turkey. The percentage of each KIR gene in the population group was determined by direct counting. Differences between populations in the distribution of each KIR gene and genotype profile were estimated by two-tailed Fisher Exact test. The most frequent non-framework KIR genes detected in Southern Turkey population were: KIR 2DL1 (97%), KIR 3DL1 (91%), KIR 2DS4 (92%) and the pseudogene 2DP1 (96%). Fourty different genotypes were found in 200 subjects and AA1 genotype was the most frequent (27%). Among 40 different genotypes, ten of these were described for the first time in this study and were added to the database ( http://www.allelefrequencies.net ) numerized as genotype ID from 400 to 409. Gene frequencies and found genotypes demonstrated similarity of Southern Turkey's KIR repertoire with the KIR repertoires of Middle East and European population. High variability seen in KIR genome in this region is thought to be formed as a result of migration and settlement of different civilizations in this region and heterogenity formed in time.

  14. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  15. Nuclear factor kappaB signaling in opioid functions and receptor gene expression.

    Science.gov (United States)

    Chen, Yulong L; Law, Ping-Yee; Loh, Horace H

    2006-09-01

    Opiates are the most powerful of all known analgesics. The prototype opiate morphine has been used as a painkiller for several thousand years. Chronic usage of opiates not only causes drug tolerance, dependence, and addiction, but also suppresses immune functions and affects cell proliferation and cell survival. The diverse functions of opiates underscore the complexity of opioid receptor signaling. Several downstream signaling effector systems, including adenylyl cyclase, mitogen-activated protein kinase, Ca2+ channels, K+ channels, and phosphatidylinositol 3-kinase/Akt, have been identified to be critical in opioid functions. Nuclear factor-kappaB (NF-kappaB), one of the most diverse and critical transcription factors, is one of the downstream molecules that may either directly or indirectly transmit the receptor-mediated upstream signals to the nucleus, resulting in the regulation of the NF-kappaB-dependent genes, which are critical for the opioid-induced biological responses of neuronal and immune cells. In this minireview, we focus on current understanding of the involvement of NF-kappaB signaling in opioid functions and receptor gene expression in cells.

  16. The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Zhang Chuan-Xi

    2007-09-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs mediate fast synaptic cholinergic transmission in the insect central nervous system. The insect nAChR is the molecular target of a class of insecticides, neonicotinoids. Like mammalian nAChRs, insect nAChRs are considered to be made up of five subunits, coded by homologous genes belonging to the same family. The nAChR subunit genes of Drosophila melanogaster, Apis mellifera and Anopheles gambiae have been cloned previously based on their genome sequences. The silkworm Bombyx mori is a model insect of Lepidoptera, among which are many agricultural pests. Identification and characterization of B. mori nAChR genes could provide valuable basic information for this important family of receptor genes and for the study of the molecular mechanisms of neonicotinoid action and resistance. Results We searched the genome sequence database of B. mori with the fruit fly and honeybee nAChRs by tBlastn and cloned all putative silkworm nAChR cDNAs by reverse transcriptase-polymerase chain reaction (RT-PCR and rapid amplification of cDNA ends (RACE methods. B. mori appears to have the largest known insect nAChR gene family to date, including nine α-type subunits and three β-type subunits. The silkworm possesses three genes having low identity with others, including one α and two β subunits, α9, β2 and β3. Like the fruit fly and honeybee counterparts, silkworm nAChR gene α6 has RNA-editing sites, and α4, α6 and α8 undergo alternative splicing. In particular, alternative exon 7 of Bmα8 may have arisen from a recent duplication event. Truncated transcripts were found for Bmα4 and Bmα5. Conclusion B. mori possesses a largest known insect nAChR gene family characterized to date, including nine α-type subunits and three β-type subunits. RNA-editing, alternative splicing and truncated transcripts were found in several subunit genes, which might enhance the diversity of the gene family.

  17. The arginine vasopressin V1b receptor gene and prosociality: Mediation role of emotional empathy.

    Science.gov (United States)

    Wu, Nan; Shang, Siyuan; Su, Yanjie

    2015-09-01

    The vasopressin V1b receptor (AVPR1B) gene has been shown to be closely associated with bipolar disorder and depression. However, whether it relates to positive social outcomes, such as empathy and prosocial behavior, remains unknown. This study explored the possible role of the AVPR1B gene rs28373064 in empathy and prosociality. A total of 256 men, who were genetically unrelated, non-clinical ethnic Han Chinese college students, participated in the study. Prosociality was tested by measuring the prosocial tendencies of cognitive and emotional empathy using the Interpersonal Reactivity Index (IRI). The single nucleotide polymorphism (SNP), rs28373064, was genotyped using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results suggest that the AVPR1B gene rs28373064 is linked to emotional empathy and prosociality. The mediation analysis indicated that the effect of the AVPR1B gene on prosociality might be mediated by emotional empathy. This study demonstrated the link between the AVPR1B gene and prosociality and provided evidence that emotional empathy might mediate the relation between the AVPR1B gene and prosociality. © 2015 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  18. The oxytocin receptor gene, an integral piece of the evolution of Canis familaris from Canis lupus

    Directory of Open Access Journals (Sweden)

    Jessica Lee Oliva

    2016-07-01

    Full Text Available Previous research in canids has revealed both group (dog versus wolf and individual differences in object choice task (OCT performance. These differences might be explained by variation in the oxytocin receptor (OXTR gene, as intranasally administered oxytocin has recently been shown to improve performance on this task by domestic dogs. This study looked at microsatellites at various distances from the OXTR gene to determine whether there was an association between this gene and: i species (dog/wolf and ii good versus bad OCT performers. Ten primer sets were designed to amplify 10 microsatellites that were identified at various distances from the canine OXTR gene. We used 94 (52 males, 42 females blood samples from shelter dogs, 75 (33 males, 42 females saliva samples from pet dogs and 12 (6 males, 6 females captive wolf saliva samples to carry out our analyses. Significant species differences were found in the two markers closest to the OXTR gene, suggesting that this gene may have played an important part in the domestic dogs’ evolution from the wolf. However, no significant, meaningful differences were found in microsatellites between good versus bad OCT performers, which suggests that other factors, such as different training and socialisation experiences, probably impacted task performance

  19. Neurotensin receptor 1 gene (NTSR1 polymorphism is associated with working memory.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available BACKGROUND: Recent molecular genetics studies showed significant associations between dopamine-related genes (including genes for dopamine receptors, transporters, and degradation and working memory, but little is known about the role of genes for dopamine modulation, such as those related to neurotensin (NT, in working memory. A recent animal study has suggested that NT antagonist administration impaired working memory in a learning task. The current study examined associations between NT genes and working memory among humans. METHODS: Four hundred and sixty healthy undergraduate students were assessed with a 2-back working memory paradigm. 5 SNPs in the NTSR1 gene were genotyped. 5 ANOVA tests were conducted to examine whether and how working memory differed by NTSR1 genotype, with each SNP variant as the independent variable and the average accuracy on the working memory task as the dependent variable. RESULTS: ANOVA results suggested that two SNPs in the NTSR1 gene (rs4334545 and rs6090453 were significantly associated with working memory. These results survived corrections for multiple comparisons. CONCLUSIONS: Our results demonstrated that NTSR1 SNP polymorphisms were significantly associated with variance in working memory performance among healthy adults. This result extended previous rodent studies showing that the NT deficiency impairs the working memory function. Future research should replicate our findings and extend to an examination of other dopamine modulators.

  20. Latitudinal Clines of the Human Vitamin D Receptor and Skin Color Genes

    Directory of Open Access Journals (Sweden)

    Dov Tiosano

    2016-05-01

    Full Text Available The well-documented latitudinal clines of genes affecting human skin color presumably arise from the need for protection from intense ultraviolet radiation (UVR vs. the need to use UVR for vitamin D synthesis. Sampling 751 subjects from a broad range of latitudes and skin colors, we investigated possible multilocus correlated adaptation of skin color genes with the vitamin D receptor gene (VDR, using a vector correlation metric and network method called BlocBuster. We discovered two multilocus networks involving VDR promoter and skin color genes that display strong latitudinal clines as multilocus networks, even though many of their single gene components do not. Considered one by one, the VDR components of these networks show diverse patterns: no cline, a weak declining latitudinal cline outside of Africa, and a strong in- vs. out-of-Africa frequency pattern. We confirmed these results with independent data from HapMap. Standard linkage disequilibrium analyses did not detect these networks. We applied BlocBuster across the entire genome, showing that our networks are significant outliers for interchromosomal disequilibrium that overlap with environmental variation relevant to the genes’ functions. These results suggest that these multilocus correlations most likely arose from a combination of parallel selective responses to a common environmental variable and coadaptation, given the known Mendelian epistasis among VDR and the skin color genes.

  1. Extensive variation in gene copy number at the killer immunoglobulin-like receptor locus in humans.

    Directory of Open Access Journals (Sweden)

    Sanne Vendelbosch

    Full Text Available Killer immunoglobulin-like receptors (KIRs are involved in the regulation of natural killer cell cytotoxicity. Within the human genome seventeen KIR genes are present, which all contain a large number of allelic variants. The high level of homology among KIR genes has hampered KIR genotyping in larger cohorts, and determination of gene copy number variation (CNV has been difficult. We have designed a multiplex ligation-dependent probe amplification (MLPA technique for genotyping and CNV determination in one single assay and validated the results by next-generation sequencing and with a KIR gene-specific short tandem repeat assay. In this way, we demonstrate in a cohort of 120 individuals a high level of CNV for all KIR genes except for the framework genes KIR3DL3 and KIR3DL2. Application of our MLPA assay in segregation analyses of families from the Centre d'Etude du Polymorphisme Humaine, previously KIR-genotyped by classical techniques, confirmed an earlier reported duplication and resulted in the identification of a novel duplication event in one of these families. In summary, our KIR MLPA assay allows rapid and accurate KIR genotyping and CNV detection, thus rendering improved transplantation programs and oncology treatment feasible, and enables more detailed studies on the role of KIRs in human (autoimmunity and infectious disease.

  2. Extensive variation in gene copy number at the killer immunoglobulin-like receptor locus in humans.

    Science.gov (United States)

    Vendelbosch, Sanne; de Boer, Martin; Gouw, Remko A T W; Ho, Cynthia K Y; Geissler, Judy; Swelsen, Wendy T N; Moorhouse, Michael J; Lardy, Neubury M; Roos, Dirk; van den Berg, Timo K; Kuijpers, Taco W

    2013-01-01

    Killer immunoglobulin-like receptors (KIRs) are involved in the regulation of natural killer cell cytotoxicity. Within the human genome seventeen KIR genes are present, which all contain a large number of allelic variants. The high level of homology among KIR genes has hampered KIR genotyping in larger cohorts, and determination of gene copy number variation (CNV) has been difficult. We have designed a multiplex ligation-dependent probe amplification (MLPA) technique for genotyping and CNV determination in one single assay and validated the results by next-generation sequencing and with a KIR gene-specific short tandem repeat assay. In this way, we demonstrate in a cohort of 120 individuals a high level of CNV for all KIR genes except for the framework genes KIR3DL3 and KIR3DL2. Application of our MLPA assay in segregation analyses of families from the Centre d'Etude du Polymorphisme Humaine, previously KIR-genotyped by classical techniques, confirmed an earlier reported duplication and resulted in the identification of a novel duplication event in one of these families. In summary, our KIR MLPA assay allows rapid and accurate KIR genotyping and CNV detection, thus rendering improved transplantation programs and oncology treatment feasible, and enables more detailed studies on the role of KIRs in human (auto)immunity and infectious disease.

  3. Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation.

    Science.gov (United States)

    Fietz, D; Markmann, M; Lang, D; Konrad, L; Geyer, J; Kliesch, S; Chakraborty, T; Hossain, H; Bergmann, M

    2015-12-29

    Androgens play an important role for the development of male fertility and gained interest as growth and survival factors for certain types of cancer. Androgens act via the androgen receptor (AR/Ar), which is involved in various cell biological processes such as sex differentiation. To study the functional mechanisms of androgen action, cell culture systems and AR-transfected cell lines are needed. Transfection of AR into cell lines and subsequent gene expression analysis after androgen treatment is well established to investigate the molecular biology of target cells. However, it remains unclear how the transfection with AR itself can modulate the gene expression even without androgen stimulation. Therefore, we transfected Ar-deficient rat Sertoli cells 93RS2 by electroporation using a full length human AR. Transfection success was confirmed by Western Blotting, immunofluorescence and RT-PCR. AR transfection-related gene expression alterations were detected with microarray-based genome-wide expression profiling of transfected and non-transfected 93RS2 cells without androgen stimulation. Microarray analysis revealed 672 differentially regulated genes with 200 up- and 472 down-regulated genes. These genes could be assigned to four major biological categories (development, hormone response, immune response and metabolism). Microarray results were confirmed by quantitative RT-PCR analysis for 22 candidate genes. We conclude from our data, that the transfection of Ar-deficient Sertoli cells with AR has a measurable effect on gene expression even without androgen stimulation and cause Sertoli cell damage. Studies using AR-transfected cells, subsequently stimulated, should consider alterations in AR-dependent gene expression as off-target effects of the AR transfection itself.

  4. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... were quantified at 4-h intervals: in the diurnal study, mice were exposed to a period of 12 h light followed by 12 h darkness (n=52). In the circadian study, mice were kept in darkness for 24 h (n=47). Concomitant serum concentrations of free fatty acids, glycerol, triglycerides (TGs), and insulin were...

  5. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R. [Los Alamos National Lab., NM (United States)

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  6. Radiation induction of the receptor tyrosine kinase gene Ptk-3 in normal rat astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, S.; Hideyuki, S.; Akihiro, I. [Univ. of Texas, Houston, TX (United States)] [and others

    1995-07-01

    Radiation-induced gene expression was examined in rat astrocyte cultures using differential display of mRNA via reverse transcriptase-polymerase chain reaction. A 0.3-kb cDNA that was consistently observed in irradiated cultures but not in unirradiated cultures was cloned and sequenced. It was found to be identical to Ptk-3, a receptor tyrosine kinase gene identified recently. The protein encoded by Ptk-3 is a member of a novel class of receptor tyrosine kinases whose extracellular domain contains regions of homology with coagulation factors V and VIII and complement component C1. Northern blot analysis revealed that the expression of Ptk-3 was increased in rat astrocytes by 0.5 h after exposure to 10 Gy and remained at the same elevated level for at least 24 h. The maximum increase occurred after 5 Gy cloning studies indicated the presence of at least two Ptk-3 mRNA transcripts, which are probable the result of an alternative splicing mechanism. The short isoform lacks a 37 amino acid sequence in the glycine/proline-rich juxtamembrane region. The splicing pattern of the Ptk-3 gene was not altered by radiation. However, the ratios of the longer to the shorter mRNA transcripts differed between adult cortex, neonatal cortex and in vitro astrocyte cultures. 36 refs., 5 figs.

  7. Androgen receptor regulation of the seladin-1/DHCR24 gene: altered expression in prostate cancer.

    Science.gov (United States)

    Bonaccorsi, Lorella; Luciani, Paola; Nesi, Gabriella; Mannucci, Edoardo; Deledda, Cristiana; Dichiara, Francesca; Paglierani, Milena; Rosati, Fabiana; Masieri, Lorenzo; Serni, Sergio; Carini, Marco; Proietti-Pannunzi, Laura; Monti, Salvatore; Forti, Gianni; Danza, Giovanna; Serio, Mario; Peri, Alessandro

    2008-10-01

    Prostate cancer (CaP) represents a major leading cause of morbidity and mortality in the Western world. Elevated cholesterol levels, resulting from altered cholesterol metabolism, have been found in CaP cells. Seladin-1 (SELective Alzheimer Disease INdicator-1)/DHCR24 is a recently described gene involved in cholesterol biosynthesis. Here, we demonstrated the androgen regulation of seladin-1/DHCR24 expression, due to the presence of androgen responsive element sequences in its promoter region. In metastatic androgen receptor-negative CaP cells seladin-1/DHCR24 expression and cholesterol amount were reduced compared to androgen receptor-positive cells. In tumor samples from 61 patients who underwent radical prostatectomy the expression of seladin-1/DHCR24 was significantly higher with respect to normal tissues. In addition, in cancer tissues mRNA levels were positively related to T stage. In tumor specimens from 23 patients who received androgen ablation treatment for 3 months before surgery seladin-1/DHCR24 expression was significantly lower with respect to patients treated by surgery only. In conclusion, our study demonstrated for the first time the androgen regulation of the seladin-1/DHCR24 gene and the presence of a higher level of expression in CaP tissues, compared to the normal prostate. These findings, together with the results previously obtained in metastatic disease, suggest an involvement of this gene in CaP.

  8. Vampire bats exhibit evolutionary reduction of bitter taste receptor genes common to other bats.

    Science.gov (United States)

    Hong, Wei; Zhao, Huabin

    2014-08-07

    The bitter taste serves as an important natural defence against the ingestion of poisonous foods and is thus believed to be indispensable in animals. However, vampire bats are obligate blood feeders that show a reduced behavioural response towards bitter-tasting compounds. To test whether bitter taste receptor genes (T2Rs) have been relaxed from selective constraint in vampire bats, we sampled all three vampire bat species and 11 non-vampire bats, and sequenced nine one-to-one orthologous T2Rs that are assumed to be functionally conserved in all bats. We generated 85 T2R sequences and found that vampire bats have a significantly greater percentage of pseudogenes than other bats. These results strongly suggest a relaxation of selective constraint and a reduction of bitter taste function in vampire bats. We also found that vampire bats retain many intact T2Rs, and that the taste signalling pathway gene Calhm1 remains complete and intact with strong functional constraint. These results suggest the presence of some bitter taste function in vampire bats, although it is not likely to play a major role in food selection. Together, our study suggests that the evolutionary reduction of bitter taste function in animals is more pervasive than previously believed, and highlights the importance of extra-oral functions of taste receptor genes. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. A Novel, Essential Control for Clonality Analysis with Human Androgen Receptor Gene Polymerase Chain Reaction

    Science.gov (United States)

    van Dijk, Jeroen P.; Heuver, Leonie H.; van der Reijden, Bert A.; Raymakers, Reinier A.; de Witte, Theo; Jansen, Joop H.

    2002-01-01

    The most widely used technique for determining clonality based on X-chromosome inactivation is the human androgen receptor gene polymerase chain reaction (PCR). The reliability of this assay depends critically on the digestion of DNA before PCR with the methylation-sensitive restriction enzyme HpaII. We have developed a novel method for quantitatively monitoring the HpaII digestion in individual samples. Using real-time quantitative PCR we measured the efficiency of HpaII digestion by measuring the amplification of a gene that escapes X-chromosome inactivation (XE169) before and after digestion. This method was tested in blood samples from 30 individuals: 2 healthy donors and 28 patients with myelodysplastic syndrome. We found a lack of XE169 DNA reduction after digestion in the granulocytes of two myelodysplastic syndrome patients leading to a false polyclonal X-chromosome inactivation pattern. In all other samples a significant reduction of XE169 DNA was observed after HpaII digestion. The median reduction was 220-fold, ranging from a 9.0-fold to a 57,000-fold reduction. Also paraffin-embedded malignant tissue was investigated from two samples of patients with mantle cell lymphoma and two samples of patients with colon carcinoma. In three of these cases inefficient HpaII digestion led to inaccurate X-chromosome inactivation pattern ratios. We conclude that monitoring the efficiency of the HpaII digestion in a human androgen receptor gene PCR setting is both necessary and feasible. PMID:12213708

  10. Vitamin D receptor gene polymorphisms in multiple sclerosis patients in northwest Greece

    Directory of Open Access Journals (Sweden)

    Georgiou Ioannis

    2011-05-01

    Full Text Available Abstract Background Polymorphisms of the vitamin D receptor (VDR gene have been linked to both multiple sclerosis (MS and osteoporosis. We examined the frequency of the Taq-I and Bsm-I polymorphisms of the vitamin D receptor (VDR gene in 69 patients with MS and 81 age and sex-matched healthy individuals. Genotyping of Taq-I (rs731236 and Bsm-I (rs1544410 was performed using TaqMan® SNP Genotyping Assay. All patients and controls had determination of body mass index (BMI, bone mineral density (BMD and smoking history. Results The mean age of patients was 39 ± 10.5 years compared to 38.7 ± 10.7 years of the controls (p = 0.86, the BMI was 24.8 ± 4.2 kg/m2 compared to 25.7 ± 4.8 kg/m2 of the controls (p = 0.23, the BMD in the lumbar spine 0.981 ± 0.15 compared to 1.025 ± 013 of the controls (p = 0.06 and the total hip BMD was 0.875 ± 0.14 compared to 0.969 ± 0.12 of the controls (p Conclusions This study suggests that the Taq-I and Bsm-I polymorphisms of the VDR gene are not associated with MS risk, BMI or BMD in the Greek population studied.

  11. Child μ-opioid receptor gene variant influences parent-child relations.

    Science.gov (United States)

    Copeland, William E; Sun, Hui; Costello, E Jane; Angold, Adrian; Heilig, Markus A; Barr, Christina S

    2011-05-01

    Variation in the μ-opioid receptor gene has been associated with early social behavior in mice and rhesus macaques. The current study tested whether the functional OPRM1 A118G predicted various indices of social relations in children. The sample included 226 subjects of self-reported European ancestry (44% female; mean age 13.6, SD=2.2) who were part of a larger representative study of children aged 9-17 years in rural North Carolina. Multiple aspects of recent (past 3 months) parent-child relationship were assessed using the Child and Adolescent Psychiatric Assessment. Parent problems were coded based upon a lifetime history of mental health problems, substance abuse, or criminality. Child genotype interacted with parent behavior such that there were no genotype differences for those with low levels of parent problems; however, when a history of parent problems was reported, the G allele carriers had more enjoyment of parent-child interactions (mean ratio (MR)=3.5, 95% CI=1.6, 8.0) and fewer arguments (MR=3.1, 95% CI=1.1, 8.9). These findings suggest a role for the OPRM1 gene in the genetic architecture of social relations in humans. In summary, a variant in the μ-opioid receptor gene (118G) was associated with improved parent-child relations, but only in the context of a significant disruption in parental functioning.

  12. Polymorphisms in the Estrogen Receptor Beta Gene and the Risk of Unexplained Recurrent Spontaneous Abortion

    Science.gov (United States)

    Mahdavipour, Marzieh; Zarei, Saeed; Fatemi, Ramina; Edalatkhah, Haleh; Heidari-Vala, Hamed; Jeddi-Tehrani, Mahmood; Idali, Farah

    2017-01-01

    Background: Recurrent Spontaneous Abortion (RSA) is caused by multiple genetic and non-genetic factors. Around 50% of the RSA cases have no known etiology and are considered as Unexplained RSA (URSA). Estrogens, via binding to their receptors, play an important role in female reproduction. This study aimed to investigate whether single nucleotide polymorphisms (SNPs; +1082G/A, +1730G/A and rs1256030 C/T) in the estrogen receptor beta (ESR2) gene are associated with susceptibility to URSA in a population of Iranian women. Methods: In this case-control study, the study groups consisted of 240 subjects with a history of URSA and 102 fertile women as controls. Serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were measured on day 2–3 of menstrual cycle. Two functional SNPs, +1082G/A (a silent mutation in exon 5) and +1730G/A (3′ untranslated region of the exon 8), and one intron, rs1256030C/T, in the ESR2 gene were genotyped, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Results: Serum levels of LH were significantly increased in URSA women. No significant differences in distribution of +1082G/A, +1730G/A and rs1256030C/T between URSA and control groups were observed. Conclusion: Our findings suggest that the studied SNPs on ESR2 gene may not be associated with URSA. PMID:28706612

  13. Genetic Imaging of the Association of Oxytocin Receptor Gene (OXTR Polymorphisms with Positive Maternal Parenting

    Directory of Open Access Journals (Sweden)

    Kalina J. Michalska

    2014-02-01

    Full Text Available Background: Well-validated models of maternal behavior in small-brain mammals posit a central role of oxytocin in parenting, by reducing stress and enhancing the reward value of social interactions with offspring. In contrast, human studies are only beginning to gain insights into how oxytocin modulates maternal behavior and affiliation. Methods: To explore associations between oxytocin receptor genes and maternal parenting behavior in humans, we conducted a genetic imaging study of women selected to exhibit a wide range of observed parenting when their children were 4-6 years old. Results: In response to child stimuli during functional magnetic resonance imaging, hemodynamic responses in brain regions that mediate affect, reward, and social behavior were significantly correlated with observed positive parenting. Furthermore, single nucleotide polymorphisms (rs53576 and rs1042778 in the gene encoding the oxytocin receptor were significantly associated with both positive parenting and hemodynamic responses to child stimuli in orbitofrontal cortex, anterior cingulate cortex and hippocampus. Conclusions: These findings contribute to the emerging literature on the role of oxytocin in human social behavior and support the feasibility of tracing biological pathways from genes to neural regions to positive maternal parenting behaviors in humans using genetic imaging methods.

  14. Selection is not required to produce invariant T-cell receptor gamma-gene junctional sequences.

    Science.gov (United States)

    Asarnow, D M; Cado, D; Raulet, D H

    1993-03-11

    Recombination of V-, D- and J-gene segments can generate an enormous diversity of T-cell antigen receptor (TCR) gene sequences. Although many gamma delta T cells fully exploit this diversification process, those in the epidermal and vaginal epithelium do not, predominantly expressing invariant gamma delta receptors in which the V-(D)-J junctional sequences in almost all the productive rearrangements are identical. The almost exclusive use of identical TCRs by cells in these sites is thought to reflect recognition of a stress-induced autologous antigen. To explain the prevalence of the invariant junctional sequences, it has been proposed that thymic selection operates on a population of originally diverse progenitor cells, resulting in a homogeneous repertoire. Alternatively the invariant sequences may result from biases in the recombination machinery in the fetal thymic progenitors of these cells. We report here the use of mice into which mutated TCR gamma-gene rearrangement substrates have been introduced as transgenes to demonstrate directly that the canonical TCR V gamma 3-J gamma 1 and V gamma 4-J gamma 1 sequences occur at high frequency in the absence of the possibility of selection for the protein products.

  15. Cannabinoid Type-1 Receptor Gene Polymorphisms Are Associated with Central Obesity in a Southern Brazilian Population

    Directory of Open Access Journals (Sweden)

    Janaína P. Jaeger

    2008-01-01

    Full Text Available The CB1 cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in energy balance control, stimulating appetite and increasing body weight in wasting syndromes. Different studies have investigated the relationship between polymorphisms of the cannabinoid receptor 1 (CNR1 gene and obesity with conflicting results. In the present study, we investigated the 1359G/A (rs1049353, 3813A/G (rs12720071 and 4895A/G (rs806368 polymorphisms in the CNR1 gene in a Brazilian population of European descent. To verify the association between these variants and obesity-related traits in this population, 756 individuals were genotyped by PCR-RFLP methods. The 4895G allele was associated with waist to hip ratio (WHR (P = 0.014; P = 0.042 after Bonferroni correction. An additive effect with the GAA haplotype was associated with WHR (P = 0.028, although this statistical significance disappeared after Bonferroni correction (P = 0.084. No significant association was observed between the genotypes of the 1359G/A and 3813A/G polymorphisms and any of the quantitative variables investigated. Our findings suggest that CNR1 gene polymorphism is associated with central obesity in this Brazilian population of European ancestry.

  16. Regulation of calcitonin gene-related peptide receptors in the rat uterus during pregnancy and labor and by progesterone.

