WorldWideScience

Sample records for hormone receptor mutant

  1. Resistance to thyroid hormone due to a novel thyroid hormone receptor mutant in a patient with hypothyroidism secondary to lingual thyroid and functional characterization of the mutant receptor.

    Science.gov (United States)

    Nakajima, Yasuyo; Yamada, Masanobu; Horiguchi, Kazuhiko; Satoh, Tetsurou; Hashimoto, Koshi; Tokuhiro, Etsuro; Onigata, Kazuhiko; Mori, Masatomo

    2010-08-01

    We describe a rare case of congenital hypothyroidism and an extremely high serum thyrotropin (TSH) level caused by a combination of resistance to thyroid hormone (RTH) and a lingual thyroid. As the RTH mutant, R316C, was new, the optimum dose of levothyroxine was unclear. To aid in assessment of the therapy, we characterized the mutant R316C thyroid hormone receptor (TR) and compared it with a common mutant, R316H, using in vitro studies. The patient was a newborn female having severe hypothyroidism with a free thyroxine level of 0.36 ng/dL and a serum TSH level of 177 microU/mL. A scintiscan showed ectopic lingual thyroid tissue without a normal thyroid gland. Supplementation with levothyroxine at a dose of >350 microg/day did not normalize the serum TSH level; however, the patient showed normal growth and intelligence at 14 years of age. Consistent with the results of a computer analysis, the binding of R316C to triiodothyronine (T3) was significantly decreased to 38% that of the wild type. Electrophoretic mobility shift assay demonstrated that like R316H, R316C did not form a homodimer, but formed a heterodimer with RXR. However, a glutathione-S-transferase pull-down assay showed reduced binding of R316C with NCoR in the absence of T3 and impaired release in the presence of T3. In addition, transient transfection experiments demonstrated that unlike R316H, R316C had severe impairment of transcriptional activity on genes both positively and negatively regulated by thyroid hormone. It also had a clear dominant negative effect on genes negatively, but not positively, regulated by thyroid hormone, including the TSH-releasing hormone and TSHbeta genes. This is the first reported case of a R316C TR mutation. The characteristics of the R316C mutant differed from those of the R316H mutant. Our findings suggest that R316C causes reduced association with and impaired release of NCoR, resulting in RTH predominantly at the pituitary level, and that slightly elevated serum

  2. Synergistic Signaling of KRAS and Thyroid Hormone Receptor β Mutants Promotes Undifferentiated Thyroid Cancer through MYC Up-Regulation

    Directory of Open Access Journals (Sweden)

    Xuguang Zhu

    2014-09-01

    Full Text Available Undifferentiated thyroid carcinoma is one of the most aggressive human cancers with frequent RAS mutations. How mutations of the RAS gene contribute to undifferentiated thyroid cancer remains largely unknown. Mice harboring a potent dominant negative mutant thyroid hormone receptor β, TRβPV (ThrbPV/PV, spontaneously develop well-differentiated follicular thyroid cancer similar to human cancer. We genetically targeted the KrasG12D mutation to thyroid epithelial cells of ThrbPV/PV mice to understand how KrasG12D mutation could induce undifferentiated thyroid cancer in ThrbPV/PVKrasG12D mice. ThrbPV/PVKrasG12D mice exhibited poorer survival due to more aggressive thyroid tumors with capsular invasion, vascular invasion, and distant metastases to the lung occurring at an earlier age and at a higher frequency than ThrbPV/PV mice did. Importantly, ThrbPV/PVKrasG12D mice developed frequent anaplastic foci with complete loss of normal thyroid follicular morphology. Within the anaplastic foci, the thyroid-specific transcription factor paired box gene 8 (PAX8 expression was virtually lost and the loss of PAX8 expression was inversely correlated with elevated MYC expression. Consistently, co-expression of KRASG12D with TRβPV upregulated MYC levels in rat thyroid pccl3 cells, and MYC acted to enhance the TRβPV-mediated repression of the Pax8 promoter activity of a distant upstream enhancer, critical for thyroid-specific Pax8 expression. Our findings indicated that synergistic signaling of KRASG12D and TRβPV led to increased MYC expression. Upregulated MYC contributes to the initiation of undifferentiated thyroid cancer, in part, through enhancing TRβPV-mediated repression of the Pax8 expression. Thus, MYC might serve as a potential target for therapeutic intervention.

  3. The dominant negative thyroid hormone receptor beta-mutant delta337T alters PPAR-alpha signaling in heart

    Science.gov (United States)

    PPARalpha and TR independently regulate cardiac metabolism. Although ligands for both these receptors are currently under evaluation for treatment of congestive heart failure, their interactions or signaling cooperation have not been investigated in heart. We tested the hypothesis that cardiac TRs i...

  4. Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor α1 can be ameliorated by T3 treatment

    Science.gov (United States)

    Venero, César; Guadaño-Ferraz, Ana; Herrero, Ana Isabel; Nordström, Kristina; Manzano, Jimena; de Escobar, Gabriella Moreale; Bernal, Juan; Vennström, Björn

    2005-01-01

    The transcriptional properties of unliganded thyroid hormone receptors are thought to cause the misdevelopment during hypothyroidism of several functions essential for adult life. To specifically determine the role of unliganded thyroid hormone receptor α1 (TRα1) in neuronal tissues, we introduced a mutation into the mouse TRα1 gene that lowers affinity to thyroid hormone (TH) 10-fold. The resulting heterozygous mice exhibit several distinct neurological abnormalities: extreme anxiety, reduced recognition memory, and locomotor dysfunction. The anxiety and memory deficiencies were relieved by treatment with high levels of TH in adulthood, an effect that correlated with a normalization of GABAergic inhibitory interneurons in the hippocampal CA1 region. In contrast, a post-natal TH treatment was necessary and sufficient for ameliorating the adult locomotor dysfunction. Here, the hormone treatment normalized the otherwise delayed cerebellar development. The data thus identify two novel and distinct functions of an unliganded TRα1 during development and adulthood, respectively. PMID:16131613

  5. Cloning of partial putative gonadotropin hormone receptor ...

    Indian Academy of Sciences (India)

    Keywords. Glycoprotein hormone receptor; gonadotropin receptor; Labeo rohita; luteinizing hormone receptor; mariner transposon; PCR cloning. Abstract. A search for the presence of mariner-like elements in the Labeo rohita genome by polymerase chain reaction led to the amplification of a partial DNA sequence coding ...

  6. Genomic growth hormone, growth hormone receptor and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Lei et al., 2007). Recently, the effects of bovine growth hormone gene polymorphism at codon 127 and 172 were determined on carcass traits and fatty acid compositions in Japanese Black cattle using allele specific-multiplex ...

  7. Growth hormone receptor gene expression in puberty.

    Science.gov (United States)

    Pagani, S; Meazza, C; Gertosio, C; Bozzola, E; Bozzola, M

    2015-07-01

    The mechanisms regulating the synergic effect of growth hormone and other hormones during pubertal spurt are not completely clarified. We enrolled 64 females of Caucasian origin and normal height including 22 prepubertal girls, 26 pubertal girls, and 16 adults to evaluate the role of Growth Hormone/Insulin-like growth factor-I axis (GH/IGF-I) during the pubertal period. In these subjects both serum IGF-I and growth hormone binding protein levels, as well as quantitative growth hormone receptor (GHR) gene expression were evaluated in peripheral lymphocytes of all individuals by real-time PCR. Our results showed significantly lower IGF-I levels in women (148±10 ng/ml) and prepubertal girls (166.34±18.85 ng/ml) compared to pubertal girls (441.95±29.42 ng/ml; p<0.0001). Serum GHBP levels were significantly higher in prepubertal (127.02±20.76 ng/ml) compared to pubertal girls (16.63±2.97 ng/ml; p=0.0001) and adult women (19.95±6.65 ng/ml; p=0.0003). We also found higher GHR gene expression levels in pubertal girls [174.73±80.22 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)] compared with other groups of subjects [women: 42.52±7.66 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase); prepubertal girls: 58.45±0.18.12 ag (growth hormone receptor)/5×10(5) ag (glyceraldehyde 3-phosphate dehydrogenase)], but the difference did not reach statistical significance. These results suggest that sexual hormones could positively influence GHR action, during the pubertal period, in a dual mode, that is, increasing GHR mRNA production and reducing GHR cleavage leading to GHBP variations. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Sex hormone receptors in breast cancer.

    Science.gov (United States)

    D'Abreo, Nina; Hindenburg, Alexander A

    2013-01-01

    The dependency of certain breast cancers on estrogen is undeniably one of the most important observations in oncology. Since this early observation, there has been a tremendous effort to define the precise roles of the estrogen receptor (ER) in the pathogenesis of breast cancer. Estrogen signaling pathways can also be exploited as effective targets for cancer treatment. Both ligand-dependent and ligand-independent receptor activation pathways have been successfully blocked by hormonal therapies including selective ER modulators such as tamoxifen, by blocking and accelerating the degradation of ER (fulvestrant), and by depleting tissue levels of estrogen (aromatase inhibitors). Because of the immense prognostic and predictive value of the ER and PR receptor, accurately defining hormone dependency is also of paramount importance. Despite this avalanche of discovery and development resulting in improved outcome for the patient, resistance to these therapies, both intrinsic and acquired, is well known. Uncovering the various mechanisms of resistance has deepened scientific understanding of posttranslational modifications of these receptors, as well as their cross talk with other receptor families such as the HER-2/neu receptor. The recent discovery that orphan estrogen-related receptors may also play an important role in breast cancer is just starting to be appreciated. A clear understanding of the historical perspective and the intricacies of ER structure and function is required to improve current therapeutic strategies for breast cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The orphan nuclear hormone receptor ERRβ controls rod photoreceptor survival

    Science.gov (United States)

    Onishi, Akishi; Peng, Guang-Hua; Poth, Erin M.; Lee, Daniel A.; Chen, Jichao; Alexis, Uel; de Melo, Jimmy; Chen, Shiming; Blackshaw, Seth

    2010-01-01

    Mutation of rod photoreceptor-enriched transcription factors is a major cause of inherited blindness. We identified the orphan nuclear hormone receptor estrogen-related receptor β (ERRβ) as selectively expressed in rod photoreceptors. Overexpression of ERRβ induces expression of rod-specific genes in retinas of wild-type as well as Nrl−/− mice, which lack rod photoreceptors. Mutation of ERRβ results in dysfunction and degeneration of rods, whereas inverse agonists of ERRβ trigger rapid rod degeneration, which is rescued by constitutively active mutants of ERRβ. ERRβ coordinates expression of multiple genes that are rate-limiting regulators of ATP generation and consumption in photoreceptors. Furthermore, enhancing ERRβ activity rescues photoreceptor defects that result from loss of the photoreceptor-specific transcription factor Crx. Our findings demonstrate that ERRβ is a critical regulator of rod photoreceptor function and survival, and suggest that ERRβ agonists may be useful in the treatment of certain retinal dystrophies. PMID:20534447

  10. A missense mutation in the second transmembrane segment of the luteinizing hormone receptor causes familial male-limited precocious puberty

    Energy Technology Data Exchange (ETDEWEB)

    Kraaij, R.; Post, M.; Grootegoed, J.A. [Erasmus Univ. Rotterdam (Netherlands)] [and others

    1995-10-01

    Patients with familial male-limited precocious puberty present with early onset of puberty. Several missense mutations in the LH receptor gene that cause amino acid substitutions in the sixth transmembrane segment of the receptor protein have been shown to be a cause of the disorder. We have identified a novel LH receptor gene mutation in a patient with familial male-limited precocious puberty that results in a threonine for methionine substitution at position 398 in the second transmembrane segment of the receptor protein. In vitro expression in human embryonic kidney 293 cells of this LH receptor mutant and two previously described LH receptor mutants showed that cAMP production in the absence of hormone was elevated up to 25-fold compared to the basal level of the wild-type receptor. The ED{sub 50} values of hormone-induced cAMP production was relatively low for mutant receptors. We also produced receptors containing amino acid substitutions in both the second and sixth transmembrane segments. For these double mutants, basal receptor activities were similar to the basal activities observed in single mutants, whereas hormone-induced receptor activation was almost completely abolished. 31 refs., 2 figs.

  11. Steroid hormone receptor phosphorylation: Is there a physiological role?

    NARCIS (Netherlands)

    G.G.J.M. Kuiper (George); A.O. Brinkmann (Albert)

    1994-01-01

    textabstractAll members of the steroid hormone receptor family are phosphoproteins. Additional phosphorylation occurs in the presence of hormone. This hormone-induced phosphorylation, which is 2- to 7-fold more than the basal phosphorylation, is a rapid process. All steroid receptors are

  12. Association between steroid hormone receptors and PSA gene ...

    African Journals Online (AJOL)

    associated with presence of steroid hormone receptors. The aim of this research was to show differential expression and association between steroid hormone receptors and PSA gene expression in breast cancer cell lines. The cell lines investigated were steroid receptor-negative breast carcinoma cell lines BT-20 and ...

  13. Estrogen Receptor Mutants/Variants in Human Breast Cancer.

    Science.gov (United States)

    1997-12-01

    Recherche Louis- Charles Simard, Montreal, Canada. Four nor- mal human breast tissues from reduction mammoplasties of pre- menopausal women were obtained...to hormone resistance. Cancer Res 1990; 50: 6208-17. 22. Karnik PS, Kulkarni S, Lui XP, Budd GT, Bukowski RM. Estrogen receptor mutations in

  14. Endocrine therapy use among elderly hormone receptor-pos...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Clinical guidelines recommend that women with hormone-receptor positive breast cancer receive endocrine therapy (selective estrogen receptor modulators or aromatase...

  15. Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology.

    Science.gov (United States)

    Aghajanova, Lusine; Stavreus-Evers, Anneli; Lindeberg, Maria; Landgren, Britt-Marie; Sparre, Lottie Skjöldebrand; Hovatta, Outi

    2011-01-01

    To study the expression, distribution, and function of thyroid-stimulating hormone receptor (TSHR) and thyroid hormone receptors (TR) α1, α2, and β1 in human endometrium. Experimental clinical study. University hospital. 31 fertile women. Endometrial biopsy samples obtained throughout the menstrual cycle. Real-time reverse transcriptase polymerase chain reaction, immunohistochemistry and Western blot to study the expression of TSHR, TRα1, TRα2, and TRβ1 messenger RNA (mRNA) and proteins in human endometrium. We found TSHR, TRα1, TRα2 and TRβ1 mRNA and proteins expressed in human endometrium. Immunostaining for TSHR in the luminal epithelium and TRα1 and β1 in the glandular and luminal epithelium increased statistically significantly on luteinizing hormone (LH) days 6 to 9, coinciding with appearance of pinopodes. Endometrial stromal and Ishikawa cells expressed mRNA for TSHR, TR, and iodothyronine deiodinases 1-3. After 48 hours, TSH significantly increased leukemia inhibitory factor (LIF) and LIF receptor (LIFR) messenger RNA (mRNA) in endometrial stromal cells, but decreased their expression in Ishikawa cells. Glucose transporter 1 mRNA was up-regulated by TSH in Ishikawa cells. We found that TSH statistically significantly increased secretion of free triiodothyronine (T3) and total thyroxin (T4) by Ishikawa cells compared with nonstimulated cells. Thyroid hormones are directly involved in endometrial physiology. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants.

    Science.gov (United States)

    Chachoua, Ilyas; Pecquet, Christian; El-Khoury, Mira; Nivarthi, Harini; Albu, Roxana-Irina; Marty, Caroline; Gryshkova, Vitalina; Defour, Jean-Philippe; Vertenoeil, Gaëlle; Ngo, Anna; Koay, Ann; Raslova, Hana; Courtoy, Pierre J; Choong, Meng Ling; Plo, Isabelle; Vainchenker, William; Kralovics, Robert; Constantinescu, Stefan N

    2016-03-10

    Mutations in the calreticulin gene (CALR) represented by deletions and insertions in exon 9 inducing a -1/+2 frameshift are associated with a significant fraction of myeloproliferative neoplasms (MPNs). The mechanisms by which CALR mutants induce MPN are unknown. Here, we show by transcriptional, proliferation, biochemical, and primary cell assays that the pathogenic CALR mutants specifically activate the thrombopoietin receptor (TpoR/MPL). No activation is detected with a battery of type I and II cytokine receptors, except granulocyte colony-stimulating factor receptor, which supported only transient and weak activation. CALR mutants induce ligand-independent activation of JAK2/STAT/phosphatydylinositol-3'-kinase (PI3-K) and mitogen-activated protein (MAP) kinase pathways via TpoR, and autonomous growth in Ba/F3 cells. In these transformed cells, no synergy is observed between JAK2 and PI3-K inhibitors in inhibiting cytokine-independent proliferation, thus showing a major difference from JAK2V617F cells where such synergy is strong. TpoR activation was dependent on its extracellular domain and its N-glycosylation, especially at N117. The glycan binding site and the novel C-terminal tail of the mutant CALR proteins were required for TpoR activation. A soluble form of TpoR was able to prevent activation of full-length TpoR provided that it was N-glycosylated. By confocal microscopy and subcellular fractionation, CALR mutants exhibit different intracellular localization from that of wild-type CALR. Finally, knocking down either MPL/TpoR or JAK2 in megakaryocytic progenitors from patients carrying CALR mutations inhibited cytokine-independent megakaryocytic colony formation. Taken together, our study provides a novel signaling paradigm, whereby a mutated chaperone constitutively activates cytokine receptor signaling. © 2016 by The American Society of Hematology.

  17. Pregnancy Hyperglycemia in Prolactin Receptor Mutant, but Not Prolactin Mutant, Mice and Feeding-Responsive Regulation of Placental Lactogen Genes Implies Placental Control of Maternal Glucose Homeostasis.

    Science.gov (United States)

    Rawn, Saara M; Huang, Carol; Hughes, Martha; Shaykhutdinov, Rustem; Vogel, Hans J; Cross, James C

    2015-09-01

    Pregnancy is often viewed as a conflict between the fetus and mother over metabolic resources. Insulin resistance occurs in mothers during pregnancy but does not normally lead to diabetes because of an increase in the number of the mother's pancreatic beta cells. In mice, this increase is dependent on prolactin (Prl) receptor signaling but the source of the ligand has been unclear. Pituitary-derived Prl is produced during the first half of pregnancy in mice but the placenta produces Prl-like hormones from implantation to term. Twenty-two separate mouse genes encode the placenta Prl-related hormones, making it challenging to assess their roles in knockout models. However, because at least four of them are thought to signal through the Prl receptor, we analyzed Prlr mutant mice and compared their phenotypes with those of Prl mutants. We found that whereas Prlr mutants develop hyperglycemia during gestation, Prl mutants do not. Serum metabolome analysis showed that Prlr mutants showed other changes consistent with diabetes. Despite the metabolic changes, fetal growth was normal in Prlr mutants. Of the four placenta-specific, Prl-related hormones that have been shown to interact with the Prlr, their gene expression localizes to different endocrine cell types. The Prl3d1 gene is expressed by trophoblast giant cells both in the labyrinth layer, sitting on the arterial side where maternal blood is highest in oxygen and nutrients, and in the junctional zone as maternal blood leaves the placenta. Expression increases during the night, though the increase in the labyrinth is circadian whereas it occurs only after feeding in the junctional zone. These data suggest that the placenta has a sophisticated endocrine system that regulates maternal glucose metabolism during pregnancy. © 2015 by the Society for the Study of Reproduction, Inc.

  18. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  19. Metastatic Breast Cancer and Hormonal Receptor Status among a ...

    African Journals Online (AJOL)

    hormone receptor status correlates with site of metastatic lesions and survival among breast cancer patients. Objective: To determine the sites of metastatic breast lesions and how they relate to the hormonal receptor status. Methods: In this cross sectional descriptive study, 71 women with histologically confirmed incident ...

  20. Hormone receptor expression in male breast cancers | Akosa ...

    African Journals Online (AJOL)

    Male breast cancers are rare but have been found in higher proportions in Black Africans. Prognostic factors for breast cancers include tumour size, grade and stage, and hormone receptor status. The hormone receptor status is an invaluable guide in the use of adjuvant endocrine therapy, but none of the reports available ...

  1. Rescue of ligand binding of a mutant IGF-I receptor by complementation

    DEFF Research Database (Denmark)

    Chakravarty, Arjun Anders; Hinrichsen, Jane; Whittaker, Linda

    2005-01-01

    from a wild-type receptor monomer and a mutant receptor monomer devoid of binding activity. Receptor hybrids were generated by transient co-transfection of cDNAs encoding wild-type and mutant receptors with unique epitope tags. Hybrid receptors were purified from transfected cells by sequential immuno...

  2. Importance of hormone receptors in breast cancer

    Directory of Open Access Journals (Sweden)

    Nohelia Muñoz-Ordóñez

    2013-09-01

    Full Text Available The basis of the diagnosis of breast cancer is the histological confirmation of it. In the diagnostic methods performed on biopsy specimens and / or surgical specimens of patients, analysis of hormone receptors, provides information to the appropriate prescription of the endocrine treatments used today, in addition to having utility as a prognostic factor in determining the risk of recurrence post treatment and evaluate the response. To obtain tumor tissue, also allows to determine prognostic and predictive factors such as histopathological classification of the tumor, its size, number of positive lymph nodes and lymph-vascular commitment, all of them very important in a integrated treatment, in order to improve the quality and life expectancy of patients.

  3. Helix 3-Helix 5 interactions in Steroid Hormone Receptor Function

    Science.gov (United States)

    Zhang, Junhui; Geller, David S.

    2009-01-01

    Steroid hormones working through their receptors regulate a wide variety of physiologic processes necessary for normal homeostasis. Recent years have witnessed great advances in our understanding of how these hormones interact with their receptors, and have brought us closer to the era of directed drug design. We previously described a novel intramolecular interaction between helix 3 and helix 5 which is responsible for a Mendelian form of human hypertension. Further studies revealed that this interaction is highly conserved throughout the steroid hormone receptor family and functions as a key regulator of steroid hormone receptor sensitivity and specificity. Here, we review the contribution of helix 3-helix 5 interaction to steroid hormone receptor activity, with an eye towards how this knowledge may aid in the creation of novel therapeutic agonists and antagonists. PMID:18502379

  4. Thyroid Hormone Receptor beta Mediates Acute Illness-Induced Alterations in Central Thyroid Hormone Metabolism

    NARCIS (Netherlands)

    Boelen, Anita; Kwakkel, Joan; Chassande, Olivier; Fliers, Eric

    2009-01-01

    Acute illness in mice profoundly affects thyroid hormone metabolism in the hypothalamus and pituitary gland. It remains unknown whether the thyroid hormone receptor (TR)-beta is involved in these changes. In the present study, we investigated central thyroid hormone metabolism during

  5. Thyroid hormone receptors in health and disease

    NARCIS (Netherlands)

    Boelen, A.; Kwakkel, J.; Fliers, E.

    2012-01-01

    Thyroid hormones (TH) play a key role in energy homeostasis throughout life. Thyroid hormone production and secretion by the thyroid gland is regulated via the hypothalamus-pituitary-thyroid (HPT)-axis. Thyroid hormone has to be transported into the cell, where it can bind to the thyroid hormone

  6. Hmrbase: a database of hormones and their receptors

    Directory of Open Access Journals (Sweden)

    Kumar Manish

    2009-07-01

    Full Text Available Abstract Background Hormones are signaling molecules that play vital roles in various life processes, like growth and differentiation, physiology, and reproduction. These molecules are mostly secreted by endocrine glands, and transported to target organs through the bloodstream. Deficient, or excessive, levels of hormones are associated with several diseases such as cancer, osteoporosis, diabetes etc. Thus, it is important to collect and compile information about hormones and their receptors. Description This manuscript describes a database called Hmrbase which has been developed for managing information about hormones and their receptors. It is a highly curated database for which information has been collected from the literature and the public databases. The current version of Hmrbase contains comprehensive information about ~2000 hormones, e.g., about their function, source organism, receptors, mature sequences, structures etc. Hmrbase also contains information about ~3000 hormone receptors, in terms of amino acid sequences, subcellular localizations, ligands, and post-translational modifications etc. One of the major features of this database is that it provides data about ~4100 hormone-receptor pairs. A number of online tools have been integrated into the database, to provide the facilities like keyword search, structure-based search, mapping of a given peptide(s on the hormone/receptor sequence, sequence similarity search. This database also provides a number of external links to other resources/databases in order to help in the retrieving of further related information. Conclusion Owing to the high impact of endocrine research in the biomedical sciences, the Hmrbase could become a leading data portal for researchers. The salient features of Hmrbase are hormone-receptor pair-related information, mapping of peptide stretches on the protein sequences of hormones and receptors, Pfam domain annotations, categorical browsing options, online

  7. Hmrbase: a database of hormones and their receptors

    Science.gov (United States)

    Rashid, Mamoon; Singla, Deepak; Sharma, Arun; Kumar, Manish; Raghava, Gajendra PS

    2009-01-01

    Background Hormones are signaling molecules that play vital roles in various life processes, like growth and differentiation, physiology, and reproduction. These molecules are mostly secreted by endocrine glands, and transported to target organs through the bloodstream. Deficient, or excessive, levels of hormones are associated with several diseases such as cancer, osteoporosis, diabetes etc. Thus, it is important to collect and compile information about hormones and their receptors. Description This manuscript describes a database called Hmrbase which has been developed for managing information about hormones and their receptors. It is a highly curated database for which information has been collected from the literature and the public databases. The current version of Hmrbase contains comprehensive information about ~2000 hormones, e.g., about their function, source organism, receptors, mature sequences, structures etc. Hmrbase also contains information about ~3000 hormone receptors, in terms of amino acid sequences, subcellular localizations, ligands, and post-translational modifications etc. One of the major features of this database is that it provides data about ~4100 hormone-receptor pairs. A number of online tools have been integrated into the database, to provide the facilities like keyword search, structure-based search, mapping of a given peptide(s) on the hormone/receptor sequence, sequence similarity search. This database also provides a number of external links to other resources/databases in order to help in the retrieving of further related information. Conclusion Owing to the high impact of endocrine research in the biomedical sciences, the Hmrbase could become a leading data portal for researchers. The salient features of Hmrbase are hormone-receptor pair-related information, mapping of peptide stretches on the protein sequences of hormones and receptors, Pfam domain annotations, categorical browsing options, online data submission, Drug

  8. The reciprocal regulation of stress hormones and GABAA receptors

    Directory of Open Access Journals (Sweden)

    Istvan eMody

    2012-01-01

    Full Text Available Stress-derived steroid hormones regulate the expression and function of GABAA receptors (GABAARs. Changes in GABAAR subunit expression have been demonstrated under conditions of altered steroid hormone levels, such as stress, as well as following exogenous steroid hormone administration. In addition to the effects of stress-derived steroid hormones on GABAAR subunit expression, stress hormones can also be metabolized to neuroactive derivatives which can alter the function of GABAARs. Neurosteroids allosterically modulate GABAARs at concentrations comparable to those during stress. In addition to the actions of stress-derived steroid hormones on GABAARs, GABAARs reciprocally regulate the production of stress hormones. The stress response is mediated by the hypothalamic-pituitary-adrenal (HPA axis, the activity of which is governed by corticotropin releasing hormone (CRH neurons. The activity of CRH neurons is largely controlled by robust GABAergic inhibition. Recently, it has been demonstrated that CRH neurons are regulated by neurosteroid-sensitive, GABAAR δ subunit-containing receptors representing a novel feedback mechanism onto the HPA axis. Further, it has been demonstrated that neurosteroidogenesis and neurosteroid actions on GABAAR δ subunit-containing receptors on CRH neurons are necessary to mount the physiological response to stress. Here we review the literature describing the effects of steroid hormones on GABAARs as well as the importance of GABAARs in regulating the production of steroid hormones. This review incorporates what we currently know about changes in GABAARs following stress and the role in HPA axis regulation.

  9. Glycine receptor mouse mutants: model systems for human hyperekplexia.

    Science.gov (United States)

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-11-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. © 2013 The British Pharmacological Society.

  10. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    2006-12-20

    , UAS-GKVK Campus, Bellary Road,. Bangalore 560 065 .... have important implications in biology and in understanding the evolutionary and ..... Rechavi M 2004 Update of NUREBASE: nuclear hormone receptor functional ...

  11. Molecular identification of the first insect ecdysis triggering hormone receptors

    DEFF Research Database (Denmark)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael

    2002-01-01

    be activated by low concentrations of Drosophila ecdysis triggering hormones-1 and -2. Ecdysis (cuticle shedding) is an important behaviour, allowing growth and metamorphosis in insects and other arthropods. Our paper is the first report on the molecular identification of ecdysis triggering hormone receptors...... from insects....

  12. Signalling, cycling and desensitisation of gonadotrophin-releasing hormone receptors.

    Science.gov (United States)

    McArdle, Craig A; Franklin, J; Green, L; Hislop, J N

    2002-04-01

    Sustained stimulation of G-protein-coupled receptors (GPCRs) typically causes receptor desensitisation, which is mediated by phosphorylation, often within the C-terminal tail of the receptor. The consequent binding of beta-arrestin not only prevents the receptor from activating its G protein (causing desensitisation), but can also target it for internalisation via clathrin-coated vesicles and can mediate signalling to proteins regulating endocytosis and mitogen-activated protein kinase (MAPK) cascades. GnRH acts via phospholipase C (PLC)-coupled GPCRs on pituitary gonadotrophs to stimulate a Ca(2+)-mediated increase in gonadotrophin secretion. The type I GnRH receptors (GnRH-Rs), found only in mammals, are unique in that they lack C-terminal tails and apparently do not undergo agonist-induced phosphorylation or bind beta-arrestin; they are therefore resistant to receptor desensitisation and internalise slowly. In contrast, the type II GnRH-Rs, found in numerous vertebrates, possess such tails and show rapid desensitisation and internalisation, with concomitant receptor phosphorylation (within the C-terminal tails) or binding of beta-arrestin, or both. The association with beta-arrestin may also be important for regulation of dynamin, a GTPase that controls separation of endosomes from the plasma membrane. Using recombinant adenovirus to express GnRH-Rs in Hela cells conditionally expressing a dominant negative mutant of dynamin (K44A), we have found that blockade of dynamin-dependent endocytosis inhibits internalisation of type II (xenopus) GnRH-Rs but not type I (human) GnRH-Rs. In these cells, blockade of dynamin-dependent internalisation also inhibited GnRH-R-mediated MAPK activation, but this effect was not receptor specific and therefore not dependent upon dynamin-regulated GnRH-R internalisation. Although type I GnRH-Rs do not desensitise, sustained activation of GnRH-Rs causes desensitisation of gonadotrophin secretion, and we have found that GnRH can cause

  13. Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants*

    Science.gov (United States)

    Minkoff, Benjamin B.; Stecker, Kelly E.; Sussman, Michael R.

    2015-01-01

    Abscisic acid (ABA)1 is a plant hormone that controls many aspects of plant growth, including seed germination, stomatal aperture size, and cellular drought response. ABA interacts with a unique family of 14 receptor proteins. This interaction leads to the activation of a family of protein kinases, SnRK2s, which in turn phosphorylate substrates involved in many cellular processes. The family of receptors appears functionally redundant. To observe a measurable phenotype, four of the fourteen receptors have to be mutated to create a multilocus loss-of-function quadruple receptor (QR) mutant, which is much less sensitive to ABA than wild-type (WT) plants. Given these phenotypes, we asked whether or not a difference in ABA response between the WT and QR backgrounds would manifest on a phosphorylation level as well. We tested WT and QR mutant ABA response using isotope-assisted quantitative phosphoproteomics to determine what ABA-induced phosphorylation changes occur in WT plants within 5 min of ABA treatment and how that phosphorylation pattern is altered in the QR mutant. We found multiple ABA-induced phosphorylation changes that occur within 5 min of treatment, including three SnRK2 autophosphorylation events and phosphorylation on SnRK2 substrates. The majority of robust ABA-dependent phosphorylation changes observed were partially diminished in the QR mutant, whereas many smaller ABA-dependent phosphorylation changes observed in the WT were not responsive to ABA in the mutant. A single phosphorylation event was increased in response to ABA treatment in both the WT and QR mutant. A portion of the discovery data was validated using selected reaction monitoring-based targeted measurements on a triple quadrupole mass spectrometer. These data suggest that different subsets of phosphorylation events depend upon different subsets of the ABA receptor family to occur. Altogether, these data expand our understanding of the model by which the family of ABA receptors directs

  14. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    Energy Technology Data Exchange (ETDEWEB)

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.; (SVIMR-A); (Chugai); (Melbourne)

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  15. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    Science.gov (United States)

    2017-08-23

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  16. Status of sex steroid hormone receptors in large bowel cancer

    NARCIS (Netherlands)

    Meggouh, F.; Lointier, P.; Pezet, D.; Saez, S.

    1991-01-01

    To determine the potential role of sex steroid hormones in the development of colorectal tumors in humans, specific androgen (AR), estrogen (ER), and progesterone (PGR) receptors were investigated in normal mucosa (NM) and in tumor (T) paired biopsy specimens from 94 patients. Androgen receptors

  17. Molecular identification of the insect adipokinetic hormone receptors

    DEFF Research Database (Denmark)

    Staubli, Frank; Jørgensen, Thomas J D; Cazzamali, Giuseppe

    2002-01-01

    The insect adipokinetic hormones (AKHs) are a large family of peptide hormones that are involved in the mobilization of sugar and lipids from the insect fat body during energy-requiring activities such as flight and locomotion, but that also contribute to hemolymph sugar homeostasis. Here, we have...... identified the first insect AKH receptors, namely those from the fruitfly Drosophila melanogaster and the silkworm Bombyx mori. These results represent a breakthrough for insect molecular endocrinology, because it will lead to the cloning of all AKH receptors from all model insects used in AKH research, and......, therefore, to a better understanding of AKH heterogeneity and actions. Interestingly, the insect AKH receptors are structurally and evolutionarily related to the gonadotropin-releasing hormone receptors from vertebrates....

  18. Hormones and receptors in fish: do duplicates matter?

    Science.gov (United States)

    Roch, Graeme J; Wu, Sheng; Sherwood, Nancy M

    2009-03-01

    Modern fish are the result of major changes in evolution including three possible duplications of the whole genome. Retained duplicate genes are often involved with metabolism, transcription, neurogenic processes and development. Here we examine the consequences of the most recent (350 mya) teleost-specific duplication in five fishes (zebrafish, fugu, medaka, stickleback and rainbow trout) in regard to duplicate copies of hormones and receptors in the secretin superfamily. This subset of genes was selected as the superfamily is limited to ten hormones and their receptors and includes some important members: glucagon, growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP). We used reports from the literature and an extensive database search of the fish genomes to evaluate the status of the superfamily and its duplicate genes. We found that all five fish species have an almost complete set of orthologs with the human superfamily of hormones, although they lack secretin and its receptor. Receptor orthologs are present in zebrafish, fugu, medaka, stickleback and to a lesser extent in salmonids. Zebrafish retain duplicate copies for seven hormones and five receptors. Duplicated genes in fugu, medaka, stickleback and salmonids are also present, based mainly on genome annotation or mRNA transcription. Separate chromosome locations and synteny support zebrafish duplicates as the result of large-scale duplications. Novel changes in fish include the modification of a duplicate glucagon receptor to a GLP-1 receptor and, unlike humans, the presence of bioactive and specific PHI and GHRH-like peptide receptors. We conclude that fish duplicates in the secretin superfamily are a rich, mostly unexplored area for endocrine research.

  19. The antiandrogenic effect of finasteride against a mutant androgen receptor

    Science.gov (United States)

    Chhipa, Rishi Raj; Zhang, Haitao; Ip, Clement

    2011-01-01

    Finasteride is known to inhibit Type 2 5α-reductase and thus block the conversion of testosterone to dihydrotestosterone (DHT). The structural similarity of finasteride to DHT raises the possibility that finasteride may also interfere with the function of the androgen receptor (AR). Experiments were carried out to evaluate the antiandrogenic effect of finasteride in LNCaP, C4-2 and VCaP human prostate cancer cells. Finasteride decreased DHT binding to AR, and DHT-stimulated AR activity and cell growth in LNCaP and C4-2 cells, but not in VCaP cells. LNCaP and C4-2 (derived from castration-resistant LNCaP) cells express the T877A mutant AR, while VCaP cells express the wild-type AR. When PC-3 cells, which are AR-null, were transfected with either the wild-type or the T877A mutant AR, only the mutant AR-expressing cells were sensitive to finasteride inhibition of DHT binding. Peroxiredoxin-1 (Prx1) is a novel endogenous facilitator of AR binding to DHT. In Prx1-rich LNCaP cells, the combination of Prx1 knockdown and finasteride was found to produce a greater inhibitory effect on AR activity and cell growth than either treatment alone. The observation suggests that cells with a low expression of Prx1 are likely to be more responsive to the antiandrogenic effect of finasteride. Additional studies showed that the efficacy of finasteride was comparable to that of bicalutamide (a widely used non-steroidal antiandrogen). The implication of the above findings is discussed in the context of developing strategies to improve the outcome of androgen deprivation therapy. PMID:21386657

  20. Pituitary gonadotrophic hormone synthesis, secretion, subunit gene expression and cell structure in normal and follicle-stimulating hormone β knockout, follicle-stimulating hormone receptor knockout, luteinising hormone receptor knockout, hypogonadal and ovariectomised female mice.

    Science.gov (United States)

    Abel, M H; Widen, A; Wang, X; Huhtaniemi, I; Pakarinen, P; Kumar, T R; Christian, H C

    2014-11-01

    To investigate the relationship between gonadotroph function and ultrastructure, we have compared, in parallel in female mice, the effects of several different mutations that perturb the hypothalamic-pituitary-gonadal axis. Specifically, serum and pituitary gonadotrophin concentrations, gonadotrophin gene expression, gonadotroph structure and number were measured. Follicle-stimulating hormone β knockout (FSHβKO), follicle-stimulating hormone receptor knockout (FSHRKO), luteinising hormone receptor knockout (LuRKO), hypogonadal (hpg) and ovariectomised mice were compared with control wild-type or heterozygote female mice. Serum levels of LH were elevated in FSHβKO and FSHRKO compared to heterozygote females, reflecting the likely decreased oestrogen production in KO females, as demonstrated by the threadlike uteri and acyclicity. As expected, there was no detectable FSH in the serum or pituitary and an absence of expression of the FSHβ subunit gene in FSHβKO mice. However, there was a significant increase in expression of the FSHβ and LHβ subunit genes in FSHRKO female mice. The morphology of FSHβKO and FSHRKO gonadotrophs was not significantly different from the control, except that secretory granules in FSHRKO gonadotrophs were larger in diameter. In LuRKO and ovariectomised mice, stimulation of LHβ and FSHβ mRNA, as well as serum protein concentrations, were reflected in subcellular changes in gonadotroph morphology, including more dilated rough endoplasmic reticula and fewer, larger secretory granules. In the gonadotophin-releasing hormone deficient hpg mouse, gonadotrophin mRNA and protein levels were significantly lower than in control mice and gonadotrophs were correspondingly smaller with less abundant endoplasmic reticula and reduced numbers of secretory granules. In summary, major differences in pituitary content and serum concentrations of the gonadotrophins LH and FSH were found between control and mutant female mice. These changes were

  1. Synthesis of Analogues of Thyroid Hormones: Nuclear Receptor Modulators

    Directory of Open Access Journals (Sweden)

    Guilherme Vieira de Castro

    2015-09-01

    Full Text Available Thyroid hormones are essential for the development and differentiation of all cells of the human body. This work reports the synthesis of some synthetic structural analogues of thyroid hormones, which may be modulators of the thyroid hormone receptor. The known compounds GC-1 (Sobetirome and CG-24 were successfully prepared and two novel analogous molecules were also synthesized by a new and efficient synthetic methodology. DOI: http://dx.doi.org/10.17807/orbital.v7i3.739  

  2. Sex hormone receptors are present in the human suprachiasmatic nucleus.

    Science.gov (United States)

    Kruijver, Frank P M; Swaab, Dick F

    2002-05-01

    The suprachiasmatic nucleus (SCN) is the clock of the brain that orchestrates circadian and circannual biological rhythms, such as the rhythms of hormones, body temperature, sleep and mood. These rhythms are frequently disturbed in menopause and even more so in dementia and can be restored in postmenopausal women by sex hormone replacement therapy (SHRT). Although it seems clear, both from clinical and experimental studies, that sex hormones influence circadian rhythms, it is not known whether this is by a direct or an indirect effect on the SCN. Therefore, using immunocytochemistry in the present study, we investigated whether the human SCN expresses sex hormone receptors in 5 premenopausal women and 5 young men. SCN neurons appeared to contain estrogen receptor-alpha (ERalpha), estrogen receptor-beta (ERbeta) and progesterone receptors. Median ratings of ER immunoreactivity per individual and per gender group revealed a statistically significantly stronger nuclear ERalpha expression pattern in female SCN neurons (p sexual dimorphic tendency was observed for nuclear ERbeta (p > 0.1) and progesterone receptors (p > 0.7). These data seem to support previously reported functional and structural SCN differences in relation to sex and sexual orientation and indicate for the first time that estrogen and progesterone may act directly on neurons of the human biological clock. In addition, the present findings provide a potential neuroendocrine mechanism by which SHRT can act to improve or restore SCN-related rhythm disturbances, such as body temperature, sleep and mood. Copyright 2002 S. Karger AG, Basel

  3. Steroid hormone receptors in male breast diseases.

    Science.gov (United States)

    Pacheco, M M; Oshima, C F; Lopes, M P; Widman, A; Franco, E L; Brentani, M M

    1986-01-01

    Estrogen (ER), progesterone (PR), glucocorticoid (GR) and androgen (AR) receptors were assayed in tumor samples from 8 cases of male breast cancer (MBC) and 20 cases of male gynecomastia. Seven out of eight (87.5%) male tumor samples had positive ER assays with values ranging from 12 to 180 fmol/mg protein. Of the seven ER positive cases of MBC, six, had positive PR activity with high titers. Positive GR and AR values were also detected in 75% of MBC cases. Concentrations of all four receptors were significantly correlated with each other. With gynecomastic tissue, the proportion of receptor-positive patients was 20% ER, 20% PR, 20% AR, and 45% GR. Except for GR, steroid receptor values for MBC individuals were significantly higher than those of gynecomastia patients.

  4. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J. (UWA); (St. Vincent); (Queensland)

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  5. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Takaaki Daimon

    Full Text Available Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs. JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.

  6. Receptors for thyrotropin-releasing hormone, thyroid-stimulating hormone, and thyroid hormones in the macaque uterus: effects of long-term sex hormone treatment.

    Science.gov (United States)

    Hulchiy, Mariana; Zhang, Hua; Cline, J Mark; Hirschberg, Angelica Lindén; Sahlin, Lena

    2012-11-01

    Thyroid gland dysfunction is associated with menstrual cycle disturbances, infertility, and increased risk of miscarriage, but the mechanisms are poorly understood. However, little is known about the regulation of these receptors in the uterus. The aim of this study was to determine the effects of long-term treatment with steroid hormones on the expression, distribution, and regulation of the receptors for thyrotropin-releasing hormone (TRHR) and thyroid-stimulating hormone (TSHR), thyroid hormone receptor α1/α2 (THRα1/α2), and THRβ1 in the uterus of surgically menopausal monkeys. Eighty-eight cynomolgus macaques were ovariectomized and treated orally with conjugated equine estrogens (CEE; n = 20), a combination of CEE and medroxyprogesterone acetate (MPA; n = 20), or tibolone (n = 28) for 2 years. The control group (OvxC; n = 20) received no treatment. Immunohistochemistry was used to evaluate the protein expression and distribution of the receptors in luminal epithelium, glands, stroma, and myometrium of the uterus. Immunostaining of TRHR, TSHR, and THRs was detected in all uterine compartments. Epithelial immunostaining of TRHR was down-regulated in the CEE + MPA group, whereas in stroma, both TRHR and TSHR were increased by CEE + MPA treatment as compared with OvxC. TRHR immunoreactivity was up-regulated, but THRα and THRβ were down-regulated, in the myometrium of the CEE and CEE + MPA groups. The thyroid-stimulating hormone level was higher in the CEE and tibolone groups as compared with OvxC, but the level of free thyroxin did not differ between groups. All receptors involved in thyroid hormone function are expressed in monkey uterus, and they are all regulated by long-term steroid hormone treatment. These findings suggest that there is a possibility of direct actions of thyroid hormones, thyroid-stimulating hormone and thyrotropin-releasing hormone on uterine function.

  7. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Watson, Christopher J.; Turkenburg, Johan P. [The University of York, Heslington, York YO10 5DD (United Kingdom); Jiráček, Jiří [Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic); Brzozowski, Andrzej M., E-mail: marek.brzozowski@york.ac.uk [The University of York, Heslington, York YO10 5DD (United Kingdom); Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6 (Czech Republic)

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  8. Metastatic Breast Cancer and Hormonal Receptor Status among a ...

    African Journals Online (AJOL)

    Background: Breast cancer is the third commonest cancer in women in Uganda. The majority of breast cancer patients in Uganda present with advanced disease. Many studies show that metastatic lesions frequently lodge in bones, lung and liver. Tumour hormone receptor status correlates with site of metastatic lesions and ...

  9. Genetic features of thyroid hormone receptors

    Indian Academy of Sciences (India)

    region of chromosome 3 and variable deletion in small cell lung cancer. Proc. Natl. Acad. Sci. USA 85, 9258–9262. Duan Q. L., Du R., Lasky-Su J., Klanderman B. J., Partch A. B.,. Peters S. P. et al. 2012 A polymorphism in the thyroid hor- mone receptor gene is associated with bronchodilator response in asthmatics Duan.

  10. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...

  11. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    Science.gov (United States)

    Yin, Yue; Li, Yin; Zhang, Weizhen

    2014-01-01

    The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed. PMID:24651458

  12. Nuclear hormone receptor architecture - form and dynamics: The 2009 FASEB Summer Conference on Dynamic Structure of the Nuclear Hormone Receptors.

    Science.gov (United States)

    McEwan, Iain J; Nardulli, Ann M

    2009-12-31

    Nuclear hormone receptors (NHRs) represent a large and diverse family of ligand-activated transcription factors involved in regulating development, metabolic homeostasis, salt balance and reproductive health. The ligands for these receptors are typically small hydrophobic molecules such as steroid hormones, thyroid hormone, vitamin D3 and fatty acid derivatives. The first NHR structural information appeared approximately 20 years ago with the solution and crystal structures of the DNA binding domains and was followed by the structure of the agonist and antagonist bound ligand binding domains of different NHR members. Interestingly, in addition to these defined structural features, it has become clear that NHRs also possess significant structural plasticity. Thus, the dynamic structure of the NHRs was the topic of a recent stimulating and informative FASEB Summer Research Conference held in Vermont.

  13. An investigation into pituitary gonadotrophic hormone synthesis, secretion, subunit gene expression and cell structure in normal and mutant male mice.

    Science.gov (United States)

    Abel, M H; Charlton, H M; Huhtaniemi, I; Pakarinen, P; Kumar, T R; Christian, H C

    2013-10-01

    To investigate brain-pituitary-gonadal inter-relationships, we have compared the effects of mutations that perturb the hypothalamic-pituitary-gonadal axis in male mice. Specifically, serum and pituitary gonadotrophin concentrations, gonadotrophin gene expression, and gonadotroph structure and number were measured. Follicle-stimulating hormone (FSH)β knockout (FSHβKO), FSH receptor knockout (FSHRKO), luteinising hormone (LH) receptor knockout (LuRKO), hypogonadal (hpg), testicular feminised (tfm) and gonadectomised mice were compared with control wild-type mice or heterozygotes. Serum levels of LH were similar in FSHβKO, FSHRKO and heterozygote males despite decreased androgen production in KO males. As expected, there was no detectable FSH in the serum or pituitary and an absence of expression of the FSHβ subunit gene in FSHβKO mice. However, there was a significant increase in expression of the common α and LHβ subunit genes in FSHRKO males. The morphology of FSHβKO and FSHRKO gonadotrophs was not significantly different from controls, except that the subpopulation of granules consisting of an electron-dense core and electron-lucent 'halo' was not observed in FSHβKO gonadotrophs and the granules were smaller in diameter. In the gonadotrophin-releasing hormone deficient hpg mouse, gonadotrophin mRNA and hormone levels were significantly lower compared to control mice and gonadotrophs were correspondingly smaller, with less abundant endoplasmic reticulum and reduced secretory granules. In LuRKO, tfm and gonadectomised mice, hyperstimulation of LHβ and FSHβ mRNA and serum protein concentrations was reflected by subcellular changes in gonadotroph morphology, including more dilated rough endoplasmic reticulum and more secretory granules distributed adjacent to the plasma membrane. In summary, major differences in pituitary content and serum concentrations of the gonadotrophins LH and FSH have been found between normal and mutant male mice. These changes are

  14. Expression of functional growth hormone receptor in a mouse L cell line infected with recombinant vaccinia virus

    NARCIS (Netherlands)

    Strous, G J; van Kerkhof, P; Verheijen, C; Rossen, J W; Liou, W; Slot, J W; Roelen, C A; Schwartz, A L

    The growth hormone receptor is a member of a large family of receptors including the receptors for prolactin and interleukins. Upon binding to one molecule of growth hormone two growth hormone receptor polypeptides dimerize. We have expressed the rabbit growth hormone receptor DNA in transfected

  15. The size of the thyroid hormone receptor in chromatin.

    Science.gov (United States)

    Gruol, D J; Kempner, E S

    1982-01-25

    We have used radiation inactivation and target theory to determine the size of the functional unit for T3 binding in rat liver chromatin. The process involves exposure of frozen chromatin samples to a beam of high energy electrons produced in a linear accelerator and subsequent measurement of the residual capacity to bind hormone. Our experiments were carried out using three forms of solubilized chromatin: 1) sonicated, containing the receptor in fragments which sedimented faster than 30 S; 2) digested by nuclease, containing the receptor in a form which sedimented at 5-6 S; 3) digested by nuclease and made 0.5 M in KCl, containing the receptor in a form which sedimented at 3.8 S. We have shown that in each sample preparation the receptor retained the ability to bind T3 with the same capacity and affinity that had previously been measured with high molecular weight chromatin. Irradiation caused a reduction in the capacity to bind T3 but did not change the affinity of the remaining receptors for the hormone. In each preparation, the radiation resulted in a simple exponential loss of binding capacity with dose, indicating that a single target size was detected. Within the variation of the measurements, the target size for each form of the receptor was the same, 59,000 daltons.

  16. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  17. Steroidal Hormone Receptor Expression in Male Breast Cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Homaei-Shandiz

    2014-01-01

    Full Text Available Introduction: The etiology of male breast cancer is unclear, but hormonal levels may play a role in development of this disease. It seems that the risk of male breast cancer related to increased lifelong exposure to estrogen or reduced androgen. The aim of this study was to investigate the expression of the steroid hormone receptors including estrogen receptor (ER and progesterone receptor (PR in Iranian cases with male breast cancer. Methods: This is a prospective review of 18 cases of male breast cancer in in Omid Hospital, Mashhad, North East of Iran, between October 2001 and October 2006. ER and PR were measured by immunohistochemistry. Clinicopathologic features and family history were obtained by interview. Data were analyzed with SPSS 13 using descriptive statistics.  Results: The median age was 63.2 year. All the cases were infiltrating ductal carcinoma. A high rate of expression of ER (88.8% and PR (66.6% was found in the studied cases. Conclusion: Cancers of the male breast are significantly more likely than cancers of the female breast to express hormonal receptors.

  18. Substantial expression of luteinizing hormone-releasing hormone (LHRH) receptor type I in human uveal melanoma

    Science.gov (United States)

    Schally, Andrew V.; Block, Norman L; Dezso, Balazs; Olah, Gabor; Rozsa, Bernadett; Fodor, Klara; Buglyo, Armin; Gardi, Janos; Berta, Andras; Halmos, Gabor

    2013-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with a very high mortality rate due to frequent liver metastases. Consequently, the therapy of uveal melanoma remains a major clinical challenge and new treatment approaches are needed. For improving diagnosis and designing a rational and effective therapy, it is essential to elucidate molecular characteristics of this malignancy. The aim of this study therefore was to evaluate as a potential therapeutic target the expression of luteinizing hormone-releasing hormone (LHRH) receptor in human uveal melanoma. The expression of LHRH ligand and LHRH receptor transcript forms was studied in 39 human uveal melanoma specimens by RT-PCR using gene specific primers. The binding charachteristics of receptors for LHRH on 10 samples were determined by ligand competition assays. The presence of LHRH receptor protein was further evaluated by immunohistochemistry. The expression of mRNA for type I LHRH receptor was detected in 18 of 39 (46%) of tissue specimens. mRNA for LHRH-I ligand could be detected in 27 of 39 (69%) of the samples. Seven of 10 samples investigated showed high affinity LHRH-I receptors. The specific presence of full length LHRH receptor protein was further confirmed by immunohistochemistry. A high percentage of uveal melanomas express mRNA and protein for type-I LHRH receptors. Our results support the merit of further investigation of LHRH receptors in human ophthalmological tumors. Since diverse analogs of LHRH are in clinical trials or are already used for the treatment of various cancers, these analogs could be considered for the LHRH receptor-based treatment of uveal melanoma. PMID:24077773

  19. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and...... process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.......A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co......-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...

  20. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  1. RECEPTOR POTENTIAL AND LIGHT-INDUCED MITOCHONDRIAL ACTIVATION IN BLOWFLY PHOTORECEPTOR MUTANTS

    NARCIS (Netherlands)

    MOJET, MH; TINBERGEN, J; STAVENGA, DG

    1991-01-01

    1. Simultaneous measurements of the receptor potential and the light-induced mitochondrial activation were performed in white-eyed blowflies Calliphora vicina, mutant chalky, and Lucilia cuprina, mutants w(F) and w'nss. The intensity dependence and the temporal dynamics were investigated. 2. The

  2. Molecular cloning and function expression of a diuretic hormone receptor from the house cricket, Acheta domesticus.

    Science.gov (United States)

    Reagan, J D

    1996-01-01

    Insect diuretic hormones regulate fluid and ion secretion and the receptors with which they interact are attractive targets for new insect control agents. Recently, a diuretic hormone receptor from the moth Manduca sexta was isolated by expression cloning and found to be a member of the calcitonin/secretin/corticotropin releasing factor family of G-protein coupled receptors [Reagan J. D. (1994) J. Biol. Chem. 269, 9-12]. Degenerate oligonucleotides were designed based upon conserved regions in this receptor family and used to isolate a diuretic hormone receptor from the house cricket, Acheta domesticus. The complementary DNA isolated encodes a protein consisting of 441 amino acids with seven putative membrane spanning regions. Interestingly, unlike the M. sexta diuretic hormone receptor, the cricket diuretic hormone receptor contains a putative signal sequence. The receptor shares 53% and 38% sequence identity with the M. sexta diuretic hormone and human corticotropin releasing factor receptors respectively. When expressed in COS-7 cells, the receptor binds A. domesticus diuretic hormone with high affinity and stimulates adenylate cyclase with high potency. Four other insect diuretic hormones are considerably less effective at stimulating adenylate cyclase in COS-7 cells transfected with the receptor. This is in contrast to the M. sexta diuretic hormone receptor which is stimulated by all five insect diuretic hormones with high potency.

  3. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival

    DEFF Research Database (Denmark)

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne

    2015-01-01

    in epithelial ovarian cancer. METHODS: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer...... in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer.......BACKGROUND AND AIMS: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival...

  4. Growth hormone-dependent phosphorylation of tyrosine 333 and/or 338 of the growth hormone receptor

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1995-01-01

    Many signaling pathways initiated by ligands that activate receptor tyrosine kinases have been shown to involve the binding of SH2 domain-containing proteins to specific phosphorylated tyrosines in the receptor. Although the receptor for growth hormone (GH) does not contain intrinsic tyrosine...

  5. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    Science.gov (United States)

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones.

  6. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    Science.gov (United States)

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  7. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex.

    Science.gov (United States)

    Záková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J; Turkenburg, Johan P; Jiráček, Jiří; Brzozowski, Andrzej M

    2014-10-01

    The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  8. Growth hormone receptor expression and function in pituitary adenomas

    DEFF Research Database (Denmark)

    Clausen, Lene R; Kristiansen, Mikkel T; Rasmussen, Lars M

    2004-01-01

    OBJECTIVE AND DESIGN: Hypopituitarism, in particular GH deficiency, is prevalent in patients with clinically nonfunctioning pituitary adenomas (NFPAs) both before and after surgery. The factors regulating the growth of pituitary adenomas in general and residual tumour tissue in particular....... CONCLUSION: GH receptors are expressed in human pituitary adenoma cells but their functional role is uncertain. GH and IGF-I do not consistently influence the proliferation of cultured pituitary adenoma cells....... are not fully characterized, and the effect of GH and IGF-I on human pituitary cell proliferation has not previously been reported. In NFPA tissue from 14 patients we evaluated GH receptor (GHR) expression and signal transduction, and the effect of GH and IGF-I exposure on cell proliferation and hormone...

  9. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Science.gov (United States)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  10. Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the thyroid hormone alpha 1-receptor protein

    NARCIS (Netherlands)

    van Beeren, H. C.; Bakker, O.; Wiersinga, W. M.

    1995-01-01

    Desethylamiodarone (DEA), the major metabolite of the potent antiarrythmic drug amiodarone, is a non-competitive inhibitor of the binding of thyroid hormone (T3) to the beta 1-thyroid hormone receptor (T3R). In the present study, we investigated whether DEA acts in a similar way with respect to the

  11. Reproductive Hormones and Their Receptors May Affect Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mengmeng Dou

    2017-11-01

    Full Text Available Background/Aims: In contrast to men, women have experienced a rapid increase in lung cancer mortality. Numerous studies have found that the sex differences in lung cancer are due to reproductive hormones. Experiments in female mice with and without ovariectomy were performed to explore the possible mechanism by which sex hormones (and their receptors influence lung cancer. Methods: Twenty-four female C57BL/6 mice aged 56-62 days were randomly divided into the ovariectomized group and the control group. In the ovariectomized group, the bilateral ovaries were removed via the dorsal approach, while the control group underwent a sham operation with bilateral ovarian fat resection at the same sites. After 3 weeks of recovery, Lewis lung cancer cells were transplanted into these mice by subcutaneous inoculation of a tumour cell suspension to establish the ovariectomized lung cancer model. Beginning on the 6th day after subcutaneous inoculation, mouse weight and transplanted tumour volume were measured every 3 days. After 3 weeks, all the mice were killed by cervical dislocation, and we measured the tumour weight. Mouse serum and tumour tissues were removed. Then, the serum levels of E2 (oestradiol and T (testosterone were detected by ELISA; the protein expression levels of AR (androgen receptor, ERα (oestrogen receptor α and ERβ (oestrogen receptor β were detected by Western Blot and IHC (immunohistochemistry; and the mRNA expression levels of AR, ERα and ERβ were detected by qRT-PCR (quantitative real-time polymerase chain reaction in the ovariectomized and control groups. Results: Compared with the control group, both mouse weight and transplanted tumour volume increased rapidly in the ovariectomized group, and the transplanted tumour weight was significantly heavier in the ovariectomized group (1.83±0.40 and 3.13±0.43, P<0.05. E2 and T serum levels decreased exponentially in the ovariectomized group, while the E2/T ratio increased compared

  12. Evolution of minimal specificity and promiscuity in steroid hormone receptors.

    Science.gov (United States)

    Eick, Geeta N; Colucci, Jennifer K; Harms, Michael J; Ortlund, Eric A; Thornton, Joseph W

    2012-01-01

    Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs), a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of selection within real

  13. Evolution of Minimal Specificity and Promiscuity in Steroid Hormone Receptors

    Science.gov (United States)

    Eick, Geeta N.; Colucci, Jennifer K.; Harms, Michael J.; Ortlund, Eric A.; Thornton, Joseph W.

    2012-01-01

    Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs), a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens—including xenobiotics—to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands—including endocrine-disrupting drugs and pollutants—and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of selection within real

  14. Evolution of minimal specificity and promiscuity in steroid hormone receptors.

    Directory of Open Access Journals (Sweden)

    Geeta N Eick

    Full Text Available Most proteins are regulated by physical interactions with other molecules; some are highly specific, but others interact with many partners. Despite much speculation, we know little about how and why specificity/promiscuity evolves in natural proteins. It is widely assumed that specific proteins evolved from more promiscuous ancient forms and that most proteins' specificity has been tuned to an optimal state by selection. Here we use ancestral protein reconstruction to trace the evolutionary history of ligand recognition in the steroid hormone receptors (SRs, a family of hormone-regulated animal transcription factors. We resurrected the deepest ancestral proteins in the SR family and characterized the structure-activity relationships by which they distinguished among ligands. We found that that the most ancient split in SR evolution involved a discrete switch from an ancient receptor for aromatized estrogens--including xenobiotics--to a derived receptor that recognized non-aromatized progestagens and corticosteroids. The family's history, viewed in relation to the evolution of their ligands, suggests that SRs evolved according to a principle of minimal specificity: at each point in time, receptors evolved ligand recognition criteria that were just specific enough to parse the set of endogenous substances to which they were exposed. By studying the atomic structures of resurrected SR proteins, we found that their promiscuity evolved because the ancestral binding cavity was larger than the primary ligand and contained excess hydrogen bonding capacity, allowing adventitious recognition of larger molecules with additional functional groups. Our findings provide an historical explanation for the sensitivity of modern SRs to natural and synthetic ligands--including endocrine-disrupting drugs and pollutants--and show that knowledge of history can contribute to ligand prediction. They suggest that SR promiscuity may reflect the limited power of

  15. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone α or β receptor gene

    Science.gov (United States)

    Itoh, Yoshiaki; Esaki, Takanori; Kaneshige, Masahiro; Suzuki, Hideyo; Cook, Michelle; Sokoloff, Louis; Cheng, Sheue-Yann; Nunez, Jacques

    2001-01-01

    Brain glucose utilization is markedly depressed in adult rats made cretinous after birth. To ascertain which subtype of thyroid hormone (TH) receptors, TRα1 or TRβ, is involved in the regulation of glucose utilization during brain development, we used the 2-[14C]deoxyglucose method in mice with a mutation in either their TRα or TRβ gene. A C insertion produced a frameshift mutation in their carboxyl terminus. These mutants lacked TH binding and transactivation activities and exhibited potent dominant negative activity. Glucose utilization in the homozygous TRβPV mutant mice and their wild-type siblings was almost identical in 19 brain regions, whereas it was markedly reduced in all brain regions of the heterozygous TRα1PV mice. These suggest that the α1 receptor mediates the TH effects in brain. Inasmuch as local cerebral glucose utilization is closely related to local synaptic activity, we also examined which thyroid hormone receptor is involved in the expression of synaptotagmin-related gene 1 (Srg1), a TH-positively regulated gene involved in the formation and function of synapses [Thompson, C. C. (1996) J. Neurosci. 16, 7832–7840]. Northern analysis showed that Srg1 expression was markedly reduced in the cerebellum of TRαPV/+ mice but not TRβPV/PV mice. These results show that the same receptor, TRα1, is involved in the regulation by TH of both glucose utilization and Srg1 expression. PMID:11481455

  16. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene.