    Science.gov (United States)

    Yallampalli, C; Gangula, P R; Kondapaka, S; Fang, L; Wimalawansa, S

    1999-10-01

    Calcitonin gene-related peptide (CGRP) is a potent smooth muscle relaxant in a variety of tissues. We recently demonstrated that CGRP relaxes uterine tissue during pregnancy but not during labor. In the present study we examined whether uterine (125)I-CGRP binding and immunoreactive CGRP receptors are regulated by pregnancy and labor and by sex steroid hormones. We found that (125)I-CGRP binding to membrane preparations from uteri was elevated during pregnancy and decreased during labor and postpartum. Changes in immunoreactive CGRP receptors were similar to the changes in (125)I-CGRP binding in these tissues, suggesting pregnancy-dependent regulation of CGRP receptor protein. CGRP receptors were elevated by Day 7 of gestation, and a precipitous decrease in these receptors occurred on Day 22 of gestation prior to the onset of labor. Both (125)I-CGRP-binding and immunofluorescence studies indicated that CGRP receptors were localized to myometrial cells. Hormonal control of uterine CGRP receptors was assessed by the use of antiprogesterone RU-486, progesterone, and estradiol-17beta. RU-486 induced a decrease in uterine CGRP receptors during pregnancy (Day 19). On the other hand, progesterone prevented the fall in uterine CGRP receptors at term (Day 22). In addition, progesterone also increased uterine CGRP receptors in nonpregnant, ovariectomized rats, while estradiol had no effects. These hormone-induced changes in uterine CGRP receptors were demonstrated by (125)I-CGRP-binding, Western immunoblotting, and immunolocalization methods. These results indicate that CGRP receptors and CGRP binding in the rat uterus are increased with pregnancy and decreased at term. These receptors are localized to the myometrial cells, and progesterone is required for maintaining CGRP receptors in the rat uterus. Thus, the inhibitory effects of CGRP on uterine contractility are mediated through the changes in CGRP receptors and may play a role in uterine quiescence during pregnancy.

  17. Oxytocin and Opioid Receptor Gene Polymorphisms Associated with Greeting Behavior in Dogs

    Directory of Open Access Journals (Sweden)

    Enikő Kubinyi

    2017-09-01

    Full Text Available Meeting humans is an everyday experience for most companion dogs, and their behavior in these situations and its genetic background is of major interest. Previous research in our laboratory reported that in German shepherd dogs the lack of G allele, and in Border collies the lack of A allele, of the oxytocin receptor gene (OXTR 19208A/G single nucleotide polymorphism (SNP was linked to increased friendliness, which suggests that although broad traits are affected by genetic variability, the specific links between alleles and behavioral variables might be breed-specific. In the current study, we found that Siberian huskies with the A allele approached a friendly unfamiliar woman less frequently in a greeting test, which indicates that certain polymorphisms are related to human directed behavior, but that the relationship patterns between polymorphisms and behavioral phenotypes differ between populations. This finding was further supported by our next investigation. According to primate studies, endogenous opioid peptide (e.g., endorphins receptor genes have also been implicated in social relationships. Therefore, we examined the rs21912990 of the OPRM1 gene. Firstly, we found that the allele frequencies of Siberian huskies and gray wolves were similar, but differed from that of Border collies and German shepherd dogs, which might reflect their genetic relationship. Secondly, we detected significant associations between the OPRM1 SNP and greeting behavior among German shepherd dogs and a trend in Border collies, but we could not detect an association in Siberian huskies. Although our results with OXTR and OPRM1 gene variants should be regarded as preliminary due to the relatively low sample size, they suggest that (1 OXTR and OPRM1 gene variants in dogs affect human-directed social behavior and (2 their effects differ between breeds.

  18. Isolation, characterization, and expression analyses of ecdysone receptor 1, ecdysone receptor 2 and ultraspiracle genes in varroa destructor mite

    Science.gov (United States)

    The varroa mite, Varroa destructor, is a honeybee ectoparasite considered the most important pest in apiaries throughout the US. Ecdysone receptor is a hormone secreted by the prothoracic gland of insects that controls ecdysis and stimulates metamorphosis. The ecdysone receptor is a nuclear receptor...

  19. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  20. Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates.

    Science.gov (United States)

    Ogino, Yukiko; Katoh, Hironori; Kuraku, Shigehiro; Yamada, Gen

    2009-12-01

    Vertebrates show diverse sexual characters in sexually attractive and reproductive organs, which are regulated by steroid hormones, particularly androgens. However, the evolutionary history of androgen receptor (AR) gene remains largely unknown on the basis of phylogenic and functional analyses. To elucidate the evolutionary history and functional diversification of AR genes in vertebrates, we cloned the AR cDNAs from a shark, basal ray-finned fishes (Actinopterygii), namely bichir and sturgeon (Acipenseriformes), and teleosts including a basal teleost, arowana (Osteoglossiformes). Molecular phylogenetic analysis revealed that the gene duplication event that gave rise to two different teleost ARs (alpha and beta) likely occurred in the actinopterygian lineage leading to teleosts after the divergence of Acipenseriformes but before the split of Osteoglossiformes, which is compatible with the phylogenetic timing of teleost-specific genome duplication. Searching for AR genes in the medaka genome indicated that the teleost AR gene duplication has been associated with the duplication between chromosomes 10 and 14. Our functional analysis revealed that the shark AR activates the target gene via androgen response element by classical androgens. The teleost ARalpha showed the unique intracellular localization with a significantly higher transactivating capacity than that by teleost ARbeta. These findings indicate that the most ancient type of AR, as activated by the classical androgens as ligands, emerged before the Chondrichthyes-Osteichthyes split, and the AR gene was duplicated during the teleost-specific genome duplication event. We report here for the first time the accurate evolutionary history of AR gene and functional characterization of AR duplicates in teleost lineage.

  1. Symptoms of Attention-Deficit/Hyperactivity Disorder in Down Syndrome: Effects of the Dopamine Receptor D4 Gene

    Science.gov (United States)

    Mason, Gina Marie; Spanó, Goffredina; Edgin, Jamie

    2015-01-01

    This study examined individual differences in ADHD symptoms and executive function (EF) in children with Down syndrome (DS) in relation to the dopamine receptor D4 (DRD4) gene, a gene often linked to ADHD in people without DS. Participants included 68 individuals with DS (7-21 years), assessed through laboratory tasks, caregiver reports, and…

  2. Association between the Dopamine Receptor D5 Gene and the Liability to Substance Dependence in Males: A Replication.

    Science.gov (United States)

    Vanyukov, Michael M.; Maher, Brion S.; Ferrell, Robert E.; Devlin, Bernard; Marazita, Mary L.; Kirillova, Galina P.

    2001-01-01

    The heritability of substance dependence (SD) liability is based on polymorphisms at the genes that are likely to be related to the function of the central nervous system. We have recently shown an association between the dopamine D5 receptor gene and SD liability. We report herein a replication of this association in an independent case-control…

  3. Reported associations between receptor genes and human sociality are explained by methodological errors and do not replicate

    NARCIS (Netherlands)

    Jern, P.; Verweij, K.J.H.; Barlow, F.K.; Zietsch, B.P.

    2017-01-01

    Using a sample of 757 British individuals, Pearce et al. (1) tested 24 single-nucleotide polymorphisms (SNPs) in six candidate genes for association with eight social behavior traits. For each SNP for each trait, five genotypic model tests were reported (except the androgen receptor gene, for which

  4. 5-Hydroxytryptamine (serotonin 2A receptor gene polymorphism is associated with schizophrenia

    Directory of Open Access Journals (Sweden)

    Subash Padmajeya Sujitha

    2014-01-01

    Full Text Available Background & objectives: Schizophrenia, the debilitating neuropsychiatric disorder, is known to be heritable, involving complex genetic mechanisms. Several chromosomal regions associated with schizophrenia have been identified during the past; putative gene (s in question, to be called the global signature for the pathophysiology of the disease, however, seems to evade us. The results obtained from the several population-wise association-non association studies have been diverse. w0 e therefore, undertook the present study on Tamil speaking population in south India to examine the association between the single nucleotide polymorphisms (SNPs at the serotonin receptor gene (5HT2A and the occurrence of the disease. Methods: Blood samples collected from 266 cases and 272 controls were subjected to genotyping (PCR amplification of candidate SNPs, RFLP and sequencing. The data on the SNPs were subjected to statistical analysis for assessing the gene frequencies in both the cases and the controls. Results: The study revealed significant association between the genotypic frequencies of the serotonin receptor polymorphism and schizophrenia. SNP analysis revealed that the frequencies of GG (30%, rs6311 and CC genotypes (32%, rs6313, were higher in patients (P<0.05 than in controls. The study also showed presence of G and C alleles in patients. s0 ignificant levels of linkage disequilibrium (LD were found to exist between the genotype frequencies of rs6311 and rs6313. Interpretation & conclusions: This study indicated an association between the SNPs (rs6311 and rs6313 of the serotonin receptor 5HT2A and schizophrenia. HapMap analysis revealed that in its genotype distribution, the Tamil speaking population was different from several other populations across the world, signifying the importance of such ethnicity-based studies to improve our understanding of this complex disease.

  5. SIGNIFICANCE OF GENE POLYMORPHISM OF VITAMIN D RECEPTOR IN HUMAN PATHOLOGY

    Directory of Open Access Journals (Sweden)

    M. A. Bukhalko

    2017-01-01

    Full Text Available The literature review presents information on the role of gene polymorphism of vitamin D receptor in human pathology. According to  modern data, vitamin D is a hormone which has numerous pleiotropic effects on the human body by binding to its specific receptors  (VDR. These effects can greatly determine the role of vitamin D in the occurence and the course of a number of widespread diseases of a  modern man, including infectious pathology, autoimmune diseases, neuropsychiatric disorders. Special importance is currently attached  to the receptor gene of vitamin D, VDR, which is characterized by a genetic polymorphism that can determine the features of implementation of the biological effects of calcitriol in the human body. The article presents the review data supporting the contribution of certain  single nucleotide polymorphisms of gene VDR in the formation of the pleiotropic effects of vitamin D and their clinical manifestations.

  6. Identification and characterization of melanocortin-4 receptor gene mutations in morbidly obese finnish children and adults.

    Science.gov (United States)

    Valli-Jaakola, Kaisa; Lipsanen-Nyman, Marita; Oksanen, Laura; Hollenberg, Anthony N; Kontula, Kimmo; Bjørbaek, Christian; Schalin-Jäntti, Camilla

    2004-02-01

    Two Finnish cohorts, comprising 56 children with severe early-onset obesity (relative weight for height greater than or equal to +70% before age 10) and 252 morbidly obese adults (body mass index, > or = 40 kg/m(2)), were screened for melanocortin-4 receptor (MC4R) mutations. We identified a pathogenic mutation (S127L) in one child, causing severe early-onset obesity. We describe the phenotype of this particular mutation for the first time. We also identified a novel (I226T) polymorphism in the coding and two new variations (-439delGC and 1059C>T) outside the coding region of the MC4R gene. Three previously described polymorphisms (V103I, T112M, and I125L) were identified. In vitro functional studies of variants T112M, S127L, and I226T supported a pathogenic role of the S127L mutation, because signaling properties of the receptor in response to the MC4R agonists alpha-MSH, beta-MSH, and gamma(1)-MSH were impaired. The S127L mutation did not affect receptor inhibition by the antagonist agouti-related protein. Localization of the three variant receptors was similar to that of wild type. In conclusion, a pathogenic MC4R mutation was found among subjects with severe early-onset obesity but not among morbidly obese adults. Impaired function of the S127L receptor was due to reduced activation, not a defect of protein transport to the cell membrane.

  7. Isolation and characterization of CXC receptor genes in a range of elasmobranchs.

    Science.gov (United States)

    Goostrey, Anna; Jones, Gareth; Secombes, Christopher J

    2005-01-01

    The CXC group of chemokines exert their cellular effects via the CXCR group of G-protein coupled receptors. Six CXCR genes have been identified in humans (CXCR1-6), and homologues to some of these have been isolated from a range of vertebrate species. Here we isolate and characterize CXCR genes from a range of elasmobranch species. One CXCR1/2 gene fragment isolated from Scyliorhinus caniculus (lesser spotted catshark), and two CXCR1/2 copies from each of the elasmobranchs, Cetorhinus maximus (basking shark), Carcharodon carcharias (great white shark), and Raja naevus (cuckoo ray), exhibit high similarity to both CXCR1 and CXCR2. The two copies evident in the cuckoo ray and lamniform sharks provide strong evidence of CXCR1/2 lineage specific duplication in rays and sharks. A CXCR fragment isolated from Lamna ditropis (salmon shark) shows high similarity to a range of CXCR4 genes and strong clustering with CXCR4 gene homologues was apparent during phylogenetic reconstruction.

  8. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  9. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway.

    Science.gov (United States)

    Hsu, Shih-Che; Huang, Shih-Ming; Lin, Shih-Hua; Ka, Shuk-Man; Chen, Ann; Shih, Meng-Fu; Hsu, Yu-Juei

    2014-12-01

    Gender is known to be associated with longevity and oestrogen administration induced longevity-associated gene expression is one of the potential mechanisms underlying the benefits of oestrogen on lifespan, whereas the role of testosterone in the regulation of longevity-associated gene expressions remains largely unclear. The klotho gene, predominantly expressed in the kidney, has recently been discovered to be an aging suppressor gene. In the present study, we investigated the regulatory effects of testosterone on renal klotho gene expression in vivo and in vitro. In testosterone-administered mouse kidney and NRK-52E cells, increased klotho expression was accompanied by the up-regulation of the nuclear androgen receptor (AR). Overexpression of AR enhanced the expression of klotho mRNA and protein. Conversely, testosterone-induced klotho expression was attenuated in the presence of flutamide, an AR antagonist. A reporter assay and a chromatin immunoprecipitation (ChIP) assay demonstrated that AR directly binds to the klotho promoter via androgen response elements (AREs) which reconfirmed its importance for AR binding via the element mutation. In summary, our study demonstrates that testosterone up-regulates anti-aging klotho together with AR expression in the kidney in vivo and in vitro by recruiting AR on to the AREs of the klotho promoter.

  10. Angiotensin II type 1 receptor (A1166C gene polymorphism and essential hypertension in Egyptian population

    Directory of Open Access Journals (Sweden)

    Marium M. Shamaa

    2016-09-01

    Full Text Available The pathogenesis of essential hypertension (EH is affected by genetic and environmental factors. Mutations in hypertension-related genes can affect blood pressure (BP via alteration of salt and water reabsorption by the nephron. The genes of the renin-angiotensin system (RAS have been extensively studied because of the well documented role of this system in the control of BP. It has been previously shown that Angiotensin II type 1 receptor (ATR1 gene polymorphism could be associated with increased risk of EH. So, in the current study, we evaluated the frequency of ATR1 (A1166C polymorphism in relation to EH in a group of Egyptian population. The study population included 83 hypertensive patients and 60 age and sex matched healthy control subjects. Restriction fragment length polymorphism – Polymerase chain reaction (RFLP – PCR was used for the analysis of A1166C polymorphism of ATR1 genes in peripheral blood samples of all patients and controls. The results revealed that there was a positive risk of developing EH when having the T allele whether in homozygous or heterozygous state. From this work, it was concluded that there was an association between ATR1 (A1166C gene polymorphism and the risk of developing EH.

  11. Dopamine receptor DRD4 gene and stressful life events in persistent attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sánchez-Mora, Cristina; Richarte, Vanesa; Garcia-Martínez, Iris; Pagerols, Mireia; Corrales, Montse; Bosch, Rosa; Vidal, Raquel; Viladevall, Laia; Casas, Miguel; Cormand, Bru; Ramos-Quiroga, Josep Antoni; Ribasés, Marta

    2015-09-01

    We performed a case-control association study in persistent ADHD considering eight candidate genes (DRD4, DAT1/SLC6A3, COMT, ADRA2A, CES1, CYP2D6, LPHN3, and OPRM1) and found additional evidence for the involvement of the Dup 120bp and VNTR 48bp functional variants within the dopamine receptor DRD4 gene in the etiology of adult ADHD. We subsequently investigated the interaction of stressful life events with these two DRD4 polymorphisms, and the impact of such events on the severity of ADHD symptomatology. The gene-by-environment analysis revealed an independent effect of stressful experiences on the severity of persistent ADHD, and a gene-by-environment interaction on the inattentive dimension of the disorder, where non carriers of the Dup 120bp (L) - VNTR 48bp (7R) haplotype were more sensitive to environmental adversity than carriers. These results are in agreement with previous works reporting a relationship between DRD4 and the effect of adverse experiences, which may explain the discordant findings in previous genetic studies and strengthen the importance of gene-by-environment interactions on the severity of ADHD. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. No evidence of major effects in several Toll-like receptor gene polymorphisms in rheumatoid arthritis.

    Science.gov (United States)

    Jaen, Olivier; Petit-Teixeira, Elisabeth; Kirsten, Holger; Ahnert, Peter; Semerano, Luca; Pierlot, Céline; Cornelis, Francois; Boissier, Marie-Christophe; Falgarone, Geraldine

    2009-01-01

    The objective was to study the potential genetic contribution of Toll-like receptor (TLR) genes in rheumatoid arthritis (RA). TLRs bind to pathogen-associated molecular patterns, and TLR genes influence both proinflammatory cytokine production and autoimmune responses. Host-pathogen interactions are involved in RA physiopathology. We tested SNPs of five TLR genes (TLR9, TLR2, TLR6, TLR1, and TLR4) in a cohort of 100 French families with RA. Genotypes were analyzed using the transmission disequilibrium test. As TLR2, TLR6, and TLR1 are located on chromosome 4, we determined the haplotype relative risk. Analyses were performed in subgroups defined by status for rheumatoid factor, anti-cyclic citrullinated peptide autoantibodies, and erosions. We found no disequilibrium in allele transmission for any of the SNPs of the five TLR genes. In subgroup analyses, no associations were detected linking TLR9, TLR2, or TLR9/TLR2 to rheumatoid factor, anti-cyclic citrullinated peptide autoantibodies, or erosions. Haplotype analysis of the polymorphisms showed no haplotype associations in any of the subgroups. We found no evidence of major effects of TLR gene polymorphisms in RA, although we tested different TLR phenotypes. Moreover, no associations were noted with autoantibody production or erosions.

  13. Determination of the Role of Estrogen Receptors and Estrogen Regulated Genes in B Cell Autoreactivity

    Science.gov (United States)

    2011-07-01

    coated overnight at 37°C. Plates were washed with water and blocked for 1 h at 37°C with 100 μl 2% BSA/PBS. Plates were washed twice with PBS/Tween...31. Lee YJ, et al. (2004) Association of the oestrogen receptor alpha gene polymorphisms with disease onset in systemic lupus erythematosus. Ann...Islander U, et al. (2003) Influence of oestrogen re- ceptor alpha and beta on the immune system in aged female mice. Immunology 110:149–57. 47. Lesley R

  14. Determination of the Role of Estrogen Receptors and Estrogen Regulated Genes in B cell Autoreactivity. Addendum

    Science.gov (United States)

    2012-07-01

    coated overnight at 37°C. Plates were washed with water and blocked for 1 h at 37°C with 100 μl 2% BSA/PBS. Plates were washed twice with PBS/Tween. Sera...Lee YJ, et al. (2004) Association of the oestrogen receptor alpha gene polymorphisms with disease onset in systemic lupus erythematosus. Ann. Rheum...Islander U, et al. (2003) Influence of oestrogen re- ceptor alpha and beta on the immune system in aged female mice. Immunology 110:149–57. 47. Lesley R

  15. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car gene.

    Directory of Open Access Journals (Sweden)

    Ahmad Pazirandeh

    Full Text Available To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR, a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.

  16. Child μ-Opioid Receptor Gene Variant Influences Parent–Child Relations

    OpenAIRE

    Copeland, William E.; Sun, Hui; Costello, E. Jane; Angold, Adrian; Heilig, Markus A; Barr, Christina S.

    2011-01-01

    Variation in the μ-opioid receptor gene has been associated with early social behavior in mice and rhesus macaques. The current study tested whether the functional OPRM1 A118G predicted various indices of social relations in children. The sample included 226 subjects of self-reported European ancestry (44% female; mean age 13.6, SD=2.2) who were part of a larger representative study of children aged 9–17 years in rural North Carolina. Multiple aspects of recent (past 3 months) parent–child re...

  17. Cholecystokinin-2 receptor mediated gene expression in neuronal PC12 cells

    DEFF Research Database (Denmark)

    Hansen, Thomas v O; Borup, Rehannah; Marstrand, Troels

    2007-01-01

    Cholecystokinin (CCK) is abundantly expressed in the CNS, in which it regulates feeding behavior and long-term memory. Moreover, CCK has been implicated in mental disorders, such as anxiety and schizophrenia. Despite its manifest physiological and pathophysiological role, the molecular targets...... decarboxylase (ODC) regulation, memory and epidermal growth factor receptor (EGFR) signaling were also found. Several target genes contained cAMP response elements (CREs), serum response elements (SREs), activator protein 1 (AP1) elements and GC-rich regions, but otherwise no common regulatory promoter element...

  18. Gene expression signature of estrogen receptor α status in breast cancer

    Directory of Open Access Journals (Sweden)

    Baggerly Keith

    2005-03-01

    Full Text Available Abstract Background Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE profiles of 26 human breast carcinomas based on their estrogen receptor α (ER status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. Results We identified 520 transcripts differentially expressed between ERα-positive (+ and ERα-negative (- primary breast tumors (Fold change ≥ 2; p Estrogen Responsive Elements (EREs distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+ breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011, calcium ion binding related transcripts (p = 0.033 and steroid hormone receptor activity related transcripts (p = 0.031. SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+ invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. Conclusion The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to

  19. Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1.

    Science.gov (United States)

    Nakad, Rania; Snoek, L Basten; Yang, Wentao; Ellendt, Sunna; Schneider, Franziska; Mohr, Timm G; Rösingh, Lone; Masche, Anna C; Rosenstiel, Philip C; Dierking, Katja; Kammenga, Jan E; Schulenburg, Hinrich

    2016-04-11

    The invertebrate immune system comprises physiological mechanisms, physical barriers and also behavioral responses. It is generally related to the vertebrate innate immune system and widely believed to provide nonspecific defense against pathogens, whereby the response to different pathogen types is usually mediated by distinct signalling cascades. Recent work suggests that invertebrate immune defense can be more specific at least at the phenotypic level. The underlying genetic mechanisms are as yet poorly understood. We demonstrate in the model invertebrate Caenorhabditis elegans that a single gene, a homolog of the mammalian neuropeptide Y receptor gene, npr-1, mediates contrasting defense phenotypes towards two distinct pathogens, the Gram-positive Bacillus thuringiensis and the Gram-negative Pseudomonas aeruginosa. Our findings are based on combining quantitative trait loci (QTLs) analysis with functional genetic analysis and RNAseq-based transcriptomics. The QTL analysis focused on behavioral immune defense against B. thuringiensis, using recombinant inbred lines (RILs) and introgression lines (ILs). It revealed several defense QTLs, including one on chromosome X comprising the npr-1 gene. The wildtype N2 allele for the latter QTL was associated with reduced defense against B. thuringiensis and thus produced an opposite phenotype to that previously reported for the N2 npr-1 allele against P. aeruginosa. Analysis of npr-1 mutants confirmed these contrasting immune phenotypes for both avoidance behavior and nematode survival. Subsequent transcriptional profiling of C. elegans wildtype and npr-1 mutant suggested that npr-1 mediates defense against both pathogens through p38 MAPK signaling, insulin-like signaling, and C-type lectins. Importantly, increased defense towards P. aeruginosa seems to be additionally influenced through the induction of oxidative stress genes and activation of GATA transcription factors, while the repression of oxidative stress genes

  20. Killer cell immunoglobulin-like receptor gene associations with autoimmune and allergic diseases, recurrent spontaneous abortion, and neoplasms

    Directory of Open Access Journals (Sweden)

    Piotr eKusnierczyk

    2013-01-01

    Full Text Available Killer cell immunoglobulin-like receptors (KIRs are a family of cell surface inhibitory or activating receptors expressed on natural killer cells and some subpopulations of T lymphocytes. KIR genes are clustered in the 19q13.4 region and are characterized by both allelic (high numbers of variants and haplotypic (different numbers of genes for inhibitory and activating receptors on individual chromosomes polymorphism. This contributes to diverse susceptibility to diseases and other clinical situations. Associations of KIR genes, as well as of genes for their ligands, with selected diseases such as psoriasis vulgaris and atopic dermatitis, rheumatoid arthritis, recurrent spontaneous abortion, and non-small cell lung cancer are discussed in the context of NK and T cell functions.

  1. Variation in the oxytocin receptor gene is associated with behavioral and neural correlates of empathic accuracy

    DEFF Research Database (Denmark)

    Laursen, Helle Ruff; Siebner, Hartwig Roman; Haren, Tina

    2014-01-01

    The neuromodulators oxytocin and serotonin have been implicated in regulating affective processes underlying empathy. Understanding this dependency, however, has been limited by a lack of objective metrics for measuring empathic performance. Here we employ a novel psychophysical method for measur......The neuromodulators oxytocin and serotonin have been implicated in regulating affective processes underlying empathy. Understanding this dependency, however, has been limited by a lack of objective metrics for measuring empathic performance. Here we employ a novel psychophysical method...... performing an irrelevant attention-demanding task. We investigated the effect of variation in the oxytocin receptor gene (OXTR) and the serotonin transporter gene (SLC6A4) on the psychophysical and neurometric variability associated with empathic performance. The OXTR rs2268498 and rs53576 polymorphisms...

  2. The growth hormone receptor gene-disrupted mouse fails to respond to an intermittent fasting diet.

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S; Rocha, Juliana S; Bartke, Andrzej

    2009-12-01

    The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long lived; and this longevity is not responsive to 30% caloric restriction, in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction, we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting diet. The intermittent fasting diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction, we postulate that GHR-KO mice would be resistant to any manner of dietary restriction; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan extending potential of an intervention.

  3. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    Highlights: • This is the first report on the putative promoter sequence of a molluscan ER gene. • The gene promoter contains putative binding sites for direct and indirect interaction with ER. • E2 upregulates ER gene expression in the ovary in vitro and in vivo. • E2-induced gene expression may require a novel ligand-dependent receptor. • The ER proximal promoter is hypomethylated regardless of gene expression levels. - Abstract: In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5′-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5′-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary

  4. Genetic polymorphisms at the leptin receptor gene in three beef cattle breeds

    Directory of Open Access Journals (Sweden)

    Sabrina E.M. Almeida

    2008-01-01

    Full Text Available The genetic diversity of a single nucleotide polymorphism (SNP at the exon 20 (T945M of the leptin receptor gene (LEPR and of three short tandem repeats (STRs BM7225, BMS694, and BMS2145 linked to LEPR was investigated in three beef cattle herds (Brangus Ibagé, Charolais, and Aberdeen Angus. A cheap and effective new method to analyze the T945M polymorphism in cattle populations was developed and the possible role of these polymorphisms in reproduction and weight gain of postpartum cows was evaluated. High levels of genetic diversity were observed with the average heterozygosity of STRs ranging from 0.71 to 0.81. No significant association was detected between LEPR markers and reproductive parameters or daily weight gain. These negative results suggest that the LEPR gene polymorphisms, at least those herein described, do not influence postpartum cows production.

  5. No linkage and association of atopy to chromosome 16 including the interleukin-4 receptor gene

    DEFF Research Database (Denmark)

    Haagerup, A; Bjerke, T; Schiøtz, P O

    2001-01-01

    BACKGROUND: Several susceptibility genes for atopy have been suggested in recent years. Few have been investigated as intensively as the interleukin-4-receptor alpha (IL4Ralpha) gene on chromosome 16. The results remain in dispute. Therefore, in a robust design, we tested for association of type I...... allergy to the IL4R variations I50V and Q576R, and investigated chromosome 16 for atopy candidate regions in general. METHODS: We identified 100 Danish allergy sib-pair families. Five conservative phenotypes for type I allergy were defined and evaluated. The IL4R variations were genotyped in trios...... and evaluated by the transmission disequilibrium test (TDT). Multipoint linkage analysis and exclusion mapping were conducted with sib-pairs analyzed for 17 microsatellite markers. RESULTS: No evidence for association or linkage to the IL4R polymorphisms was found (P values: 0.12-0.90). Linkage analysis did...

  6. No association between oxytocin receptor (OXTR gene polymorphisms and experimentally elicited social preferences.

    Directory of Open Access Journals (Sweden)

    Coren L Apicella

    Full Text Available BACKGROUND: Oxytocin (OXT has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR gene variants and experimentally elicited social preferences are rare. METHODOLOGY/PRINCIPAL FINDINGS: We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs of the OXTR gene in a sample of Swedish twins (n = 684. Two standard economic games, the dictator game and the trust game, both involving real monetary consequences, were used to elicit such preferences. After correction for multiple hypothesis testing, we found no significant associations between any of the 9 single nucleotide polymorphisms (SNPs and behavior in either of the games. CONCLUSION: We were unable to replicate the most significant association reported in previous research between the amount donated in a dictator game and an OXTR genetic variant.

  7. Gene Expression Patterns Associated with Peroxisome Proliferator-activated Receptor (PPAR Signaling in the of Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2015-08-01

    Full Text Available Adipose tissue deposited within muscle fibers, known as intramuscular fat (IMF or marbling, is a major determinant of meat quality and thereby affects its economic value. The biological mechanisms that determine IMF content are therefore of interest. In this study, 48 genes involved in the bovine peroxisome proliferator-activated receptor signaling pathway, which is involved in lipid metabolism, were investigated to identify candidate genes associated with IMF in the longissimus dorsi of Hanwoo (Korean cattle. Ten genes, retinoid X receptor alpha, peroxisome proliferator-activated receptor gamma (PPARG, phospholipid transfer protein, stearoyl-CoA desaturase, nuclear receptor subfamily 1 group H member 3, fatty acid binding protein 3 (FABP3, carnitine palmitoyltransferase II, acyl-Coenzyme A dehydrogenase long chain (ACADL, acyl-Coenzyme A oxidase 2 branched chain, and fatty acid binding protein 4, showed significant effects with regard to IMF and were differentially expressed between the low- and high-marbled groups (p<0.05. Analysis of the gene co-expression network based on Pearson’s correlation coefficients identified 10 up-regulated genes in the high-marbled group that formed a major cluster. Among these genes, the PPARG-FABP4 gene pair exhibited the strongest correlation in the network. Glycerol kinase was found to play a role in mediating activation of the differentially expressed genes. We categorized the 10 significantly differentially expressed genes into the corresponding downstream pathways and investigated the direct interactive relationships among these genes. We suggest that fatty acid oxidation is the major downstream pathway affecting IMF content. The PPARG/RXRA complex triggers activation of target genes involved in fatty acid oxidation resulting in increased triglyceride formation by ATP production. Our findings highlight candidate genes associated with the IMF content of the loin muscle of Korean cattle and provide insight

  8. Cis-Regulatory Control of the Nuclear Receptor Coup-TF Gene in the Sea Urchin Paracentrotus lividus Embryo

    OpenAIRE

    Lamprini G Kalampoki; Flytzanis, Constantin N.

    2014-01-01

    Coup-TF, an orphan member of the nuclear receptor super family, has a fundamental role in the development of metazoan embryos. The study of the gene's regulatory circuit in the sea urchin embryo will facilitate the placement of this transcription factor in the well-studied embryonic Gene Regulatory Network (GRN). The Paracentrotus lividus Coup-TF gene (PlCoup-TF) is expressed throughout embryonic development preferentially in the oral ectoderm of the gastrula and the ciliary band of the plute...

  9. Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Thyroid-stimulating hormone (TSH is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.

  10. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1[S

    Science.gov (United States)

    Turner, Elizebeth C.; Kinsella, B. Therese

    2012-01-01

    Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature. PMID:22969152

  11. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1.

    Science.gov (United States)

    Turner, Elizebeth C; Kinsella, B Therese

    2012-11-01

    Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.

  12. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes.

    Directory of Open Access Journals (Sweden)

    Maxwell A Ruby

    Full Text Available Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1. Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP, perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251 and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control, IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2, which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50% the majority (303 of 533 of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and

  13. Genomic organization and chromosomal localization of the human and mouse genes encoding the {alpha} receptor component for ciliary neurotrophic factor

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, D.M.; Rojas, E.; McClain, J. [Regeneron Pharmaceuticals, Inc., Tarrytown, NY (United States)] [and others

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor {alpha} (CNTFR{alpha}). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR{alpha}. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain in encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4. 24 refs., 4 figs.

  14. Cooperative activation of cyclin D1 and progesterone receptor gene expression by the SRC-3 coactivator and SMRT corepressor.

    Science.gov (United States)

    Karmakar, Sudipan; Gao, Tong; Pace, Margaret C; Oesterreich, Steffi; Smith, Carolyn L

    2010-06-01

    Although the ability of coactivators to enhance the expression of estrogen receptor-alpha (ERalpha) target genes is well established, the role of corepressors in regulating 17beta-estradiol (E2)-induced gene expression is poorly understood. Previous studies revealed that the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full ERalpha transcriptional activity in MCF-7 breast cancer cells, and we report herein the E2-dependent recruitment of SMRT to the regulatory regions of the progesterone receptor (PR) and cyclin D1 genes. Individual depletion of SMRT or steroid receptor coactivator (SRC)-3 modestly decreased E2-induced PR and cyclin D1 expression; however, simultaneous depletion revealed a cooperative effect of this coactivator and corepressor on the expression of these genes. SMRT and SRC-3 bind directly in an ERalpha-independent manner, and this interaction promotes E2-dependent SRC-3 binding to ERalpha measured by co-IP and SRC-3 recruitment to the cyclin D1 gene as measured by chromatin IP assays. Moreover, SMRT stimulates the intrinsic transcriptional activity of all of the SRC family (p160) coactivators. Our data link the SMRT corepressor directly with SRC family coactivators in positive regulation of ERalpha-dependent gene expression and, taken with the positive correlation found for SMRT and SRC-3 in human breast tumors, suggest that SMRT can promote ERalpha- and SRC-3-dependent gene expression in breast cancer.

  15. Variation in umami perception and in candidate genes for the umami receptor in mice and humans1234

    Science.gov (United States)

    Shirosaki, Shinya; Ohkuri, Tadahiro; Sanematsu, Keisuke; Islam, AA Shahidul; Ogiwara, Yoko; Kawai, Misako; Yoshida, Ryusuke; Ninomiya, Yuzo

    2009-01-01

    The unique taste induced by monosodium glutamate is referred to as umami taste. The umami taste is also elicited by the purine nucleotides inosine 5′-monophosphate and guanosine 5′-monophosphate. There is evidence that a heterodimeric G protein–coupled receptor, which consists of the T1R1 (taste receptor type 1, member 1, Tas1r1) and the T1R3 (taste receptor type 1, member 3, Tas1r3) proteins, functions as an umami taste receptor for rodents and humans. Splice variants of metabotropic glutamate receptors, mGluR1 (glutamate receptor, metabotropic 1, Grm1) and mGluR4 (glutamate receptor, metabotropic 4, Grm4), also have been proposed as taste receptors for glutamate. The taste sensitivity to umami substances varies in inbred mouse strains and in individual humans. However, little is known about the relation of umami taste sensitivity to variations in candidate umami receptor genes in rodents or in humans. In this article, we summarize current knowledge of the diversity of umami perception in mice and humans. Furthermore, we combine previously published data and new information from the single nucleotide polymorphism databases regarding variation in the mouse and human candidate umami receptor genes: mouse Tas1r1 (TAS1R1 for human), mouse Tas1r3 (TAS1R3 for human), mouse Grm1 (GRM1 for human), and mouse Grm4 (GRM4 for human). Finally, we discuss prospective associations between variation of these genes and umami taste perception in both species. PMID:19625681

  16. Effects of deletion of the prolactin receptor on ovarian gene expression

    Directory of Open Access Journals (Sweden)

    Kelly Paul A

    2003-02-01

    Full Text Available Abstract Prolactin (PRL exerts pleiotropic physiological effects in various cells and tissues, and is mainly considered as a regulator of reproduction and cell growth. Null mutation of the PRL receptor (R gene leads to female sterility due to a complete failure of embryo implantation. Pre-implantatory egg development, implantation and decidualization in the mouse appear to be dependent on ovarian rather than uterine PRLR expression, since progesterone replacement permits the rescue of normal implantation and early pregnancy. To better understand PRL receptor deficiency, we analyzed in detail ovarian and corpora lutea development of PRLR-/- females. The present study demonstrates that the ovulation rate is not different between PRLR+/+ and PRLR-/- mice. The corpus luteum is formed but an elevated level of apoptosis and extensive inhibition of angiogenesis occur during the luteal transition in the absence of prolactin signaling. These modifications lead to the decrease of LH receptor expression and consequently to a loss of the enzymatic cascades necessary to produce adequate levels of progesterone which are required for the maintenance of pregnancy.

  17. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility

    Directory of Open Access Journals (Sweden)

    Gianfrancesco Fernando

    2010-06-01

    Full Text Available Abstract Background Glutamate is the principal excitatory neurotransmitter in the central nervous system which acts by the activation of either ionotropic (AMPA, NMDA and kainate receptors or G-protein coupled metabotropic receptors. Glutamate is widely accepted to play a major role in the path physiology of migraine as implicated by data from animal and human studies. Genes involved in synthesis, metabolism and regulation of both glutamate and its receptors could be, therefore, considered as potential candidates for causing/predisposing to migraine when mutated. Methods The association of polymorphic variants of GRIA1-GRIA4 genes which encode for the four subunits (GluR1-GluR4 of the alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA receptor for glutamate was tested in migraineurs with and without aura (MA and MO and healthy controls. Results Two variants in the regulative regions of GRIA1 (rs2195450 and GRIA3 (rs3761555 genes resulted strongly associated with MA (P = 0.00002 and P = 0.0001, respectively, but not associated with MO, suggesting their role in cortical spreading depression. Whereas the rs548294 variant in GRIA1 gene showed association primarily with MO phenotype, supporting the hypothesis that MA and MO phenotypes could be genetically related. These variants modify binding sites for transcription factors altering the expression of GRIA1 and GRIA3 genes in different conditions. Conclusions This study represents the first genetic evidence of a link between glutamate receptors and migraine.

  18. A Competitive Inhibitor That Reduces Recruitment of Androgen Receptor to Androgen-responsive Genes*

    Science.gov (United States)

    Cherian, Milu T.; Wilson, Elizabeth M.; Shapiro, David J.

    2012-01-01

    The androgen receptor (AR) has a critical role in the growth and progression of androgen-dependent and castration-resistant prostate cancers. To identify novel inhibitors of AR transactivation that block growth of prostate cancer cells, a luciferase-based high-throughput screen of ∼160,000 small molecules was performed in cells stably expressing AR and a prostate-specific antigen (PSA)-luciferase reporter. CPIC (1-(3-(2-chlorophenoxy) propyl)-1H-indole-3-carbonitrile) was identified as a small molecule that blocks AR transactivation to a greater extent than other steroid receptors. CPIC inhibited AR-mediated proliferation of androgen-sensitive prostate cancer cell lines, with minimal toxicity in AR-negative cell lines. CPIC treatment also reduced the anchorage-independent growth of LAPC-4 prostate cancer cells. CPIC functioned as a pure antagonist by inhibiting the expression of AR-regulated genes in LAPC-4 cells that express wild-type AR and exhibited weak agonist activity in LNCaP cells that express the mutant AR-T877A. CPIC treatment did not reduce AR levels or alter its nuclear localization. We used chromatin immunoprecipitation to identify the site of action of CPIC. CPIC inhibited recruitment of androgen-bound AR to the PSA promoter and enhancer sites to a greater extent than bicalutamide. CPIC is a new therapeutic inhibitor that targets AR-mediated gene activation with potential to arrest the growth of prostate cancer. PMID:22589544

  19. A test of somatic mosaicism in the androgen receptor gene of Canada lynx (Lynx canadensis).

    Science.gov (United States)

    Prentice, Melanie B; Bowman, Jeff; Wilson, Paul J

    2015-10-26

    The androgen receptor, an X-linked gene, has been widely studied in human populations because it contains highly polymorphic trinucleotide repeat motifs that have been associated with a number of adverse human health and behavioral effects. A previous study on the androgen receptor gene in carnivores reported somatic mosaicism in the tissues of a number of species including Eurasian lynx (Lynx lynx). We investigated this claim in a closely related species, Canada lynx (Lynx canadensis). The presence of somatic mosaicism in lynx tissues could have implications for the future study of exonic trinucleotide repeats in landscape genomic studies, in which the accurate reporting of genotypes would be highly problematic. To determine whether mosaicism occurs in Canada lynx, two lynx individuals were sampled for a variety of tissue types (lynx 1) and tissue locations (lynx 1 and 2), and 1,672 individuals of known sex were genotyped to further rule out mosaicism. We found no evidence of mosaicism in tissues from the two necropsied individuals, or any of our genotyped samples. Our results indicate that mosaicism does not manifest in Canada lynx. Therefore, the use of hide samples for further work involving trinucleotide repeat polymorphisms in Canada lynx is warranted.

  20. Cumulative Risk on the Oxytocin Receptor Gene (OXTR) Predicts Empathic Communication by Physician Assistant Students.

    Science.gov (United States)

    Floyd, Kory; Generous, Mark Alan; Clark, Lou; McLeod, Ian; Simon, Albert

    2017-10-01

    In the relationship between patients and health care providers, few communicative features are as significant as the providers' ability to express empathy. A robust empirical literature describes the importance of physician communication skills-particularly those that convey empathy-yet few studies have examined empathic communication by physician assistants, who provide primary care for an increasing number of Americans. The present study examines the empathic communication of physician assistant students in interactions with standardized patients. Over a 6-month period, each student conducted three clinical interviews, each of which was evaluated for empathic communication by the patients, the students' clinical instructors, and third-party observers. Students also provided saliva samples for genotyping six single-nucleotide polymorphisms on the oxytocin receptor gene (OXTR) that are linked empirically to empathic behavior. Consistent with recent research, this study adopted a cumulative risk approach wherein students were scored for their number of risky alleles on the single-nucleotide polymorphisms. Results indicated that cumulative risk on OXTR receptor gene predicted lower patient empathy scores as rated by instructors and observers, but not by standardized patients.

  1. Resequencing of the auxiliary GABAB receptor subunit gene KCTD12 in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Philipp G Sand

    2012-05-01

    Full Text Available Tinnitus is a common and often incapacitating hearing disorder marked by the perception of phantom sounds. Susceptibility factors remain largely unknown but GABAB receptor signalling has long been implicated in the response to treatment and, putatively, in the etiology of the disorder. We hypothesized that variation in KCTD12, the gene encoding an auxiliary subunit of GABAB receptors, could help to predict the risk of developing tinnitus. 95 Caucasian outpatients with a diagnosis of chronic tinnitus were systematically screened for mutations in the KCTD12 open reading frame and the adjacent 3' untranslated region by Sanger sequencing. Allele frequencies were determined for 14 known variants of which three (rs73237446, rs34544607 and rs41287030 were polymorphic. When allele frequencies were compared to data from a large reference population of European ancestry, rs34544607 was associated with tinnitus (p=.04. However, KCTD12 genotype did not predict tinnitus severity (p=.52 and the association with rs34544607 was weakened after screening 50 additional cases (p=.07. Pending replication in a larger cohort, KCTD12 may act as a risk modifier in chronic tinnitus. Issues that are yet to be addressed include the effects of neighbouring variants, e.g. in the KCTD12 gene regulatory region, plus interactions with variants of GABAB1 and GABAB2.

  2. The D4 dopamine receptor gene maps on 11p proximal to HRAS

    Energy Technology Data Exchange (ETDEWEB)

    Petronis, A.; Kennedy, J.L.; Van Tol, H.H.M. (Univ. of Toronto, Ontario (Canada)); Lichter, J.B.; Livak, K.J. (DuPont-Merck Pharmaceutical Corp., Wilmington, DE (United States))

    1993-10-01

    The dopamine D4 receptor (DRD4) is of high interest in neuropsychiatric illness due to its anatomical distribution in the limbic system and its relatively high affinity for the atypical antipsychotic clozapine. Also, D4 receptors are expressed in cardiac tissue, and D4 maps in the same region as the inherited cardiac disease referred to as Long QT syndrome. DRD4 was genetically mapped near the tip of the short arm of chromosome 11, close to the oncogene Harvey-RAS (HRAS). Multipoint linkage analysis of several large families could not define the location of DRD4 proximal versus distal to HRAS, although it was evident that DRD4 was located distal to the gene for tyrosine hydroxylase (TH). A proximal localization of DRD4 relative to HRAS was thus demonstrated. The localization is inferred from a single recombination event, and additional studies on families segregating analyzed polymorphisms would be valuable. Exact order of the genes on 11p15 will greatly assist the resolving power of linkage studies in this region, as applied to neuropsychiatric diseases, as well as Long QT syndrome and Beckwith-Wiedemann syndrome.

  3. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia.

    LENUS (Irish Health Repository)

    Vacic, Vladimir

    2011-03-24

    Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2-4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.

  4. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  5. TOLL-LIKE RECEPTOR 7 GENE Gln11Leu MISSENSEMUTATION AND SUSCEPTIBILITY TO PSORIASIS

    Directory of Open Access Journals (Sweden)

    E. S. Galimova

    2017-01-01

    Full Text Available Toll-like receptor (TLR are responsible for recognizing various molecular patterns associated with pathogens. Their expression have been detected in skin cells such as keratinocytes and melanocytes. Numerous experimental studies demonstrate the key role of TLRs in the pathogenesis of immune diseases, including psoriasis. The objective of this study is to analyze the associations of polymorphisms in TLR7 gene and the risk of psoriasis development. DNA samples were collected from 138 patients with psoriasis and 317 healthy controls. Genotyping of rs179003, rs179008, rs179020, rs850632, rs12013728 polymorphic loci in TLR7 gene was performed using the SNPlex™method (AB, USA. SNP in the TLR7 gene rs179008 (Gln11Leu was associated with psoriasis in entire psoriasis, late onset and sporadic subgroups (Рс = 0.0065, OR = 1.95; Рс = 0.0004, OR = 2.50; Рс = 0.0078, OR = 2.2, respectively. In conclusion, this study is the first to identify genetic variants of the TLR7 gene significantly associated with psoriasis. 

  6. Androgen receptor gene polymorphisms are associated with aggression in Japanese Akita Inu.

    Science.gov (United States)

    Konno, Akitsugu; Inoue-Murayama, Miho; Hasegawa, Toshikazu

    2011-10-23

    We tested for an association between variable number of tandem repeats in the canine androgen receptor (AR) gene and personality differences in Japanese Akita Inu dogs. The polymorphic trinucleotide (CAG) repeat region coding for glutamine in exon 1 of the AR gene was genotyped using genomic DNA obtained from 171 dogs. Three alleles (23, 24 and 26 repeats) were detected, and the allele frequency differed with the coat colour. We assessed the personality profiles of 100 fawn-coloured dogs (54 males and 46 females) based on a questionnaire answered by each dog's owner. The questionnaire consisted of five sub-scales (sociability, playfulness, neuroticism, aggressiveness, distractibility), and the psychometric properties were acceptable based upon internal consistency of the subscales. We found that male dogs with a short allele conferring increased AR function had higher aggressiveness scores than male dogs with longer alleles. By contrast, no evidence was found for a relationship between AR gene variants and personality in females. To our knowledge, our findings provide the first evidence of polymorphism in the AR gene being associated with canine aggression.

  7. Epigenetic Regulation of the Oxytocin Receptor Gene: Implications for Behavioral Neuroscience

    Directory of Open Access Journals (Sweden)

    Robert eKumsta

    2013-05-01

    Full Text Available Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes.

  8. Risk conferred by FokI polymorphism of vitamin D receptor (VDR) gene for essential hypertension.

    Science.gov (United States)

    Swapna, N; Vamsi, U Mohana; Usha, G; Padma, T

    2011-09-01

    The vitamin D receptor (VDR) gene serves as a good candidate gene for susceptibility to several diseases. The gene has a critical role in regulating the renin-angiotensin system (RAS) influencing the regulation of blood pressure. Hence determining the association of VDR polymorphisms with essential hypertension is expected to help in the evaluation of risk for the condition. The aim of this study was to evaluate association between VDRFok I polymorphism and genetic susceptibility to essential hypertension. Two hundred and eighty clinically diagnosed hypertensive patients and 200 normotensive healthy controls were analyzed for Fok I (T/C) [rs2228570] polymorphism by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis. Genotype distribution and allele frequencies in patients and controls, and odds ratios (ORs) were calculated to predict the risk for developing hypertension by the individuals of different genotypes. The genotype distribution and allele frequencies of Fok I (T/C) [rs2228570] VDR polymorphism differed significantly between patients and controls (χ(2) of 18.0; 2 degrees of freedom; P = 0.000). FF genotype and allele F were at significantly greater risk for developing hypertension and the risk was elevated for both the sexes, cases with positive family history and habit of smoking. Our data suggest that VDR gene Fok I polymorphism is associated with the risk of developing essential hypertension.

  9. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates.

    Directory of Open Access Journals (Sweden)

    Yoav Gilad

    2004-01-01

    Full Text Available Olfactory receptor (OR genes constitute the molecular basis for the sense of smell and are encoded by the largest gene family in mammalian genomes. Previous studies suggested that the proportion of pseudogenes in the OR gene family is significantly larger in humans than in other apes and significantly larger in apes than in the mouse. To investigate the process of degeneration of the olfactory repertoire in primates, we estimated the proportion of OR pseudogenes in 19 primate species by surveying randomly chosen subsets of 100 OR genes from each species. We find that apes, Old World monkeys and one New World monkey, the howler monkey, have a significantly higher proportion of OR pseudogenes than do other New World monkeys or the lemur (a prosimian. Strikingly, the howler monkey is also the only New World monkey to possess full trichromatic vision, along with Old World monkeys and apes. Our findings suggest that the deterioration of the olfactory repertoire occurred concomitant with the acquisition of full trichromatic color vision in primates.

  10. Polymorphisms in the Melanocortin-1 Receptor (Mc1R Gene in Vitiligo

    Directory of Open Access Journals (Sweden)

    Eylem Acar

    2012-03-01

    Full Text Available Objective: Vitiligo is a progressive skin pigmentation disorder, which may be acquired or hereditary, frequently seen, and may influence every age group. The melanocortin 1 receptor (MC1R gene is a major determinant of human pigmentation. In our study, polymorphic differences of the MC1R gene at the DNA level has been investigated in patients with vitiligo.Materials and Methods: In our study, polymorphic differences of the MC1R gene at the DNA level has been investigated in vitiligo 60 patients, whose families had resided in the Thrace region of Turkey for at least three generations. The 60 volunteer healthy individuals have no other systemic and dermatological disease.Results: Totally, five types of Single Nucleotide Polymorphism (SNP were found in each case and control groups: Val60Leu (G178T, Val92Met (G274A, Arg151Cys (C451T, Arg160Trp (C478T, and Arg163Gln (G488A. Comparing both groups in terms of genotype frequencies, no statistically meaningful difference was detected (p>0.05. However, assessing in terms of allele frequencies, a meaningful difference was found in the Arg163Gln (G488A allele statistically in favor of the control group (p<0.05.Conclusion: It has been found in our study population that the MC1R gene Arg163Gln (G488A allele may be a protective factor for vitiligo.

  11. Association between vitamin D receptor gene polymorphism and ankylosing spondylitis in Han Chinese.

    Science.gov (United States)

    Zhang, Pingping; Li, Qiuxia; Qi, Jun; Lv, Qing; Zheng, Xuqi; Wu, Xinyu; Gu, Jieruo

    2017-10-01

    To investigate whether vitamin D receptor (VDR) gene polymorphisms confer susceptibility to aankylosing spondylitis (AS) and study its polymorphisms in Han Chinese. We screened single nucleotide polymorphisms (SNPs) in the VDR region through genome-wide genotyping chips in AS cases and healthy controls, then used the exome sequencing result to analyze all the potential AS-associated SNPs in the VDR gene. Thirty-two SNPs were found in the VDR gene in the genome-wide genotyping chips and the logistic regression result showed no significant difference between AS cases and controls. A total of 46 SNPs in the VDR region were genotyped through exome sequencing, including four functional SNPs (rs731236 [TaqI], rs2228570 [FokI], rs7975232 [ApaI], rs1544410 [BsmI]) and two newly discovered SNPs (12:48259222 and 12:48276730). To note, rs731236 and rs2228570 locate in the exons of VDR, which cause synonymous and missense mutation. The association test showed there was no significant difference between AS cases and controls in the allele frequency distribution, but haplotype analysis of rs11168266-rs11168267 show nominal significance (P = 0.01268). Our preliminary study indicates the haplotypes (TG) of rs11168266-rs11168267 in the VDR gene confers susceptibility to AS, which is worth further research. © 2016 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  12. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  13. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Ocampo Daza Daniel

    2012-11-01

    Full Text Available Abstract Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R. One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species.

  14. Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs.

    Science.gov (United States)

    Woolley, Michael J; Reynolds, Christopher A; Simms, John; Walker, Christopher S; Mobarec, Juan Carlos; Garelja, Michael L; Conner, Alex C; Poyner, David R; Hay, Debbie L

    2017-10-15

    Calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors are heteromers of the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor, and one of three receptor activity-modifying proteins (RAMPs). How CGRP and AM activate CLR and how this process is modulated by RAMPs is unclear. We have defined how CGRP and AM induce Gs-coupling in CLR-RAMP heteromers by measuring the effect of targeted mutagenesis in the CLR transmembrane domain on cAMP production, modeling the active state conformations of CGRP and AM receptors in complex with the Gs C-terminus and conducting molecular dynamics simulations in an explicitly hydrated lipidic bilayer. The largest effects on receptor signaling were seen with H295A5.40b, I298A5.43b, L302A5.47b, N305A5.50b, L345A6.49b and E348A6.52b, F349A6.53b and H374A7.47b (class B numbering in superscript). Many of these residues are likely to form part of a group in close proximity to the peptide binding site and link to a network of hydrophilic and hydrophobic residues, which undergo rearrangements to facilitate Gs binding. Residues closer to the extracellular loops displayed more pronounced RAMP or ligand-dependent effects. Mutation of H3747.47b to alanine increased AM potency 100-fold in the CGRP receptor. The molecular dynamics simulation showed that TM5 and TM6 pivoted around TM3. The data suggest that hydrophobic interactions are more important for CLR activation than other class B GPCRs, providing new insights into the mechanisms of activation of this class of receptor. Furthermore the data may aid in the understanding of how RAMPs modulate the signaling of other class B GPCRs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Gene Variant of the Bradykinin B2 Receptor Influences Pulmonary Arterial Pressures in Heart Failure Patients

    Directory of Open Access Journals (Sweden)

    Thomas P. Olson

    2009-01-01

    Full Text Available Background Pulmonary arterial pressure (PAP varies considerably in heart failure (HF despite similar degrees of left ventricular (LV dysfunction. Bradykinin alters vascular tone and common variations in the kinin B2 receptor (BDKRB2 gene exists. We hypothesized that genetic variation in this receptor would influence PAP in HF. Methods 131 HF patients (>1yr history systolic HF, without COPD, not currently smoking, BMI < 40, without atrial fibrillation completed the study which included a blood draw for genotyping and neurohormones (ACE, A-II, Bradykinin, ANP, BNP, and catecholamines, an echocardiogram for cardiac function and systolic PAP (PAPsys. Results Mean LVEF was 29% ∓ 12%, NYHA class 2 ∓ 1, age 56 ∓ 12 yr, BMI 28 ∓ 5 kg/m 2 . Forty-six patients (35% were homozygous for the +9 allele, 58 (44% were heterozygous (+9/-9 and 27 (21% were homozygous for the -9 allele of the BDKRB2. PAPsys averaged 42 ∓ 13, 38 ∓ 12, and 35 ∓ 11 mmHg for +9/+9, +9/-9 and -9/-9, respectively (p = 0.03. There was a trend towards gene effect for plasma ACE with the highest values in +9/+9 and lowest in -9/-9 patients (9.5 ∓ 10.7, 7.1 ∓ 8.7, and 5.4 ∓ 6.4 U/L, respectively, p = 0.06. There were no differences in plasma bradykinin or A-II, LVEF, or NYHA across genotypes. Conclusion These data suggest the +9/+9 polymorphism of the BDKRB2 receptor influences pulmonary vascular tone in stable HF.