    Science.gov (United States)

    Itoh, Y; Esaki, T; Kaneshige, M; Suzuki, H; Cook, M; Sokoloff, L; Cheng, S Y; Nunez, J

    2001-08-14

    Brain glucose utilization is markedly depressed in adult rats made cretinous after birth. To ascertain which subtype of thyroid hormone (TH) receptors, TRalpha1 or TRbeta, is involved in the regulation of glucose utilization during brain development, we used the 2-[(14)C]deoxyglucose method in mice with a mutation in either their TRalpha or TRbeta gene. A C insertion produced a frameshift mutation in their carboxyl terminus. These mutants lacked TH binding and transactivation activities and exhibited potent dominant negative activity. Glucose utilization in the homozygous TRbetaPV mutant mice and their wild-type siblings was almost identical in 19 brain regions, whereas it was markedly reduced in all brain regions of the heterozygous TRalpha1PV mice. These suggest that the alpha1 receptor mediates the TH effects in brain. Inasmuch as local cerebral glucose utilization is closely related to local synaptic activity, we also examined which thyroid hormone receptor is involved in the expression of synaptotagmin-related gene 1 (Srg1), a TH-positively regulated gene involved in the formation and function of synapses [Thompson, C. C. (1996) J. Neurosci. 16, 7832-7840]. Northern analysis showed that Srg1 expression was markedly reduced in the cerebellum of TRalpha(PV/+) mice but not TRbeta(PV/PV) mice. These results show that the same receptor, TRalpha1, is involved in the regulation by TH of both glucose utilization and Srg1 expression.

  17. Analysis of Hairless Corepressor Mutants to Characterize Molecular Cooperation with the Vitamin D Receptor in Promoting the Mammalian Hair Cycle

    Science.gov (United States)

    Hsieh, Jui-Cheng; Slater, Stephanie A.; Whitfield, G. Kerr; Dawson, Jamie L.; Hsieh, Grace; Sheedy, Craig; Haussler, Carol A.; Haussler, Mark R.

    2010-01-01

    The mammalian hair cycle requires both the vitamin D receptor (VDR) and the hairless (Hr) corepressor, each of which is expressed in the hair follicle. Hr interacts directly with VDR to repress VDR-targeted transcription. Herein, we further map the VDR-interaction domain to regions in the C-terminal half of Hr that contain two LXXLL-like pairs of motifs known to mediate contact of Hr with the RAR-related orphan receptor alpha and with the thyroid hormone receptor, respectively. Site-directed mutagenesis indicates that all four hydrophobic motifs are required for VDR transrepression by Hr. Point mutation of rat Hr at conserved residues corresponding to natural mutants causing alopecia in mice (G985W and a C-terminal deletion ΔAK) and in humans (P95S, C422Y, E611G, R640Q, C642G, N988S, D1030N, A1040T, V1074M and V1154D), as well as alteration of residues in the C-terminal Jumonji C domain implicated in histone demethylation activity (C1025G/E1027G and H1143G) revealed that all Hr mutants retained VDR association, and that transrepressor activity was selectively abrogated in C642G, G985W, N988S, D1030N, V1074M, H1143G and V1154D. Four of these latter Hr mutants (C642G, N988S, D1030N and V1154D) were found to associate normally with histone deacetylase-3. Finally, we identified three regions of human VDR necessary for association with Hr, namely residues 109–111, 134–201, and 202–303. It is concluded that Hr and VDR interact via multiple protein-protein interfaces, with Hr recruiting histone deacetylases and possibly itself catalyzing histone demethylation to effect chromatin remodeling and repress the transcription of VDR target genes that control the hair cycle. PMID:20512927

  18. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice.

    Directory of Open Access Journals (Sweden)

    Andrey A Filippov

    Full Text Available BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD₅₀ and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.

  19. The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons.

    Science.gov (United States)

    Chung, Jin-Young; Kim, Hyun-Jung; Kim, Manho

    2015-02-06

    Amyotrophic lateral sclerosis (ALS) is characterized by selective degeneration of motor neurons. The gene encoding Cu/Zn superoxide dismutase (SOD1) is responsible for 20% of familial ALS cases. Growth hormone (GH) concentrations are low in the cerebrospinal fluid of patients with ALS; however, its association with motoneuronal death is not known. We tested the neuroprotective effects of GH on human SOD-1-expressing cultured motor neurons and SOD1G93A transgenic mice. In cultured motor neurons, cytotoxicity was induced by A23187, GNSO, or homocysteine, and the effects of GH were determined by MTT, bax, PARP cleavage pattern, Hoechst nuclear staining, MAPK, and PI3K assay. In SOD-1 transgenic mice, rotarod motor performance was evaluated. Survival analysis of motoneuronal loss was done using cresyl violet, GFAP, and Bcl-2 staining. GH prevents motorneuronal death caused by GSNO and homocysteine, but not that by A23187. It activates MAPK and PI3K. GH-treated mice showed prolonged survival with improved motor performance and weight loss. GH decreased cresyl violet positive motoneuronal loss with strong Bcl-2 and less GFAP immunoreactivity. Our results demonstrate that GH has a protective effect on mutant SOD-1-expressing motor neurons.

  20. The thyroid hormone receptors modulate the skin response to retinoids.

    Directory of Open Access Journals (Sweden)

    Laura García-Serrano

    Full Text Available Retinoids play an important role in skin homeostasis and when administered topically cause skin hyperplasia, abnormal epidermal differentiation and inflammation. Thyroidal status in humans also influences skin morphology and function and we have recently shown that the thyroid hormone receptors (TRs are required for a normal proliferative response to 12-O-tetradecanolyphorbol-13-acetate (TPA in mice.We have compared the epidermal response of mice lacking the thyroid hormone receptor binding isoforms TRα1 and TRβ to retinoids and TPA. Reduced hyperplasia and a decreased number of proliferating cells in the basal layer in response to 9-cis-RA and TPA were found in the epidermis of TR-deficient mice. Nuclear levels of proteins important for cell proliferation were altered, and expression of keratins 5 and 6 was also reduced, concomitantly with the decreased number of epidermal cell layers. In control mice the retinoid (but not TPA induced parakeratosis and diminished expression of keratin 10 and loricrin, markers of early and terminal epidermal differentiation, respectively. This reduction was more accentuated in the TR deficient animals, whereas they did not present parakeratosis. Therefore, TRs modulate both the proliferative response to retinoids and their inhibitory effects on skin differentiation. Reduced proliferation, which was reversed upon thyroxine treatment, was also found in hypothyroid mice, demonstrating that thyroid hormone binding to TRs is required for the normal response to retinoids. In addition, the mRNA levels of the pro-inflammatory cytokines TNFα and IL-6 and the chemotactic proteins S1008A and S1008B were significantly elevated in the skin of TR knock-out mice after TPA or 9-cis-RA treatment and immune cell infiltration was also enhanced.Since retinoids are commonly used for the treatment of skin disorders, these results demonstrating that TRs regulate skin proliferation, differentiation and inflammation in response to

  1. Nuclear Import and Export of the Thyroid Hormone Receptor.

    Science.gov (United States)

    Zhang, Jibo; Roggero, Vincent R; Allison, Lizabeth A

    2018-01-01

    The thyroid hormone receptors, TRα1 and TRβ1, are members of the nuclear receptor superfamily that forms one of the most abundant classes of transcription factors in multicellular organisms. Although primarily localized to the nucleus, TRα1 and TRβ1 shuttle rapidly between the nucleus and cytoplasm. The fine balance between nuclear import and export of TRs has emerged as a critical control point for modulating thyroid hormone-responsive gene expression. Mutagenesis studies have defined two nuclear localization signal (NLS) motifs that direct nuclear import of TRα1: NLS-1 in the hinge domain and NLS-2 in the N-terminal A/B domain. Three nuclear export signal (NES) motifs reside in the ligand-binding domain. A combined approach of shRNA-mediated knockdown and coimmunoprecipitation assays revealed that nuclear entry of TRα1 is facilitated by importin 7, likely through interactions with NLS-2, and importin β1 and the adapter importin α1 interacting with both NLS-1 and NLS-2. Interestingly, TRβ1 lacks NLS-2 and nuclear import depends solely on the importin α1/β1 heterodimer. Heterokaryon and fluorescence recovery after photobleaching shuttling assays identified multiple exportins that play a role in nuclear export of TRα1, including CRM1 (exportin 1), and exportins 4, 5, and 7. Even single amino acid changes in TRs dramatically alter their intracellular distribution patterns. We conclude that mutations within NLS and NES motifs affect nuclear shuttling activity, and propose that TR mislocalization contributes to the development of some types of cancer and Resistance to Thyroid Hormone syndrome. © 2018 Elsevier Inc. All rights reserved.

  2. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  3. Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer.

    Science.gov (United States)

    Turner, Nicholas C; Ro, Jungsil; André, Fabrice; Loi, Sherene; Verma, Sunil; Iwata, Hiroji; Harbeck, Nadia; Loibl, Sibylle; Huang Bartlett, Cynthia; Zhang, Ke; Giorgetti, Carla; Randolph, Sophia; Koehler, Maria; Cristofanilli, Massimo

    2015-07-16

    Growth of hormone-receptor-positive breast cancer is dependent on cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), which promote progression from the G1 phase to the S phase of the cell cycle. We assessed the efficacy of palbociclib (an inhibitor of CDK4 and CDK6) and fulvestrant in advanced breast cancer. This phase 3 study involved 521 patients with advanced hormone-receptor-positive, human epidermal growth factor receptor 2-negative breast cancer that had relapsed or progressed during prior endocrine therapy. We randomly assigned patients in a 2:1 ratio to receive palbociclib and fulvestrant or placebo and fulvestrant. Premenopausal or perimenopausal women also received goserelin. The primary end point was investigator-assessed progression-free survival. Secondary end points included overall survival, objective response, rate of clinical benefit, patient-reported outcomes, and safety. A preplanned interim analysis was performed by an independent data and safety monitoring committee after 195 events of disease progression or death had occurred. The median progression-free survival was 9.2 months (95% confidence interval [CI], 7.5 to not estimable) with palbociclib-fulvestrant and 3.8 months (95% CI, 3.5 to 5.5) with placebo-fulvestrant (hazard ratio for disease progression or death, 0.42; 95% CI, 0.32 to 0.56; Ppalbociclib-fulvestrant group were neutropenia (62.0%, vs. 0.6% in the placebo-fulvestrant group), leukopenia (25.2% vs. 0.6%), anemia (2.6% vs. 1.7%), thrombocytopenia (2.3% vs. 0%), and fatigue (2.0% vs. 1.2%). Febrile neutropenia was reported in 0.6% of palbociclib-treated patients and 0.6% of placebo-treated patients. The rate of discontinuation due to adverse events was 2.6% with palbociclib and 1.7% with placebo. Among patients with hormone-receptor-positive metastatic breast cancer who had progression of disease during prior endocrine therapy, palbociclib combined with fulvestrant resulted in longer progression-free survival than fulvestrant alone

  4. Biological response to hormonal manipulation in oestrogen receptor positive ductal carcinoma in situ of the breast

    National Research Council Canada - National Science Library

    Boland, G P; McKeown, A; Chan, K C; Prasad, R; Knox, W F; Bundred, N J

    2003-01-01

    ...) to reduce local recurrence, despite 50% of lesions being oestrogen receptor (OR) negative. We have investigated the response to hormone manipulation in DCIS by studying changes in epithelial proliferation and progesterone receptor...

  5. Persistent signaling by thyrotropin-releasing hormone receptors correlates with G-protein and receptor levels

    Science.gov (United States)

    Boutin, Alisa; Allen, Michael D.; Neumann, Susanne; Gershengorn, Marvin C.

    2012-01-01

    G-protein-coupled receptors with dissociable agonists for thyrotropin, parathyroid hormone, and sphingosine-1-phosphate were found to signal persistently hours after agonist withdrawal. Here we show that mouse thyrotropin-releasing hormone (TRH) receptors, subtypes 2 and 1(TRH-R2 and TRH-R1), can signal persistently in HEK-EM293 cells under appropriate conditions, but TRH-R2 exhibits higher persistent signaling activity. Both receptors couple primarily to Gαq/11. To gain insight into the mechanism of persistent signaling, we compared proximal steps of inositolmonophosphate (IP1) signaling by TRH-Rs. Persistent signaling was not caused by slower dissociation of TRH from TRH-R2 (t1/2=77±8.1 min) compared with TRH-R1 (t1/2=82±12 min) and was independent of internalization, as inhibition of internalization did not affect persistent signaling (115% of control), but required continuously activated receptors, as an inverse agonist decreased persistent signaling by 60%. Gαq/11 knockdown decreased persistent signaling by TRH-R2 by 82%, and overexpression of Gαq/11 induced persistent signaling in cells expressing TRH-R1. Lastly, persistent signaling was induced in cells expressing high levels of TRH-R1. We suggest that persistent signaling by TRHRs is exhibited when sufficient levels of agonist/receptor/G-protein complexes are established and maintained and that TRH-R2 forms and maintains these complexes more efficiently than TRH-R1.—Boutin, A., Allen, M. D., Neumann, S., Gershengorn, M. C. Persistent signaling by thyrotropin-releasing hormone receptors correlates with G-protein and receptor levels. PMID:22593547

  6. The c-erb-A protein is a high-affinity receptor for thyroid hormone

    DEFF Research Database (Denmark)

    Sap, J; Muñoz, A; Damm, K

    1987-01-01

    Hormone binding and localization of the c-erb-A protein suggest that it is a receptor for thyroid hormone, a nuclear protein that binds to DNA and activates transcription. In contrast, the product of the viral oncogene v-erb-A is defective in binding the hormone but is still located in the nucleus....

  7. Unsaturated fatty acids prevent desensitization of the human growth hormone secretagogue receptor by blocking its internalization

    NARCIS (Netherlands)

    P.J.D. Delhanty (Patric); A. Kerkwijk (Anke); M. Huisman (Martijn); B. van de Zande (Bedette); M. Verhoef-Post (Miriam); C. Gauna (Carlotta); L.J. Hofland (Leo); A.P.N. Themmen (Axel); A-J. van der Lely (Aart-Jan)

    2010-01-01

    textabstractThe composition of the plasma membrane affects the responsiveness of cells to metabolically important hormones such as insulin and vasoactive intestinal peptide. Ghrelin is a metabolically regulated hormone that activates the G protein-coupled receptor GH secretagogue receptor type 1a

  8. The SOCS2 Ubiquitin Ligase Complex Regulates Growth Hormone Receptor Levels

    DEFF Research Database (Denmark)

    Vesterlund, Mattias; Zadjali, Fahad; Persson, Torbjörn

    2011-01-01

    Growth Hormone is essential for the regulation of growth and the homeostatic control of intermediary metabolism. GH actions are mediated by the Growth Hormone Receptor; a member of the cytokine receptor super family that signals chiefly through the JAK2/STAT5 pathway. Target tissue responsiveness...

  9. Characterization of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus in a polarized cell model

    NARCIS (Netherlands)

    Robben, J.H.; Knoers, N.V.A.M.; Deen, P.M.T.

    2005-01-01

    X-linked nephrogenic diabetes insipidus (NDI) is caused by mutations in the gene encoding the vasopressin V2 receptor (V2R). For the development of a tailored therapy for NDI, knowledge of the cellular fate of V2R mutants is needed. It would be useful when this fate could be predicted from the

  10. Molecular cloning, genomic organization, and developmental regulation of a novel receptor from Drosophila melanogaster structurally related to members of the thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone/choriogonadotropin receptor family from mammals

    DEFF Research Database (Denmark)

    Hauser, F; Nothacker, H P; Grimmelikhuijzen, C J

    1997-01-01

    ); follicle-stimulating hormone (FSH); luteinizing hormone/choriogonadotropin (LH/CG)) receptor family from mammals. This homology includes a very large, extracellular N terminus (20% sequence identity with rat TSH, 19% with rat FSH, and 20% with the rat LH/CG receptor) and a seven-transmembrane region (53...

  11. Transformation of a dwarf Arabidopsis mutant illustrates gibberellin hormone physiology and the function of a Green Revolution gene.

    Science.gov (United States)

    Molina, Isabel; Weber, Katrin; Dos Santos, Déborah Y Alves Cursino; Ohlrogge, John

    2009-05-01

    The introduction of dwarfing traits into crops was a major factor in increased grain yields during the "Green Revolution." In most cases those traits were the consequence of altered synthesis or response to the gibberellin (GA) plant hormones. Our current understanding of GA synthesis and physiology has been facilitated by the characterization of mutants. To introduce concepts about GA hormone physiology and plant transformation in an undergraduate laboratory course we have used ga5, a semi-dwarf Arabidopsis mutant with reduced activity of GA 20-oxidase. In this laboratory exercise, Arabidopsis ga5 mutant plants are transformed by the floral-dip method using Agrobacterium tumefaciens carrying plasmid constructs conferring kanamycin resistance and containing the GA5 gene. Within 4 weeks, seeds of transformed plants can be easily screened by antibiotic resistance on plates. After transfer to soil the dwarf mutant plants transformed with a wild-type version of the gene show normal size. In addition to offering a visual understanding of the effect of GA on stem elongation, students learn additional techniques in this experiment, including PCR and agarose gel electrophoresis. This experiment is cost effective and can be completed within a 4-month term. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  12. Cancer care Ontario guideline recommendations for hormone receptor testing in breast cancer.

    Science.gov (United States)

    Nofech-Mozes, S; Vella, E T; Dhesy-Thind, S; Hanna, W M

    2012-12-01

    Hormone receptor testing (oestrogen and progesterone) in breast cancer at the time of primary diagnosis is used to guide treatment decisions. Accurate and standardised testing methods are critical to ensure the proper classification of the patient's hormone receptor status. Recommendations were developed to improve the quality and accuracy of hormone receptor testing based on a systematic review conducted jointly by the American Society of Clinical Oncology/College of American Pathologists and Cancer Care Ontario's Program in Evidence-Based Care. Evidence-based recommendations were formulated to set standards for optimising immunohistochemistry in assessing hormone receptor status, as well as assuring quality and proficiency between and within laboratories. A formal external review was conducted to validate the relevance of these recommendations. It is anticipated that widespread adoption of these guidelines will further improve the accuracy of hormone receptor testing in Canada. Copyright © 2012 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Gene specific actions of thyroid hormone receptor subtypes.

    Directory of Open Access Journals (Sweden)

    Jean Z Lin

    Full Text Available There are two homologous thyroid hormone (TH receptors (TRs α and β, which are members of the nuclear hormone receptor (NR family. While TRs regulate different processes in vivo and other highly related NRs regulate distinct gene sets, initial studies of TR action revealed near complete overlaps in their actions at the level of individual genes. Here, we assessed the extent that TRα and TRβ differ in target gene regulation by comparing effects of equal levels of stably expressed exogenous TRs +/- T(3 in two cell backgrounds (HepG2 and HeLa. We find that hundreds of genes respond to T(3 or to unliganded TRs in both cell types, but were not able to detect verifiable examples of completely TR subtype-specific gene regulation. TR actions are, however, far from identical and we detect TR subtype-specific effects on global T(3 response kinetics in HepG2 cells and many examples of TR subtype specificity at the level of individual genes, including effects on magnitude of response to TR +/- T(3, TR regulation patterns and T(3 dose response. Cycloheximide (CHX treatment confirms that at least some differential effects involve verifiable direct TR target genes. TR subtype/gene-specific effects emerge in the context of widespread variation in target gene response and we suggest that gene-selective effects on mechanism of TR action highlight differences in TR subtype function that emerge in the environment of specific genes. We propose that differential TR actions could influence physiologic and pharmacologic responses to THs and selective TR modulators (STRMs.

  14. Sleep in mice with nonfunctional growth hormone-releasing hormone receptors.

    Science.gov (United States)

    Obal, Ferenc; Alt, Jeremiah; Taishi, Ping; Gardi, Janos; Krueger, James M

    2003-01-01

    The role of the somatotropic axis in sleep regulation was studied by using the lit/lit mouse with nonfunctional growth hormone (GH)-releasing hormone (GHRH) receptors (GHRH-Rs) and control heterozygous C57BL/6J mice, which have a normal phenotype. During the light period, the lit/lit mice displayed significantly less spontaneous rapid eye movement sleep (REMS) and non-REMS (NREMS) than the controls. Intraperitoneal injection of GHRH (50 microg/kg) failed to promote sleep in the lit/lit mice, whereas it enhanced NREMS in the heterozygous mice. Subcutaneous infusion of GH replacement stimulated weight gain, increased the concentration of plasma insulin-like growth factor-1 (IGF-1), and normalized REMS, but failed to restore normal NREMS in the lit/lit mice. The NREMS response to a 4-h sleep deprivation was attenuated in the lit/lit mice. In control mice, intraperitoneal injection of ghrelin (400 microg/kg) elicited GH secretion and promoted NREMS, and intraperitoneal administration of the somatostatin analog octretotide (Oct, 200 microg/kg) inhibited sleep. In contrast, these responses were missing in the lit/lit mice. The results suggest that GH promotes REMS whereas GHRH stimulates NREMS via central GHRH-Rs and that GHRH is involved in the mediation of the sleep effects of ghrelin and somatostatin.

  15. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis.

    Science.gov (United States)

    Ferrandon, Sébastien; Feinstein, Timothy N; Castro, Marian; Wang, Bin; Bouley, Richard; Potts, John T; Gardella, Thomas J; Vilardaga, Jean-Pierre

    2009-10-01

    Cell signaling mediated by the G protein-coupled parathyroid hormone receptor type 1 (PTHR) is fundamental to bone and kidney physiology. It has been unclear how the two ligand systems--PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine--can effectively operate with only one receptor and trigger different durations of the cAMP responses. Here we analyze the ligand response by measuring the kinetics of activation and deactivation for each individual reaction step along the PTHR signaling cascade. We found that during the time frame of G protein coupling and cAMP production, PTHrP(1-36) action was restricted to the cell surface, whereas PTH(1-34) had moved to internalized compartments where it remained associated with the PTHR and Galpha(s), potentially as a persistent and active ternary complex. Such marked differences suggest a mechanism by which PTH and PTHrP induce differential responses, and these results indicate that the central tenet that cAMP production originates exclusively at the cell membrane must be revised.

  16. Estrogen and Progesterone hormone receptor expression in oral cavity cancer.

    Science.gov (United States)

    Grimm, M; Biegner, T; Teriete, P; Hoefert, S; Krimmel, M; Munz, A; Reinert, S

    2016-09-01

    Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC.

  17. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    DEFF Research Database (Denmark)

    Vibede, N; Hauser, Frank; Williamson, M

    1998-01-01

    Abstract Cnidarians (e.g., sea anemones and corals) are the lowest animal group having a nervous system. Previously, we cloned a receptor from sea anemones that showed a strong structural similarity to the glycoprotein hormone (TSH, FSH, LH/CG) receptors from mammals. Here, we determine the genomic...... organization of this sea anemone receptor. The receptor gene contains eight introns that are all localized within a region coding for the large extracellular N terminus. These introns occur at the same positions and have the same intron phasing as eight introns in the genes coding for the mammalian...... glycoprotein hormone receptors, indicating that the cnidarian and mammalian receptor genes are evolutionarily related. As with the mammalian receptor genes, the sea anemone receptor gene does not contain introns in the region coding for the transmembrane and intracellular domains. Southern blot analyses show...

  18. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter Mct8

    NARCIS (Netherlands)

    S. Horn (Sigrun); S. Kersseboom (Simone); S. Mayerl (Steffen); J. Müller (Julia); C. Groba (Claudia); M. Trajkovic-Arsic (Marija); T. Ackermann (Tobias); T.J. Visser (Theo); H. Heuer (Heike)

    2013-01-01

    textabstractThe monocarboxylate transporter 8 (MCT8) plays a critical role in mediating the uptake of thyroid hormones (THs) into the brain. In patients, inactivating mutations in the MCT8 gene are associated with a severe form of psychomotor retardation and abnormal serum TH levels. Here, we

  19. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    Science.gov (United States)

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  20. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    Science.gov (United States)

    Bucci, Ines; Giuliani, Cesidio; Napolitano, Giorgio

    2017-01-01

    Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH) receptor (TSHR) antibodies (TRAbs) are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs), blocking (TBAbs), or neutral (N-TRAbs) depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy) occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery) before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism) are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and fetal

  1. Thyroid-Stimulating Hormone Receptor Antibodies in Pregnancy: Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Ines Bucci

    2017-06-01

    Full Text Available Graves’ disease is the most common cause of thyrotoxicosis in women of childbearing age. Approximately 1% of pregnant women been treated before, or are being treated during pregnancy for Graves’ hyperthyroidism. In pregnancy, as in not pregnant state, thyroid-stimulating hormone (TSH receptor (TSHR antibodies (TRAbs are the pathogenetic hallmark of Graves’ disease. TRAbs are heterogeneous for molecular and functional properties and are subdivided into activating (TSAbs, blocking (TBAbs, or neutral (N-TRAbs depending on their effect on TSHR. The typical clinical features of Graves’ disease (goiter, hyperthyroidism, ophthalmopathy, dermopathy occur when TSAbs predominate. Graves’ disease shows some peculiarities in pregnancy. The TRAbs disturb the maternal as well as the fetal thyroid function given their ability to cross the placental barrier. The pregnancy-related immunosuppression reduces the levels of TRAbs in most cases although they persist in women with active disease as well as in women who received definitive therapy (radioiodine or surgery before pregnancy. Changes of functional properties from stimulating to blocking the TSHR could occur during gestation. Drug therapy is the treatment of choice for hyperthyroidism during gestation. Antithyroid drugs also cross the placenta and therefore decrease both the maternal and the fetal thyroid hormone production. The management of Graves’ disease in pregnancy should be aimed at maintaining euthyroidism in the mother as well as in the fetus. Maternal and fetal thyroid dysfunction (hyperthyroidism as well as hypothyroidism are in fact associated with several morbidities. Monitoring of the maternal thyroid function, TRAbs measurement, and fetal surveillance are the mainstay for the management of Graves’ disease in pregnancy. This review summarizes the biochemical, immunological, and therapeutic aspects of Graves’ disease in pregnancy focusing on the role of the TRAbs in maternal and

  2. Nuclear hormone receptor signals as new therapeutic targets for urothelial carcinoma.

    Science.gov (United States)

    Miyamoto, H; Zheng, Y; Izumi, K

    2012-01-01

    Unlike prostate and breast cancers, urothelial carcinoma of the urinary bladder is not yet considered as an endocrine-related neoplasm, and hormonal therapy for bladder cancer remains experimental. Nonetheless, there is increasing evidence indicating that nuclear hormone receptor signals are implicated in the development and progression of bladder cancer. Androgen-mediated androgen receptor (AR) signals have been convincingly shown to induce bladder tumorigenesis. Androgens also promote the growth of AR-positive bladder cancer cells, although it is controversial whether AR plays a dominant role in bladder cancer progression. Both stimulatory and inhibitory functions of estrogen receptor signals in bladder cancer have been reported. Various studies have also demonstrated the involvement of other nuclear receptors, including progesterone receptor, glucocorticoid receptor, vitamin D receptor, and retinoid receptors, as well as some orphan receptors, in bladder cancer. This review summarizes and discusses available data suggesting the modulation of bladder carcinogenesis and cancer progression via nuclear hormone receptor signaling pathways. These pathways have the potential to be an extremely important area of bladder cancer research, leading to the development of effective chemopreventive/therapeutic approaches, using hormonal manipulation. Considerable uncertainty remains regarding the selection of patients who are likely to benefit from hormonal therapy and optimal options for the treatment.

  3. Low intelligence but not attention deficit hyperactivity disorder is associated with resistance to thyroid hormone caused by mutation R316H in the thyroid hormone receptor {beta} gene

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, R.E.; Stein, M.A.; Chyna, B.; Phillips, W.; O`Brien, T.; Gutermuth, L.; Refetoff, S. [Univ. of Chicago, IL (United States); Duck, S.C. [Northwestern Univ. Medical School/Evanston Hospital, Evanston, IL (United States)

    1994-06-01

    Resistance to thyroid hormone (RTH) is a syndrome of reduced responsiveness of tissues to thyroid hormone. The clinical manifestations are variable and 46-50% of children with RTH have attention deficit hyperactivity disorder (ADD). The authors present a new family with RTH (F120) found to have a mutation R316H in the thyroid hormone receptor {beta} (TR{beta}) gene identical for that reported in an unrelated family. Assignment of the mutant allele and haplotyping based on CA repeat polymorphism were done on 16 family members. Semistructured diagnostic interviews and psychometric testing were used to determine the psychiatric diagnosis of 12 family members by examiners blinded to the genotype. Three subjects were identified to have the R316H allele as well as mildly elevated free T{sub 4} index (168 {+-} 12; normal range 77-135) and nonsuppressed TSH (4.1 {+-} 1.7 mU/L). Only 2 of the subjects with RTH were found to have ADD, while one family member homozygous for the wild type TR{beta} and normal thyroid function tests also had ADD. Unaffected family members had higher full scale intelligence quotients ({vert_bar}Q) (93 {+-} 7) than any of the 3 family members with RTH (77 {+-} 5, p = 0.006). These data do not support the genetic linkage of ADD and RTH, but do suggest that RTH is associated with lower IQ scores that may confer a high likelihood of exhibiting ADD symptoms. 20 refs., 2 figs., 2 tabs.

  4. Hormone receptors in gills of smolting Atlantic salmon, Salmo salar

    DEFF Research Database (Denmark)

    Kiilerich, Pia; Kristiansen, Karsten; Madsen, Steffen

    2007-01-01

    This is the first study to report concurrent dynamics in mRNA expression of growth hormone receptor (GHR), prolactin receptor (PRLR), gluco- and mineralocorticoid receptor (GR and MR) and the 11beta-hydroxysteroid dehydrogenase type-2 enzyme (11beta-HSD2) in Atlantic salmon (Salmo salar) gill...

  5. Evaluating Serum Markers for Hormone Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Michèl Schummer

    Full Text Available Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. Death rates have been declining, largely as a result of early detection through mammography and improved treatment, but mammographic screening is controversial because of over-diagnosis of breast disease that might not require treatment, and under-diagnosis of cancer in women with dense breasts. Breast cancer screening could be improved by pairing mammography with a tumor circulating marker, of which there are currently none. Given genomic similarities between the basal breast cancer subtype and serous ovarian cancer, and given our success in identifying circulating markers for ovarian cancer, we investigated the performance in hormone receptor-negative breast cancer detection of both previously identified ovarian serum markers and circulating markers associated with transcripts that were differentially expressed in breast cancer tissue compared to healthy breast tissue from reduction mammaplasties.We evaluated a total of 15 analytes (13 proteins, 1 miRNA, 1 autoantibody in sera drawn at or before breast cancer surgery from 43 breast cancer cases (28 triple-negative-TN-and 15 hormone receptor-negative-HRN-/ HER2-positive and 87 matched controls.In the analysis of our whole cohort of breast cancer cases, autoantibodies to TP53 performed significantly better than the other selected 14 analytes showing 25.6% and 34.9% sensitivity at 95% and 90% specificity respectively with AUC: 0.7 (p<0.001. The subset of 28 TN cancers showed very similar results. We observed no correlation between anti-TP53 and the 14 other markers; however, anti-TP53 expression correlated with Body-Mass-Index. It did not correlate with tumor size, positive lymph nodes, tumor stage, the presence of metastases or recurrence.None of the 13 serum proteins nor miRNA 135b identified women with HRN or TN breast cancer. TP53 autoantibodies identified women with HRN breast

  6. Sorafenib inhibits imatinib-resistant KIT and platelet-derived growth factor receptor beta gatekeeper mutants.

    Science.gov (United States)

    Guida, Teresa; Anaganti, Suresh; Provitera, Livia; Gedrich, Richard; Sullivan, Elizabeth; Wilhelm, Scott M; Santoro, Massimo; Carlomagno, Francesca

    2007-06-01

    Targeting of KIT and platelet-derived growth factor receptor (PDGFR) tyrosine kinases by imatinib is an effective anticancer strategy. However, mutations of the gatekeeper residue (T670 in KIT and T681 in PDGFRbeta) render the two kinases resistant to imatinib. The aim of this study was to evaluate whether sorafenib (BAY 43-9006), a multitargeted ATP-competitive inhibitor of KIT and PDGFR, was active against imatinib-resistant KIT and PDGFRbeta kinases. We used in vitro kinase assays and immunoblot with phosphospecific antibodies to determine the activity of sorafenib on KIT and PDGFRbeta kinases. We also exploited reporter luciferase assays to measure the effects of sorafenib on KIT and PDGFRbeta downstream signaling events. The activity of sorafenib on interleukin-3-independent proliferation of Ba/F3 cells expressing oncogenic KIT or its imatinib-resistant T670I mutant was also tested. Sorafenib efficiently inhibited gatekeeper mutants of KIT and PDGFRbeta (IC(50) for KIT T670I, 60 nmol/L; IC(50) for PDGFRbeta T681I, 110 nmol/L). Instead, it was less active against activation loop mutants of the two receptors (IC(50) for KIT D816V, 3.8 micromol/L; IC(50) for PDGFRbeta D850V, 1.17 micromol/L) that are also imatinib-resistant. Sorafenib blocked receptor autophosphorylation and signaling of KIT and PDGFRbeta gatekeeper mutants in intact cells as well as activation of AP1-responsive and cyclin D1 gene promoters, respectively. Finally, the compound inhibited KIT-dependent proliferation of Ba/F3 cells expressing the oncogenic KIT mutant carrying the T670I mutation. Sorafenib might be a promising anticancer agent for patients carrying KIT and PDGFRbeta gatekeeper mutations.

  7. Genetic Algorithm Managed Peptide Mutant Screening: Optimizing Peptide Ligands for Targeted Receptor Binding.

    Science.gov (United States)

    King, Matthew D; Long, Thomas; Andersen, Timothy; McDougal, Owen M

    2016-12-27

    This study demonstrates the utility of genetic algorithms to search exceptionally large and otherwise intractable mutant libraries for sequences with optimal binding affinities for target receptors. The Genetic Algorithm Managed Peptide Mutant Screening (GAMPMS) program was used to search an α-conotoxin (α-CTx) MII mutant library of approximately 41 billion possible peptide sequences for those exhibiting the greatest binding affinity for the α3β2-nicotinic acetylcholine receptor (nAChR) isoform. A series of top resulting peptide ligands with high sequence homology was obtained, with each mutant having an estimated ΔGbind approximately double that of the potent native α-CTx MII ligand. A consensus sequence from the top GAMPMS results was subjected to more rigorous binding free energy calculations by molecular dynamics and compared to α-CTx MII and other related variants for binding with α3β2-nAChR. In this study, the efficiency of GAMPMS to substantially reduce the sample population size through evolutionary selection criteria to produce ligands with higher predicted binding affinity is demonstrated.

  8. Self-compatible B mutants in coprinus with altered pheromone-receptor specificities.

    Science.gov (United States)

    Olesnicky, N S; Brown, A J; Honda, Y; Dyos, S L; Dowell, S J; Casselton, L A

    2000-01-01

    A successful mating in the mushroom Coprinus cinereus brings together a compatible complement of pheromones and G-protein-coupled receptors encoded by multiallelic genes at the B mating-type locus. Rare B gene mutations lead to constitutive activation of B-regulated development without the need for mating. Here we characterize a mutation that arose in the B6 locus and show that it generates a mutant receptor with a single amino acid substitution (R96H) at the intracellular end of transmembrane domain III. Using a heterologous yeast assay and synthetic pheromones we show that the mutation does not make the receptor constitutively active but permits it to respond inappropriately to a normally incompatible pheromone encoded within the same B6 locus. Parallel experiments carried out in Coprinus showed that a F67W substitution in this same pheromone enabled it to activate the normally incompatible wild-type receptor. Together, our experiments show that a single amino acid replacement in either pheromone or receptor can deregulate the specificity of ligand-receptor recognition and confer a self-compatible B phenotype. In addition, we use the yeast assay to demonstrate that different receptors and pheromones found at a single B locus belong to discrete subfamilies within which receptor activation cannot normally occur. PMID:11063682

  9. Common non-hormone binding component in non-transformed chick oviduct receptors of four steroid hormones.

    Science.gov (United States)

    Joab, I; Radanyi, C; Renoir, M; Buchou, T; Catelli, M G; Binart, N; Mester, J; Baulieu, E E

    Steroid hormones produce a response in target cells by binding to hormone-specific soluble receptors, which undergo a transformational change, leading to their interaction with chromatin and to modified gene expression. In a previous paper, we described a monoclonal antibody, BF4, that specifically recognizes and binds the non-transformed '8S' form of chicken oviduct progesterone receptor (8S-PR). We now show that BF4 does not form an immune complex with the 4S transformed form of 3H-progestin-labelled progesterone receptor, but does interact with the 8S non-transformed forms of the oestrogen, androgen and glucocorticosteroid receptors. Our results suggest that the antigenic determinant recognized by BF4 is present on a non-hormone binding unit, which we identify as a polypeptide of molecular weight (MW) 90,000 in the case of the progesterone receptor, and that this unit is common to other 8S non-transformed chicken steroid receptors.

  10. Growth hormone receptor/binding protein: physiology and function.

    Science.gov (United States)

    Herington, A C; Ymer, S I; Stevenson, J L; Roupas, P

    1994-07-01

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular form(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR.

  11. Growth hormone receptor/binding protein: Physiology and function

    Energy Technology Data Exchange (ETDEWEB)

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P. [Royal Children`s Hospital, Melbourne (Australia)

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  12. Iron uptake from plasma transferrin by a transferrin receptor 2 mutant mouse model of haemochromatosis.

    Science.gov (United States)

    Chua, Anita C G; Delima, Roheeth D; Morgan, Evan H; Herbison, Carly E; Tirnitz-Parker, Janina E E; Graham, Ross M; Fleming, Robert E; Britton, Robert S; Bacon, Bruce R; Olynyk, John K; Trinder, Debbie

    2010-03-01

    Hereditary haemochromatosis type 3 is caused by mutations in transferrin receptor (TFR) 2. TFR2 has been shown to mediate iron transport in vitro and regulate iron homeostasis. The aim of this study was to determine the role of Tfr2 in iron transport in vivo using a Tfr2 mutant mouse. Tfr2 mutant and wild-type mice were injected intravenously with (59)Fe-transferrin and tissue (59)Fe uptake was measured. Tfr1, Tfr2 and ferroportin expression was measured by real-time PCR and Western blot. Cellular localisation of ferroportin was determined by immunohistochemistry. Transferrin-bound iron uptake by the liver and spleen in Tfr2 mutant mice was reduced by 20% and 65%, respectively, whilst duodenal and renal uptake was unchanged compared with iron-loaded wild-type mice. In Tfr2 mutant mice, liver Tfr2 protein was absent, whilst ferroportin protein was increased in non-parenchymal cells and there was a low level of expression in hepatocytes. Tfr1 expression was unchanged compared with iron-loaded wild-type mice. Splenic Tfr2 protein expression was absent whilst Tfr1 and ferroportin protein expression was increased in Tfr2 mutant mice compared with iron-loaded wild-type mice. A small reduction in hepatic transferrin-bound iron uptake in Tfr2 mutant mice suggests that Tfr2 plays a minor role in liver iron transport and its primary role is to regulate iron metabolism. Increased ferroportin expression due to decreased hepcidin mRNA levels is likely to be responsible for impaired splenic iron uptake in Tfr2 mutant mice. Copyright (c) 2009 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected...... of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1...... magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. We conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin...

  14. Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone beta 1-receptor protein

    NARCIS (Netherlands)

    Bakker, O.; van Beeren, H. C.; Wiersinga, W. M.

    1994-01-01

    It has been hypothesized that amiodarone (A), a potent antiarrythmic and antianginal drug, induces a local hypothyroid-like condition in extrathyroidal tissues. This might be related to competitive antagonism of A for the thyroid hormone receptor reported in some studies but denied in others. These

  15. Evidence for association of the cloned liver growth hormone receptor with a tyrosine kinase

    DEFF Research Database (Denmark)

    Wang, X; Uhler, M D; Billestrup, N

    1992-01-01

    in a variety of cell types. The finding that the level of phosphorylation of GH receptor appears to vary with cell type is consistent with the cloned liver GH receptor being a substrate for an associated tyrosine kinase and with the amount of such a GH receptor-associated tyrosine kinase being cell type-specific.......The ability of the cloned liver growth hormone (GH) receptor, when expressed in mammalian cell lines, to copurify with tyrosine kinase activity and be tyrosyl phosphorylated was examined. 125I-human growth hormone-GH receptor complexes isolated from COS-7 cells transiently expressing high levels...... of the cloned liver GH receptor bound to anti-phosphotyrosine antibody, suggesting that the cloned GH receptor is tyrosyl phosphorylated in vivo. GH-GH receptor complexes purified from transfected COS-7 cells using anti-GH antibody incorporated 32P when incubated with [gamma-32P]ATP, indicating association...

  16. Melanin concentrating hormone receptor 1 (MCHR1) antagonists - Still a viable approach for obesity treatment?

    DEFF Research Database (Denmark)

    Högberg, T.; Frimurer, T.M.; Sasmal, P.K.

    2012-01-01

    Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the melanin concentrating hormone (MCH) and its receptor 1. The development of MCHR1 antagonists are described with a specific perspective on different chemotypes...

  17. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    Science.gov (United States)

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  18. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    DEFF Research Database (Denmark)

    Billestrup, N; Allevato, G; Norstedt, G

    1994-01-01

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated......) for metabolic effects, a domain located in or near the proline-rich region is of importance; and (iii) for internalization, phenylalanine 346 is necessary....

  19. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Science.gov (United States)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  20. Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay

    NARCIS (Netherlands)

    Freitas, de J.; Cano, P.; Craig-Veit, C.; Goodson, M.L.; Furlow, J.D.; Murk, A.J.

    2011-01-01

    A stable luciferase reporter gene assay was developed based on the thyroid hormone responsive rat pituitary tumor GH3 cell line that constitutively expresses both thyroid hormone receptor isoforms. Stable transfection of the pGL4CP-SV40-2xtaDR4 construct into the GH3 cells resulted in a highly

  1. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    DEFF Research Database (Denmark)

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.

    2016-01-01

    the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin...

  2. Receptor dysfunction and hormone resistance in human diseases--a review.

    Science.gov (United States)

    Macaron, C; Famuyiwa, O

    1978-01-01

    Studies of the hormone-receptor interaction have introduced a new chapter in endocrine and metabolic disorders. Receptor (R) dysfunction in human diseases, due either to an alteration in the number or affinity of the R, or to antibodies against the R, is reviewed and classified in the first part of this paper. Disorders where hormone resistance has been implicated, but where R studies are still unavailable are also presented.

  3. Rescue of a nephrogenic diabetes insipidus-causing vasopressin V-2 receptor mutant by cell-penetrating peptides

    NARCIS (Netherlands)

    Oueslati, Morad; Hermosilla, Ricardo; Schoenenberger, Eva; Oorschot, Viola; Beyermann, Michael; Wiesner, Burkhard; Schmidt, Antje; Klumperman, Judith; Rosenthal, Walter; Schuelein, Ralf

    2007-01-01

    Mutant membrane proteins are frequently retained in the early secretory pathway by a quality control system, thereby causing disease. An example are mutants of the vasopressin V-2 receptor (V2R) leading to nephrogenic diabetes insipidus. Transport-defective V(2)Rs fall into two classes: those

  4. Regulation and binding of pregnane X receptor by nuclear receptor corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT).

    Science.gov (United States)

    Johnson, David R; Li, Chia-Wei; Chen, Liuh-Yow; Ghosh, Jagadish C; Chen, J Don

    2006-01-01

    The pregnane X receptor (PXR) is an orphan nuclear receptor predominantly expressed in liver and intestine. PXR coordinates hepatic responses to prevent liver injury induced by environmental toxins. PXR activates cytochrome P450 3A4 gene expression upon binding to rifampicin (Rif) and clotrimazole (CTZ) by recruiting transcriptional coactivators. It remains unclear whether and how PXR regulates gene expression in the absence of ligand. In this study, we analyzed interactions between PXR and the silencing mediator of retinoid and thyroid hormone receptors (SMRT) and determined the role of SMRT in regulating PXR activity. We show that SMRT interacts with PXR in glutathione S-transferase pull-down, yeast two-hybrid, and mammalian two-hybrid assays. The interaction is mediated through the ligand-binding domain of PXR and the SMRTs' nuclear receptor-interacting domain 2. The PXR-SMRT interaction is sensitive to species-specific ligands, and Rif causes an exchange of the corepressor SMRT with the p160 coactivator known as receptor-associated coactivator 3 (RAC3). Deletion of the PXR's activation function 2 helix enhances SMRT binding and abolishes ligand-dependent dissociation of SMRT. Coexpression of PXR with SMRT results in colocalization at discrete nuclear foci. Finally, transient transfection assays show that overexpression of SMRT inhibits PXR's transactivation of the Cyp3A4 promoter, whereas silencing of SMRT enhances the reporter expression. Taken together, our results suggest that the corepressor SMRT may bind to and regulate the transcriptional activity of PXR.

  5. Growth hormone receptors in cultured adipocytes: a model to study receptor regulation.

    Science.gov (United States)

    Roupas, P; Herington, A C

    1986-09-01

    Acutely isolated rat adipocytes have been maintained in primary culture for several days and the effects of culture on the kinetics of 125I-human growth hormone (hGH) binding to adipocytes have been determined. A marked increase (500-1000%) in specific binding of 125I-hGH was observed over the first 3 days of culture--acutely isolated adipocytes (5.5 +/- 1.4%, mean +/- SE, n = 47) compared to 3-day cultured adipocytes (48 +/- 7%, mean +/- SE, n = 8). Specific binding of 125I-hGH to both acutely isolated and cultured adipocytes was dependent on incubation time and temperature (equilibrium being reached in 1 h at 37 degrees C and 2 h at 22 degrees C). Binding was reversible (t1/2 approximately 1.5 h). Scatchard analysis revealed linear plots and showed that the increase in binding during culture was due to an increase in the number of receptors per cell (approximately 20 000 to approximately 170 000) with little or no change in binding affinity (Ka approximately 1 X 10(9) M-1). Cycloheximide inhibited the increase in binding sites during culture suggesting a requirement for de novo protein synthesis. Addition of unlabelled hGH to the culture medium resulted in a marked down-regulation of the GH receptor by 2 days. The GH-induced decrease in receptor number was to due to receptor occupancy by exogenously added GH. The studies to date indicate that the cultured rat adipocyte should provide a useful model for a comprehensive study of the cellular mechanisms and dynamics of GH receptor regulation.

  6. Pentadecapeptide BPC 157 Enhances the Growth Hormone Receptor Expression in Tendon Fibroblasts

    Directory of Open Access Journals (Sweden)

    Chung-Hsun Chang

    2014-11-01

    Full Text Available BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  7. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    Science.gov (United States)

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  8. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Pioszak, Augen A.; Xu, H. Eric (Van Andel)

    2008-08-07

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.

  9. Models for the binding of amiodarone to the thyroid hormone receptor

    Science.gov (United States)

    Chalmers, David K.; Munro, Sharon L. A.; Iskander, Magdy N.; Craik, David J.

    1992-02-01

    The antiarrhythmic drug amiodarone has recently been characterized as the first known thyroid hormone antagonist. Its mode of interaction with the thyroid hormone receptor is therefore of interest. A computational analysis of the conformational flexibility of amiodarone using molecular mechanics and the semiempirical molecular orbital method AM1 has been performed. The molecular mechanics studies show that the low-energy conformations of the benzoylbenzofuran portion of amiodarone can be grouped into 4 distinct classes, while the diethylaminoethoxy side chain is extremely flexible. Conformers representative of the 4 low-energy classes were fitted to an extended thyroid hormone receptor model. Four independent modes in which amiodarone could bind to the thyroid hormone receptor site were evaluated.

  10. Expression and role of gonadotropin-releasing hormone 2 and its receptor in mammals

    Science.gov (United States)

    Gonadotropin-releasing hormone (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in some mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, s...

  11. Identifying neuropeptide and protein hormone receptors in Drosophila melanogaster by exploiting genomic data

    DEFF Research Database (Denmark)

    Hauser, Frank; Williamson, Michael; Cazzamali, Giuseppe

    2006-01-01

    Most neuropeptide and protein hormone receptors belong to the large superfamily of G-protein-coupled receptors (GPCRs). These cell membrane proteins steer many important processes such as development, reproduction, homeostasis and behaviour when activated by their corresponding ligands. The first...... insect genome, that of the fruitfly Drosophila melanogaster, was sequenced in 2000, and about 200 GPCRs have been annnotated in this model insect. About 50 of these receptors were predicted to have neuropeptides or protein hormones as their ligands. Since 2000, the cDNAs of most of these candidate...

  12. [Bioactivity of thyroid hormones. Clinical significance of membrane transporters, deiodinases and nuclear receptors].

    Science.gov (United States)

    Solís, Juan Carlos; Orozco, Aurea; García, Carlota; Robles-Osorio, Ludivina; Valverde, Carlos

    2011-01-01

    The study of the different factors regulating the bioactivity of thyroid hormones is of utmost relevance for an adequate understanding of the glandular pathophysiology. These factors must be considered by the clinician in order to achieve a successful diagnosis and treatment of glandular diseases. Among the factors regulating bioactivity of thyroid hormones are the following: A) Plasmatic membrane hormone transporters, which tissue-specific expression is responsible for the cellular uptake of hormones, B) A set of deiodinating enzymes which activate or inactivate intracellular thyroid hormone, and C) Nuclear receptors which are responsible for the different cellular responses at the transcriptional level. This review compiles analysis and discusses the most recent findings regarding the regulation of thyroid hormone bioactivity, as well as the clinical relevance of different polymorphisms and mutations currently described for membrane transporters and deiodinases. In addition, the main issues and present and future study areas are identified.

  13. Hormone-receptor expression and ovarian cancer survival

    DEFF Research Database (Denmark)

    Sieh, Weiva; Köbel, Martin; Longacre, Teri A

    2013-01-01

    Few biomarkers of ovarian cancer prognosis have been established, partly because subtype-specific associations might be obscured in studies combining all histopathological subtypes. We examined whether tumour expression of the progesterone receptor (PR) and oestrogen receptor (ER) was associated...

  14. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  15. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression.

    Directory of Open Access Journals (Sweden)

    Emi Ishida

    Full Text Available Selective Alzheimer's disease (AD indicator 1 (Seladin-1 has been identified as a gene down-regulated in the degenerated lesions of AD brain. Up-regulation of Seladin-1 reduces the accumulation of β-amyloid and neuronal death. Thyroid hormone (TH exerts an important effect on the development and maintenance of central nervous systems. In the current study, we demonstrated that Seladin-1 gene and protein expression in the forebrain was increased in thyrotoxic mice compared with that of euthyroid mice. However, unexpectedly, no significant decrease in the gene and protein expression was observed in hypothyroid mice. Interestingly, an agonist of liver X receptor (LXR, TO901317 (TO administration in vivo increased Seladin-1 gene and protein expression in the mouse forebrain only in a hypothyroid state and in the presence of mutant TR-β, suggesting that LXR-α would compensate for TR-β function to maintain Seladin-1 gene expression in hypothyroidism and resistance to TH. TH activated the mouse Seladin-1 gene promoter (-1936/+21 bp and site 2 including canonical TH response element (TRE half-site in the region between -159 and -154 bp is responsible for the positive regulation. RXR-α/TR-β heterodimerization was identified on site 2 by gel-shift assay, and chromatin immunoprecipitation assay revealed the recruitment of TR-β to site 2 and the recruitment was increased upon TH administration. On the other hand, LXR-α utilizes a distinct region from site 2 (-120 to -102 bp to activate the mouse Seladin-1 gene promoter. Taking these findings together, we concluded that TH up-regulates Seladin-1 gene expression at the transcriptional level and LXR-α maintains the gene expression.

  16. Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight.

    Science.gov (United States)

    Purohit, Rituraj

    2014-01-01

    KIT receptor is the prime target in gastrointestinal stromal tumor (GISTs) therapy. Second generation inhibitor, Sunitinib, binds to an inactivated conformation of KIT receptor and stabilizes it in order to prevent tumor formation. Here, we investigated the dynamic behavior of wild type and mutant D816H KIT receptor, and emphasized the extended A-loop (EAL) region (805-850) by conducting molecular dynamics simulation (∼100 ns). We analyzed different properties such as root mean square cutoff or deviation, root mean square fluctuation, radius of gyration, solvent-accessible surface area, hydrogen bonding network analysis, and essential dynamics. Apart from this, clustering and cross-correlation matrix approach was used to explore the conformational space of the wild type and mutant EAL region of KIT receptor. Molecular dynamics analysis indicated that mutation (D816H) was able to alter intramolecular hydrogen bonding pattern and affected the structural flexibility of EAL region. Moreover, flexible secondary elements, specially, coil and turns were dominated in EAL region of mutant KIT receptor during simulation. This phenomenon increased the movement of EAL region which in turn helped in shifting the equilibrium towards the active kinase conformation. Our atomic investigation of mutant KIT receptor which emphasized on EAL region provided a better insight into the understanding of Sunitinib resistance mechanism of KIT receptor and would help to discover new therapeutics for KIT-based resistant tumor cells in GIST therapy.

  17. Steroid hormone receptor expression in ovarian cancer: progesterone receptor B as prognostic marker for patient survival

    Directory of Open Access Journals (Sweden)

    Lenhard Miriam

    2012-11-01

    Full Text Available Abstract Background There is partially conflicting evidence on the influence of the steroid hormones estrogen (E and progesterone (P on the development of ovarian cancer (OC. The aim of this study was to assess the expression of the receptor isoforms ER-α/-β and PR-A/-B in OC tissue and to analyze its impact on clinical and pathological features and patient outcome. Methods 155 OC patients were included who had been diagnosed and treated between 1990 and 2002. Patient characteristics, histology and follow-up data were available. ER-α/-β and PR-A/-B expression were determined by immunohistochemistry. Results OC tissue was positive for ER-α/-β in 31.4% and 60.1% and PR-A/-B in 36.2% and 33.8%, respectively. We identified significant differences in ER-β expression related to the histological subtype (p=0.041, stage (p=0.002 and grade (p=0.011 as well as PR-A and tumor stage (p=0.03. Interestingly, median receptor expression for ER-α and PR-A/-B was significantly higher in G1 vs. G2 OC. Kaplan Meier analysis revealed a good prognosis for ER-α positive (p=0.039 and PR-B positive (p Conclusion ER-α/-β and PR-A/-B are frequently expressed in OC with a certain variability relating to histological subtype, grade and stage. Univariate analysis indicated a favorable outcome for ER-α positive and PR-B positive OC, while multivariate analysis showed PR-B to be the only independent prognostic marker for patient survival. In conclusion, ER and PR receptors may be useful targets for a more individualized OC therapy.

  18. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available The evolutionary trajectories of growth hormone-releasing hormone (GHRH receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP receptor (PRPR. In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2 had the highest expression in brain, and interestingly, X. laevis(GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP.

  19. Endocrine control of canine mammary neoplasms: serum reproductive hormone levels and tissue expression of steroid hormone, prolactin and growth hormone receptors.

    Science.gov (United States)

    Spoerri, Michèle; Guscetti, Franco; Hartnack, Sonja; Boos, Alois; Oei, Christine; Balogh, Orsolya; Nowaczyk, Renata M; Michel, Erika; Reichler, Iris M; Kowalewski, Mariusz P

    2015-09-15

    Neoplasms of the mammary gland are among the most common diseases in female domestic dogs (Canis familiaris). It is assumed that reproductive hormones influence tumorigenesis in this species, although the precise role of the endocrine milieu and reproductive state is subject to continuing discussion. In line with this, a recent systematic review of available data on the development of mammary neoplasms revealed weak evidence for risk reduction after neutering and an effect of age at neutering. Investigation of several hormone receptors has revealed decreased expression of estrogen receptor-alpha (ERα, ESR1), progesterone (P4) receptor (PGR), prolactin (PRL) receptor (PRLR) and growth hormone receptor (GHR) associated with neoplastic differentiation of mammary tissues. In other studies, increased levels of estrogens, progesterone and prolactin were found in serum and/or tissue homogenates of dogs with malignant neoplasms. However, the association between these entities within one animal population was never previously examined. Therefore, this study investigated the association between circulating serum concentrations of estradiol-17β, progesterone and prolactin, and gene expression of ERα (ESR1), ERβ (ESR2), PGR, PRLR, PRL and GHR, with respect to reproductive state (spayed vs. intact) and cycle stage (anestrus vs. diestrus). Additionally, the expression of E-cadherin (CDH-1) was evaluated as a possible indicator of metastatic potential. For all receptors, the lowest gene expression was found in malignant tumors compared to normal tissues of affected dogs. Steroid levels were not influenced by their corresponding receptor expression in mammary neoplasms, but increased PRL levels were negatively associated with low PRLR gene expression in malignant tumors. The expression of CDH-1 was influenced by tumor malignancy and cycle stage, i.e., the highest gene expression was found in benign mammary tumors in diestrous dogs compared to normal and malignant mammary

  20. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni

    OpenAIRE

    Wu, Wenjie; Niles, Edward G; LoVerde, Philip T

    2007-01-01

    Abstract Background: Thyroid hormone receptors (TRs) function as molecular switches in response to thyroid hormone to regulate gene transcription. TRs were previously believed to be present only in chordates. Results: We isolated two TR genes from the Schistosoma mansoni and identified TR orthologues from other invertebrates: the platyhelminths, S. japonium and Schmidtea mediterranea, the mollusc, Lottia gigantean and the arthropod Daphnia pulex. Phylogenetic analysis of the DNA binding domai...

  1. Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC Uncovers Potential Novel Drivers of Hormonal Resistance.

    Directory of Open Access Journals (Sweden)

    Luis Manso

    Full Text Available We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC. We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11 of tumors (primary and metastases at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001. Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001, and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC.

  2. Sex hormone receptors are present in the human suprachiasmatic nucleus

    NARCIS (Netherlands)

    Kruijver, Frank P. M.; Swaab, Dick F.

    2002-01-01

    The suprachiasmatic nucleus (SCN) is the clock of the brain that orchestrates circadian and circannual biological rhythms, such as the rhythms of hormones, body temperature, sleep and mood. These rhythms are frequently disturbed in menopause and even more so in dementia and can be restored in

  3. Internalization and recycling of receptor-bound gonadotropin-releasing hormone agonist in pituitary gonadotropes

    Energy Technology Data Exchange (ETDEWEB)

    Schvartz, I.; Hazum, E.

    1987-12-15

    The fate of cell surface gonadotropin-releasing hormone (GnRH) receptors on pituitary cells was studied utilizing lysosomotropic agents and monensin. Labeling of pituitary cells with a photoreactive GnRH derivative, (azidobenzoyl-D-Lys6)GnRH, revealed a specific band of Mr = 60,000. When photoaffinity-labeled cells were exposed to trypsin immediately after completion of the binding, the radioactivity incorporated into the Mr = 60,000 band decreased, with a concomitant appearance of a proteolytic fragment (Mr = 45,000). This fragment reflects cell surface receptors. Following GnRH binding, the hormone-receptor complexes underwent internalization, partial degradation, and recycling. The process of hormone-receptor complex degradation was substantially prevented by lysosomotropic agents, such as chloroquine and methylamine, or the proton ionophore, monensin. Chloroquine and monensin, however, did not affect receptor recycling, since the tryptic fragment of Mr = 45,000 was evident after treatment with these agents. This suggests that recycling of GnRH receptors in gonadotropes occurs whether or not the internal environment is acidic. Based on these findings, we propose a model describing the intracellular pathway of GnRH receptors.

  4. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity.

    Directory of Open Access Journals (Sweden)

    Michael S Bonkowski

    Full Text Available Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15% CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30% CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice.

  5. EVALUATION OF STEROID HORMONES AND THEIR RECEPTORS IN DEVELOPMENT AND PROGRESSION OF RENAL CELL CARCINOMA

    Directory of Open Access Journals (Sweden)

    Nigel Bennett

    2014-06-01

    Full Text Available Steroid hormones and their receptors have important roles in normal kidney biology, and alterations in their expression and function help explain the differences in development of kidney diseases, such as nephrotic syndrome and chronic kidney disease. The distinct gender difference in incidence of renal cell carcinoma (RCC, with males having almost twice the incidence as females globally, also suggests a role for sex hormones or their receptors in RCC development and progression. There was a peak in interest in evaluating the roles of androgen and estrogen receptors in RCC pathogenesis in the late 20th century, with some positive outcomes for RCC therapy that targeted estrogen receptors, especially for metastatic disease. Since that time, however, there have been few studies that look at use of steroid hormone modulators for RCC, especially in the light of new therapies such as the tyrosine kinase inhibitors and new immune therapies, which are having some success for treatment of metastatic RCC. This review summarises past and current literature and attempts to stimulate renewed interest in research into the steroid hormones and their receptors, which might be used to effect, for example, in combination with the other newer targeted therapies for RCC.