  16. Season of Birth and Dopamine Receptor Gene Associations with Impulsivity, Sensation Seeking and Reproductive Behaviors

    Science.gov (United States)

    Eisenberg, Dan T. A.; Campbell, Benjamin; MacKillop, James; Lum, J. Koji; Wilson, David S.

    2007-01-01

    Background Season of birth (SOB) has been associated with many physiological and psychological traits including novelty seeking and sensation seeking. Similar traits have been associated with genetic polymorphisms in the dopamine system. SOB and dopamine receptor genetic polymorphisms may independently and interactively influence similar behaviors through their common effects on the dopaminergic system. Methodology/Principal Findings Based on a sample of 195 subjects, we examined whether SOB was associated with impulsivity, sensation seeking and reproductive behaviors. Additionally we examined potential interactions of dopamine receptor genes with SOB for the same set of traits. Phenotypes were evaluated using the Sociosexual Orientation Inventory, the Barratt Impulsivity Scale, the Eysenck Impulsivity Questionnaire, the Sensation Seeking Scale, and the Delay Discounting Task. Subjects were also asked about their age at first sex as well as their desired age at the birth of their first child. The dopamine gene polymorphisms examined were Dopamine Receptor D2 (DRD2) TaqI A and D4 (DRD4) 48 bp VNTR. Primary analyses included factorial gender×SOB ANOVAs or binary logistic regression models for each dependent trait. Secondary analysis extended the factorial models by also including DRD2 and DRD4 genotypes as independent variables. Winter-born males were more sensation seeking than non-winter born males. In factorial models including both genotype and season of birth as variables, two previously unobserved effects were discovered: (1) a SOB×DRD4 interaction effect on venturesomeness and (2) a DRD2×DRD4 interaction effect on sensation seeking. Conclusion These results are consistent with past findings that SOB is related to sensation seeking. Additionally, these results provide tentative support for the hypothesis that SOB modifies the behavioral expression of dopaminergic genetic polymorphism. These findings suggest that SOB should be included in future studies of

  17. Season of birth and dopamine receptor gene associations with impulsivity, sensation seeking and reproductive behaviors.

    Directory of Open Access Journals (Sweden)

    Dan T A Eisenberg

    2007-11-01

    Full Text Available Season of birth (SOB has been associated with many physiological and psychological traits including novelty seeking and sensation seeking. Similar traits have been associated with genetic polymorphisms in the dopamine system. SOB and dopamine receptor genetic polymorphisms may independently and interactively influence similar behaviors through their common effects on the dopaminergic system.Based on a sample of 195 subjects, we examined whether SOB was associated with impulsivity, sensation seeking and reproductive behaviors. Additionally we examined potential interactions of dopamine receptor genes with SOB for the same set of traits. Phenotypes were evaluated using the Sociosexual Orientation Inventory, the Barratt Impulsivity Scale, the Eysenck Impulsivity Questionnaire, the Sensation Seeking Scale, and the Delay Discounting Task. Subjects were also asked about their age at first sex as well as their desired age at the birth of their first child. The dopamine gene polymorphisms examined were Dopamine Receptor D2 (DRD2 TaqI A and D4 (DRD4 48 bp VNTR. Primary analyses included factorial genderxSOB ANOVAs or binary logistic regression models for each dependent trait. Secondary analysis extended the factorial models by also including DRD2 and DRD4 genotypes as independent variables. Winter-born males were more sensation seeking than non-winter born males. In factorial models including both genotype and season of birth as variables, two previously unobserved effects were discovered: (1 a SOBxDRD4 interaction effect on venturesomeness and (2 a DRD2xDRD4 interaction effect on sensation seeking.These results are consistent with past findings that SOB is related to sensation seeking. Additionally, these results provide tentative support for the hypothesis that SOB modifies the behavioral expression of dopaminergic genetic polymorphism. These findings suggest that SOB should be included in future studies of risky behaviors and behavioral genetic

  18. Age at first sexual intercourse, genes, and social context: evidence from twins and the dopamine D4 receptor gene.

    Science.gov (United States)

    Guo, Guang; Tong, Yuying

    2006-11-01

    We carried out two distinct types of genetic analysis with data from the National Longitudinal Study of Adolescent Health. The first was a non-DNA twin analysis using monozygotic (identical) and same-sex dizygotic (fraternal) twins. The second analysis investigates the association between age at first sexual intercourse and the 48-bp repeat polymorphism in the dopamine receptor D4 gene (DRD4). The twin analysis shows that MZ twins correlate their timing of first sex to a much greater extent than do the same-sex DZ twins. Our analysis of the polymorphisms in DRD4 indicates that those with an any-3R genotype experienced a risk of first sexual intercourse 23% (p = .016), 233% (p = .0001), 28% (p = .012), and 69% (p = .006) higher than those with an other/other (or any-4R) genotype in the all-ethnicities (n = 2,552), Asian, white, and Hispanic samples, respectively. The risk of first sex does not differ between the two genotypes in the African American sample. These results were obtained after adjusting the standard socioeconomic covariates, including gender, parental education, family structure, and community poverty in the regression model. Evidence from both twin and genetic-variant analyses points to a role of genes in the timing of first sexual intercourse.

  19. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  20. Evolution of the C-Type Lectin-Like Receptor Genes of the DECTIN-1 Cluster in the NK Gene Complex

    Directory of Open Access Journals (Sweden)

    Susanne Sattler

    2012-01-01

    Full Text Available Pattern recognition receptors are crucial in initiating and shaping innate and adaptive immune responses and often belong to families of structurally and evolutionarily related proteins. The human C-type lectin-like receptors encoded in the DECTIN-1 cluster within the NK gene complex contain prominent receptors with pattern recognition function, such as DECTIN-1 and LOX-1. All members of this cluster share significant homology and are considered to have arisen from subsequent gene duplications. Recent developments in sequencing and the availability of comprehensive sequence data comprising many species showed that the receptors of the DECTIN-1 cluster are not only homologous to each other but also highly conserved between species. Even in Caenorhabditis elegans, genes displaying homology to the mammalian C-type lectin-like receptors have been detected. In this paper, we conduct a comprehensive phylogenetic survey and give an up-to-date overview of the currently available data on the evolutionary emergence of the DECTIN-1 cluster genes.

  1. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.

    Science.gov (United States)

    Reverchon, S; Expert, D; Robert-Baudouy, J; Nasser, W

    1997-06-01

    The main virulence factors of the phytopathogenic bacterium Erwinia chrysanthemi are pectinases that cleave pectin, a major constituent of the plant cell wall. Although physiological studies suggested that pectinase production in Erwinia species is subjected to catabolite repression, the direct implication of the cyclic AMP receptor protein (CRP) in this regulation has never been demonstrated. To investigate the role of CRP in pectin catabolism, we cloned the E. chrysanthemi crp gene by complementation of an Escherichia coli crp mutation and then constructed E. chrysanthemi crp mutants by reverse genetics. The carbohydrate fermentation phenotype of the E. chrysanthemi crp mutants is similar to that of an E. coli crp mutant. Furthermore, these mutants are unable to grow on pectin or polygalacturonate as the sole carbon source. Analysis of the nucleotide sequence of the E. chrysanthemi crp gene revealed the presence of a 630-bp open reading frame (ORF) that codes for a protein highly similar to the CRP of E. coli. Using a crp::uidA transcriptional fusion, we demonstrated that the E. chrysanthemi CRP represses its own expression, probably via a mechanism similar to that described for the E. coli crp gene. Moreover, in the E. chrysanthemi crp mutants, expression of pectinase genes (pemA, pelB, pelC, pelD, and pelE) and of genes of the intracellular part of the pectin degradation pathway (ogl, kduI, and kdgT), which are important for inducer formation and transport, is dramatically reduced in induced conditions. In contrast, expression of pelA, which encodes a pectate lyase important for E. chrysanthemi pathogenicity, seems to be negatively regulated by CRP. The E. chrysanthemi crp mutants have greatly decreased maceration capacity in potato tubers, chicory leaves, and celery petioles as well as highly diminished virulence on saintpaulia plants. These findings demonstrate that CRP plays a crucial role in expression of the pectinolysis genes and in the pathogenicity of E

  2. The medaka novel immune-type receptor (NITR gene clusters reveal an extraordinary degree of divergence in variable domains

    Directory of Open Access Journals (Sweden)

    Litman Gary W

    2008-06-01

    Full Text Available Abstract Background Novel immune-type receptor (NITR genes are members of diversified multigene families that are found in bony fish and encode type I transmembrane proteins containing one or two extracellular immunoglobulin (Ig domains. The majority of NITRs can be classified as inhibitory receptors that possess cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs. A much smaller number of NITRs can be classified as activating receptors by the lack of cytoplasmic ITIMs and presence of a positively charged residue within their transmembrane domain, which permits partnering with an activating adaptor protein. Results Forty-four NITR genes in medaka (Oryzias latipes are located in three gene clusters on chromosomes 10, 18 and 21 and can be organized into 24 families including inhibitory and activating forms. The particularly large dataset acquired in medaka makes direct comparison possible to another complete dataset acquired in zebrafish in which NITRs are localized in two clusters on different chromosomes. The two largest medaka NITR gene clusters share conserved synteny with the two zebrafish NITR gene clusters. Shared synteny between NITRs and CD8A/CD8B is limited but consistent with a potential common ancestry. Conclusion Comprehensive phylogenetic analyses between the complete datasets of NITRs from medaka and zebrafish indicate multiple species-specific expansions of different families of NITRs. The patterns of sequence variation among gene family members are consistent with recent birth-and-death events. Similar effects have been observed with mammalian immunoglobulin (Ig, T cell antigen receptor (TCR and killer cell immunoglobulin-like receptor (KIR genes. NITRs likely diverged along an independent pathway from that of the somatically rearranging antigen binding receptors but have undergone parallel evolution of V family diversity.

  3. Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

    DEFF Research Database (Denmark)

    Sutton, Lesley-Ann; Young, Emma; Baliakas, Panagiotis

    2016-01-01

    We report on markedly different frequencies of genetic lesions within subsets of chronic lymphocytic leukemia patients carrying mutated or unmutated stereotyped B-cell receptor immunoglobulins in the largest cohort (n=565) studied for this purpose. By combining data on recurrent gene mutations...... subsets implies that the mechanisms underlying clinical aggressiveness are not uniform, but rather support the existence of distinct genetic pathways of clonal evolution governed by a particular stereotyped B-cell receptor selecting a certain molecular lesion(s)....

  4. Analyses of Sweet Receptor Gene (Tas1r2) and Preference for Sweet Stimuli in Species of Carnivora

    OpenAIRE

    Li, Xia; Glaser, Dieter; Li, Weihua; Johnson, Warren E.; O?Brien, Stephen J.; Beauchamp, Gary K.; Brand, Joseph G.

    2017-01-01

    The extent to which taste receptor specificity correlates with, or even predicts, diet choice is not known. We recently reported that the insensitivity to sweeteners shown by species of Felidae can be explained by their lacking of a functional Tas1r2 gene. To broaden our understanding of the relationship between the structure of the sweet receptors and preference for sugars and artificial sweeteners, we measured responses to 12 sweeteners in 6 species of Carnivora and sequenced the coding reg...

  5. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  6. Selection in the dopamine receptor 2 gene: a candidate SNP study

    Directory of Open Access Journals (Sweden)

    Tobias Göllner

    2015-08-01

    Full Text Available Dopamine is a major neurotransmitter in the human brain and is associated with various diseases. Schizophrenia, for example, is treated by blocking the dopamine receptors type 2. Shaner, Miller & Mintz (2004 stated that schizophrenia was the low fitness variant of a highly variable mental trait. We therefore explore whether the dopamine receptor 2 gene (DRD2 underwent any selection processes. We acquired genotype data of the 1,000 Genomes project (phase I, which contains 1,093 individuals from 14 populations. We included single nucleotide polymorphisms (SNPs with two minor allele frequencies (MAFs in the analysis: MAF over 0.05 and over 0.01. This is equivalent to 151 SNPs (MAF > 0.05 and 246 SNPs (MAF > 0.01 for DRD2. We used two different approaches (an outlier approach and a Bayesian approach to detect loci under selection. The combined results of both approaches yielded nine (MAF > 0.05 and two candidate SNPs (MAF > 0.01, under balancing selection. We also found weak signs for directional selection on DRD2, but in our opinion these were too weak to draw any final conclusions on directional selection in DRD2. All candidates for balancing selection are in the intronic region of the gene and only one (rs12574471 has been mentioned in the literature. Two of our candidate SNPs are located in specific regions of the gene: rs80215768 lies within a promoter flanking region and rs74751335 lies within a transcription factor binding site. We strongly encourage research on our candidate SNPs and their possible effects.

  7. The frequency of follicle stimulating hormone receptor gene polymorphisms in Iranian infertile men with azoospermia

    Directory of Open Access Journals (Sweden)

    Behrouz Gharesi-Fard

    2015-11-01

    Full Text Available Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs have been reported within FSH receptor (FSHR gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non-obstructive or normal men (p=0.001. Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04. Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.

  8. A common haplotype in the G-protein-coupled receptor gene GPR74 is associated with leanness and increased lipolysis

    DEFF Research Database (Denmark)

    Dahlman, Ingrid; Dicker, Andrea; Jiao, Hong

    2007-01-01

    The G-protein-coupled receptor GPR74 is a novel candidate gene for body weight regulation. In humans, it is predominantly expressed in brain, heart, and adipose tissue. We report a haplotype in the GPR74 gene, ATAG, with allele frequency ~4% in Scandinavian cohorts, which was associated...... 0.36; P=.036) among those selected for obese or lean phenotypes. The ATAG haplotype was associated with increased adipocyte lipid mobilization (lipolysis) in vivo and in vitro. In human fat cells, GPR74 receptor stimulation and inhibition caused a significant and marked decrease and increase......, respectively, of lipolysis, which could be linked to catecholamine stimulation of adipocytes through beta -adrenergic receptors. These findings suggest that a common haplotype in the GPR74 gene protects against obesity, which, at least in part, is caused by a relief of inhibition of lipid mobilization from...

  9. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L

    2009-01-01

    Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression....... Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression...... is circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems...

  10. A powerful cooperative interaction between a fusogenic peptide and lipofectamine for the enhancement of receptor-targeted, non-viral gene delivery via integrin receptors.

    Science.gov (United States)

    Zhang, X; Collins, L; Fabre, J W

    2001-01-01

    Following receptor-mediated endocytosis, vector/DNA complexes require assistance to exit endocytic vesicles in order to avoid degradation in the lysosomes. Overcoming this barrier is a major challenge for the development of receptor-targeted, non-viral gene delivery. The fusogenic peptide of influenza virus haemagglutinin, lipofectamine and chloroquine were tested singly and in combination in various doses for promoting in vitro gene transfer by an integrin-targeted, non-viral DNA vector (polylysine-molossin). The fusogenic peptide and lipofectamine both individually promoted integrin-targeted gene delivery. However, the combined use of these agents was particularly effective, even at concentrations where neither agent singly had any effect on promoting gene delivery by polylysine-molossin. This optimal combination was effective on several cell lines and primary cell cultures. On the HuH7 cell line, it was approximately five-fold more effective than optimal chloroquine concentrations for integrin-targeted gene delivery and four to five times more effective than commercially available polyethylenimine. With the beta-galactosidase reporter gene, 60-65% of HepG2 cells and 75-80% of HuH7 cells were positive. The surface charge of polylysine-molossin/DNA/lipofectamine/fusogenic peptide complexes was approximately the same as that of polylysine-molossin/DNA complexes. The size distribution of the complexes suggested that competitive binding of polylysine-molossin and lipofectamine to DNA influenced the overall efficacy of this approach. Although the mechanisms are not clear, the combined use of very low doses of two membrane-destabilizing agents results in high levels of receptor-targeted gene delivery.

  11. Increased natriuretic peptide receptor A and C gene expression in rats with pressure-overload cardiac hypertrophy

    DEFF Research Database (Denmark)

    Christoffersen, Tue E.H.; Aplin, Mark; Strom, Claes C.

    2006-01-01

    Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system...... also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system...

  12. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: potential role for 5-HT1B receptor.

    Science.gov (United States)

    Van Waes, Vincent; Ehrlich, Sarah; Beverley, Joel A; Steiner, Heinz

    2015-02-01

    Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer.

    Science.gov (United States)

    Inoue, Kazushi; Fry, Elizabeth A

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys

  14. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Kazushi Inoue

    2015-01-01

    Full Text Available Breast cancer (BC is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor and human epidermal growth factor receptor 2 (HER2, play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER , HER2 , and CD44 genes from the viewpoint of BC development. ERα36 , a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2 has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms ( CD44s , CD44v play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci

  15. MicroRNA-152 mediates DNMT1-regulated DNA methylation in the estrogen receptor α gene.

    Directory of Open Access Journals (Sweden)

    Yung-Song Wang

    Full Text Available BACKGROUND: Estrogen receptor α (ERα has been shown to protect against atherosclerosis. Methylation of the ERα gene can reduce ERα expression leading to a higher risk for cardiovascular disease. Recently, microRNAs have been found to regulate DNA methyltransferases (DNMTs and thus control methylation status in several genes. We first searched for microRNAs involved in DNMT-associated DNA methylation in the ERα gene. We also tested whether statin and a traditional Chinese medicine (San-Huang-Xie-Xin-Tang, SHXXT could exert a therapeutic effect on microRNA, DNMT and ERα methylation. METHODOLOGY/PRINCIPAL FINDINGS: The ERα expression was decreased and ERα methylation was increased in LPS-treated human aortic smooth muscle cells (HASMCs and the aorta from rats under a high-fat diet. MicroRNA-152 was found to be down regulated in the LPS-treated HASMCs. We validated that microRNA-152 can knock down DNMT1 in HASMCs leading to hypermethylation of the ERα gene. Statin had no effect on microRNA-152, DNMT1 or ERα expression. On the contrary, SHXXT could restore microRNA-152, decrease DNMT1 and increase ERα expression in both cellular and animal studies. CONCLUSIONS/SIGNIFICANCE: The present study showed that microRNA-152 decreases under the pro-atherosclerotic conditions. The reduced microRNA-152 can lose an inhibitory effect on DNA methyltransferase, which leads to hypermethylation of the ERα gene and a decrease of ERα level. Although statin can not reverse these cascade proatherosclerotic changes, the SHXXT shows a promising effect to inhibit this unwanted signaling pathway.

  16. Evidence for natural selection at the melanocortin-3 receptor gene in European and African populations.

    Science.gov (United States)

    Yoshiuchi, Issei

    2016-08-01

    Obesity is increasing steadily in worldwide prevalence and is known to cause serious health problems in association with type 2 diabetes mellitus (T2DM), including hypertension, stroke, and cardiovascular diseases. According to the thrifty gene hypothesis, the natural selection of obesity-related genes is important during feast and famine because they control body weight and fat levels. Past human adaptations to environmental changes in food supply, lifestyle, and geography may have influenced the selection of genes associated with the metabolism of glucose, lipids, and energy. The melanocortin-3 receptor gene (MC3R) is associated with obesity, with MC3R-deficient mice showing increased fat mass. MC3R variations are also linked with childhood obesity and insulin resistance. Here, we aimed to uncover evidence of selection at MC3R. We performed a three-step method to detect selection at MC3R using HapMap population data. We used Wright's F statistics as a measure of population differentiation, the long-range haplotype test to identify extended haplotypes, and the integrated haplotype score (iHS) to detect selection at MC3R. We observed high population differentiation between European and African populations at two MC3R childhood obesity- and insulin resistance-associated single-nucleotide polymorphisms (rs3746619 and rs3827103) using Wright's F statistics. The iHS revealed evidence of natural selection at MC3R. These findings provide evidence for natural selection at MC3R. Further investigation is warranted into adaptive evolution at T2DM- and obesity-associated genes.

  17. Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver.

    Science.gov (United States)

    Zhang, Aijun; Sieglaff, Douglas H; York, Jean Philippe; Suh, Ji Ho; Ayers, Stephen D; Winnier, Glenn E; Kharitonenkov, Alexei; Pin, Christopher; Zhang, Pumin; Webb, Paul; Xia, Xuefeng

    2015-03-01

    Thyroid hormone (TH) acts through specific receptors (TRs), which are conditional transcription factors, to induce fibroblast growth factor 21 (FGF21), a peptide hormone that is usually induced by fasting and that influences lipid and carbohydrate metabolism via local hepatic and systemic endocrine effects. While TH and FGF21 display overlapping actions when administered, including reductions in serum lipids, according to the current models these hormones act independently in vivo. In this study, we examined mechanisms of regulation of FGF21 expression by TH and tested the possibility that FGF21 is required for induction of hepatic TH-responsive genes. We confirm that active TH (triiodothyronine (T3)) and the TRβ-selective thyromimetic GC1 increase FGF21 transcript and peptide levels in mouse liver and that this effect requires TRβ. T3 also induces FGF21 in cultured hepatocytes and this effect involves direct actions of TRβ1, which binds a TRE within intron 2 of FGF21. Gene expression profiles of WT and Fgf21-knockout mice are very similar, indicating that FGF21 is dispensable for the majority of hepatic T3 gene responses. A small subset of genes displays diminished T3 response in the absence of FGF21. However, most of these are not obviously directly involved in T3-dependent hepatic metabolic processes. Consistent with these results, T3-dependent effects on serum cholesterol are maintained in the Fgf21(-/-) background and we observe no effect of the Fgf21-knockout background on serum triglycerides and glucose. Our findings indicate that T3 regulates the genes involved in classical hepatic metabolic responses independently of FGF21. © 2015 Society for Endocrinology.

  18. Gilles de la Tourette syndrome is associated with hypermethylation of the dopamine D2 receptor gene.

    Science.gov (United States)

    Müller-Vahl, Kirsten R; Loeber, Gesa; Kotsiari, Alexandra; Müller-Engling, Linda; Frieling, Helge

    2017-03-01

    Several lines of evidence support a "dopaminergic hypothesis" in the pathophysiology of Gilles de la Tourette syndrome (TS). The aim of this study was to investigate for the first time epigenetic changes in DNA methylation in different dopamine genes in adult patients with TS. We included 51 well characterized adult patients with TS (41 males, 10 females, mean age = 35 ± 12.6 years, range, 18-71 years) and compared results with data from a group of 51 sex- and age-matched healthy controls. Bisulfite sequencing was used to measure peripheral DNA methylation of the dopamine transporter (DAT), the dopamine D2 receptor (DRD2), and the catechol-O-methyltransferase (COMT) genes. Compared to healthy controls, patients with TS showed significantly elevated methylation level of the DRD2 gene that positively correlated with tic severity. In contrast, DAT methylation was lower in more severely affected patients. Our results provide evidence for a role of altered epigenetic regulation of dopaminergic genes in the pathophysiology of TS. While DRD2 hypermethylation seems to be directly related to the neurobiology of TS that may lead to dopaminergic dysfunction resulting in enhanced thalamo-cortical movement-stimulating activity, DAT hypomethylation might reflect a secondary mechanism in order to compensate for increased dopaminergic signal transduction due to DRD2 hypermethylation. In addition, it can be speculated that spontaneous fluctuations of tics may be caused by short-term alterations of methylation levels of dopaminergic genes resulting in dynamic changes of tonic/phasic dopaminergic signaling in the striatum and thalamo-cortical output pathways. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Binge eating as a major phenotype of melanocortin 4 receptor gene mutations.

    Science.gov (United States)

    Branson, Ruth; Potoczna, Natascha; Kral, John G; Lentes, Klaus-Ulrich; Hoehe, Margret R; Horber, Fritz F

    2003-03-20

    Obesity, a multifactorial disease caused by the interaction of genetic factors with the environment, is largely polygenic. A few mutations in these genes, such as in the leptin receptor (LEPR) gene and melanocortin 4 receptor (MC4R) gene, have been identified as causes of monogenic obesity. We sequenced the complete MC4R coding region, the region of the proopiomelanocortin gene (POMC) encoding the alpha melanocyte-stimulating hormone, and the leptin-binding domain of LEPR in 469 severely obese white subjects (370 women and 99 men; mean [+/-SE] age, 41.0+/-0.5 years; body-mass index [the weight in kilograms divided by the square of the height in meters], 44.1+/-2.0). Fifteen women and 10 men without a history of dieting or a family history of obesity served as normal-weight controls (age, 47.7+/-2.0 years; body-mass index, 21.6+/-0.4). Detailed phenotypic data, including information on body fat, resting energy expenditure, diet-induced thermogenesis, serum concentrations of leptin, and eating behavior, were collected. Twenty-four obese subjects (5.1 percent) and one control subject (4 percent) had MC4R mutations, including five novel variants. Twenty of the 24 obese subjects with an MC4R mutation were matched for age, sex, and body-mass index with 120 of the 445 obese subjects without an MC4R mutation. All mutation carriers reported binge eating, as compared with 14.2 percent of obese subjects without mutations (P<0.001) and 0 percent of the normal-weight subjects without mutations. The prevalence of binge eating was similar among carriers of mutations in the leptin-binding domain of LEPR and noncarriers. No mutations were found in the region of POMC encoding alpha melanocyte-stimulating hormone. Binge eating is a major phenotypic characteristic of subjects with a mutation in MC4R, a candidate gene for the control of eating behavior. Copyright 2003 Massachusetts Medical Society

  20. Association of killer cell immunoglobulin-like receptor genes with Hodgkin's lymphoma in a familial study.

    Directory of Open Access Journals (Sweden)

    Caroline Besson

    Full Text Available BACKGROUND: Epstein-Barr virus (EBV is the major environmental factor associated with Hodgkin's lymphoma (HL, a common lymphoma in young adults. Natural killer (NK cells are key actors of the innate immune response against viruses. The regulation of NK cell function involves activating and inhibitory Killer cell Immunoglobulin-like receptors (KIRs, which are expressed in variable numbers on NK cells. Various viral and virus-related malignant disorders have been associated with the presence/absence of certain KIR genes in case/control studies. We investigated the role of the KIR cluster in HL in a family-based association study. METHODOLOGY: We included 90 families with 90 HL index cases (age 16-35 years and 255 first-degree relatives (parents and siblings. We developed a procedure for reconstructing full genotypic information (number of gene copies at each KIR locus from the standard KIR gene content. Out of the 90 collected families, 84 were informative and suitable for further analysis. An association study was then carried out with specific family-based analysis methods on these 84 families. PRINCIPAL FINDINGS: Five KIR genes in strong linkage disequilibrium were found significantly associated with HL. Refined haplotype analysis showed that the association was supported by a dominant protective effect of KIR3DS1 and/or KIR2DS1, both of which are activating receptors. The odds ratios for developing HL in subjects with at least one copy of KIR3DS1 or KIR2DS1 with respect to subjects with neither of these genes were 0.44[95% confidence interval 0.23-0.85] and 0.42[0.21-0.85], respectively. No significant association was found in a tentative replication case/control study of 68 HL cases (age 18-71 years. In the familial study, the protective effect of KIR3DS1/KIR2DS1 tended to be stronger in HL patients with detectable EBV in blood or tumour cells. CONCLUSIONS: This work defines a template for family-based association studies based on full

  1. Failure to find linkage between a functional polymorphism in the dopamine D4 receptor gene and schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, S.; Gill, M.; Collier, D.A. [Institute of Psychiatry, London (United Kingdom)] [and others

    1994-03-15

    We report the results of a linkage study in 24 families multiply affected with schizophrenia using a polymorphic DNA sequence encoding the third cytoplasmic loop of the dopamine D4 receptor. Two-point LOD score analyses with a range of single gene models ranging from near dominant to near recessive revealed no evidence for linkage. In addition, we examined the data by non-parametric sib-pair analysis and found no excess sharing of alleles between affected sib-pairs. We therefore conclude that mutations within the dopamine D4 receptor gene do not have a major aetiological role in schizophrenia in our collection of pedigrees. 20 refs., 2 tabs.

  2. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions

    OpenAIRE

    Solbakken, Monica H.; T?rresen, Ole K.; Nederbragt, Alexander J.; Seppola, Marit; Gregers, Tone F.; Jakobsen, Kjetill S.; Jentoft, Sissel

    2016-01-01

    Published version. Source at http://doi.org/10.1038/srep25211. License CC BY 4.0. Genome sequencing of the teleost Atlantic cod demonstrated loss of the Major Histocompatibility Complex (MHC) class II, an extreme gene expansion of MHC class I and gene expansions and losses in the innate pattern recognition receptor (PRR) family of Toll-like receptors (TLR). In a comparative genomic setting, using an improved version of the genome, we characterize PRRs in Atlantic cod with emphasis on TL...

  3. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2.

    Directory of Open Access Journals (Sweden)

    Catherine Dodé

    2006-10-01

    Full Text Available Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2 and one of its ligands, prokineticin-2 (PROK2, respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome.

  4. Birds Generally Carry a Small Repertoire of Bitter Taste Receptor Genes.

    Science.gov (United States)

    Wang, Kai; Zhao, Huabin

    2015-09-04

    As they belong to the most species-rich class of tetrapod vertebrates, birds have long been believed to possess an inferior taste system. However, the bitter taste is fundamental in birds to recognize dietary toxins (which are typically bitter) in potential food sources. To characterize the evolution of avian bitter taste receptor genes (Tas2rs) and to test whether dietary toxins have shaped the repertoire size of avian Tas2rs, we examined 48 genomes representing all but 3 avian orders. The total number of Tas2r genes was found to range from 1 in the domestic pigeon to 12 in the bar-tailed trogon, with an average of 4, which suggested that a much smaller Tas2r gene repertoire exists in birds than in other vertebrates. Furthermore, we uncovered a positive correlation between the number of putatively functional Tas2rs and the abundance of potential toxins in avian diets. Because plant products contain more toxins than animal tissues and insects release poisonous defensive secretions, we hypothesized that herbivorous and insectivorous birds may demand more functional Tas2rs than carnivorous birds feeding on noninsect animals. Our analyses appear to support this hypothesis and highlight the critical role of taste perception in birds. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus).

    Science.gov (United States)

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.

  6. Platelet-derived growth factor receptors (PDGFRs) fusion genes involvement in hematological malignancies.

    Science.gov (United States)

    Appiah-Kubi, Kwaku; Lan, Ting; Wang, Ying; Qian, Hai; Wu, Min; Yao, Xiaoyuan; Wu, Yan; Chen, Yongchang

    2017-01-01

    To investigate oncogenic platelet-derived growth factor receptor(PDGFR) fusion genes involvement in hematological malignancies, the advances in the PDGFR fusion genes diagnosis and development of PDGFR fusions inhibitors. Literature search was done using terms "PDGFR and Fusion" or "PDGFR and Myeloid neoplasm" or 'PDGFR and Lymphoid neoplasm' or "PDGFR Fusion Diagnosis" or "PDGFR Fusion Targets" in databases including PubMed, ASCO.org, and Medscape. Out of the 36 fusions detected, ETV6(TEL)-PDGFRB and FIP1L1-PDGFRA fusions were frequently detected, 33 are as a result of chromosomal translocation, FIP1L1-PDGFRA and EBF1-PDGFRB are the result of chromosomal deletion and CDK5RAP2- PDGFRΑ is the result of chromosomal insertion. Seven of the 34 rare fusions have detectable reciprocals. RNA aptamers are promising therapeutic target of PDGFRs and diagnostic tools of PDGFRs fusion genes. Also, PDGFRs have variable prospective therapeutic strategies including small molecules, RNA aptamers, and interference therapeutics as well as development of adaptor protein Lnk mimetic drugs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Association of the luteinizing hormone/choriogonadotropin receptor gene polymorphism with polycystic ovary syndrome.

    Science.gov (United States)

    Bassiouny, Yasmin Ahmed; Rabie, Walaa Ahmed; Hassan, Ayman Ahmed; Darwish, Rania Kamal

    2014-06-01

    This study aimed at evaluating possible associations of the single nucleotide polymorphism (SNP) in luteinizing hormone/choriogonadotropin receptor (LHCGR) gene G935A and polycystic ovary syndrome (PCOS) phenotype. The study included 100 PCOS female patients and 60 healthy female control subjects. The patients were recruited from the Gynecology out-patient clinic, Kasr Al-Aini Hospital, Cairo University. All candidates underwent full history taking and clinical examination with calculation of body mass index. Serum and EDTA samples were collected from each patient after a written consent. A hormonal profile was done for each patient as well as DNA analysis of the G935A polymorphism of LHCGR gene. In PCOS group, 26% were homozygous (AA), 27% were heterozygous (GA) and 47% were wild genotype (GG), while in controls 30% were heterozygous and 70% were wild genotype (OR: 2.25; CI: 1.16-4.386; p value: 0.012). The homozygous 935A individuals were at higher risk to develop PCOS than controls (OR: 1.80; CI: 1.54-2.09; p value genetic variant, which is associated with PCOS in a sample of the Egyptian population. These results may provide an opportunity to test this SNP at the LHCGR gene in fertile or infertile women with family history to assess their risk of PCOS.

  8. A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene

    Directory of Open Access Journals (Sweden)

    Se Eun Lee

    2011-02-01

    Full Text Available Pseudohypoaldosteronism type 1 (PHA1 is a rare form of mineralocorticoid resistance characterized in newborns by salt wasting with dehydration, hyperkalemia and failure to thrive. This disease is heterogeneous in etiology and includes autosomal dominant PHA1 owing to mutations of the NR3C2 gene encoding the mineralocorticoid receptor, autosomal recessive PHA1 due to mutations of the epithelial sodium channel (ENaC gene, and secondary PHA1 associated with urinary tract diseases. Amongst these diseases, autosomal dominant PHA1 shows has manifestations restricted to renal tubules including a mild salt loss during infancy and that shows a gradual improvement with advancing age. Here, we report a neonatal case of PHA1 with a NR3C2 gene mutation (a heterozygous c.2146_2147insG in exon 5, in which the patient showed failure to thrive, hyponatremia, hyperkalemia, and elevated plasma renin and aldosterone levels. This is the first case of pseudohypoaldosteronism type 1 confirmed by genetic analysis in Korea.

  9. Sexually dimorphic effects of oxytocin receptor gene (OXTR variants on Harm Avoidance

    Directory of Open Access Journals (Sweden)

    Stankova Trayana

    2012-07-01

    Full Text Available Abstract Background Recent research has suggested that oxytocin receptor gene (OXTR variants may account for individual differences in social behavior, the effects of stress and parenting styles. Little is known, however, on a putative role of the gene in heritable temperamental traits. Methods We addressed effects of two common OXTR variants, rs237900 and rs237902, on personality dimensions in 99 healthy subjects using the Temperament and Character Inventory. Results When sex was controlled for and an OXTR genotype*sex interaction term was included in the regression model, 11% of the variance in Harm Avoidance could be explained (uncorrected p ≤ 0.01. Female carriers of the minor alleles scored highest, and a novel A217T mutation emerged in the most harm avoidant male participant. Conclusions Findings lend support to a modulatory effect of common OXTR variants on Harm Avoidance in healthy caucasian women and invite resequencing of the gene in anxiety phenotypes to identify more explanatory functional variation.

  10. Differences in selection drive olfactory receptor genes in different directions in dogs and wolf.

    Science.gov (United States)

    Chen, Rui; Irwin, David M; Zhang, Ya-Ping

    2012-11-01

    The olfactory receptor (OR) gene family is the largest gene family found in mammalian genomes. It is known to evolve through a birth-and-death process. Here, we characterized the sequences of 16 segregating OR pseudogenes in the samples of the wolf and the Chinese village dog (CVD) and compared them with the sequences from dogs of different breeds. Our results show that the segregating OR pseudogenes in breed dogs are under strong purifying selection, while evolving neutrally in the CVD, and show a more complicated pattern in the wolf. In the wolf, we found a trend to remove deleterious polymorphisms and accumulate nondeleterious polymorphisms. On the basis of protein structure of the ORs, we found that the distribution of different types of polymorphisms (synonymous, nonsynonymous, tolerated, and untolerated) varied greatly between the wolf and the breed dogs. In summary, our results suggest that different forms of selection have acted on the segregating OR pseudogenes in the CVD since domestication, breed dogs after breed formation, and ancestral wolf population, which has driven the evolution of these genes in different directions.

  11. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus.

    Directory of Open Access Journals (Sweden)

    Desiré Lee Dalton

    Full Text Available The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14 being reduced in comparison to in situ populations (n = 16. Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.

  12. Sporadic Nonautoimmune Neonatal Hyperthyroidism Due to A623V Germline Mutation in the Thyrotropin Receptor Gene

    Science.gov (United States)

    Ağladıoğlu, Sebahat Yılmaz; Ceylaner, Serdar; Çetinkaya, Semra; Baş, Veysel Nijat; Peltek Kendirici, Havva Nur

    2010-01-01

    Neonatal hyperthyroidism is a rare disorder and occurs in two forms. An autoimmune form is associated with maternal Graves' disease, resulting from transplacental passage of maternal thyroid−stimulating antibodies and a nonautoimmune form is caused by gain of function mutations in the thyrotropin receptor (TSHR) gene. Thyrotoxicosis caused by germline mutations in the TSHR gene may lead to a variety of clinical consequences. To date, 55 activating mutations of the TSHR gene have been documented. Fourteen cases with sporadic activating TSHR germline mutations have been described. Here we report a male infant with nonautoimmune hyperthyroidism due to an activating germline TSHR mutation (A623V), whose clinical picture started in the newborn period with severe hyperthyroidism. His parents did not have the same mutation. This mutation had been previously detected as a somatic mutation in patients with toxic adenomas. This is the first report of a sporadic case of nonautoimmune congenital hyperthyroidism associated with A623V mutation. Conflict of interest:None declared. PMID:21274318

  13. [Lentiviral vector-mediated RNA interfere gene Nogo receptor to repair spinal cord injury].

    Science.gov (United States)

    Lü, Bi-tao; Yuan, Wen; Xu, Sheng-ming

    2010-10-15

    To evaluate the effects of lentiviral vector-mediated RNA interfere gene Nogo receptor (NgR) of rat cortical neurons in repairing spinal cord injury. The recombinant-lentiviral vector with small inferring RNA siNgR199 which had been constructed was transfected into rat cortical neuron cells in vitro in 3 multiplicity of infection (MOI). The infection rate was determined with fluorescent microscope, and the target gene was detected by PCR analysis. Then, the recombinant was injected into the cortical motor area of the rats with severe spinal cord injury, and the saline was also injected into other rats with severe spinal cord injury as a match control. The functional recovery of the rats' hindlimb was assessed using BBB score and the nerve fiber of the injured region was observed by nerve tracing. The rate of recombinant infecting rat cortical neuron in vitro exceeded 99%. PCR analysis confirmed that the effect of lentiviral vector-mediated RNA interfering gene NgR of rat cortical neurons in vitro was 61%. Although all rats with spinal cord injury were observed to have the hindlimb functional recovery, these rats injected with recombinant had better hindlimb functional recovery than others showing by more BBB score (P vector with siNgR199 which had been constructed is able to promote the growth of nerve fiber and the functional recovery of the rats' hindlimb.

  14. Attachment style and oxytocin receptor gene variation interact in influencing social anxiety.

    Science.gov (United States)

    Notzon, S; Domschke, K; Holitschke, K; Ziegler, C; Arolt, V; Pauli, P; Reif, A; Deckert, J; Zwanzger, P

    2016-01-01

    Social anxiety has been suggested to be promoted by an insecure attachment style. Oxytocin is discussed as a mediator of trust and social bonding as well as a modulator of social anxiety. Applying a gene-environment (G × E) interaction approach, in the present pilot study the main and interactive effects of attachment styles and oxytocin receptor (OXTR) gene variation were probed in a combined risk factor model of social anxiety in healthy probands. Participants (N = 388; 219 females, 169 males; age 24.7 ± 4.7 years) were assessed for anxiety in social situations (Social Phobia and Anxiety Inventory) depending on attachment style (Adult Attachment Scale, AAS) and OXTR rs53576 A/G genotype. A less secure attachment style was significantly associated with higher social anxiety. This association was partly modulated by OXTR genotype, with a stronger negative influence of a less secure attachment style on social anxiety in A allele carriers as compared to GG homozygotes. The present pilot data point to a strong association of less secure attachment and social anxiety as well as to a gene-environment interaction effect of OXTR rs53576 genotype and attachment style on social anxiety possibly constituting a targetable combined risk marker of social anxiety disorder.

  15. Investigation on estrogen receptor alpha gene polymorphisms in Iranian women with recurrent pregnancy loss

    Science.gov (United States)

    Mahdavipour, Marzieh; Idali, Farah; Zarei, Saeed; Talebi, Saeed; Fatemi, Ramina; Jeddi-Tehrani, Mahmood; Pahlavan, Somayeh; Rajaei, Farzad

    2014-01-01

    Background: Recurrent pregnancy loss (RPL) is a multifactorial disorder. Environmental factors and genetics can affect pregnancy outcomes. Objective: Conflicting data suggest an association between estrogen receptor alpha (ESR1) gene polymorphisms and RPL. In this study, such association was investigated in Iranian women with RPL. Materials and Methods: In this case control study, blood samples were collected from 244 women with a history of three or more consecutive pregnancy losses and 104 healthy women with at least two live births. Using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), we studied -397C/T and -351A/G polymorphisms on ESR1 gene in case and control subjects. Results: The genotypic frequencies of -397C/T and -351A/G polymorphisms on ESR1were not significantly different between RPL and control groups (p=0.20 and p=0.09, respectively). A significantly negative correlation was observed between -397C/T and -351A/G (r=-0.852, p<0.001) in RPL women and complete linkage disequilibrium between the investigated polymorphisms was found (D’: 0.959; r-square= 0.758, p<0.001). Conclusion: This investigation suggests that the analyzed polymorphisms on ESR1gene are not associated with an increased risk of RPL in the studied population. PMID:25071847

  16. Dopamine D4 receptor gene associated with fairness preference in ultimatum game.

    Directory of Open Access Journals (Sweden)

    Songfa Zhong

    Full Text Available In experimental economics, the preference for reciprocal fairness has been observed in the controlled and incentivized laboratory setting of the ultimatum game, in which two individuals decide on how to divide a sum of money, with one proposing the share while the second deciding whether to accept. Should the proposal be accepted, the amount is divided accordingly. Otherwise, both would receive no money. A recent twin study has shown that fairness preference inferred from responder behavior is heritable, yet its neurogenetic basis remains unknown. The D4 receptor (DRD4 exon3 is a well-characterized functional polymorphism, which is known to be associated with attention deficit hyperactivity disorder and personality traits including novelty seeking and self-report altruism. Applying a neurogenetic approach, we find that DRD4 is significantly associated with fairness preference. Additionally, the interaction among this gene, season of birth, and gender is highly significant. This is the first result to link preference for reciprocal fairness to a specific gene and suggests that gene × environment interactions contribute to economic decision making.

  17. Dopamine D3 receptor gene locus: Association with schizophrenia, as well age of onset

    Energy Technology Data Exchange (ETDEWEB)

    Nimgsonkar, V.L.; Zhang, X.R.; Brar, J.S. [Univ. of Pittsburgh, PA (United States)] [and others

    1994-09-01

    Genetic factors are clearly involved in the etiology of schizophrenia, but their specific nature is unknown. If the genetic etiology is multifactorial or polygenic, the role of specific genes as susceptibility factors can be directly evaluated by examining allelic variation at these loci among cases in comparison with controls. Two studies have independently demonstrated an association of schizophrenia with homozygosity at the dopamine D3 receptor gene (D3RG) locus, using a biallelic polymorphism in the first exon of D3RG. These results are important because D3RG is a favored candidate gene. Three other studies have identified associations among sub-groups of patients, but the majority were negative. The present study involved patients with schizophrenia (DSM-III-R criteria) of Caucasian or African-American ethnicity (n=130). Two groups of controls, matched for ethnicity, were used: adults screened for schizophrenia (n=128) and unselected neonates (n=160). Multivariate analysis revealed an association between allele no. 1 homozygosity and schizophrenia in comparison with adult, but not neonatal controls. The association was most marked among Caucasian patients with a family history of schizophrenia (odds ratio 13.7, C.I. 1.8, 104.3). An association of the D3RG locus with age of onset (AOO) was also noted. The discrepancies in earlier studies may due to variations in control groups, differencies in mean AOO among different cohorts, or ethnic variations in susceptibility attributable to D3RG.

  18. Variation in DNA methylation of the oxytocin receptor gene predicts children's resilience to prenatal stress.

    Science.gov (United States)

    Milaniak, Izabela; Cecil, Charlotte A M; Barker, Edward D; Relton, Caroline L; Gaunt, Tom R; McArdle, Wendy; Jaffee, Sara R

    2017-12-01

    Emerging research in epigenetics has shown that there is variability in how environmental exposures "get under the skin" through mechanisms like DNA methylation to influence gene expression that may lead to differential adaptations to stress. This is the first study to examine prospectively the relationship between DNA methylation at birth and resilience to prenatal environmental stressors in several domains (conduct, hyperactivity, emotional problems, and global symptomatology) in middle childhood. We focused on DNA methylation in the vicinity of the oxytocin receptor (OXTR) gene as it has been previously associated with impairments in social-cognitive processes that may underlie a wide range of childhood psychopathology. Participants were 91 youth exposed to pre- and postnatal adversity with established conduct problem trajectories drawn from the Avon Longitudinal Study of Parents and Children. Consistent with our hypothesis, OXTR DNA methylation was predictive of resilience in the conduct problems domain in middle childhood. DNA methylation profiles did not predict resilience in domains of emotional, hyperactivity, and global symptomatology, suggesting a potential role for OXTR in the development of conduct problems in particular. However, individuals who were resilient to conduct problems were also broadly resilient across multiple domains. Therefore, future research should elucidate the biological pathways between OXTR DNA methylation and gene expression and its relation to impairments in social behavior.

  19. Missense mutation of the cholecystokinin B receptor gene: Lack of association with panic disorder

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tadafumi; Wang, Zhe Wu; Crowe, R.R. [Univ. of Iowa College of Medicine, Iowa City, IA (United States); Zoega, T. [National Univ. Hospital, Reykjavik (Iceland)

    1996-07-26

    Cholecystokinin tetrapeptide (CCK{sub 4}) is known to induce panic attacks in patients with panic disorder at a lower dose than in normal controls. Therefore, the cholecystokinin B (CCK{sub B}) receptor gene is a candidate gene for panic disorder. We searched for mutations in the CCK{sub B} gene in 22 probands of panic disorder pedigrees, using single-strand conformation polymorphism (SSCP) analysis. Two polymorphisms were detected. A polymorphism in an intron (2491 C{yields}A) between exons 4 and 5 was observed in 10 of 22 probands. A missense mutation in the extracellular loop of exon 2 (1550 G{yields}A, Val{sup 125}{yields}Ile) was found in only one proband. This mutation was also examined in additional 34 unrelated patients with panic disorder and 112 controls. The prevalence rate of this mutation was 8.8% in patients with panic disorder (3/34) and 4.4% in controls (5/112). The mutation did not segregate with panic disorder in two families where this could be tested. These results suggest no pathophysiological significance of this mutation in panic disorder. 21 refs., 4 figs., 1 tab.

  20. The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy.

    Science.gov (United States)

    Grimm, Simone; Wirth, Katharina; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Dziobek, Isabel; Bajbouj, Malek; Aust, Sabine

    2017-06-30

    Early life stress (ELS) is associated with increased vulnerability for depression, changes to the corticotropin-releasing hormone (CRH) system and structural and functional changes in hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS to predict depression, cognitive functions and hippocampal activity. Social cognition has been related to hippocampal function and might be crucial for maintaining mental health. However, the interaction of CRHR1 gene variation and ELS on social cognition has not been investigated yet. We assessed social cognition in 502 healthy subjects to test effects of ELS and the CRHR1 gene. Participants were genotyped for rs110402 and rs242924. ELS was assessed by Childhood Trauma Questionnaire, social cognition was measured via Multifaceted Empathy Test and Empathy Quotient. Severity of ELS was associated with decreased emotional, but not cognitive empathy. Subjects with the common homozygous GG GG genotype showed decreased implicit emotional empathy after ELS exposure regardless of its severity. The results reveal that specific CRHR1 polymorphisms moderate the effect of ELS on emotional empathy. Exposure to ELS in combination with a vulnerable genotype results in impaired emotional empathy in adulthood, which might represent an early marker of increased vulnerability after ELS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polimorfismo do gene dos receptores de progesterona e o aborto espontâneo de repetição Progesterone receptor gene polymorphism and recurrent spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Évelyn Traina

    2010-05-01

    Full Text Available OBJETIVO: investigar se polimorfismos dos genes que codificam o receptor de progesterona (PROGINS estão relacionados à ocorrência de aborto espontâneo de repetição (AER. MÉTODOS: em estudo caso-controle, foram selecionados 85 pacientes com antecedente de pelo menos três abortos precoces sem etiologia definida (Grupo Caso e 157 mulheres com história de pelo menos duas gestações de termo sem intercorrências e sem passado de abortamento (Grupo Controle. Realizada coleta de 10 mL de sangue por punção venosa periférica e extração de DNA pela técnica DTAB/CTAB. As genotipagens foram feitas por reação em cadeia de polimerase (PCR, nas condições de ciclagem específica para o polimorfismo em estudo, seguida de amplificação em gel de agarose a 2%. A visualização das bandas foi feita sob luz ultravioleta e os géis foram fotografados. As diferenças genotípicas e alélicas entre os dois grupos para o polimorfismo PROGINS foram calculadas pelo teste de χ2, adotando-se como nível de significância valores de pPURPOSE: to assess a possible association between polymorphism of the progesterone receptor gene (PROGINS and recurrent spontaneous abortion (RSA. METHODS: in this case-control study, 85 women with at least three previous spontaneous abortions without an identifiable cause (RSA Group and 157 women with at least two previous term pregnancies without pathologies and no previous miscarriage (Control Group were selected. An amount of 10 mL of peripheral blood was collected by venipuncture and genomic DNA was extracted by the DTAB/CTAB method, followed by the polymerase chain reaction (PCR under specific conditions for this polymorphism and by amplification by 2% agarose gel electrophoresis. The bands were visualized with an ultraviolet light transilluminator and the gels were photographed. Differences in the PROGINS genotype and allele frequencies between groups were analyzed by the χ2 test, with the level of significance set

  2. Polymorphisms in the interleukin 4, interleukin 13, and corresponding receptor genes are not associated with systemic sclerosis and do not influence gene expression

    NARCIS (Netherlands)

    Broen, J.C.; Dieude, P.; Vonk, M.C.; Beretta, L.; Carmona, F.D.; Herrick, A.; Worthington, J.; Hunzelmann, N.; Riemekasten, G.; Kiener, H.; Scorza, R.; Simeon, C.P.; Fonollosa, V.; Spanish Systemic Sclerosis, G.; Carreira, P.; Ortego-Centeno, N.; Gonzalez-Gay, M.A.; Airo, P.; Coenen, M.J.; Tsang, K.; Aliprantis, A.O.; Martin, J.; Allanore, Y.; Radstake, T.R.

    2012-01-01

    OBJECTIVE: Polymorphisms in the genes encoding interleukin 4 (IL4), interleukin 13 (IL13), and their corresponding receptors have been associated with multiple immune-mediated diseases. Our aim was to validate these previous observations in patients with systemic sclerosis (SSc) and scrutinize the

  3. Selective suicide gene therapy of colon cancer exploiting the urokinase plasminogen activator receptor promoter.

    Science.gov (United States)

    Teimoori-Toolabi, Ladan; Azadmanesh, Kayhan; Amanzadeh, Amir; Zeinali, Sirous

    2010-04-01

    Colon cancer is the third and fourth most prevalent cancer among Iranian men and women, respectively. Suicide gene therapy is one of the alternative therapeutic modalities for cancer. The application of specific promoters for therapeutic genes should decrease the adverse effects of this modality. The combined aims of this study were to design a specific suicide gene therapy construct for colon cancer and study its effect in distinct representatives of transformed and nontransformed cells. The KRAS oncogene signaling pathway is one of the most important signaling pathways activated in colon cancer; therefore, we inserted the urokinase plasminogen activator receptor (uPAR; PLAUR gene) promoter as one of the upregulated promoters by this pathway upstream of a suicide gene (thymidine kinase [TK]) and a reporter gene (beta-galactosidase, beta-gal [LacZ]). This promoter is a natural combination of different motifs responsive to the RAS signaling pathway, such as the transcription factors AP1 (FOS/JUN), SP1, SP3, and AP2alpha, and nuclear factor kappa B (NFkappaB). The reporter plasmid under the control of the uPAR promoter (PUCUPARLacZ) had the ability to express beta-gal in colon cancer cells (human colon adenocarcinoma [SW480] and human colorectal carcinoma [HCT116] cell lines), while it could not express beta-gal in nontransformed human umbilical vein endothelial cells (HUVEC) and normal colon cells. After confirming the ability of pUCUPARTK (suicide plasmid) to express TK in SW480 and HCT116 cells by real-time PCR, cytotoxicity assays showed that pUCUPARTK decreased the viability of these cells in the presence of ganciclovir 20 and 40 microg/mL (and higher), respectively. Although M30 CytoDEATH antibody could not detect a significant rate of apoptosis induced by ganciclovir in pUCUPARTK-transfected HCT116 cells, the percentage of stained cells was marked in comparison with untreated cells. While this antibody could detect apoptosis in HCT116 cell line transfected

  4. Low expression of a few genes indicates good prognosis in estrogen receptor positive breast cancer

    Directory of Open Access Journals (Sweden)

    Buechler Steven

    2009-07-01

    Full Text Available Abstract Background Many breast cancer patients remain free of distant metastasis even without adjuvant chemotherapy. While standard histopathological tests fail to identify these good prognosis patients with adequate precision, analyses of gene expression patterns in primary tumors have resulted in more successful diagnostic tests. These tests use continuous measurements of the mRNA concentrations of numerous genes to determine a risk of metastasis in lymph node negative breast cancer patients with other clinical traits. Methods A survival model is constructed from genes that are both connected with relapse and have expression patterns that define distinct subtypes, suggestive of different cellular states. This in silico study uses publicly available microarray databases generated with Affymetrix GeneChip technology. The genes in our model, as represented by array probes, have distinctive distributions in a patient cohort, consisting of a large normal component of low expression values; and a long right tail of high expression values. The cutoff between low and high expression of a probe is determined from the distribution using the theory of mixture models. The good prognosis group in our model consists of the samples in the low expression component of multiple genes. Results Here, we define a novel test for risk of metastasis in estrogen receptor positive (ER+ breast cancer patients, using four probes that determine distinct subtypes. The good prognosis group in this test, denoted AP4-, consists of the samples with low expression of each of the four probes. Two probes target MKI67, antigen identified by monoclonal antibody Ki-67, one targets CDC6, cell division cycle 6 homolog (S. cerevisiae, and a fourth targets SPAG5, sperm associated antigen 5. The long-term metastasis-free survival probability for samples in AP4- is sufficiently high to render chemotherapy of questionable benefit. Conclusion A breast cancer subtype defined by low

  5. Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family

    DEFF Research Database (Denmark)

    Nilsson, Stefan K; Lookene, Aivar; Beckstead, Jennifer A

    2007-01-01

    lipoprotein receptor family, the low density lipoprotein receptor-related protein and the mosaic type-1 receptor, SorLA. Experiments using surface plasmon resonance showed specific binding of both free and lipid-bound apolipoprotein A-V to both receptors. The binding was calcium dependent and was inhibited...... by the receptor associated protein, a known ligand for members of the low density lipoprotein receptor family. Preincubation with heparin decreased the receptor binding of apolipoprotein A-V, indicating that overlap exists between the recognition sites for these receptors and for heparin. A double mutant...