  6. Novel Hormone Receptors Present in Apocrine Cystadenoma of the Eyelid.

    Science.gov (United States)

    Brown, Sarah E; Friedman, Alan H; Phelps, Robert G; Bleiweiss, Ira J; Wu, Albert Y

    A 53-year-old woman presented with an apocrine cystadenoma of the right upper eyelid. Histologic examination revealed proliferating epithelial cells with apocrine snouts and occasional mitotic figures. Immunohistochemical analysis revealed a Ki-67 index of 15% and positive staining for synaptophysin, chromogranin, estrogen receptor, progesterone receptor, gross cystic disease fluid protein (GCDFP)-15, and mammoglobin. The complement of positive immunomarkers in this case reinforces the importance of total excision and careful histologic assessment.

  7. Genome inventory and analysis of nuclear hormone receptors in ...

    Indian Academy of Sciences (India)

    Prakash

    Genome analysis of nuclear receptors in Tetraodon. 1. J. Biosci. 32(1), January 2007. Tetraodon nigroviridis nuclear receptors. NR. Accession No. No. Gene. DBD. LBD. Invariable Splice junction (D). Chromosome. Subfamily 1: NR1A1. CAF90676.1. 2. TRA f f no. 2. NR1A1. CAG02086.1*. 16. TRA f f yes. UD. NR1A2.

  8. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    Science.gov (United States)

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain. © 2014 British Society for Neuroendocrinology.

  9. Genetic heterogeneity of activating mutations of the luteinizing hormone receptor gene in familial male-limited precocious puberty

    Energy Technology Data Exchange (ETDEWEB)

    Laue, L.; Chan, W.Y.; Wu, S.M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [and others

    1994-09-01

    Familial male-limited precocious puberty (FMPP) is an autosomal dominant disorder characterized by elevated serum levels of testosterone, low levels of gonadotropins, and Leydig cell hyperplasia. Recently, 3 mutations have been found in FMPP families which encode substitution of Gly for Asp 578, Ile for Met 571, and Ile for Thr 577 in transmembrane helix 6 (TM 6) of the luteinizing hormone receptor (LHR). We have studied 28 additional unrelated FMPP families. Genomic DNA was isolated from affected males and PCR was performed to amplify a fragment of the LHR gene encoding amino acid residues 441 to 594. MspI restriction enzyme digests were positive for the Asp 578 to Gly mutation in 22 families. Four new mutations were found in the remaining 6 families: an A to C transition encoding substitution of Leu for Ile 542 in transmembrane helix 5 (TM 5), an A to G transition encoding substitution of Gly for Asp 564 in the third cytoplasmic loop, a G to T transition encoding substitution of Try for Asp 578 in TM 6, and a T to C transition encoding substitution of Arg for Cys 581 in TM 6 of the LHR. 293 cells transfected with cDNAs for each of the 4 mutant LHRs, created by site-directed mutagenesis of the wild-type LHR cDNA, exhibited markedly increased levels of basal cAMP production in the absence of agonist, indicating constitutive activation of the mutant LHRs. We conclude that substitution of residues at multiple sites with TM 5, TM 6, and the intervening third cytoplasmic loop of the LHR cause constitutive receptor activation resulting in FMPP. These findings allow future diagnosis of affected patients and provide the basis to study the receptor domains involved in G-protein activation.

  10. Cellular androgen content influences enzalutamide agonism of F877L mutant androgen receptor

    Science.gov (United States)

    Coleman, Daniel J.; Van Hook, Kathryn; King, Carly J.; Schwartzman, Jacob; Lisac, Robert; Urrutia, Joshua; Sehrawat, Archana; Woodward, Josha; Wang, Nicholas J.; Gulati, Roman; Thomas, George V.; Beer, Tomasz M.; Gleave, Martin; Korkola, James E.; Gao, Lina; Heiser, Laura M.; Alumkal, Joshi J.

    2016-01-01

    Prostate cancer is the most commonly diagnosed and second-most lethal cancer among men in the United States. The vast majority of prostate cancer deaths are due to castration-resistant prostate cancer (CRPC) – the lethal form of the disease that has progressed despite therapies that interfere with activation of androgen receptor (AR) signaling. One emergent resistance mechanism to medical castration is synthesis of intratumoral androgens that activate the AR. This insight led to the development of the AR antagonist enzalutamide. However, resistance to enzalutamide invariably develops, and disease progression is nearly universal. One mechanism of resistance to enzalutamide is an F877L mutation in the AR ligand-binding domain that can convert enzalutamide to an agonist of AR activity. However, mechanisms that contribute to the agonist switch had not been fully clarified, and there were no therapies to block AR F877L. Using cell line models of castration-resistant prostate cancer (CRPC), we determined that cellular androgen content influences enzalutamide agonism of mutant F877L AR. Further, enzalutamide treatment of AR F877L-expressing cell lines recapitulated the effects of androgen activation of F877L AR or wild-type AR. Because the BET bromodomain inhibitor JQ-1 was previously shown to block androgen activation of wild-type AR, we tested JQ-1 in AR F877L-expressing CRPC models. We determined that JQ-1 suppressed androgen or enzalutamide activation of mutant F877L AR and suppressed growth of mutant F877L AR CRPC tumors in vivo, demonstrating a new strategy to treat tumors harboring this mutation. PMID:27276681

  11. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3

    OpenAIRE

    Patel, Hiren; Bhartiya, Deepa; Parte, Seema; Gunjal, Pranesh; Yedurkar, Snehal; Bhatt, Mithun

    2013-01-01

    Background We have earlier reported that follicle stimulating hormone (FSH) modulates ovarian stem cells which include pluripotent, very small embryonic-like stem cells (VSELs) and their immediate descendants ?progenitors? termed ovarian germ stem cells (OGSCs), lodged in adult mammalian ovarian surface epithelium (OSE). FSH may exert pleiotropic actions through its alternatively spliced receptor isoforms. Four isoforms of FSH receptors (FSHR) are reported in literature of which FSH-R1 and FS...

  12. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse.

    Science.gov (United States)

    Rahimi Balaei, Maryam; Jiao, Xiaodan; Ashtari, Niloufar; Afsharinezhad, Pegah; Ghavami, Saeid; Marzban, Hassan

    2016-01-15

    Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax--naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  13. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    Directory of Open Access Journals (Sweden)

    Maryam Rahimi Balaei

    2016-01-01

    Full Text Available Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2 mouse (nax—naked-ataxia mutant mouse correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5. In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.

  14. Intracellular processing of growth hormone receptors by adipocytes in primary culture.

    Science.gov (United States)

    Roupas, P; Herington, A C

    1988-05-01

    Rat adipocytes in primary culture have been used to study the intracellular processing of growth hormone (GH) receptors. Pretreatment of adipocytes with 20 micrograms/ml cycloheximide resulted in a rapid decline (t1/2 approximately 45 min) of the 125I-human growth hormone (hGH) binding capacity of the cells. This decline occurred at a faster rate in the presence of extracellular unlabeled hGH (400 ng/ml) and was not due to receptor occupancy. These data suggest that GH receptors turn over rapidly and constitutively on the plasma membrane and in the absence of protein synthesis are not replaced. Dissociation of GH-receptor complexes was shown not to occur at pH 5.5, the pH encountered in the acidic pre-lysosomal compartments (endosomes) where intracellular dissociation of many hormone-receptor complexes takes place. These data, together, suggest that the majority of GH receptors are not recycled but instead suffer the same fate as the majority of GH, i.e. degradation. To determine the rate of appearance of GH receptors at the cell surface, adipocytes were first treated with trypsin and then incubated at 37 degrees C to permit incorporation of any available GH receptors into the plasma membrane. Binding of 125I-hGH recovered to pre-trypsin levels by 2 h. This recovery was completely blocked by concomitant treatment with monensin, cytochalasin B, colchicine and 2,4-dinitrophenol. NH4Cl had no effect on receptor recovery. These data suggest that once GH receptors are synthesized in the rough endoplasmic reticulum, they travel via the Golgi apparatus to the plasma membrane (by processes involving both microfilaments and microtubules) and are then inserted into the plasma membrane in an energy-dependent step.

  15. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  16. Desensitization, Trafficking, and Resensitization of the Pituitary Thyrotropin-Releasing Hormone Receptor

    Science.gov (United States)

    Hinkle, Patricia M.; Gehret, Austin U.; Jones, Brian W.

    2012-01-01

    The pituitary receptor for thyrotropin-releasing hormone (TRH) is a calcium-mobilizing G protein-coupled receptor (GPCR) that signals through Gq/11, elevating calcium, and activating protein kinase C. TRH receptor signaling is quickly desensitized as a consequence of receptor phosphorylation, arrestin binding, and internalization. Following activation, TRH receptors are phosphorylated at multiple Ser/Thr residues in the cytoplasmic tail. Phosphorylation catalyzed by GPCR kinase 2 (GRK2) takes place rapidly, reaching a maximum within seconds. Arrestins bind to two phosphorylated regions, but only arrestin bound to the proximal region causes desensitization and internalization. Phosphorylation at Thr365 is critical for these responses. TRH receptors internalize in clathrin-coated vesicles with bound arrestin. Following endocytosis, vesicles containing phosphorylated TRH receptors soon merge with rab5-positive vesicles. Over approximately 20 min these form larger endosomes rich in rab4 and rab5, early sorting endosomes. After TRH is removed from the medium, dephosphorylated receptors start to accumulate in rab4-positive, rab5-negative recycling endosomes. The mechanisms responsible for sorting dephosphorylated receptors to recycling endosomes are unknown. TRH receptors from internal pools help repopulate the plasma membrane. Dephosphorylation of TRH receptors begins when TRH is removed from the medium regardless of receptor localization, although dephosphorylation is fastest when the receptor is on the plasma membrane. Protein phosphatase 1 is involved in dephosphorylation but the details of how the enzyme is targeted to the receptor remain obscure. It is likely that future studies will identify biased ligands for the TRH receptor, novel arrestin-dependent signaling pathways, mechanisms responsible for targeting kinases and phosphatases to the receptor, and principles governing receptor trafficking. PMID:23248581

  17. Domains of the growth hormone receptor required for association and activation of JAK2 tyrosine kinase

    DEFF Research Database (Denmark)

    VanderKuur, J A; Wang, X; Zhang, L

    1994-01-01

    Growth hormone (GH) has recently been shown to activate the GH receptor (GHR)-associated tyrosine kinase JAK2. In the present study, regions of the GHR required for JAK2 association with GHR were identified. GH-dependent JAK2 association with GHR was detected in Chinese hamster ovary (CHO) cells...

  18. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  19. Prognostic factors for survival in metastatic breast cancer by hormone receptor status

    NARCIS (Netherlands)

    Kwast, A.B.G.; Voogd, A.C.; Menke-Pluijmers, M.B.E.; Linn, S.C.; Sonke, G.S.; Kiemeney, L.A.; Siesling, Sabine

    2014-01-01

    Hormone receptor (HR) status is an important prognostic factor for patients with metastatic breast cancer (MBC) and is also correlated with other prognostic factors, such as initial lymph node status, HER2-Neu status and age. The prognostic value of these other factors, however, is unknown when

  20. Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory

    NARCIS (Netherlands)

    Krugers, H.J.; Hoogenraad, C.C.; Groc, L.

    2010-01-01

    The acquisition and consolidation of memories of stressful events is modulated by glucocorticoids, a type of corticosteroid hormone that is released in high levels from the adrenal glands after exposure to a stressful event. These effects occur through activation of mineralocorticoid receptors (MRs)

  1. Structure and chromosomal localization of the human anti-mullerian hormone type II receptor gene

    NARCIS (Netherlands)

    J.A. Visser (Jenny); A. McLuskey; T. van Beers (T.); D.O. Weghuis (D. Olde); A.H.M. Geurts van Kessel (Ad); J.A. Grootegoed (Anton); A.P.N. Themmen (Axel)

    1995-01-01

    textabstractUsing the rat anti-müllerian hormone type II receptor (AMHRII) cDNA as a probe, two overlapping lambda phage clones containing the AMHRII gene were isolated from a human genomic library. Sequence analysis of the exons was performed and the exon/intron boundaries were determined. The

  2. Kisspeptin/Gpr54-independent gonadotrophin-releasing hormone activity in Kiss1 and Gpr54 mutant mice.

    Science.gov (United States)

    Chan, Y M; Broder-Fingert, S; Wong, K M; Seminara, S B

    2009-12-01

    The kisspeptin/Gpr54 signalling pathway plays a critical role in reproduction by stimulating the secretion of gonadotrophin-releasing hormone (GnRH), yet mice carrying mutations in Kiss1 (which encodes kisspeptin) or Gpr54 exhibit partial sexual maturation. For example, a proportion of female Kiss1(-/-) and Gpr54(-/-) mice exhibit vaginal oestrus, and some male Kiss1(-/-) and Gpr54(-/-) mice exhibit spermatogenesis. To characterise this partial sexual maturation, we examined the vaginal cytology of female Kiss1(-/-) and Gpr54(-/-) mice over time. Almost all mutant mice eventually enter oestrus, and then spontaneously transition from oestrus to dioestrus and back to oestrus again. These transitions are not associated with ovulation, and the frequency of these transitions increases with age. The oestrus exhibited by female Kiss1(-/-) and Gpr54(-/-) mice was disrupted by the administration of the competitive GnRH antagonist acyline, which also resulted in lower uterine weights and, in Kiss1(-/-) mice, lower serum follicle-stimulating hormone (FSH) and luteinising hormone (LH) concentrations. Similarly, male Kiss1(-/-) and Gpr54(-/-) mice treated with acyline had smaller testicular sizes and an absence of mature sperm. In addition to examining intact Kiss1(-/-) and Gpr54(-/-) mice, we also assessed the effects of acyline on gonadotrophin concentrations in gonadectomised mice. Gonadectomy resulted in a significant increase in serum FSH concentrations in male Gpr54(-/-) and Kiss1(-/-) mice. Acyline administration to gonadectomised Kiss1(-/-) and Gpr54(-/-) male mice lowered serum FSH and LH concentrations significantly. By contrast to males, gonadectomy did not result in significant gonadotrophin changes in female Kiss1(-/-) and Gpr54(-/-) mice, but acyline administration was followed by a decrease in LH concentrations. These results demonstrate that, although kisspeptin signalling is critical for the high levels of GnRH activity required for normal sexual maturation and

  3. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    Energy Technology Data Exchange (ETDEWEB)

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  4. Molecular determinants for the high constitutive activity of the human histamine H4 receptor: functional studies on orthologues and mutants.

    Science.gov (United States)

    Wifling, D; Löffel, K; Nordemann, U; Strasser, A; Bernhardt, G; Dove, S; Seifert, R; Buschauer, A

    2015-02-01

    Some histamine H4 receptor ligands act as inverse agonists at the human H4 receptor (hH4 R), a receptor with exceptionally high constitutive activity, but as neutral antagonists or partial agonists at the constitutively inactive mouse H4 receptor (mH4 R) and rat H4 receptor (rH4 R). To study molecular determinants of constitutive activity, H4 receptor reciprocal mutants were constructed: single mutants: hH4 R-F169V, mH4 R-V171F, hH4 R-S179A, hH4 R-S179M; double mutants: hH4 R-F169V+S179A, hH4 R-F169V+S179M and mH4 R-V171F+M181S. Site-directed mutagenesis with pVL1392 plasmids containing hH4 or mH4 receptors were performed. Wild-type or mutant receptors were co-expressed with Gαi2 and Gβ1 γ2 in Sf9 cells. Membranes were studied in saturation and competition binding assays ([(3) H]-histamine), and in functional [(35) S]-GTPγS assays with inverse, partial and full agonists of the hH4 receptor. Constitutive activity decreased from the hH4 receptor via the hH4 R-F169V mutant to the hH4 R-F169V+S179A and hH4 R-F169V+S179M double mutants. F169 alone or in concert with S179 plays a major role in stabilizing a ligand-free active state of the hH4 receptor. Partial inverse hH4 receptor agonists like JNJ7777120 behaved as neutral antagonists or partial agonists at species orthologues with lower or no constitutive activity. Some partial and full hH4 receptor agonists showed decreased maximal effects and potencies at hH4 R-F169V and double mutants. However, the mutation of S179 in the hH4 receptor to M as in mH4 receptor or A as in rH4 receptor did not significantly reduce constitutive activity. F169 and S179 are key amino acids for the high constitutive activity of hH4 receptors and may also be of relevance for other constitutively active GPCRs. This article is part of a themed issue on Histamine Pharmacology Update published in volume 170 issue 1. To view the other articles in this issue visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2013.170.issue-1/issuetoc.

  5. Disruption of agonist and ligand activity in an AMPA glutamate receptor splice-variable domain deletion mutant.

    Science.gov (United States)

    Johnson, Wayne D; Parandaman, Vijaya; Onaivi, Emmanuel S; Taylor, Robert E; Akinshola, B Emmanuel

    2008-07-30

    The mechanisms by which agonists and other ligands bind ligand-gated ion channels are important determinants of function in neurotransmitter receptors. The partial agonist, kainic acid (KA) activates a less desensitized, and more robust AMPA receptor (AMPAR) current than full agonists, glutamate or AMPA. Cyclothiazide (CTZ), the allosteric modulator of AMPARs, potentiates receptor currents by inhibiting receptor desensitization resulting from agonist activation. We have constructed an AMPAR GluR1 subunit deletion mutant GluR1L3T(Delta739-784) by deleting the splice-variable "flip/flop" region of the L3 domain in the wild-type receptor and compared its function to that of the wild-type GluR1 receptor and an AMPAR substitution mutant GluR1A782N. When compared to GluR1, the potency of glutamate activation of GluR1L3T was increased, in contrast to a decrease in potency of activation and reduced sensitivity to optimal concentrations of KA. Furthermore, GluR1L3T was totally insensitive to CTZ potentiation of KA and glutamate-activated currents in Xenopus laevis oocytes. The potency of glutamate and KA activation of GluR1A782N was not significantly different from that of the wild-type GluR1 receptor although the mutant receptor currents were more sensitive to CTZ potentiation than the wild-type receptor current. This result is an indication that glutamate and KA binding to the agonist (S1/S2) domain on AMPAR can be modulated by an expendable splice-variable region of the receptor. Moreover, the effect of the allosteric modulator, CTZ on agonist activation of AMPAR can also be modified by a non-conserved amino acid residue substitution within the splice-variable "flip/flop" region.

  6. Growth hormone receptor deficiency (Laron syndrome) in black ...

    African Journals Online (AJOL)

    Non-Caucasians with growth honnone receptor (GHR) deficiency/Lamn syndrome among the approximately 180 recognised cases are rare, and include a Japanese and 3. African Americans. Black African siblings, a brother and a sister seen initially at 11 years 9 months and 5 years 6 months of age respectively were -7,4 ...

  7. Growth hormone receptor deficiency (Laron syndrome) in black ...

    African Journals Online (AJOL)

    Non-Caucasians with growth honnone receptor (GHR) deficiency/Lamn syndrome among the approximately 180 recognised cases are rare, and include a Japanese and 3 African Americans. Black African siblings, a brother and a sister seen initially at 11 years 9 months and 5 years 6 months of age respectively were -7,4 ...

  8. Thyroid Hormone Receptors Predict Prognosis in BRCA1 Associated Breast Cancer in Opposing Ways

    Science.gov (United States)

    Heublein, Sabine; Mayr, Doris; Meindl, Alfons; Angele, Martin; Gallwas, Julia; Jeschke, Udo; Ditsch, Nina

    2015-01-01

    Since BRCA1 associated breast cancers are frequently classified as hormone receptor negative or even triple negative, the application of endocrine therapies is rather limited in these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid hormone receptors (TRs) are members of the nuclear hormone receptor superfamily. TRs might be interesting biomarkers - especially in the absence of classical hormone receptors. The current study aimed to investigate whether TRs may be specifically expressed in BRCA1 associated cancer cases and whether they are of prognostic significance in these patients as compared to sporadic breast cancer cases. This study analyzed TRα and TRβ immunopositivity in BRCA1 associated (n = 38) and sporadic breast cancer (n = 86). Further, TRs were studied in MCF7 (BRCA1 wildtype) and HCC3153 (BRCA1 mutated) cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared to sporadic breast cancers (p = 0.001). The latter observation remained to be significant when cases that had been matched for clinicopathological criteria were compared (p = 0.037). Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to be a positive prognostic factor for five-year (p = 0.007) and overall survival (p = 0.026) while TRα positivity predicted reduced five-year survival (p = 0.030). Activation of TRβ resulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regulated in BRCA1 associated breast cancer and revealed TRs to be associated with patients’ prognosis. TRs were also found to be expressed in triple negative BRCA1 associated breast cancer. Further studies need to be done in order to evaluate whether TRs may become interesting targets of endocrine therapeutic approaches, especially when tumors are

  9. Thyroid Hormone Receptors Predict Prognosis in BRCA1 Associated Breast Cancer in Opposing Ways.

    Directory of Open Access Journals (Sweden)

    Sabine Heublein

    Full Text Available Since BRCA1 associated breast cancers are frequently classified as hormone receptor negative or even triple negative, the application of endocrine therapies is rather limited in these patients. Like hormone receptors that bind to estrogen or progesterone, thyroid hormone receptors (TRs are members of the nuclear hormone receptor superfamily. TRs might be interesting biomarkers - especially in the absence of classical hormone receptors. The current study aimed to investigate whether TRs may be specifically expressed in BRCA1 associated cancer cases and whether they are of prognostic significance in these patients as compared to sporadic breast cancer cases. This study analyzed TRα and TRβ immunopositivity in BRCA1 associated (n = 38 and sporadic breast cancer (n = 86. Further, TRs were studied in MCF7 (BRCA1 wildtype and HCC3153 (BRCA1 mutated cells. TRβ positivity rate was significantly higher in BRCA1 associated as compared to sporadic breast cancers (p = 0.001. The latter observation remained to be significant when cases that had been matched for clinicopathological criteria were compared (p = 0.037. Regarding BRCA1 associated breast cancer cases TRβ positivity turned out to be a positive prognostic factor for five-year (p = 0.007 and overall survival (p = 0.026 while TRα positivity predicted reduced five-year survival (p = 0.030. Activation of TRβ resulted in down-modulation of CTNNB1 while TRα inhibition reduced cell viability in HCC3153. However, only BRCA1 wildtype MCF7 cells were capable of rapidly degrading TRα1 in response to T3 stimulation. Significantly, this study identified TRβ to be up-regulated in BRCA1 associated breast cancer and revealed TRs to be associated with patients' prognosis. TRs were also found to be expressed in triple negative BRCA1 associated breast cancer. Further studies need to be done in order to evaluate whether TRs may become interesting targets of endocrine therapeutic approaches, especially when

  10. Functional rescue of vasopressin V2 receptor mutants in MDCK cells by pharmacochaperones : relevance to therapy of nephrogenic diabetes insipidus

    NARCIS (Netherlands)

    Robben, J.H.; Sze, M.; Knoers, N.V.A.M.; Deen, P.M.T.

    2007-01-01

    Intracellular retention of a functional vasopressin V2 receptor (V2R) is a major cause of congenital nephrogenic diabetes insipidus (NDI) and rescue of V2R mutants by nonpeptide antagonists may restore their basolateral membrane (BM) localization and function. However, the criteria for efficient

  11. Occurrence of xenobiotic ligands for retinoid X receptors and thyroid hormone receptors in the aquatic environment of Taiwan.

    Science.gov (United States)

    Chen, Chien-Hsun; Chou, Pei-Hsin; Kawanishi, Masanobu; Yagi, Takashi

    2014-08-30

    Various synthetic compounds are frequently discharged into the environment via human activities. Among them, certain contaminants may disrupt normal physiological functions of wildlife and humans via interactions with nuclear receptors. To protect human health and the environment, it is important to detect environmental ligands for human nuclear receptors. In this study, yeast-based reporter gene assays were used to investigate the occurrence of xenobiotic ligands for retinoid X receptors (RXR) and thyroid hormone receptors (TR) in the aquatic environment of Taiwan. Experimental results revealed that RXR agonist/antagonist activity was detected in river water and sediment samples. In particular, high RXR agonist/antagonist activity was found in the samples collected near river mouths. Additionally, few samples also elicited significant TR antagonist activity. Our findings show that the aquatic environment of Taiwan was contaminated with RXR and TR ligands. Further study is necessary to identify these xenobiotic RXR and TR agonists and antagonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Parathyroid Hormone Family of Ligands and Receptors

    Directory of Open Access Journals (Sweden)

    Damian G. D'Souza

    2015-07-01

    Full Text Available The PTH family of ligands and receptors have a wide range of vital functions from calcium homeostasis to tissue and bone development from the embryo to adult. This family has undergone whole genome duplication events predating vertebrate evolution, indicating more primitive and ancient functions other than skeletal development. The N-terminal region of the ligands, have been widely studied by biophysical and functional analysis, resulting in the discovery of key characteristics essential for ligand-receptor activation being elucidated. Multi-substituted amino acid analogs with differential binding affinities and either antagonistic or agonistic signalling potencies have been created based on these findings allowing for improvement on potential therapies affected by the PTH system in skeletal and embryonic development. The PTH family has diversely evolved to cover a wide range of pivotal pathways crucial to growth and development throughout all animal life.

  13. Melanin-concentrating hormone and its receptors: state of the art.

    Science.gov (United States)

    Boutin, Jean A; Suply, Thomas; Audinot, Valérie; Rodriguez, Marianne; Beauverger, Philippe; Nicolas, Jean-Paul; Galizzi, Jean-Pierre; Fauchère, Jean-Luc

    2002-05-01

    Melanin-concentrating hormone (MCH) is a cyclic neuropeptide of nineteen amino acids in mammals. Its involvement in the feeding behaviour has been well established during the last few years. A first receptor subtype, now termed MCHIR, was discovered in 1999, following the desorphanisation of the SLCI orphan receptor, using either reverse pharmacology or systematic screening of agonist candidates. A second MCH receptor, MCH2R, has been discovered recently, by several groups working on data mining of genomic banks. The molecular pharmacology of these two receptors is only described on the basis of the action of peptides derived from MCH. The present review tentatively summarizes the knowledge on these two receptors and presents the first attempts to discover new classes of antagonists that might have major roles in the control of obesity and feeding behaviour.

  14. Autoinduction of thyroid hormone receptor during metamorphosis is reproduced in Xenopus XTC-2 cells.

    Science.gov (United States)

    Machuca, I; Tata, J R

    1992-09-01

    To determine if the autoinduction of thyroid hormone receptor (TR) alpha and beta mRNAs during metamorphosis in Xenopus tadpoles can be reproduced in cultured cells, we have screened four Xenopus cell lines (XTC-2, XL-177, XL2 and Kr) for receptor transcripts and their response to thyroid hormone. Exposure of XTC-2 cells to 10(-9) M triiodothyronine (T3) for 24 h upregulated TR alpha and beta mRNAs by 2-4- and 10-40-fold, respectively. In view of the marked similarity of the differential distribution of the two transcripts and their upregulation by T3 to the pattern of autoinduction seen in whole tadpoles, the process was studied in greater detail in XTC-2 cells. The time-course of autoinduction of TR alpha and beta mRNAs in these cells also resembled that in vivo, the two transcripts being significantly induced by 3-6 h after T3. Dose-response to T3, and the relative responses to its active and inactive analogs, confirmed that the process of autoinduction was initiated by thyroid hormone receptor with the same functional characteristics as that found in all amphibian and mammalian tissues. Experiments performed with cycloheximide suggested that intermediary protein(s) were involved in autoinduction, so that TR genes cannot be considered as 'immediate early' genes for this process. The possible advantages of studying thyroid hormone action in metamorphosis in XTC-2 cells are briefly discussed.

  15. Polymorphism of growth hormone receptor (GHR gene in Holstein Friesian dairy cattle

    Directory of Open Access Journals (Sweden)

    Restu Misrianti

    2011-12-01

    Full Text Available Growth hormone gene have a critical role in the regulation of lactation, mammary gland development and growth process through its interaction with a specific receptor. Growth hormone (GH is an anabolic hormone which is synthesized and secreted by somatotrop cell in pituitary anterior lobe, and interacts with a specific receptor on the surface of the target cells. Growth hormone receptor (GHR has been suggested as candidate gene for traits related to milk production in Bovidae. The purpose of this study was to identify genetic polymorphism of the Growth Hormone Receptor (GHR genes in Holstein Friesian (HF cattle. Total of 353 blood samples were collected from five populations belonging to Cikole Dairy Cattle Breeding Station (BPPT-SP Cikole (88 samples, Pasir Kemis (95 samples, Cilumber (98 samples, Cipelang Livestock Embryo Center (BET Cipelang (40 samples, Singosari National Artificial Insemination Centre (BBIB Singosari (32 samples and 17 frozen semen samples from Lembang Artificial Insemination Center (BIB Lembang. Genomic DNAs were extracted by a standard phenol-chloroform protocol and amplified by a polymerase chain reaction (PCR techniques then PCR products were genotyped by the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP methods. There were two allele dan three genotypes were found namely: allele A and G, Genotype AA, AG and GG repectively. Allele A frequency (0.70-0.82 relatively higher than allele G frequency (0.18-0.30. Chi square test show that on group of BET Cipelang, BIB Lembang and BBIB Singosari population were not significantly different (0.00-0.93, while on group of BET Cipelang, BIB Lembang dan BBIB Singosari population were significantly different (6.02-11.13. Degree of observed heterozygosity (Ho ranged from 0.13-0.42 and expected heterozygosity (He ranged from 0.29-0.42.

  16. Nuclear hormone receptor co-repressors: Structure and function

    Science.gov (United States)

    Watson, Peter J.; Fairall, Louise; Schwabe, John W.R.

    2012-01-01

    Co-repressor proteins, such as SMRT and NCoR, mediate the repressive activity of unliganded nuclear receptors and other transcription factors. They appear to act as intrinsically disordered “hub proteins” that integrate the activities of a range of transcription factors with a number of histone modifying enzymes. Although these co-repressor proteins are challenging targets for structural studies due to their largely unstructured character, a number of structures have recently been determined of co-repressor interaction regions in complex with their interacting partners. These have yielded considerable insight into the mechanism of assembly of these complexes, the structural basis for the specificity of the interactions and also open opportunities for targeting these interactions therapeutically. PMID:21925568

  17. Characteristics of gait ataxia in δ2 glutamate receptor mutant mice, ho15J.

    Directory of Open Access Journals (Sweden)

    Eri Takeuchi

    Full Text Available The cerebellum plays a fundamental, but as yet poorly understood, role in the control of locomotion. Recently, mice with gene mutations or knockouts have been used to investigate various aspects of cerebellar function with regard to locomotion. Although many of the mutant mice exhibit severe gait ataxia, kinematic analyses of limb movements have been performed in only a few cases. Here, we investigated locomotion in ho15J mice that have a mutation of the δ2 glutamate receptor. The cerebellum of ho15J mice shows a severe reduction in the number of parallel fiber-Purkinje synapses compared with wild-type mice. Analysis of hindlimb kinematics during treadmill locomotion showed abnormal hindlimb movements characterized by excessive toe elevation during the swing phase, and by severe hyperflexion of the ankles in ho15J mice. The great trochanter heights in ho15J mice were lower than in wild-type mice throughout the step cycle. However, there were no significant differences in various temporal parameters between ho15J and wild-type mice. We suggest that dysfunction of the cerebellar neuronal circuits underlies the observed characteristic kinematic abnormality of hindlimb movements during locomotion of ho15J mice.

  18. Missense mutations in the growth hormone receptor dimerization region in Laron syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M.A.; Francke, U. [Howard Hughes Medical Institute, Stanford, CA (United States)]|[Univ. of Stanford, CA (United States); Geffner, M.E.; Bersch, N. [Univ. of California, Los Angeles, CA (United States)] [and others

    1994-09-01

    Laron syndrome (LS) is an autosomal recessively inherited condition characterized by insensitivity to endogenous and exogenous GH. Affected individuals have severe episodes and other characteristic features. GH receptor gene mutations are present in all affected individuals in whom molecular studies have been reported. The GH receptor is a plasma membrane-spanning protein in which the extracellular domain binds circulating GH and the intracellular domain interacts with the JAK-2 kinase and possibly other intracellular signaling molecules. GH receptor dimerization occurs on GH binding and is thought to be required for normal signal transduction. We have studied the GH receptor genes of four unrelated individuals affected with LS from the United States, Italy, Saudi Arabia, and India. We have identified four different missense mutations that alter consecutive amino acids 152 to 155 in or near the dimerization domain of the GH receptor. One of these mutations, D152H, has been reported previously in Asian LS patients and, in in vitro studies, the mutant receptor was unable to dimerize. This report increases to over 20 the number of different GH receptor gene mutations that have been reported in LS patients and defines the first apparent mutational {open_quotes}hotspot{close_quotes} region in this gene. This cluster of mutations in patients with classic LS phenotype provides additional in vivo evidence that receptor dimerization plays an important role in signaling GH`s growth promoting and metabolic effects. Further in vitro studies of the mutations in this region are in progress.

  19. Expression of two glycoprotein hormone receptors in larval, parasitic phase, and adult sea lampreys.

    Science.gov (United States)

    Hausken, Krist N; Marquis, Timothy J; Sower, Stacia A

    2017-11-21

    All jawed vertebrates have three canonical glycoprotein hormones (GpHs: luteinizing hormone, LH; follicle stimulating hormone, FSH; and thyroid stimulating hormone, TSH) with three corresponding GpH receptors (GpH-Rs: LH-R, FSH-R, and TSH-R). In contrast, we propose that the jawless vertebrate, the sea lamprey (Petromyzon marinus), only has two pituitary glycoprotein hormones, lamprey (l)GpH and l-thyrostimulin, and two functional glycoprotein receptors, lGpH-R I and II. It is not known at this time whether there is a specific receptor for lGpH and l-thyrostimulin, or if both GpHs can differentially activate the lGpH-Rs. In this report, we determined the RNA expression of lGpH-R I and II in the gonads and thyroids of larval, parasitic phase, and adult lampreys. A highly sensitive dual-label fluorescent in situ hybridization technique (RNAScope™) showed lGpH-R I expression in the ovaries of larval lamprey, and co-localization and co-expression of lGpH-R I and II in the ovaries of parasitic phase and adult lampreys. Both receptors were also highly co-localized and co-expressed in the endostyle of larval lamprey and thyroid follicles of parasitic and adult lampreys. In addition, we performed in vivo studies to determine the actions of lamprey gonadotropin releasing hormones (lGnRHs) on lGpH-R I and II expression by real time PCR, and determined plasma concentrations of estradiol and thyroxine. Administration of lGnRH-III significantly (p ≤ 0.01) increased lGpHR II expression in the thyroid follicles of adult female lampreys but did not cause a significant increase in RNA expression of lGpH-R I and II in ovaries. Concomitantly, there was a significant increase (p ≤ 0.01) of plasma estradiol without any significant changes of plasma thyroxine concentrations in response to treatment to lGnRH-I, -II, or -III. In summary, our results provide supporting evidence that the lamprey pituitary glycoprotein hormones may differentially activate the lamprey GpH-Rs in

  20. Expression of the growth hormone receptor gene in insulin producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Growth hormone (GH) plays a dual role in glucose homeostasis. On the one hand, it exerts an insulin antagonistic effect on the peripheral tissue, on the other hand, it stimulates insulin biosynthesis and beta-cell proliferation. The expression of GH-receptors on the rat insulinoma cell line RIN-5AH......-T2-clone B was studied. The binding characteristics with regard to specificity for the native 22 kDa hGH, and the 20 kDa variant were similar to that reported on rat adipocytes. Normal rat islet cells showed a similar affinity for hGH. The RIN cells express GH receptors similar to the cloned liver...... receptor. It is hypothesized that defects in the receptor expression on the beta-cells may contribute to the susceptibility to develop diabetes....

  1. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves' disease

    DEFF Research Database (Denmark)

    Brand, Oliver J; Barrett, Jeffrey C; Simmonds, Matthew J

    2009-01-01

    Graves' disease (GD) is a common autoimmune disease (AID) that shares many of its susceptibility loci with other AIDs. The thyroid stimulating hormone receptor (TSHR) represents the primary autoantigen in GD, in which autoantibodies bind to the receptor and mimic its ligand, thyroid stimulating...... hormone, causing the characteristic clinical phenotype. Although early studies investigating the TSHR and GD proved inconclusive, more recently we provided convincing evidence for association of the TSHR region with disease. In the current study, we investigated a combined panel of 98 SNPs, including 70.......32-1.78) and rs12101255 (chi(2) = 30.91, P = 1.95 x 10(-7), OR = 1.55, 95% CI = 1.33-1.81), both located in intron 1 of the TSHR. Association of the most associated SNP, rs179247, was replicated in 303 GD families (P = 7.8 x 10(-4)). In addition, we provide preliminary evidence that the disease...

  3. Receptors of Hypothalamic-Pituitary-Ovarian-Axis Hormone in Uterine Myomas

    Directory of Open Access Journals (Sweden)

    Danuta Plewka

    2014-01-01

    Full Text Available In this study the expression of GnRH, FSH, LH, ER-α, ER-β, and PR receptors was examined in uterine myomas of women in reproductive and perimenopausal age. In cases of GnRH and tropic hormones a membranous and cytoplasmic immunohistochemical reaction was detected, in cases of ER-α and PR the reaction was located in cell nucleus, and in the case of ER-β it manifested also a cytoplasmic location. In some of the examined cases the expression was detected in endometrium, myocytes, and endothelium of blood vessels, in uterine glands and myoma cells. In myometrium the level of GnRH and LH receptors increases with age, whereas the level of progesterone and both estrogen receptors decreases. In myomas of women in reproductive age, independently of their size, expression of GnRH, FSH, and LH receptors was more pronounced than in myometrium. In women of perimenopausal age, independently of myoma size, expression of LH and estrogen α receptors was higher while expression of GnRH receptors was lower than in myometrium. FSH receptor expression was not observed. Expression of estrogen receptor β was not affected by age of the woman or size of myoma. Analysis of obtained results indicates on existing in small myomas local feedback axis between GnRH-LH-progesterone.

  4. Involvement of Ghrelin-Growth Hormone Secretagogue Receptor System in Pathoclinical Profiles of Digestive System Cancer

    Institute of Scientific and Technical Information of China (English)

    Zhigang WANG; Weigang WANG; Wencai QIU; Youben FAN; Jun ZHAO; Yu WANG; Qi ZHENG

    2007-01-01

    Ghrelin receptor has been shown to be expressed along the human gastrointestinal tract.Recent studies showed that ghrelin and a synthetic ghrelin receptor agonist improved weight gain and lean body mass retention in a rat model of cancer cachexia by acting on ghrelin receptor, that is, growth hormone secretagogue receptor (GHS-R). This study aims to explore the expression and the distribution of ghrelin receptor in human gastrointestinal tract cancers and to investigate the possible involvement of the ghrelin-GHS-R system in human digestive cancers. Surgical human digestive cancer specimens were obtained from various portions of the gastrointestinal tract from different patients. The expression of ghrelin receptor in these tissues was detected by tissue microarray technique. Our results showed that ghrelin receptor was expressed in cancers throughout the gastrointestinal tract, mainly in the cytoplasm of mucosal layer cells.Its expression level possibly correlated with organ type, histological grade, tumor-nodes-metastases stage,and nutrition status (weight loss) of the patients. For the first time, we identified the distribution of ghrelin receptor in digestive system cancers. Our results implied that the ghrelin-GHS-R system might be involved in the pathoclinical profiles of digestive cancers.

  5. Cloning and characterization of the adipokinetic hormone receptor from the cockroach Periplaneta americana

    DEFF Research Database (Denmark)

    Hansen, Karina K; Hauser, Frank; Cazzamali, Giuseppe

    2006-01-01

    Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta...... of both Pea-AKH-1 (EC50, 5 x 10(-9)M), and Pea-AKH-2 (EC50, 2 x 10(-9)M). Insects can be subdivided into two evolutionary lineages, holometabola (insects with a complete metamorphosis during development) and hemimetabola (incomplete metamorphosis). This paper describes the first AKH receptor from...

  6. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  7. Incretin hormones and the expanding families of glucagon-like sequences and their receptors.

    Science.gov (United States)

    Irwin, D M; Prentice, K J

    2011-10-01

    Peptide hormones encoded by the proglucagon (Gcg) and glucose-dependent insulinotropic polypeptide (Gip) genes are evolutionarily related glucagon-like sequences and act through a subfamily of G-protein-coupled receptors. A better understanding of the evolutionary history of these hormones and receptors should yield insight into their biological functions. The availability of a large number of near-complete vertebrate genome sequences is a powerful resource to address questions concerning the evolution of sequences; here, we utilize these resources to examine the evolution of glucagon-like sequences and their receptors. These studies led to the discovery of novel genes for a glucagon receptor-like receptor (Grlr) and a glucagon-like sequence (exendin) in vertebrates. Both exendin and GRLR have ancient origins, early in vertebrate evolution, but have been lost on the ancestral lineage leading to extant mammals. We also show that exendin and GRLR are both expressed in the brain of the chicken and Xenopus tropicals, results that suggest that the products of these genes function in this tissue. The lack of exendin or Grlr genes in mammals suggests that other genes may have acquired the functions of exendin and Grlr during mammalian evolution. © 2011 Blackwell Publishing Ltd.

  8. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  9. [Rare abnormalities of parathyroid gland function and parathyroid hormone receptor action].

    Science.gov (United States)

    Krysiak, Robert; Bartecka, Anna; Okopień, Bogusław

    2014-01-01

    The parathyroid glands, located near or within the posterior surface of the thyroid gland and secreting parathyroid hormone, are essential organs for the regulation of calcium and phosphate metabolism. As they are necessary to sustain life and maintain homeostasis, undetected or misdiagnosed parathyroid disorders may pose a significant threat to health outcomes, as their presence may increase morbidity and mortality in affected individuals. The clinical picture of some disorders associated with abnormal parathyroid hormone secretion and receptor action is sometimes complicated by coexisting abnormalities, and in these cases establishing the correct diagnosis is challenging. The remarkable progress of recent years in the area of hormonal assessment, imaging procedures and molecular biology, has resulted in a great improvement in the identification, differentiation and treatment of various parathyroid disorders and has made it possible to identify several new clinical entities. In this paper, we discuss the present state-of-art on the etiopathogenesis, clinical manifestations, diagnosis and treatment of chosen rare abnormalities of parathyroid gland function and parathyroid hormone receptor action.

  10. Association between contralateral prophylactic mastectomy and breast cancer outcomes by hormone receptor status.

    Science.gov (United States)

    Brewster, Abenaa M; Bedrosian, Isabelle; Parker, Patricia A; Dong, Wenli; Peterson, Susan K; Cantor, Scott B; Crosby, Melissa; Shen, Yu

    2012-11-15

    The effect of contralateral prophylactic mastectomy (CPM) on the survival of patients with early-stage breast cancer remains controversial. The objective of this study was to evaluate the benefits of CPM using a propensity scoring approach that reduces selection bias from the nonrandom assignment of patients in observational studies. A total of 3889 female patients with stage I to III breast cancer were identified who were treated at The University of Texas MD Anderson Cancer Center from 1997 to 2009. We assessed the association between CPM and disease-free (DFS) and overall survival (OS), by using Cox proportional hazards models to estimate hazard ratios (HRs), and by matching patients in the CPM and no-CPM groups using propensity scores (n = 497 pairs). With a median follow-up time of 4.5 years, CPM was associated with improved DFS (HR, 0.75; 95% confidence interval [CI], 0.59-0.97) and OS (HR, 0.74; 95% CI, 0.56-0.99), adjusted for prognostic factors. The improved DFS was seen predominantly among hormone receptor-negative (HR, 0.60; 95% CI, 0.38-0.95) compared with hormone receptor-positive patients (HR, 0.80; 95% CI, 0.58-1.10). For the matched patient cohort, stratified survival analysis also showed an improvement in DFS with CPM (HR, 0.48; 95% CI, 0.22-1.01) in hormone receptor-negative patients that was nearly statistically significant. CPM was associated with improved DFS for some patients with hormone receptor-negative breast cancer, after reducing selection bias. Identifying subsets of patients most likely to benefit from CPM may have important implications for a more personalized approach to treatment decisions about CPM. Copyright © 2012 American Cancer Society.

  11. Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma

    Directory of Open Access Journals (Sweden)

    Cohen Cynthia

    2010-09-01

    Full Text Available Abstract Background Prostate carcinoma is among the most common solid tumors to secondarily involve the male breast. Prostate specific antigen (PSA and prostate-specific acid phosphatase (PSAP are expressed in benign and malignant prostatic tissue, and immunohistochemical staining for these markers is often used to confirm the prostatic origin of metastatic carcinoma. PSA expression has been reported in male and female breast carcinoma and in gynecomastia, raising concerns about the utility of PSA for differentiating prostate carcinoma metastasis to the male breast from primary breast carcinoma. This study examined the frequency of PSA, PSAP, and hormone receptor expression in male breast carcinoma (MBC, female breast carcinoma (FBC, and gynecomastia. Methods Immunohistochemical staining for PSA, PSAP, AR, ER, and PR was performed on tissue microarrays representing six cases of gynecomastia, thirty MBC, and fifty-six FBC. Results PSA was positive in two of fifty-six FBC (3.7%, focally positive in one of thirty MBC (3.3%, and negative in the five examined cases of gynecomastia. PSAP expression was absent in MBC, FBC, and gynecomastia. Hormone receptor expression was similar in males and females (AR 74.1% in MBC vs. 67.9% in FBC, p = 0.62; ER 85.2% vs. 68.5%, p = 0.18; and PR 51.9% vs. 48.2%, p = 0.82. Conclusions PSA and PSAP are useful markers to distinguish primary breast carcinoma from prostate carcinoma metastatic to the male breast. Although PSA expression appeared to correlate with hormone receptor expression, the incidence of PSA expression in our population was too low to draw significant conclusions about an association between PSA expression and hormone receptor status in breast lesions.

  12. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae.

    Science.gov (United States)

    Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR by mutating Ile691 in the cytoplasmic tail segment.

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    Full Text Available BACKGROUND: Autosomal dominant non-autoimmune hyperthyroidism (ADNAH is a rare genetic disorder of the endocrine system. Molecular genetic studies in ADNAH have revealed heterozygous germline mutations in the TSHR. To data, mutations leading to an increase in the constitutive activation of the TSHR have been described in the transmembrane segments, exoloops and cytoplasmic loop of TSHR. These mutations result in constitutive activation of the G(αs/cAMP or G(αq/11/inositol phosphate (IP pathways, which stimulate thyroid hormone production and thyroid proliferation. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study, we reported a new TSHR mutation located in the C-terminal domain of TSHR, which results in a substitution of the conserved Ile(691 for Phe. In this study, to address the question of whether the I691F mutated receptor could be responsible for G(αs/cAMP or G(αq/11/IP constitutive activity, wild-type and TSHR mutants were expressed in COS-7 cells to determine cAMP constitutive activity and IP formation. Compared to the cell surface with expression of the A623V mutated receptor as positive control, the I691F mutated receptor showed a slight increase of cAMP accumulation. Furthermore, I691F resulted in constitutive activation of the G(αq/11/IP signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our results indicate that Ile(691 not only contributes to keeping TSHR inactive in the G(αs/cAMP pathways but also in the G(αq/11/IP cascade.

  14. [Laryngeal effect of experimental postnatal hypothyroidism: do thyroid hormone receptors change?].

    Science.gov (United States)

    Eryılmaz, Aylin; Günel, Ceren; Eliyatkın, Nuket; Cesur, Gökhan; Türe, Mevlüt; Başal, Yeşim

    2016-01-01

    In this study, we aimed to investigate the laryngeal histopathological alterations and thyroid hormone receptors in rats with experimentally-induced postnatal hypothyroidism. In this prospective, randomized study, pregnant Wistar albino rats were followed and newborn 20 Wistar albino rat pups were included in the study. The pups were randomly divided into two groups: In group 1 (methimazole (MMI)-induced hypothyroidism group), the mothers and pups were given MMI added water up to 90th day, as the pups were fed with breast milk for 19 to 22 days. In group 2 (control group), the mothers and pups were fed with MMI-free water up to 90th days. When the pups were 90 days of age, they were decapitated and their larynx was removed. Their larynx was evaluated for edema, inflammation, goblet cells, and thyroid hormone receptors (TR-α, TR-β). Nine larynx samples for group 1 and eight for group 2 were studied. There was a significant difference in inflammation between the groups with slightly lower in the hypothyroidism group (p=0.009). The TR-α, TR-β, and edema were significantly higher in the hypothyroidism group (p=0.002, p=0.029, p=0.029). There was no significant difference in the Goblet cells between the groups (p=0.637). Histopathologically increased laryngeal edema and increased thyroid hormone receptors were found, shedding light on the mechanism of voice changes in hypothyroidism.

  15. Association between hormone receptors and HER-2/neu is age-related.

    Science.gov (United States)

    Wang, Bo; Wang, Xiaoling; Zou, Yinying

    2015-01-01

    To investigate the association between hormone receptors and HER-2/neu in different age groups of women with breast cancers. A total of 1036 women with breast cancers were recruited. All the patients were divided into nine groups. The expression of hormone receptors and HER-2/neu was studied by IHC, while FISH test was used to determine HER-2/neu status in cases scored IHC 2+. The association between hormone receptors and HER-2/neu in different age groups was evaluated using the χ(2) test. Multivariate analysis was used to find out the independent factors predicting HER-2/neu amplification. Significant findings: The expression of ER and PR was inversely correlated with HER-2/neu status in women aged >40 years. By multivariate analysis, as far as the overall groups were concerned, PR, lymph node status and tumor grade were independently associated with HER-2/neu; Considering the younger age group (≤ 40), the only predictor for HER-2/neu was the tumor grade; Considering the older age group (>40), tumor grade, PR status, tumor size and lymph node status were associated with HER-2/neu overexpression. Our data suggest that the association between ER, PR and HER-2/neu is age-related. The negative relationship is only applied for women aged >40 years.

  16. Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: A cohort study

    NARCIS (Netherlands)

    Ritte, R.; Lukanova, A.; Tjonneland, A.; Olsen, A.; Overvad, K.; Mesrine, S.; Fagherazzi, G.; Dossus, L.; Teucher, B.; Duijnhoven, van F.J.B.

    2013-01-01

    Associations of breast cancer overall with indicators of exposures during puberty are reasonably well characterized; however, uncertainty remains regarding the associations of height, leg length, sitting height and menarcheal age with hormone receptor-defined malignancies. Within the European

  17. Steroid Hormone Receptors as Potential Mediators of the Clinical Effects of Dutasteride: A Prospective, Randomized, Double-Blind Study

    National Research Council Canada - National Science Library

    Alonso, João C. C; Reis, Leonardo O; Garcia, Patrick V; Ferreira, Ubirajara; Matheus, Wagner E; Simões, Fabiano A; Rejowski, Ronald F; Alonso-Vale, Maria Isabel C; Fávaro, Wagner J

    2017-01-01

    This study characterizes the clinical and morphofunctional effects of a 5α-reductase inhibitor on steroid hormone receptors in normal human prostate tissue, as potential mediators of the clinical effects of dutasteride...

  18. Risk of Breast Cancer in Relation to Combined Effects of Hormone Therapy, Body Mass Index, and Alcohol Use, by Hormone-receptor Status

    DEFF Research Database (Denmark)

    Hvidtfeldt, Ulla Arthur; Tjonneland, Anne; Keiding, Niels

    2015-01-01

    -risk" users is important for therapeutic reasons. We investigated interactions between hormone therapy use and alcohol-use/high BMI status in relation to invasive breast cancer risk, both overall and according to estrogen receptor (ER) status. METHODS: Two Danish prospective cohorts were pooled, including 30......BACKGROUND: Alcohol consumption, increased body mass index (BMI), and hormone therapy are risk factors for postmenopausal breast cancer, but their combined effects are not well understood. Because hormone therapy is effective for the relief of menopausal symptoms, the identification of "high......,938 person-years of follow-up, 1579 women developed invasive breast cancer. Among nonusers of hormone therapy, the risk of breast cancer was slightly increased with overweight/obesity and increasing alcohol consumption. Compared with normal-weight nonusers, the risk of breast cancer was higher in hormone...

  19. Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding.

    Science.gov (United States)

    Flanagan, Colleen A; Manilall, Ashmeetha

    2017-01-01

    Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues

  20. Prolactin receptor, growth hormone receptor, and putative somatolactin receptor in Mozambique tilapia: tissue specific expression and differential regulation by salinity and fasting.

    Science.gov (United States)

    Pierce, A L; Fox, B K; Davis, L K; Visitacion, N; Kitahashi, T; Hirano, T; Grau, E G

    2007-01-01

    In fish, pituitary growth hormone family peptide hormones (growth hormone, GH; prolactin, PRL; somatolactin, SL) regulate essential physiological functions including osmoregulation, growth, and metabolism. Teleost GH family hormones have both differential and overlapping effects, which are mediated by plasma membrane receptors. A PRL receptor (PRLR) and two putative GH receptors (GHR1 and GHR2) have been identified in several teleost species. Recent phylogenetic analyses and binding studies suggest that GHR1 is a receptor for SL. However, no studies have compared the tissue distribution and physiological regulation of all three receptors. We sequenced GHR2 from the liver of the Mozambique tilapia (Oreochromis mossambicus), developed quantitative real-time PCR assays for the three receptors, and assessed their tissue distribution and regulation by salinity and fasting. PRLR was highly expressed in the gill, kidney, and intestine, consistent with the osmoregulatory functions of PRL. PRLR expression was very low in the liver. GHR2 was most highly expressed in the muscle, followed by heart, testis, and liver, consistent with this being a GH receptor with functions in growth and metabolism. GHR1 was most highly expressed in fat, liver, and muscle, suggesting a metabolic function. GHR1 expression was also high in skin, consistent with a function of SL in chromatophore regulation. These findings support the hypothesis that GHR1 is a receptor for SL. In a comparison of freshwater (FW)- and seawater (SW)-adapted tilapia, plasma PRL was strongly elevated in FW, whereas plasma GH was slightly elevated in SW. PRLR expression was reduced in the gill in SW, consistent with PRL's function in freshwater adaptation. GHR2 was elevated in the kidney in FW, and correlated negatively with plasma GH, whereas GHR1 was elevated in the gill in SW. Plasma IGF-I, but not GH, was reduced by 4 weeks of fasting. Transcript levels of GHR1 and GHR2 were elevated by fasting in the muscle. However

  1. Analgesic tolerance of opioid agonists in mutant mu-opioid receptors expressed in sensory neurons following intrathecal plasmid gene delivery.

    Science.gov (United States)

    Li, Guangwen; Ma, Fei; Gu, Yanping; Huang, Li-Yen Mae

    2013-12-05

    Phosphorylation sites in the C-terminus of mu-opioid receptors (MORs) are known to play critical roles in the receptor functions. Our understanding of their participation in opioid analgesia is mostly based on studies of opioid effects on mutant receptors expressed in in vitro preparations, including cell lines, isolated neurons and brain slices. The behavioral consequences of the mutation have not been fully explored due to the complexity in studies of mutant receptors in vivo. To facilitate the determination of the contribution of phosphorylation sites in MOR to opioid-induced analgesic behaviors, we expressed mutant and wild-type human MORs (hMORs) in sensory dorsal root ganglion (DRG) neurons, a major site for nociceptive (pain) signaling and determined morphine- and the full MOR agonist, DAMGO,-induced effects on heat-induced hyperalgesic behaviors and potassium current (IK) desensitization in these rats. A mutant hMOR DNA with the putative phosphorylation threonine site at position 394 replaced by an alanine (T394A), i.e., hMOR-T, or a plasmid containing wild type hMOR (as a positive control) was intrathecally delivered. The plasmid containing GFP or saline was used as the negative control. To limit the expression of exogenous DNA to neurons of DRGs, a neuron-specific promoter was included in the plasmid. Following a plasmid injection, hMOR-T or hMOR receptors were expressed in small and medium DRG neurons. Compared with saline or GFP rats, the analgesic potency of morphine was increased to a similar extent in hMOR-T and hMOR rats. Morphine induced minimum IK desensitization in both rat groups. In contrast, DAMGO increased analgesic potency and elicited IK desensitization to a significantly less extent in hMOR-T than in hMOR rats. The development and extent of acute and chronic tolerance induced by repeated morphine or DAMGO applications were not altered by the T394A mutation. These results indicate that phosphorylation of T394 plays a critical role in

  2. Expansion of microsatellite in the thyroid hormone receptor-alpha1 gene linked to increased receptor expression and less aggressive thyroid cancer

    DEFF Research Database (Denmark)

    Onda, Masamitsu; Li, Daisy; Suzuki, Shinichi

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether the length of the THRA1 microsatellite, which resides in a noncoding portion of the thyroid hormone receptor-alpha1 gene, affects receptor expression and is linked to clinicopathological parameters in thyroid cancer. EXPERIMENTAL DESIGN......: In 30 cases of surgically resected sporadic thyroid cancer, the length of the THRA1 microsatellite was determined by DNA sequence analysis, and expression of thyroid hormone receptor-alpha1 was assessed immunohistochemically in thin sections cut from tumor blocks. The length of THRA1 and expression...... of thyroid hormone receptor-alpha1 were also assessed in seven cancer cell lines. Regression analysis was used to gauge the correlation between the size of THRA1 and receptor expression. Multivariate analysis was used to test for links to the clinical parameters of gender, age, histology, stage, nodal...

  3. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  4. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence.

    Directory of Open Access Journals (Sweden)

    Theresa Alexandra Mattioli

    Full Text Available The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4. Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (- naloxone, an opioid receptor antagonist, and (+ naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.

  5. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development.

    Science.gov (United States)

    Hu, Fang; Knoedler, Joseph R; Denver, Robert J

    2016-04-01

    Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs.

  6. Enhanced food anticipatory activity associated with enhanced activation of extrahypothalamic neural pathways in serotonin2C receptor null mutant mice.

    Directory of Open Access Journals (Sweden)

    Jennifer L Hsu

    Full Text Available The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity. However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin(2C receptor (5-HT2CR null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanced food anticipatory activity compared to wild-type littermates, without phenotypic differences in the impact of restricted feeding on food consumption, body weight loss, or blood glucose levels. Moreover, we show that the enhanced food anticipatory activity in 5-HT2CR null mutant mice develops independent of external light cues and persists during two days of total food deprivation, indicating that food anticipatory activity in 5-HT2CR null mutant mice reflects the locomotor output of a food-entrainable oscillator. Whereas restricted feeding induces c-fos expression to a similar extent in hypothalamic nuclei of wild-type and null mutant animals, it produces enhanced expression in the nucleus accumbens and other extrahypothalamic regions of null mutant mice relative to wild-type subjects. These data suggest that 5-HT2CRs gate food anticipatory activity through mechanisms involving extrahypothalamic neural pathways.

  7. Enhanced neurodegeneration after a high dose of methamphetamine in adenosine A3 receptor null mutant mice.

    Science.gov (United States)

    Shen, H; Luo, Y; Yu, S-J; Wang, Y

    2011-10-27

    Previous reports have indicated that adenosine A3 receptor (A3R) knockout mice are more sensitive to ischemic or hypoxic brain injury. The purpose of this study was to examine if suppression of A3R expression is associated with increase in sensitivity to injury induced by a high dose of methamphetamine (Meth). Adult male A3R null mutant (-/-) mice and their controls (+/+) were injected with four doses (2 h apart) of Meth (10 mg/kg) or saline. Animals were placed in a behavioral activity chamber, equipped with food and water, for 52 h starting from one day after injections. The first 4 h were used for studying exploratory behaviors, and the next 48 h were used to measure locomotor activity. High doses of Meth equally reduced the 4-h exploratory behavior in -/- and +/+ mice. Meth suppressed locomotor activity between 4 and 52 h in both groups, with a greater reduction being found in the -/- mice. Brain tissues were collected at 3 days after the Meth or saline injections. Meth treatment reduced striatal dopamine (DA) levels in both +/+ and -/- mice with an increase in 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio being found only in -/- animals. Meth also significantly increased ionized calcium-binding adaptor molecule 1 (Iba-1) and cleaved caspase-3 level in striatum, as well as Iba-1 and TNFα mRNA expression in nigra in -/-, compared to +/+, mice. Previous studies have shown that pharmacological suppression of vesicular monoamine transport 2 (VMAT2) by reserpine enhanced Meth toxicity by increasing cytosolic DA and inflammation. A significant reduction in striatal VMAT2 expression was found in -/- mice compared to +/+ mice, suggesting that increase in sensitivity to Meth injury in -/- mice may be related to a reduction in VMAT2 expression in these mice. In conclusion, our data suggest that A3R -/- mice are more sensitive to high doses of Meth. Published by Elsevier Ltd.

  8. Structurally Novel Antiestrogens Elicit Differential Responses from Constitutively Active Mutant Estrogen Receptors in Breast Cancer Cells and Tumors.