  6. Receptor-like protein-tyrosine phosphatase alpha specifically inhibits insulin-increased prolactin gene expression

    DEFF Research Database (Denmark)

    Jacob, K K; Sap, J; Stanley, F M

    1998-01-01

    A physiologically relevant response to insulin, stimulation of prolactin promoter activity in GH4 pituitary cells, was used as an assay to study the specificity of protein-tyrosine phosphatase function. Receptor-like protein-tyrosine phosphatase alpha (RPTPalpha) blocks the effect of insulin...... to increase prolactin gene expression but potentiates the effects of epidermal growth factor and cAMP on prolactin promoter activity. RPTPalpha was the only protein-tyrosine phosphatase tested that did this. Thus, the effect of RPTPalpha on prolactin-chloramphenicol acetyltransferase (CAT) promoter activity...... is specific by two criteria. A number of potential RPTPalpha targets were ruled out by finding (a) that they are not affected or (b) that they are not on the pathway to insulin-increased prolactin-CAT activity. The negative effect of RPTPalpha on insulin activation of the prolactin promoter is not due...

  7. Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia

    DEFF Research Database (Denmark)

    Kästner, Anne; Grube, Sabrina; El-Kordi, Ahmed

    2012-01-01

    Erythropoietin (EPO) improves cognitive performance in clinical studies and rodent experiments. We hypothesized that an intrinsic role of EPO for cognition exists, with particular relevance in situations of cognitive decline, which is reflected by associations of EPO and EPO receptor (EPOR......) genotypes with cognitive functions. To prove this hypothesis, schizophrenic patients (N > 1000) were genotyped for 5' upstream-located gene variants, EPO SNP rs1617640 (T/G) and EPORSTR(GA)(n). Associations of these variants were obtained for cognitive processing speed, fine motor skills and short......-term memory readouts, with one particular combination of genotypes superior to all others (p 800), these associations were confirmed. A matching preclinical study with mice demonstrated cognitive processing speed and memory enhanced upon transgenic...

  8. Liver X Receptor Agonists Inhibit the Phospholipid Regulatory Gene CTP: Phosphoethanolamine Cytidylyltransferase-Pcyt2

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2008-01-01

    Full Text Available Metabolic pulse-chase experiments demonstrated that 25-hydroxycholesterol (25-OH, the endogenous activator of the liver X receptor (LXR, significantly reduced the biosynthesis of phosphatidylethanolamine via CDP-ethanolamine (Kennedy pathway at the step catalyzed by CTP: phosphoethanolamine cytidylyltransferase (Pcyt2. In the mouse embryonic fibroblasts C3H10T1/2, the LXR synthetic agonist TO901317 lowered Pcyt2 promoter-luciferase activity in a concentration-dependent manner. Furthermore, 25-OH and TO901317 reduced mouse Pcyt2 mRNA and protein levels by 35–60%. The inhibitory effects of oxysterols and TO901317 on the Pcyt2 promoter function, mRNA and protein expression were conserved in the human breast cancer cells MCF-7. These studies identify the Pcyt2 gene as a novel target whereby LXR agonists may indirectly modulate inflammatory responses and atherosclerosis.

  9. Pituitary specific retinoid-X receptor ligand interactions with thyroid hormone receptor signaling revealed by high throughput reporter and endogenous gene responses.

    Science.gov (United States)

    Mengeling, Brenda J; Furlow, J David

    2015-10-01

    Disruption of thyroid hormone (TH) signaling can compromise vital processes both during development and in the adult. We previously reported on high-throughput screening experiments for man-made TH disruptors using a stably integrated line of rat pituitary cells, GH3.TRE-Luc, in which a thyroid hormone receptor (TR) response element drives luciferase (Luc) expression. In these experiments, several retinoid/rexinoid compounds activated the reporter. Here we show that all-trans and 13-cis retinoic acid appear to function through the heterodimer partners of TRs, retinoid-X receptors (RXRs), as RXR antagonists abrogated retinoid-induced activation. The retinoids also induced known endogenous TR target genes, showing good correlation with Luc activity. Synthetic RXR-specific agonists significantly activated all tested TR target genes, but interestingly, retinoid/rexinoid activation was more consistent between genes than the extent of T3-induced activation. In contrast, the retinoids neither activated the Luc reporter construct in transient transfection assays in the human hepatocarcinoma cell line HuH7, nor two of the same T3-induced genes examined in pituitary cells. These data demonstrate the suitability and sensitivity of GH3.TRE-Luc cells for screening chemical compound libraries for TH disruption and suggest that the extent of disruption can vary on a cell type and gene-specific bases, including an underappreciated contribution by RXRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy

    Directory of Open Access Journals (Sweden)

    Paul R Albert

    2010-06-01

    Full Text Available Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(-1019G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.

  11. Identification and evolution of latrophilin receptor gene involved in Tribolium castaneum devolopment and female fecundity.

    Science.gov (United States)

    Gao, Shanshan; Liu, Xing; Liu, Juanjuan; Xiong, Wenfeng; Song, Xiaowen; Wu, Wei; Wei, Luting; Li, Bin

    2017-10-20

    Latrophilins (LPHs) are adhesion G-protein-coupled receptors comprising three paralogous forms (LPH-1, LPH-2, and LPH-3) and known receptors for α-latrotoxin, which are involved in growth, development, adaptability, and schizophrenia and other diseases in vertebrates. However, the functions of LPH are poorly understood in most insects. Here, phylogenetic and synteny analysis indicated that LPH-1 and LPH-3 evolved separately from a common ancestor LPH-2. Then, latrophilin (Tclph) was cloned in Tribolium castaneum, and three alternatively spliced transcripts (Tclpha, Tclphb and Tclphc) were identified. All these three Tclphs were highest expressed at the early adult stage, and strongly expressed in central nervous system of adults. Larval RNA interference (RNAi) against Tclph caused 24% adult wing abnormal, 30% insect death, and led to 100% reductions in beetle fecundity. Fecundity deficiency was rescued by reciprocal crosses with wild-type females, but not males. And dissection results revealed that 63% of dsTclph female ovaries were atrophied. Further, exon-specific RNAi illustrated that neither knockdown of Tclpha nor Tclphc resulted in development defects and reductions in beetle fecundity. Thus, it indicated that Tclphb was essential for development and female fecundity in T. castaneum. Moreover, Tclph knockdown increased the expression of the foxo, plc, and pka genes, which most likely modulated the effects of Tclph on development and reproduction in T. castaneum. © 2017 Wiley Periodicals, Inc.

  12. Involvement of second messengers in regulation of the low-density lipoprotein receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Auwerx, J.H. (Leuven Univ. (Belgium). ECHEM Labs.); Chait, A.; Wolfbauer, G.; Deeb, S.S. (Washington Univ., Seattle, WA (USA). Dept. of Medicine)

    1989-06-01

    Transcription of the low-density lipoprotein receptor (LDL-R) gene in the human monocytic leukemic cell line THP-1 and in the human hepatocarcinoma cell line Hep-G2 is regulated by second messengers of the diacylglycerol-protein kinase C (DAG-PKC), inositol 1,4,5-triphosphate-Ca/sup 2+/, and cyclic AMP pathways. Exogeneous phospholipase C (which releases DAG and inositol 1,4,5-triphosphate), PKC activators (phorbol esters and DAG), Ca/sup 2+/ ionophores, and a cyclic AMP analog all transiently induced accumulation of LDL-R mRNA. The effects of these three signal-transducing pathways were to a large extend additive. Furthermore, PKC stimulation effected an increase in LDL binding, which suggested that the increase in LDL-R mRNA resulted in an increase in functional cell surface receptor activity. These results suggest that uptake of cholesterol by these cells is under control of both intracellular cholesterol levels and external signals.

  13. Combinations of single nucleotide polymorphisms in neuroendocrine effector and receptor genes predict chronic fatigue syndrome.

    Science.gov (United States)

    Goertzel, Benjamin N; Pennachin, Cassio; de Souza Coelho, Lucio; Gurbaxani, Brian; Maloney, Elizabeth M; Jones, James F

    2006-04-01

    This paper asks whether the presence of chronic fatigue syndrome (CFS) can be more accurately predicted from single nucleotide polymorphism (SNP) profiles than would occur by chance. Specifically, given SNP profiles for 43 CFS patients, together with 58 controls, we used an enumerative search to identify an ensemble of conjunctive rules that predict whether a patient has CFS. The accuracy of the rules reached 76.3%, with the highest accuracy rules yielding 49 true negatives, 15 false negatives, 28 true positives and nine false positives (odds ratio [OR] 8.94, p genes containing the SNPs accounting for the highest accumulated importances were neuronal tryptophan hydroxylase (TPH2), catechol-O-methyltransferase (COMT) and nuclear receptor subfamily 3, group C, member 1 glucocorticoid receptor (NR3C1). The fact that only 28 out of several million possible SNPs predict whether a person has CFS with 76% accuracy indicates that CFS has a genetic component that may help to explain some aspects of the illness.

  14. Allergic rhinitis and genetic components: focus on Toll-like receptors (TLRs gene polymorphism

    Directory of Open Access Journals (Sweden)

    Zhiwei Gao

    2010-11-01

    Full Text Available Zhiwei Gao1, Donna C Rennie2, Ambikaipakan Senthilselvan11Department of Public Health Sciences, School of Public Health, University of Alberta, Edmonton, Alberta, Canada; 2College of Nursing and Canadian Centre for Health and Agricultural Safety, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaAbstract: Allergic rhinitis represents a global health issue affecting 10% to 25% of the population worldwide. Over the years, studies have found that allergic diseases, including allergic rhinitis, are associated with immunological responses to antigens driven by a Th2-mediated immune response. Because Toll-like receptors (TLRs are involved in both innate and adaptive immune responses to a broad variety of antigens, the association between polymorphisms of TLRs and allergic diseases has been the focus in many animal and human studies. Although the etiology of allergic rhinitis is still unknown, extensive research over the years has confirmed that the underlying causes of allergic diseases are due to many genetic and environmental factors, along with the interactions among them, which include gene–environment, gene–gene, and environment–environment interactions. Currently, there is great inconsistency among studies mainly due to differences in genetic background and unique gene–environment interactions. This paper reviews studies focusing on the association between TLR polymorphisms and allergic diseases, including allergic rhinitis, which would help researchers better understand the role of TLR polymorphisms in the development of allergic rhinitis, and ultimately lead to more efficient therapeutic interventions being developed.Keywords: allergic rhinitis, allergic diseases, Toll-like receptors

  15. Plasma levels of leptin and soluble leptin receptor and polymorphisms of leptin gene -18G > A and leptin receptor genes K109R and Q223R, in survivors of childhood acute lymphoblastic leukemia

    National Research Council Canada - National Science Library

    Skoczen, Szymon; Tomasik, Przemyslaw J; Bik-Multanowski, Miroslaw; Surmiak, Marcin; Balwierz, Walentyna; Pietrzyk, Jacek J; Sztefko, Krystyna; Gozdzik, Jolanta; Galicka-Latała, Danuta; Strojny, Wojciech

    2011-01-01

    ...) are at increased risk of overweight and obesity. The purpose of this study was to assess leptin and leptin soluble receptor levels, as well as polymorphisms of selected genes in survivors of pediatric ALL, and the influence of chemo- and radio...

  16. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes.

    Science.gov (United States)

    Bemis, Shannon M; Lee, Jin Suk; Shpak, Elena D; Torii, Keiko U

    2013-12-01

    Due to the lack of cell migration, plant organogenesis relies on coordinated cell proliferation, cell growth, and differentiation. A flower possesses a complex structure, with sepals and petals constituting the perianth, and stamens and pistils where male and female gametophytes differentiate. While advances have been made in our understanding of gene regulatory networks controlling flower development, relatively little is known of how cell-cell coordination influences floral organ specification. The Arabidopsis ERECTA (ER)-family receptor kinases, ER, ER-LIKE1 (ERL1), and ERL2, regulate inflorescence architecture, organ shape, and epidermal stomatal patterning. Here it is reported that ER-family genes together regulate floral meristem organization and floral organ identity. The stem cell marker CLAVATA3 exhibits misplaced expression in the floral meristems of the er erl1 erl2 mutant. Strikingly, homeotic conversion of sepals to carpels was observed in er erl1 erl2 flowers. Consistently, ectopic expression of AGAMOUS, which determines carpel identity, was detected in er erl1 erl2 flower primordia. Among the known downstream components of ER-family receptor kinases in stomatal patterning, YODA (YDA) is also required for proper floral patterning. YDA and the ER-family show complex, synergistic genetic interactions: er erl1 erl2 yda quadruple mutant plants become extremely small, callus-like masses. While a constitutively active YDA fully rescues stomatal clustering in er erl1 erl2, it only partially rescues er erl1 erl2 flower defects. The study suggests that ER-family signalling is crucial for ensuring proper expression domains of floral meristem and floral organ identity determinants, and further implies the existence of a non-canonical downstream pathway.

  17. Opioid receptor mu 1 gene, fat intake and obesity in adolescence.

    Science.gov (United States)

    Haghighi, A; Melka, M G; Bernard, M; Abrahamowicz, M; Leonard, G T; Richer, L; Perron, M; Veillette, S; Xu, C J; Greenwood, C M T; Dias, A; El-Sohemy, A; Gaudet, D; Paus, T; Pausova, Z

    2014-01-01

    Dietary preference for fat may increase risk for obesity. It is a complex behavior regulated in part by the amygdala, a brain structure involved in reward processing and food behavior, and modulated by genetic factors. Here, we conducted a genome-wide association study (GWAS) to search for gene loci associated with dietary intake of fat, and we tested whether these loci are also associated with adiposity and amygdala volume. We studied 598 adolescents (12-18 years) recruited from the French-Canadian founder population and genotyped them with 530 011 single-nucleotide polymorphisms. Fat intake was assessed with a 24-hour food recall. Adiposity was examined with anthropometry and bioimpedance. Amygdala volume was measured by magnetic resonance imaging. GWAS identified a locus of fat intake in the μ-opioid receptor gene (OPRM1, rs2281617, P=5.2 × 10(-6)), which encodes a receptor expressed in the brain-reward system and shown previously to modulate fat preference in animals. The minor OPRM1 allele appeared to have a 'protective' effect: it was associated with lower fat intake (by 4%) and lower body-fat mass (by ∼2 kg, P=0.02). Consistent with the possible amygdala-mediated inhibition of fat preference, this allele was additionally associated with higher amygdala volume (by 69 mm(3), P=0.02) and, in the carriers of this allele, amygdala volume correlated inversely with fat intake (P=0.02). Finally, OPRM1 was associated with fat intake in an independent sample of 490 young adults. In summary, OPRM1 may modulate dietary intake of fat and hence risk for obesity, and this effect may be modulated by subtle variations in the amygdala volume.

  18. A machine learned classifier that uses gene expression data to accurately predict estrogen receptor status.

    Directory of Open Access Journals (Sweden)

    Meysam Bastani

    Full Text Available BACKGROUND: Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. METHODS: To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. RESULTS: This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. CONCLUSIONS: Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions.

  19. Epigenetic aspects of lymphocyte antigen receptor gene rearrangement or ‘when stochasticity completes randomness’

    Science.gov (United States)

    Jaeger, Sébastien; Fernandez, Bastien; Ferrier, Pierre

    2013-01-01

    To perform their specific functional role, B and T lymphocytes, cells of the adaptive immune system of jawed vertebrates, need to express one (and, preferably, only one) form of antigen receptor, i.e. the immunoglobulin or T-cell receptor (TCR), respectively. This end goal depends initially on a series of DNA cis-rearrangement events between randomly chosen units from separate clusters of V, D (at some immunoglobulin and TCR loci) and J gene segments, a biomolecular process collectively referred to as V(D)J recombination. V(D)J recombination takes place in immature T and B cells and relies on the so-called RAG nuclease, a site-specific DNA cleavage apparatus that corresponds to the lymphoid-specific moiety of the VDJ recombinase. At the genome level, this recombinase's mission presents substantial biochemical challenges. These relate to the huge distance between (some of) the gene segments that it eventually rearranges and the need to achieve cell-lineage-restricted and developmentally ordered routines with at times, mono-allelic versus bi-allelic discrimination. The entire process must be completed without any recombination errors, instigators of chromosome instability, translocation and, potentially, tumorigenesis. As expected, such a precisely choreographed and yet potentially risky process demands sophisticated controls; epigenetics demonstrates what is possible when calling upon its many facets. In this vignette, we will recall the evidence that almost from the start appeared to link the two topics, V(D)J recombination and epigenetics, before reviewing the latest advances in our knowledge of this joint venture. PMID:23278765

  20. Melatonin Receptor 1B Gene Polymorphisms, Haplotypes and Susceptibility to Schizophrenia

    Directory of Open Access Journals (Sweden)

    Saravani Ramin

    2017-04-01

    Full Text Available Melatonin has an important role in the regulation of human sleep circadian rhythms. Sleep disturbances commonly exist in schizophrenia (SCZ patients. To begin its performance, melatonin must interact to its receptor. In the present study, Single Nucleotide Polymorphisms (SNPs of melatonin receptor gene 1 B (MTN1B with SCZ development in Iranian population were investigated. The current case-control study was performed on 92 SCZ patients and 92 healthy control (HC subjects. NESTED-PCR and ARMS-PCR modified methods (combination and ARMSPCR method were used on the genotype. The impact of MTN1B rs3781637 (T/C and rs10830963(C/G polymorphism variants on the risk SCZ in the sample of Iranian population was investigated. The findings showed significant association between MTN1B rs10830963(C/G variant and SCZ (OR=2.78, 95%CI=1.25-6.25, P=0.012, GG vs. CC, OR=1.66, 95%CI=1.09-2.51, P=0.021 G vs. C, OR=3.85 95%CI=.89-8.33, P<0.0001, GG vs. CC+CG. There was no association between MTN1B rs3781637 (T/C and SCZ risk. In addition, haplotype analysis revealed that TG and CC haplotype of rs3781637 (T/C and rs10830963 (C/G polymorphisms were associated with SCZ risk (P=0.039 and protective (P<0.0001 effects, respectively. The findings revealed that MTN1B rs10830963 (C/G polymorphism was associated with the risk of SCZ; while another SNP rs3781637 (T/C MTN1B gene did not show any risk/protection association with SCZ. Further studies with larger sample sizes and different ethnicities are required to approve the results.

  1. A Machine Learned Classifier That Uses Gene Expression Data to Accurately Predict Estrogen Receptor Status

    Science.gov (United States)

    Bastani, Meysam; Vos, Larissa; Asgarian, Nasimeh; Deschenes, Jean; Graham, Kathryn; Mackey, John; Greiner, Russell

    2013-01-01

    Background Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. Methods To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. Results This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. Conclusions Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions. PMID:24312637

  2. Endothelial protein C receptor gene variants not associated with severe malaria in ghanaian children.

    Directory of Open Access Journals (Sweden)

    Kathrin Schuldt

    Full Text Available BACKGROUND: Two recent reports have identified the Endothelial Protein C Receptor (EPCR as a key molecule implicated in severe malaria pathology. First, it was shown that EPCR in the human microvasculature mediates sequestration of Plasmodium falciparum-infected erythrocytes. Second, microvascular thrombosis, one of the major processes causing cerebral malaria, was linked to a reduction in EPCR expression in cerebral endothelial layers. It was speculated that genetic variation affecting EPCR functionality could influence susceptibility to severe malaria phenotypes, rendering PROCR, the gene encoding EPCR, a promising candidate for an association study. METHODS: Here, we performed an association study including high-resolution variant discovery of rare and frequent genetic variants in the PROCR gene. The study group, which previously has proven to be a valuable tool for studying the genetics of malaria, comprised 1,905 severe malaria cases aged 1-156 months and 1,866 apparently healthy children aged 2-161 months from the Ashanti Region in Ghana, West Africa, where malaria is highly endemic. Association of genetic variation with severe malaria phenotypes was examined on the basis of single variants, reconstructed haplotypes, and rare variant analyses. RESULTS: A total of 41 genetic variants were detected in regulatory and coding regions of PROCR, 17 of which were previously unknown genetic variants. In association tests, none of the single variants, haplotypes or rare variants showed evidence for an association with severe malaria, cerebral malaria, or severe malaria anemia. CONCLUSION: Here we present the first analysis of genetic variation in the PROCR gene in the context of severe malaria in African subjects and show that genetic variation in the PROCR gene in our study population does not influence susceptibility to major severe malaria phenotypes.

  3. Correlating gene expression with deformities caused by aryl hydrocarbon receptor agonists in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bugiak, B.; Weber, L. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    Exposure to aryl hydrocarbon receptor (AhR) agonists in fish causes lethal disturbances in fish development, but the effects of acute AhR agonist exposure on the cardiovascular system and deformities remain unclear. This study addressed this issue by performing a series of experiments on zebrafish (Danio rerio). The authors hypothesized that genes needed for cardiovascular regulation (PTGS) would exhibit a stronger link to deformities than detoxification enzymes (CYPs). Zebrafish eggs were exposed aqueously until 4 days post-fertilization (dpf) to the AhR agonists benzo(a)pyrene (BaP) or 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) alone and in combination with the putative AhR antagonists resveratrol or alpha-naphthoflavone (ANF). Gene expression was measured using real-time, reverse transcriptase PCR in zebrafish at 5 and 10 dpf. Although the mortalities did not differ considerably among groups at 10 dpf, the deformities increased significantly after BaP-ANF at 5 dpf and after BaP at 10 dpf, but not after TCDD treatment. CYP and PTGS isozymes exhibited small, but statistically significant changes at 5 dpf. By 10 dpf, the expression returned to control values. In general, CYP1A and PTGS-1 expression at 5 dpf were positively correlated with deformities, while all other genes were negatively correlated with deformities. It was concluded that changes in CYP1A, CYP1C2, and PTGS-1 gene expression at 5 dpf are associated with developmental deformities, but additional work is needed to determine which has the most important mechanistic link.

  4. Coat colour phenotype of Qingyu pig is associated with polymorphisms of melanocortin receptor 1 gene

    Directory of Open Access Journals (Sweden)

    Xiaoqian Wu

    2017-07-01

    Full Text Available Objective Qingyu pig, a Chinese indigenous pig breed, exhibits two types of coat colour phenotypes, including pure black and white with black spotting respectively. Melanocortin receptor 1 (MC1R and agouti signaling protein (ASIP are two widely reported pivotal genes that significantly affect the regulation of coat colour. The objectives of this study were to investigate whether the polymorphisms of these two genes are associated with coat colour and analyze the molecular mechanism of the coat colour separation in Qingyu pig. Methods We studied the phenotype segregation and used polymerase chain reaction amplification and Sanger sequencing to investigate the polymorphism of MC1R and ASIP in 121 Qingyu pigs, consisting of 115 black and 6 white with black spotted pigs. Results Coat colour of Qingyu pig is associated with the polymorphisms of MC1R but not ASIP. We only found 2 haplotypes, EQY and Eqy, based on the 13 observed mutations from MC1R gene. Among which, Eqy presented a recessive inheritance mode in black spotted Qingyu pigs. Further analysis revealed a g.462–463CC insertion that caused a frameshift mutation and a premature stop codon, thus changed the first transmembrane domain completely and lost the remaining six transmembrane domains. Altogether, our results strongly support that the variety of Qingyu pig’s coat colour is related to MC1R. Conclusion Our findings indicated that black coat colour in Qingyu pig was dominant to white with black spotted phenotype and MC1R gene polymorphism was associated with coat colour separation in Qingyu pig.

  5. Vitamin D receptor gene polymorphism and its association with Parkinson's disease in Chinese Han population.

    Science.gov (United States)

    Han, Xun; Xue, Li; Li, Yongsheng; Chen, Biao; Xie, Anmu

    2012-09-06

    Vitamin D plays an important role in neurodegenerative disorders as a crucial neuro-immunomodulator, and accumulating data have provided evidence for that vitamin D receptor (VDR) gene is a candidate gene for susceptibility to Parkinson's disease (PD). In this study, we performed a case-control study to demonstrate whether the risk for the development of onset of sporadic PD might be influenced by VDR gene polymorphisms in a Chinese cohort. Two hundred and sixty PD patients and 282 matched-healthy controls were genotyped for two representative single nucleotide polymorphisms (SNPs) in VDR gene (FokI C/T and BsmI G/A) by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) analysis in. Results from our study revealed that FokI C allele carriers were likely to associate with an increased risk of PD (P=0.004) as well as early-onset PD (EOPD) (P=0.010). Moreover, the frequency of FokI C allele was significantly increased in PD group and late-onset PD (LOPD) group relative to the control groups respectively (P=0.023 and P=0.033, respectively). For BsmI polymorphisms, no significant difference in genotype or allele distribution was found between PD patients and the controls, as well as gender- and age-related differences between PD patients and the controls subgroup. This study demonstrated a possible association between the VDR FokI T/C polymorphism and PD, indicating that VDR polymorphisms may well change genetic susceptibility to sporadic PD in a Han Chinese population. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Statistical analysis of differential gene expression relative to a fold change threshold on NanoString data of mouse odorant receptor genes.

    Science.gov (United States)

    Vaes, Evelien; Khan, Mona; Mombaerts, Peter

    2014-02-04

    A challenge in gene expression studies is the reliable identification of differentially expressed genes. In many high-throughput studies, genes are accepted as differentially expressed only if they satisfy simultaneously a p value criterion and a fold change criterion. A statistical method, TREAT, has been developed for microarray data to assess formally if fold changes are significantly higher than a predefined threshold. We have recently applied the NanoString digital platform to study expression of mouse odorant receptor genes, which form with 1,200 members the largest gene family in the mouse genome. Our objectives are, on these data, to decrease false discoveries when formally assessing the genes relative to a fold change threshold, and to provide a guided selection in the choice of this threshold. Statistical tests have been developed for microarray data to identify genes that are differentially expressed relative to a fold change threshold. Here we report that another approach, which we refer to as tTREAT, is more appropriate for our NanoString data, where false discoveries lead to costly and time-consuming follow-up experiments. Methods that we refer to as tTREAT2 and the running fold change model improve the performance of the statistical tests by protecting or selecting the fold change threshold more objectively. We show the benefits on simulated and real data. Gene-wise statistical analyses of gene expression data, for which the significance relative to a fold change threshold is important, give reproducible and reliable results on NanoString data of mouse odorant receptor genes. Because it can be difficult to set in advance a fold change threshold that is meaningful for the available data, we developed methods that enable a better choice (thus reducing false discoveries and/or missed genes) or avoid this choice altogether. This set of tools may be useful for the analysis of other types of gene expression data.

  7. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor, Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    Directory of Open Access Journals (Sweden)

    Rebecca Louise Harris

    2012-01-01

    Full Text Available Background. The asialoglycoprotein receptor (ASGPR is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2, encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR, expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver.

  8. Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Mellon Mogensen, Anne

    2008-01-01

    AIM: To measure, by a quantitative approach, the gene expression underlying the results of somatostatin receptor (sst) scintigraphy ((111)In-DTPA-octreotide) and noradrenaline transporter (NAT) scintigraphy ((123)I-MIBG) in patients with neuroendocrine (NE) tumors. METHODS: The gene expression of...... to achieve a better understanding of the link between them, which in turn could aid in planning and development of noninvasive molecular imaging of key molecular processes....

  9. Estrogen and progesterone receptor-binding sites on the chicken vitellogenin II gene: synergism of steroid hormone action.

    OpenAIRE

    Cato, A C; Heitlinger, E; Ponta, H; Klein-Hitpass, L; Ryffel, G U; Bailly, A; Rauch, C; Milgrom, E

    1988-01-01

    The chicken vitellogenin II gene is transcriptionally activated by estrogens. In transient transfection experiments in human T47D cells that contain receptors for various steroids, we showed estradiol, progestin, and androgen responses of a chimeric chicken vitellogenin II construct. This construct consists of DNA sequences from -626 to -590 upstream of the start of transcription of the chicken vitellogenin gene linked to the herpes simplex virus thymidine kinase promoter driving the transcri...