    Science.gov (United States)

    Zhao, Yuechao; Laws, Mary J; Guillen, Valeria Sanabria; Ziegler, Yvonne; Min, Jian; Sharma, Abhishek; Kim, Sung Hoon; Chu, David; Park, Ben Ho; Oesterreich, Steffi; Mao, Chengjian; Shapiro, David J; Nettles, Kendall W; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2017-10-15

    Many estrogen receptor α (ERα)-positive breast cancers develop resistance to endocrine therapy via mutation of ERs whose constitutive activation is associated with shorter patient survival. Because there is now a clinical need for new antiestrogens (AE) against these mutant ERs, we describe here our development and characterization of three chemically novel AEs that effectively suppress proliferation of breast cancer cells and tumors. Our AEs are effective against wild-type and Y537S and D538G ERs, the two most commonly occurring constitutively active ERs. The three new AEs suppressed proliferation and estrogen target gene expression in WT and mutant ER-containing cells and were more effective in D538G than in Y537S cells and tumors. Compared with WT ER, mutants exhibited approximately 10- to 20-fold lower binding affinity for AE and a reduced ability to be blocked in coactivator interaction, likely contributing to their relative resistance to inhibition by AE. Comparisons between mutant ER-containing MCF7 and T47D cells revealed that AE responses were compound, cell-type, and ERα-mutant dependent. These new ligands have favorable pharmacokinetic properties and effectively suppressed growth of WT and mutant ER-expressing tumor xenografts in NOD/SCID-γ mice after oral or subcutaneous administration; D538G tumors were more potently inhibited by AE than Y537S tumors. These studies highlight the differential responsiveness of the mutant ERs to different AEs and make clear the value of having a toolkit of AEs for treatment of endocrine therapy-resistant tumors driven by different constitutively active ERs. Cancer Res; 77(20); 5602-13. ©2017 AACR. ©2017 American Association for Cancer Research.

  9. Family history and breast cancer hormone receptor status in a Spanish cohort.

    Directory of Open Access Journals (Sweden)

    Xuejuan Jiang

    Full Text Available BACKGROUND: Breast cancer is a heterogenous disease that impacts racial/ethnic groups differently. Differences in genetic composition, lifestyles, reproductive factors, or environmental exposures may contribute to the differential presentation of breast cancer among Hispanic women. MATERIALS AND METHODS: A population-based study was conducted in the city of Santiago de Compostela, Spain. A total of 645 women diagnosed with operable invasive breast cancer between 1992 and 2005 participated in the study. Data on demographics, breast cancer risk factors, and clinico-pathological characteristics of the tumors were collected. Hormone receptor negative tumors were compared with hormone receptor postive tumors on their clinico-pathological characteristics as well as risk factor profiles. RESULTS: Among the 645 breast cancer patients, 78% were estrogen receptor-positive (ER+ or progesterone receptor-positive (PR+, and 22% were ER-&PR-. Women with a family history of breast cancer were more likely to have ER-&PR- tumors than women without a family history (Odds ratio, 1.43; 95% confidence interval, 0.91-2.26. This association was limited to cancers diagnosed before age 50 (Odds ratio, 2.79; 95% confidence interval, 1.34-5.81. CONCLUSIONS: An increased proportion of ER-&PR- breast cancer was observed among younger Spanish women with a family history of the disease.

  10. The Nuclear Hormone Receptor PPARγ as a Therapeutic Target in Major Diseases

    Directory of Open Access Journals (Sweden)

    Martina Victoria Schmidt

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor γ (PPARγ belongs to the nuclear hormone receptor superfamily and regulates gene expression upon heterodimerization with the retinoid X receptor by ligating to peroxisome proliferator response elements (PPREs in the promoter region of target genes. Originally, PPARγ was identified as being essential for glucose metabolism. Thus, synthetic PPARγ agonists, the thiazolidinediones (TZDs, are used in type 2 diabetes therapy as insulin sensitizers. More recent evidence implied an important role for the nuclear hormone receptor PPARγ in controlling various diseases based on its anti-inflammatory, cell cycle arresting, and proapoptotic properties. In this regard, expression of PPARγ is not restricted to adipocytes, but is also found in immune cells, such as B and T lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. The expression of PPARγ in lymphoid organs and its modulation of macrophage inflammatory responses, lymphocyte proliferation, cytokine production, and apoptosis underscore its immune regulating functions. Moreover, PPARγ expression is found in tumor cells, where its activation facilitates antitumorigenic actions. This review provides an overview about the role of PPARγ as a possible therapeutic target approaching major, severe diseases, such as sepsis, cancer, and atherosclerosis.

  11. Social information changes stress hormone receptor expression in the songbird brain.

    Science.gov (United States)

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Nuclear receptor DHR4 controls the timing of steroid hormone pulses during Drosophila development.

    Directory of Open Access Journals (Sweden)

    Qiuxiang Ou

    2011-09-01

    Full Text Available In insects, precisely timed periodic pulses of the molting hormone ecdysone control major developmental transitions such as molts and metamorphosis. The synthesis and release of ecdysone, a steroid hormone, is itself controlled by PTTH (prothoracicotopic hormone. PTTH transcript levels oscillate with an 8 h rhythm, but its significance regarding the timing of ecdysone pulses is unclear. PTTH acts on its target tissue, the prothoracic gland (PG, by activating the Ras/Raf/ERK pathway through its receptor Torso, however direct targets of this pathway have yet to be identified. Here, we demonstrate that Drosophila Hormone Receptor 4 (DHR4, a nuclear receptor, is a key target of the PTTH pathway and establishes temporal boundaries by terminating ecdysone pulses. Specifically, we show that DHR4 oscillates between the nucleus and cytoplasm of PG cells, and that the protein is absent from PG nuclei at developmental times when low titer ecdysone pulses occur. This oscillatory behavior is blocked when PTTH or torso function is abolished, resulting in nuclear accumulation of DHR4, while hyperactivating the PTTH pathway results in cytoplasmic retention of the protein. Increasing DHR4 levels in the PG can delay or arrest development. In contrast, reducing DHR4 function in the PG triggers accelerated development, which is caused by precocious ecdysone signaling due to a failure to repress ecdysone pulses. Finally, we show that DHR4 negatively regulates the expression of a hitherto uncharacterized cytochrome P450 gene, Cyp6t3. Disruption of Cyp6t3 function causes low ecdysteroid titers and results in heterochronic phenotypes and molting defects, indicating a novel role in the ecdysone biosynthesis pathway. We propose a model whereby nuclear DHR4 controls the duration of ecdysone pulses by negatively regulating ecdysone biosynthesis through repression of Cyp6t3, and that this repressive function is temporarily overturned via the PTTH pathway by removing DHR4

  13. SKP2 Activation by Thyroid Hormone Receptor β2 Bypasses Rb-Dependent Proliferation in Rb-Deficient Cells.

    Science.gov (United States)

    Xu, Xiaoliang L; Li, Zhengke; Liu, Aihong; Fan, Xianqun; Hu, Dan-Ning; Qi, Dong-Lai; Chitty, David W; Jia, Renbing; Qui, Jianping; Wang, Justin Q; Sharaf, Jake; Zou, Jun; Weiss, Rebecca; Huang, Hongyan; Joseph, Walter J; Ng, Lily; Rosen, Richard; Shen, Binghui; Reid, Mark W; Forrest, Douglas; Abramson, David H; Singer, Samuel; Cobrinik, David; Jhanwar, Suresh C

    2017-12-15

    Germline RB1 mutations strongly predispose humans to cone precursor-derived retinoblastomas and strongly predispose mice to pituitary tumors, yet shared cell type-specific circuitry that sensitizes these different cell types to the loss of RB1 has not been defined. Here we show that the cell type-restricted thyroid hormone receptor isoform TRβ2 sensitizes to RB1 loss in both settings by antagonizing the widely expressed and tumor-suppressive TRβ1. TRβ2 promoted expression of the E3 ubiquitin ligase SKP2, a critical factor for RB1-mutant tumors, by enabling EMI1/FBXO5-dependent inhibition of SKP2 degradation. In RB1 wild-type neuroblastoma cells, endogenous Rb or ectopic TRβ2 was required to sustain SKP2 expression as well as cell viability and proliferation. These results suggest that in certain contexts, Rb loss enables TRβ1-dependent suppression of SKP2 as a safeguard against RB1-deficient tumorigenesis. TRβ2 counteracts TRβ1, thus disrupting this safeguard and promoting development of RB1-deficient malignancies. Cancer Res; 77(24); 6838-50. ©2017 AACR. ©2017 American Association for Cancer Research.

  14. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor.

    Science.gov (United States)

    Lu, D; Willard, D; Patel, I R; Kadwell, S; Overton, L; Kost, T; Luther, M; Chen, W; Woychik, R P; Wilkison, W O

    1994-10-27

    The genetic loci agouti and extension control the relative amounts of eumelanin (brown-black) and phaeomelanin (yellow-red) pigments in mammals: extension encodes the receptor for melanocyte-stimulating hormone (MSH) and agouti encodes a novel 131-amino-acid protein containing a signal sequence. Agouti, which is produced in the hair follicle, acts on follicular melanocytes to inhibit alpha-MSH-induced eumelanin production, resulting in the subterminal band of phaeomelanin often visible in mammalian fur. Here we use partially purified agouti protein to demonstrate that agouti is a high-affinity antagonist of the MSH receptor and blocks alpha-MSH stimulation of adenylyl cyclase, the effector through which alpha-MSH induces eumelanin synthesis. Agouti was also found to be an antagonist of the melanocortin-4 receptor, a related MSH-binding receptor. Consequently, the obesity caused by ectopic expression of agouti in the lethal yellow (Ay) mouse may be due to the inhibition of melanocortin receptor(s) outside the hair follicle.

  15. Analyzing the Role of Receptor Internalization in the Regulation of Melanin-Concentrating Hormone Signaling

    Directory of Open Access Journals (Sweden)

    Jay I. Moden

    2013-01-01

    Full Text Available The regulation of appetite is complex, though our understanding of the process is improving. The potential role for the melanin-concentrating hormone (MCH signaling pathway in the treatment of obesity is being explored by many. It was hypothesized that internalization of MCH receptors would act to potently desensitize cells to MCH. Despite potent desensitization of ERK signaling by MCH in BHK-570 cells, we were unable to observe MCH-mediated internalization of MCH receptor 1 (MCHR1 by fluorescence microscopy. A more quantitative approach using a cell-based ELISA indicated only 15% of receptors internalized, which is much lower than that reported in the literature. When -arrestins were overexpressed in our system, removal of receptors from the cell surface was facilitated and signaling to a leptin promoter was diminished, suggesting that internalization of MCHR1 is sensitive to cellular -arrestin levels. A dominant-negative GRK construct completely inhibited loss of receptors from the cell surface in response to MCH, suggesting that the internalization observed is phosphorylation-dependent. Since desensitization of MCH-mediated ERK signaling did not correlate with significant loss of MCHR1 from the cell surface, we hypothesize that in this model system regulation of MCH signaling may be the result of segregation of receptors from signaling components at the plasma membrane.

  16. Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.

    Directory of Open Access Journals (Sweden)

    Marc R Van Gilst

    2005-02-01

    Full Text Available Mammalian nuclear hormone receptors (NHRs, such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs, precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.

  17. [Advanced luminal breast cancer (hormone receptor-positive, HER2 negative): New therapeutic options in 2015].

    Science.gov (United States)

    Vanacker, Hélène; Bally, Olivia; Kassem, Loay; Tredan, Olivier; Heudel, Pierre; Bachelot, Thomas

    2015-06-01

    Despite improvements in early detection, surgery and systemic therapy, metastatic breast cancer remains a major cause of death. Luminal type breast cancers expressing hormone estrogen receptor (ER) or progesterone (PR) and without HER2 overexpression are generally sensitive to endocrine therapy, but raise the issue of the occurrence of resistance to treatment, particularly at metastatic stage. A better understanding of hormone resistance may guide the development of new therapeutics. New strategies aim at enhancing and prolonging of endocrine sensitivity, by optimizing existing schemes, or by combining an endocrine therapy with a targeted therapies specific to hormone resistance pathways: ER signaling, PI3K/AKT/mTOR and Cyclin Dependent Kinase (CDK). Key corners of 2014 include confirmation of benefit of high dose fulvestrant, and commercialization of everolimus as the first mTOR inhibitor in this indication. Other strategies are being tested dealing with new endocrine therapies or new molecular targets such as PI3K inhibitors, insulin-like growth factor receptor (IGF-R) and histone deacetylase (HDAC) inhibitors. Coming years may be fruitful and might radically change our way to treat these patients. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  18. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    Science.gov (United States)

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  19. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    Directory of Open Access Journals (Sweden)

    Wen Huang

    Full Text Available Thyroid hormones (THs play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR, the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5 was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA. These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in

  20. Growth hormone receptor C-terminal domains required for growth hormone-induced intracellular free Ca2+ oscillations and gene transcription

    DEFF Research Database (Denmark)

    Billestrup, N; Bouchelouche, P; Allevato, G

    1995-01-01

    The biological effects of growth hormone (GH) are initiated by its binding to the GH receptor (GHR) followed by association and activation of the tyrosine kinase JAK2. Here we report that GH can stimulate an increase in intracellular free Ca2+ concentration ([Ca2+]i) in cells expressing wild-type...

  1. Serum calcium, tumor size, and hormone receptor status in women with untreated breast cancer.

    Science.gov (United States)

    Thaw, Sunn Sunn H; Sahmoun, Abe; Schwartz, Gary G

    2012-05-01

    Elevated serum levels of calcium are frequently observed in advanced breast cancer, but data on serum calcium and breast cancer characteristics at the time of breast cancer diagnosis are limited. We conducted a cross-sectional study of 555 women with newly-diagnosed, untreated breast cancer in North Dakota. We examined the relationship between tumor size, serum calcium and other clinical characteristics of breast tumors, including age and hormone receptor status, using multiple linear regressions. Tumors that were estrogen receptor negative tended to be associated with higher serum calcium levels (p = 0.07). We observed a significant positive correlation between tumor volume and serum calcium levels (adjusted for patient age, body mass index, hormonal receptors, stage at diagnosis, and grade). The association between tumor volume and serum calcium was limited to post-menopausal women. Our finding that postmenopausal women with larger breast tumors had significantly higher serum calcium levels is consistent with a calciotropic effect of early breast cancer in postmenopausal women.

  2. Anorectic actions of prolactin-releasing peptide are mediated by corticotropin-releasing hormone receptors.

    Science.gov (United States)

    Lawrence, Catherine B; Liu, Yong-Ling; Stock, Michael J; Luckman, Simon M

    2004-01-01

    Prolactin-releasing peptide (PrRP) reduces food intake and body weight and modifies body temperature when administered centrally in rats, suggesting a role in energy homeostasis. However, the mediators of PrRP's actions are unknown. The present study, therefore, first examined the possible involvement of the anorectic neuropeptides corticotropin-releasing hormone (CRH) and the melanocortins (e.g., alpha-melanocyte-stimulating hormone) in PrRP's effects on food intake and core body temperature and, second, determined if PrRP affects energy expenditure by measuring oxygen consumption (Vo2). Intracerebroventricular injection of PrRP (4 nmol) to 24-h-fasted male Sprague-Dawley rats decreased food intake and modified body temperature. Blockade of central CRH receptors by intracerebroventricular coadministration of the CRH receptor antagonist astressin (20 microg) reversed the PrRP-induced reduction in feeding. However, astressin's effect on PrRP-induced changes in body temperature was complicated because the antagonist itself caused a slight rise in body temperature. In contrast, intracerebroventricular coadministration of the melanocortin receptor-3/4 antagonist SHU-9119 (0.1 nmol) had no effect on any of PrRP's actions. Finally, intracerebroventricular injection of PrRP (4 nmol) caused a significantly greater Vo2 over a 3-h test period compared with vehicle-treated rats. These results show that the anorectic actions of PrRP are mediated by central CRH receptors but not by melanocortin receptors-3/4 and that PrRP can modify Vo2.

  3. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity.

    Science.gov (United States)

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, Andrzej M; Jiráček, Jiří; Žáková, Lenka

    2016-05-31

    Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.

  4. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene.

    Science.gov (United States)

    Samson, M; Libert, F; Doranz, B J; Rucker, J; Liesnard, C; Farber, C M; Saragosti, S; Lapoumeroulie, C; Cognaux, J; Forceille, C; Muyldermans, G; Verhofstede, C; Burtonboy, G; Georges, M; Imai, T; Rana, S; Yi, Y; Smyth, R J; Collman, R G; Doms, R W; Vassart, G; Parmentier, M

    1996-08-22

    HIV-1 and related viruses require co-receptors, in addition to CD4, to infect target cells. The chemokine receptor CCR-5 (ref.1) was recently demonstrated to be a co-receptor for macrophage-tropic (M-tropic) HIV-1 strains, and the orphan receptor LESTR (also called fusin) allows infection by strains adapted for growth in transformed T-cell lines (T-tropic strains). Here we show that a mutant allele of CCR-5 is present at a high frequency in caucasian populations (allele frequency, 0.092), but is absent in black populations from Western and Central Africa and Japanese populations. A 32-base-pair deletion within the coding region results in a frame shift, and generates a non-functional receptor that does not support membrane fusion or infection by macrophage- and dual-tropic HIV-1 strains. In a cohort of HIV-1 infected caucasian subjects, no individual homozygous for the mutation was found, and the frequency of heterozygotes was 35% lower than in the general population. White blood cells from an individual homozygous for the null allele were found to be highly resistant to infection by M-tropic HIV-1 viruses, confirming that CCR-5 is the major co-receptor for primary HIV-1 strains. The lower frequency of heterozygotes in seropositive patients may indicate partial resistance.

  5. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling

    National Research Council Canada - National Science Library

    Weissmueller, Susann; Manchado, Eusebio; Saborowski, Michael; Morris, 4th, John P; Wagenblast, Elvin; Davis, Carrie A; Moon, Sung-Hwan; Pfister, Neil T; Tschaharganeh, Darjus F; Kitzing, Thomas; Aust, Daniela; Markert, Elke K; Wu, Jianmin; Grimmond, Sean M; Pilarsky, Christian; Prives, Carol; Biankin, Andrew V; Lowe, Scott W

    2014-01-01

    ...) as both necessary and sufficient to mediate these effects. Mutant p53 induced PDGFRb through a cell-autonomous mechanism involving inhibition of a p73/NF-Y complex that represses PDGFRb expression in p53-deficient, noninvasive cells...

  6. PAC1- and VPAC2 receptors in light regulated behavior and physiology: Studies in single and double mutant mice.

    Directory of Open Access Journals (Sweden)

    Jens Hannibal

    Full Text Available The two sister peptides, pituitary adenylate cyclase activating polypeptide (PACAP and vasoactive intestinal polypeptide (VIP and their receptors, the PAC1 -and the VPAC2 receptors, are involved in regulation of the circadian timing system. PACAP as a neurotransmitter in the retinohypothalamic tract (RHT and VIP as a neurotransmitter, involved in synchronization of SCN neurons. Behavior and physiology in VPAC2 deficient mice are strongly regulated by light most likely as a result of masking. Consequently, we used VPAC2 and PAC1/VPAC2 double mutant mice in comparison with PAC1 receptor deficient mice to further elucidate the role of PACAP in the light mediated regulation of behavior and physiology of the circadian system. We compared circadian rhythms in mice equipped with running wheels or implanted radio-transmitter measuring core body temperature kept in a full photoperiod ((FPP(12:12 h light dark-cycles (LD and skeleton photo periods (SPP at high and low light intensity. Furthermore, we examined the expression of PAC1- and VPAC2 receptors in the SCN of the different genotypes in combination with visualization of PACAP and VIP and determined whether compensatory changes in peptide and/or receptor expression in the reciprocal knockouts (KO (PAC1 and VPAC2 had occurred. Our data demonstrate that in although being closely related at both ligand and receptor structure/sequence, PACAP/PAC1 receptor signaling are independent of VIP/VPAC2 receptor signaling and vice versa. Furthermore, lack of either of the receptors does not result in compensatory changes at neither the physiological or anatomical level. PACAP/PAC1 signaling is important for light regulated behavior, VIP/VPAC2signaling for stable clock function and both signaling pathways may play a role in shaping diurnality versus nocturnality.

  7. Effects of transgenic overexpression of diapause hormone and diapause hormone receptor genes on non-diapause silkworm.

    Science.gov (United States)

    Gong, Chunying; Zeng, Wenhui; Zhang, Tianyang; Liu, Rongpeng; Ou, Yao; Ai, Junwen; Xiang, Zhonghuai; Xu, Hanfu

    2017-12-01

    Diapause is a state of developmental arrest that is most often observed in arthropods, especially insects. The domesticated silkworm, Bombyx mori, is a typical insect that enters diapause at an early embryonic stage. Previous studies have revealed that the diapause hormone (DH) signaling molecules, especially the core members DH and DH receptor 1 (DHR1), are crucial for the determination of embryonic diapause in diapause silkworm strains. However, whether they function in non-diapause silkworm strains remains largely unknown. Here, we generated two transgenic lines overexpressing DH or DHR1 genes in a non-diapause silkworm strain, Nistari. Our results showed that developmental expression patterns of DH and DHR1 are quite similar in transgenic silkworms: both genes are highly expressed in the mid to late stages of pupae and are most highly expressed in day-6 pupae but are expressed at very low levels in other developmental stages. Moreover, the overexpression of DH or DHR1 can affect the expression of diapause-related genes but is not sufficient to induce embryonic diapause in their offspring. This study provides new insights into the function of DH and DHR1 in a non-diapause silkworm strain.

  8. Impaired exercise tolerance and skeletal muscle myopathy in sulfonylurea receptor-2 mutant mice

    OpenAIRE

    Stoller, Douglas; Pytel, Peter; Katz, Sophie; Earley, Judy U.; Collins, Keith; Metcalfe, Jamie; Lang, Roberto M.; McNally, Elizabeth M.

    2009-01-01

    By sensing intracellular energy levels, ATP-sensitive potassium (KATP) channels help regulate vascular tone, glucose metabolism, and cardioprotection. SUR2 mutant mice lack full-length KATP channels in striated and smooth muscle and display a complex phenotype of hypertension and coronary vasospasm. SUR2 mutant mice also display baseline cardioprotection and can withstand acute sympathetic stress better than normal mice. We now studied response to a form of chronic stress, namely that induced...

  9. Mutant p53 Amplifies Epidermal Growth Factor Receptor Family Signaling to Promote Mammary Tumorigenesis.

    Science.gov (United States)

    Yallowitz, Alisha R; Li, Dun; Lobko, Anthony; Mott, Daniel; Nemajerova, Alice; Marchenko, Natalia

    2015-04-01

    The EGFR family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, the majority of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germline mutations (Li-Fraumeni syndrome) suggests a key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis, a mutant p53 allele (R172H) was introduced into the (MMTV)-ErbB2/Neu mouse model system. Interestingly, we show in heterozygous p53 mice that mutant p53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. These in vivo and in vitro data provide mechanistic evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cell proliferation. This study identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated mammary tumorigenesis and indicates the potential translational importance of targeting mutant p53 in this subset of patients with breast cancer. ©2015 American Association for Cancer Research.

  10. Receptors and effects of gut hormones in three osteoblastic cell lines

    Directory of Open Access Journals (Sweden)

    Wilson Peter JM

    2011-07-01

    Full Text Available Abstract Background In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. Methods mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB] were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63 showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP, procollagen type 1 amino-terminal propeptides (P1NP, and osteocalcin production. Results The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and

  11. Estrogen receptor activation by tobacco smoke condensate in hormonal therapy-resistant breast cancer cells.

    Science.gov (United States)

    Niwa, Toshifumi; Shinagawa, Yuri; Asari, Yosuke; Suzuki, Kanae; Takanobu, Junko; Gohno, Tatsuyuki; Yamaguchi, Yuri; Hayashi, Shin-Ichi

    2017-01-01

    The relationship between tobacco smoke and breast cancer incidence has been studied for many years, but the effect of smoking on hormonal therapy has not been previously reported. We investigated the effect of smoking on hormonal therapy by performing in vitro experiments. We first prepared tobacco smoke condensate (TSC) and examined its effect on estrogen receptor (ER) activity. The ER activity was analyzed using MCF-7-E10 cells into which the estrogen-responsive element (ERE)-green fluorescent protein (GFP) reporter gene had been stably introduced (GFP assay) and performing an ERE-luciferase assay. TSC significantly activated ERs, and upregulated its endogenous target genes. This activation was inhibited by fulvestrant but more weakly by tamoxifen. These results suggest that the activation mechanism may be different from that for estrogen. Furthermore, using E10 estrogen depletion-resistant cells (EDR cells) established as a hormonal therapy-resistant model showing estrogen-independent ER activity, ER activation and induction of ER target genes were significantly higher following TSC treatment than by estradiol (E2). These responses were much higher than those of the parental E10 cells. In addition, the phosphorylation status of signaling factors (ERK1/2, Akt) and ER in the E10-EDR cells treated with TSC increased. The gene expression profile induced by estrogenic effects of TSC was characterized by microarray analysis. The findings suggested that TSC activates ER by both ligand-dependent and -independent mechanisms. Although TSC constituents will be metabolized in vivo, breast cancer tissues might be exposed for a long period along with hormonal therapy. Tobacco smoke may have a possibility to interfere with hormonal therapy for breast cancer, which may have important implications for the management of therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Differential Expression of Claudin Family Proteins in Mouse Ovarian Serous Papillary Epithelial Adenoma in Aging FSH Receptor-Deficient Mutants

    Directory of Open Access Journals (Sweden)

    Jayaprakash Aravindakshan

    2006-12-01

    Full Text Available Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of folliclestimulating hormone receptor (FSH-R signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma.

  13. Differential expression of claudin family proteins in mouse ovarian serous papillary epithelial adenoma in aging FSH receptor-deficient mutants.

    Science.gov (United States)

    Aravindakshan, Jayaprakash; Chen, Xinlei; Sairam, M Ram

    2006-12-01

    Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of follicle-stimulating hormone receptor (FSH-R) signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO) mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma.

  14. [The correlations between polymorphism of growth hormone receptor gene and butcher traits in rabbit].

    Science.gov (United States)

    Deng, Xiao-Song; Wan, Jie; Chen, Shi-Yi; Wang, Yan; Lai, Song-Jia; Jiang, Mei-Shan; Xu, Min

    2008-11-01

    Five rabbit populations (Belgian hare, Tianfu black rabbit, Great line of Zika rabbit, Harbin white rabbit, and California rabbit) were used to analyze the polymorphism of growth hormone receptor (GHR) gene by PCR-SSCP. Results indicated that there were two mutation sites (C705T and C810T) in the 5 populations. The least square analyses showed that the live weight, visceraste weight, and slaughter percentage of AA and MM genotypes were significantly lower than BB and NN genotypes (P0.05). It suggested that GHR gene may be a candidate gene responsible for butcher trait in rabbit.

  15. Synthesis, Receptor Binding, and CNS Pharmacological Studies of New Thyrotropin-Releasing Hormone (TRH) Analogues

    OpenAIRE

    Monga, Vikramdeep; Meena, Chhuttan L.; Rajput, Satyendra; Pawar, Chandrashekhar; Shyam S. Sharma; Lu, Xinping; Gershengorn, Marvin C.; Jain, Rahul

    2011-01-01

    As part of our search for selective and CNS-active thyrotropin-releasing hormone (TRH) analogues, we synthesized a set of 44 new analogues in which His and pGlu residues were modified or replaced. The analogues were evaluated as agonists at TRH-R1 and TRH-R2 in cells in vitro, and in vivo in mice for analeptic and anticonvulsant activities. Several analogues bound to TRH-R1 and TRH-R2 with good to moderate affinities, and are full agonists at both receptor subtypes. Specifically, analogue 21 ...

  16. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus1

    OpenAIRE

    Chee, Melissa J. S.; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance thus mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expressed cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter ...

  17. Toll-like receptor 9 agonist IMO cooperates with cetuximab in K-ras mutant colorectal and pancreatic cancers.

    Science.gov (United States)

    Rosa, Roberta; Melisi, Davide; Damiano, Vincenzo; Bianco, Roberto; Garofalo, Sonia; Gelardi, Teresa; Agrawal, Sudhir; Di Nicolantonio, Federica; Scarpa, Aldo; Bardelli, Alberto; Tortora, Giampaolo

    2011-10-15

    K-Ras somatic mutations are a strong predictive biomarker for resistance to epidermal growth factor receptor (EGFR) inhibitors in patients with colorectal and pancreatic cancer. We previously showed that the novel Toll-like receptor 9 (TLR9) agonist immunomodulatory oligonucleotide (IMO) has a strong in vivo activity in colorectal cancer models by interfering with EGFR-related signaling and synergizing with the anti-EGFR monoclonal antibody cetuximab. In the present study, we investigated, both in vitro and in vivo, the antitumor effect of IMO alone or in combination with cetuximab in subcutaneous colon and orthotopic pancreatic cancer models harboring K-Ras mutations and resistance to EGFR inhibitors. We showed that IMO was able to significantly restore the sensitivity of K-Ras mutant cancer cells to cetuximab, producing a marked inhibition of cell survival and a complete suppression of mitogen-activated protein kinase phosphorylation, when used in combination with cetuximab. IMO interfered with EGFR-dependent signaling, modulating the functional interaction between TLR9 and EGFR. In vivo, IMO plus cetuximab combination caused a potent and long-lasting cooperative antitumor activity in LS174T colorectal cancer and in orthotopic AsPC1 pancreatic cancer. The capability of IMO to restore cetuximab sensitivity was further confirmed by using K-Ras mutant colorectal cancer cell models obtained through homologous recombination technology. We showed that IMO markedly inhibits growth of K-Ras mutant colon and pancreatic cancers in vitro and in nude mice and cooperates with cetuximab via multiple mechanisms of action. Therefore, we propose IMO plus cetuximab as a therapeutic strategy for K-Ras wild-type as well for K-Ras mutant, cetuximab-resistant colorectal and pancreatic cancers. ©2011 AACR.

  18. Growth hormone is protective against acute methadone-induced toxicity by modulating the NMDA receptor complex.

    Science.gov (United States)

    Nylander, Erik; Grönbladh, Alfhild; Zelleroth, Sofia; Diwakarla, Shanti; Nyberg, Fred; Hallberg, Mathias

    2016-12-17

    Human growth hormone (GH) displays promising protective effects in the central nervous system after damage caused by various insults. Current evidence suggests that these effects may involve N-methyl-d-aspartate (NMDA) receptor function, a receptor that also is believed to play a role in opioid-induced neurotoxicity. The aims of the present study were to examine the acute toxic effects of methadone, an opioid receptor agonist and NMDA receptor antagonist, as well as to evaluate the protective properties of recombinant human GH (rhGH) on methadone-induced toxicity. Primary cortical cell cultures from embryonic day 17 rats were grown for 7days in vitro. Cells were treated with methadone for 24h and the 50% lethal dose was calculated and later used for protection studies with rhGH. Cellular toxicity was determined by measuring mitochondrial activity, lactate dehydrogenase release, and caspase activation. Furthermore, the mRNA expression levels of NMDA receptor subunits were investigated following methadone and rhGH treatment using quantitative PCR (qPCR) analysis. A significant protective effect was observed with rhGH treatment on methadone-induced mitochondrial dysfunction and in methadone-induced LDH release. Furthermore, methadone significantly increased caspase-3 and -7 activation but rhGH was unable to inhibit this effect. The mRNA expression of the NMDA receptor subunit GluN1, GluN2a, and GluN2b increased following methadone treatment, as assessed by qPCR, and rhGH treatment effectively normalized this expression to control levels. We have demonstrated that rhGH can rescue cells from methadone-induced toxicity by maintaining mitochondrial function, cellular integrity, and NMDA receptor complex expression. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes.

    Science.gov (United States)

    Emont, Margo P; Mantis, Stelios; Kahn, Jonathan H; Landeche, Michael; Han, Xuan; Sargis, Robert M; Cohen, Ronald N

    2015-05-15

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Evolution of parathyroid hormone receptor family and their ligands in vertebrate

    Directory of Open Access Journals (Sweden)

    Jason S.W. eOn

    2015-03-01

    Full Text Available The presence of the parathyroid hormones in vertebrates, including PTH, PTH-related peptide (PTHrP and tuberoinfundibular peptide of 39 residues (TIP39, has been proposed to be the result of two rounds of whole genome duplication in the beginning of vertebrate diversification. Bioinformatics analyses, in particular chromosomal synteny study and the characterization of the PTH ligands and their receptors from various vertebrate species, provide evidence that strongly supports this hypothesis. In this mini-review, we summarize recent advances in studies regarding the molecular evolution and physiology of the PTH ligands and their receptors, with particular focus on non-mammalian vertebrates. In summary, the PTH family of peptides probably predates early vertebrate evolution, indicating a more ancient existence as well as a function of these peptides in invertebrates.

  1. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2013-05-01

    Full Text Available Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET, salicylic acid (SA, jasmonic acid (JA, and abscisic acid (ABA, hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.

  2. Distribution of thyroid hormone and thyrotropin receptors in reproductive tissues of adult female rabbits.

    Science.gov (United States)

    Rodríguez-Castelán, Julia; Anaya-Hernández, Arely; Méndez-Tepepa, Maribel; Martínez-Gómez, Margarita; Castelán, Francisco; Cuevas-Romero, Estela

    2017-02-01

    Thyroid dysfunctions are related to anovulation, miscarriages, and infertility in women and laboratory animals. Mechanisms associated with these effects are unknown, although indirect or direct actions of thyroid hormones and thyrotropin could be assumed. The present study aimed to identify the distribution of thyroid hormones (TRs) and thyrotropin (TSHR) receptors in reproductive organs of female rabbits. Ovary of virgin and pregnant rabbits, as well as the oviduct, uterus, and vagina of virgin rabbits were excised, histologically processed, and cut. Slices from these organs were used for immunohistochemical studies for TRα1-2, TRß1, and TSHR. The presence of TRs and TSHR was found in the primordial, primary, secondary, tertiary, and Graafian follicles of virgin rabbits, as well as in the corpora lutea, corpora albicans, and wall of hemorrhagic cysts of pregnant rabbits. Oviductal regions (fimbria-infundibulum, ampulla, isthmus, and utero-tubal junction), uterus (endometrium and myometrium), and vagina (abdominal, pelvic, and perineal portions) of virgin rabbits showed anti-TRs and anti-TSHR immunoreactivity. Additionally, the distal urethra, paravaginal ganglia, levator ani and iliococcygeus muscles, dorsal nerve and body of the clitoris, perigenital skin, and prostate had TRs and TSHR. The wide presence of TRs and TSHR in female reproductive organs suggests varied effects of thyroid hormones and thyrotropin in reproduction.

  3. Expression of urocortin and corticotropin-releasing hormone receptors in the horse thyroid gland.

    Science.gov (United States)

    Squillacioti, Caterina; De Luca, Adriana; Alì, Sabrina; Paino, Salvatore; Liguori, Giovanna; Mirabella, Nicola

    2012-10-01

    Urocortin (UCN) is a 40-amino-acid peptide and a member of the corticotropin-releasing hormone (CRH) family, which includes CRH, urotensin I, sauvagine, UCN2 and UCN3. The biological actions of CRH family peptides are mediated via two types of G-protein-coupled receptors, namely CRH type 1 receptor (CRHR1) and CRH type 2 receptor (CRHR2). The biological effects of these peptides are mediated and modulated not only by CRH receptors but also via a highly conserved CRH-binding protein (CRHBP). Our aim was to investigate the expression of UCN, CRHR1, CRHR2 and CRHBP by immunohistochemistry, Western blot and reverse transcription with the polymerase chain reaction (RT-PCR) in the horse thyroid gland. The results showed that UCN, CRHR1 and CRHR2 were expressed in the thyroid gland, whereas CRHBP was not expressed. Specifically, UCN immunoreactivity (-IR) was found in the thyroid follicular cells, CRHR2-IR in the C-cells and CRHR1-IR in blood vessels. Western blot analysis and RT-PCR experiments confirmed the immunohistochemical data. These results suggest that a regulatory system exists in the mammalian thyroid gland based on UCN, CRHR1 and CRHR2 and that UCN plays a role in the regulation of thyroid physiological functions through a paracrine mechanism.

  4. UTX promotes hormonally responsive breast carcinogenesis through feed-forward transcription regulation with estrogen receptor.

    Science.gov (United States)

    Xie, G; Liu, X; Zhang, Y; Li, W; Liu, S; Chen, Z; Xu, B; Yang, J; He, L; Zhang, Z; Jin, T; Yi, X; Sun, L; Shang, Y; Liang, J

    2017-09-28

    UTX is implicated in embryonic development and lineage specification. However, how this X-linked histone demethylase contributes to the occurrence and progression of breast cancer remains to be clarified. Here we report that UTX is physically associated with estrogen receptor (ER) and functions in ER-regulated transcription. We showed that UTX coordinates with JHDM1D and CBP to direct H3K27 methylation-acetylation transition and to create a permissive chromatin state on ER targets. Genome-wide analysis of the transcriptional targets of UTX by ChIP-seq identified a set of genes such as chemokine receptor CXCR4 that are intimately involved in breast cancer tumorigenesis and metastasis. We demonstrated that UTX promotes the proliferation and migration of ER(+) breast cancer cells. Interestingly, UTX itself is transactivated by ER, forming a feed-forward loop in the regulation of hormone response. Indeed, UTX is upregulated during ER(+) breast cancer progression, and the expression level of UTX is positively correlated with that of CXCR4 and negatively correlated with the overall survival of ER(+) breast cancer patients. Our study identified a feed-forward loop between UTX and ER in the regulation of hormonally responsive breast carcinogenesis, supporting the pursuit of UTX as an emerging therapeutic target for the intervention of certain ER(+) breast cancer with specific epigenetic vulnerability.

  5. Ovarian hormones modify anxiety behavior and glucocorticoid receptors after chronic social isolation stress.

    Science.gov (United States)

    Ramos-Ortolaza, Dinah L; Doreste-Mendez, Raura J; Alvarado-Torres, John K; Torres-Reveron, Annelyn

    2017-06-15

    Chronic social isolation could lead to a disruption in the Hypothalamic-Pituitary-Adrenal (HPA) axis, resulting in anxiety and depressive-like behaviors but cycling estrogens could modify these behaviors. The aim of this study was to determine if changes in ovarian hormones during the normal cycle could interact with social isolation to alter anxiety and depressive-like behaviors. In parallel, we examined the expression of glucocorticoid receptor (GR) and synaptic vesicle protein synaptophysin in the hippocampus and hypothalamus of Sprague Dawley normal cycling female rats. We assigned rats to either isolated or paired housing for 8 weeks. To assess anxiety and depressive-like behaviors, we used the open field test and forced swim test, respectively. Female rats were tested at either diestrus, estrus, or proestrus stage of the estrous cycle. After behaviors, rats were perfused and brains collected. Brain sections containing hippocampus and hypothalamus were analyzed using immunohistochemistry for synaptophysin and glucocorticoid receptor (GR) levels. We found an increase in depressive-like behaviors for isolated animals compared to paired housed rats, regardless of the estrous cycle stage. Interestingly, we found a decrease in anxiety behaviors in females in the estrus stage accompanied by a decrease in GR expression in hippocampal DG and CA3. However, no changes in synaptophysin were observed in any of the areas of studied. Our results support the beneficial effects of circulating ovarian hormones in anxiety, possibly by decreasing GR expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor are expressed at tubal ectopic pregnancy implantation sites.

    Science.gov (United States)

    Peng, Bo; Klausen, Christian; Campbell, Lisa; Leung, Peter C K; Horne, Andrew W; Bedaiwy, Mohamed A

    2016-06-01

    To investigate whether gonadotropin-releasing hormone (GnRH) and GnRH receptor (GnRHR) are expressed at tubal ectopic pregnancy sites, and to study the potential role of GnRH signaling in regulating immortalized human trophoblast cell viability. Immunohistochemical and experimental studies. Academic research laboratory. Fallopian tube implantation sites (n = 25) were collected from women with ectopic pregnancy. First-trimester human placenta biopsies (n = 5) were obtained from elective terminations of pregnancy. None. GnRH and GnRHR expression was examined by means of immunohistochemistry and histoscoring. Trophoblastic BeWo choriocarcinoma and immortalized extravillous trophoblast (HTR-8/SVneo) cell viability was examined by means of cell counting after incubation with GnRH and/or GnRH antagonist (Antide). GnRH and GnRHR immunoreactivity was detected in cytotrophoblast, syncytiotrophoblast, and extravillous trophoblast in all women with tubal pregnancy. GnRH immunoreactivity was higher and GnRHR immunoreactivity lower in syncytiotrophoblast compared with cytotrophoblast. GnRH and GnRHR immunoreactivity was detected in adjacent fallopian tube epithelium. Whereas neither GnRH nor Antide altered HTR-8/SVneo cell viability, treatment with GnRH significantly increased the overall cell viability of BeWo cells at 48 and 72 hours, and these effects were abolished by pretreatment with Antide. GnRH and GnRHR are expressed in trophoblast cell populations and fallopian tube epithelium at tubal ectopic pregnancy sites. GnRH increases BeWo cell viability, an effect mediated by the GnRHR. Further work is required to investigate the potential role of GnRH signaling in ectopic pregnancy. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Cellular expression of growth hormone and prolactin receptors in human breast disorders.

    Science.gov (United States)

    Mertani, H C; Garcia-Caballero, T; Lambert, A; Gérard, F; Palayer, C; Boutin, J M; Vonderhaar, B K; Waters, M J; Lobie, P E; Morel, G

    1998-04-17

    Growth hormone (GH) and prolactin (PRL) exert their regulatory functions in the mammary gland by acting on specific receptors. Using isotopic in situ hybridization and immunohistochemistry, we have localized the expression of hGH receptor (hGHR) and hPRL receptor (hPRLR) in a panel of human breast disorders. Surgical specimens from adult females included normal breast, inflammatory lesions (mastitis) benign proliferative breast disease (fibroadenoma, papilloma, adenosis, epitheliosis), intraductal carcinoma or lobular carcinoma in situ, and invasive ductal, lobular or medullary carcinoma. Cases of male breast enlargement (gynecomastia) were also studied. In situ hybridization analysis demonstrated the co-expression of hGHR and hPRLR mRNA in all samples tested. Epithelial cells of both normal and tumor tissues were labelled. Quantitative estimation of receptor mRNA levels was regionally measured in areas corresponding to tumor cells and adipose cells from the same section. It demonstrated large individual variation and no correlation emerged according to the histological type of lesion. Receptor immunoreactivity was detected both in the cytoplasm and nuclei or in the cytoplasm alone. Scattered stromal cells were found positive in some cases, but the labeling intensity was always weaker than for neoplastic epithelial cells. Our results demonstrate the expression of the hGHR and hPRLR genes and their translation in epithelial cells of normal, proliferative and neoplastic lesions of the breast. They also demonstrate that stromal components express GHR and PRLR genes. Thus the putative role of hGH or hPRL in the progression of proliferative mammary disorders is not due to grossly altered levels of receptor expression.

  8. Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small Cell Lung Carcinoma

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0346 TITLE: Sphingosine-1- Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small...Annual 3. DATES COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE Sphingosine-1- Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras...14. ABSTRACT: This award aims to characterize the functional role of sphingosine-1- phosphate receptor subtype 3 (S1PR3) in oncogenic K-Ras mutant

  9. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  10. Hormonal regulation of seed development and germination in tomato : studies on abscisic acid- and gibberellin-deficient mutants

    NARCIS (Netherlands)

    Groot, S.P.C.

    1987-01-01

    The role of endogenous gibberellins (GAs) and abscisic acid (ABA) in seed development and germination of tomato, was studied with the use of GA- and/or ABA-deficient mutants.

    GAs are indispensable for the development of fertile flowers. Fertility of GA-deficient flowers is restored

  11. Fluorescence Techniques for Measuring Kinetics of Specific Binding of Hormone to Cell Surface Receptors.

    Science.gov (United States)

    Hellen, Edward Herbert

    This thesis presents theoretical calculations and technical advances relevant to total internal reflection/ fluorescence photobleaching recovery (tir/fpr), and results from experiments using tir/fpr to measure the dissociation rate constant of epidermal growth factor (egf) hormone interacting with its receptor molecule on A431 cells. The classical electromagnetic calculations describe fluorescence emission from fluorophores near an interface (possibly metal coated). It is well known that an interface alters the emission properties of nearby fluorophores. Most previous classical calculations model the fluorophore as a fixed-amplitude dipole oscillator. However, for fluorophores under steady illumination, a fixed-power dipole is more appropriate. This modification corresponds to normalizing the fixed-amplitude dipole's intensity by its total dissipated power. The results for the fixed-power model differ nontrivially from the fixed-amplitude model. The observation-angle -dependent intensity as a function of the fluorophore's orientation and distance from the surface is calculated. General expressions are derived for the emission power as observed through a circular-aperture collection system located on either side of the interface. A system for maintaining long-term focus of samples under high-magnification quantitative observation in an epi-illumination optical microscope is described. Focus -dependent changes in the backreflection of an off-axis HeNe laser generate negative feedback signals which drive a dc motor coupled to the fine-focus knob of the microscope. This system has several advantages: (1) it is compatible and nonobstructive with concurrent data acqusition of sample intensities; (2) it requires no alteration of the sample, stage, or objective; (3) it monitors the position of sample areas very near to those under observation; (4) it is inexpensive. The system can hold a glass coverslip sample to within 0.5 μm of its preset focus position. Prismless tir

  12. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Tang, Yuan [Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, 30 Yanzheng Street, Chongqing 400038 (China); Liu, Yu-Xiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Yuan, Ye; Zhao, Bao-Quan [Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850 (China); Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  13. Interactions between N-Ethylmaleimide-sensitive factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus.

    NARCIS (Netherlands)

    Xiong, H.; Cassé, F.; Zhou, M.; Xiong, Z.Q.; Joels, M.; Martin, S.; Krugers, H.J.

    2016-01-01

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation.

  14. Interactions between N-Ethylmaleimide-Sensitive Factor and GluA2 contribute to effects of glucocorticoid hormones on AMPA receptor function in the rodent hippocampus

    NARCIS (Netherlands)

    Xiong, Hui; Cassé, Frédéric; Zhou, Ming; Xiong, Zhi-Qi; Joels, Marian; Martin, Stéphane; Krugers, Harm J

    Glucocorticoid hormones, via activation of their receptors, promote memory consolidation, but the exact underlying mechanisms remain elusive. We examined how corticosterone regulates AMPA receptor (AMPAR) availability in the synapse, which is important for synaptic plasticity and memory formation.

  15. Regulation of 1, 4, 5-triphosphate receptor channel gating dynamics by mutant presenilin in Alzheimer's disease cells

    Science.gov (United States)

    Wei, Fang; Li, Xiang; Cai, Meichun; Liu, Yanping; Jung, Peter; Shuai, Jianwei

    2017-06-01

    In neurons of patients with Alzheimer's disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer's disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.

  16. Transformation of a Dwarf "Arabidopsis" Mutant Illustrates Gibberellin Hormone Physiology and the Function of a Green Revolution Gene

    Science.gov (United States)

    Molina, Isabel; Weber, Katrin; Alves Cursino dos Santos, Deborah Y.; Ohlrogge, John

    2009-01-01

    The introduction of dwarfing traits into crops was a major factor in increased grain yields during the "Green Revolution." In most cases those traits were the consequence of altered synthesis or response to the gibberellin (GA) plant hormones. Our current understanding of GA synthesis and physiology has been facilitated by the characterization of…

  17. Calcium-Induced Activation of a Mutant G-Protein-Coupled Receptor Causes In Vitro Transformation of NIH/3T3 Cells

    Directory of Open Access Journals (Sweden)

    Ana O. Hoff

    1999-12-01

    Full Text Available The calcium-sensing receptor (CaR is a G-proteincoupled receptor that is widely expressed, has tissuespecific functions, regulates cell growth. Activating mutations of this receptor cause autosomal dominant hypocalcemia, a syndrome characterized by hypocalcemia and hypercalciuria. The identification of a family with an activating mutation of the CaR (Thr151 Met in which hypocalcemia cosegregates with several unusual neoplasms led us to examine the transforming effects of this mutant receptor. Transfection of NIH/3T3 cells with the mutant but not the normal receptor supported colony formation in soft agar at subphysiologic calcium concentrations. The mutant CaR causes a calcium-dependent activation of the extracellular signal-regulated protein kinase (ERK 1/2 and Jun-N-terminal kinase/stress-activated (JNK/ SAPK pathways, but not P38 MAP kinase. These findings contribute to a growing body of information suggesting that this receptor plays a role in the regulation of cellular proliferation, that aberrant activation of the mutant receptor in this family may play a role in the unusual neoplastic manifestations.

  18. Competitive RT-PCR Strategy for Quantitative Evaluation of the Expression of Tilapia (Oreochromis niloticus Growth Hormone Receptor Type I

    Directory of Open Access Journals (Sweden)

    Rodríguez-Mallon Alina

    2009-01-01

    Full Text Available Abstract Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes.

  19. Competitive RT-PCR Strategy for Quantitative Evaluation of the Expression of Tilapia (Oreochromis niloticus Growth Hormone Receptor Type I

    Directory of Open Access Journals (Sweden)

    Rodríguez-Mallon Alina

    2009-03-01

    Full Text Available Abstract Quantization of gene expression requires that an accurate measurement of a specific transcript is made. In this paper, a quantitative reverse transcription-polymerase chain reaction (RT-PCR by competition for tilapia growth hormone receptor type I is designed and validated. This experimental procedure was used to determine the abundance of growth hormone receptor type I transcript in different tilapia tissues. The results obtained with this developed competitive RT-PCR were similar to real-time PCR results reported recently. This protocol provides a reliable alternative, but less expensive than real-time PCR to quantify specific genes.

  20. A role for basic transcription element-binding protein 1 (BTEB1) in the autoinduction of thyroid hormone receptor beta.

    Science.gov (United States)

    Bagamasbad, Pia; Howdeshell, Kembra L; Sachs, Laurent M; Demeneix, Barbara A; Denver, Robert J

    2008-01-25

    Thyroid hormone (T(3)) induces gene regulation programs necessary for tadpole metamorphosis. Among the earliest responses to T(3) are the up-regulation of T(3) receptor beta (TRbeta; autoinduction) and BTEB1 (basic transcription element-binding protein 1). BTEB1 is a member of the Krüppel family of transcription factors that bind to GC-rich regions in gene promoters. The proximal promoter of the Xenopus laevis TrbetaA gene has seven GC-rich sequences, which led us to hypothesize that BTEB1 binds to and regulates TrbetaA. In tadpoles and the frog fibroblast-derived cell line XTC-2, T(3) up-regulated Bteb1 mRNA with faster kinetics than TrbetaA, and Bteb1 mRNA correlated with increased BTEB1 protein expression. BTEB1 bound to GC-rich sequences in the proximal TrbetaA promoter in vitro. By using chromatin immunoprecipitation assay, we show that BTEB1 associates with the TrbetaA promoter in vivo in a T(3) and developmental stage-dependent manner. Induced expression of BTEB1 in XTC-2 cells caused accelerated and enhanced autoinduction of the TrbetaA gene. This enhancement was lost in N-terminal truncated mutants of BTEB1. However, point mutations in the zinc fingers of BTEB1 that destroyed DNA binding did not alter the activity of the protein on TrbetaA autoinduction, suggesting that BTEB1 can function in this regard through protein-protein interactions. Our findings support the hypothesis that BTEB1 associates with the TrbetaA promoter in vivo and enhances autoinduction, but this action does not depend on its DNA binding activity. Cooperation among the protein products of immediate early genes may be a common mechanism for driving developmental signaling pathways.

  1. Mitochondria and the insect steroid hormone receptor (EcR): A complex relationship.

    Science.gov (United States)

    Vafopoulou, Xanthe; Steel, Colin G H

    2016-10-01

    The actions of the insect steroid molting hormones, ecdysteroids, on the genome of target cells has been well studied, but little is known of their extranuclear actions. We previously showed in Rhodnius prolixus that much of the ecdysteroid receptor (EcR) resides in the cytoplasm of various cell types and undergoes shuttling between nucleus and cytoplasm with circadian periodicity, possibly using microtubules as tracks for translocation to the nucleus. Here we report that cytoplasmic EcR appears to be also involved in extranuclear actions of ecdysteroids by association with the mitochondria. Western blots of subcellular fractions of brain lysates revealed that EcR is localized in the mitochondrial fraction, indicating an intimate association of EcR with mitochondria. Confocal laser microscopy and immunohistochemistry using anti-EcR revealed abundant co-localization of EcR with mitochondria in brain neurons and their axons, especially intense in the subplasmalemmal region, raising the possibility of EcR involvement in mitochondrial functions in subplasmalemmal microdomains. When mitochondria are dispersed by disruption of microtubules with colchicine, EcR remains associated with mitochondria showing strong receptor association with mitochondria. Treatment in vitro with ecdysteroids of brains of developmentally arrested R. prolixus (containing neither ecdysteroids nor EcR) induces EcR and abundant co-localization with mitochondria in neurons, concurrently with a sharp increase of the mitochondrial protein COX 1, suggesting involvement of EcR in mitochondrial function. These findings align EcR with various vertebrate steroid receptors, where actions of steroid receptors on mitochondria are widely known and suggest that steroid receptors across distant phyla share similar functional attributes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Hypothalamic expression of anorexigenic and orexigenic hormone receptors in obese females Neotomodon alstoni: effect of fasting.

    Science.gov (United States)

    Báez-Ruiz, Adrián; Luna-Moreno, Dalia; Carmona-Castro, Agustín; Cárdenas-Vázquez, René; Díaz-Muñoz, Mauricio; Carmona-Alcocer, Vania; Fuentes-Granados, Citlalli; Manuel, Miranda-Anaya

    2014-01-01

    Obesity is a world problem that requires a better understanding of its physiological and genetic basis, as well as the mechanisms by which the hypothalamus controls feeding behavior. The volcano mouse Neotomodon alstoni develops obesity in captivity when fed with regular chow diet, providing a novel model for the study of obesity. Females develop obesity more often than males; therefore, in this study, we analysed in females, in proestrous lean and obese, the differences in hypothalamus expression of receptors for leptin, ghrelin (growth hormone secretagogue receptor GHS-R), and VPAC, and correlates for plasma levels of total ghrelin. The main comparisons are between mice fed ad libitum and mice after 24 hours of fasting. Mice above 65 g body weight were considered obese, based on behavioral and physiological parameters such as food intake, plasma free fatty acids, and glucose tolerance. Hypothalamic tissue from obese and lean mice was analysed by western blot. Our results indicate that after ad libitum food access, obese mice show no significant differences in hypothalamic leptin receptors, but a significant increase of 60% in the GHS-R, and a nearly 62% decrease in VPAC2 was noted. After a 24-hour fast, plasma ghrelin increased nearly two fold in both lean and obese mice; increases of hypothalamic leptin receptors and GHS-R were also noted, while VPAC2 did not change significantly; levels of plasma free fatty acids were 50% less after fasting in obese than in lean animals. Our results indicate that in obese N. alstoni mice, the levels of orexigenic receptors in the hypothalamus correlate with overfeeding, and the fact that lean and obese females respond in different ways to a metabolic demand such as a 24-hour fast.

  3. Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals

    Directory of Open Access Journals (Sweden)

    Amy T. Desaulniers

    2017-12-01

    Full Text Available Gonadotropin-releasing hormone 1 (GnRH1 and its receptor (GnRHR1 drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2 and its receptor (GnRHR2 also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat or inactivated (e.g., cow and sheep in some species but retained in others (e.g., human, horse, and pig. Likewise, many species (e.g., human, chimpanzee, cow, and sheep retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse or most exons entirely (e.g., rat. In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and

  4. Thyroid hormone resistance syndrome caused by heterozygous A317T mutation in thyroid hormone receptor β gene: Report of one Chinese pedigree and review of the literature.

    Science.gov (United States)

    Guo, Qing-Hua; Wang, Bao-An; Wang, Chen-Zhi; Wang, Min; Lu, Ju-Ming; Lv, Zhao-Hui; Mu, Yi-Ming

    2016-08-01

    Thyroid hormone resistance syndrome (THRS) is a rare disorder with increased concentrations of free thyroxine (FT4) and triiodothyronine (FT3), but normal or slightly increased thyroid-stimulating hormone (TSH). The mutations in the thyroid hormone receptor β (THRβ) gene are thought to be the main pathogenesis. The aims of this study were to present 1 pedigree of Chinese THRS, summarize their clinical characteristics, and analyze the gene mutation. The clinical characteristics and thyroid function of the proband and his family members were collected. Gene mutations were analyzed by DNA sequencing. The proband and his mother exhibited symptoms of hyperthyroidism, such as palpitations, heat intolerance, and perspiration. The mother also had atrial fibrillation. The rest of the kindred did not display clinical manifestations of hyper- or hypothyroidism. DNA sequencing revealed a heterozygous G>A missense mutation at position 949 in Exon 9 of THRβ both in the patient and his mother, which led to the transition from alanine to threonine at position 317 of THRβ protein (A317T), whereas the rest of the kindred did not share this mutation. The proband and his mother were diagnosed with pituitary resistance to thyroid hormone. Oral administration of methimazole was stopped and β-receptor blockers were administrated. We present 1 pedigree of THRS with heterozygous A317T mutation in THRβ gene in the proband and his mother, which is the first reported mutation in Chinese and provides a comprehensive review of available literature.

  5. Pharmacologic management of bone-related complications and bone metastases in postmenopausal women with hormone receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Yardley DA

    2016-05-01

    Full Text Available Denise A Yardley1,2 1Sarah Cannon Research Institute, Nashville, TN, USA; 2Tennessee Oncology, Nashville, TN, USA Abstract: There is a high risk for bone loss and skeletal-related events, including bone metastases, in postmenopausal women with hormone receptor-positive breast cancer. Both the disease itself and its therapeutic treatments can negatively impact bone, resulting in decreases in bone mineral density and increases in bone loss. These negative effects on the bone can significantly impact morbidity and mortality. Effective management and minimization of bone-related complications in postmenopausal women with hormone receptor-positive breast cancer remain essential. This review discusses the current understanding of molecular and biological mechanisms involved in bone turnover and metastases, increased risk for bone-related complications from breast cancer and breast cancer therapy, and current and emerging treatment strategies for managing bone metastases and bone turnover in postmenopausal women with hormone receptor-positive breast cancer. Keywords: breast cancer, bone metastases, hormone receptor-positive, bone-related complications, interventions, management and management strategies, estrogen receptor-positive

  6. Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sgro Jean-Yves

    2006-11-01

    Full Text Available Abstract Background The Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs, but the GPCR(s critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR exist in C. elegans. Results Our sequence analyses indicated the presence of two proteins in C. elegans, one of 401 amino acids [GenBank: NP_491453; WormBase: F54D7.3] and another of 379 amino acids [GenBank: NP_506566; WormBase: C15H11.2] with 46.9% and 44.7% nucleotide similarity to human GnRHR1 and GnRHR2, respectively. Like human GnRHR1, structural analysis of the C. elegans GnRHR1 orthologue (Ce-GnRHR predicted a rhodopsin family member with 7 transmembrane domains, G protein coupling sites and phosphorylation sites for protein kinase C. Of the functionally important amino acids in human GnRHR1, 56% were conserved in the C. elegans orthologue. Ce-GnRHR was actively transcribed in adult worms and immunoanalyses using antibodies generated against both human and C. elegans GnRHR indicated the presence of a 46-kDa protein, the calculated molecular mass of the immature Ce-GnRHR. Ce-GnRHR staining was specifically localized to the germline, intestine and pharynx. In the germline and intestine, Ce-GnRHR was localized specifically to nuclei as revealed by colocalization with a DNA nuclear stain. However in the pharynx, Ce-GnRHR was localized to the myofilament lattice of the pharyngeal musculature, suggesting a functional role for Ce-GnRHR signaling in the coupling of food intake with reproduction. Phylogenetic analyses support an early evolutionary origin of GnRH-like receptors, as evidenced by the hypothesized grouping of Ce-GnRHR, vertebrate GnRHRs, a molluscan GnRHR, and the adipokinetic hormone receptors (AKHRs and corazonin receptors of arthropods. Conclusion This is the first report of a GnRHR orthologue in C. elegans, which

  7. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. (Baylor College of Medicine, Houston, TX (United States))

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  8. Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration.

    Science.gov (United States)

    Rodríguez-Ortiz, Maria E; Canalejo, Antonio; Herencia, Carmen; Martínez-Moreno, Julio M; Peralta-Ramírez, Alan; Perez-Martinez, Pablo; Navarro-González, Juan F; Rodríguez, Mariano; Peter, Mirjam; Gundlach, Kristina; Steppan, Sonja; Passlick-Deetjen, Jutta; Muñoz-Castañeda, Juan R; Almaden, Yolanda

    2014-02-01

    The interest on magnesium (Mg) has grown since clinical studies have shown the efficacy of Mg-containing phosphate binders. However, some concern has arisen for the potential effect of increased serum Mg on parathyroid hormone (PTH) secretion. Our objective was to evaluate the direct effect of Mg in the regulation of the parathyroid function; specifically, PTH secretion and the expression of parathyroid cell receptors: CaR, the vitamin D receptor (VDR) and FGFR1/Klotho. The work was performed in vitro by incubating intact rat parathyroid glands in different calcium (Ca) and Mg concentrations. Increasing Mg concentrations from 0.5 to 2 mM produced a left shift of PTH-Ca curves. With Mg 5 mM, the secretory response was practically abolished. Mg was able to reduce PTH only if parathyroid glands were exposed to moderately low Ca concentrations; with normal-high Ca concentrations, the effect of Mg on PTH inhibition was minor or absent. After 6-h incubation at a Ca concentration of 1.0 mM, the expression of parathyroid CaR, VDR, FGFR1 and Klotho (at mRNA and protein levels) was increased with a Mg concentration of 2.0 when compared with 0.5 mM. Mg reduces PTH secretion mainly when a moderate low calcium concentration is present; Mg also modulates parathyroid glands function through upregulation of the key cellular receptors CaR, VDR and FGF23/Klotho system.