  10. Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-Like Kinase Gene Family

    Science.gov (United States)

    Chae, Lee; Sudat, Sylvia; Dudoit, Sandrine; Zhu, Tong; Luan, Sheng

    2009-01-01

    The genome of Arabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dominant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, plant RLKs are serine/threonine kinases that represent a novel signaling innovation unique to plants and, consequently, an excellent opportunity to understand how extracellular signaling evolved and functions in plants as opposed to animals. RLKs are predicted to be major components of the signaling pathways that allow plants to respond to environmental and developmental conditions. However, breakthroughs in identifying these processes have been limited to only a handful of individual RLKs. Here, we used a Syngenta custom Arabidopsis GeneChip array to compile a detailed profile of the transcriptional activity of 604 receptor-like kinase genes after exposure to a cross-section of known signaling factors in plants, including abiotic stresses, biotic stresses, and hormones. In the 68 experiments comprising the study, we found that 582 of the 604 RLK genes displayed a two-fold or greater change in expression to at least one of 12 types of treatments, thereby providing a large body of experimental evidence for targeted functional screens of individual RLK genes. We investigated whether particular subfamilies of RLK genes are responsive to specific types of signals and found that each subfamily displayed broad ranges of expression, as opposed to being targeted towards particular signal classes. Finally, by analyzing the divergence of sequence and gene expression among the RLK subfamilies, we present evidence as to the functional basis for the expansion of the RLKs and how this expansion may have affected conservation and divergences in their function. Taken as a whole, our study represents a preliminary, working model of processes and interactions in which the members of the RLK gene family may be involved, where such information has remained elusive for so many

  11. 164Ile allele in the beta2-Adrenergic receptor gene is associated with risk of elevated blood pressure in women. The Copenhagen City Heart Study

    DEFF Research Database (Denmark)

    Sethi, Amar A; Tybjaerg-Hansen, Anne; Jensen, Gorm B

    2005-01-01

    Since beta2-adrenergic receptors are important regulators of blood pressure, genetic variation in this receptor could explain risk of elevated blood pressure in selected individuals. We tested the hypothesis that Gly16Arg, Gln27Glu, and Thr164Ile in the beta2-adrenergic receptor gene associated...... with elevated blood pressure....

  12. Gene regulation by NMDA receptor activation in the SDN-POA neurons of male rats during sexual development.

    Science.gov (United States)

    Hsu, Hseng-Kuang; Shao, Pei-Lin; Tsai, Ke-Li; Shih, Huei-Chuan; Lee, Tzu-Ying; Hsu, Chin

    2005-04-01

    The present study was designed to identify possible signaling pathways, which may play a role in prevention of neuronal apoptosis in the sexually dimorphic nucleus of the preoptic area (SDN-POA) after physiological activation of the N-methyl-D-aspartate (NMDA) receptor. Gene response to the blockage of the NMDA receptor by an antagonist (dizocilpine hydrogen maleate; MK-801) was screened after suppression subtractive hybridization (SSH). The results showed that differential screening after SSH detected the presence of some neurotrophic genes (RNA binding motif protein 3 (RBM3), alpha-tubulin) as well as apoptosis-related genes (Bcl-2, cytochrome oxidase subunit II, cytochrome oxidase subunit III) in the SDN-POA of male rats, which were down-regulated by blocking the NMDA receptor. The RT-PCR products of the aforementioned genes in MK-801-treated males were significantly less than that in untreated males. In particular, the expression of Bcl-2 mRNA, including Bcl-2 protein, in male rats were significantly suppressed by MK-801 treatment. Moreover, the binding activity of nuclear factor kappaB (NFkappaB) was significantly higher in male rats than in females, but significantly diminished by blocking the NMDA receptor with MK-801 in male rats. No significant difference in cAMP response element-binding protein (CREB) binding activity was observed among untreated male, MK-801-treated male, untreated female and MK-801-treated female groups. These results suggest that genes regulated by NMDA receptor activation might participate in neuronal growth and/or anti-apoptosis, and support an important signaling pathway of NFkappaB activation and its target gene, Bcl-2, in preventing neuronal apoptosis in the SDN-POA of male rats during sexual development.

  13. Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses.

    Science.gov (United States)

    Baker, Jillian G; Hall, Ian P; Hill, Stephen J

    2003-09-01

    The ability of an antagonist to bind to a receptor is an innate property of that ligand-receptor chemical interaction. Provided no change in the antagonist or receptor chemical nature occurs, this affinity should remain constant for a given antagonist-receptor interaction, regardless of the agonists used. This fundamental assumption underpins the classification of receptors. Here, measurements of beta2-adrenoceptor-mediated cAMP accumulation and cAMP response-element (CRE)-mediated reporter-gene transcription revealed differences in antagonist affinity that depended upon agonist incubation time and the efficacy of the competing agonist. In cAMP accumulation studies (10-min agonist incubation), antagonist affinities were the same regardless of the agonist used. The CRE-reporter gene assay (5 h of incubation) antagonist affinities were 10-fold lower in the presence of isoprenaline and adrenaline than when salbutamol or terbutaline were present (e.g., log KD propranolol -8.65 +/- 0.08, n = 22, and -9.68 +/- 0.07, n = 17, for isoprenaline and salbutamol-induced responses, respectively). Isoprenaline and adrenaline were more efficacious in functional studies, and their ability to internalize GFP-tagged human beta2-adrenoceptors. Longer-term cAMP studies also showed significant differences in KD values moving toward that seen with gene transcription. Agonist-dependent differences in antagonist affinity were reduced for reporter-gene responses when a phosphorylation-deficient mutant of the beta2-adrenoceptor was used. This study suggests that high-efficacy agonists induce a chemical modification in beta2-adrenoceptors (via phosphorylation) that reduces antagonist affinities. Because reporter-gene assays are used for high-throughput screening in drug discovery, less efficacious or partial agonists may be more reliable than highly efficacious agonists when reporter-gene techniques are used to estimate antagonist affinity.

  14. Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus

    Energy Technology Data Exchange (ETDEWEB)

    Nanko, S.; Fukuda, R.; Hattori, M. [Teikyo Univ. School of Medicine, Tokyo (Japan)] [and others

    1994-09-15

    The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. The LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.

  15. Amplificação dos genes que codificam a endotelina-1 e seus receptores em valvas mitrais reumáticas Amplificación de los genes que codifican la endotelina-1 y sus receptores en válvulas mitrales reumáticas Amplification of the genes that codify endothelin-1 and its receptors in rheumatic mitral valves

    Directory of Open Access Journals (Sweden)

    Edmilson Bastos de Moura

    2010-07-01

    Full Text Available FUNDAMENTO: As cardiopatias são doenças de alta prevalência, sendo a cardite reumática uma doença de grande relevância em países em desenvolvimento. As alterações em câmaras cardíacas esquerdas se associam à disfunção endotelial, com aumento dos níveis de endotelina-1 (ET-1 e consequências sobre a circulação pulmonar, muitas vezes determinando a hipertensão pulmonar (HP. No entanto, a presença de ET-1 e seus receptores na própria valva mitral, promovendo alterações vasculares pulmonares e aumentando a deformação valvar reumática, ainda é um assunto não abordado na literatura. OBJETIVO: Determinar, mediante técnicas moleculares, a expressão dos genes da endotelina e dos seus receptores em valvas mitrais reumáticas. MÉTODOS: 27 pacientes submetidos à troca valvar mitral tiveram seu tecido valvar analisado, a fim de determinar a presença de genes de ET-1 e seus receptores A e B. Foram feitas análises histológica e molecular das valvas (divididas em fragmentos M1, M2 e M3 e colhidos dados clínicos e epidemiológicos dos pacientes. Foram divididos em três grupos: valvopatia mitral, mitroaórtica e pacientes reoperados. RESULTADOS: O estudo mostrou a manifestação do gene da ET-1 em 40,7% dos espécimes e de seu receptor A em todas as amostras, com manifestação minoritária do gene do receptor B (22,2%. CONCLUSÃO: Todos os pacientes expressaram a presença do gene do receptor A. Não houve diferença estatística quanto à gravidade da doença, expressa em classe funcional, e aos subgrupos estudados (valvopatas mitrais, mitroaórticos e pacientes reoperados, ou quanto à expressão dos genes da ET-1 e seus receptores entre os subgrupos estudados (valvopatas mitrais, mitroaórticos e pacientes reoperados.FUNDAMENTO: Las cardiopatías son enfermedades de alta prevalencia, siendo la carditis reumática una enfermedad de gran relevancia en países en desarrollo. Las alteraciones en cámaras cardíacas izquierdas

  16. Signatures of positive selection in Toll-like receptor (TLR genes in mammals

    Directory of Open Access Journals (Sweden)

    Areal Helena

    2011-12-01

    Full Text Available Abstract Background Toll-like receptors (TLRs are a major class of pattern recognition receptors (PRRs expressed in the cell surface or membrane compartments of immune and non-immune cells. TLRs are encoded by a multigene family and represent the first line of defense against pathogens by detecting foreigner microbial molecular motifs, the pathogen-associated molecular patterns (PAMPs. TLRs are also important by triggering the adaptive immunity in vertebrates. They are characterized by the presence of leucine-rich repeats (LRRs in the ectodomain, which are associated with the PAMPs recognition. The direct recognition of different pathogens by TLRs might result in different evolutionary adaptations important to understand the dynamics of the host-pathogen interplay. Ten mammal TLR genes, viral (TLR3, 7, 8, 9 and non-viral (TLR1-6, 10, were selected to identify signatures of positive selection that might have been imposed by interacting pathogens and to clarify if viral and non-viral TLRs might display different patterns of molecular evolution. Results By using Maximum Likelihood approaches, evidence of positive selection was found in all the TLRs studied. The number of positively selected codons (PSC ranged between 2-26 codons (0.25%-2.65% with the non-viral TLR4 as the receptor with higher percentage of positively selected codons (2.65%, followed by the viral TLR8 (2.50%. The results indicated that viral and non-viral TLRs are similarly under positive selection. Almost all TLRs have at least one PSC located in the LRR ectodomain which underlies the importance of the pathogen recognition by this region. Conclusions Our results are not in line with previous studies on primates and birds that identified more codons under positive selection in non-viral TLRs. This might be explained by the fact that both primates and birds are homogeneous groups probably being affected by only a restricted number of related viruses with equivalent motifs to be

  17. Effects of active immunization against cholecystokinin 8 on performance, contents of serum hormones, and expressions of CCK gene and CCK receptor gene in pigs.

    Science.gov (United States)

    Zhang, Keying; Yuan, Zhongbiao; Bing, Yu; Chen, Xiaoling; Ding, Xuemei; Chen, Daiwen

    2007-12-01

    This study was conducted to investigate the effects of active immunization against cholecystokinin 8 (CCK(8)) on the content of serum CCK, expression of CCK, and CCK receptor gene in pigs. The subjects for this experiment were 15 pigs divided into three groups (5 pigs per group). The treated groups were immunized with CCK(8) conjugated to human serum albumin (HSA). The control group was immunized with same dosage of HSA. The average daily gain of pig fed with 250 microg CCK was significantly increased (P active immunization against CCK(8) could increase the content of CCK antibody and suppress CCK gene and CCK receptor gene expressions and in result improve feed intake and growth performance of pigs.

  18. Low-density lipoprotein receptor gene mutations and cardiovascular risk in a large genetic cascade screening population

    NARCIS (Netherlands)

    Umans-Eckenhausen, Marina A. W.; Sijbrands, Eric J. G.; Kastelein, John J. P.; Defesche, Joep C.

    2002-01-01

    Background-A large cohort of patients with familial hypercholesterolemia (FH), free from selection for cardiovascular disease (CVD), and their unaffected relatives was collected by genetic cascade screening and examined for the influence of different mutations of the LDL receptor gene on lipoprotein

  19. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line.

    Directory of Open Access Journals (Sweden)

    Eric Koesema

    Full Text Available The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1 and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr, the Kruppel-like factors (Klf, and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1, resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.

  20. Association study of the estrogen receptor I gene (ESR1) in anorexia nervosa and eating disorders: No replication found

    NARCIS (Netherlands)

    Slof-Op 't Landt, M.C.T.; van Furth, E.F.; Meulenbelt, I.; Bartels, M.; Slagboom, P.E.; Boomsma, D.I.

    2014-01-01

    Objective The female preponderance and onset around puberty in the majority of eating disorders (EDs) suggest that sex hormones, like estrogens, may be involved in the onset of these disorders. An eight-SNP haplotype at the estrogen receptor I (ESR1) gene was found to be associated with anorexia

  1. Implications of Sex Hormone Receptor Gene Expression in the Predominance of Hepatocellular Carcinoma in Males: Role of Natural Products.

    Science.gov (United States)

    Ahmed, Hanaa H; Shousha, Wafaa Gh; Shalby, Aziza B; El-Mezayen, Hatem A; Ismaiel, Nora N; Mahmoud, Nadia S

    2015-01-01

    The present study was planned to investigate the role of sex hormone receptor gene expression in the pathogenesis of hepatocellular carcinoma (HCC). Adult male Wistar rats were divided into seven groups. Group (1) was negative control. Groups (2), (5), (6), and (7) were orally administered with N-nitrosodiethylamine for the induction of HCC, then group (2) was left untreated, group (5) was orally treated with curcumin, group (6) was orally treated with carvacrol, and group (7) was intraperitoneally injected with doxorubicin, whereas groups (3) and (4) were orally administered only curcumin and carvacrol, respectively. The HCC group showed significant upregulation in the androgen receptor (AR) and the estrogen receptor-alpha (ERα) gene expression levels in the liver tissue. On the contrary, HCC groups treated with either curcumin or carvacrol showed significant downregulation in AR and ERα gene expression levels in the liver tissue. In conclusion, the obtained data highlight that both AR and ERα but not estrogen receptor-beta (ERβ) gene expression may contribute to the male prevalence of HCC induced in male rats. Interestingly, both curcumin and carvacrol were found to have a promising potency in alleviating the male predominating HCC.

  2. Role of nicotine dependence in the association between the Dopamine Receptor Gene DRD3 and major depressive disorder

    NARCIS (Netherlands)

    Korhonen, T.; Loukola, A.; Wedenoja, J.; Nyman, E.; Latvala, A.; Broms, U.; Happola, U.; Paunio, T.; Schrage, A.J.; Vink, J.M.; Mbarek, H.; Boomsma, D.I.; Penninx, B.W.J.H.; Pergadia, M.L.; Madden, P.A.F.; Kaprio, J.

    2014-01-01

    Background: The aims of this study were to analyze associations of dopamine receptor genes (DRD1-5) with Major Depressive Disorder (MDD) and nicotine dependence (ND), and to investigate whether ND moderates genetic influences on MDD. Methods: The sample was ascertained from the Finnish Twin Cohort.

  3. Role of Nicotine Dependence in the Association between the Dopamine Receptor Gene DRD3 and Major Depressive Disorder

    NARCIS (Netherlands)

    Korhonen, T.; Loukola, A.; Wedenoja, J.; Nyman, E.; Latvala, A.; Broms, U.; Häppölä, A.; Paunio, T.; Schrage, A.J.; Vink, J.M.; Mbarek, H.; Boomsma, D.I.; Penninx, B.W.J.H.; Pergadia, M.L.; Madden, P.A.F.; Kaprio, J.

    2014-01-01

    Background: The aims of this study were to analyze associations of dopamine receptor genes (DRD1-5 ) with Major Depressive Disorder (MDD) and nicotine dependence (ND), and to investigate whether ND moderates genetic influences on MDD. Methods: The sample was ascertained from the Finnish Twin Cohort.

  4. A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene

    NARCIS (Netherlands)

    Loseth, S.; Voermans, N.C.; Torbergsen, T.; Lillis, S.; Jonsrud, C.; Lindal, S.; Kamsteeg, E.J.; Lammens, M.M.Y.; Broman, M.; Dekomien, G.; Maddison, P.; Muntoni, F.; Sewry, C.; Radunovic, A.; Visser, M. de; Straub, V.; Engelen, B.G.M. van; Jungbluth, H.

    2013-01-01

    Mutations in the skeletal muscle ryanodine receptor (RYR1) gene are a common cause of inherited neuromuscular disorders and have been associated with a wide clinical spectrum, ranging from various congenital myopathies to the malignant hyperthermia susceptibility (MHS) trait without any associated

  5. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice

    NARCIS (Netherlands)

    Veld, ter M.G.R.; Zawadzka, E.; Berg, van den J.H.J.; Saag, van der P.T.; Rietjens, I.M.C.M.; Murk, A.J.

    2008-01-01

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues

  6. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice.

    NARCIS (Netherlands)

    ter Veld, M.G.R.; Zawadzka, E.; van den Berg, J.H.J.; van der Saag, P.T.; Rietjens, I.M.C.M.; Murk, A.J.

    2008-01-01

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues

  7. A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene

    DEFF Research Database (Denmark)

    Højlund, Kurt; Hansen, Torben; Lajer, Maria

    2004-01-01

    a missense mutation (Arg1174Gln) in the tyrosine kinase domain of the insulin receptor gene that cosegregated with the disease phenotype (logarithm of odds [LOD] score 3.21). In conclusion, we report a novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia. The findings demonstrate...

  8. Association of 5' estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk

    NARCIS (Netherlands)

    J.B.J. van Meurs (Joyce); A.G. Uitterlinden (André); H.A.P. Pols (Huib); A.E.A.M. Weel (Angelique); M. van de Klift (Marjolein); A.P. Bergink (Arjan); P.P. Arp (Pascal); Y. Fang (Yue); C.M. van Duijn (Cornelia); J.P.T.M. van Leeuwen (Hans); S.C.E. Schuit (Stephanie); A. Hofman (Albert)

    2003-01-01

    textabstractThis study investigates the influence of genetic variation of the estrogen receptor alpha (ESR1) gene locus on several bone parameters in 2042 individuals of The Rotterdam Study, a prospective population-based cohort study of elderly subjects. We analysed three polymorphic sites in the

  9. Preserved fertility in a non-mosaic Klinefelter patient with a mutation in the fibroblast growth factor receptor 3 gene

    DEFF Research Database (Denmark)

    Juul, A; Aksglaede, L; Lund, A M

    2007-01-01

    receptor 3 (FGFR3) gene, which is a gain-of-function mutation resulting in achondroplasia. The patient had phenotypic characteristics of achondroplasia (e.g. short limbed dwarfism and frontal bossing). Testicular volume was 8 ml at 27 years of age and repeated semen samples showed sperm concentrations of 0...

  10. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana

    NARCIS (Netherlands)

    Wu, Jinbin; Liu, Zhijun; Zhang, Zhao; Lv, Yanting; Yang, Nan; Zhang, Guohua; Wu, Menyao; Lv, Shuo; Pan, Lixia; Joosten, Matthieu H.A.J.; Wang, Guodong

    2016-01-01

    Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of

  11. Stable reporter cell lines for peroxisome proliferator-activated receptor y (PPARy)-mediated modulation of gene expression

    NARCIS (Netherlands)

    Gijsbers, L.; Man, H.Y.; Kloet, S.K.; Haan, de L.H.J.; Keijer, J.; Rietjens, I.; Burg, van der B.J.; Aarts, J.M.M.J.G.

    2011-01-01

    Activation of peroxisome proliferator-activated receptor ¿ (PPAR¿) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement

  12. IMGT/GeneInfo: T cell receptor gamma TRG and delta TRD genes in database give access to all TR potential V(DJ recombinations

    Directory of Open Access Journals (Sweden)

    Jouvin-Marche Evelyne

    2006-04-01

    Full Text Available Abstract Background Adaptative immune repertoire diversity in vertebrate species is generated by recombination of variable (V, diversity (D and joining (J genes in the immunoglobulin (IG loci of B lymphocytes and in the T cell receptor (TR loci of T lymphocytes. These V-J and V-D-J gene rearrangements at the DNA level involve recombination signal sequences (RSS. Whereas many data exist, they are scattered in non specialized resources with different nomenclatures (eg. flat files and are difficult to extract. Description IMGT/GeneInfo is an online information system that provides, through a user-friendly interface, exhaustive information resulting from the complex mechanisms of T cell receptor V-J and V-D-J recombinations. T cells comprise two populations which express the αβ and γδ TR, respectively. The first version of the system dealt with the Homo sapiens and Mus musculus TRA and TRB loci whose gene rearrangements allow the synthesis of the αβ TR chains. In this paper, we present the second version of IMGT/GeneInfo where we complete the database for the Homo sapiens and Mus musculus TRG and TRD loci along with the introduction of a quality control procedure for existing and new data. We also include new functionalities to the four loci analysis, giving, to date, a very informative tool which allows to work on V(DJ genes of all TR loci in both human and mouse species. IMGT/GeneInfo provides more than 59,000 rearrangement combinations with a full gene description which is freely available at http://imgt.cines.fr/GeneInfo. Conclusion IMGT/GeneInfo allows all TR information sequences to be in the same spot, and are now available within two computer-mouse clicks. This is useful for biologists and bioinformaticians for the study of T lymphocyte V(DJ gene rearrangements and their applications in immune response analysis.

  13. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus.

    Science.gov (United States)

    Halsall, J R; Milner, M J; Casselton, L A

    2000-01-01

    The B mating type locus of the basidiomycete Coprinus cinereus encodes a large family of lipopeptide pheromones and their seven transmembrane domain receptors. Here we show that the B42 locus, like the previously described B6 locus, derives its unique specificity from nine multiallelic genes that are organized into three subgroups each comprising a receptor and two pheromone genes. We show that the three genes within each group are kept together as a functional unit by being embedded in an allele-specific DNA sequence. Using a combination of sequence analysis, Southern blotting, and DNA-mediated transformation with cloned genes, we demonstrate that different B loci may share alleles of one or two groups of genes. This is consistent with the prediction that the three subgroups of genes are functionally redundant and that it is the different combinations of their alleles that generate the multiple B mating specificities found in nature. The B42 locus was found to contain an additional gene, mfs1, that encodes a putative multidrug transporter belonging to the major facilitator family. In strains with other B mating specificities, this gene, whose functional significance was not established, lies in a region of shared homology flanking the B locus. PMID:10757757

  14. Assessment of Expression of Genes Coding GABAA Receptors during Chronic and Acute Intoxication of Laboratory Rats with Ethanol.

    Science.gov (United States)

    Osechkina, N S; Ivanov, M B; Nazarov, G V; Batotsyrenova, E G; Lapina, N V; Babkin, A V; Berdinskikh, I S; Melekhova, A S; Voitsekhovich, K O; Lisitskii, D S; Kashina, T V

    2016-02-01

    Expression of genes encoding the individual subunits of ionotropic GABAA receptor was assessed after acute and chronic intoxication of rats with ethanol. The chronic 1-month-long exposure to ethanol signifi cantly decreased (by 38%) expression of Gabrb1 gene in the hippocampus. Acute exposure to ethanol elevated expression of genes Gabrb1 (by 1.7 times), Gabra1 (by 3.8 times), and Gabra4 (by 6.5 times), although it diminished expression of Gabra2 gene by 1.4 times. In preliminarily alcoholized rats, acute intoxication with ethanol enhanced expression of genes Gabrb1 and Gabra5 by 1.7 and 8.7 times, respectively. There was neither acute nor chronic effect of ethanol on expression of gene Gabra3.

  15. Genetics of Isolated Hypogonadotropic Hypogonadism: Role of GnRH Receptor and Other Genes

    Directory of Open Access Journals (Sweden)

    Karges Beate

    2012-01-01

    Full Text Available Hypothalamic gonadotropin releasing hormone (GnRH is a key player in normal puberty and sexual development and function. Genetic causes of isolated hypogonadotropic hypogonadism (IHH have been identified during the recent years affecting the synthesis, secretion, or action of GnRH. Developmental defects of GnRH neurons and the olfactory bulb are associated with hyposmia, rarely associated with the clinical phenotypes of synkinesia, cleft palate, ear anomalies, or choanal atresia, and may be due to mutations of KAL1, FGFR1/FGF8, PROKR2/PROK2, or CHD7. Impaired GnRH secretion in normosmic patients with IHH may be caused by deficient hypothalamic GPR54/KISS1, TACR3/TAC3, and leptinR/leptin signalling or mutations within the GNRH1 gene itself. Normosmic IHH is predominantly caused by inactivating mutations in the pituitary GnRH receptor inducing GnRH resistance, while mutations of the β-subunits of LH or FSH are very rare. Inheritance of GnRH deficiency may be oligogenic, explaining variable phenotypes. Future research should identify additional genes involved in the complex network of normal and disturbed puberty and reproduction.

  16. The relationship between vitamin D receptor gene polymorphism and deciduous tooth decay in Chinese children.

    Science.gov (United States)

    Kong, Yuan-Yuan; Zheng, Jian-Mao; Zhang, Wen-Juan; Jiang, Qian-Zhou; Yang, Xue-Chao; Yu, Miao; Zeng, Su-Juan

    2017-07-11

    In the present study, we explored the link between vitamin D receptor (VDR) BsmI, TaqI, ApaI and FokI gene polymorphisms with deciduous tooth decay in Chinese children. Our study included 380 Chinese children aged 4-7 years, whose DNA sample was collected from the buccal mucosa. VDR gene polymorphisms was determined by PCR-RFLP. The adjusted logistic regression analysis demonstrated that BsmI containing the Bb genotype was linked with the increased risk of deciduous tooth decay (OR = 1.856, 95% CI = [1.184, 2.908], p = 0.007). However, VDR polymorphisms ApaI, TaqI and FokI were not associated with deciduous tooth decay (ApaI: OR = 0.839, 95% CI = [0.614, 1.145], p = 0.268; TaqI: OR = 1.150, 95% CI = [0.495, 2.672], p = 0.744; FokI: OR = 0.856, 95% CI = [0.616, 1.191], p = 0.356). Our results showed that VDR BsmI polymorphism was associated with the risk of deciduous tooth decay in Chinese children aged 4-7 years. However, the specific mechanism remains to further verify through experiment.

  17. Interaction of early life stress and corticotropin-releasing hormone receptor gene: effects on working memory.

    Science.gov (United States)

    Fuge, Philipp; Aust, Sabine; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Bajbouj, Malek; Grimm, Simone

    2014-12-01

    Early life stress (ELS) experience is associated with persisting working memory (WM) deficits; changes to the corticotropin-releasing hormone (CRH) system; and structural, functional, and epigenetic changes in the hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS experience to predict depression as well as neuroendocrine and neuronal reactivity. Although these findings indicate that vulnerable genotypes might also show impaired WM performance after ELS experience, no previous study investigated whether there is an interaction effect of CRHR1 polymorphisms and ELS experience on WM performance. Subjects (N = 451) were genotyped for rs110402 and rs242924 within the CRHR1 gene. We used an n-back task to investigate the hypothesis that WM performance in healthy subjects may be subtly influenced by functional differences in CRHR1 and represents an early marker of increased vulnerability after exposure to ELS. Exposure to ELS had a particularly strong impact on WM performance in subjects with the common homozygous GG GG genotype, whereas only severe exposure to ELS interfered with WM accuracy in AT carriers. Our data indicate that specific CRHR1 polymorphisms moderate the effect of ELS experience on WM performance. Exposure to ELS in combination with a vulnerable genotype results in subtle memory deficits in adulthood, which might develop before psychopathological symptoms. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Moderation of Breastfeeding Effects on Adult Depression by Estrogen Receptor Gene Polymorphism

    Directory of Open Access Journals (Sweden)

    Päivi Merjonen

    2012-01-01

    Full Text Available Breastfeeding is known to benefit both the mother’s and the child’s health. Our aim was to test the interactive effects between estrogen receptor 1 (ESR1 rs2234693 and breastfeeding when predicting the child’s later depression in adulthood. A sample of 1209 boys and girls from the Young Finns Study were followed from childhood over 27 years up to age 30–45 years. Adulthood depressive symptoms were self-reported by the participants using the Beck Depression Inventory. Breastfeeding as well as several possibly confounding factors was reported by the parents in childhood or adolescence. Breastfeeding tended to predict lower adult depression, while ESR1 rs2234693 was not associated with depression. A significant interaction between breastfeeding and ESR1 was found to predict participants’ depression (P=.004 so that C/C genotype carriers who had not been breastfed had higher risk of depression than T-allele carriers (40.5% versus 13.0% while there were no genotypic differences among those who had been breastfed. In sex-specific analysis, this interaction was evident only among women. We conclude that child’s genes and maternal behavior may interact in the development of child’s adult depression so that breastfeeding may buffer the inherited depression risk possibly associated with the C/C genotype of the ESR1 gene.