  9. Estrogen receptor beta impacts hormone-induced alternative mRNA splicing in breast cancer cells.

    Science.gov (United States)

    Dago, Dougba Noel; Scafoglio, Claudio; Rinaldi, Antonio; Memoli, Domenico; Giurato, Giorgio; Nassa, Giovanni; Ravo, Maria; Rizzo, Francesca; Tarallo, Roberta; Weisz, Alessandro

    2015-05-09

    Estrogens play an important role in breast cancer (BC) development and progression; when the two isoforms of the estrogen receptor (ERα and ERβ) are co-expressed each of them mediate specific effects of these hormones in BC cells. ERβ has been suggested to exert an antagonist role toward the oncogenic activities of ERα, and for this reason it is considered an oncosuppressor. As clinical evidence regarding a prognostic role for this receptor subtype in hormone-responsive BC is still limited and conflicting, more knowledge is required on the biological functions of ERβ in cancer cells. We have previously described the ERβ and ERα interactomes from BC cells, identifying specific and distinct patterns of protein interactions for the two receptors. In particular, we identified factors involved in mRNA splicing and maturation as important components of both ERα and ERβ pathways. Guided by these findings, here we performed RNA sequencing to investigate in depth the differences in the early transcriptional events and RNA splicing patterns induced by estradiol in cells expressing ERα alone or ERα and ERβ. Exon skipping was the most abundant splicing event in the post-transcriptional regulation by estradiol. We identified several splicing events induced by ERα alone and by ERα+ERβ, demonstrating for the first time that ERβ significantly affects estrogen-induced splicing in BC cells, as revealed by modification of a subset of ERα-dependent splicing by ERβ, as well as by the presence of splicing isoforms only in ERβ+cells. In particular, we observed that ERβ+BC cell lines exhibited around 2-fold more splicing events than the ERβ- cells. Interestingly, we identified putative direct targets of ERβ-mediated alternative splicing by correlating the genomic locations of ERβ and ERα binding sites with estradiol-induced differential splicing in the corresponding genes. Taken together, these results demonstrate that ERβ significantly affects estrogen

  10. The breast cancer hormone receptor retesting controversy in Newfoundland and Labrador, Canada: lessons for the health system.

    Science.gov (United States)

    Gregory, Deborah M; Parfrey, Patrick S

    2010-01-01

    The treatment of newly diagnosed breast cancer patients with hormonal treatment is determined by the presence of estrogen receptor and progesterone receptor status in breast cancer. In Newfoundland and Labrador (NL), 425 of 1088 (39.1%) patients who had original "negative" receptor tests conducted between 1997 and 2005, had positive results upon retesting in a specialized laboratory. This commentary addresses (1) the diagnostic utility of estrogen and progesterone testing for breast cancer in general, (2) specific testing problems that occurred in NL, (3) scientific problems associated with retesting, and (4) the impact on public trust and the resulting legal and political responses that occurred as a result of the adverse events associated with false-negative hormone receptor tests. Finally, the lessons learned will be discussed including known high false-negative rates associated with the tests and the bias associated with retesting, the need for quality assurance and national standards, public education, and appropriate communication with patients and the public.

  11. Receptor localization of steroid hormones and drugs: discoveries through the use of thaw-mount and dry-mount autoradiography

    OpenAIRE

    Stumpf, W.E.

    1998-01-01

    The history of receptor autoradiography, its development and applications, testify to the utility of this histochemical technique for localizing radiolabeled hormones and drugs at cellular and subcellular sites of action in intact tissues. Localization of diffusible compounds has been a challenge that was met through the introduction of the "thaw-mount" and "dry-mount" autoradiographic techniques thirty years ago. With this cellular receptor autoradiography, used alone or combined with other ...

  12. Vegetable and fruit consumption and the risk of hormone receptor-defined breast cancer in the EPIC cohort.

    Science.gov (United States)

    Emaus, Marleen J; Peeters, Petra H M; Bakker, Marije F; Overvad, Kim; Tjønneland, Anne; Olsen, Anja; Romieu, Isabelle; Ferrari, Pietro; Dossus, Laure; Boutron-Ruault, Marie Christine; Baglietto, Laura; Fortner, Renée T; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Masala, Giovanna; Pala, Valeria; Panico, Salvatore; Tumino, Rosario; Polidoro, Silvia; Skeie, Guri; Lund, Eiliv; Weiderpass, Elisabete; Quirós, J Ramón; Travier, Noémie; Sánchez, María-José; Chirlaque, Maria-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Winkvist, Anna; Wennberg, Maria; Bueno-de-Mesquita, H Bas; Khaw, Kay-Tee; Travis, Ruth C; Key, Timothy J; Aune, Dagfinn; Gunter, Marc; Riboli, Elio; van Gils, Carla H

    2016-01-01

    The recent literature indicates that a high vegetable intake and not a high fruit intake could be associated with decreased steroid hormone receptor-negative breast cancer risk. This study aimed to investigate the association between vegetable and fruit intake and steroid hormone receptor-defined breast cancer risk. A total of 335,054 female participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were included in this study (mean ± SD age: 50.8 ± 9.8 y). Vegetable and fruit intake was measured by country-specific questionnaires filled out at recruitment between 1992 and 2000 with the use of standardized procedures. Cox proportional hazards models were stratified by age at recruitment and study center and were adjusted for breast cancer risk factors. After a median follow-up of 11.5 y (IQR: 10.1-12.3 y), 10,197 incident invasive breast cancers were diagnosed [3479 estrogen and progesterone receptor positive (ER+PR+); 1021 ER and PR negative (ER-PR-)]. Compared with the lowest quintile, the highest quintile of vegetable intake was associated with a lower risk of overall breast cancer (HRquintile 5-quintile 1: 0.87; 95% CI: 0.80, 0.94). Although the inverse association was most apparent for ER-PR- breast cancer (ER-PR-: HRquintile 5-quintile 1: 0.74; 95% CI: 0.57, 0.96; P-trend = 0.03; ER+PR+: HRquintile 5-quintile 1: 0.91; 95% CI: 0.79, 1.05; P-trend = 0.14), the test for heterogeneity by hormone receptor status was not significant (P-heterogeneity = 0.09). Fruit intake was not significantly associated with total and hormone receptor-defined breast cancer risk. This study supports evidence that a high vegetable intake is associated with lower (mainly hormone receptor-negative) breast cancer risk. © 2016 American Society for Nutrition.

  13. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    Science.gov (United States)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  14. The growth hormone receptor gene-disrupted mouse fails to respond to an intermittent fasting diet.

    Science.gov (United States)

    Arum, Oge; Bonkowski, Michael S; Rocha, Juliana S; Bartke, Andrzej

    2009-12-01

    The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long lived; and this longevity is not responsive to 30% caloric restriction, in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction, we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting diet. The intermittent fasting diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction, we postulate that GHR-KO mice would be resistant to any manner of dietary restriction; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan extending potential of an intervention.

  15. The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene

    Energy Technology Data Exchange (ETDEWEB)

    Gromoll, J; Pekel, E.; Nieschlag, E. [Institute of Reproductive Medicine of the Univ., Muenster (Germany)

    1996-07-15

    The structure and organization of the human follicle-stimulating hormone receptor (FSHR) gene were determined by either screening a phage library of human genomic DNA or applying the long PCR technique to amplify different exon pairs with their corresponding introns. The FSHR gene spans a region of 54 kb and consists of 10 exons and 9 introns. Most of the extracellular domain is encoded by 9 exons, ranging in length between 69 and 251 bp; the C-terminal part of the extracellular domain, the transmembrane domain, and the intracellular domain are encoded by the large exon 10 (1234 bp). Overall the gene encodes 695 amino acids. The structure of the human FSHR displays a striking similarity to that of the previously characterized rat FSHR gene, with a high degree of conservation in exon sizes and exon/intron junctions. 20 refs., 2 tabs.

  16. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  17. Taltirelin is a superagonist at the human thyrotropin-releasing hormone receptor

    Science.gov (United States)

    Thirunarayanan, Nanthakumar; Raaka, Bruce M.; Gershengorn, Marvin C.

    2012-01-01

    Taltirelin (TAL) is a thyrotropin-releasing hormone (TRH) analog that is approved for use in humans in Japan. In this study, we characterized TAL binding to and signaling by the human TRH receptor (TRH-R) in a model cell system. We found that TAL exhibited lower binding affinities than TRH and lower signaling potency via the inositol-1,4,5-trisphosphate/calcium pathway than TRH. However, TAL exhibited higher intrinsic efficacy than TRH in stimulating inositol-1,4,5-trisphosphate second messenger generation. This is the first study that elucidates the pharmacology of TAL at TRH-R and shows that TAL is a superagonist at TRH-R. We suggest the superagonism exhibited by TAL may in part explain its higher activity in mediating central nervous system effects in humans compared to TRH. PMID:23087672

  18. Taltirelin is a superagonist at the human thyrotropin-releasing hormone receptor

    Directory of Open Access Journals (Sweden)

    Nanthakumar eThirunarayanan

    2012-10-01

    Full Text Available Taltirelin (TAL is a thyrotropin-releasing hormone (TRH analog that is approved for use in humans in Japan. In this study, we characterized TAL binding to and signaling by the human TRH receptor (TRH-R in a model cell system. We found that TAL exhibited lower binding affinities than TRH and lower signaling potency via the inositol-1,4,5-trisphosphate/calcium pathway than TRH. However, TAL exhibited higher intrinsic efficacy than TRH in stimulating inositol-1,4,5-trisphosphate second messenger generation. This is the first study that elucidates the pharmacology of TAL at TRH-R and shows that TAL is a superagonist at TRH-R. We suggest the superagonism exhibited by TAL may in part explain its higher activity in mediating CNS effects in humans compared to TRH.

  19. Thyroid hormone receptor regulates most genes independently of fibroblast growth factor 21 in liver.

    Science.gov (United States)

    Zhang, Aijun; Sieglaff, Douglas H; York, Jean Philippe; Suh, Ji Ho; Ayers, Stephen D; Winnier, Glenn E; Kharitonenkov, Alexei; Pin, Christopher; Zhang, Pumin; Webb, Paul; Xia, Xuefeng

    2015-03-01

    Thyroid hormone (TH) acts through specific receptors (TRs), which are conditional transcription factors, to induce fibroblast growth factor 21 (FGF21), a peptide hormone that is usually induced by fasting and that influences lipid and carbohydrate metabolism via local hepatic and systemic endocrine effects. While TH and FGF21 display overlapping actions when administered, including reductions in serum lipids, according to the current models these hormones act independently in vivo. In this study, we examined mechanisms of regulation of FGF21 expression by TH and tested the possibility that FGF21 is required for induction of hepatic TH-responsive genes. We confirm that active TH (triiodothyronine (T3)) and the TRβ-selective thyromimetic GC1 increase FGF21 transcript and peptide levels in mouse liver and that this effect requires TRβ. T3 also induces FGF21 in cultured hepatocytes and this effect involves direct actions of TRβ1, which binds a TRE within intron 2 of FGF21. Gene expression profiles of WT and Fgf21-knockout mice are very similar, indicating that FGF21 is dispensable for the majority of hepatic T3 gene responses. A small subset of genes displays diminished T3 response in the absence of FGF21. However, most of these are not obviously directly involved in T3-dependent hepatic metabolic processes. Consistent with these results, T3-dependent effects on serum cholesterol are maintained in the Fgf21(-/-) background and we observe no effect of the Fgf21-knockout background on serum triglycerides and glucose. Our findings indicate that T3 regulates the genes involved in classical hepatic metabolic responses independently of FGF21. © 2015 Society for Endocrinology.

  20. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  1. Postnatal ovarian development and its relationship with steroid hormone receptors in JiNing Grey goats.

    Science.gov (United States)

    Shi, YunZhi; Wang, ShuYing; Bai, Shu; Huang, LiBo; Hou, YanMeng

    2015-03-01

    In this work, we examined the ovarian development and its relationship with steroid hormone receptors levels and the precocious puberty in JiNing Gray goats by using optical microscopy, immunohistochemistry, quantitative real-time RT-PCR (qPCR) and Western blotting. We found that in the ovaries of neonatal kids, high level of receptors for estrogen (ERα and ERβ) and progesterone (PR) and their mRNA were observed along with growing follicles. From 0 to 30 days of age, the weight and volume of ovaries increased significantly and the boundary between the inner and outer cortex disappeared, while the expression of ERα, ERβ and PR and their mRNA decreased sharply. When 60 days old, the animals began to ovulate; the expression of ERα, ERβ and PR and their mRNA significantly increased, and the animals reached puberty. On day 90, the animals manifested sexual maturity with biggest mature follicles 6.18mm in diameter, the expression of ERβ and PR protein and their mRNA was maintained at a high level, with decreased expression of ERα and its mRNA. Before puberty, the expression of ovarian ERα (prepubertal dominant receptor) and it's mRNA was significantly higher than that of ERβ (dominant receptor after sexual maturity). The results showed that JiNing Grey goats' ovaries had fast development and early maturation, and ERα, ERβ and PR protein and mRNA expression in the ovary had distinct specificity for time and space, which may be closely related to the strain's progenitive characteristics. Copyright © 2015. Published by Elsevier B.V.

  2. Molecular characterization and functional analyses of a diapause hormone receptor-like gene in parthenogenetic Artemia.

    Science.gov (United States)

    Ye, Hui-Li; Li, Dong-Rui; Yang, Jin-Shu; Chen, Dian-Fu; De Vos, Stephanie; Vuylsteke, Marnik; Sorgeloos, Patrick; Van Stappen, Gilbert; Bossier, Peter; Nagasawa, Hiromichi; Yang, Wei-Jun

    2017-04-01

    In arthropods, mature females under certain conditions produce and release encysted gastrula embryos that enter diapause, a state of obligate dormancy. The process is presumably regulated by diapause hormone (DH) and diapause hormone receptor (DHR) that were identified in the silkworm, Bombyx mori and other insects. However, the molecular structure and function of DHR in crustaceans remains unknown. Here, a DHR-like gene from parthenogenetic Artemia (Ar-DHR) was isolated and sequenced. The cDNA sequence consists of 1410bp with a 1260-bp open reading frame encoding a protein consisting of 420 amino acid residues. The results of real-time PCR (qRT-PCR) and Western blot analysis showed that the mRNA and protein of Ar-DHR were mainly expressed at the diapause stage. Furthermore, we found that Ar-DHR was located on the cell membrane of the pre-diapause cyst but in the cytoplasm of the diapause cyst by analysis of immunofluorescence. In vivo knockdown of Ar-DHR by RNA interference (RNAi) and antiserum neutralization consistently inhibited diapause cysts formation. The results indicated that Ar-DHR plays an important role in the induction and maintenance of embryonic diapause in Artemia. Thus, our findings provide an insight into the regulation of diapause formation in Artemia and the function of Ar-DHR. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor.

    Science.gov (United States)

    Ren, Xiao-Min; Zhang, Yin-Feng; Guo, Liang-Hong; Qin, Zhan-Fen; Lv, Qi-Yan; Zhang, Lian-Ying

    2015-02-01

    Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003-0.05 compared with triiodothyronine (T3). A structure-binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR.

  4. Association of the luteinizing hormone/choriogonadotropin receptor gene polymorphism with polycystic ovary syndrome.

    Science.gov (United States)

    Bassiouny, Yasmin Ahmed; Rabie, Walaa Ahmed; Hassan, Ayman Ahmed; Darwish, Rania Kamal

    2014-06-01

    This study aimed at evaluating possible associations of the single nucleotide polymorphism (SNP) in luteinizing hormone/choriogonadotropin receptor (LHCGR) gene G935A and polycystic ovary syndrome (PCOS) phenotype. The study included 100 PCOS female patients and 60 healthy female control subjects. The patients were recruited from the Gynecology out-patient clinic, Kasr Al-Aini Hospital, Cairo University. All candidates underwent full history taking and clinical examination with calculation of body mass index. Serum and EDTA samples were collected from each patient after a written consent. A hormonal profile was done for each patient as well as DNA analysis of the G935A polymorphism of LHCGR gene. In PCOS group, 26% were homozygous (AA), 27% were heterozygous (GA) and 47% were wild genotype (GG), while in controls 30% were heterozygous and 70% were wild genotype (OR: 2.25; CI: 1.16-4.386; p value: 0.012). The homozygous 935A individuals were at higher risk to develop PCOS than controls (OR: 1.80; CI: 1.54-2.09; p value genetic variant, which is associated with PCOS in a sample of the Egyptian population. These results may provide an opportunity to test this SNP at the LHCGR gene in fertile or infertile women with family history to assess their risk of PCOS.

  5. The frequency of follicle stimulating hormone receptor gene polymorphisms in Iranian infertile men with azoospermia

    Directory of Open Access Journals (Sweden)

    Behrouz Gharesi-Fard

    2015-11-01

    Full Text Available Background: Azoospermia is the medical condition of a man not having any measurable level of sperm in his semen. Follicle stimulating hormone (FSH is a member of the glycoprotein hormone family that plays an important role in human reproduction because of its essential role in normal spermatogenesis. Various Single Nucleotide Polymorphisms (SNPs have been reported within FSH receptor (FSHR gene that may affect the receptor function. Objective: The present study aimed to investigate the correlation between two FSHR SNPs at positions A919G, A2039G, and susceptibility to azoospermia in a group of Iranian azoospermic men. The association between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Materials and Methods: This case control study was performed on 212 men with azoospermia (126 non-obstructive and 86 obstructive and 200 healthy Iranian men. Two FSHR gene SNPs were genotyped using PCR-RFLP method. The relationship between FSH levels within the sera and A919G and A2039G alleles and genotypes were also investigated. Results: Statistical analysis indicated that at A919G position, AA genotype and A allele were more frequent in obstructive azoospermia cases compared to non-obstructive or normal men (p=0.001. Regarding A2039G polymorphisms, no significant difference was observed between both azoospermia groups and the controls. The mean level of serum FSH was higher in the non-obstructive men compared to the obstructive patients (23.8 versus 13.8, respectively, p= 0.04. Conclusion: The results of the present study indicated that the genetic polymorphisms in the FSHR gene might increase the susceptibility to azoospermia in Iranian men.

  6. Single CpG site methylation controls estrogen receptor gene transcription and correlates with hormone therapy resistance.

    Science.gov (United States)

    Tsuboi, Kouki; Nagatomo, Takamasa; Gohno, Tatsuyuki; Higuchi, Toru; Sasaki, Shunta; Fujiki, Natsu; Kurosumi, Masafumi; Takei, Hiroyuki; Yamaguchi, Yuri; Niwa, Toshifumi; Hayashi, Shin-Ichi

    2017-07-01

    Hormone therapy is the most effective treatment for patients with estrogen receptor α-positive breast cancers. However, although resistance occurs during treatment in some cases and often reflects changed estrogen receptor α status, the relationship between changes in estrogen receptor α expression and resistance to therapy are poorly understood. In this study, we identified a mechanism for altered estrogen receptor α expression during disease progression and acquired hormone therapy resistance in aromatase inhibitor-resistant breast cancer cell lines. Subsequently, we investigated promoter switching and DNA methylation status of the estrogen receptor α promoter, and found marked changes of methylation at a single CpG site (CpG4) in resistant cells. In addition, luciferase reporter assays showed reduced transcriptional activity from this methylated CpG site. This CpG region was also completely conserved among species, suggesting that it acts as a methylation-sensitive Ets-2 transcription factor binding site, as confirmed using chromatin immunoprecipitation assays. In estrogen receptor α-positive tumors, CpG4 methylation levels were inversely correlated with estrogen receptor α expression status, suggesting that single CpG site plays an important role in the regulation of estrogen receptor α transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately phosp...

  8. Effect of mutations in the beta1-thyroid hormone receptor on the inhibition of T3 binding by desethylamiodarone

    NARCIS (Netherlands)

    van Beeren, H. C.; Bakker, O.; Chatterjee, V. K.; Wiersinga, W. M.

    1999-01-01

    Desethylamiodarone (DEA) acts as a competitive inhibitor of triiodothyronine (T3) binding to the alpha1-thyroid hormone receptor (TR alpha1) but as a non-competitive inhibitor with respect to TR beta1. To gain insight into the position of the binding site of desethylamiodarone on TR beta1 we

  9. Clonal relationships between thyroid-stimulating hormone receptor-stimulating antibodies illustrate the effect of hypermutation on antibody function

    DEFF Research Database (Denmark)

    Padoa, Carolyn J; Larsen, Sanne L; Hampe, Christiane S

    2009-01-01

    Summary Graves' disease is characterized by production of agonist antibodies to the thyroid-stimulating hormone receptor (TSHR), but knowledge of the genetic and somatic events leading to their aberrant production is limited. We describe the genetic analysis of two monoclonal antibodies (mAbs) wi...

  10. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.

    Science.gov (United States)

    Losdyck, Elisabeth; Hornakova, Tekla; Springuel, Lorraine; Degryse, Sandrine; Gielen, Olga; Cools, Jan; Constantinescu, Stefan N; Flex, Elisabetta; Tartaglia, Marco; Renauld, Jean-Christophe; Knoops, Laurent

    2015-11-27

    JAK1 and JAK3 are recurrently mutated in acute lymphoblastic leukemia. These tyrosine kinases associate with heterodimeric cytokine receptors such as IL-7 receptor or IL-9 receptor, in which JAK1 is appended to the specific chain, and JAK3 is appended to the common gamma chain. Here, we studied the role of these receptor complexes in mediating the oncogenic activity of JAK3 mutants. Although JAK3(V674A) and the majority of other JAK3 mutants needed to bind to a functional cytokine receptor complex to constitutively activate STAT5, JAK3(L857P) was unexpectedly found to not depend on such receptor complexes for its activity, which was induced without receptor or JAK1 co-expression. Introducing a mutation in the FERM domain that abolished JAK-receptor interaction did not affect JAK3(L857P) activity, whereas it inhibited the other receptor-dependent mutants. The same cytokine receptor independence as for JAK3(L857P) was observed for homologous Leu(857) mutations of JAK1 and JAK2 and for JAK3(L875H). This different cytokine receptor requirement correlated with different functional properties in vivo and with distinct sensitivity to JAK inhibitors. Transduction of murine hematopoietic cells with JAK3(V674A) led homogenously to lymphoblastic leukemias in BALB/c mice. In contrast, transduction with JAK3(L857P) induced various types of lymphoid and myeloid leukemias. Moreover, ruxolitinib, which preferentially blocks JAK1 and JAK2, abolished the proliferation of cells transformed by the receptor-dependent JAK3(V674A), yet proved much less potent on cells expressing JAK3(L857P). These particular cells were, in contrast, more sensitive to JAK3-specific inhibitors. Altogether, our results showed that different JAK3 mutations induce constitutive activation through distinct mechanisms, pointing to specific therapeutic perspectives. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The melanin-concentrating hormone receptors: neuronal and non-neuronal functions.

    Science.gov (United States)

    Presse, F; Conductier, G; Rovere, C; Nahon, J-L

    2014-07-01

    Melanin-concentrating hormone (MCH) is a cyclic peptide highly conserved in vertebrates and was originally identified as a skin-paling factor in Teleosts. In fishes, MCH also participates in the regulation of the stress-response and feeding behaviour. Mammalian MCH is a hypothalamic neuropeptide that displays multiple functions, mostly controlling feeding behaviour and energy homeostasis. Transgenic mouse models and pharmacological studies have shown the importance of the MCH system as a potential target in the treatment of appetite disorders and obesity as well as anxiety and psychiatric diseases. Two G-protein-coupled receptors (GPCRs) binding MCH have been characterized so far. The first, named MCH-R1 and also called SLC1, was identified through reverse pharmacology strategies by several groups as a cognate receptor of MCH. This receptor is expressed at high levels in many brain areas of rodents and primates and is also expressed in peripheral organs, albeit at a lower rate. A second receptor, designated MCH-R2, exhibited 38% identity to MCH-R1 and was identified by sequence analysis of the human genome. Interestingly, although MCH-R2 orthologues were also found in fishes, dogs, ferrets and non-human primates, this MCH receptor gene appeared either lacking or non-functional in rodents and lagomorphs. Both receptors are class I GPCRs, whose main roles are to mediate the actions of peptides and neurotransmitters in the central nervous system. However, examples of action of MCH on neuronal and non-neuronal cells are emerging that illustrate novel MCH functions. In particular, the functionality of endogenously expressed MCH-R1 has been explored in human neuroblastoma cells, SK-N-SH and SH-SY5Y cells, and in non-neuronal cell types such as the ependymocytes. Indeed, we have identified mitogen-activated protein kinase (MAPK)-dependent or calcium-dependent signalling cascades that ultimately contributed to neurite outgrowth in neuroblastoma cells or to modulation of

  12. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  13. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Abdel-Razeq H

    2016-10-01

    Full Text Available Hikmat Abdel-RazeqDepartment of Internal Medicine, King Hussein Cancer Center, Amman, JordanI read with great interest the review written elegantly by Gradishar addressing the challenges that community oncologists face in treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor-2 (HER2-negative advanced breast cancer in your journal.1As the author correctly stated, resistance to endocrine therapy in women with hormone receptor-positive disease is very frequent and almost inevitable.Understanding the multiple known mechanisms for endocrine resistance has helped physicians and researchers target these pathways.2 Many of the recently introduced drugs, such as the mTOR inhibitor everolimus3 and the cyclin-dependent kinase (CDK 4/6 inhibitor palbociclib,4 are in clinical practice and have been already incorporated in international guidelines.5View original paper by Gradishar.

  14. The E92K Melanocortin 1 Receptor Mutant Induces cAMP Production and Arrestin Recruitment but Not ERK Activity Indicating Biased Constitutive Signaling

    Science.gov (United States)

    Benned-Jensen, Tau; Mokrosinski, Jacek; Rosenkilde, Mette M.

    2011-01-01

    Background The melanocortin 1 receptor (MC1R) constitutes a key regulator of melanism. Consequently, many naturally-occurring MC1R mutations are associated with a change in color. An example is the Glu-to-Lys substitution found at position II:20/2.60 in the top of transmembrane helix II which has been identified in melanic mice and several other species. This mutation induces a pronounced increase in MC1R constitutive activity suggesting a link between constitutive activity and melanism which is corroborated by the attenuation of α-melanocyte stimulating hormone (αMSH) induced activation. However, the mechanism by which the mutation induces constitutive activity is currently not known. Methodology/Principal Findings Here we characterize the constitutive activity, cell surface expression and internalization of the mouse mutant, Mc1r E92K. As previously reported, only positively charged residues at position II:20/2.60 induced an increase in constitutive activity as measured by cAMP accumulation and CREB activation. Furthermore, the mutation induced a constitutive recruitment of β-arrestin. This phenomenon is only observed in MC1R, however, as the equivalent mutations in MC2-5R had no effect on receptor signaling. Interestingly, the mutation did not induce constitutive ERK1/2 phosphorylation or increase the internalization rate indicating the constitutive activity to be biased. Finally, to identify regions of importance for the increased constitutive activity of Mc1r E92K, we employed a chimeric approach and identified G102 and L110 in the extracellular loop 1 to be selectively important for the constitutive activity as this, but not αMSH-mediated activation, was abolished upon Ala substitution. Conclusions/Significance It is concluded that the E92K mutation induces an active conformation distinct from that induced by αMSH and that the extracellular loop 1 is involved in maintaining this conformational state. In turn, the results suggest that in MC1R, which lacks

  15. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors.

    Science.gov (United States)

    Culhane, Kelly J; Liu, Yuting; Cai, Yingying; Yan, Elsa C Y

    2015-01-01

    Although family B G protein-coupled receptors (GPCRs) contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  16. Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Kelly J Culhane

    2015-11-01

    Full Text Available Although family B G protein-coupled receptors (GPCRs contain only 15 members, they play key roles in transmembrane signal transduction of hormones. Family B GPCRs are drug targets for developing therapeutics for diseases ranging from metabolic to neurological disorders. Despite their importance, the molecular mechanism of activation of family B GPCRs remains largely unexplored due to the challenges in expression and purification of functional receptors to the quantity for biophysical characterization. Currently, there is no crystal structure available of a full-length family B GPCR. However, structures of key domains, including the extracellular ligand binding regions and seven-helical transmembrane regions, have been solved by X-ray crystallography and NMR, providing insights into the mechanisms of ligand recognition and selectivity, and helical arrangements within the cell membrane. Moreover, biophysical and biochemical methods have been used to explore functions, key residues for signaling, and the kinetics and dynamics of signaling processes. This review summarizes the current knowledge of the signal transduction mechanism of family B GPCRs at the molecular level and comments on the challenges and outlook for mechanistic studies of family B GPCRs.

  17. Spinal cord thyrotropin releasing hormone receptors of morphine tolerant-dependent and abstinent rats

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.H.; Gulati, A.; Bhargava, H.N. (Univ. of Illinois, Chicago (USA))

    1990-07-01

    The effect of chronic administration of morphine and its withdrawal on the binding of 3H-(3-MeHis2)thyrotropin releasing hormone (3H-MeTRH) to membranes of the spinal cord of the rat was determined. Male Sprague-Dawley rats were implanted with either 6 placebo or 6 morphine pellets (each containing 75-mg morphine base) during a 7-day period. Two sets of animals were used. In one, the pellets were left intact at the time of sacrificing (tolerant-dependent) and in the other, the pellets were removed 16 hours prior to sacrificing (abstinent rats). In placebo-pellet-implanted rats, 3H-MeTRH bound to the spinal cord membranes at a single high affinity binding site with a Bmax of 21.3 +/- 1.6 fmol/mg protein, and an apparent dissociation constant Kd of 4.7 +/- 0.8 nM. In morphine tolerant-dependent or abstinent rats, the binding constants of 3H-MeTRH to spinal cord membranes were unaffected. Previous studies from this laboratory indicate that TRH can inhibit morphine tolerance-dependence and abstinence processes without modifying brain TRH receptors. Together with the present results, it appears that the inhibitory effect of TRH on morphine tolerance-dependence and abstinence is probably not mediated via central TRH receptors but may be due to its interaction with other neurotransmitter systems.

  18. QSAR study of selective ligands for the thyroid hormone receptor beta.

    Science.gov (United States)

    Liu, Huanxiang; Gramatica, Paola

    2007-08-01

    In this paper, an accurate and reliable QSAR model of 87 selective ligands for the thyroid hormone receptor beta 1 (TRbeta1) was developed, based on theoretical molecular descriptors to predict the binding affinity of compounds with receptor. The structural characteristics of compounds were described wholly by a large amount of molecular structural descriptors calculated by DRAGON. Six most relevant structural descriptors to the studied activity were selected as the inputs of QSAR model by a robust optimization algorithm Genetic Algorithm. The built model was fully assessed by various validation methods, including internal and external validation, Y-randomization test, chemical applicability domain, and all the validations indicate that the QSAR model we proposed is robust and satisfactory. Thus, the built QSAR model can be used to fast and accurately predict the binding affinity of compounds (in the defined applicability domain) to TRbeta1. At the same time, the model proposed could also identify and provide some insight into what structural features are related to the biological activity of these compounds and provide some instruction for further designing the new selective ligands for TRbeta1 with high activity.

  19. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    Science.gov (United States)

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Invertebrate Gonadotropin-Releasing Hormone-Related Peptides and Their Receptors: An Update

    Directory of Open Access Journals (Sweden)

    Tsubasa Sakai

    2017-09-01

    Full Text Available Gonadotropin-releasing hormones (GnRHs play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate Gn

  1. Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells.(RESEARCH ARTICLE / Hormones, Neurotransmitters, Growth Factors, Receptors, and Signaling)

    National Research Council Canada - National Science Library

    Demitrack, Elise S; Samuelson, Linda C; Menhali, Asma Al; Keeley, Theresa M

    2017-01-01

    ... for homeostasis of the gastric epithelium. The gastrointestinal hormone gastrin is known to be a central regulator of both parietal cell function and gastric epithelial cell proliferation and differentiation...

  2. Hormonal Receptor, Human Epidermal Growth Factor and Its Association with Breast Cancer Tumor Characteristics in Albania.

    Science.gov (United States)

    Pajenga, Edlira; Rexha, Tefta; Çeliku, Silva; Ugrinska, Ana; Bejtja, Gazmend

    2016-09-01

    This retrospective study was designed to analyze expression patterns of estrogen receptor (ER), progesterone receptor (PR) and HER2/neu in Albanian patients with breast carcinoma to identify their relationships with tumor size, histological grade (HG), lymph node metastasis and relapse. Patients with either biopsy or metastatic relapse were identified. Demographics, tumor characteristics, ER, PR, and HER2/neu status were retrospectively obtained from the medical records of patients treated with breast cancer during 2006-2011. Hormonal receptors and HER2/neu were assessed by immunohistochemistry. Association of ER, PR and HER2/neu with clinicopathological and molecular characteristics were studied using Fisher's test. P value ≤0.05 was considered significant. There were 110 patients included in the study. Mean patient age was 51.08±10.75 years. The overall immunoexpression of ER, PR and HER2/neu were found positive in 76 (69%), 73 (67%), and 16 (41%) patients, respectively. ER- was associated with higher histological grade (24% vs. 9.2%) and PR+ with tumor size (T2, 78.3 vs. 64.3) (p=0.02 and 0.05, respectively). ER and PR expression were significantly decreased in HER2/neu positive cases while HER2/neu levels correlated with tumor size (p=0.03) and nodal metastasis (p=0.03). No association was detected between ER, PR, HER2/neu and relapse. A combination of ER, PR and HER2/neu and prognostic factors could be of clinical value by defining subgroups in Albanian breast cancer patients that might benefit from more aggressive treatment.

  3. Expression of Hormone Receptors and HER-2 in Benign and Malignant Salivary Gland Tumors.

    Science.gov (United States)

    Can, Nhu Thuy; Lingen, Mark W; Mashek, Heather; McElherne, James; Briese, Renee; Fitzpatrick, Carrie; van Zante, Annemieke; Cipriani, Nicole A

    2017-07-05

    With the advent of targeted therapies, expression of sex hormone receptors and HER-2 in salivary gland tumors (SGTs) is of clinical interest. Previous reports of estrogen (ER) and progesterone (PR) receptor expression have varied. Androgen receptor (AR) and HER-2 overexpression are frequently reported in salivary duct carcinoma (SDC), but have not been studied systematically in other SGTs. This study examines ER, PR, AR, and HER-2 expression in SGTs. Immunohistochemistry for ER, PR, AR, and HER-2 was performed on 254 SGTs (134 malignant). ER, PR, and AR expression was scored using Allred system. HER-2 expression was scored using Dako HercepTest guidelines. FISH for HER-2 amplification was performed on select cases with HER-2 overexpression (2-3+). No SGT demonstrated strong expression of ER or PR. Combined strong AR and HER-2 expression was seen in 22 carcinomas: 14/25 SDC, 3/16 poorly differentiated, two oncocytic, and one each carcinoma ex pleomorphic adenoma, squamous cell, and intraductal carcinoma. Eighteen additional high grade carcinomas had HER-2 overexpression with absent, weak, or moderate AR expression; eight high grade carcinomas had isolated strong AR expression with 0-1+ HER-2 staining. Of 15 tested cases, six demonstrated HER-2 amplification by FISH, all of which had 3+ immunoreactivity. Neither benign nor malignant SGTs had strong expression of ER or PR. None of the benign SGTs overexpressed AR or HER-2. Coexpression of AR and HER-2 should not define SDC, but immunostaining should be considered in high grade salivary carcinomas, as some show overexpression and may benefit from targeted therapy.

  4. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants.

    Directory of Open Access Journals (Sweden)

    Tohei Yokogawa

    2007-10-01

    Full Text Available Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.

  5. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25.

    Science.gov (United States)

    Mullaney, Brendan C; Blind, Raymond D; Lemieux, George A; Perez, Carissa L; Elle, Ida C; Faergeman, Nils J; Van Gilst, Marc R; Ingraham, Holly A; Ashrafi, Kaveh

    2010-10-06

    Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid-rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3 mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Effects of sex and pregnancy hormones on growth hormone and prolactin receptor gene expression in insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, Annette; Petersen, Elisabeth D.; Nielsen, Jens Høiriis

    1993-01-01

    During pregnancy, marked hyperplasia of the pancreatic islet cells has been observed. This effect may be mediated by the pregnancy-associated peptide hormones, placental lactogen, PRL, and GH, which were previously shown to be mitogenic to beta-cells in vitro. To study whether the responsiveness ...

  7. Real-World Treatment Patterns for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer in Europe and the United States.

    Science.gov (United States)

    Caldeira, Rita; Scazafave, Mark

    2016-01-01

    Clinical guidelines generally recommend endocrine therapy over chemotherapy for hormone receptor-positive advanced breast cancer (unless life-threatening metastases are present). This study aimed to assess the real-world treatment patterns of patients with hormone receptor-positive advanced breast cancer in Europe and the United States. Treatment patterns in Europe (France, Germany, Italy, Spain, and the UK) and the United States from January 2012 to December 2014 were investigated using a patient record database (Global Oncology Monitor©). Sample data were projected to the wider clinical population to provide running annual estimates every 3 months. Sample sizes ranged from 1272 to 1640 patients in Europe and from 2225 to 2760 patients in the United States. Across all lines of therapy, 37-43% (Europe) and 45-50% (United States) of patients received chemotherapy. More patients received endocrine therapy than chemotherapy as first-line treatment for advanced breast cancer (Europe: 51-54% vs. 33-35%; United States: 53-60% vs. 34-42%). In contrast, endocrine therapy-only regimens were given less commonly than chemotherapy-only regimens in the third-line setting in both Europe and the United States. Chemotherapy is used extensively in routine clinical practice for hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. The results also suggest that the treatment patternsin Europe and the United States are qualitatively different. Funding : Ipsos Healthcare and AstraZeneca.

  8. The polymorphic insertion of the luteinizing hormone receptor “insLQ” show a negative association to LHR gene expression and to the follicular fluid hormonal profile in human small antral follicles

    DEFF Research Database (Denmark)

    Borgbo, T.; Chrudimska, J.; Macek, M.

    2018-01-01

    The luteinizing hormone receptor (LHCGR) has a little studied polymorphic 6 bp insertion (rs4539842/insLQ). This study has evaluated the insLQ polymorphism in relation to potential associations with hormonal characteristics of human small antral follicles (hSAFs). In total, 310 hSAFs were collected...

  9. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions.

    Science.gov (United States)

    Ghisari, Mandana; Bonefeld-Jorgensen, Eva Cecilie

    2009-08-25

    Plasticizers are additives used to increase the flexibility or plasticity of the material to which they are added, normally rigid plastic and as additives in paint and adhesives. They are suspected to interfere with the endocrine system, including the estrogen and the thyroid hormone (TH) systems. We investigated in vitro the thyroid hormone-like and estrogenic activities of a range of widely used plasticizers and phenols including benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), dioctyl phthalate (DOP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), di(2-ethylhexyl) phthalate (DEHP), bis(2-ethylhexyl) adipate (DEHA), 4-tert-octylphenol (tOP), 4-chloro-3-methylphenol (CMP), 2,4-dichlorophenol (2,4-DCP), 2-phenylphenol (2-PP) and resorcinol. The TH disrupting potential was determined by the effect on the TH-dependent rat pituitary GH3 cell proliferation (T-screen). The estrogenic activities of the compounds were assessed in MVLN cells, stably transfected with an estrogen receptor (ER) luciferase reporter vector. Furthermore, the combined effect of a multi-components mixture of six plasticizers was evaluated for its estrogenic and TH-like activities. All the tested compounds, but 2-PP, significantly affected the GH3 cell proliferation. tOP, BBP and DBP activated ER transactivity, whereas DEHP antagonized the 17beta-estradiol induced ER function. The mixture significantly induced ER transactivity in an additive manner, whereas in the T-screen, the observed mixture effect was lower than predicted, suggesting a potential antagonizing effect of the mixture. In conclusion, the tested plasticizers and phenols elicited endocrine-disrupting potential that can be mediated via interference with the estrogen and TH systems. Moreover, the observed mixture effect stresses the importance of considering the combined effect of the compounds for risk assessment of human health.

  10. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Niles Edward G

    2007-08-01

    Full Text Available Abstract Background: Thyroid hormone receptors (TRs function as molecular switches in response to thyroid hormone to regulate gene transcription. TRs were previously believed to be present only in chordates. Results: We isolated two TR genes from the Schistosoma mansoni and identified TR orthologues from other invertebrates: the platyhelminths, S. japonium and Schmidtea mediterranea, the mollusc, Lottia gigantean and the arthropod Daphnia pulex. Phylogenetic analysis of the DNA binding domain and/or ligand binding domain shows that invertebrate and vertebrate TRs cluster together, TRs from the vertebrates and from the jawless vertebrate (lamprey clustered within separate subgroups, Platyhelminth TRs cluster outside of the vertebrate TR subgroups and that the schistosome TRs and S. mediterranea TRs clustered within separate subgroups. Alignment of the C-terminus of the A/B domain revealed a conserved TR-specific motif, termed TR 'N-terminus signature sequence', with a consensus sequence of (G/PYIPSY(M/LXXXGPE(D/EX. Heterodimer formation between S. mansoni TRs and SmRXR1 suggests that the invertebrate TR protein gained the ability to form a heterodimer with RXR. ESMA analysis showed that SmTRα could bind to a conserved DNA core motif as a monomer or homodimer. Conclusion: Vertebrate TR genes originated from a common ancestor of the Bilateria. TR genes underwent duplication independently in the Protostomia and Deuterostomia. The duplication of TRs in deuterostomes occurred after the split of jawless and jawed vertebrates. In protostomes, TR genes underwent duplication in Platyhelminths, occurring independently in trematode and turbellarian lineages. Using S. mansoni TRs as an example, invertebrate TRs exhibited the ability to form a dimer with RXR prior to the emergence of the vertebrate TRs and were able to bind to vertebrate TR core DNA elements as a monomer or homodimer.

  11. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon

    Science.gov (United States)

    Lerner, Darren T.; Sheridan, Mark A.; McCormick, Stephen D.

    2012-01-01

    Exposure of Atlantic salmon smolts to estrogenic compounds is shown to compromise several aspects of smolt development. We sought to determine the underlying endocrine mechanisms of estrogen impacts on the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Smolts in freshwater (FW) were either injected 3 times over 10 days with 2 μg g−1 17β-estradiol (E2) or 150 μg g−1 4-nonylphenol (NP). Seawater (SW)-acclimated fish received intraperitoneal implants of 30 μg g−1 E2 over two weeks. Treatment with these estrogenic compounds increased hepatosomatic index and total plasma calcium. E2 and NP reduced maximum growth hormone binding by 30–60% in hepatic and branchial membranes in FW and SW, but did not alter the dissociation constant. E2 and NP treatment decreased plasma levels of IGF-I levels in both FW and SW. In FW E2 and NP decreased plasma GH whereas in SW plasma GH increased after E2 treatment. Compared to controls, plasma chloride concentrations of E2-treated fish were decreased 5.5 mM in FW and increased 10.5 mM in SW. There was no effect of NP or E2 on gill sodium–potassium adenosine triphosphatase (Na+/K+-ATPase) activity in FW smolts, whereas E2 treatment in SW reduced gill Na+/K+-ATPase activity and altered the number and size of ionocytes. Our data indicate that E2 downregulates the GH/IGF-I-axis and SW tolerance which may be part of its normal function for reproduction and movement into FW. We conclude that the mechanism of endocrine disruption of smolt development by NP is in part through alteration of the GH/IGF-I axis via reduced GH receptor abundance.

  12. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus1

    Science.gov (United States)

    Chee, Melissa J. S.; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance thus mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expressed cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin but neither orexin nor MCH neurons expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons. PMID:23605441

  13. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus.

    Science.gov (United States)

    Chee, Melissa J S; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-07-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance; thus, mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expresses cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin, but neither orexin nor MCH neurons, expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons. Copyright © 2012 Wiley Periodicals, Inc.

  14. Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R

    Directory of Open Access Journals (Sweden)

    Haruhiko Kanasaki

    2016-09-01

    Full Text Available Gonadotropin-releasing hormone (GnRH and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH and follicle-stimulating hormone (FSH—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of Gn

  15. Transcriptome changes associated wtih delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor

    Science.gov (United States)

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr 1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr 1-1 gene was over-expressed under the control of a c...

  16. Molecular mechanisms in the selective basal activation of pyrabactin receptor 1: Comparative analysis of mutants

    Directory of Open Access Journals (Sweden)

    Lyudmyla Dorosh

    2014-01-01

    Full Text Available Pyrabactin receptors (PYR play a central role in abscisic acid (ABA signal transduction; they are ABA receptors that inhibit type 2C protein phosphatases (PP2C. Molecular aspects contributing to increased basal activity of PYR against PP2C are studied by molecular dynamics (MD simulations. An extensive series of MD simulations of the apo-form of mutagenized PYR1 as a homodimer and in complex with homology to ABA-insensitive 1 (HAB1 phosphatase are reported. In order to investigate the detailed molecular mechanisms mediating PYR1 activity, the MD data was analyzed by essential collective dynamics (ECD, a novel approach that allows the identification, with atomic resolution, of persistent dynamic correlations based on relatively short MD trajectories. Employing the ECD method, the effects of select mutations on the structure and dynamics of the PYR1 complexes were investigated and considered in the context of experimentally determined constitutive activities against HAB1. Approaches to rationally design constitutively active PYR1 constructs to increase PP2C inhibition are discussed.

  17. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1

    DEFF Research Database (Denmark)

    Argetsinger, L S; Hsu, G W; Myers, M G

    1995-01-01

    The identification of JAK2 as a growth hormone (GH) receptor-associated, GH-activated tyrosine kinase has established tyrosyl phosphorylation as a signaling mechanism for GH. In the present study, GH is shown to stimulate tyrosyl phosphorylation of insulin receptor substrate 1 (IRS-1), the princi......The identification of JAK2 as a growth hormone (GH) receptor-associated, GH-activated tyrosine kinase has established tyrosyl phosphorylation as a signaling mechanism for GH. In the present study, GH is shown to stimulate tyrosyl phosphorylation of insulin receptor substrate 1 (IRS-1......), the principle substrate of the insulin receptor. Tyrosyl phosphorylation of IRS-1 is a critical step in insulin signaling and provides binding sites for proteins with the appropriate Src homology 2 domains, including the 85-kDa regulatory subunit of phosphatidylinositol (PI) 3'-kinase. In 3T3-F442A fibroblasts......, GH-dependent tyrosyl phosphorylation of IRS-1 was detected by 1 min and at GH concentrations as low as 5 ng/ml (0.23 nM). Tyrosyl phosphorylation of IRS-1 was transient, with maximal stimulation detected at 30 min and diminished signal detected at 60 min. The ability of GH receptor (GHR) to transduce...

  18. Expression of Steroid Hormone Receptors of the Cervix in Cervical Intraepithelial Neoplasia Associated with Human Papillomavirus Infection in Infertile Women

    Directory of Open Access Journals (Sweden)

    E.O. Kindrativ

    2015-01-01

    When studying receptor status of cervical tissue in CIN, there are significant changes in the intensity of ER and PgR receptors expression. Immunohistochemical reaction in terms of identification of estrogen receptors is positive in 29.9 % of cases, negative — in 70.1 %. Positive PgR expression is set in 31.2 % of women with CIN, negative expression — in 68.8 %. In CIN and HPI, the redistribution of steroid receptors expression is marked, since ER is characterized by decrease of epithelial and appearance of stromal positive reaction. PgR expression differs by positive epithelial extinction with expressed nonspecific reaction in stromal component of the cervix. Estimation of hormone-receptor system of the cervix showed a significant decrease (p < 0.05 in ER volume content (twice in comparison with PgR (1.3 times. In CIN associated with HPI, a significant decrease in ER/PgR ratio is noted, with the lowest parameter in the group of patients with CIN-III (p < 0.05. Therefore, detection of the expression of steroid hormone receptors in cervical neoplasia associated with HPI in infertile women can be used as an additional criterion for determining the degree of dysplastic process in cervical epithelium.

  19. Growth hormone receptor (GHR) gene polymorphism and scoliosis in Prader-Willi syndrome.

    Science.gov (United States)

    Butler, Merlin G; Hossain, Waheeda; Hassan, Maaz; Manzardo, Ann M

    2017-12-06

    A growth hormone receptor (GHR) gene polymorphism impacts sensitivity to endogenous and exogenous growth hormone (GH) to moderate growth and development. Increased sensitivity may accelerate spinal growth and contribute to scoliosis, particularly in GH-deficient and treated populations such as Prader-Willi syndrome (PWS). Therefore, we examined the relationship between GHR genotype and scoliosis (case and control) in PWS cohorts. We utilized a case-control design in a study of 73 subjects (34M; 39F) with genetically confirmed PWS in 32 individuals previously diagnosed with moderate to severe scoliosis (mean age=16.9±10.2years; age range of 1 to 41years) and 41 adults with no evidence of scoliosis (mean age=30.8±9.7years; age range of 18 to 56years). The GHR gene polymorphism was determined using PCR specific primers to capture the two recognized GHR gene fragment sizes [i.e., full length (fl) or exon 3 deletions (d3)]. Twenty-three (72%) of the 32 case subjects with scoliosis required surgical correction with an approximately equal balance for gender and PWS genetic subtype among cases and 41 control subjects without scoliosis. The GHR d3/d3 genotype was identified in N=2 of 8 (25%) cases with scoliosis and the d3/fl genotype was identified in N=11 of 25 (44%) cases with scoliosis but the distribution difference did not statistically differ. The GHR fl/fl genotype was correlated with a significantly faster rate and heavier weight gain among case subjects. Our examination of demographic and genetic markers associated with scoliosis and surgical repair in PWS found no evidence to support differences in gender, PWS genetic subtype or GHR d3 allele distributions among the case vs control groups. Those with fl/fl alleles were heavier than those with d3/d3 or d3/fl genotypes and warrant further study with a larger sample size and possibly to include other vulnerable populations requiring growth hormone treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Flow cytometry analysis of hormone receptors on human peripheral blood mononuclear cells to identify stress-induced neuroendocrine effects

    Science.gov (United States)

    Meehan, R. T.

    1986-01-01

    Understanding the role of circulating peptide hormones in the pathogenesis of space-flight induced disorders would be greatly facilitated by a method which monitors chronic levels of hormones and their effects upon in vivo cell physiology. Single and simultaneous multiparameter flow cytometry analysis was employed to identify subpopulations of mononuclear cells bearing receptors for ACTH, Endorphin, and Somatomedin-C using monoclonal antibodies and monospecific antisera with indirect immunofluorescence. Blood samples were obtained from normal donors and subjects participating in decompression chamber studies (acute stress), medical student academic examination (chronic stress), and a drug study (Dexamethasone). Preliminary results indicate most ACTH and Endorphin receptor positive cells are monocytes and B-cells, exhibit little diurnal variation but the relative percentages of receptor positive cells are influenced by exposure to various stressors and ACTH inhibition. This study demonstrates the capability of flow cytometry analysis to study cell surface hormone receptor regulation which should allow insight into neuroendocrine modulation of the immune and other cellular systems during exposure to stress or microgravity.

  1. Hormone treatment, estrogen receptor polymorphisms and mortality: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Joanne Ryan

    Full Text Available BACKGROUND: The association between hormone treatment (HT and mortality remains controversial. This study aimed to determine whether the risk of mortality associated with HT use varies depending on the specific characteristics of treatment and genetic variability in terms of the estrogen receptor. METHODOLOGY/PRINCIPAL FINDINGS: A prospective, population-based study of 5135 women aged 65 years and older who were recruited from three cities in France and followed over six years. Detailed information related to HT use was obtained and five estrogen receptor polymorphisms were genotyped. The total follow-up was 25,436 person-years and during this time 352 women died. Cancer (36.4% and cardiovascular disease (19.3% were the major causes of death. Cox proportional hazards models adjusted for age, education, centre, living situation, comorbidity, depression, physical and mental incapacities, indicated no significant association between HT and mortality, regardless of the type or duration of treatment, or the age at initiation. However, the association between HT and all-cause or cancer-related mortality varied across women, with significant interactions identified with three estrogen receptor polymorphisms (p-values = 0.004 to 0.03 in adjusted analyses. Women carrying the C allele of ESR1 rs2234693 had a decreased risk of all-cause mortality with HT (HR: 0.42, 95% CI: 0.18-0.97, while in stark contrast, those homozygous for the T allele had a significantly increased risk of cancer-related mortality (HR: 3.18, 95% CI: 1.23-8.20. The findings were similar for ESR1 rs9340799 and ESR2 rs1271572. CONCLUSIONS/SIGNIFICANCE: The risk of mortality was not associated with HT duration, type or age at initiation. It was however not equal across all women, with some women appearing genetically more vulnerable to the effects of HT in terms of their estrogen receptor genotype. These findings, if confirmed in another independent study, may help explain the

  2. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3.

    Science.gov (United States)

    Patel, Hiren; Bhartiya, Deepa; Parte, Seema; Gunjal, Pranesh; Yedurkar, Snehal; Bhatt, Mithun

    2013-01-01

    We have earlier reported that follicle stimulating hormone (FSH) modulates ovarian stem cells which include pluripotent, very small embryonic-like stem cells (VSELs) and their immediate descendants 'progenitors' termed ovarian germ stem cells (OGSCs), lodged in adult mammalian ovarian surface epithelium (OSE). FSH may exert pleiotropic actions through its alternatively spliced receptor isoforms. Four isoforms of FSH receptors (FSHR) are reported in literature of which FSH-R1 and FSH-R3 have biological activity. Present study was undertaken to identify FSHR isoforms mediating FSH action on ovarian stem cells, using sheep OSE cells culture as the study model. Cultures of sheep OSE cells (a mix of epithelial cells, VSELs, OGSCs and few contaminating red blood cells) were established with and without FSH 5IU/ml treatment. Effect of FSH treatment on self-renewal of VSELs and their differentiation into OGSCs was studied after 15 hrs by qRT-PCR using markers specific for VSELs (Oct-4A, Sox-2) and OGSCs (Oct-4). FSH receptors and its specific transcripts (R1 and R3) were studied after 3 and 15 hrs of FSH treatment by immunolocalization, in situ hybridization and qRT-PCR. FSHR and OCT-4 were also immuno-localized on sheep ovarian sections, in vitro matured follicles and early embryos. FSH treatment resulted in increased stem cells self-renewal and clonal expansion evident by the appearance of stem cell clusters. FSH receptors were expressed on ovarian stem cells whereas the epithelial cells were distinctly negative. An increase in R3 mRNA transcripts was noted after 3 hrs of FSH treatment and was reduced to basal levels by 15 hrs, whereas R1 transcript expression remained unaffected. Both FSHR and OCT-4 were immuno-localized in nuclei of stem cells, showed nuclear or ooplasmic localization in oocytes of primordial follicles and in cytoplasm of granulosa cells in growing follicles. FSH modulates ovarian stem cells via FSH-R3 to undergo potential self-renewal, clonal

  3. Central and direct regulation of testicular activity by gonadotropin-inhibitory hormone and its receptor

    Directory of Open Access Journals (Sweden)

    Takayoshi eUbuka

    2014-01-01

    Full Text Available Gonadotropin-inhibitory hormone (GnIH was first identified in Japanese quail to be an inhibitor of gonadotropin synthesis and release. GnIH peptides have since been identified in all vertebrates, and all share an LPXRFamide (X = L or Q motif at their C-termini. The receptor for GnIH is the G protein-coupled receptor 147 (GPR147, which inhibits cAMP signaling. Cell bodies of GnIH neurons are located in the paraventricular nucleus (PVN in birds and the dorsomedial hypothalamic area (DMH in most mammals. GnIH neurons in the PVN or DMH project to the median eminence to control anterior pituitary function via GPR147 expressed in gonadotropes. Further, GnIH inhibits gonadotropin-releasing hormone (GnRH -induced gonadotropin subunit gene transcription by inhibiting the adenylate cyclase/cAMP/PKA -dependent ERK pathway in an immortalized mouse gonadotrope cell line (LT2 cells. GnIH neurons also project to GnRH neurons that express GPR147 in the preoptic area (POA in birds and mammals. Accordingly, GnIH can inhibit gonadotropin synthesis and release by decreasing the activity of GnRH neurons as well as by directly inhibiting pituitary gonadotrope activity. GnIH and GPR147 can thus centrally suppress testosterone secretion and spermatogenesis by acting in the hypothalamic-pituitary-gonadal axis. GnIH and GPR147 are also expressed in the testis of birds and mammals, possibly acting in an autocrine/paracrine manner to suppress testosterone secretion and spermatogenesis. GnIH expression is also regulated by melatonin, stress and social environment in birds and mammals. Accordingly, the GnIH-GPR147 system may play a role in transducing physical and social environmental information to regulate optimal testicular activity in birds and mammals. This review discusses central and direct inhibitory effects of GnIH and GPR147 on testosterone secretion and spermatogenesis in birds and mammals.

  4. Dynamic responses of prolactin, growth hormone and their receptors to hyposmotic acclimation in the olive flounder Paralichthys olivaceus.

    Science.gov (United States)

    Yuan, Mingzhe; Jia, Qianqian; Wang, Ting; Lu, Qi; Tang, Langlang; Wang, Youji; Lu, Weiqun

    2017-12-01

    Prolactin (PRL) and growth hormone (GH) play important roles in regulating salt and water balance through osmoregulatory organs in vertebrates. The aim of this study was to investigate the dynamic changes of GH/PRL hormone gene expressions in the pituitary gland and their receptors in gill and kidney, as well as the plasma osmolality when the olive flounder fish Paralichthys olivaceus were acclimated in freshwater (FW) conditions. After transfer from seawater (SW) to freshwater (FW), the osmolality of FW-adaption fish reached the lowest level at 1d which rose slightly afterwards. However, the hormone gene expression of PRL increased from 2d, reaching its peak at 5d, and then decreased at 14d. At this time, the value was still significantly higher than the control, showing a similar trend to the plasma hormone PRL. In contrast, the pituitary mRNA level of GH significantly decreased at 1d and then returned to normal levels. The mRNA levels of PRL receptor (PRLR) in both gill and kidney displayed a similar trend to the pituitary PRL. We also observed the synchronous expression trend of the renal PRLR with pituitary PRL (5d) and the asynchronous expression peaks between branchial (8d) and renal PRLR (5d). Significant responses of GH and its receptor (GHR) in both gill and kidney during the FW-acclimation were not observed. Nevertheless, the gene expression of GH receptor variant (GHR-V) in both gill and kidney declined at 2d, indicating unknown osmoregulatory functions of GHR-V. Collectively, our results provided more insights of the PRL, GH and their corresponding receptors in modulating osmoregulatory responses, representing an important aspect of FW-acclimation in flounder fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Signaling of ghrelin and its functional receptor, the growth hormone secretagogue receptor, promote tumor growth in glioblastomas.

    Science.gov (United States)

    Okada, Yousuke; Sugita, Yasuo; Ohshima, Koichi; Morioka, Motohiro; Komaki, Satoru; Miyoshi, Junko; Abe, Hideyuki

    2016-12-01

    Ghrelin is a 28-amino-acid peptide that is the endogenous ligand for the pituitary growth hormone secretagogue receptor (GHS-R). Ghrelin is mainly produced from the stomach, but it is also expressed by various other tissues, including the CNS under normal conditions. Physiologically, ghrelin regulates appetite, gut motility, and GH release from the anterior pituitary, as well as cardiovascular and immune systems. Recent studies also indicate that ghrelin and GHS-R may play an important autocrine/paracrine role in neoplastic conditions. In order to clarify the role of ghrelin/GHS-R in gliomas, the present study assessed the expression of ghrelin and its functional receptor, GHS-R1a, in 39 glioblastomas (GBs), 13 anaplastic astrocytomas (AAs) and 11 diffuse astrocytomas (DAs) using immunohistochemical analyses. Immunohistochemical staining was evaluated as follows: no staining; 1+, 0-10% positive cells; 2+, 10-50% positive cells; 3+, >50% positive cells. Ghrelin expression was detected in 52 of 63 cases of which 38, 13 and one were scored as 3+, 2+ and 1+, respectively. GHS-R1a expression was detected in 45 of 63 cases of which 29, 15 and one were scored as 3+, 2+ and 1+, respectively. Ghrelin immunoreactivity was observed in 38 of 39 GBs, 12 of 13 AAs and two of 11 DAs. GHS-R1a immunoreactivity was observed in 39 of 39 GBs, five of 13 AAs, and one of 11 DAs. AAs and GBs showed moderate or strong immunostaining of ghrelin/GHS-R1a in the tumor cells and in proliferating microvessels. Patients were classified into lower to moderate-score, and high-score ghrelin/GHS-R categories according to the principal component and cluster analyses. Multivariate analysis of overall survival indicated that there was a significant difference (P = 0.0001) in the survival rate between these two groups. The combined results indicated that expression of the ghrelin/GHS-R1a axis increases the growth of AAs and GBs through an autocrine/paracrine mechanism. © 2016 Japanese Society of

  6. Potential of nonpeptide (ant)agonists to rescue vasopressin V2 receptor mutants for the treatment of X-linked nephrogenic diabetes insipidus.

    NARCIS (Netherlands)

    Los, E.L.; Deen, P.M.T.; Robben, J.H.

    2010-01-01

    According to the body's need, water is reabsorbed from the pro-urine that is formed by ultrafiltration in the kidney. This process is regulated by the antidiuretic hormone arginine-vasopressin (AVP), which binds to its type 2 receptor (V2R) in the kidney. Mutations in the gene encoding the V2R often

  7. PET imaging of brain sex steroid hormone receptors and the role of estrogen in depression

    NARCIS (Netherlands)

    Khayum, Mohamed Abdul

    2015-01-01

    Androgens and estrogens are steroid hormones that are involved in several neurodegenerative and psychiatric disorders. Decreased levels of steroid hormones are associated with e.g. decreased cognition, anxiety and depression. Androgens and estrogens exert their biological effects through their

  8. Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency.

    Science.gov (United States)

    Guevara-Aguirre, Jaime; Rosenbloom, Arlan L

    2015-01-01

    Obesity with insulin-resistant diabetes and increased cancer risk is a global problem. We consider the alterations of metabolism attendant on the underlying pathogenic overnutrition and the role of the growth hormone (GH)-IGF-1 axis in this interaction. Obesity-induced insulin resistance is a determinant of diabetes. Excess glucose, and an elevated concentration of insulin acting through its own receptors along with complex interactions with the IGF-1 system, will add extra fuel and fuel signalling for malignant growth and induce anti-apoptotic activities, permitting proliferation of forbidden clones. In Ecuador there are ~100 living adults with lifelong IGF-1 deficiency caused by a GH receptor (GHR) mutation who, despite a high percentage of body fat, have markedly increased insulin sensitivity compared with age- and BMI-matched control relatives, and no instances of diabetes, which is present in 6% of unaffected relatives. Only 1 of 20 deceased individuals with GHR deficiency died of cancer vs 20% of ~1,500 relatives. Fewer DNA breaks and increased apoptosis occurred in cell cultures exposed to oxidant agents following addition of serum from GHR-deficient individuals vs serum from control relatives. These changes were reversible by adding IGF-1 to the serum from the GHR-deficient individuals. The reduction in central regulators of pro-ageing signalling thus appears to be the result of an absence of GHR function. The complex inter-relationship of obesity, diabetes and cancer risk is related to excess insulin and fuel supply, in the presence of heightened anti-apoptosis and uninhibited DNA damage when GHR function is normal.

  9. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone.

    Science.gov (United States)

    Schneider, Marlon R; Dahlhoff, Maik; Andrukhova, Olena; Grill, Jessica; Glösmann, Martin; Schüler, Christiane; Weber, Karin; Wolf, Eckhard; Erben, Reinhold G

    2012-01-01

    Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone. Copyright © 2011. Published by Elsevier Inc.

  10. Diofenolan induces male offspring production through binding to the juvenile hormone receptor in Daphnia magna.

    Science.gov (United States)

    Abe, Ryoko; Toyota, Kenji; Miyakawa, Hitoshi; Watanabe, Haruna; Oka, Tomohiro; Miyagawa, Shinichi; Nishide, Hiroyo; Uchiyama, Ikuo; Tollefsen, Knut Erik; Iguchi, Taisen; Tatarazako, Norihisa

    2015-02-01

    Juvenile hormone (JH) and JH agonists have been reported to induce male offspring production in various daphnid species including Daphnia magna. We recently established a short-term in vivo screening assay to detect chemicals having male offspring induction activity in adult D. magna. Diofenolan has been developed as a JH agonist for insect pest control, but its male offspring induction activity in daphnids has not been investigated yet. In this study, we found that the insect growth regulator (IGR) diofenolan exhibited a potent male offspring induction activity at low ng/L to μg/L concentrations, as demonstrated by the short-term in vivo screening assay and the recently developed TG211 ANNEX 7 test protocol. A two-hybrid assay performed using the D. magna JH receptor confirmed that diofenolan had a strong JH activity. Global whole body transcriptome analysis of D. magna exposed to 10 ng/L diofenolan showed an up-regulation of JH-responsive genes and modulation of several genes involved in the ecdysone receptor signaling pathway. These results clearly demonstrate that diofenolan has strong JH activity and male offspring induction activity, and that a combination of modified standardized regulatory testing protocols and rapid in vitro and in vivo screening assays are able to identify potential endocrine disruptors in D. magna. The observation that diofenolan modulates multiple endocrine signaling pathways in D. magna suggests that further investigation of potential interference with growth, development and reproduction is warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cytoskeleton-related regulation of primary cilia shortening mediated by melanin-concentrating hormone receptor 1.

    Science.gov (United States)

    Tomoshige, Sakura; Kobayashi, Yuki; Hosoba, Kosuke; Hamamoto, Akie; Miyamoto, Tatsuo; Saito, Yumiko

    2017-11-01

    Primary cilia are specialized microtubule-based organelles. Their importance is highlighted by the gamut of ciliary diseases associated with various syndromes including diabetes and obesity. Primary cilia serve as signaling hubs through selective interactions with ion channels and conventional G-protein-coupled receptors (GPCRs). Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a key regulator of feeding, is selectively expressed in neuronal primary cilia in distinct regions of the mouse brain. We previously found that MCH acts on ciliary MCHR1 and induces cilia shortening through a Gi/o-dependent Akt pathway with no cell cycle progression. Many factors can participate in cilia length control. However, the mechanisms for how these molecules are relocated and coordinated to activate cilia shortening are poorly understood. In the present study, we investigated the role of cytoskeletal dynamics in regulating MCH-induced cilia shortening using clonal MCHR1-expressing hTERT-RPE1 cells. Pharmacological and biochemical approaches showed that cilia shortening mediated by MCH was associated with increased soluble cytosolic tubulin without changing the total tubulin amount. Enhanced F-actin fiber intensity was also observed in MCH-treated cells. The actions of various pharmacological agents revealed that coordinated actin machinery, especially actin polymerization, was required for MCHR1-mediated cilia shortening. A recent report indicated the existence of actin-regulated machinery for cilia shortening through GPCR agonist-dependent ectosome release. However, our live-cell imaging experiments showed that MCH progressively elicited cilia shortening without exclusion of fluorescence-positive material from the tip. Short cilia phenotypes have been associated with various metabolic disorders. Thus, the present findings may contribute toward better understanding of how the cytoskeleton is involved in the GPCR ligand-triggered cilia shortening with cell mechanical

  12. Development and validation of in vitro bioassays for thyroid hormone receptor mediated endocrine disruption

    NARCIS (Netherlands)

    Freitas, de J.

    2012-01-01

    Thyroid hormones regulate crucial processes in vertebrates such as reproduction, development and energy metabolism. Endocrine disruption via the thyroid hormone system is gaining more attention both from scientists and regulators, because of the increasing incidence of hormone-related cancers and

  13. Interaction of early life stress and corticotropin-releasing hormone receptor gene: effects on working memory.

    Science.gov (United States)

    Fuge, Philipp; Aust, Sabine; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Bajbouj, Malek; Grimm, Simone

    2014-12-01

    Early life stress (ELS) experience is associated with persisting working memory (WM) deficits; changes to the corticotropin-releasing hormone (CRH) system; and structural, functional, and epigenetic changes in the hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS experience to predict depression as well as neuroendocrine and neuronal reactivity. Although these findings indicate that vulnerable genotypes might also show impaired WM performance after ELS experience, no previous study investigated whether there is an interaction effect of CRHR1 polymorphisms and ELS experience on WM performance. Subjects (N = 451) were genotyped for rs110402 and rs242924 within the CRHR1 gene. We used an n-back task to investigate the hypothesis that WM performance in healthy subjects may be subtly influenced by functional differences in CRHR1 and represents an early marker of increased vulnerability after exposure to ELS. Exposure to ELS had a particularly strong impact on WM performance in subjects with the common homozygous GG GG genotype, whereas only severe exposure to ELS interfered with WM accuracy in AT carriers. Our data indicate that specific CRHR1 polymorphisms moderate the effect of ELS experience on WM performance. Exposure to ELS in combination with a vulnerable genotype results in subtle memory deficits in adulthood, which might develop before psychopathological symptoms. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Presence and distribution of urocortin and corticotrophin-releasing hormone receptors in the bovine thyroid gland.

    Science.gov (United States)

    Squillacioti, C; De Luca, A; Alì, S; Ciarcia, R; Germano, G; Vittoria, A; Mirabella, N

    2014-12-01

    Urocortin (UCN), a 40 amino acid peptide, is a corticotrophin-releasing hormone (CRH)-related peptide. The biological actions of CRH family peptides are mediated via two types of G-protein-coupled receptors, CRH type 1 (CRHR1) and CRH type 2 (CRHR2). The aim of this study was to investigate the expression of UCN, CRHR1 and CRHR2 by immunoprecipitation, Western blot, immunohistochemistry and RT-PCR in the bovine thyroid gland. Immunoprecipitation and Western blot analysis showed that tissue extracts reacted with the anti-UCN, anti-CRHR1 and anti-CRHR2 antibodies. RT-PCR experiments demonstrated that mRNAs of UCN, CRHR1 and CRHR2 were expressed. UCN immunoreactivity (IR) and CRHR2-IR were found in the thyroid follicular and parafollicular cells and CRHR1-IR in the smooth muscle of the blood vessels. These results suggest that a regulatory system exists in the bovine thyroid gland based on UCN, CRHR1 and CRHR2 and that UCN plays a role in the regulation of thyroid physiological functions through an autocrine/paracrine mechanism. © 2013 Blackwell Verlag GmbH.

  15. Thyroid hormone receptor beta and NCOA4 regulate terminal erythrocyte differentiation.

    Science.gov (United States)

    Gao, Xiaofei; Lee, Hsiang-Ying; Li, Wenbo; Platt, Randall Jeffrey; Barrasa, M Inmaculada; Ma, Qi; Elmes, Russell R; Rosenfeld, Michael G; Lodish, Harvey F

    2017-09-19

    An effect of thyroid hormone (TH) on erythropoiesis has been known for more than a century but the molecular mechanism(s) by which TH affects red cell formation is still elusive. Here we demonstrate an essential role of TH during terminal human erythroid cell differentiation; specific depletion of TH from the culture medium completely blocked terminal erythroid differentiation and enucleation. Treatment with TRβ agonists stimulated premature erythroblast differentiation in vivo and alleviated anemic symptoms in a chronic anemia mouse model by regulating erythroid gene expression. To identify factors that cooperate with TRβ during human erythroid terminal differentiation, we conducted RNA-seq in human reticulocytes and identified nuclear receptor coactivator 4 (NCOA4) as a critical regulator of terminal differentiation. Furthermore, Ncoa4(-/-) mice are anemic in perinatal periods and fail to respond to TH by enhanced erythropoiesis. Genome-wide analysis suggests that TH promotes NCOA4 recruitment to chromatin regions that are in proximity to Pol II and are highly associated with transcripts abundant during terminal differentiation. Collectively, our results reveal the molecular mechanism by which TH functions during red blood cell formation, results that are potentially useful to treat certain anemias.

  16. Corticotropin-releasing hormone receptor-1 and histidine decarboxylase expression in chronic urticaria.

    Science.gov (United States)

    Papadopoulou, Nikoletta; Kalogeromitros, Demetrios; Staurianeas, Nikolaos G; Tiblalexi, Despina; Theoharides, Theoharis C

    2005-11-01

    Certain skin disorders, such as contact dermatitis and chronic urticaria, are characterized by inflammation involving mast cells and worsen by stress. The underlying mechanism of this effect, however, is not known. The skin appears to have the equivalent of a hypothalamic-pituitary-adrenal (HPA) axis, including local expression of corticotropin-releasing hormone (CRH) and its receptors (CRH-R). We have reported that acute stress and intradermal administration of CRH stimulate skin mast cells and increase vascular permeability through CRH-R1 activation. In this study, we investigated the expression of CRH-R1, the main CRH-R subtype in human skin, and the mast cell related gene histidine decarboxylase (HDC), which regulates the production of histamine, in normal and pathological skin biopsies. Quantitative real time PCR revealed that chronic urticaria expresses high levels of CRH-R1 and HDC as compared to normal foreskin, breast skin and cultured human keratinocytes. The lichen simplex samples had high expression of CRH-R1, but low HDC. These results implicate CRH-R in chronic urticaria, which is often exacerbated by stress.

  17. Prevalence and clinical relevance of thyroid stimulating hormone receptor-blocking antibodies in autoimmune thyroid disease.

    Science.gov (United States)

    Diana, T; Krause, J; Olivo, P D; König, J; Kanitz, M; Decallonne, B; Kahaly, G J

    2017-09-01

    The prevalence and clinical relevance of thyroid stimulating hormone (TSH) receptor (TSHR) blocking antibodies (TBAb) in patients with autoimmune thyroid disease (AITD) was investigated. Serum TBAb were measured with a reporter gene bioassay using Chinese hamster ovary cells. Blocking activity was defined as percentage inhibition of luciferase expression relative to induction with bovine TSH alone (cut-off 40% inhibition). All samples were measured for TSHR stimulatory antibody (TSAb) and TSHR binding inhibiting immunoglobulins (TBII). A total of 1079 unselected, consecutive patients with AITD and 302 healthy controls were included. All unselected controls were negative for TBAb and TSAb. In contrast, the prevalence of TBAb-positive patients with Hashimoto's thyroiditis and Graves' disease was 67 of 722 (9·3%) and 15 of 357 (4·2%). Of the 82 TBAb-positive patients, thirty-nine (48%), 33 (40%) and 10 (12%) were hypothyroid, euthyroid and hyperthyroid, respectively. Ten patients were both TBAb- and TSAb-positive (four hypothyroid, two euthyroid and four hyperthyroid). Thyroid-associated orbitopathy was present in four of 82 (4·9%) TBAb-positive patients, with dual TSHR antibody positivity being observed in three. TBAb correlated positively with TBII (r = 0·67, P  70% inhibition, 87% were TBII-positive. Functional TSHR antibodies impact thyroid status. TBAb determination is helpful in the evaluation and management of patients with AITD. The TBAb assay is a relevant and important tool to identify potentially reversible hypothyroidism. © 2017 British Society for Immunology.

  18. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications

    Science.gov (United States)

    Kopchick, John J.; List, Edward O.; Kelder, Bruce; Gosney, Elahu S.; Berryman, Darlene E.

    2013-01-01

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant’s preclinical and clinical trials, and provide data suggesting pegvisomant’s therapeutic value in selected types of cancer. PMID:24035867

  19. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  20. Graves disease in children: thyroid-stimulating hormone receptor antibodies as remission markers.

    Science.gov (United States)

    Gastaldi, Roberto; Poggi, Elena; Mussa, Alessandro; Weber, Giovanna; Vigone, Maria Cristina; Salerno, Mariacarolina; Delvecchio, Maurizio; Peroni, Elena; Pistorio, Angela; Corrias, Andrea

    2014-05-01

    To evaluate clinical and biochemical features of 115 children (98 female, mean age 11.3 ± 3.5 years) with Graves disease to identify possible determinants of remission. We defined as positive outcome the improvement of clinical features and restoration of euthyroidism or induction of hypothyroidism after antithyroid drug (ATD) therapy and as negative outcome hyperthyroidism persistent over 2 years of ATD therapy or relapsed after ATD withdrawal. Thirty-eight children (33%) had remission after 2 years of ATD therapy. The absence of goiter at diagnosis was correlated with a better outcome. Median thyroid-stimulating hormone receptor antibody (TRAb) values at diagnosis were significantly lower in patients with a positive outcome (P = .031). We found a significant relationship between the time required for TRAb normalization and the patient outcome; TRAb normalization within 1 year from time of Graves disease diagnosis was significantly more common among patients with a positive outcome (P Graves disease outcome was serum level; TRAb at time of Graves disease diagnosis less than 2.5 times the upper reference limit, TRAb normalization during ATD, and TRAb normalization timing each may predict positive outcomes. These results may have a role in the empiric clinical management of pediatric patients with Graves disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Growth hormone secretagogue receptor is important in the development of experimental colitis.

    Science.gov (United States)

    Liu, Zhen-Ze; Wang, Wei-Gang; Li, Qing; Tang, Miao; Li, Jun; Wu, Wen-Ting; Wan, Ying-Han; Wang, Zhu-Gang; Bao, Shi-San; Fei, Jian

    2015-01-01

    Growth hormone secretagogue receptor (GHSR) and its ligand, ghrelin, are important modulators in weight control and energy homeostasis. Recently, ghrelin is also involved in experimental colitis, but the role of GHSR in the development of colitis is unclear. The aim was to examine the underlying mechanism of GHSR in IBD development. The temporal expression of GHSR/ghrelin was determined in dextran sulphate sodium (DSS) induced colitis in Wt mice. The severity of DSS induced colitis from GHSR(-/-) and WT mice was compared at clinical/pathological levels. Furthermore, the function of macrophages was evaluated in vivo and in vitro. Lack of GHSR attenuated colitis significantly at the clinical and pathological levels with reduced colonic pro-inflammatory cytokines (P < 0.05). This is consistent with the observation of less colonic macrophage infiltration and TLRs expression from DSS-treated GHSR(-/-) mice compared to WT mice (P < 0.05). Furthermore, there was significantly reduced pro-inflammatory cytokines in LPS-stimulated macrophages in vitro from GHSR(-/-) mice than WT mice (P < 0.05). Moreover, D-lys(3)-GHRP6 (a GHSR antagonist) reduced LPS-induced macrophage pro-inflammatory cytokines from WT mice in vitro. GHSR contributes to development of acute DSS-induced colitis, likely via elevated pro-inflammatory cytokines and activation of macrophages. These data suggest GHSR as a potential therapeutic target for IBD.

  2. Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption

    Directory of Open Access Journals (Sweden)

    Shi Yun-Bo

    2012-12-01

    Full Text Available Abstract Thyroid hormone (T3 plays diverse roles in adult organ function and during vertebrate development. The most important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks. Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3. The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors (TRs. Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3 signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene activation by liganded TR during vertebrate development.

  3. Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice.

    Science.gov (United States)

    Adamantidis, Antoine; Salvert, Denise; Goutagny, Romain; Lakaye, Bernard; Gervasoni, Damien; Grisar, Thierry; Luppi, Pierre-Hervé; Fort, Patrice

    2008-04-01

    Growing amounts of data indicate involvement of the posterior hypothalamus in the regulation of sleep, especially paradoxical sleep (PS). Accordingly, we previously showed that the melanin-concentrating hormone (MCH)-producing neurons of the rat hypothalamus are selectively activated during a PS rebound. In addition, intracerebroventricular infusion of MCH increases total sleep duration, suggesting a new role for MCH in sleep regulation. To determine whether activation of the MCH system promotes sleep, we studied spontaneous sleep and its homeostatic regulation in mice with deletion of the MCH-receptor 1 gene (MCH-R1-/- vs. MCH-R1+/+) and their behavioural response to modafinil, a powerful antinarcoleptic drug. Here, we show that the lack of functional MCH-R1 results in a hypersomniac-like phenotype, both in basal conditions and after total sleep deprivation, compared to wild-type mice. Further, we found that modafinil was less potent at inducing wakefulness in MCH-R1-/- than in MCH-R1+/+ mice. We report for the first time that animals with genetically inactivated MCH signaling exhibit altered vigilance state architecture and sleep homeostasis. This study also suggests that the MCH system may modulate central pathways involved in the wake-promoting effect of modafinil.

  4. The interaction of corticotropin-releasing hormone receptor gene and early life stress on emotional empathy.

    Science.gov (United States)

    Grimm, Simone; Wirth, Katharina; Fan, Yan; Weigand, Anne; Gärtner, Matti; Feeser, Melanie; Dziobek, Isabel; Bajbouj, Malek; Aust, Sabine

    2017-06-30

    Early life stress (ELS) is associated with increased vulnerability for depression, changes to the corticotropin-releasing hormone (CRH) system and structural and functional changes in hippocampus. Single nucleotide polymorphisms in the CRH receptor 1 (CRHR1) gene interact with ELS to predict depression, cognitive functions and hippocampal activity. Social cognition has been related to hippocampal function and might be crucial for maintaining mental health. However, the interaction of CRHR1 gene variation and ELS on social cognition has not been investigated yet. We assessed social cognition in 502 healthy subjects to test effects of ELS and the CRHR1 gene. Participants were genotyped for rs110402 and rs242924. ELS was assessed by Childhood Trauma Questionnaire, social cognition was measured via Multifaceted Empathy Test and Empathy Quotient. Severity of ELS was associated with decreased emotional, but not cognitive empathy. Subjects with the common homozygous GG GG genotype showed decreased implicit emotional empathy after ELS exposure regardless of its severity. The results reveal that specific CRHR1 polymorphisms moderate the effect of ELS on emotional empathy. Exposure to ELS in combination with a vulnerable genotype results in impaired emotional empathy in adulthood, which might represent an early marker of increased vulnerability after ELS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  6. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DEFF Research Database (Denmark)

    Sustarsic, Elahu G; Junnila, Riia K; Kopchick, John J.

    2013-01-01

    Cancer Institute's NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real......Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National......-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human...

  7. Analysis of Chemokines and Receptors Expression Profile in the Myelin Mutant Taiep Rat

    Directory of Open Access Journals (Sweden)

    Guadalupe Soto-Rodriguez

    2015-01-01

    Full Text Available Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4, which might account for the demyelination in the taiep rat.

  8. Modulation of primary cilia length by melanin-concentrating hormone receptor 1.

    Science.gov (United States)

    Hamamoto, Akie; Yamato, Shogo; Katoh, Yohei; Nakayama, Kazuhisa; Yoshimura, Kentaro; Takeda, Sen; Kobayashi, Yuki; Saito, Yumiko

    2016-06-01

    Melanin-concentrating hormone (MCH) receptor 1 (MCHR1) is a class A G-protein-coupled receptor (GPCR). The MCH-MCHR1 system has been implicated in the regulation of feeding, emotional processing, and sleep in rodents. Recent work revealed that MCHR1 is selectively expressed in neuronal primary cilia of the central nervous system. Cilia have various chemosensory functions in many types of cell, and ciliary dysfunction is associated with ciliopathies such as polycystic kidney disease and obesity. Although dynamic modulation of neuronal cilia length is observed in obese mice, the functional interaction of neuronal ciliary GPCR and its endogenous ligand has not yet been elucidated. We report here that MCH treatment significantly reduced cilia length in hTERT-RPE1 cells (hRPE1 cells) transfected with MCHR1. Quantitative analyses indicated that MCH-induced cilia shortening progressed in a dose-dependent manner with an EC50 lower than 1nM when cells were treated for 6h. Although the assembly and disassembly of primary cilia are tightly coupled to the cell cycle, cell cycle reentry was not a determinant of MCH-induced cilia shortening. We confirmed that MCH elicited receptor internalization, Ca(2+) mobilization, ERK and Akt phosphorylation, and inhibition of cyclic AMP accumulation in MCHR1-expressing hRPE1 cells. Among these diverse pathways, we revealed that Gi/o-dependent Akt phosphorylation was an important component in the initial stage of MCH-induced cilia length shortening. Furthermore, induction of fewer cilia by Kif3A siRNA treatment significantly decreased the MCH-mediated phosphorylation of Akt, indicating the functional importance of the MCHR1-Akt pathway in primary cilia. Taken together, the present data suggest that the MCH-MCHR1 axis may modulate the sensitivity of cells to external environments by controlling the cilia length. Therefore, further characterization of MCHR1 as a ciliary GPCR will provide a potential molecular mechanism to link cilia length

  9. Melanin concentrating hormone and estrogen receptor-α are coexstensive but not coexpressed in cells of male rat hypothalamus

    OpenAIRE

    Muschamp, John W.; Hull, Elaine M.

    2007-01-01

    In male rats, estradiol (E2) exerts marked anorectic effects. One mechanism proposed for this effect is an E2-mediated down-regulation of the orexigenic neuropeptide melanin concentrating hormone (MCH). Previous anatomical work has shown that both MCH and estrogen receptor α (ERα) are found in quantity in the lateral hypothalamic area (LHA), a structure long associated with appetite and ingestive behavior. It has been hypothesized that the most direct manner by which E2 could affect MCH expre...

  10. Molecular Mechanisms of Transcription Activation by Juvenile Hormone: A Critical Role for bHLH-PAS and Nuclear Receptor Proteins

    Directory of Open Access Journals (Sweden)

    Edward B. Dubrovsky

    2012-03-01

    Full Text Available Juvenile hormone (JH is responsible for controlling many biological processes. In several insect species JH has been implicated as a key regulator of developmental timing, preventing the premature onset of metamorphosis during larval growth periods. However, the molecular basis of JH action is not well-understood. In this review, we highlight recent advances which demonstrate the importance of transcription factors from the bHLH-PAS and nuclear receptor families in mediating the response to JH.

  11. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays.

    Science.gov (United States)

    Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás

    2015-01-01

    Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Prostate-Derived Ets Transcription Factor Overexpression is Associated with Nodal Metastasis, Hormone Receptor Positivity in Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Simon Turcotte

    2007-10-01

    Full Text Available Prostate-derived Ets transcription factor (PDEF has recently been associated with invasive breast cancer, but no expression profile has been defined in clinical specimens. We undertook a comprehensive PDEF transcriptional expression study of 86 breast cancer clinical specimens, several cell lines, normal tissues. PDEF expression profile was analyzed according to standard clinicopathologic parameters, compared with hormonal receptor, HER-2/neu status, to the expression of the new tumor biomarker Dikkopf-1 (DKK1. Wide ranging PDEF overexpression was observed in 74% of tested tumors, at higher levels than the average expression found in normal breasts. High PDEF expression was associated with hormone receptor positivity (P < .001, moderate to good differentiation (less than grade III, P = .01, dissemination to axillary lymph nodes (P = .002. PDEF was an independent risk factor for nodal involvement (multivariate analysis, odds ratio 1.250, P = .002. It was expressed in a different subgroup compared to DKK1-expressing tumors (P < .001. Our data imply that PDEF mRNA expression could be useful in breast cancer molecular staging. Further insights into PDEF functions at the protein level, possible links with hormone receptors biology, bear great potential for new therapeutic avenues.

  13. Panax ginseng and Eleutherococcus senticosus may exaggerate an already existing biphasic response to stress via inhibition of enzymes which limit the binding of stress hormones to their receptors.

    Science.gov (United States)

    Gaffney, B T; Hügel, H M; Rich, P A

    2001-05-01

    A mechanism of action for Panax ginseng (PG) and Eleutherococcus senticosus (ES) is proposed which explains how they could produce the paradoxical effect of sometimes increasing and sometimes decreasing the stress response. The mechanism suggests that this biphasic effect results from increased occupancy of positive and negative feedback stress hormone receptors by their natural ligands due to inhibition of specific enzymes which function to limit receptor occupancy. Specifically, it is suggested that PG inhibits 11-beta hydroxysteroid dehydrogenase one and ES inhibits catechol- O -methyl transferase, both of which reside in close proximity to stress hormone receptors and catalyse the degradation of stress hormones into inactive compounds. In addition, it is suggested that the increased energy said to result from PG and ES may be a consequence of their increasing the occupancy of stress hormone receptors which function to redistribute the body's energy reserves from regeneration to activity. Copyright 2001 Harcourt Publishers Ltd.

  14. Hormone Receptor Status Does Not Affect Prognosis in Metaplastic Breast Cancer: A Population-Based Analysis with Comparison to Infiltrating Ductal and Lobular Carcinomas

    National Research Council Canada - National Science Library

    Paul Wright, G; Davis, Alan T; Koehler, Tracy J; Melnik, Marianne K; Chung, Mathew H

    2014-01-01

    Metaplastic breast cancer is a rare histologic variant among breast cancers. We sought to investigate the impact of hormone receptor status in metaplastic breast cancer and compare outcomes with common histologic variants of breast...

  15. Alternative splicing of follicle-stimulating hormone receptor pre-mRNA: cloning and characterization of two alternatively spliced mRNA transcripts

    NARCIS (Netherlands)

    R. Kraaij (Robert); M. Verhoef-Post (Miriam); J.A. Grootegoed (Anton); A.P.N. Themmen (Axel)

    1998-01-01

    textabstractGlycoprotein hormone receptors contain a large extracellular domain that is encoded by multiple exons, facilitating the possibility of expressing alternatively spliced transcripts. We have cloned two new splice variants of the rat follicle-stimulating

  16. Regulation of corticotropin releasing hormone receptor type 1 messenger RNA level in Y-79 retinoblastoma cells: potential implications for human stress response and immune/inflammatory reaction

    Directory of Open Access Journals (Sweden)

    N. C. Vamvakopoulos

    1996-01-01

    Full Text Available We report the regulation of type 1 receptor mRNA in Y-79 human retinoblastoma cells, grown in the absence or presence of pharmacological levels of phorbol esters, forskolin, glucocorticoids and their combinations. To control for inducibility and for assessing the sensitivity of the Y-79 system to glucocorticoids, corticotropin releasing hormone mRNA levels were measured in parallel. All treatments stimulated corticotropin releasing hormone receptor type 1 gene expression relative to baseline. A weak suppression of corticotropin releasing hormone mRNA level was observed during dexamethasone treatment. The cell line expressed ten-fold excess of receptor to ligand mRNA under basal conditions. The findings predict the presence of functional phorbol ester, cyclic AMP and glucocorticoid response elements in the promoter region of corticotropin releasing hormone receptor type 1 gene and support a potential role for its product during chronic stress and immune/inflammatory reaction.

  17. The silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor is required for full estrogen receptor alpha transcriptional activity.

    Science.gov (United States)

    Peterson, Theresa J; Karmakar, Sudipan; Pace, Margaret C; Gao, Tong; Smith, Carolyn L

    2007-09-01

    Multiple factors influence estrogen receptor alpha (ERalpha) transcriptional activity. Current models suggest that the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor functions within a histone deactylase-containing protein complex that binds to antiestrogen-bound ERalpha and contributes to negative regulation of gene expression. In this report, we demonstrate that SMRT is required for full agonist-dependent ERalpha activation. Chromatin immunoprecipitation assays demonstrate that SMRT, like ERalpha and the SRC-3 coactivator, is recruited to an estrogen-responsive promoter in estrogen-treated MCF-7 cells. Depletion of SMRT, but not histone deacetylases 1 or 3, negatively impacts estradiol-stimulated ERalpha transcriptional activity, while exogenous expression of SMRT's receptor interaction domains blocks ERalpha activity, indicating a functional interaction between this corepressor and agonist-bound ERalpha. Stimulation of estradiol-induced ERalpha activity by SMRT overexpression occurred in HeLa and MCF-7 cells, but not HepG2 cells, indicating that these positive effects are cell type specific. Similarly, the ability of SMRT depletion to promote the agonist activity of tamoxifen was observed for HeLa but not MCF-7 cells. Furthermore, impairment of agonist-stimulated activity by SMRT depletion is specific to ERalpha and not observed for receptors for vitamin D, androgen, or thyroid hormone. Nuclear receptor corepressor (N-CoR) depletion increased the transcriptional activity of all four tested receptors. SMRT is required for full expression of the ERalpha target genes cyclin D1, BCL-2, and progesterone receptor but not pS2, and its depletion significantly attenuated estrogen-dependent proliferation of MCF-7 cells. Taken together, these data indicate that SMRT, in conjunction with gene-specific and cell-dependent factors, is required for positively regulating agonist-dependent ERalpha transcriptional activity.

  18. The effect of perinatal hormonal imprinting with 13-cis-retinoic acid (isotretinoin) on the thymic glucocorticoid receptors of female and testosterone level of male adult rats.

    Science.gov (United States)

    Csaba, G; Gaál, A; Inczefi-Gonda, A

    1999-09-01

    In earlier experiments, the long-term effect of perinatal treatment (hormonal imprinting) with all-trans-retinol and all-trans-retinoic acid on the thymic glucocorticoid and uterine estrogen receptors was studied and was found effective. In the present experiments, the imprinting effect of four retinoids (13-cis-retinaldehyde, 13-cis-retinoic acid, 9-cis-retinaldehyde and 9-cis-retinoic acid) was investigated, using receptor kinetic analysis and sexual hormone (testosterone and progesterone) level determinations. Exclusively 13-cis-retinoic acid (isotretinoin) had an effect, significantly decreasing glucocorticoid receptor affinity and increasing serum testosterone level. Relationships with RAR-RXR receptor binding and teratogenicity is discussed.

  19. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status.

    Directory of Open Access Journals (Sweden)

    Rym Ghaddab-Zroud

    Full Text Available Reversing the escalating rate of obesity requires increased knowledge of the molecular mechanisms controlling energy balance. Liver X receptors (LXRs and thyroid hormone receptors (TRs are key physiological regulators of energetic metabolism. Analysing interactions between these receptors in the periphery has led to a better understanding of the mechanisms involved in metabolic diseases. However, no data is available on such interactions in the brain. We tested the hypothesis that hypothalamic LXR/TR interactions could co-regulate signalling pathways involved in the central regulation of metabolism. Using in vivo gene transfer we show that LXR activation by its synthetic agonist GW3965 represses the transcriptional activity of two key metabolic genes, Thyrotropin-releasing hormone (Trh and Melanocortin receptor type 4 (Mc4r in the hypothalamus of euthyroid mice. Interestingly, this repression did not occur in hypothyroid mice but was restored in the case of Trh by thyroid hormone (TH treatment, highlighting the role of the triiodothyronine (T3 and TRs in this dialogue. Using shLXR to knock-down LXRs in vivo in euthyroid newborn mice, not only abrogated Trh repression but actually increased Trh transcription, revealing a potential inhibitory effect of LXR on the Hypothalamic-Pituitary-Thyroid axis. In vivo chromatin immunoprecipitation (ChIP revealed LXR to be present on the Trh promoter region in the presence of T3 and that Retinoid X Receptor (RXR, a heterodimerization partner for both TR and LXR, was never recruited simultaneously with LXR. Interactions between the TR and LXR pathways were confirmed by qPCR experiments. T3 treatment of newborn mice induced hypothalamic expression of certain key LXR target genes implicated in metabolism and inflammation. Taken together the results indicate that the crosstalk between LXR and TR signalling in the hypothalamus centres on metabolic and inflammatory pathways.

  20. Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    OpenAIRE

    Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai; Swaminathan, Kunchithapadam; Xu, H. Eric

    2011-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism...

  1. Production of viable seeds from the seedling lethal mutant ppi2-2 lacking the atToc159 chloroplast protein import receptor using plastic containers, and characterization of the homozygous mutant progeny

    Directory of Open Access Journals (Sweden)

    Akari eTada

    2014-06-01

    Full Text Available Biogenesis of chloroplasts is essential for plant growth and development. A number of homozygous mutants lacking a chloroplast protein exhibit an albino phenotype. In general, it is challenging to grow albino Arabidopsis plants on soil until they set seeds. Homozygous albino mutants are usually obtained as progenies of heterozygous parents. Here, we describe a method of recovering seeds from the seedling lethal Arabidopsis mutant ppi2-2, which lacks the atToc159 protein import receptor at the outer envelope membrane of chloroplast. Using plastic containers, we were able to grow homozygous ppi2-2 plants until these set seed. Although the germination rate of the harvested seeds was relatively low, it was still sufficient to allow us to further analyze the ppi2-2 progeny. Using ppi2-2 homozygous seeds, we were able to analyze the role of plastid protein import in the light-regulated induction of nuclear genes. We propose that this method be applied to other seedling lethal Arabidopsis mutants to obtain homozygous seeds, helping us further investigate the roles of plastid proteins in plant growth and development.

  2. Differences in the behavior of luteinizing hormones of various species at the rat gonadal cell receptor site.

    Science.gov (United States)

    Rani, C S; Moudgal, N R

    1985-02-01

    The ability of different LH-like hormones, such as hCG, PMSG/equine (e) CG, ovine (o) LH, eLH, and rat (r) LH, to bind to and stimulate steroidogenesis in two types of rat gonadal cells was studied under the same experimental conditions. In both Leydig and granulosa cells, the maximal steroidogenic responses elicited by optimal doses of different LHs present during a 2-h incubation were comparable. However, if the cells were exposed to the different LHs for a brief period and then subjected to interference with hormone action by removing the unbound hormone from the medium by washing or adding specific antisera, differences were observed in the amount of steroid produced during subsequent incubation in hormone-free medium. Thus, in the case of hCG, either of these procedures carried out at 15 or 30 min of incubation had little inhibitory effect on the amount of steroid produced at 2 h, the latter being similar to that produced by cells incubated in the continued presence of hCG for 2 h. With eCG and rLH, the effect was dramatic, in that there was a total inhibition of subsequent steroidogenic response. In cells exposed to eLH and oLH, inhibition of subsequent steroidogenesis due to either removal of the free-hormone or addition of specific antisera at 15 or 30 min was only partial. Although all of the antisera used were equally effective in inhibiting the steroidogenic response to respective gonadotropins when added along with hormones at the beginning of incubation, differences were observed in the degree of inhibition of this response when the same antisera were added at later times of incubation. Thus, when antisera were added 60 min after the hormone, the inhibition of steroidogenesis was total (100%) for eCG, partial (10-40%) for eLH and oLH, and totally lacking in cells treated with hCG. From this, it appears that hCG bound to the receptor probably becomes unavailable for binding to its antibody with time, while in the case of eCG and other LHs used, the

  3. Covalent modification of mutant rat P2X2 receptors with a thiol-reactive fluorophore allows channel activation by zinc or acidic pH without ATP.

    Directory of Open Access Journals (Sweden)

    Shlomo S Dellal

    Full Text Available Rat P2X2 receptors open at an undetectably low rate in the absence of ATP. Furthermore, two allosteric modulators, zinc and acidic pH, cannot by themselves open these channels. We describe here the properties of a mutant receptor, K69C, before and after treatment with the thiol-reactive fluorophore Alexa Fluor 546 C(5-maleimide (AM546. Xenopus oocytes expressing unmodified K69C were not activated under basal conditions nor by 1,000 µM ATP. AM546 treatment caused a small increase in the inward holding current which persisted on washout and control experiments demonstrated this current was due to ATP independent opening of the channels. Following AM546 treatment, zinc (100 µM or acidic external solution (pH 6.5 elicited inward currents when applied without any exogenous ATP. In the double mutant K69C/H319K, zinc elicited much larger inward currents, while acidic pH generated outward currents. Suramin, which is an antagonist of wild type receptors, behaved as an agonist at AM546-treated K69C receptors. Several other cysteine-reactive fluorophores tested on K69C did not cause these changes. These modified receptors show promise as a tool for studying the mechanisms of P2X receptor activation.

  4. Iron absorption and hepatic iron uptake are increased in a transferrin receptor 2 (Y245X) mutant mouse model of hemochromatosis type 3.

    Science.gov (United States)

    Drake, S F; Morgan, E H; Herbison, C E; Delima, R; Graham, R M; Chua, A C G; Leedman, P J; Fleming, R E; Bacon, B R; Olynyk, J K; Trinder, D

    2007-01-01

    Hereditary hemochromatosis type 3 is an iron (Fe)-overload disorder caused by mutations in transferrin receptor 2 (TfR2). TfR2 is expressed highly in the liver and regulates Fe metabolism. The aim of this study was to investigate duodenal Fe absorption and hepatic Fe uptake in a TfR2 (Y245X) mutant mouse model of hereditary hemochromatosis type 3. Duodenal Fe absorption and hepatic Fe uptake were measured in vivo by 59Fe-labeled ascorbate in TfR2 mutant mice, wild-type mice, and Fe-loaded wild-type mice (2% dietary carbonyl Fe). Gene expression was measured by real-time RT-PCR. Liver nonheme Fe concentration increased progressively with age in TfR2 mutant mice compared with wild-type mice. Fe absorption (both duodenal Fe uptake and transfer) was increased in TfR2 mutant mice compared with wild-type mice. Likewise, expression of genes participating in duodenal Fe uptake (Dcytb, DMT1) and transfer (ferroportin) were increased in TfR2 mutant mice. Nearly all of the absorbed Fe was taken up rapidly by the liver. Despite hepatic Fe loading, hepcidin expression was decreased in TfR2 mutant mice compared with wild-type mice. Even when compared with Fe-loaded wild-type mice, TfR2 mutant mice had increased Fe absorption, increased duodenal Fe transport gene expression, increased liver Fe uptake, and decreased liver hepcidin expression. In conclusion, despite systemic Fe loading, Fe absorption and liver Fe uptake were increased in TfR2 mutant mice in association with decreased expression of hepcidin. These findings support a model in which TfR2 is a sensor of Fe status and regulates duodenal Fe absorption and liver Fe uptake.

  5. Palbociclib: A Novel Cyclin-Dependent Kinase Inhibitor for Hormone Receptor-Positive Advanced Breast Cancer.

    Science.gov (United States)

    Mangini, Neha S; Wesolowski, Robert; Ramaswamy, Bhuvaneswari; Lustberg, Maryam B; Berger, Michael J

    2015-11-01

    To review palbociclib, a novel small-molecule inhibitor of cyclin-dependent kinases 4 and 6, and its current place in therapy for the treatment of hormone receptor (HMR)-positive, human epidermal growth factor receptor 2 (Her2)-negative advanced breast cancer. Four phase I trials, 2 phase II trials, and 1 phase III trial were identified from May 2004 to May 2015 using PubMed, American Society of Clinical Oncology (ASCO) abstracts, and European Society of Medical Oncology (ESMO) abstracts. In the first-line setting, the phase II PALbociclib: Ongoing trials in the Management of breast cAncer (PALOMA)-1 trial randomized patients to receive letrozole alone or letrozole plus palbociclib 125 mg daily for 3 weeks, followed by 1 week off, as initial therapy for advanced breast cancer. The investigator-assessed median progression-free survival (PFS) was 20. 2 months for the combination versus 10.2 months for letrozole alone (hazard ratio [HR] = 0.488; 95% CI = 0.319-0.748; 1-sided P = 0.0004). The ensuing Food and Drug Administration approval of palbociclib was given a "breakthrough therapy" designation, where preliminary evidence suggests substantial improvement over existing therapies for a serious or life-threatening disease. A confirmatory phase III trial, PALOMA-2, is under way. In patients who were previously treated with endocrine therapy for advanced breast cancer, the phase III PALOMA-3 trial randomized patients to fulvestrant plus palbociclib versus fulvestrant plus placebo. The investigator-assessed median PFS at the time of a preplanned analysis was 9.2 months with palbociclib-fulvestrant compared with 3.8 months with placebo-fulvestrant (HR = 0.42; 95% CI = 0.32-0.56; P Palbociclib, the first-in-class CDK4/6 inhibitor, significantly extended PFS in combination with endocrine therapy in the first and subsequent lines of treatment for HMR-positive, Her2-negative advanced breast cancer. © The Author(s) 2015.

  6. Gender and the use of hormonal contraception in women are not associated with cerebral cortical 5-HT 2A receptor binding

    DEFF Research Database (Denmark)

    Frokjaer, V G; Erritzoe, D; Madsen, J

    2009-01-01

    Gender influences brain function including serotonergic neurotransmission, which may play a role in the well-known gender variations in vulnerability to mood and anxiety disorders. Even though hormonal replacement therapy in menopause is associated with globally increased cerebral 5-HT(2A) receptor...... binding it is not clear if gender or use of hormonal contraception exhibits associations with 5-HT(2A) receptor binding. We found no significant effect of gender on cortical 5-HT(2A) receptor binding (P=0.15, n=132). When adjusting for the personality trait neuroticism, known to be positively correlated...... to frontolimbic 5-HT(2A) receptor binding and to be more pronounced in women, again, the effect of gender was not significant (P=0.42, n=127). Also, the use of hormonal contraception (n=14) within the group of pre-menopausal women (total n=29) was not associated with cortical 5-HT(2A) receptor binding (P=0...

  7. Palbociclib in hormone receptor positive advanced breast cancer: A cost-utility analysis.

    Science.gov (United States)

    Raphael, J; Helou, J; Pritchard, K I; Naimark, D M

    2017-11-01

    The addition of palbociclib to letrozole improves progression-free survival in the first-line treatment of hormone receptor positive advanced breast cancer (ABC). This study assesses the cost-utility of palbociclib from the Canadian healthcare payer perspective. A probabilistic discrete event simulation (DES) model was developed and parameterised with data from the PALOMA 1 and 2 trials and other sources. The incremental cost per quality-adjusted life-month (QALM) gained for palbociclib was calculated. A time horizon of 15 years was used in the base case with costs and effectiveness discounted at 5% annually. Time-to- progression and time-to-death were derived from a Weibull and exponential distribution. Expected costs were based on Ontario fees and other sources. Probabilistic sensitivity analyses were conducted to account for parameter uncertainty. Compared to letrozole, the addition of palbociclib provided an additional 14.7 QALM at an incremental cost of $161,508. The resulting incremental cost-effectiveness ratio was $10,999/QALM gained. Assuming a willingness-to-pay (WTP) of $4167/QALM, the probability of palbociclib to be cost-effective was 0%. Cost-effectiveness acceptability curves derived from a probabilistic sensitivity analysis showed that at a WTP of $11,000/QALM gained, the probability of palbociclib to be cost-effective was 50%. The addition of palbociclib to letrozole is unlikely to be cost-effective for the treatment of ABC from a Canadian healthcare perspective with its current price. While ABC patients derive a meaningful clinical benefit from palbociclib, considerations should be given to increase the WTP threshold and reduce the drug pricing, to render this strategy more affordable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cardioselective Dominant-negative Thyroid Hormone Receptor (Δ337T) Modulates Myocardial Metabolism and Contractile Dfficiency

    Energy Technology Data Exchange (ETDEWEB)

    Hyyti, Outi M.; Olson, Aaron; Ge, Ming; Ning, Xue-Han; Buroker, Norman E.; Chung, Youngran; Jue, Thomas; Portman, Michael A.

    2008-06-03

    Dominant- negative thyroid hormone receptors (TRs) show elevated expression relative to ligand-binding TRs during cardiac hypertrophy. We tested the hypothesis that overexpression of a dominant-negative TR alters cardiac metabolism and contractile efficiency (CE). We used mice expressing the cardioselective dominant-negative TRβ1 mutation Δ337T. Isolated working Δ337T hearts and nontransgenic control (Con) hearts were perfused with 13C-labeled free fatty acids (FFA), acetoacetate (ACAC), lactate, and glucose at physiological concentrations for 30 min. 13C NMR spectroscopy and isotopomer analyses were used to determine substrate flux and fractional contributions (Fc) of acetyl-CoA to the citric acid cycle (CAC). Δ337T hearts exhibited rate depression but higher developed pressure and CE, defined as work per oxygen consumption (MV˙ O2). Unlabeled substrate Fc from endogenous sources was higher in Δ337T, but ACAC Fc was lower. Fluxes through CAC, lactate, ACAC, and FFA were reduced in Δ337T. CE and Fc differences were reversed by pacing Δ337T to Con rates, accompanied by an increase in FFA Fc. Δ337T hearts lacked the ability to increase MV˙ O2. Decreases in protein expression for glucose transporter-4 and hexokinase-2 and increases in pyruvate dehydrogenase kinase-2 and -4 suggest that these hearts are unable to increase carbohydrate oxidation in response to stress. These data show that Δ337T alters the metabolic phenotype in murine heart by reducing substrate flux for multiple pathways. Some of these changes are heart rate dependent, indicating that the substrate shift may represent an accommodation to altered contractile protein kinetics, which can be disrupted by pacing stress.

  9. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development

    Science.gov (United States)

    Mueller, Kristina M.; Themanns, Madeleine; Friedbichler, Katrin; Kornfeld, Jan-Wilhelm; Esterbauer, Harald; Tuckermann, Jan P.; Moriggl, Richard

    2012-01-01

    Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5–GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development. PMID:22564914

  10. Risk of second breast cancers after lobular carcinoma in situ according to hormone receptor status.

    Directory of Open Access Journals (Sweden)

    Kai Mao

    Full Text Available Although subsequent breast cancer risk after primary lobular carcinoma in situ (LCIS has been studied intensively, whether the risk of second breast cancer after first LCIS varies with hormone receptor (HR status of primary tumor remains unclear.We identified 10,304 women with primary pure unilateral LCIS between 1998 and 2007 from the Surveillance, Epidemiology and End Results (SEER 18 Registries. Kaplan-Meier estimates of 5 or 10-year probabilities of second ipsilateral breast cancers (IBCs and contralateral breast cancers (CBCs were calculated. Multivariable Cox proportional model was performed to identify impact of HR status of primary LCIS, and other demographic, clinicopathologic or treatment characteristics on risk of second IBCs or CBCs.Of the 10,304 women with primary LCIS included in this study, 9949 (96.5% patients had HR+ tumors, and 355 (3.5% had HR- tumors. Multivariable-adjusted analyses showed that although there was no difference in risk of total second IBCs between women with HR+ and HR- LCIS (P = 0.152, patients with HR+ LCIS had a statistically lower risk of second invasive IBCs compared to those with HR- LCIS (hazard ratio 0.356, 95% CI 0.141-0.899, P = 0.029. Women with primary HR+ LCIS had lower risks of both second total and invasive CBCs compared to those with HR- LCIS (total CBCs: hazard ratio 0.340, 95% CI 0.228-0.509, P<0.001; invasive CBCs: hazard ratio 0.172, 95% CI 0.108-0.274, P<0.001. Additionally, black women had a 2-fold risk of developing subsequent total IBCs than white women (P = 0.028.This population-based study demonstrated that the risk of second breast cancers was significantly increased in women with HR- first LCIS compared to those with HR+ LCIS. These findings warrant intensive surveillance for second breast cancers in HR- LCIS survivors.

  11. Ocular findings in adult subjects with an inactivating mutation in GH releasing hormone receptor gene.

    Science.gov (United States)

    Faro, Augusto C N; Pereira-Gurgel, Virginia M; Salvatori, Roberto; Campos, Viviane C; Melo, Gustavo B; Oliveira, Francielle T; Oliveira-Santos, Alecia A; Oliveira, Carla R P; Pereira, Francisco A; Hellström, Ann; Oliveira-Neto, Luís A; Valença, Eugenia H O; Aguiar-Oliveira, Manuel H

    2017-06-01

    Ocular function is fundamental for environmental adaptation and survival capacity. Growth factors are necessary for a mature eyeball, needed for adequate vision. However, the consequences of the deficiency of circulating growth hormone (GH) and its effector insulin-like growth factor I (IGF-I) on the physical aspects of the human eye are still debated. A model of untreated isolated GH deficiency (IGHD), with low but measurable serum GH, may clarify this issue. The aim of this study was to assess the ocular aspects of adult IGHD individuals who have never received GH therapy. Cross sectional study. Setting: University Hospital, Federal University of Sergipe, Brazil. Twenty-five adult (13 males, mean age 50.1years, range 26 to 70years old) IGHD subjects homozygous for a null mutation (c.57+1G>A) in the GHRH receptor gene, and 28 (15 males, mean age 51.1years, range 26 to 67years old) controls were submitted to an endocrine and ophthalmological assessment. Forty-six IGHD and 50 control eyes were studied. Visual acuity, intraocular pressure, refraction (spherical equivalent), ocular axial length (AL), anterior chamber depth (ACD), lens thickness (LT), vitreous depth (VD), mean corneal curvature (CC) and central corneal thickness (CCT). IGHD subjects exhibited unmeasurable serum IGF-I levels, similar visual acuity, intraocular pressure and LT, higher values of spherical equivalent and CC, and lower measures of AL, ACD, VD and CCT in comparison to controls, but within their respective normal ranges. While mean stature in IGHD group was 78% of the control group, mean head circumference was 92% and axial AL was 96%. These observations suggest mild ocular effects in adult subjects with severe IGF-I deficiency due to non-treated IGHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Corticotropin-releasing hormone receptor 1 gene variants in irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Naoko Sato

    Full Text Available BACKGROUND: Corticotropin-releasing hormone (CRH acts mainly via the CRH receptor 1 (CRH-R1 and plays a crucial role in the stress-induced pathophysiology of irritable bowel syndrome (IBS. Several studies have demonstrated that variants of the CRH-R1 gene carry a potential risk for depression, but evidence for an association between CRH-R1 genotypes and IBS is lacking. We tested the hypothesis that genetic polymorphisms and haplotypes of CRH-R1 moderate the IBS phenotype and negative emotion in IBS patients. METHODS: A total of 103 patients with IBS and 142 healthy controls participated in the study. Three single-nucleotide polymorphisms of the CRH-R1 gene (rs7209436, rs242924, and rs110402 were genotyped. Subjects' emotional states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-rating Depression Scale. RESULTS: The TT genotype of rs7209436 (P = 0.01 and rs242924 (P = 0.02 was significantly more common in patients with IBS than in controls. Total sample analysis showed significant association between bowel pattern (normal, diarrhea, constipation, or mixed symptoms and the T allele of rs7209436 (P = 0.008, T allele of rs242924 (P = 0.019, A allele of rs110402 (P = 0.047, and TAT haplocopies (P = 0.048. Negative emotion was not associated with the examined CRH-R1 SNPs. CONCLUSION: These findings suggest that genetic polymorphisms and the CRH-R1 haplotypes moderate IBS and related bowel patterns. There was no clear association between CRH-R1 genotypes and negative emotion accompanying IBS. Further studies on the CRH system are therefore warranted.

  13. Thyroid hormone and adrenergic signaling interact to control pineal expression of the dopamine receptor D4 gene (Drd4)

    DEFF Research Database (Denmark)

    Kim, Jong-So; Bailey, Michael J; Weller, Joan L

    2009-01-01

    Dopamine plays diverse and important roles in vertebrate biology, impacting behavior and physiology through actions mediated by specific G-protein-coupled receptors, one of which is the dopamine receptor D4 (Drd4). Here we present studies on the >100-fold daily rhythm in rat pineal Drd4 expression....... Our studies indicate that Drd4 is the dominant dopamine receptor gene expressed in the pineal gland. The gene is expressed in pinealocytes at levels which are approximately 100-fold greater than in other tissues, except the retina, in which transcript levels are similar. Pineal Drd4 expression...... is circadian in nature and under photoneural control. Whereas most rhythmically expressed genes in the pineal are controlled by adrenergic/cAMP signaling, Drd4 expression also requires thyroid hormone. This advance raises the questions of whether Drd4 expression is regulated by this mechanism in other systems...

  14. The human gonadotropin releasing hormone type I receptor is a functional intracellular GPCR expressed on the nuclear membrane.

    Directory of Open Access Journals (Sweden)

    Michelle Re

    Full Text Available The mammalian type I gonadotropin releasing hormone receptor (GnRH-R is a structurally unique G protein-coupled receptor (GPCR that lacks cytoplasmic tail sequences and displays inefficient plasma membrane expression (PME. Compared to its murine counterparts, the primate type I receptor is inefficiently folded and retained in the endoplasmic reticulum (ER leading to a further reduction in PME. The decrease in PME and concomitant increase in intracellular localization of the mammalian GnRH-RI led us to characterize the spatial distribution of the human and mouse GnRH receptors in two human cell lines, HEK 293 and HTR-8/SVneo. In both human cell lines we found the receptors were expressed in the cytoplasm and were associated with the ER and nuclear membrane. A molecular analysis of the receptor protein sequence led us to identify a putative monopartite nuclear localization sequence (NLS in the first intracellular loop of GnRH-RI. Surprisingly, however, neither the deletion of the NLS nor the addition of the Xenopus GnRH-R cytoplasmic tail sequences to the human receptor altered its spatial distribution. Finally, we demonstrate that GnRH treatment of nuclei isolated from HEK 293 cells expressing exogenous GnRH-RI triggers a significant increase in the acetylation and phosphorylation of histone H3, thereby revealing that the nuclear-localized receptor is functional. Based on our findings, we conclude that the mammalian GnRH-RI is an intracellular GPCR that is expressed on the nuclear membrane. This major and novel discovery causes us to reassess the signaling potential of this physiologically and clinically important receptor.

  15. Analysis and functional characterization of sequence variations in ligand binding domain of thyroid hormone receptors in autism spectrum disorder (ASD) patients.

    Science.gov (United States)

    Kalikiri, Mahesh Kumar; Mamidala, Madhu Poornima; Rao, Ananth N; Rajesh, Vidya

    2017-12-01

    Autism spectrum disorder (ASD) is a neuro developmental disorder, reported to be on a rise in the past two decades. Thyroid hormone-T3 plays an important role in early embryonic and central nervous system development. T3 mediates its function by binding to thyroid hormone receptors, TRα and TRβ. Alterations in T3 levels and thyroid receptor mutations have been earlier implicated in neuropsychiatric disorders and have been linked to environmental toxins. Limited reports from earlier studies have shown the effectiveness of T3 treatment with promising results in children with ASD and that the thyroid hormone levels in these children was also normal. This necessitates the need to explore the genetic variations in the components of the thyroid hormone pathway in ASD children. To achieve this objective, we performed genetic analysis of ligand binding domain of THRA and THRB receptor genes in 30 ASD subjects and in age matched controls from India. Our study for the first time reports novel single nucleotide polymorphisms in the THRA and THRB receptor genes of ASD individuals. Autism Res 2017, 10: 1919-1928. ©2017 International Society for Autism Research, Wiley Periodicals, Inc. Thyroid hormone (T3) and thyroid receptors (TRα and TRβ) are the major components of the thyroid hormone pathway. The link between thyroid pathway and neuronal development is proven in clinical medicine. Since the thyroid hormone levels in Autistic children are normal, variations in their receptors needs to be explored. To achieve this objective, changes in THRA and THRB receptor genes was studied in 30 ASD and normal children from India. The impact of some of these mutations on receptor function was also studied. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Associations of hormone-related factors with breast cancer risk according to hormone receptor status among white and African American women.

    Science.gov (United States)

    Cui, Yong; Deming-Halverson, Sandra L; Shrubsole, Martha J; Beeghly-Fadiel, Alicia; Fair, Alecia M; Sanderson, Maureen; Shu, Xiao-Ou; Kelley, Mark C; Zheng, Wei

    2014-12-01

    Causes of racial disparities in breast cancer incidence and mortality between white and African American women remain unclear. This study evaluated associations of menstrual and reproductive factors with breast cancer risk by race and cancer subtypes. Included in the study were 1866 breast cancer cases and 2306 controls recruited in the Nashville Breast Health Study, a population-based case-control study. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). African American women were more likely to have estrogen receptor-negative (ER(-)), progesterone receptor-negative (PR(-)), and triple-negative (ER(-)PR(-)HER2(-)) breast cancer than white women. Age at menarche (≥ 14 years) and multiparity (≥ 3 live births) were inversely associated with ER(+) tumors only, whereas late age at first live birth (> 30 years) and nulliparity were associated with elevated risk; such associations were predominantly seen in white women (OR = 0.70, 95% CI = 0.55-0.88; OR = 0.72, 95% CI = 0.56-0.92; OR = 1.42, 95% CI = 1.13-1.79; OR = 1.32, 95% CI = 1.06-1.63, respectively). Age at menopause between 47 and 51 years was associated with elevated risk of ER(-) tumors in both white and African American women. Among women who had natural menopause, positive association between ever-use of hormone replacement therapy and breast cancer risk was seen in white women only (OR = 1.39, 95% CI = 1.03-1.87). This study suggests that certain hormone-related factors are differentially associated with risk of breast cancer subtypes, and these associations also differ by race. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effect of long-term treatment with steroid hormones or tamoxifen on the progesterone receptor and androgen receptor in the endometrium of ovariectomized cynomolgus macaques

    Directory of Open Access Journals (Sweden)

    Cline J Mark

    2003-02-01

    Full Text Available Abstract The progesterone receptor (PR and androgen receptor (AR belong to the nuclear receptor superfamily. Two isoforms of PR (A and B have been identified with different functions. The expression of AR, each isoform of PR and their involvement in long-term effects on the endometrium after hormonal replacement therapy (HRT or tamoxifen (TAM treatment is not known. The aims of this study were to determine PR(A+B, PRB and AR distribution by immunohistochemistry in the macaque (Macaca fascicularis endometrium. Ovariectomized (OVX animals were orally treated continuously for 35 months with either conjugated equine estrogens (CEE; medroxyprogesterone acetate (MPA; the combination of CEE/MPA; or TAM. Treatment with CEE/MPA tended to down-regulate PR in the superficial glands, but increased it in the stroma. TAM treatment increased both the PR and PRB levels in the stroma. Overall, less than 20% of the cells were positive for the PRB isoform and less variation was observed after steroid treatment. AR was found in the stroma, mainly distributed in the basal layer of the endometrium in the OVX and steroid treated groups, but was absent in the TAM treated group. No AR was found in the glandular epithelium. The present data show that long-term hormone treatment affects the PR level, and also the ratio between PRA and PRB in the endometrium.

  18. Improved plasma membrane expression of the trafficking defective P344R mutant of muscle, skeletal, receptor tyrosine kinase (MuSK) causing congenital myasthenic syndrome.

    Science.gov (United States)

    Milhem, Reham M; Al-Gazali, Lihadh; Ali, Bassam R

    2015-03-01

    Muscle, skeletal, receptor tyrosine kinase (MuSK) is a key organizer at the postsynaptic membrane and critical for proper development and maintenance of the neuromuscular junction. Mutations in MUSK result in congenital myasthenic syndrome (CMS). We hypothesized that the CMS-causing missense mutation (P344R), found within the cysteine-rich domain of the protein, will affect its conformational tertiary structure. Consequently, the protein will misfold, get retained in the endoplasmic reticulum (ER) and lose its biological function through degradation by the highly conserved ER associated degradation (ERAD) machinery. We report that P344R-MuSK mutant is trafficking-deficient when expressed at 37°C in HeLa, COS-7 and HEK293 cell lines. It colocalized with the ER marker calnexin in contrast to wild-type MuSK which localized to the plasma membrane. The N-glycosylation status of P344R-MuSK is that of an immature and not properly post-translationally modified protein. Inhibition of protein synthesis showed that the P344R mutant's half-life is shorter than wild-type MuSK protein. Proteasomal inhibition resulted in the stabilization of the mutant protein. The mutant protein is highly ubiquitinated compared to wild-type confirming targeting for proteasomal degradation. The mutant showed around 50% of its in vivo autophosphorylation activity. P344R-MuSK mutant's trafficking defect is correctable by culturing the expressing cells at 27°C. Moreover, chemical compounds namely 2.5% glycerol, 1% dimethyl sulfoxide, 10 μM thapsigargin and 1 μM curcumin improved the maturation and exit of the mutant protein from the ER. These findings open perspectives for potential therapeutic intervention for patients with CMS harboring the P344R-MuSK mutation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ran Meng

    Full Text Available A cell surface receptor for thyroid hormone that activates extracellular regulated kinase (ERK 1/2 has been identified on integrin αvβ3. We have examined the actions of thyroid hormone initiated at the integrin on human NCI-H522 non-small cell lung carcinoma and NCI-H510A small cell lung cancer cells. At a physiologic total hormone concentration (10(-7 M, T(4 significantly increased proliferating cell nuclear antigen (PCNA abundance in these cell lines, as did 3, 5, 3'-triiodo-L-thyronine (T(3 at a supraphysiologic concentration. Neutralizing antibody to integrin αvβ3 and an integrin-binding Arg-Gly-Asp (RGD peptide blocked thyroid hormone-induced PCNA expression. Tetraiodothyroacetic acid (tetrac lacks thyroid hormone function but inhibits binding of T(4 and T(3 to the integrin receptor; tetrac eliminated thyroid hormone-induced lung cancer cell proliferation and ERK1/2 activation. In these estrogen receptor-α (ERα-positive lung cancer cells, thyroid hormone (T(4>T(3 caused phosphorylation of ERα; the specific ERα antagonist ICI 182,780 blocked T(4-induced, but not T(3-induced ERK1/2 activation, as well as ERα phosphorylation, proliferating-cell nuclear antigen (PCNA expression and hormone-dependent thymidine uptake by tumor cells. Thus, in ERα-positive human lung cancer cells, the proliferative action of thyroid hormone initiated at the plasma membrane is at least in part mediated by ERα. In summary, thyroid hormone may be one of several endogenous factors capable of supporting proliferation of lung cancer cells. Activity as an inhibitor of lung cancer cell proliferation induced at the integrin receptor makes tetrac a novel anti-proliferative agent.