  19. Association of the glutamate receptor subunit gene GRIN2B with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Dorval, K M; Wigg, K G; Crosbie, J; Tannock, R; Kennedy, J L; Ickowicz, A; Pathare, T; Malone, M; Schachar, R; Barr, C L

    2007-07-01

    The glutamatergic signaling pathway represents an ideal candidate susceptibility system for attention-deficit/hyperactivity disorder (ADHD). Disruption of specific N-methyl-D-aspartate-type glutamate receptor subunit genes (GRIN1, 2A-D) in mice leads to significant alterations in cognitive and/or locomotor behavior including impairments in latent learning, spatial memory tasks and hyperactivity. Here, we tested for association of GRIN2B variants with ADHD, by genotyping nine single nucleotide polymorphisms (SNPs) in 205 nuclear families identified through probands with ADHD. Transmission of alleles from heterozygous parents to affected offspring was examined using the transmission/disequilibrium test. Quantitative trait analyses for the ADHD symptom dimensions [inattentive (IA) and hyperactive/impulsive (HI)] and cognitive measures of verbal working memory and verbal short-term memory were performed using the fbat program. Three SNPs showed significantly biased transmission (P memory or verbal working memory. Our data suggest an association between variations in the GRIN2B subunit gene and ADHD as measured categorically or as a quantitatively distributed trait.

  20. Halloween genes and nuclear receptors in ecdysteroid biosynthesis and signalling in the pea aphid.

    Science.gov (United States)

    Christiaens, O; Iga, M; Velarde, R A; Rougé, P; Smagghe, G

    2010-03-01

    The pea aphid (Acyrthosiphon pisum) is the first whole genome sequenced insect with a hemimetabolic development and an emerging model organism for studies in ecology, evolution and development. The insect steroid moulting hormone 20-hydroxyecdysone (20E) controls and coordinates development in insects, especially the moulting/metamorphosis process. We, therefore present here a comprehensive characterization of the Halloween genes phantom, disembodied, shadow, shade, spook and spookiest, coding for the P450 enzymes that control the biosynthesis of 20E. Regarding the presence of nuclear receptors in the pea aphid genome, we found 19 genes, representing all of the seven known subfamilies. The annotation and phylogenetic analysis revealed a strong conservation in the class of Insecta. But compared with other sequenced insect genomes, three orthologues are missing in the Acyrthosiphon genome, namely HR96, PNR-like and Knirps. We also cloned the EcR, Usp, E75 and HR3. Finally, 3D-modelling of the ligand-binding domain of Ap-EcR exhibited the typical canonical structural scaffold with 12 alpha-helices associated with a short hairpin of two antiparallel beta-strands. Upon docking, 20E was located in the hormone-binding groove, supporting the hypothesis that EcR has a role in 20E signalling.

  1. Associations between dopamine D4 receptor gene variation with both infidelity and sexual promiscuity.

    Science.gov (United States)

    Garcia, Justin R; MacKillop, James; Aller, Edward L; Merriwether, Ann M; Wilson, David Sloan; Lum, J Koji

    2010-11-30

    Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection), little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR) polymorphism in exon III of the human dopamine D4 receptor gene (DRD4) has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity. We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a "one-night stand") and report a more than 50% increase in instances of sexual infidelity. DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism.

  2. Retinoid X receptor gene expression and protein content in tissues of the rock shell Thais clavigera

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Toshihiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)], E-mail: thorigu@nies.go.jp; Nishikawa, Tomohiro [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Ohta, Yasuhiko [Department of Veterinary Science, Faculty of Agriculture, Tottori University, 4-101 Koyamacho-Minami, Tottori 680-8553 (Japan); Shiraishi, Hiroaki; Morita, Masatoshi [Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2007-10-15

    To elucidate the role of retinoid X receptor (RXR) in the development of imposex caused by organotin compounds in gastropod molluscs, we investigated RXR gene expression and RXR protein content in various tissues of male and female wild rock shells (Thais clavigera). Quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry with a commercial antibody against human RXR {alpha} revealed that RXR gene expression was significantly higher in the penises of males and imposex-exhibiting females than in the penis-forming areas of normal females (P < 0.01 and P < 0.05, respectively). Western blotting demonstrated that the antibody could detect rock shell RXR and showed that the male penis had the highest content of RXR protein among the analyzed tissues of males and normal females. Immunohistochemical staining revealed nuclear localization of RXR protein in the epithelial and smooth muscle cells of the vas deferens and in the interstitial or connective tissues and epidermis of the penis in males and imposex-exhibiting females. RXR could be involved in the mechanism of induction of male-type genitalia (penis and vas deferens) by organotin compounds in female rock shells.

  3. The CAG repeat within the androgen receptor gene and its relationship to cryptorchidism

    Directory of Open Access Journals (Sweden)

    M. Silva-Ramos

    2006-06-01

    Full Text Available PURPOSE: We examined the significance of the CAG repeat polymorphism in the pathogenesis of cryptorchidism. MATERIALS AND METHODS: Genomic deoxyribonucleic acid (DNA was extracted from blood samples from 42 cryptorchid boys and from 31 non-cryptorchid control subjects. In the cryptorchid group, 7 had bilateral cryptorchidism and 6 had patent processus vaginalis in the contralateral side. To determine the number of CAG repeats, the DNA was amplified by polymerase chain reaction and sequenced. RESULTS: The mean CAG repeat length in the AR gene was 22.5 (range 16 to 28 in patients and 21.5 (range 17 to 26 in controls (non-significant. Patients with bilateral cryptorchidism had a mean length of 24.3 (range 21 to 26 and patients with unilateral cryptorchidism and patent processus vaginalis in the contra lateral side had a mean of 25.2 (range 21 to 28, which was statistically different from controls (p = 0.015 and p = 0.005 respectively. CONCLUSION: CAG repeat length of the AR gene does not seem to play a major role in patients with unilateral cryptorchidism. However, in patients with bilateral undescended testis, a less functional androgen receptor through a longer polyglutamine chain may have a role in its pathogenesis. In the same way, patients with unilateral cryptorchidism a contralateral patent processus vaginalis have longer CAG repeats that might be responsible for a slower testicular descent and incomplete closure of the processus vaginalis.

  4. The Vitamin D Receptor (VDR Gene Polymorphisms in Turkish Brain Cancer Patients

    Directory of Open Access Journals (Sweden)

    Bahar Toptaş

    2013-01-01

    Full Text Available Objective. It has been stated that brain cancers are an increasingly serious issue in many parts of the world. The aim of our study was to determine a possible relationship between Vitamin D receptor (VDR gene polymorphisms and the risk of glioma and meningioma. Methods. We investigated the VDR Taq-I and VDR Fok-I gene polymorphisms in 100 brain cancer patients (including 44 meningioma cases and 56 glioma cases and 122 age-matched healthy control subjects. This study was performed by polymerase chain reaction-based restriction fragment length polymorphism (RF LP. Results. VDR Fok-I ff genotype was significantly increased in meningioma patients (15.9% compared with controls (2.5%, and carriers of Fok-I ff genotype had a 6.47-fold increased risk for meningioma cases. There was no significant difference between patients and controls for VDR Taq-I genotypes and alleles. Conclusions. We suggest that VDR Fok-I genotypes might affect the development of meningioma.

  5. Nucleotide diversity and population differentiation of the Melanocortin 1 Receptor gene, MC1R

    Directory of Open Access Journals (Sweden)

    Peris Ketty

    2008-04-01

    Full Text Available Abstract Background The melanocortin 1 receptor gene (MC1R is responsible for normal pigment variation in humans and is highly polymorphic with numerous population-specific alleles. Some MC1R variants have been associated with skin cancer risk. Results Allele frequency data were compiled on 55 single nucleotide polymorphisms from seven geographically distinct human populations (n = 2306 individuals. MC1R nucleotide diversity, π, was much higher (10.1 × 10-4 than in other genes for all subjects. A large degree of population differentiation, determined by FST, was also present, particularly between Asia and all other populations, due to the p.R163Q (c.488 G>A polymorphism. The least amount of differentiation was between the United States, Northern Europe, and Southern Europe. Tajima's D statistic suggested the presence of positive selection in individuals from Europe. Conclusion This study further quantifies the degree of population-specific genetic variation and suggests that positive selection may be present in European populations in MC1R.

  6. Characterization of Pseudomonas aeruginosa phage K5 genome and identification of its receptor related genes.

    Science.gov (United States)

    Li, Lingyan; Pan, Xuewei; Cui, Xiaoli; Sun, Qinghui; Yang, Xiaojing; Yang, Hongjiang

    2016-12-01

    Phage genomic information and the nature of host-phage interactions are important for phage applications. In this study, Pseudomonas aeruginosa phage K5 is characterized as a linear double-stranded genomic DNA molecule of 93,754 bp with identical 1182-bp direct terminal repeats. Comparative genomic analysis reveals that phage K5 is highly homologous to the "PaP1-like" phages. Thirteen mutants resistant to phage K5 are screened in a transposon mutant library. The disrupted genetic loci are identified as gene Y880_RS05480 encoding a putative O-antigen polymerase Wzy and gene wapH encoding a glycosyltransferase. The mutants are confirmed by the complementation experiment. The production of biofilm and the profile of lipopolysaccharide (LPS) are further analyzed in the Y880_RS05480 mutant. Our data indicate that LPS is the receptor of phage K5. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Vitellogenin and vitellogenin receptor gene expression and 20-hydroxyecdysone concentration in Macrobrachium rosenbergii exposed to chlordecone.

    Science.gov (United States)

    Lafontaine, Anne; Hanikenne, Marc; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2016-10-01

    Chlordecone is a persistent organochlorine pesticide widely used in Guadeloupe (French West Indies) to control the banana weevil Cosmopolites sordidus. Although it was previously highlighted that chlordecone may affect the reproduction and growth of vertebrate species, little information is available on the chlordecone effects in invertebrates. The present study investigated the effects of chlordecone on a hormone and a protein having key roles in reproduction and growth of the decapod crustacean Macrobrachium rosenbergii, by measuring the 20-hydroxyecdysone concentration, vitellogenin, and vitellogenin receptor gene expression, as well as the bioconcentration of chlordecone in exposed prawns. First, the results revealed that chlordecone was accumulated in M. rosenbergii. Then, it was found that Vg and VgR gene expression were increased in male and female M. rosenbergii exposed to chlordecone for 90 and 240 days, while the 20-hydroxyecdysone concentrations were decreased. This work suggests that chlordecone accumulates in prawn tissues and could affect key molecules involved in the reproduction and the growth of the invertebrate M. rosenbergii. However, many questions remain unresolved regarding the impacts of chlordecone on growth and reproduction and the signaling pathways responsible for these effects, as well as the potential role of confounding factors present in in situ studies.

  8. Vitamin D receptor gene is epigenetically altered and transcriptionally up-regulated in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Teresa Ayuso

    Full Text Available Vitamin D deficiency has been linked to increased risk of multiple sclerosis (MS and poor outcome. However, the specific role that vitamin D plays in MS still remains unknown. In order to identify potential mechanisms underlying vitamin D effects in MS, we profiled epigenetic changes in vitamin D receptor (VDR gene to identify genomic regulatory elements relevant to MS pathogenesis.Human T cells derived from whole blood by negative selection were isolated in a set of 23 relapsing-remitting MS (RRMS patients and 12 controls matched by age and gender. DNA methylation levels were assessed by bisulfite cloning sequencing in two regulatory elements of VDR. mRNA levels were measured by RT-qPCR to assess changes in VDR expression between patients and controls.An alternative VDR promoter placed at exon 1c showed increased DNA methylation levels in RRMS patients (median 30.08%, interquartile range 19.2% compared to controls (18.75%, 9.5%, p-value<0.05. Moreover, a 6.5-fold increase in VDR mRNA levels was found in RRMS patients compared to controls (p-value<0.001.An alternative promoter of the VDR gene shows altered DNA methylation levels in patients with multiple sclerosis, and it is associated with VDR mRNA upregulation. This locus may represent a candidate regulatory element in the genome relevant to MS pathogenesis.

  9. Alcohol and aggressive behavior in men--moderating effects of oxytocin receptor gene (OXTR) polymorphisms.

    Science.gov (United States)

    Johansson, A; Bergman, H; Corander, J; Waldman, I D; Karrani, N; Salo, B; Jern, P; Algars, M; Sandnabba, K; Santtila, P; Westberg, L

    2012-03-01

    We explored if the disposition to react with aggression while alcohol intoxicated was moderated by polymorphic variants of the oxytocin receptor gene (OXTR). Twelve OXTR polymorphisms were genotyped in 116 Finnish men [aged 18-30, M = 22.7, standard deviation (SD) = 2.4] who were randomly assigned to an alcohol condition in which they received an alcohol dose of 0.7 g pure ethanol/kg body weight or a placebo condition. Aggressive behavior was measured using a laboratory paradigm in which it was operationalized as the level of aversive noise administered to a fictive opponent. No main effects of the polymorphisms on aggressive behavior were found after controlling for multiple testing. The interactive effects between alcohol and two of the OXTR polymorphisms (rs4564970 and rs1488467) on aggressive behavior were nominally significant and remained significant for the rs4564970 when controlled for multiple tests. To the best of our knowledge, this is the first experimental study suggesting interactive effects of specific genetic variants and alcohol on aggressive behavior in humans. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  10. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers.

    Science.gov (United States)

    Rocas, M; Jakubauskiene, E; Kanopka, A

    2011-11-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  11. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers

    Directory of Open Access Journals (Sweden)

    M. Rocas

    2011-11-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and related halogenated aromatic hydrocarbons (e.g., PCDFs, often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR. Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region, previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age. We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  12. Associations between dopamine D4 receptor gene variation with both infidelity and sexual promiscuity.

    Directory of Open Access Journals (Sweden)

    Justin R Garcia

    2010-11-01

    Full Text Available Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection, little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR polymorphism in exon III of the human dopamine D4 receptor gene (DRD4 has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity.We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+ report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a "one-night stand" and report a more than 50% increase in instances of sexual infidelity.DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism.

  13. Association between vitamin D receptor gene polymorphisms and chronic periodontitis among Libyans

    Directory of Open Access Journals (Sweden)

    Mouna M. El Jilani

    2015-03-01

    Full Text Available Background: Chronic periodontitis (CP is a common oral disease characterized by inflammation in the supporting tissue of the teeth ‘the periodontium’, periodontal attachment loss, and alveolar bone loss. The disease has a microbial etiology; however, recent findings suggest that the genetic factors, such as vitamin D receptor (VDR gene polymorphisms, have also been included. Aim: Investigation of the relationship between VDR gene polymorphisms and CP among Libyans. Materials and methods: In this study, we examined 196 unrelated Libyans between the ages of 25 and 65 years, including 99 patients and 97 controls. An oral examination based on Ramfjord Index was performed at different dental clinics in Tripoli and information were collected using a self-reported questionnaire. DNA was extracted from buccal swabs; the VDR ApaI, BsmI, and FokI polymorphisms were genotyped using polymerase chain reaction and were sequenced using Sanger Method. Results: A significant difference in the newly detected ApaI SNP C/T rs#731236 was found (p=0.022, whereas no significant differences were found in ApaI SNP G/T rs#7975232, BsmI SNP A/G rs#1544410, and FokI SNP A/G rs#2228570 between patients and controls (p=0.939, 0.466, 0.239, respectively. Conclusion: VDR ApaI SNP C/T rs#731236 may be related to the risk of CP in the Libyan population.

  14. Mutations in the sulonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews.

    Science.gov (United States)

    Nestorowicz, A; Wilson, B A; Schoor, K P; Inoue, H; Glaser, B; Landau, H; Stanley, C A; Thornton, P S; Clement, J P; Bryan, J; Aguilar-Bryan, L; Permutt, M A

    1996-11-01

    Familial hyperinsulinism (HI) is a disorder of pancreatic beta-cell function characterized by persistent hyperinsulinism despite severe hypoglycemia. To define the molecular genetic basis of HI in Ashkenazi Jews, 25 probands were screened for mutations in the sulfonylurea receptor (SUR1) gene by single-strand conformation polymorphism (SSCP) analysis of genomic DNA and subsequent nucleotide sequence analyses. Two common mutations were identified: (I) a novel in-frame deletion of three nucleotides (nt) in exon 34, resulting in deletion of the codon for F1388 (delta F1388) and (II) a previously described g-->a transition at position-9 of the 3' splice site of intron 32 (designated 3992-9g-->a). Together, these mutations are associated with 88% of the HI chromosomes of the patients studied. 86Rb+ efflux measurements of COSm6 cells co-expressing Kir6.2 and either wild-type or delta F1388 SUR1 revealed that the F1388 mutation abolished ATP-sensitive potassium channel (KATP) activity in intact cells. Extended haplotype analyses indicated that the delta F1388 mutation was associated with a single specific haplotype whereas the 3992-9g-->a mutation was primarily associated with a single haplotype but also occurred in the context of several other different haplotypes. These data suggest that HI in Ashkenazi Jews is predominantly associated with mutations in the SUR1 gene and provide evidence for the existence of at least two founder HI chromosomes in this population.

  15. Altered genes profile of renin-angiotensin system, immune system, and adipokines receptors in leukocytes of children with primary hypertension.

    Science.gov (United States)

    Litwin, Mieczysław; Michałkiewicz, Jacek; Trojanek, Joanna; Niemirska, Anna; Wierzbicka, Aldona; Szalecki, Mieczysław

    2013-02-01

    Renin-angiotensin system, metabolic abnormalities, and immune activity have a role in the pathogenesis of primary hypertension. We assessed the leukocyte mRNA expression of angiotensinogen, angiotensin converting enzyme, renin, angiotensin 2 type 1 receptor, CD14 molecule, adiponectin type 1 receptor, and leptin receptor in hypertensive children before and after nonpharmacological treatment. Leukocyte mRNA expression was measured by means of quantitative real-time reverse transcriptase-polymerase chain reaction in 23 hypertensive children before and after 6 months of nonpharmacological treatment based on dietary advice and physical activities. Twenty-three normotensive children matched for age, sex, and body mass index served as a control group. Before treatment patients had elevated expression of angiotensin converting enzyme and CD14 mRNA, decreased expression of angiotensinogen and angiotensin type 1 receptor mRNA, and unchanged expression of renin, adiponectin, and leptin receptors mRNA as compared with controls. Renin mRNA negatively correlated with 24-hour mean arterial pressure and carotid intima-media thickness. Six months of nonpharmacological treatment caused decrease of blood pressure and normalization of metabolic abnormalities. Renin, adiponectin, and leptin receptors mRNA expression decreased and were lower than in control group. Changes in blood pressure, left ventricular mass, carotid intima-media thickness, body mass index, and waist circumference did not correlate with changes in the expression of renin-angiotensin system genes, CD14, leptin, and adiponectin receptors mRNA. We conclude that leukocytes of hypertensive children displayed alterations in the expression of renin-angiotensin system genes as well as those of CD14. Nonpharmacological treatment resulted in downregulation of genes involved in renin-angiotensin activation and those engaged in leukocyte responses to adipokines.

  16. Gene expression of NMDA and AMPA receptors in different facial motor neurons.

    Science.gov (United States)

    Chen, Pei; Song, Jun; Luo, Linghui; Cheng, Qing; Xiao, Hongjun; Gong, Shusheng

    2016-01-01

    Facial motor neurons (FMNs) are involved in the remodeling of the facial nucleus in response to peripheral injury. This study aimed to examine the gene expression of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and N-methyl-D-aspartate subtype of ionotropic glutamate receptor (NMDAR) in reinnervating dormant FMNs after facial nerve axotomy. Animal study. Rat models of facial-facial anastomosis were set up and raised until the 90th day. By laser capture microdissection (LCM), the reinnervating neurons labeled by Fluoro-Ruby (FR) were first captured, and the remaining (dormant) neurons identified by Nissl staining were captured in the facial nucleus of the operated side. The total RNA of two types of neurons were extracted, and the gene expressions of AMPAR and NMDAR were studied by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Messenger RNA (mRNA) of AMPAR subunits (GluR1, GluR2, GluR3, and GluR4) and NMDAR subunits (NR1, NR2a, NR2b, NR2c, and NR2d) was detected in reinnervating and dormant neurons. The relative ratios exhibited that the expressions of GluR1, GluR4, NR2a, NR2b, NR2c, and NR2d mRNA were lower, whereas the expressions of GluR2, GluR3, and NR1 mRNA were higher in dormant FMNs than in reinnervating counterparts. LCM in combination with real-time qRT-PCR can be employed for the examination of gene expression of different FMNs in a heterogeneous nucleus. The adaptive changes in AMPAR and NMDAR subunit mRNA might dictate the regenerative fate of FMNs in response to the peripheral axotomy and thereby play a unique role in the pathogenesis of facial nerve injury and regeneration. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  17. A common functional allele of the Nogo receptor gene, reticulon 4 receptor (RTN4R), is associated with sporadic amyotrophic lateral sclerosis in a French population.

    Science.gov (United States)

    Amy, Maïté; Staehlin, Oliver; René, Frédérique; Blasco, Hélène; Marouillat, Sylviane; Daoud, Hussein; Vourc'h, Patrick; Gordon, Paul H; Camu, William; Corcia, Philippe; Loeffler, Jean-Philippe; Palkovits, Miklós; Sommer, Wolfgang H; Andres, Christian R

    2015-01-01

    Amyotrophic lateral sclerosis is sporadic (SALS) in 90% of cases and has complex environmental and genetic influences. Nogo protein inhibits neurite outgrowth and is overexpressed in muscle in ALS. Our aims were to study the reticulon 4 receptor gene RTN4R which encodes Nogo 1 receptor (NgR1) in SALS, to test if the variants were associated with variable expression of the gene and whether NgR1 protein expression was modified in a transgenic mouse model of ALS. We genotyped three single nucleotide polymorphisms (SNPs; rs701421, rs701427, and rs1567871) of the RTN4R gene in 364 SALS French patients and 430 controls. We examined expression of RTN4R mRNA by quantitative PCR in control post mortem human brain tissue. We determined the expression of NgR1 protein in spinal motor neurons from a SOD1 G86R ALS mouse model. We observed significant associations between SALS and RTN4R alleles. Messenger RNA expression from RTN4R in human cortical brain tissue correlated significantly with the genotypes of rs701427. NgR1 protein expression was reduced in Nogo A positive motor neurons from diseased transgenic animals. In conclusion, these observations suggest that a functional RTN4R gene variant is associated with SALS. This variant may act in concert with other genetic variants or environmental influences.

  18. The CAG repeat polymorphism in the Androgen receptor gene modifies the risk for hypospadias in Caucasians

    Science.gov (United States)

    2012-01-01

    Background Hypospadias is a birth defect of the urethra in males, and a milder form of 46,XY disorder of sexual development (DSD). The disease is characterized by a ventrally placed urinary opening due to a premature fetal arrest of the urethra development. Moreover, the Androgen receptor (AR) gene has an essential role in the hormone-dependent stage of sexual development. In addition, longer AR polyglutamine repeat lengths encoded by CAG repeats are associated with lower transcriptional activity in vitro. In the present study, we aimed at investigating the role of the CAG repeat length in the AR gene in hypospadias cases as compared to the controls. Our study included 211 hypospadias and 208 controls of Caucasian origin. Methods We amplified the CAG repeat region with PCR, and calculated the difference in the mean CAG repeat length between the hypospadias and control group using the T-test for independent groups. Results We detected a significant increase of the CAG repeat length in the hypospadias cases when compared to the controls (contrast estimate: 2.29, 95% Confidence Interval (1.73-2.84); p-value: 0.001). In addition, the odds ratios between the hypospadias and controls revealed that the hypospadias cases are two to 3 times as likely to have longer CAG repeats than a shorter length for each repeat length investigated. Conclusions We have investigated the largest number of hypospadias cases with regards to the CAG repeat length, and we provide evidence that a higher number of the CAG repeat sequence in the AR gene have a clear effect on the risk of hypospadias in Caucasians. PMID:23167717

  19. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces

    Directory of Open Access Journals (Sweden)

    Chakrabarti Bhismadev

    2011-06-01

    Full Text Available Abstract Background From an early age, humans look longer at preferred stimuli and also typically look longer at facial expressions of emotion, particularly happy faces. Atypical gaze patterns towards social stimuli are common in autism spectrum conditions (ASC. However, it is unknown whether gaze fixation patterns have any genetic basis. In this study, we tested whether variations in the cannabinoid receptor 1 (CNR1 gene are associated with gaze duration towards happy faces. This gene was selected because CNR1 is a key component of the endocannabinoid system, which is involved in processing reward, and in our previous functional magnetic resonance imaging (fMRI study, we found that variations in CNR1 modulate the striatal response to happy (but not disgust faces. The striatum is involved in guiding gaze to rewarding aspects of a visual scene. We aimed to validate and extend this result in another sample using a different technique (gaze tracking. Methods A total of 30 volunteers (13 males and 17 females from the general population observed dynamic emotional expressions on a screen while their eye movements were recorded. They were genotyped for the identical four single-nucleotide polymorphisms (SNPs in the CNR1 gene tested in our earlier fMRI study. Results Two SNPs (rs806377 and rs806380 were associated with differential gaze duration for happy (but not disgust faces. Importantly, the allelic groups associated with a greater striatal response to happy faces in the fMRI study were associated with longer gaze duration at happy faces. Conclusions These results suggest that CNR1 variations modulate the striatal function that underlies the perception of signals of social reward, such as happy faces. This suggests that CNR1 is a key element in the molecular architecture of perception of certain basic emotions. This may have implications for understanding neurodevelopmental conditions marked by atypical eye contact and facial emotion processing

  20. Somatic Variation of T-Cell Receptor Genes Strongly Associate with HLA Class Restriction.

    Directory of Open Access Journals (Sweden)

    Paul L Klarenbeek

    Full Text Available Every person carries a vast repertoire of CD4+ T-helper cells and CD8+ cytotoxic T cells for a healthy immune system. Somatic VDJ recombination at genomic loci that encode the T-cell receptor (TCR is a key step during T-cell development, but how a single T cell commits to become either CD4+ or CD8+ is poorly understood. To evaluate the influence of TCR sequence variation on CD4+/CD8+ lineage commitment, we sequenced rearranged TCRs for both α and β chains in naïve T cells isolated from healthy donors and investigated gene segment usage and recombination patterns in CD4+ and CD8+ T-cell subsets. Our data demonstrate that most V and J gene segments are strongly biased in the naïve CD4+ and CD8+ subsets with some segments increasing the odds of being CD4+ (or CD8+ up to five-fold. These V and J gene associations are highly reproducible across individuals and independent of classical HLA genotype, explaining ~11% of the observed variance in the CD4+ vs. CD8+ propensity. In addition, we identified a strong independent association of the electrostatic charge of the complementarity determining region 3 (CDR3 in both α and β chains, where a positively charged CDR3 is associated with CD4+ lineage and a negatively charged CDR3 with CD8+ lineage. Our findings suggest that somatic variation in different parts of the TCR influences T-cell lineage commitment in a predominantly additive fashion. This notion can help delineate how certain structural features of the TCR-peptide-HLA complex influence thymic selection.