  20. Carnitine protects the nematode Caenorhabditis elegans from glucose-induced reduction of survival depending on the nuclear hormone receptor DAF-12.

    Science.gov (United States)

    Deusing, Dorothé Jenni; Beyrer, Melanie; Fitzenberger, Elena; Wenzel, Uwe

    2015-05-08

    Besides its function in transport of fatty acids into mitochondria in order to provide substrates for β-oxidation, carnitine has been shown to affect also glucose metabolism and to inhibit several mechanisms associated with diabetic complications. In the present study we used the mev-1 mutant of the nematode Caenorhabditis elegans fed on a high glucose concentration in liquid media as a diabetes model and tested the effects of carnitine supplementation on their survival under heat-stress. Carnitine at 100 μM completely prevented the survival reduction that was caused by the application of 10 mM glucose. RNA-interference for sir-2.1, a candidate genes mediating the effects of carnitine revealed no contribution of the sirtuin for the rescue of survival. Under daf-12 RNAi rescue of survival by carnitine was abolished. RNA-interference for γ-butyrobetaine hydroxylase 2, encoding the key enzyme for carnitine biosynthesis did neither increase glucose toxicity nor prevent the rescue of survival by carnitine, suggesting that the effects of carnitine supplementation on carnitine levels were significant. Finally, it was demonstrated that neither the amount of lysosomes nor the proteasomal activity were increased by carnitine, excluding that protein degradation pathways, such as autophagy or proteasomal degradation, are involved in the protective carnitine effects. In conclusion, carnitine supplementation prevents the reduction of survival caused by glucose in C. elegans in dependence on a nuclear hormone receptor which displays high homologies to the vertebrate peroxisomal proliferator activated receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Carnitine protects the nematode Caenorhabditis elegans from glucose-induced reduction of survival depending on the nuclear hormone receptor DAF-12

    Energy Technology Data Exchange (ETDEWEB)

    Deusing, Dorothé Jenni, E-mail: Dorothe.J.Deusing@ernaehrung.uni-giessen.de; Beyrer, Melanie, E-mail: m.beyrer@web.de; Fitzenberger, Elena, E-mail: Elena.Fitzenberger@ernaehrung.uni-giessen.de; Wenzel, Uwe, E-mail: uwe.wenzel@ernaehrung.uni-giessen.de

    2015-05-08

    Besides its function in transport of fatty acids into mitochondria in order to provide substrates for β-oxidation, carnitine has been shown to affect also glucose metabolism and to inhibit several mechanisms associated with diabetic complications. In the present study we used the mev-1 mutant of the nematode Caenorhabditis elegans fed on a high glucose concentration in liquid media as a diabetes model and tested the effects of carnitine supplementation on their survival under heat-stress. Carnitine at 100 μM completely prevented the survival reduction that was caused by the application of 10 mM glucose. RNA-interference for sir-2.1, a candidate genes mediating the effects of carnitine revealed no contribution of the sirtuin for the rescue of survival. Under daf-12 RNAi rescue of survival by carnitine was abolished. RNA-interference for γ-butyrobetaine hydroxylase 2, encoding the key enzyme for carnitine biosynthesis did neither increase glucose toxicity nor prevent the rescue of survival by carnitine, suggesting that the effects of carnitine supplementation on carnitine levels were significant. Finally, it was demonstrated that neither the amount of lysosomes nor the proteasomal activity were increased by carnitine, excluding that protein degradation pathways, such as autophagy or proteasomal degradation, are involved in the protective carnitine effects. In conclusion, carnitine supplementation prevents the reduction of survival caused by glucose in C. elegans in dependence on a nuclear hormone receptor which displays high homologies to the vertebrate peroxisomal proliferator activated receptors. - Highlights: • Carnitine protects from glucose-induced reduction of stress-resistance. • Carnitine acts via the PPAR homolog DAF-12 on glucose toxicity. • Carnitine protects from glucose toxicity independent of protein degradation.

  2. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design.

    Science.gov (United States)

    Pandyarajan, Vijay; Smith, Brian J; Phillips, Nelson B; Whittaker, Linda; Cox, Gabriella P; Wickramasinghe, Nalinda; Menting, John G; Wan, Zhu-li; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Lawrence, Michael C; Weiss, Michael A

    2014-12-12

    Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Synthesis, receptor binding, and CNS pharmacological studies of new thyrotropin-releasing hormone (TRH) analogues.

    Science.gov (United States)

    Monga, Vikramdeep; Meena, Chhuttan L; Rajput, Satyendra; Pawar, Chandrashekhar; Sharma, Shyam S; Lu, Xinping; Gershengorn, Marvin C; Jain, Rahul

    2011-03-07

    As part of our search for selective and CNS-active thyrotropin-releasing hormone (TRH) analogues, we synthesized a set of 44 new analogues in which His and pGlu residues were modified or replaced. The analogues were evaluated as agonists at TRH-R1 and TRH-R2 in cells in vitro, and in vivo in mice for analeptic and anticonvulsant activities. Several analogues bound to TRH-R1 and TRH-R2 with good to moderate affinities, and are full agonists at both receptor subtypes. Specifically, analogue 21 a (R=CH3) exhibited binding affinities (Ki values) of 0.17 μM for TRH-R1 and 0.016 μM for TRH-R2; it is 10-fold less potent than TRH in binding to TRH-R1 and equipotent with TRH in binding to TRH-R2. Compound 21 a, the most selective agonist, activated TRH-R2 with a potency (EC50 value) of 0.0021 μM, but activated TRH-R1 at EC50=0.05 μM, and exhibited 24-fold selectivity for TRH-R2 over TRH-R1. The newly synthesized TRH analogues were also evaluated in vivo to assess their potencies in antagonism of barbiturate-induced sleeping time, and several analogues displayed potent analeptic activity. Specifically, analogues 21 a,b and 22 a,b decreased sleeping time by nearly 50% more than TRH. These analogues also displayed potent anticonvulsant activity and provided significant protection against PTZ-induced seizures, but failed to provide any protection in MES-induced seizures at 10 μmol kg(-1). The results of this study provide evidence that TRH analogues that show selectivity for TRH-R2 over TRH-R1 possess potent CNS activity. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Corticotropin-Releasing Hormone Receptor 2 Gene Variants in Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Hazuki Komuro

    Full Text Available Corticotropin-releasing hormone (CRH plays an important role in the pathophysiology of irritable bowel syndrome (IBS and regulates the stress response through two CRH receptors (R1 and R2. Previously, we reported that a CRHR1 gene polymorphism (rs110402, rs242924, and rs7209436 and haplotypes were associated with IBS. However, the association between the CRHR2 gene and IBS was not investigated. We tested the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are associated with IBS pathophysiology and negative emotion in IBS patients.A total of 142 IBS patients and 142 healthy controls participated in this study. Seven single nucleotide polymorphisms (SNPs of the CRHR2 gene (rs4722999, rs3779250, rs2240403, rs2267710, rs2190242, rs2284217, and rs2284220 were genotyped. Subjects' psychological states were evaluated using the Perceived-Stress Scale, the State-Trait Anxiety Inventory, and the Self-Rating Depression Scale.We found that rs4722999 and rs3779250, located in intronic region, were associated with IBS in terms of genotype frequency (rs4722999: P = 0.037; rs3779250: P = 0.017 and that the distribution of the major allele was significantly different between patients and controls. There was a significant group effect (controls vs. IBS, and a CRHR2 genotype effect was observed for three psychological scores, but the interaction was not significant. We found a haplotype of four SNPs (rs4722999, rs3779250, rs2240403, and rs2267710 and two SNPs (rs2284217 and rs2284220 in strong linkage disequilibrium (D' > 0.90. We also found that haplotypes of the CRHR2 gene were significantly different between IBS patients and controls and that they were associated with negative emotion.Our findings support the hypothesis that genetic polymorphisms and haplotypes of CRHR2 are related to IBS. In addition, we found associations between CRHR2 genotypes and haplotypes and negative emotion in IBS patients and controls. Further studies on IBS and the CRH

  5. Influence of Music on Steroid Hormones and the Relationship between Receptor Polymorphism and Musical Ability: a Pilot Study

    Directory of Open Access Journals (Sweden)

    Hajime eFukui

    2013-12-01

    Full Text Available Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females were recruited and divided into musically talented and control groups. The subjects selected (1 music they preferred (chill-inducing music and (2 music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.

  6. The role of histological subtype in hormone receptor positive metastatic breast cancer: similar survival but different therapeutic approaches.

    Science.gov (United States)

    Lobbezoo, Dorien; Truin, Wilfred; Voogd, Adri; Roumen, Rudi; Vreugdenhil, Gerard; Dercksen, Marcus Wouter; van den Berkmortel, Franchette; Smilde, Tineke; van de Wouw, Agnes; van Kampen, Roel; van Riel, Johanna; Peters, Natascha; Peer, Petronella; Tjan-Heijnen, Vivianne C G

    2016-05-17

    This study describes the differences between the two largest histological breast cancer subtypes (invasive ductal carcinoma (IDC) and invasive (mixed) lobular carcinoma (ILC) with respect to patient and tumor characteristics, treatment-choices and outcome in metastatic breast cancer. Patients with ILC were older at diagnosis of primary breast cancer and had more often initial bone metastasis (46.5% versus 34.8%, P = 0.01) and less often multiple metastatic sites compared to IDC (23.7% versus 30.9%, P = 0.11). Six months after diagnosis of metastatic breast cancer, 28.1% of patients with ILC and 39.8% of patients with IDC had received chemotherapy with a longer median time to first chemotherapy for those with ILC (P = 0.001). After six months 84.8% of patients with ILC had received endocrine therapy versus 72.5% of patients with IDC (P = 0.0001). Median overall survival was 29 months for ILC and 25 months for IDC (P = 0.53). We included 437 patients with hormone receptor-positive IDC and 131 patients with hormone receptor-positive ILC, all diagnosed with metastatic breast cancer between 2007-2009, irrespective of date of the primary diagnosis. Patient and tumor characteristics and data on treatment and outcome were collected. Survival curves were obtained using the Kaplan-Meier method. Treatment strategies of hormone receptor-positive metastatic breast cancer were remarkably different for patients with ILC and IDC. Further research is required to understand tumor behavior and treatment-choices in real-life.

  7. Influence of music on steroid hormones and the relationship between receptor polymorphisms and musical ability: a pilot study.

    Science.gov (United States)

    Fukui, Hajime; Toyoshima, Kumiko

    2013-01-01

    Studies have shown that music confers plasticity to the brain. In a preliminary pilot study, we examined the effect of music listening on steroid hormones and the relationship between steroid hormone receptor polymorphisms and musical ability. Twenty-one subjects (10 males and 11 females) were recruited and divided into musically talented and control groups. The subjects selected (1) music they preferred (chill-inducing music) and (2) music they did not like. Before and after the experiments, saliva was collected to measure the levels of steroid hormones such as testosterone, estradiol, and cortisol. DNA was also isolated from the saliva samples to determine the androgen receptor (AR) and arginine vasopressin receptor 1A genotypes. Advanced Measures of Music Audiation (AMMA) was used to determine the musical ability of the subjects. With both types of music, the cortisol levels decreased significantly in both sexes. The testosterone (T) levels declined in males when they listened to both types of music. In females, the T levels increased in those listening to chill-inducing music but declined when they listened to music they disliked. However, these differences were not significant. The 17-beta estradiol levels increased in males with both types of music, whereas the levels increased with chill-inducing music but declined with disliked music in females. The AMMA scores were higher for the short repeat length-type AR than for the long repeat length-type. Comparisons of AR polymorphisms and T levels before the experiments showed that the T levels were within the low range in the short repeat length-type group and there was a positive relationship with the repeat length, although it was not significant. This is the first study conducted in humans to analyze the relationships between the AR gene, T levels, and musical ability.

  8. Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris)

    Science.gov (United States)

    Kanda, Atsuhiro; Takahashi, Toshio; Satake, Honoo; Minakata, Hiroyuki

    2005-01-01

    GnRH (gonadotropin-releasing hormone) plays a pivotal role in the regulation of reproduction in vertebrates through interaction with a specific receptor. Previously, we isolated a GnRH homo-logue, oct-GnRH, from the common octopus (Octopus vulgaris). In the present study, we have identified a GnRH receptor (oct-GnRHR) specific for oct-GnRH from Octopus brain. Oct-GnRHR includes domains and motifs typical of vertebrate GnRH receptors. The intron-inserted positions are conserved between oct-GnRHR and the chordate GnRHR genes. The oct-GnRHR expressed in Xenopus (South African clawed frog) oocytes was responsive to oct-GnRH, but not to any other HPLC fractions of the Octopus brain extract. These results show that oct-GnRHR is an authentic receptor for oct-GnRH. Southern blotting of reverse-transcription PCR products revealed that the oct-GnRHR mRNA was widely distributed in the central and peripheral nervous systems and in several peripheral tissues. In situ hybridiz-ation showed that oct-GnRHR mRNA was expressed in some regions involved in autonomic functions, feeding, memory and movement. Oct-GnRH was shown to induce steroidogenesis of testosterone, progesterone and 17β-oestradiol in Octopus ovary and testis, where oct-GnRHR was abundantly expressed. These results suggest that oct-GnRH, like its vertebrate counterparts, acts as a multifunctional neurotransmitter, neuromodulator and hormone-like factor, both in Octopus central nervous system and peripheral tissues, and that both structure and functions of the GnRH family are, at least partially, evolutionarily conserved between octopuses and chordates. PMID:16367741

  9. A Bacterial Receptor PcrK Senses the Plant Hormone Cytokinin to Promote Adaptation to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fang-Fang Wang

    2017-12-01

    Full Text Available Summary: Recognition of the host plant is a prerequisite for infection by pathogenic bacteria. However, how bacterial cells sense plant-derived stimuli, especially chemicals that function in regulating plant development, remains completely unknown. Here, we have identified a membrane-bound histidine kinase of the phytopathogenic bacterium Xanthomonas campestris, PcrK, as a bacterial receptor that specifically detects the plant cytokinin 2-isopentenyladenine (2iP. 2iP binds to the extracytoplasmic region of PcrK to decrease its autokinase activity. Through a four-step phosphorelay, 2iP stimulation decreased the phosphorylation level of PcrR, the cognate response regulator of PcrK, to activate the phosphodiesterase activity of PcrR in degrading the second messenger 3′,5′-cyclic diguanylic acid. 2iP perception by the PcrK-PcrR remarkably improves bacterial tolerance to oxidative stress by regulating the transcription of 56 genes, including the virulence-associated TonB-dependent receptor gene ctrA. Our results reveal an evolutionarily conserved, inter-kingdom signaling by which phytopathogenic bacteria intercept a plant hormone signal to promote adaptation to oxidative stress. : How pathogenic bacteria use receptors to recognize the signals of the host plant is unknown. Wang et al. have identified a bacterial receptor histidine kinase that specifically senses the plant hormone cytokinin. Through a four-step phosphorelay, cytokinin perception triggers degradation of a second messenger, c-di-GMP, to activate the bacterial response to oxidative stress. Keywords: histidine kinase, ligand, cytokinin, autokinase activity, phosphorelay, response regulator, two-component signal transduction system, Xanthomonas campestris pv. campestris, virulence, oxidative stress

  10. Osteoprotegerin and breast cancer risk by hormone receptor subtype: a nested case-control study in the EPIC cohort.

    Science.gov (United States)

    Fortner, Renée T; Sarink, Danja; Schock, Helena; Johnson, Theron; Tjønneland, Anne; Olsen, Anja; Overvad, Kim; Affret, Aurélie; His, Mathilde; Boutron-Ruault, Marie-Christine; Boeing, Heiner; Trichopoulou, Antonia; Naska, Androniki; Orfanos, Philippos; Palli, Domenico; Sieri, Sabina; Mattiello, Amalia; Tumino, Rosario; Ricceri, Fulvio; Bueno-de-Mesquita, H Bas; Peeters, Petra H M; Van Gils, Carla H; Weiderpass, Elisabete; Lund, Eiliv; Quirós, J Ramón; Agudo, Antonio; Sánchez, Maria-José; Chirlaque, María-Dolores; Ardanaz, Eva; Dorronsoro, Miren; Key, Tim; Khaw, Kay-Tee; Rinaldi, Sabina; Dossus, Laure; Gunter, Marc; Merritt, Melissa A; Riboli, Elio; Kaaks, Rudolf

    2017-02-08

    Circulating osteoprotegerin (OPG), a member of the receptor activator of nuclear factor kappa-B (RANK) axis, may influence breast cancer risk via its role as the decoy receptor for both the RANK ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Circulating OPG and breast cancer risk has been examined in only one prior study. A case-control study was nested in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A total of 2008 incident invasive breast cancer cases (estrogen receptor (ER)+, n = 1622; ER-, n = 386), matched 1:1 to controls, were included in the analysis. Women were predominantly postmenopausal at blood collection (77%); postmenopausal women included users and non-users of postmenopausal hormone therapy (HT). Serum OPG was quantified with an electrochemiluminescence assay. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated using conditional logistic regression. The associations between OPG and ER+ and ER- breast cancer differed significantly. Higher concentrations of OPG were associated with increased risk of ER- breast cancer (top vs. bottom tertile RR = 1.93 [95% CI 1.24-3.02]; p trend  = 0.03). We observed a suggestive inverse association for ER+ disease overall and among women premenopausal at blood collection. Results for ER- disease did not differ by menopausal status at blood collection (p het  = 0.97), and we observed no heterogeneity by HT use at blood collection (p het  ≥ 0.43) or age at breast cancer diagnosis (p het  ≥ 0.30). This study provides the first prospective data on OPG and breast cancer risk by hormone receptor subtype. High circulating OPG may represent a novel risk factor for ER- breast cancer.

  11. Impact of epidermal growth factor receptor gene expression level on clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients taking first-line epidermal growth factor receptor-tyrosine kinase inhibitors.

    Science.gov (United States)

    Chang, Huang-Chih; Chen, Yu-Mu; Tseng, Chia-Cheng; Huang, Kuo-Tung; Wang, Chin-Chou; Chen, Yung-Che; Lai, Chien-Hao; Fang, Wen-Feng; Kao, Hsu-Ching; Lin, Meng-Chih

    2017-03-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are first-choice treatments for advanced non-small-cell lung cancer patients harboring EGFR mutations. Although EGFR mutations are strongly predictive of patients' outcomes and their response to treatment with EGFR-TKIs, early failure of first-line therapy with EGFR-TKIs in patients with EGFR mutations is not rare. Besides several clinical factors influencing EGFR-TKI efficacies studied earlier such as the Eastern Cooperative Oncology Group performance status or uncommon mutation, we would like to see whether semi-quantify EGFR mutation gene expression calculated by 2(-ΔΔct) was a prognostic factor in EGFR-mutant non-small cell lung cancer patients receiving first-line EGFR-TKIs. This retrospective study reviews 926 lung cancer patients diagnosed from January 2011 to October 2013 at the Kaohsiung Chang Gung Memorial Hospital in Taiwan. Of 224 EGFR-mutant adenocarcinoma patients, 148 patients who had 2(-ΔΔct) data were included. The best cutoff values of 2(-ΔΔct) for in-frame deletions in exon 19 (19 deletion) and a position 858 substituted from leucine (L) to an arginine (R) in exon 21 (L858R) were determined using receiver operating characteristic curves. Patients were divided into high and low 2(-ΔΔct) expression based on the above cutoff level. The best cutoff point of 2(-ΔΔct) value of 19 deletion and L858R was 31.1 and 104.7, respectively. In all, 92 (62.1%) patients showed high 2(-ΔΔct) expression and 56 patients (37.9%) low 2(-ΔΔct) expression. The mean age was 65.6 years. Progression-free survival of 19 deletion mutant patients with low versus high expression level was 17.07 versus 12.04 months (P = 0.004), respectively. Progression-free survival of L858 mutant patients was 13.75 and 7.96 months (P = 0.008), respectively. EGFR-mutant lung adenocarcinoma patients with lower EGFR gene expression had longer progression-free survival duration without

  12. Pituitary specific retinoid-X receptor ligand interactions with thyroid hormone receptor signaling revealed by high throughput reporter and endogenous gene responses.

    Science.gov (United States)

    Mengeling, Brenda J; Furlow, J David

    2015-10-01

    Disruption of thyroid hormone (TH) signaling can compromise vital processes both during development and in the adult. We previously reported on high-throughput screening experiments for man-made TH disruptors using a stably integrated line of rat pituitary cells, GH3.TRE-Luc, in which a thyroid hormone receptor (TR) response element drives luciferase (Luc) expression. In these experiments, several retinoid/rexinoid compounds activated the reporter. Here we show that all-trans and 13-cis retinoic acid appear to function through the heterodimer partners of TRs, retinoid-X receptors (RXRs), as RXR antagonists abrogated retinoid-induced activation. The retinoids also induced known endogenous TR target genes, showing good correlation with Luc activity. Synthetic RXR-specific agonists significantly activated all tested TR target genes, but interestingly, retinoid/rexinoid activation was more consistent between genes than the extent of T3-induced activation. In contrast, the retinoids neither activated the Luc reporter construct in transient transfection assays in the human hepatocarcinoma cell line HuH7, nor two of the same T3-induced genes examined in pituitary cells. These data demonstrate the suitability and sensitivity of GH3.TRE-Luc cells for screening chemical compound libraries for TH disruption and suggest that the extent of disruption can vary on a cell type and gene-specific bases, including an underappreciated contribution by RXRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The phenome analysis of mutant alleles in Leucine-Rich Repeat Receptor-Like Kinase genes in rice reveals new potential targets for stress tolerant cereals.

    Science.gov (United States)

    Dievart, Anne; Perin, Christophe; Hirsch, Judith; Bettembourg, Mathilde; Lanau, Nadège; Artus, Florence; Bureau, Charlotte; Noel, Nicolas; Droc, Gaétan; Peyramard, Matthieu; Pereira, Serge; Courtois, Brigitte; Morel, Jean-Benoit; Guiderdoni, Emmanuel

    2016-01-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses that reduce their fitness and performance. At the molecular level, the perception of extracellular stimuli and the subsequent activation of defense responses require a complex interplay of signaling cascades, in which protein phosphorylation plays a central role. Several studies have shown that some members of the Leucine-Rich Repeat Receptor-Like Kinase (LRR-RLK) family are involved in stress and developmental pathways. We report here a systematic analysis of the role of the members of this gene family by mutant phenotyping in the monocotyledon model plant rice, Oryza sativa. We have then targeted 176 of the ∼320 LRR-RLK genes (55.7%) and genotyped 288 mutant lines. Position of the insertion was confirmed in 128 lines corresponding to 100 LRR-RLK genes (31.6% of the entire family). All mutant lines harboring homozygous insertions have been screened for phenotypes under normal conditions and under various abiotic stresses. Mutant plants have been observed at several stages of growth, from seedlings in Petri dishes to flowering and grain filling under greenhouse conditions. Our results show that 37 of the LRR-RLK rice genes are potential targets for improvement especially in the generation of abiotic stress tolerant cereals. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant huntingtin pathogenicity.

    Directory of Open Access Journals (Sweden)

    Cendrine Tourette

    2014-06-01

    Full Text Available The Wnt receptor Ryk is an evolutionary-conserved protein important during neuronal differentiation through several mechanisms, including γ-secretase cleavage and nuclear translocation of its intracellular domain (Ryk-ICD. Although the Wnt pathway may be neuroprotective, the role of Ryk in neurodegenerative disease remains unknown. We found that Ryk is up-regulated in neurons expressing mutant huntingtin (HTT in several models of Huntington's disease (HD. Further investigation in Caenorhabditis elegans and mouse striatal cell models of HD provided a model in which the early-stage increase of Ryk promotes neuronal dysfunction by repressing the neuroprotective activity of the longevity-promoting factor FOXO through a noncanonical mechanism that implicates the Ryk-ICD fragment and its binding to the FOXO co-factor β-catenin. The Ryk-ICD fragment suppressed neuroprotection by lin-18/Ryk loss-of-function in expanded-polyQ nematodes, repressed FOXO transcriptional activity, and abolished β-catenin protection of mutant htt striatal cells against cell death vulnerability. Additionally, Ryk-ICD was increased in the nucleus of mutant htt cells, and reducing γ-secretase PS1 levels compensated for the cytotoxicity of full-length Ryk in these cells. These findings reveal that the Ryk-ICD pathway may impair FOXO protective activity in mutant polyglutamine neurons, suggesting that neurons are unable to efficiently maintain function and resist disease from the earliest phases of the pathogenic process in HD.

  15. Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington's disease mice

    Directory of Open Access Journals (Sweden)

    Wang Chuan-En

    2010-11-01

    Full Text Available Abstract Huntington's disease results from expansion of a glutamine repeat (>36 glutamines in the N-terminal region of huntingtin (htt and is characterized by preferential neurodegeneration in the striatum of the brain. N171-82Q mice that express N-terminal 171 amino acids of htt with an 82-glutamine repeat show severe neurological phenotypes and die early, suggesting that N-terminal mutant htt is pathogenic. In addition, various cellular factors and genetic modifiers are found to modulate the cytotoxicity of mutant htt. Understanding the contribution of these factors to HD pathogenesis will help identify therapeutics for this disease. To investigate the role of interleukin type 1 (IL-1, a cytokine that has been implicated in various neurological diseases, in HD neurological symptoms, we crossed N171-82Q mice to type I IL-1 receptor (IL-1RI knockout mice. Mice lacking IL-1RI and expressing N171-82Q show more severe neurological symptoms than N171-82Q or IL-1RI knockout mice, suggesting that lack of IL-1RI can promote the neuronal toxicity of mutant htt. Lack of IL-1RI also increases the accumulation of transgenic mutant htt in the striatum in N171-82Q mice. Since IL-1RI signaling mediates both toxic and protective effects on neurons, its basal function and protective effects may be important for preventing the neuropathology seen in HD.

  16. Growth hormone, inflammation and aging

    Directory of Open Access Journals (Sweden)

    Michal M. Masternak

    2012-04-01

    Full Text Available Mutant animals characterized by extended longevity provide valuable tools to study the mechanisms of aging. Growth hormone and insulin-like growth factor-1 (IGF-1 constitute one of the well-established pathways involved in the regulation of aging and lifespan. Ames and Snell dwarf mice characterized by GH deficiency as well as growth hormone receptor/growth hormone binding protein knockout (GHRKO mice characterized by GH resistance live significantly longer than genetically normal animals. During normal aging of rodents and humans there is increased insulin resistance, disruption of metabolic activities and decline of the function of the immune system. All of these age related processes promote inflammatory activity, causing long term tissue damage and systemic chronic inflammation. However, studies of long living mutants and calorie restricted animals show decreased pro-inflammatory activity with increased levels of anti-inflammatory adipokines such as adiponectin. At the same time, these animals have improved insulin signaling and carbohydrate homeostasis that relate to alterations in the secretory profile of adipose tissue including increased production and release of anti-inflammatory adipokines. This suggests that reduced inflammation promoting healthy metabolism may represent one of the major mechanisms of extended longevity in long-lived mutant mice and likely also in the human.

  17. Environmental estrogens inhibit mRNA and functional expression of growth hormone receptors as well as growth hormone signaling pathways in vitro in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Hanson, Andrea M; Ickstadt, Alicia T; Marquart, Dillon J; Kittilson, Jeffrey D; Sheridan, Mark A

    2017-05-15

    Fish in aquatic habitats are exposed to increasing concentrations and types of environmental contaminants, including environmental estrogens (EE). While there is growing evidence to support the observation that endocrine-disrupting compounds (EDCs) possess growth-inhibiting effects, the mechanisms by which these physiological effects occur are poorly understood. In this study, we examined the direct effects of EE, specifically 17β-estradiol (E2), β-sitosterol (βS), and 4-n-nonylphenol (NP), on GH sensitivity as assessed by mRNA expression and functional expression of growth hormone receptor in hepatocytes, gill filaments, and muscle in rainbow trout (Oncorhynchus mykiss). Additionally, we examined the effects of EE on signaling cascades related to growth hormone signal transduction (i.e., JAK-STAT, MAPK, and PI3K-Akt). Environmental estrogens directly suppressed the expression of GHRs in a tissue- and compound-related manner. The potency and efficacy varied with EE; effects were most pronounced with E2 in liver. EE treatment deactivated the JAK-STAT, MAPK, and PI3K-Akt pathways in liver a time-, EE- and concentration-dependent manner. Generally, E2 and NP were most effective in deactivating pathway elements; maximum suppression for each pathway was rapid, typically occurring at 10-30min. The observed effects occurred via an estrogen-dependent pathway, as indicated by treatment with an ER antagonist, ICI 182,780. These findings suggest that EEs suppress growth by reducing GH sensitivity in terms of reduced GHR synthesis and reduced surface GHR expression and by repressing GH signaling pathways. Copyright © 2016. Published by Elsevier Inc.

  18. Implications of Sex Hormone Receptor Gene Expression in the Predominance of Hepatocellular Carcinoma in Males: Role of Natural Products.

    Science.gov (United States)

    Ahmed, Hanaa H; Shousha, Wafaa Gh; Shalby, Aziza B; El-Mezayen, Hatem A; Ismaiel, Nora N; Mahmoud, Nadia S

    2015-01-01

    The present study was planned to investigate the role of sex hormone receptor gene expression in the pathogenesis of hepatocellular carcinoma (HCC). Adult male Wistar rats were divided into seven groups. Group (1) was negative control. Groups (2), (5), (6), and (7) were orally administered with N-nitrosodiethylamine for the induction of HCC, then group (2) was left untreated, group (5) was orally treated with curcumin, group (6) was orally treated with carvacrol, and group (7) was intraperitoneally injected with doxorubicin, whereas groups (3) and (4) were orally administered only curcumin and carvacrol, respectively. The HCC group showed significant upregulation in the androgen receptor (AR) and the estrogen receptor-alpha (ERα) gene expression levels in the liver tissue. On the contrary, HCC groups treated with either curcumin or carvacrol showed significant downregulation in AR and ERα gene expression levels in the liver tissue. In conclusion, the obtained data highlight that both AR and ERα but not estrogen receptor-beta (ERβ) gene expression may contribute to the male prevalence of HCC induced in male rats. Interestingly, both curcumin and carvacrol were found to have a promising potency in alleviating the male predominating HCC.

  19. Investigating the association between polymorphism of follicle-stimulating hormone receptor gene and ovarian response in controlled ovarian hyperstimulation

    Directory of Open Access Journals (Sweden)

    Mohammad Hasan Sheikhha

    2011-01-01

    Full Text Available Aim : The aim of the study was to investigate the association between follicle-stimulating hormone receptor (FSHR gene polymorphism at Position 680 and the outcomes of controlled ovarian hyperstimulation for in vitro fertilization and embryo transfer (IVF-ET in infertile women. Materials and Methods : One hundred and eight patients under 35 years of age who underwent IVF-ET procedures were included in this study. The hormonal profile and treatment of all patients were analyzed and FSHR polymorphism was examined by polymerase chain reaction-restriction fragment length polymorphism. Women from all groups were classified based on polymorphisms at Position 680, occupied either by asparagines (Asn or serine (Ser as Asn/Asn, Asn/Ser, and Ser/Ser genotype. Result : Our study showed that all patients in the Asn/Asn group were normal responders and in the Asn/Ser group 64.8% were normal responders and 21.1% and 14.1% were poor and hyper responders respectively. In the Ser/Ser group we did not have normal responders and 46.7% of these patients were poor responders and 53.3% were hyper responders. Conclusion : FSH receptor polymorphism is correlated with response to ovarian stimulation.

  20. Chemotherapy-induced amenorrhea and the resumption of menstruation in premenopausal women with hormone receptor-positive early breast cancer.

    Science.gov (United States)

    Koga, Chinami; Akiyoshi, Sayuri; Ishida, Mayumi; Nakamura, Yoshiaki; Ohno, Shinji; Tokunaga, Eriko

    2017-09-01

    For premenopausal women with breast cancer, information on the effects of chemotherapy and the risk of infertility is important. In this study, the effect of chemotherapy on the ovarian function in premenopausal women with hormone receptor-positive breast cancer was investigated, with an age-stratified analysis of the appearance of amenorrhea and the resumption of menstruation after the use of chemotherapy with anthracyclines or taxanes. Premenopausal women diagnosed with operable Stage I-III hormone receptor-positive breast cancer and underwent neoadjuvant or adjuvant chemotherapy with the standard regimen of anthracyclines and/or taxanes were included. The patients were classified into age groups in 5-year increments, and the rates of chemotherapy-induced amenorrhea (CIA), resumption of menstruation, and duration of CIA after chemotherapy were analyzed. The subjects consisted of 101 patients (median age 45 years). CIA occurred in 97 (96%) patients and 40 patients resumed menstruation. In all patients aged ≤39 years menstruation restarted, whereas in all patients aged ≥50 years, menstruation did not restart. For the patients who resumed menstruation, the younger the patients, the sooner menstruation tended to restart. The resumption of menstruation occurred within 1 year for younger patients aged around 30 years, but for those aged ≥35 years, 60% of cases took around 2-3 years for resumption. The incidence of CIA, the resumption of menstruation and duration of CIA after chemotherapy depend greatly on the patient's age.

  1. Differential Expression of Claudin Family Proteins in Mouse Ovarian Serous Papillary Epithelial Adenoma in Aging FSH Receptor-Deficient Mutants1

    Science.gov (United States)

    Aravindakshan, Jayaprakash; Chen, Xinlei; Sairam, M Ram

    2006-01-01

    Abstract Ovarian cancer is a deadly disease with long latency. To understand the consequences of loss of folliclestimulating hormone receptor (FSH-R) signaling and to explore why the atrophic and anovulatory ovaries of follitropin receptor knockout (FORKO) mice develop different types of ovarian tumors, including serous papillary epithelial adenoma later in life, we used mRNA expression profiling to gain a comprehensive view of misregulated genes. Using real-time quantitative reverse transcription-polymerase chain reaction, protein analysis, and cellular localization, we show, for the first time, in vivo evidence that, in the absence of FSH-R signaling, claudin-3, claudin-4, and claudin-11 are selectively upregulated, whereas claudin-1 decreases in ovarian surface epithelium and tumors in comparison to wild type. In vitro experiments using a mouse ovarian surface epithelial cell line derived from wild-type females reveal direct hormonal influence on claudin proteins. Although recent studies suggest that cell junction proteins are differentially expressed in ovarian tumors in women, the etiology of such changes remains unclear. Our results suggest an altered hormonal environment resulting from FSH-R loss as a cause of early changes in tight junction proteins that predispose the ovary to late-onset tumors that occur with aging. More importantly, this study identifies claudin-11 overexpression in mouse ovarian serous cystadenoma. PMID:17217615

  2. Nucleoporin NUP88/MOS7 is required for manifestation of phenotypes associated with the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 mutant cerk1-4.

    Science.gov (United States)

    Genenncher, Bianca; Lipka, Volker; Petutschnig, Elena K; Wiermer, Marcel

    2017-05-04

    Arabidopsis nucleoporin MOS7/NUP88 was identified in a forward-genetic screen for components that contribute to auto-immunity of the deregulated Resistance (R) gene mutant snc1, and is required for immunity to biotrophic and hemi-biotrophic pathogens. In a recent study, we showed that MOS7 is also essential to mount a full defense response against the necrotrophic fungal pathogen Botrytis cinerea, suggesting that MOS7 modulates plant defense responses to different types of pathogenic microbes. Here, we extend our analyses of MOS7-dependent plant immune responses and report the genetic requirement of MOS7 for manifestation of phenotypes associated with the CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) mutant cerk1-4.

  3. Somatostatin dramatically stimulates growth hormone release from primate somatotrophs acting at low doses via somatostatin receptor 5 and cyclic AMP.

    Science.gov (United States)

    Córdoba-Chacón, J; Gahete, M D; Culler, M D; Castaño, J P; Kineman, R D; Luque, R M

    2012-03-01

    Somatostatin and cortistatin have been shown to act directly on pituitary somatotrophs to inhibit growth hormone (GH) release. However, previous results from nonprimate species indicate that these peptides can also directly stimulate GH secretion, at low concentrations. The relevance of this phenomenon in a nonhuman primate model was investigated in the present study by testing the impact of somatostatin/cortistatin on GH release in primary pituitary cell cultures from baboons. High doses (> 10(-10) m) of somatostatin/cortistatin did not alter basal GH secretion but blocked GH-releasing hormone (GHRH)- and ghrelin-induced GH release. However, at low concentrations (10(-17)-10(-13) m), somatostatin/cortistatin dramatically stimulated GH release to levels comparable to those evoked by GHRH or ghrelin. Use of somatostatin receptor (sst) specific agonists/antagonists, and signal transduction blockers indicated that sst2 and sst1 activation via intact adenylate cylcase and mitogen-activated protein kinase systems mediated the inhibitory actions of high-concentration somatostatin. By contrast, the stimulatory actions of low-dose somatostatin on GH release were mediated by sst5 signalling through adenylate cylcase/cAMP/protein kinase A and intracellular Ca(2+) pathways, and were additive with ghrelin (not GHRH). Notably, low-concentrations of somatostatin, similar to sst5-agonists, inhibited prolactin release. These results clearly demonstrate that the ultimate impact of somatostatin/cortistatin on hormone release is dose-dependent, cell type-selective and receptor-specific, where the stimulatory effects of low-concentration somatostatin/cortistatin on GH release extend to primates, thereby supporting the notion that this action is relevant in regulating GH secretion in humans. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  4. Vestigialization of an allosteric switch: genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor.

    Directory of Open Access Journals (Sweden)

    Jamie T Bridgham

    2014-01-01

    Full Text Available An important goal in molecular evolution is to understand the genetic and physical mechanisms by which protein functions evolve and, in turn, to characterize how a protein's physical architecture influences its evolution. Here we dissect the mechanisms for an evolutionary shift in function in the mollusk ortholog of the steroid hormone receptors (SRs, a family of biologically essential transcription factors. In vertebrates, the activity of SRs allosterically depends on binding a hormonal ligand; in mollusks, however, the SR ortholog (called ER, because of high sequence similarity to vertebrate estrogen receptors activates transcription in the absence of ligand and does not respond to steroid hormones. To understand how this shift in regulation evolved, we combined evolutionary, structural, and functional analyses. We first determined the X-ray crystal structure of the ER of the Pacific oyster Crassostrea gigas (CgER, and found that its ligand pocket is filled with bulky residues that prevent ligand occupancy. To understand the genetic basis for the evolution of mollusk ERs' unique functions, we resurrected an ancient SR progenitor and characterized the effect of historical amino acid replacements on its functions. We found that reintroducing just two ancient replacements from the lineage leading to mollusk ERs recapitulates the evolution of full constitutive activity and the loss of ligand activation. These substitutions stabilize interactions among key helices, causing the allosteric switch to become "stuck" in the active conformation and making activation independent of ligand binding. Subsequent changes filled the ligand pocket without further affecting activity; by degrading the allosteric switch, these substitutions vestigialized elements of the protein's architecture required for ligand regulation and made reversal to the ancestral function more complex. These findings show how the physical architecture of allostery enabled a few large

  5. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity.

    Science.gov (United States)

    Dunn, Julia P; Kessler, Robert M; Feurer, Irene D; Volkow, Nora D; Patterson, Bruce W; Ansari, Mohammad S; Li, Rui; Marks-Shulman, Pamela; Abumrad, Naji N

    2012-05-01

    Midbrain dopamine (DA) neurons, which are involved with reward and motivation, are modulated by hormones that regulate food intake (insulin, leptin, and acyl ghrelin [AG]). We hypothesized that these hormones are associated with deficits in DA signaling in obesity. We assessed the relationships between fasting levels of insulin and leptin, and AG, BMI, and insulin sensitivity index (S(I)) with the availability of central DA type 2 receptor (D2R). We measured D2R availability using positron emission tomography and [(18)F]fallypride (radioligand that competes with endogenous DA) in lean (n = 8) and obese (n = 14) females. Fasting hormones were collected prior to scanning and S(I) was determined by modified oral glucose tolerance test. Parametric image analyses revealed associations between each metabolic measure and D2R. The most extensive findings were negative associations of AG with clusters involving the striatum and inferior temporal cortices. Regional regression analyses also found extensive negative relationships between AG and D2R in the caudate, putamen, ventral striatum (VS), amygdala, and temporal lobes. S(I) was negatively associated with D2R in the VS, while insulin was not. In the caudate, BMI and leptin were positively associated with D2R availability. The direction of associations of leptin and AG with D2R availability are consistent with their opposite effects on DA levels (decreasing and increasing, respectively). After adjusting for BMI, AG maintained a significant relationship in the VS. We hypothesize that the increased D2R availability in obese subjects reflects relatively reduced DA levels competing with the radioligand. Our findings provide evidence for an association between the neuroendocrine hormones and DA brain signaling in obese females.

  6. Reproductive factors, hormone use, estrogen receptor expression and risk of non small-cell lung cancer in women.

    Science.gov (United States)

    Schwartz, Ann G; Wenzlaff, Angela S; Prysak, Geoffrey M; Murphy, Valerie; Cote, Michele L; Brooks, Sam C; Skafar, Debra F; Lonardo, Fulvio

    2007-12-20

    Estrogen receptor (ER) expression in lung tumors suggests that estrogens may play a role in the development of lung cancer. We evaluated the role of hormone-related factors in determining risk of non-small-cell lung cancer (NSCLC) in women. We also evaluated whether risk factors were differentially associated with cytoplasmic ER-alpha and/or nuclear ER-beta expression-defined NSCLC in postmenopausal women. Population-based participants included women aged 18 to 74 years diagnosed with NSCLC in metropolitan Detroit between November 1, 2001 and October 31, 2005. Population-based controls were identified through random digit dialing, matched to patient cases on race and 5-year age group. Interview data were analyzed for 488 patient cases (241 with tumor ER results) and 498 controls. Increased duration of hormone replacement therapy (HRT) use in quartiles was associated with decreased risk of NSCLC in postmenopausal women (odds ratio = 0.88; 95% CI, 0.78 to 1.00; P = .04), adjusting for age, race, pack-years, education, family history of lung cancer, current body mass index, years exposed to second-hand smoke in the workplace, and obstructive lung disease history. Among postmenopausal women, ever using HRT, increasing HRT duration of use in quartiles, and increasing quartiles of estrogen use were significant predictors of reduced risk of NSCLC characterized as ER-alpha and/or ER-beta positive. None of the hormone-related variables were associated with nuclear ER-alpha- or ER-beta-negative NSCLC. These findings suggest that postmenopausal hormone exposures are associated with reduced risk of ER-alpha- and ER-beta-expressing NSCLC. Understanding tumor characteristics may direct development of targeted treatment for this disease.

  7. Study of Prostate Specific Antigen Gene Expression and Telomerase in Breast Cancer Patients: Relationship to Steroid Hormone Receptors

    Directory of Open Access Journals (Sweden)

    N. Zarghami

    2007-10-01

    Full Text Available Introduction & Objective: Breast cancer is the most common disease in women. In the expansion and progression of breast tumors combination of tumor markers including prostate specific antigen (PSA and telomerase are engaged. The aim of this study was to evaluate relationship between telomerase activity and prostate specific antigen gene expression with steroid hormone receptors in breast cancer patients. Materials & Methods: This study was a case-control and consisted of 50 women diagnosed with breast benign tumors as control and 50 women having malignant tumors as cases. Telomerase activity was measured in tumor cytosol of samples by telomeric repeat amplification protocol (TRAP assay. PSA protein was measured using ultra sensitive immunoflourometric assay and PSA mRNA expression was carried out using RT-PCR technique in all tumor tissues. Estrogen and progesterone receptors were stained using immunohistochemistry technique in tumor tissues. Data analysis was carried out by using SPSS software version 11.6 and paired t-student test. Results: Using TRAP assay, presence of the telomerase activity was positive in all of the breast cancer patients. The difference of relative telomerase activity (RTA values between stages and also all grades were more statistically significant (p<0.05. The mRNA of PSA was detected only in benign tumors and stage I and grade I malignant tumor cytosols. Difference of tumor cytosol PSA levels between the cases and control groups and also between all grades and stages of diseases were significant (p <0.05. In all, there was an inverse significant correlation between the RTA and PSA protein levels in the case groups. (r=-0.42, p<0.05.There was a statistically difference between steroid hormone receptors (ER and PR positive and negative on PSA and telomerase gene expression in breast tumor tissues (p<0.05. Conclusion: It is speculated that differential expression of PSA and telomerase genes in breast tumors are under

  8. Rat insulinoma cells express both a 115-kDa growth hormone receptor and a 95-kDa prolactin receptor structurally related to the hepatic receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Billestrup, N; Nielsen, Jens Høiriis

    1990-01-01

    Insulin-producing rat islet RIN-5AH tumor cells express multiple binding sites for human growth hormone (hGH). The effect of rat growth hormone (rGH), rat prolactin (rPRL), and human placental lactogen (hPL) on the binding of 125I-labeled hGH (125I-hGH) to RIN-5AH cells revealed the presence...

  9. Hormone therapy in acne

    Directory of Open Access Journals (Sweden)

    Chembolli Lakshmi

    2013-01-01

    Full Text Available Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.

  10. Identification and consequences of polymorphisms in the thyroid hormone receptor alpha and beta genes

    DEFF Research Database (Denmark)

    Sørensen, Helena Gásdal; van der Deure, Wendy M; Hansen, Pia Skov

    2008-01-01

    SNPs in the 3' untranslated region of THRA were genotyped: a novel SNP (2390A/G) and 1895C/A (rs12939700). In THRB, a synonymous (735C/T; rs3752874) and an intronic SNP (in9-G/A; rs13063628) were genotyped. No associations between SNPs and thyroid hormone levels (total and free 3,3',5-triiodo...

  11. Molecular identification and expression analysis of a diapause hormone receptor in the corn earworm, Helicoverpa zea

    Science.gov (United States)

    Diapause hormone (DH) is an insect neuropeptide that is highly effective in terminating the overwintering pupal diapause in members of the Helicoverpa/Heliothis complex of agricultural pests, thus DH and related compounds have promise as tools for pest management. To augment our development of effe...

  12. Cytotoxic agents directed to peptide hormone receptors: defining the requirements for a successful drug.

    Science.gov (United States)

    Czerwinski, G; Tarasova, N I; Michejda, C J

    1998-09-29

    In principle, cell surface receptors that are overexpressed in tumor tissue could serve as targets for anticancer drugs attached to receptor ligands. The purpose of this paper is to identify the necessary elements for a successful receptor-targeted drug. We used the gastrin/cholecystokinin type B receptor as a model delivery system, and we report on the synthesis, trafficking, and in vitro and in vivo evaluation of heptagastrin, the C-terminal heptapeptide of gastrin, linked via an appropriate linker to a potently cytotoxic ellipticine derivative, 1-[3-[N-(3-aminopropyl)-N-methylamino]propyl]amino-9-methoxy-5, 11-dimethyl-6H-pyrido[4,3-b]carbazole. These data, and previous work from our laboratory, show that the drug-complexed ligand is sorted to lysosomes whereas the receptor is recycled to the plasma membrane. The lysosomal processing of the ligand/drug construct depends on the linker between the ligand sequence and the cytotoxic moiety. We show that heptagastrin linked to ellipticine via a succinoyl-substituted pentapeptide, AlaLeuAlaLeuAla, is at least 10(3) more toxic to cholecystokinin type B receptor-positive NIH/3T3 cells than to isogenic NIH/3T3 cells lacking the receptor. The conjugated drug eradicated all receptor-positive tumor cells in vivo without producing any general toxicity. The data indicate that the density of the cell surface receptor, the properties of the cytotoxic moiety, and the correct processing of the drug-conjugated ligand in lysosomes are crucial to the effectiveness of a receptor-targeted drug.

  13. Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer.

    Science.gov (United States)

    Paris, O; Ferraro, L; Grober, O M V; Ravo, M; De Filippo, M R; Giurato, G; Nassa, G; Tarallo, R; Cantarella, C; Rizzo, F; Di Benedetto, A; Mottolese, M; Benes, V; Ambrosino, C; Nola, E; Weisz, A

    2012-09-20

    Estrogen effects on mammary epithelial and breast cancer (BC) cells are mediated by the nuclear receptors ERα and ERβ, transcription factors that display functional antagonism with each other, with ERβ acting as oncosuppressor and interfering with the effects of ERα on cell proliferation, tumor promotion and progression. Indeed, hormone-responsive, ERα+ BC cells often lack ERβ, which when present associates with a less aggressive clinical phenotype of the disease. Recent evidences point to a significant role of microRNAs (miRNAs) in BC, where specific miRNA expression profiles associate with distinct clinical and biological phenotypes of the lesion. Considering the possibility that ERβ might influence BC cell behavior via miRNAs, we compared miRNome expression in ERβ+ vs ERβ- hormone-responsive BC cells and found a widespread effect of this ER subtype on the expression pattern of these non-coding RNAs. More importantly, the expression pattern of 67 miRNAs, including 10 regulated by ERβ in BC cells, clearly distinguishes ERβ+, node-negative, from ERβ-, metastatic, mammary tumors. Molecular dissection of miRNA biogenesis revealed multiple mechanisms for direct regulation of this process by ERβ+ in BC cell nuclei. In particular, ERβ downregulates miR-30a by binding to two specific sites proximal to the gene and thereby inhibiting pri-miR synthesis. On the other hand, the receptor promotes miR-23b, -27b and 24-1 accumulation in the cell by binding in close proximity of the corresponding gene cluster and preventing in situ the inhibitory effects of ERα on pri-miR maturation by the p68/DDX5-Drosha microprocessor complex. These results indicate that cell autonomous regulation of miRNA expression is part of the mechanism of action of ERβ in BC cells and could contribute to establishment or maintenance of a less aggressive tumor phenotype mediated by this nuclear receptor.

  14. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1.

    Science.gov (United States)

    Peeters, Robin P; Hernandez, Arturo; Ng, Lily; Ma, Michelle; Sharlin, David S; Pandey, Mritunjay; Simonds, William F; St Germain, Donald L; Forrest, Douglas

    2013-01-01

    Thyroid hormone serves many functions throughout brain development, but the mechanisms that control the timing of its actions in specific brain regions are poorly understood. In the cerebellum, thyroid hormone controls formation of the transient external germinal layer, which contains proliferative granule cell precursors, subsequent granule cell migration, and cerebellar foliation. We report that the thyroid hormone-inactivating type 3 deiodinase (encoded by Dio3) is expressed in the mouse cerebellum at embryonic and neonatal stages, suggesting a need to protect cerebellar tissues from premature stimulation by thyroid hormone. Dio3(-/-) mice displayed reduced foliation, accelerated disappearance of the external germinal layer, and premature expansion of the molecular layer at juvenile ages. Furthermore, Dio3(-/-) mice exhibited locomotor behavioral abnormalities and impaired ability in descending a vertical pole. To ascertain that these phenotypes resulted from inappropriate exposure to thyroid hormone, thyroid hormone receptor α1 (TRα1) was removed from Dio3(-/-) mice, which substantially corrected the cerebellar and behavioral phenotypes. Deletion of TRα1 did not correct the previously reported small thyroid gland or deafness in Dio3(-/-) mice, indicating that Dio3 controls the activation of specific receptor isoforms in different tissues. These findings suggest that type 3 deiodinase constrains the timing of thyroid hormone action during cerebellar development.

  15. Identification of tyrosine residues in the intracellular domain of the growth hormone receptor required for transcriptional signaling and Stat5 activation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Wang, X.; Kopchick, J J

    1996-01-01

    The binding of growth hormone (GH) to its receptor results in its dimerization followed by activation of Jak2 kinase and tyrosine phosphorylation of the GH receptor itself, as well as Jak2 and the transcription factors Stat1, -3, and -5. In order to study the role of GH receptor tyrosine.......1 promoter. Any of these three tyrosines is able to independently mediate GH-induced transcription, indicating redundancy in this part of the GH receptor. Tyrosine phosphorylation was not required for GH stimulation of mitogen-activated protein (MAP) kinase activity or for GH-stimulated Ca2+ channel...

  16. Switching of G-protein Usage by the Calcium-sensing Receptor Reverses Its Effect on Parathyroid Hormone-related Protein Secretion in Normal Versus Malignant Breast Cells*

    OpenAIRE

    Mamillapalli, Ramanaiah; VanHouten, Joshua; Zawalich, Walter; Wysolmerski, John

    2008-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium and regulates parathyroid hormone secretion. The CaR is also expressed on normal mammary epithelial cells (MMECs), where it has been shown to inhibit secretion of parathyroid hormone-related protein (PTHrP) and participate in the regulation of calcium and bone metabolism during lactation. In contrast to normal breast cells, the CaR has been reported to s...

  17. Palbociclib: a first-in-class CDK4/CDK6 inhibitor for the treatment of hormone-receptor positive advanced breast cancer.

    Science.gov (United States)

    Lu, Janice

    2015-08-13

    Palbociclib was approved by the FDA for use in combination with letrozole for the treatment of postmenopausal women with hormone-receptor-positive, HER2-negative advanced breast cancer as initial endocrine-based therapy. In addition, the combination of palbociclib with fulvestrant resulted in superior outcome than fulvestrant alone in those who had progressed during prior endocrine therapy. This research highlight summarized the current development of CDK4/CDK6 inhibitors and future directions in the treatment of advanced hormone-receptor-positive breast cancer.

  18. The effect of hydroxylated polychlorinated biphenyl (OH-PCB) on thyroid hormone receptor (TR)-mediated transcription through native-thyroid hormone response element (TRE).

    Science.gov (United States)

    Amano, Izuki; Miyazaki, Wataru; Iwasaki, Toshiharu; Shimokawa, Noriaki; Koibuchi, Noriyuki

    2010-01-01

    Polychlorinated biphenyls (PCBs) are known as environmental contaminants that may cause abnormal effect in various organs. We have previously reported that low dose of hydroxylated PCBs (OH-PCBs) including 4'-OH-2',3,3',4',5'-pentachloro biphenyl (4'-OH-PCB 106), suppressed thyroid hormone (TH) receptor (TR)-mediated transcription on several artificial TH-response elements (TREs) due to partial dissociation of TR from TRE. In the present study, we examined the effect of OH-PCB on TR-mediated transcription on native TRE-containing promoter, using malic enzyme (ME)-TRE. Transcriptional activity was measured by transient transfection based reporter gene assay in CV-1, fibroblast-derived clonal cells. TR-mediated transcription was suppressed by 4'-OH-PCB106 significantly and 4'-OH-PCB187 weakly, but not by 4'-OH-PCB165. To examine TR-TRE bindings under exposure of 4'-OH-PCB106, electrophoretic mobility shift assay (EMSA) was performed. In EMSA, TR was dissociated from ME-TRE by 4'-OH-PCB106. These findings suggest that OH-PCB may disrupt TR-mediated transcription on native promoter.

  19. Association between lifetime exposure to passive smoking and risk of breast cancer subtypes defined by hormone receptor status among non-smoking Caucasian women.

    Science.gov (United States)

    Strumylaite, Loreta; Kregzdyte, Rima; Poskiene, Lina; Bogusevicius, Algirdas; Pranys, Darius; Norkute, Roberta

    2017-01-01

    Tobacco smoking is inconsistently associated with breast cancer. Although some studies suggest that breast cancer risk is related to passive smoking, little is known about the association with breast cancer by tumor hormone receptor status. We aimed to explore the association between lifetime passive smoking and risk of breast cancer subtypes defined by estrogen receptor and progesterone receptor status among non-smoking Caucasian women. A hospital-based case-control study was performed in 585 cases and 1170 controls aged 28-90 years. Information on lifetime passive smoking and other factors was collected via a self-administered questionnaire. Logistic regression was used for analyses restricted to the 449 cases and 930 controls who had never smoked actively. All statistical tests were two-sided. Adjusted odds ratio of breast cancer was 1.01 (95% confidence interval (CI): 0.72-1.41) in women who experienced exposure to passive smoking at work, 1.88 (95% CI: 1.38-2.55) in women who had exposure at home, and 2.80 (95% CI: 1.84-4.25) in women who were exposed at home and at work, all compared with never exposed regularly. Increased risk was associated with longer exposure: women exposed ≤ 20 years and > 20 years had 1.27 (95% CI: 0.97-1.66) and 2.64 (95% CI: 1.87-3.74) times higher risk of breast cancer compared with never exposed (Ptrend passive smoking with hormone receptor-positive breast cancer did not differ from that with hormone receptor-negative breast cancer (Pheterogeneity > 0.05). There was evidence of interaction between passive smoking intensity and menopausal status in both overall group (P = 0.02) and hormone receptor-positive breast cancer group (P passive smoking is associated with the risk of breast cancer independent of tumor hormone receptor status with the strongest association in postmenopausal women.

  20. Breast cancer among nurses: is the intensity of night work related to hormone receptor status?

    Science.gov (United States)

    Lie, Jenny-Anne S; Kjuus, Helge; Zienolddiny, Shan; Haugen, Aage; Kjærheim, Kristina

    2013-07-01

    The aim of this study was to investigate whether night work is related to breast cancer receptor status. The effect of night work on the risk of estrogen receptor- and progesterone receptor-defined breast cancers was evaluated in 513 nurses diagnosed with breast cancer between 1996 and 2007 and in 757 frequency-matched controls, all of whom were selected from a cohort of Norwegian nurses. Odds ratios for the exposure "duration of work with a minimum of 6 consecutive night shifts" were compared for tumor subgroups with respect to the common control group through the use of polytomous logistic regression. Statistically significant associations were observed between breast cancer and work durations of ≥ 5 years with ≥ 6 consecutive night shifts, with the highest risk observed for progesterone receptor-positive tumors (odds ratio = 2.4, 95% confidence interval: 1.3, 4.3; P-trend = 0.01). When the exposure variable was dichotomized (ever/never worked ≥ 6 consecutive night shifts), a borderline statistically significant heterogeneity (P = 0.05) was seen between progesterone receptor-positive and progesterone receptor-negative tumors in postmenopausal women. The association observed between consecutive night shifts and progesterone receptor-positive cancers suggests that progesterone could play an important role in the detrimental effects of night work.

  1. Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai; Swaminathan, Kunchithapadam; Xu, H. Eric (Van Andel); (NU Singapore)

    2012-02-21

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 {angstrom} crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  2. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors.

    Science.gov (United States)

    Kumar, Shiva; Pioszak, Augen; Zhang, Chenghai; Swaminathan, Kunchithapadam; Xu, H Eric

    2011-01-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  3. Crystal structure of the PAC1R extracellular domain unifies a consensus fold for hormone recognition by class B G-protein coupled receptors.

    Directory of Open Access Journals (Sweden)

    Shiva Kumar

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR. Crystal structures of a number of Class B GPCR extracellular domains (ECD bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.

  4. Involvement of Novel Multifunction Steroid Hormone Receptor Coactivator, E6-Associated Protein, in Prostate Gland Tumorigenesis

    Science.gov (United States)

    2010-01-01

    Molecular mechanisms of action of steroid/ thyroid receptor superfamily members. Annu Rev Biochem 63:451-86 12 5. Bentel JM, Tilley WD 1996 Androgen... thyroid , retinoid, and vitamin D receptors. Mol Cell Biol 17:2735-44 18. Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P, Gronemeyer H 1998 The...Sci U S A 103:7789-94. 32. Zhou, G., Y. Hashimoto , I. Kwak, S. Y. Tsai, and M. J. Tsai. 2003. Role of the steroid receptor coactivator SRC-3 in

  5. The Expression of Serum Antibodies against Gonadotropin-releasing Hormone (GnRH1, Progonadoliberin-2, Luteinizing Hormone (LH, and Related Receptors in Patients with Gastrointestinal Dysfunction or Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Bodil Roth

    2014-01-01

    Full Text Available Gonadotropin-releasing hormone (GnRH 1 and 2 and luteinizing hormone (LH receptors have been described in the gastrointestinal tract. We have previously demonstrated antibodies in serum against GnRH1 in patients with gastrointestinal dysfunction and diabetes mellitus, and antibodies against GnRH receptor, LH, and LH receptor in patients with infertility. The aim of this study was to search for the expression of serum antibodies against GnRH1 with an improved enzyme-linked immune sorbent assay (ELISA, and antibodies against progonadoliberin-2, GnRH2, GnRH receptor, LH, and LH receptor with newly developed ELISAs, in patients with gastrointestinal dysfunction or diabetes mellitus. Healthy blood donors served as controls. Medical records were scrutinized. Our conclusion was that IgM antibodies against GnRH1, progonadoliberin-2, and/or GnRH receptors were more prevalent in patients with functional gastrointestinal disorders, gastrointestinal dysmotility, and/or diabetes mellitus, whereas IgG antibodies against these peptides, and LH- and LH receptor antibodies, were expressed in the same magnitude as in controls.

  6. Cardiac ACE2/angiotensin 1-7/Mas receptor axis is activated in thyroid hormone-induced cardiac hypertrophy.

    Science.gov (United States)

    Diniz, Gabriela P; Senger, Nathalia; Carneiro-Ramos, Marcela S; Santos, Robson A S; Barreto-Chaves, Maria Luiza M

    2016-08-01

    Thyroid hormone (TH) promotes marked effects on the cardiovascular system, including the development of cardiac hypertrophy. Some studies have demonstrated that the renin-angiotensin system (RAS) is a key mediator of the cardiac growth in response to elevated TH levels. Although some of the main RAS components are changed in cardiac tissue on hyperthyroid state, the potential modulation of the counter regulatory components of the RAS, such as angiotensin-converting enzyme type 2 (ACE2), angiotensin 1-7 (Ang 1-7) levels and Mas receptor induced by hyperthyroidism is unknown. The aim of this study was to investigate the effect of hyperthyroidism on cardiac Ang 1-7, ACE2 and Mas receptor levels. Hyperthyroidism was induced in Wistar rats by daily intraperitoneal injections of T4 for 14 days. Although plasma Ang 1-7 levels were unchanged by hyperthyroidism, cardiac Ang 1-7 levels were increased in TH-induced cardiac hypertrophy. ACE2 enzymatic activity was significantly increased in hearts from hyperthyroid animals, which may be contributing to the higher Ang 1-7 levels observed in the T4 group. Furthermore, elevated cardiac levels of Ang 1-7 levels were accompanied by increased Mas receptor protein levels. The counter-regulatory components of the RAS are activated in hyperthyroidism and may be contributing to modulate the cardiac hypertrophy in response to TH. © The Author(s), 2015.

  7. Potent achiral agonists of the ghrelin (growth hormone secretagogue) receptor. Part I: Lead identification.

    Science.gov (United States)

    Heightman, Tom D; Scott, Jackie S; Longley, Mark; Bordas, Vincent; Dean, David K; Elliott, Richard; Hutley, Gail; Witherington, Jason; Abberley, Lee; Passingham, Barry; Berlanga, Manuela; de Los Frailes, Maite; Wise, Alan; Powney, Ben; Muir, Alison; McKay, Fiona; Butler, Sharon; Winborn, Kim; Gardner, Christopher; Darton, Jill; Campbell, Colin; Sanger, Gareth

    2007-12-01

    High throughput screening combined with efficient datamining and parallel synthesis led to the discovery of a novel series of indolines showing potent in vitro ghrelin receptor agonist activity and acceleration of gastric emptying in rats.

  8. Effects of gadolinium-based contrast agents on thyroid hormone receptor action and thyroid hormone-induced cerebellar Purkinje cell morphogenesis

    Directory of Open Access Journals (Sweden)

    Noriyuki Koibuchi

    2016-08-01

    Full Text Available Gadolinium (Gd-based contrast agents (GBCAs are used in diagnostic imaging to enhance the quality of magnetic resonance imaging or angiography. After intravenous injection, GBCAs can accumulate in the brain. Thyroid hormones (THs are critical to the development and functional maintenance of the central nervous system. TH actions in brain are mainly exerted through nuclear TH receptors (TRs. We examined the effects of GBCAs on TR-mediated transcription in CV-1 cells using transient transfection-based reporter assay and thyroid hormone-mediated cerebellar Purkinje cell morphogenesis in primary culture. We also measured the cellular accumulation and viability of Gd after representative GBCA treatments in cultured CV-1 cells. Both linear (Gd-diethylene triamine pentaacetic acid-bis methyl acid, Gd-DTPA-BMA and macrocyclic (Gd-tetraazacyclododecane tetraacetic acid, Gd-DOTA GBCAs were accumulated without inducing cell death in CV-1 cells. In contrast, Gd chloride (GdCl3 treatment induced approximately 100 times higher Gd accumulation and significantly reduced the number of cells. Low doses of Gd-DTPA-BMA (10−8–10−6 M augmented TR-mediated transcription, but the transcription was suppressed at higher dose (10−5 – 10−4 M, with decreased β-galactosidase activity indicating cellular toxicity. TR-mediated transcription was not altered by Gd-DOTA or GdCl3, but the latter induced a significant reduction in β-galactosidase activity at high doses, indicating cellular toxicity. In cerebellar cultures, the dendrite arborization of Purkinje cells induced by 10-9 M T4 was augmented by low-dose Gd-DTPA-BMA (10−7 M but was suppressed by higher dose (10−5 M. Such augmentation by low-dose Gd-DTPA-BMA was not observed with 10-9 M T3, probably because of the greater dendrite arborization by T3; however, the arborization by T3 was suppressed by a higher dose of Gd-DTPA-BMA (10-5 M as seen in T4 treatment. The effect of Gd-DOTA on dendrite arborization

  9. Novel screening system for high-affinity ligand of heredity vitamin D-resistant rickets-associated vitamin D receptor mutant R274L using bioluminescent sensor.

    Science.gov (United States)

    Mano, Hiroki; Nishikawa, Miyu; Yasuda, Kaori; Ikushiro, Shinichi; Saito, Nozomi; Sawada, Daisuke; Honzawa, Shinobu; Takano, Masashi; Kittaka, Atsushi; Sakaki, Toshiyuki

    2017-03-01

    Hereditary vitamin D-resistant rickets (HVDRR) is caused by mutations in the vitamin D receptor (VDR) gene. Arg274 located in the ligand binding domain (LBD) of VDR is responsible for anchoring 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) by forming a hydrogen bond with the 1α-hydroxyl group of 1α,25(OH)2D3. The Arg274Leu (R274L) mutation identified in patients with HVDRR causes a 1000-fold decrease in the affinity for 1α,25(OH)2D3, and dramatically reduces vitamin D- related gene expression. Recently, we successfully constructed fusion proteins consisting of split-luciferase and LBD of the VDR. The chimeric protein LucC-LBD-LucN, which displays the C-terminal domain of luciferase (LucC) at its N-terminus, can detect and discriminate between VDR agonists and antagonists. The LucC-LBD (R274L)-LucN was constructed to screen high-affinity ligands for the mutant VDR (R274L). Of the 33 vitamin D analogs, 5 showed much higher affinities for the mutant VDR (R274L) than 1α,25(OH)2D3, and 2α-[2-(tetrazol-2-yl)ethyl]-1α,25-(OH)2D3 showed the highest affinity. These compounds might be potential therapeutics for HVDRR caused by the mutant VDR (R274L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis.

    Science.gov (United States)

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-08-01

    -effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work. This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine.

  11. Disease management patterns for postmenopausal women in Europe with hormone-receptor-positive, human epidermal growth factor receptor-2 negative advanced breast cancer.

    Science.gov (United States)

    André, Fabrice; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Baladi, Jean-Francois; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Jerusalem, Guy

    2014-06-01

    International guidelines for hormone-receptor-positive (HR(+)), human epidermal growth factor receptor-2 negative (HER2(-)) advanced breast cancer (BC) recommend sequential lines of hormonal therapy (HT), and only recommend chemotherapy for patients with extensive visceral involvement or rapidly progressive disease. This study evaluated actual physician-reported treatments for advanced BC in Europe. We conducted a retrospective chart review of 355 postmenopausal women with HR(+), HER2(-) advanced BC who progressed on ≥1 line of HT (adjuvant or advanced) and completed ≥1 line of chemotherapy (advanced). Treatment choice was evaluated for each line of therapy. Of 355 patients, 111 (31%) received first-line chemotherapy, whereas 218 (61%) and 26 (7%) switched from HT to chemotherapy in second and third line, respectively. More patients receiving first-line HT had bone metastases (73% vs 27% chemotherapy). Patients treated with first-line chemotherapy had more brain (12% vs 3% HT) or extensive liver (13% vs 6% HT) metastases. Subgroup analysis of 188 patients who received first-line HT and had de novo advanced BC or relapsed/recurrent disease more than 1 year after adjuvant therapy found that the majority (89%; n = 167) of these patients switched to chemotherapy in second line. However, among these 167 patients, 27% had no significant changes in metastases between first and second line. Among the 73% of patients who had significant changes in metastases, 20% had no brain metastases or extensive visceral disease. Our study suggests that the guideline-recommended use of multiple HT lines is open to interpretation and that optimal treatment for European postmenopausal women with HR(+), HER2(-) advanced BC who responded to HT may not be achieved.

  12. Quantitative analysis of steroid hormone receptors and their messenger ribonucleic acids.

    Science.gov (United States)

    Cekan, S Z

    1994-11-01

    Ligand binding will remain the basic technique for receptor determinations in many laboratories. It can easily be set up and it is inexpensive. It has, however, the disadvantage of requiring relatively large amounts of tissue or cultured cells, if the proper multipoint measurements for Scatchard plots are to be done. Furthermore, each of the bound/free separation techniques mentioned above has its own caveat that has to be respected if analytically correct results are to be obtained. The great advantage of receptor immunoassays is their technical simplicity and the possibility of measuring a single dose of a receptor sample (in contrast to the Scatchard plot approach in ligand-binding assays). The possibility of using a single dose (even if assayed in duplicate) is a very valuable feature in all instances when only small tissue samples are available for assay. It would be very attractive for many laboratories to set up their own receptor immunoassays. The availability of suitable antibodies may not be a major obstacle. However, the necessity of possessing a supply of a highly purified receptor standard preparation may pose a problem. This is why commercial kits seem to be used so frequently. The analysis of receptor mRNA is a complement of or alternative to receptor quantitation. It must be realized, however, that special skills, as well as a molecular biology laboratory environment and equipment, are required for successful analytic work in this area. Solution hybridization is to be preferred as an approach to obtain results of a quantitative character. However, the specificity of hybridization should be checked by Northern blots. The same is true for dot/slot hybridization, which is a suitable method for semiquantitative assessments of a series of samples. Last but not least, the in situ hybridization provides invaluable information on the tissue and cell distribution of the mRNA analyzed.

  13. Whole-genome sequencing of mutants with increased resistance against the two-peptide bacteriocin plantaricin JK reveals a putative receptor and potential docking site

    Science.gov (United States)

    Nissen-Meyer, Jon; Kristensen, Tom

    2017-01-01

    By whole-genome sequencing of resistant mutants, a putative receptor for plantaricin JK, a two-peptide bacteriocin produced by some Lactobacillus plantarum strains, was identified in Lactobacillus plantarum NCFB 965 and Weissella viridescens NCFB 1655. The receptors of the two species had 66% identical amino acid sequences and belong to the amino acid-polyamine-organocation (APC) transporter protein family. The resistant mutants contained point mutations in the protein-encoding gene resulting in either premature stop codons, leading to truncated versions of the protein, or single amino acid substitutions. The secondary structure of the W. viridescens protein was predicted to contain 12 transmembrane (TM) helices, a core structure shared by most members of the APC protein family. The single amino acid substitutions that resulted in resistant strains were located in a confined region of the protein that consists of TM helix 10, which is predicted to be part of an inner membrane pore, and an extracellular loop between TM helix 11 and 12. By use of template-based modeling a 3D structure model of the protein was obtained, which visualizes this mutational hotspot region and further strengthen the hypothesis that it represents a docking site for plantaricin JK. PMID:28931059

  14. Novel homozygous nonsense mutations in the luteinizing hormone receptor (LHCGR) gene associated with 46,XY primary amenorrhea.

    Science.gov (United States)

    Ben Hadj Hmida, Imen; Mougou-Zerelli, Soumaya; Hadded, Anis; Dimassi, Sarra; Kammoun, Molka; Bignon-Topalovic, Joelle; Bibi, Mohamed; Saad, Ali; Bashamboo, Anu; McElreavey, Ken

    2016-07-01

    To determine the genetic cause of 46,XY primary amenorrhea in three 46,XY girls. Whole exome sequencing. University cytogenetics center. Three patients with unexplained 46,XY primary amenorrhea were included in the study. Potentially pathogenic variants were confirmed by Sanger sequencing, and familial segregation was determined where parents' DNA was available. Exome sequencing was performed in the three patients, and the data were analyzed for potentially pathogenic mutations. The functional consequences of mutations were predicted. Three novel homozygous nonsense mutations in the luteinizing hormone receptor (LHCGR) gene were identified:c.1573 C→T, p.Gln525Ter, c.1435 C→T p.Arg479Ter, and c.508 C→T, p.Gln170Ter. Inactivating mutations of the LHCGR gene may be a more common cause of 46,XY primary amenorrhea than previously considered. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Clinical features and growth hormone receptor gene mutations of patients with Laron syndrome from a Chinese family.

    Science.gov (United States)

    Ying, Yan-Qin; Wei, Hong; Cao, Li-Zhi; Lu, Juan-Juan; Luo, Xiao-Ping

    2007-08-01

    Laron syndrome is an autosomal recessive disorder caused by defects of growth hormone receptor (GHR) gene. It is characterized by severe postnatal growth retardation and characteristic facial features as well as high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3). This report described the clinical features and GHR gene mutations in 2 siblings with Laron syndrome in a Chinese family. Their heights and weights were in the normal range at birth, but the growth was retarded after birth. When they presented to the clinic, the heights of the boy (8 years old) and his sister (11 years old) were 80.0 cm (-8.2 SDS) and 96.6 cm (-6.8 SDS) respectively. They had typical appearance features of Laron syndrome such as short stature and obesity, with protruding forehead, saddle nose, large eyes, sparse and thin silky hair and high-pitched voice. They had higher basal serum GH levels and lower serum levels of IGF-I, IGFBP-3 and growth hormone binding protein (GHBP) than normal controls. The peak serum GH level after colonidine and insulin stimulations in the boy was over 350 ng/mL. After one-year rhGH treatment, the boy's height increased from 80.0 cm to 83.3 cm. The gene mutation analysis revealed that two patients had same homozygous mutation of S65H (TCA -->CCA) in exon 4, which is a novel gene mutation. It was concluded that a definite diagnosis of Laron syndrome can be made based on characteristic appearance features and serum levels of GH, IGF-I, IGFBP-3 and GHBP. The S65H mutation might be the cause of Laron syndrome in the two patients.

  16. Effect of neonatal hypothyroidism on prepubertal mouse testis in relation to thyroid hormone receptor alpha 1 (THRα1).

    Science.gov (United States)

    Sarkar, Debarshi; Singh, Shio Kumar

    2017-09-15

    Thyroid hormones (THs) are important for growth and development of many tissues, and altered thyroid status affects various organs and systems. Testis also is considered as a thyroid hormone responsive organ. Though THs play an important role in regulation of testicular steroidogenesis and spermatogenesis, the exact mechanism of this regulation remains poorly understood. The present study, therefore, is designed to examine the effect of neonatal hypothyroidism on prepubertal Parkes (P) strain mice testis in relation to thyroid hormone receptor alpha 1 (THRα1). Hypothyroidism was induced by administration of 6-propyl-2-thiouracil (PTU) in mother's drinking water from birth to day 28; on postnatal day (PND) 21 only pups, and on PND 28, both pups and lactating dams were euthanized. Serum T 3 and T 4 were markedly reduced in pups at PND 28 and in lactating mothers, while serum and intra-testicular testosterone levels were considerably decreased in pups of both age groups. Further, serum and intra-testicular levels of estrogen were significantly increased in hypothyroid mice at PND 28 with concomitant increase in CYP19 expression. Histologically, marked changes were noticed in testes of PTU-treated mice; immunohistochemical and western blot analyses of testes in treated mice also revealed marked decrease in the expression of THRα1 at both age groups. Semiquantitative RT-PCR and western blot analyses also showed reductions in both testicular mRNA and protein levels of SF-1, StAR, CYP11A1 and 3β-HSD in these mice. In conclusion, our results suggest that neonatal hypothyroidism alters localization and expression of THRα1 and impairs testicular steroidogenesis by down-regulating the expression SF-1, thereby affecting spermatogenesis in prepubertal mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The presence and role of progesterone receptor in the ovaries of postmenopausal women who have not applied hormone replacement therapy.

    Directory of Open Access Journals (Sweden)

    Małgorzata Piasecka

    2008-12-01

    Full Text Available At present, not much is known about progesterone receptor (PR expression and localization in postmenopausal women ovaries. In the ovaries of reproductive age women, PR is localized in internal theca and granulosa cells, corpus luteum, ovary surface epithelium (OSE and in stroma. PR expression depends on the serum concentration of progesterone, estrogen, gonadotropin and androgen. The goal of the conducted studies was to examine PR localization and expression in the ovaries of postmenopausal women who have not applied hormone replacement therapy so far. Also, the correlation was examined between PR expression and localization in the ovaries, steroid and gonadotropin hormone serum concentrations, and influence of the time from the last menstruation. The material came from 50 postmenopausal women who had their ovaries removed due to non-neoplastic diseases. The women were divided into 3 groups (A, B, C depending on the time from the last menstruation. The follitropin (FSH, luteotropin (LH, estradiol (E2, testosterone (T, androstendione (A and dehydroepiandrosterone sulphate (DHEAS concentrations in blood plasma were measured. Monoclonal mouse anti-human PR antibody was used for immunohistochemical detection (examination involved 50 postmenopausal ovaries. Between particular groups, E2 serum concentrations did not differ, but FSH, LH, T, A, DHEAS serum concentrations were significantly different. Immunohistochemical nuclear localization of PR in postmenopausal women ovaries was observed. PR expression was similar in all three groups (A, B, C. PR expression was observed in OSE nuclei and invaginations cysts deriving from the isolation of invaginated epithelium and metaplastic columnar epithelium and in stroma. In the ovaries of postmenopausal women who have not applied hormone replacement therapy so far, PR was detected in all three groups. Its expression did not depend on the time from menopause and was similar in all examined groups. FSH, LH, T, A

  18. Aspectos histopatológicos y receptores hormonales en mucosa endometrial de mujeres posmenopáusicas con terapia hormonal

    Directory of Open Access Journals (Sweden)

    Victoria Valer

    2005-03-01

    Full Text Available Objetivos: Determinar si existe correlación directa entre la terapéutica hormonal administrada en mujeres posmenopaúsicas, el comportamiento de los receptores estrogénicos y progesterónicos en la mucosa endometrial y los cuadros histológicos más frecuentes de patologías endometriales secundarias al tratamiento. Material y Métodos: Estudio prospectivo, longitudinal de 40 mujeres posmenopaúsicas entre los 43 y 60 años con síndrome climatérico, administrándoles 2 mg de 17 beta estradiol y 1 mg de acetato de noretisterona por día, en forma continua y por vía oral. Se realizó una biopsia endometrial basal y otra postratamiento al octavo mes. Las muestras fueron procesadas para estudio histopatológico e inmunohistoquímico para receptores estrogénicos y progesterónicos. Resultados: La menarquia se presentó a una edad promedio de 13,2 años y la menopausia fisiológica entre 42 y 52 años, con una edad promedio de 46,4 años. La sintomatología climatérica mejoró notablemente con la terapia hormonal. El estudio histopatológico de mucosa endometrial basal mostró 10% de hiperplasia simple y 90% de atrofia; postratamiento, todos los casos presentaron atrofia. Los receptores se expresaron en la mucosa endometrial basal: RE (+ 12,5%, RP (++ 12,5%; postratamiento RE (+ 2,5%, RE (+++ 2,5% y RP(+ 2,5%. Conclusiones: La terapia en dosis diarias vía oral de 2 mg de 17 beta estradiol y 1 mg de acetato de noretisterona disminuye la sintomatología climatérica y produce atrofia endometrial en las pacientes con hiperplasia previa. Existe disminución estadísticamente significativa entre la primera muestra basal y la del octavo mes de la expresión de receptores estrogénicos y progesterona.

  19. Modeling Canadian Quality Control Test Program for Steroid Hormone Receptors in Breast Cancer: Diagnostic Accuracy Study.

    Science.gov (United States)

    Pérez, Teresa; Makrestsov, Nikita; Garatt, John; Torlakovic, Emina; Gilks, C Blake; Mallett, Susan

    The Canadian Immunohistochemistry Quality Control program monitors clinical laboratory performance for estrogen receptor and progesterone receptor tests used in breast cancer treatment management in Canada. Current methods assess sensitivity and specificity at each time point, compared with a reference standard. We investigate alternative performance analysis methods to enhance the quality assessment. We used 3 methods of analysis: meta-analysis of sensitivity and specificity of each laboratory across all time points; sensitivity and specificity at each time point for each laboratory; and fitting models for repeated measurements to examine differences between laboratories adjusted by test and time point. Results show 88 laboratories participated in quality control at up to 13 time points using typically 37 to 54 histology samples. In meta-analysis across all time points no laboratories have sensitivity or specificity below 80%. Current methods, presenting sensitivity and specificity separately for each run, result in wide 95% confidence intervals, typically spanning 15% to 30%. Models of a single diagnostic outcome demonstrated that 82% to 100% of laboratories had no difference to reference standard for estrogen receptor and 75% to 100% for progesterone receptor, with the exception of 1 progesterone receptor run. Laboratories with significant differences to reference standard identified with Generalized Estimating Equation modeling also have reduced performance by meta-analysis across all time points. The Canadian Immunohistochemistry Quality Control program has a good design, and with this modeling approach has sufficient precision to measure performance at each time point and allow laboratories with a significantly lower performance to be targeted for advice.

  20. Conversion of hormone and HER-2 receptor in metachronous neck metastases from breast carcinoma.

    Science.gov (United States)

    Nauroth, Andreas; Kalder, Matthias; Rössler, Marion; Wichmann, Gunnar; Dietz, Andreas; Wiegand, Susanne

    2017-04-20

    Metastases are a common event in breast cancer. The expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) is essential for therapy and prognosis, and their conversion during disease progression potentially affects the treatment regimen. The aim was to analyze the estrogen, progesterone and HER-2 receptor expression in primary tumors and metachronous neck metastases from patients with breast cancer. A retrospective analysis of 27 patients with breast cancer and metachronous neck metastasis was performed. Distribution of neck metastasis to the neck levels and estrogen, progesterone and HER-2 receptor expression in primary tumor and metastasis were examined. The most common localization of neck metastasis was level V. ER, PR, and HER-2 in primary tumors were positive in 48.1, 51.9, and 26.3% of patients, respectively. A loss of ER and PR in neck metastasis was observed in 22.2 and 40.7% of the patients, respectively. HER-2 change was present in 4 of 19 paired samples (21.0%). The expression of ER, PR and HER-2 in neck metastases can be expected to diverge from the expression of these markers in the primary tumor. As such changes can occur during disease progression, the evaluation of biomarkers in metastatic sites should be mandatory, whenever possible, to ensure that patients are receiving the most effective treatment at all times.

  1. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2013-10-15

    . - Highlights: • Currently used pesticides possess endocrine-disrupting (ED) potential in vitro. • ED effects can be mediated via sex hormone receptors and/or the aromatase enzyme. • Additive mixture effects on androgen receptor transactivity were observed.

  2. Basic properties and annual changes of follicle-stimulating hormone receptors in the testis of horseshoe bats, Rhinolophus ferrumequinum.

    Science.gov (United States)

    Hayashi, Toshiyuki; Uchida, Katsuya; Kawamoto, Keiichi

    2002-02-15

    The unique reproductive patterns, delayed fertilization in females, and asynchrony between spermatogenesis and mating behavior in males are well documented in bats living in temperate latitudes. The present study was undertaken to examine follicle-stimulating hormone (FSH) receptors in the testis of bats, Rhinolophus ferrumequinum, during the annual reproductive cycle. Male bats were captured at natural roosting sites and testicular preparations were subjected to a radioligand binding assay for FSH receptors. The weight of paired testes increased considerably in the spermatogenic period and decreased from the mating to hibernation periods. Meiotic division in the testis was observed in the spermatogenic period but not the mating period. Serum testosterone concentrations increased in the spermatogenic period and rapidly decreased in the mating period. The binding of FSH was specific for mammalian FSHs and detected primarily in the testis. Scatchard plot analyses of the binding of FSH to bat testicular preparations showed straight lines, suggesting the presence of a single class of binding sites. The affinities (equilibrium association constant) of FSH receptors were consistent throughout the annual reproductive cycle. The specific binding per unit weight of testis and total binding in the paired testes were highest in the mating period and in the spermatogenic period, respectively, among reproductive periods. The accumulation of cyclic adenosine 3', 5'-monophosphate to FSH stimulation was higher in the spermatogenic period than in the hibernation period. These findings suggest that testicular function of bats is associated with seasonal changes in the number of binding sites, while the number per target cell and the activation of adenylate cyclase led by FSH-receptor complex considerably decreases in the hibernation period. Copyright 2002 Wiley‐Liss, Inc.

  3. Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-Like Kinase Gene Family

    Science.gov (United States)

    Chae, Lee; Sudat, Sylvia; Dudoit, Sandrine; Zhu, Tong; Luan, Sheng

    2009-01-01

    The genome of Arabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dominant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, plant RLKs are serine/threonine kinases that represent a novel signaling innovation unique to plants and, consequently, an excellent opportunity to understand how extracellular signaling evolved and functions in plants as opposed to animals. RLKs are predicted to be major components of the signaling pathways that allow plants to respond to environmental and developmental conditions. However, breakthroughs in identifying these processes have been limited to only a handful of individual RLKs. Here, we used a Syngenta custom Arabidopsis GeneChip array to compile a detailed profile of the transcriptional activity of 604 receptor-like kinase genes after exposure to a cross-section of known signaling factors in plants, including abiotic stresses, biotic stresses, and hormones. In the 68 experiments comprising the study, we found that 582 of the 604 RLK genes displayed a two-fold or greater change in expression to at least one of 12 types of treatments, thereby providing a large body of experimental evidence for targeted functional screens of individual RLK genes. We investigated whether particular subfamilies of RLK genes are responsive to specific types of signals and found that each subfamily displayed broad ranges of expression, as opposed to being targeted towards particular signal classes. Finally, by analyzing the divergence of sequence and gene expression among the RLK subfamilies, we present evidence as to the functional basis for the expansion of the RLKs and how this expansion may have affected conservation and divergences in their function. Taken as a whole, our study represents a preliminary, working model of processes and interactions in which the members of the RLK gene family may be involved, where such information has remained elusive for so many

  4. Overexpression of thyroid hormone beta1 nuclear receptor is associated with an increased proliferation of human hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, K.; Lin, Y.; McPhie, P. [Chang-Gung College of Medicine and Technology, Graduate Institute of Clinical Medicine, Taoyuan (Taiwan, Province of China); Cheng, S. [National Cancer Inst., Bethesda, MD (United States)

    1994-12-31

    It is evaluated the expression of thyroid hormone nuclear receptors (TRs) and their possible roles in the carcinogenesis of human hepatocarcinoma. The expression of TR{beta}1 and TR{alpha} genes was evaluated at both the mRNA and protein levels. The expression of TR{beta}1 and TR{alpha}1 mRNAs is similar to those found in normal liver. However, the expression of TR isoform proteins depends on the cell-type. The expression of TRaplha1 protein is low in all cell lines examined. However, TR{Beta}1 protein is overexpressed in Mahlavu, SK-Hep-1, and HA22T, moderately expressed in J5, J7, and J328 and is very low HepG2, Hep3B, and PLC/PRF/5 cells. The proliferation of cells in which TR{beta}1 is overexpressed is stimulated by the thyroid hormone, 3,3`,5- triiodo-L-thyronine. These results suggest that TR{beta}1, not TR{alpha}1, is probably involved in the prolifaration of hepatoma cells.

  5. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1.

    Directory of Open Access Journals (Sweden)

    Xiao-Su Zhao

    Full Text Available Cyclin-dependent kinase 5 (Cdk5 is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC-interacting factor 1 (NIF-1, is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  6. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    Science.gov (United States)

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  7. Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study.

    Science.gov (United States)

    Ritte, Rebecca; Lukanova, Annekatrin; Tjønneland, Anne; Olsen, Anja; Overvad, Kim; Mesrine, Sylvie; Fagherazzi, Guy; Dossus, Laure; Teucher, Birgit; Steindorf, Karen; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Mattiello, Amalia; Tumino, Rosario; Sacerdote, Carlotta; Quirós, José Ramón; Buckland, Genevieve; Molina-Montes, Esther; Chirlaque, María-Dolores; Ardanaz, Eva; Amiano, Pilar; Bueno-de-Mesquita, Bas; van Duijnhoven, Franzel; van Gils, Carla H; Peeters, Petra Hm; Wareham, Nick; Khaw, Kay-Tee; Key, Timothy J; Travis, Ruth C; Krum-Hansen, Sanda; Gram, Inger Torhild; Lund, Eiliv; Sund, Malin; Andersson, Anne; Romieu, Isabelle; Rinaldi, Sabina; McCormack, Valerie; Riboli, Elio; Kaaks, Rudolf

    2013-06-01

    Associations of breast cancer overall with indicators of exposures during puberty are reasonably well characterized; however, uncertainty remains regarding the associations of height, leg length, sitting height and menarcheal age with hormone receptor-defined malignancies. Within the European Prospective Investigation into Cancer and Nutrition cohort, Cox proportional hazards models were used to describe the relationships of adult height, leg length and sitting height and age at menarche with risk of estrogen and progesterone receptor negative (ER-PR-) (n = 990) and ER+PR+ (n = 3,524) breast tumors. Height as a single risk factor was compared to a model combining leg length and sitting height. The possible interactions of height, leg length and sitting height with menarche were also analyzed. Risk of both ER-PR- and ER+PR+ malignancies was positively associated with standing height, leg length and sitting height and inversely associated with increasing age at menarche. For ER+PR+ disease, sitting height (hazard ratios: 1.14[95% confidence interval: 1.08-1.20]) had a stronger risk association than leg length (1.05[1.00-1.11]). In comparison, for ER-PR- disease, no distinct differences were observed between leg length and sitting height. Women who were tall and had an early menarche (≤13 years) showed an almost twofold increase in risk of ER+PR+ tumors but no such increase in risk was observed for ER-PR- disease. Indicators of exposures during rapid growth periods were associated with risks of both HR-defined breast cancers. Exposures during childhood promoting faster development may establish risk associations for both HR-positive and -negative malignancies. The stronger associations of the components of height with ER+PR+ tumors among older women suggest possible hormonal links that could be specific for postmenopausal women. Copyright © 2012 UICC.

  8. NCoR1-independent mechanism plays a role in the action of the unliganded thyroid hormone receptor.

    Science.gov (United States)

    Mendoza, Arturo; Astapova, Inna; Shimizu, Hiroaki; Gallop, Molly R; Al-Sowaimel, Lujain; MacGowan, S M Dileas; Bergmann, Tim; Berg, Anders H; Tenen, Danielle E; Jacobs, Christopher; Lyubetskaya, Anna; Tsai, Linus; Hollenberg, Anthony N

    2017-10-03

    Nuclear receptor corepressor 1 (NCoR1) is considered to be the major corepressor that mediates ligand-independent actions of the thyroid hormone receptor (TR) during development and in hypothyroidism. We tested this by expressing a hypomorphic NCoR1 allele (NCoR1ΔID), which cannot interact with the TR, in Pax8-KO mice, which make no thyroid hormone. Surprisingly, abrogation of NCoR1 function did not reverse the ligand-independent action of the TR on many gene targets and did not fully rescue the high mortality rate due to congenital hypothyroidism in these mice. To further examine NCoR1's role in repression by the unliganded TR, we deleted NCoR1 in the livers of euthyroid and hypothyroid mice and examined the effects on gene expression and enhancer activity measured by histone 3 lysine 27 (H3K27) acetylation. Even in the absence of NCoR1 function, we observed strong repression of more than 43% of positive T3 (3,3',5-triiodothyronine) targets in hypothyroid mice. Regulation of approximately half of those genes correlated with decreased H3K27 acetylation, and nearly 80% of these regions with affected H3K27 acetylation contained a bona fide TRβ1-binding site. Moreover, using liver-specific TRβ1-KO mice, we demonstrate that hypothyroidism-associated changes in gene expression and histone acetylation require TRβ1. Thus, many of the genomic changes mediated by the TR in hypothyroidism are independent of NCoR1, suggesting a role for additional signaling modulators in hypothyroidism.

  9. Attenuated Reactive Gliosis and Enhanced Functional Recovery Following Spinal Cord Injury in Null Mutant Mice of Platelet-Activating Factor Receptor.

    Science.gov (United States)

    Wang, Yuanyi; Gao, Zhongwen; Zhang, Yiping; Feng, Shi-Qing; Liu, Yulong; Shields, Lisa B E; Zhao, Ying-Zheng; Zhu, Qingsan; Gozal, David; Shields, Christopher B; Cai, Jun

    2016-07-01

    Platelet-activating factor (PAF) is a unique phosphoglycerine that mediates the biological functions of both immune and nervous systems. Excessive PAF plays an important role in neural injury via its specific receptor (PAFR). In this study, we hypothesized that PAF signaling activates reactive gliosis after spinal cord injury (SCI), and blocking the PAF pathway would modify the glia scar formation and promote functional recovery. PAF microinjected into the normal wild-type spinal cord induced a dose-dependent activation of microglia and astrocytes. In the SCI mice, PAFR null mutant mice showed a better functional recovery in grip and rotarod performances than wild-type mice. Although both microglia and astrocytes were activated after SCI in wild-type and PAFR null mutant mice, expressions of IL-6, vimentin, nestin, and GFAP were not significantly elevated in PAFR null mutants. Disruption of PAF signaling inhibited the expressions of proteoglycan CS56 and neurocan (CSPG3). Intriguingly, compared to the wild-type SCI mice, less axonal retraction/dieback at 7 dpi but more NFH-labeled axons at 28 dpi was found in the area adjacent to the epicenter in PAFR null mutant SCI mice. Moreover, treatment with PAFR antagonist Ginkgolide B (GB) at the chronic phase rather than acute phase enhanced the functional recovery in the wild-type SCI mice. These findings suggest that PAF signaling participates in reactive gliosis after SCI, and blocking of this signaling enhances functional recovery and to some extent may promote axon regrowth.

  10. Molecular Mechanism of Erlotinib Resistance in Epidermal Growth Factor ReceptorMutant Non-small cell Lung Cancer Cell Line H1650

    Directory of Open Access Journals (Sweden)

    Ruili HAN

    2012-12-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR overexpression and mutations were existed in more than 40% of the lung cancer, and it’s the one of molecular targets in clinical treatment. But the EGFR tyrosine kinase inhibitors (TKI-resistance is becoming a challenging clinical problem as following the application of EGFR-TKIs, Gefitinib or Erlotinib. However, the mechanistic explanation for resistance in the some cases is still lacking. Here we researched the resistance mechanism of H1650 cells. Methods Using real-time RT-PCR to analyze the EGFR mRNA expression level in EGFR wild-type non-small cell lung cancer (NSCLC cells; MTT analysis detected the cytotoxicity for NSCLC cells to Erlotinib; Western blot analysis examined the mutant situations and the downstream signaling protein phosphorylation level in EGFR-mutant NSCLC cells with the treatment of Erlotinib or/and PI3K inhibitor, LY294002. Results In the EGFR wild-type NSCLC cells, the expression level of EGFR mRNA varied dramatically and all the cells showed resistant to Erlotinib; In the EGFR-mutant cells, HCC827 and H1650 (the same activating-mutation type, HCC827 cells were Erlotinib-sensitive as well as H1650 demonstrated primary relative resistance. Western blot analysis showed the loss of PTEN and the p-AKT level was not inhibited with the treatment of Erlotinib or/and LY294002 in H1650 cells, while HCC827 cells were no PTEN loss and definitively decrease of p-AKT level. Conclusion EGFR wild-type NSCLC cells were resistant to Erlotinib no matter of how EGFR mRNA expression level. EGFR-activating mutations correlated with responses to Erlotinib. The PTEN loss and activation of AKT signaling pathway contributed to Erlotinib resistance in EGFR-mutant NSCLC cell line H1650.

  11. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials

    NARCIS (Netherlands)

    Davies, C.; Godwin, J.; Gray, R.; Clarke, M.; Cutter, D.; Darby, S.; McGale, P.; Pan, H. C.; Taylor, C.; Wang, Y. C.; Dowsett, M.; Ingle, J.; Peto, R.; Albain, K.; Anderson, S.; Arriagada, R.; Barlow, W.; Bergh, J.; Bliss, J.; Buyse, M.; Cameron, D.; Carrasco, E.; Correa, C.; Coates, A.; Collins, R.; Costantino, J.; Cuzick, J.; Davidson, N.; Davies, K.; Delmestri, A.; Di Leo, A.; Elphinstone, P.; Evans, V.; Ewertz, M.; Gelber, R.; Gettins, L.; Geyer, C.; Goldhirsch, A.; Gregory, C.; Hayes, D.; Hill, C.; Jakesz, R.; James, S.; Kaufmann, M.; Kerr, A.; MacKinnon, E.; McHugh, T.; Norton, L.; Ohashi, Y.; Paik, S.; Perez, E.; Piccart, M.; Pierce, L.; Pruneri, G.; Pritchard, K.; Raina, V.; Ravdin, P.; Robertson, J.; Rutgers, E.; Shao, Y. F.; Swain, S.; Valagussa, P.; Viale, G.; Whelan, T.; Winer, E.; Wang, Y.; Wood, W.; Abe, O.; Abe, R.; Enomoto, K.; Kikuchi, K.; Koyama, H.; Masuda, H.; Nomura, Y.; Sakai, K.; Sugimachi, K.; Toi, M.; Tominaga, T.; Uchino, J.; Yoshida, M.; Haybittle, J. L.; Leonard, C. F.; Calais, G.; Geraud, P.; Collett, V.; Sayer, J.; Harvey, V. J.; Holdaway, I. M.; Kay, R. G.; Mason, B. H.; Forbes, J. F.; Wilcken, N.; Bartsch, R.; Dubsky, P.; Fesl, C.; Fohler, H.; Gnant, M.; Greil, R.; Lang, A.; Luschin-Ebengreuth, G.; Marth, C.; Mlineritsch, B.; Samonigg, H.; Singer, C. F.; Steger, G. G.; Stöger, H.; Canney, P.; Yosef, H. M. A.; Focan, C.; Peek, U.; Oates, G. D.; Powell, J.; Durand, M.; Mauriac, L.; Dolci, S.; Larsimont, D.; Nogaret, J. M.; Philippson, C.; Piccart, M. J.; Masood, M. B.; Parker, D.; Price, J. J.; Lindsay, M. A.; Mackey, J.; Martin, M.; Hupperets, P. S. G. J.; Bates, T.; Blamey, R. W.; Chetty, U.; Ellis, I. O.; Mallon, E.; Morgan, D. A. L.; Patnick, J.; Pinder, S.; Olivotto, I.; Ragaz, J.; Berry, D.; Broadwater, G.; Cirrincione, C.; Muss, H.; Weiss, R. B.; Abu-Zahra, H. T.; Portnoj, S. M.; Bowden, S.; Brookes, C.; Dunn, J.; Fernando, I.; Lee, M.; Poole, C.; Rea, D.; Spooner, D.; Barrett-Lee, P. J.; Mansel, R. E.; Monypenny, I. J.; Gordon, N. H.; Davis, H. L.; Lehingue, Y.; Romestaing, P.; Dubois, J. B.; Delozier, T.; Griffon, B.; Mace Lesec'h, J.; Rambert, P.; Mustacchi, G.; Petruzelka, L.; Pribylova, O.; Owen, J. R.; Harbeck, N.; Jänicke, F.; Meisner, C.; Schmitt, M.; Thomssen, C.; Meier, P.; Shan, Y.; Wang, X.; Zhao, D. B.; Chen, Z. M.; Howell, A.; Swindell, R.; Burrett, J. A.; Hermans, D.; Hicks, C.; Lay, M.; Albano, J.; de Oliveira, C. F.; Gervásio, H.; Gordilho, J.; Johansen, H.; Mouridsen, H. T.; Gelman, R. S.; Harris, J. R.; Henderson, C.; Shapiro, C. L.; Christiansen, P.; Ejlertsen, B.; Jensen, M.-B.; Møller, S.; Carstensen, B.; Palshof, T.; Trampisch, H. J.; Dalesio, O.; de Vries, E. G. E.; Rodenhuis, S.; van Tinteren, H.; Comis, R. L.; Davidson, N. E.; Robert, N.; Sledge, G.; Solin, L. J.; Sparano, J. A.; Tormey, D. C.; Dixon, J. M.; Forrest, P.; Jack, W.; Kunkler, I.; Rossbach, J.; Klijn, J. G. M.; Treurniet-Donker, A. D.; van Putten, W. L. J.; Rotmensz, N.; Veronesi, U.; Bartelink, H.; Bijker, N.; Bogaerts, J.; Cardoso, F.; Cufer, T.; Julien, J. P.; van de Velde, C. J. H.; Cunningham, M. P.; Huovinen, R.; Joensuu, H.; Costa, A.; Tinterri, C.; Bonadonna, G.; Gianni, L.; Goldstein, L. J.; Bonneterre, J.; Fargeot, P.; Fumoleau, P.; Kerbrat, P.; Luporsi, E.; Namer, M.; Eiermann, W.; Hilfrich, J.; Jonat, W.; Kreienberg, R.; Schumacher, M.; Bastert, G.; Rauschecker, H.; Sauer, R.; Sauerbrei, W.; Schauer, A.; Blohmer, J. U.; Costa, S. D.; Eidtmann, H.; Gerber, B.; Jackisch, C.; Loibl, S.; von Minckwitz, G.; de Schryver, A.; Vakaet, L.; Belfiglio, M.; Nicolucci, A.; Pellegrini, F.; Pirozzoli, M. C.; Sacco, M.; Valentini, M.; McArdle, C. S.; Smith, D. C.; Stallard, S.; Dent, D. M.; Gudgeon, C. A.; Hacking, A.; Murray, E.; Panieri, E.; Werner, I. D.; Segui, M. A.; Galligioni, E.; Lopez, M.; Erazo, A.; Medina, J. Y.; Horiguchi, J.; Takei, H.; Fentiman, I. S.; Hayward, J. L.; Rubens, R. D.; Skilton, D.; Scheurlen, H.; Sohn, H. C.; Untch, M.; Dafni, U.; Markopoulos, C.; Fountzilas, G.; Mavroudis, D.; Klefstrom, P.; Blomqvist, C.; Saarto, T.; Gallen, M.; Margreiter, R.; de Lafontan, B.; Mihura, J.; Roché, H.; Asselain, B.; Salmon, R. J.; Vilcoq, J. R.; Bourgier, C.; Koscielny, S.; Laplanche, A.; Lê, M. G.; Spielmann, M.; A'Hern, R.; Ellis, P.; Kilburn, L.; Yarnold, J. R.; Benraadt, J.; Kooi, M.; van de Velde, A. O.; van Dongen, J. A.; Vermorken, J. B.; Castiglione, M.; Colleoni, M.; Collins, J.; Forbes, J.; Gelber, R. D.; Lindtner, J.; Price, K. N.; Regan, M. M.; Rudenstam, C. M.; Senn, H. J.; Thuerlimann, B.; Bliss, J. M.; Chilvers, C. E. D.; Coombes, R. C.; Hall, E.; Marty, M.; Possinger, K.; Schmid, P.; Wallwiener, D.; Foster, L.; George, W. D.; Stewart, H. J.; Stroner, P.; Borovik, R.; Hayat, H.; Inbar, M. J.; Robinson, E.; Bruzzi, P.; del Mastro, L.; Pronzato, P.; Sertoli, M. R.; Venturini, M.; Camerini, T.; de Palo, G.; Di Mauro, M. G.; Formelli, F.; Amadori, D.; Martoni, A.; Pannuti, F.; Camisa, R.; Cocconi, G.; Colozza, A.; Passalacqua, R.; Aogi, K.; Takashima, S.; Ikeda, T.; Inokuchi, K.; Sawa, K.; Sonoo, H.; Korzeniowski, S.; Skolyszewski, J.; Ogawa, M.; Yamashita, J.; Bastiaannet, E.; van de Water, W.; van Nes, J. G. H.; Christiaens, R.; Neven, P.; Paridaens, R.; van den Bogaert, W.; Braun, S.; Janni, W.; Martin, P.; Romain, S.; Janauer, M.; Seifert, M.; Sevelda, P.; Zielinski, C. C.; Hakes, T.; Hudis, C. A.; Wittes, R.; Giokas, G.; Kondylis, D.; Lissaios, B.; de la Huerta, R.; Sainz, M. G.; Altemus, R.; Camphausen, K.; Cowan, K.; Danforth, D.; Lichter, A.; Lippman, M.; O'Shaughnessy, J.; Pierce, L. J.; Steinberg, S.; Venzon, D.; Zujewski, J. A.; D'Amico, C.; Lioce, M.; Paradiso, A.; Chapman, J.-A. W.; Gelmon, K.; Goss, P. E.; Levine, M. N.; Meyer, R.; Parulekar, W.; Pater, J. L.; Pritchard, K. I.; Shepherd, L. E.; Tu, D.; Ohno, S.; Bass, G.; Brown, A.; Bryant, J.; Dignam, J.; Fisher, B.; Mamounas, E. P.; Redmond, C.; Wickerham, L.; Wolmark, N.; Baum, M.; Jackson, I. M.; Palmer, M. K.; Ingle, J. N.; Suman, V. J.; Bengtsson, N. O.; Emdin, S.; Jonsson, H.; Lythgoe, J. P.; Kissin, M.; Erikstein, B.; Hannisdal, E.; Jacobsen, A. B.; Varhaug, J. E.; Gundersen, S.; Hauer-Jensen, M.; Høst, H.; Nissen-Meyer, R.; Mitchell, A. K.; Robertson, J. F. R.; Ueo, H.; Di Palma, M.; Mathé, G.; Misset, J. L.; Levine, M.; Morimoto, K.; Takatsuka, Y.; Crossley, E.; Harris, A.; Talbot, D.; Taylor, M.; Martin, A. L.; di Blasio, B.; Ivanov, V.; Paltuev, R.; Semiglazov, V.; Brockschmidt, J.; Cooper, M. R.; Falkson, C. I.; Ashley, S.; Makris, A.; Powles, T. J.; Smith, I. E.; Gazet, J. C.; Browne, L.; Graham, P.; Corcoran, N.; Deshpande, N.; di Martino, L.; Douglas, P.; Lindtner, A.; Notter, G.; Bryant, A. J. S.; Ewing, G. H.; Firth, L. A.; Krushen-Kosloski, J. L.; Anderson, H.; Killander, F.; Malmström, P.; Rydén, L.; Arnesson, L.-G.; Carstensen, J.; Dufmats, M.; Fohlin, H.; Nordenskjöld, B.; Söderberg, M.; Carpenter, J. T.; Murray, N.; Royle, G. T.; Simmonds, P. D.; Crowley, J.; Gralow, J.; Green, S.; Hortobagyi, G.; Livingston, R.; Martino, S.; Osborne, C. K.; Ravdin, P. M.; Adolfsson, J.; Bondesson, T.; Celebioglu, F.; Dahlberg, K.; Fornander, T.; Fredriksson, I.; Frisell, J.; Göransson, E.; Iiristo, M.; Johansson, U.; Lenner, E.; Löfgren, L.; Nikolaidis, P.; Perbeck, L.; Rotstein, S.; Sandelin, K.; Skoog, L.; Svane, G.; af Trampe, E.; Wadström, C.; Maibach, R.; Thürlimann, B.; Hakama, M.; Holli, K.; Isola, J.; Rouhento, K.; Saaristo, R.; Brenner, H.; Hercbergs, A.; Yoshimoto, M.; Paterson, A. H. G.; Fyles, A.; Meakin, J. W.; Panzarella, T.; Bahi, J.; Reid, M.; Spittle, M.; Bishop, H.; Bundred, N. J.; Forsyth, S.; Pinder, S. E.; Sestak, I.; Deutsch, G. P.; Kwong, D. L. W.; Pai, V. R.; Senanayake, F.; Boccardo, F.; Rubagotti, A.; Hackshaw, A.; Houghton, J.; Ledermann, J.; Monson, K.; Tobias, J. S.; Carlomagno, C.; de Laurentiis, M.; de Placido, S.; Williams, L.; Broglio, K.; Buzdar, A. U.; Love, R. R.; Ahlgren, J.; Garmo, H.; Holmberg, L.; Liljegren, G.; Lindman, H.; Wärnberg, F.; Asmar, L.; Jones, S. E.; Gluz, O.; Liedtke, C.; Nitz, U.; Litton, A.; Wallgren, A.; Karlsson, P.; Linderholm, B. K.; Chlebowski, R. T.; Caffier, H.

    2011-01-01

    As trials of 5 years of tamoxifen in early breast cancer mature, the relevance of hormone receptor measurements (and other patient characteristics) to long-term outcome can be assessed increasingly reliably. We report updated meta-analyses of the trials of 5 years of adjuvant tamoxifen. We undertook

  12. The ability of PAM50 risk of recurrence score to predict 10-year distant recurrence in hormone receptor-positive postmenopausal women with special histological subtypes

    DEFF Research Database (Denmark)

    Laenkholm, Anne-Vibeke; Jensen, Maj-Britt; Eriksen, Jens Ole

    2017-01-01

    INTRODUCTION: The Prosigna-PAM50 risk of recurrence (ROR) score has been validated in randomized clinical trials to predict 10-year distant recurrence (DR) in hormone receptor-positive breast cancer. Here, we examine the ability of Prosigna for predicting DR at 10 years in a subgroup of postmenop...

  13. Crystal structure of an affinity-matured prolactin complexed to its dimerized receptor reveals the topology of hormone binding site 2

    DEFF Research Database (Denmark)

    Broutin, Isabelle; Jomain, Jean-Baptiste; Tallet, Estelle

    2010-01-01

    We report the first crystal structure of a 1:2 hormone.receptor complex that involves prolactin (PRL) as the ligand, at 3.8-A resolution. Stable ternary complexes were obtained by generating affinity-matured PRL variants harboring an N-terminal tail from ovine placental lactogen, a closely related...

  14. The gene encoding the melanin-concentrating hormone receptor 1 is associated with schizophrenia in a Danish case-control sample

    DEFF Research Database (Denmark)

    Demontis, Ditte; Nyegaard, Mette; Christensen, Jane H

    2012-01-01

    OBJECTIVE: The MCHR1 gene encoding the melanin-concentrating hormone receptor 1 is located on chromosome 22q13.2 and has previously been associated with schizophrenia in a study of cases and controls from the Faroe Islands and Scotland. Herein we report an association between variations in the MCHR...

  15. Dietary fiber intake and risk of hormonal receptor-defined breast cancer in the European Prospective Investigation into Cancer and Nutrition study1,2

    NARCIS (Netherlands)

    Ferrari, P.; Rinaldi, S.; Jenab, M.; Lukanova, A.; Olsen, A.; Tjonneland, A.; Overvad, K.; Clavel-Chapelon, F.; Fagherazzi, G.; Touillaud, M.; Kaaks, R.; Rusten, A. von; Boeing, H.; Trichopoulou, A.; Lagiou, P.; Benetou, V.; Grioni, S.; Panico, S.; Masala, G.; Tumino, R.; Polidoro, S.; Bakker, M.F.; Gils, C.H. van; Ros, M.M.; Bueno-De-Mesquita, H.B.; Krum-Hansen, S.; Engeset, D.; Skeie, G.; Pilar, A.; Sanchez, M.J.; Buckland, G.; Ardanaz, E.; Chirlaque, D.; Rodriguez, L.; Travis, R.; Key, T.; Khaw, K.T.; Wareham, N.J.; Sund, M.; Lenner, P.; Slimani, N.; Norat, T.; Aune, D.; Riboli, E.; Romieu, I.

    2013-01-01

    BACKGROUND: Limited scientific evidence has characterized the association between dietary fiber intake and risk of breast cancer (BC) by menopausal status and hormone receptor expression in tumors. OBJECTIVE: We investigated the relation between total dietary fiber and its main food sources

  16. ERR Gamma: Does an Orphan Nuclear Receptor Link Steroid Hormone Biogenesis to Endocrine Resistance?

    Science.gov (United States)

    2007-09-01

    tandem copies of the consensus sequence for SF-1RE (TCAAGGTCA; generously provided by Dr. Jean-Marc Vanacker, INSERM, Montpellier , France) (6) and...activity, Mol. Endocrinol. 20 (2006) 3120–3132. [147] D. Chen, P.E. Pace , R.C. Coombes, S. Ali, Phosphoryla- tion of human estrogen receptor alpha by protein...1998) 13317–13323. [154] D. Chen, T. Riedl, E. Washbrook, P.E. Pace , R.C. Coombes, J.M. Egly, et al., Activation of estrogen receptor alpha by S118

  17. Pharmacological characterization of homobaclofen on wild type and mutant GABA(B)1b receptors coexpressed with the GABA(B)2 receptor

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Madsen, Bo E.; Krogsgaard-Larsen, P

    2001-01-01

    homogenate and in an assay of electrically induced contractions of guinea pig ileum. The results from the two tissues did, however, not correlate very well, and in order to further investigate these discrepancies, we have pharmacologically characterized these enantiomers on recombinant wild type and mutant...

  18. Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites.

    Directory of Open Access Journals (Sweden)

    Oliver Weth

    Full Text Available The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.

  19. Effects of plasticizers and their mixtures on estrogen Receptor and thyroid hormone functions

    DEFF Research Database (Denmark)

    Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie

    2009-01-01

    Plasticizers are additives used to increase the flexibility or plasticity of the material to which they are added, normally rigid plastic and as additives in paint and adhesives. They are suspected to interfere with the endocrine system, including the estrogen and the thyroid hormone (TH) systems...... was lower than predicted, suggesting a potential antagonizing effect of the mixture. In conclusion, the tested plasticizers and phenols elicited endocrine-disrupting potential that can be mediated via interference with the estrogen and TH systems. Moreover, the observed mixture effect stresses...

  20. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Il Yong Chung

    Full Text Available The aim of this study was to determine the relationship between the body mass index (BMI at a breast cancer diagnosis and various factors including the hormone-receptor, menopause, and lymph-node status, and identify if there is a specific patient subgroup for which the BMI has an effect on the breast cancer prognosis. We retrospectively analyzed the data of 8,742 patients with non-metastatic invasive breast cancer from the research database of Asan Medical Center. The overall survival (OS and breast-cancer-specific survival (BCSS outcomes were compared among BMI groups using the Kaplan-Meier method and Cox proportional-hazards regression models with an interaction term. There was a significant interaction between BMI and hormone-receptor status for the OS (P = 0.029, and BCSS (P = 0.013 in lymph-node-positive breast cancers. Obesity in hormone-receptor-positive breast cancer showed a poorer OS (adjusted hazard ratio [HR] = 1.51, 95% confidence interval [CI] = 0.92 to 2.48 and significantly poorer BCSS (HR = 1.80, 95% CI = 1.08 to 2.99. In contrast, a high BMI in hormone-receptor-negative breast cancer revealed a better OS (HR = 0.44, 95% CI = 0.16 to 1.19 and BCSS (HR = 0.53, 95% CI = 0.19 to 1.44. Being underweight (BMI < 18.50 kg/m2 with hormone-receptor-negative breast cancer was associated with a significantly worse OS (HR = 1.98, 95% CI = 1.00-3.95 and BCSS (HR = 2.24, 95% CI = 1.12-4.47. There was no significant interaction found between the BMI and hormone-receptor status in the lymph-node-negative setting, and BMI did not interact with the menopause status in any subgroup. In conclusion, BMI interacts with the hormone-receptor status in a lymph-node-positive setting, thereby playing a role in the prognosis of breast cancer.

  1. Studies on luteinizing hormone receptors of human corpora lutea during menstrual cycle and pregnancy

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yasushi (Keio Univ., Tokyo (Japan). School of Medicine)

    1982-10-01

    With the purpose of explicating the lifespan of human corpora lutea, using human corpora lutea of the menstrual cycle and pregnancy, binding of /sup 125/I-LH to the 20,000g cell membrane fraction was examined. 1) Specific bindings of /sup 125/I-LH, /sup 125/I-HCG were demonstrated in the 20,000g cell membrane fraction. Although LH and HCG were parallel in inhibiting /sup 125/I-LH binding, HCG was found to be more effective. FSH did not inhibit binding. 2) Binding of /sup 125/I-LH was dependent on time, temperature, /sup 125/I-LH concentration, amount of the cell membrane fraction protein and pH. The highest binding was seen at pH 6.0 while incubating for 60 min at 37/sup 0/C. 3) The number of LH receptors in human corpora lutea of the menstrual cycle increased towards midluteal phase, especially on 5th day from ovulation, and decreased towards late luteal phase. LH receptor was not found in corpus albicans. The apparent dissociation constant of each corpus luteum did not change throughout the menstrual cycle. 4) Corpora lutea of pregnancy contained a few or no receptors which bound /sup 125/I-LH specifically. These data suggest that LH receptor is an important factor regulating the lifespan of corpus luteum and exogenous HCG has effect on luteal insufficiency, but the effect of HCG on threatened abortion is uncertain.

  2. Resorption controls bone anabolism driven by parathyroid hormone (PTH) receptor signaling in osteocytes.

    Science.gov (United States)

    Rhee, Yumie; Lee, Eun-Young; Lezcano, Virginia; Ronda, Ana C; Condon, Keith W; Allen, Matthew R; Plotkin, Lilian I; Bellido, Teresita

    2013-10-11

    The contribution of remodeling-based bone formation coupled to osteoclast activity versus modeling-based bone formation that occurs independently of resorption, to the anabolic effect of PTH remains unclear. We addressed this question using transgenic mice with activated PTH receptor signaling in osteocytes that exhibit increased bone mass and remodeling, recognized skeletal effects of PTH elevation. Direct inhibition of bone formation was accomplished genetically by overexpressing the Wnt antagonist Sost/sclerostin; and resorption-dependent bone formation was inhibited pharmacologically with the bisphosphonate alendronate. We found that bone formation induced by osteocytic PTH receptor signaling on the periosteal surface depends on Wnt signaling but not on resorption. In contrast, bone formation on the endocortical surface results from a combination of Wnt-driven increased osteoblast number and resorption-dependent osteoblast activity. Moreover, elevated osteoclasts and intracortical/calvarial porosity is exacerbated by overexpressing Sost and reversed by blocking resorption. Furthermore, increased cancellous bone is abolished by Wnt inhibition but further increased by blocking resorption. Thus, resorption induced by PTH receptor signaling in osteocytes is critical for full anabolism in cortical bone, but tempers bone gain in cancellous bone. Dissecting underlying mechanisms of PTH receptor signaling would allow targeting actions in different bone compartments, enhancing the therapeutic potential of the pathway.

  3. The functional relationship between co-repressor N-CoR and SMRT in mediating transcriptional repression by thyroid hormone receptor alpha.

    Science.gov (United States)

    Choi, Kyung-Chul; Oh, So-Young; Kang, Hee-Bum; Lee, Yoo-Hyun; Haam, Seungjoo; Kim, Ha-Il; Kim, Kunhong; Ahn, Young-Ho; Kim, Kyung-Sup; Yoon, Ho-Geun

    2008-04-01

    A central issue in mediating repression by nuclear hormone receptors is the distinct or redundant function between co-repressors N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptor). To address the functional relationship between SMRT and N-CoR in TR (thyroid hormone receptor)-mediated repression, we have identified multiple TR target genes, including BCL3 (B-cell lymphoma 3-encoded protein), Spot14 (thyroid hormone-inducible hepatic protein), FAS (fatty acid synthase), and ADRB2 (beta-adrenergic receptor 2). We demonstrated that siRNA (small interfering RNA) treatment against either N-CoR or SMRT is sufficient for the de-repression of multiple TR target genes. By the combination of sequence mining and physical association as determined by ChIP (chromatin immunoprecipitation) assays, we mapped the putative TREs (thyroid hormone response elements) in BCL3, Spot14, FAS and ADRB2 genes. Our data clearly show that SMRT and N-CoR are independently recruited to various TR target genes. We also present evidence that overexpression of N-CoR can restore repression of endogenous genes after knocking down SMRT. Finally, unliganded, co-repressor-free TR is defective in repression and interacts with a co-activator, p300. Collectively, these results suggest that both SMRT and N-CoR are limited in cells and that knocking down either of them results in co-repressor-free TR and consequently de-repression of TR target genes.

  4. The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo.

    Science.gov (United States)

    Sutanto, Maria M; Ferguson, Kelly K; Sakuma, Hiroya; Ye, Honggang; Brady, Matthew J; Cohen, Ronald N

    2010-06-11

    The silencing mediator of retinoid and thyroid hormone receptors (SMRT) serves as a corepressor for nuclear receptors and other factors. Recent evidence suggests that SMRT is an important regulator of metabolism, but its role in adipocyte function in vivo remains unclear. We generated heterozygous SMRT knock-out (SMRT(+/-)) mice to investigate the function of SMRT in the adipocyte and the regulation of adipocyte insulin sensitivity. We show that SMRT(+/-) mice are normal weight on a regular diet, but develop increased adiposity on a high-fat diet (HFD). The mechanisms underlying this phenotype are complex, but appear to be due to a combination of an increased number of smaller subcutaneous adipocytes as well as decreased leptin expression, resulting in greater caloric intake. In addition, adipogenesis of mouse embryonic fibroblasts (MEFs) derived from these mice was increased. However, adipocyte insulin sensitivity, measured by insulin-induced Akt phosphorylation and insulin-mediated suppression of lipolysis, was enhanced in SMRT(+/-) adipocytes. These finding suggest that SMRT regulates leptin expression and limits the ability of fat mass to expand with increased caloric intake, but that SMRT also negatively regulates adipocyte insulin sensitivity.